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Abstract		

	

According	to	Waddington’s	epigenetic	landscape	concept,	the	differentiation	process	can	
be	 illustrated	by	 a	 cell	 akin	 to	 a	ball	 rolling	down	 from	 the	 top	of	 a	hill	 (proliferation	
state)	and	crossing	 furrows	before	stopping	 in	basins	or	 “attractor	 states”	 to	 reach	 its	
stable	differentiated	state.	However,	it	is	now	clear	that	some	committed	cells	can	retain	
a	 certain	 degree	 of	 plasticity	 and	 reacquire	 phenotypical	 characteristics	 of	 a	 more	
pluripotent	cell	state.	 In	 line	with	 this	dynamic	model,	we	have	previously	shown	that	
differentiating	 cells	 (chicken	 erythrocytic	 progenitors	 (T2EC))	 retain	 for	 24	 hours	 the	
ability	 to	 self-renew	when	 transferred	 back	 in	 self-renewal	 conditions.	 Despite	 those	
intriguing	 and	 promising	 results,	 the	 underlying	 molecular	 state	 of	 those	 “reverting”	
cells	 remains	 unexplored.	 The	 aim	 of	 the	 present	 study	was	 therefore	 to	molecularly	
characterize	 the	 T2EC	 reversion	 process	 by	 combining	 advanced	 statistical	 tools	 to	
make	 the	 most	 of	 single	 cell	 transcriptomic	 data.	 For	 this	 purpose,	 T2EC,	 initially	
maintained	in	a	self-renewal	medium	(0H),	were	induced	to	differentiate	for	24h	(24H	
differentiating	cells);	then	a	part	of	these	cells	was	transferred	back	to	the	self-renewal	
medium	(48H	reverting	cells)	and	the	other	part	was	maintained	in	the	differentiation	
medium	 for	 another	 24h	 (48H	 differentiating	 cells).	 	 For	 each	 time	 point,	 cell	
transcriptomes	were	generated	using	scRT-qPCR	and	scRNAseq.	Our	results	 showed	a	
strong	 overlap	 between	 0H	 and	 48H	 reverting	 cells	 when	 applying	 dimensional	
reduction.	 Moreover,	 the	 statistical	 comparison	 of	 cell	 distributions	 and	 differential	
expression	analysis	 indicated	no	significant	differences	between	these	two	cell	groups.	
Interestingly,	gene	pattern	distributions	highlighted	that,	while	48H	reverting	cells	have	
gene	 expression	 pattern	 more	 similar	 to	 0H	 cells,	 they	 retained	 traces	 of	 their	
engagement	in	the	differentiation	process.	Finally,	Sparse	PLS	analysis	showed	that	only	
the	expression	of	3	genes	discriminates	48H	reverting	and	0H	cells.	Altogether,	we	show	
that	 reverting	 cells	 return	 to	 an	 earlier	 molecular	 state	 almost	 identical	 to	
undifferentiated	 cells	 and	 demonstrate	 a	 previously	 undocumented	 physiological	 and	
molecular	 plasticity	 during	 the	 differentiation	 process,	which	most	 likely	 results	 from	
the	dynamic	behavior	of	the	underlying	molecular	network.		
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Introduction	

	

The	integration	and	processing	of	endogenous	and	exogenous	information	constitute	a	

fundamental	 requirement	 for	 cells	 to	 ensure	 functions	 and	 survival	 of	 unicellular	 or	

multicellular	organisms.	Cellular	decision-making	is	then	at	the	core	of	the	physiological	

or	 pathological	 functioning	 of	 living	 organisms.	 Early	 views	 of	 the	 mechanisms	

governing	cell-fate	decision-making,	and	in	particular	cell	differentiation,	were	based	on	

bulk	population	data,	 leading	to	an	over-simplifying	deterministic	 framework.	 In	these	

first	 views,	 cell	 commitment	 to	 a	 predefined	 cell-type	 was	 thought	 to	 be	 triggered	

through	 a	 stereotyped	 sequence	 of	 intermediate	 states	 under	 the	 influence	 of	 specific	

signals	(1).			

Single-cell	 approaches	 have	 allowed	 to	 change	 the	 scale	 of	 observation	 of	 many	

molecular	processes	and	 revealed	 that	 an	 important	heterogeneity	 in	gene	expression	

lies	at	the	heart	of	isogenic	cell	populations	(2,3).	Stochasticity	in	gene	expression	arises	

from	 different	 causes,	 such	 as	 the	 probabilistic	 nature	 of	 molecular	 interactions	 or	

transcriptional	 bursts	 (4).	 Cell-to-cell	 variability	 is	 visible	 at	 all	 omics	 levels	 of	 gene	

expression,	 but	 is	 being	 widely	 studied	 at	 the	 transcriptomic	 level	 since	 various	

molecular	 biology	 tools	 are	 available	 for	 this	 scale	 of	 investigation	 (5).	 Overall,	 this	

heterogeneity	 in	 gene	 expression	 has	 been	 shown	 to	 be	 critical	 for	 the	 process	 of	

differentiation,	 as	 it	 provides	 diversity	 without	 the	 cost	 of	 hardwire-encoded	 fate	

programs	(6,7).	

Furthermore,	single-cell	studies	have	also	enabled	the	development	of	stochastic	models	

to	describe	differentiation	from	single-cell	transcriptomics	data.	One	of	the	best-known	

stochastic	model	 is	Conrad	Waddington's	 landscape,	 that	also	 includes	the	non-genetic	

part	of	 cell-to-cell	heterogeneities	 (8).	According	 to	Waddington’s	model,	 the	 shape	of	

the	landscape	is	determined	by	Gene	Regulatory	Networks	(GRN)	and	state	transitions	

are	modelled	as	channelling	events:	a	cell,	presented	as	a	ball,	 starts	 from	a	mountain	

top	 and	 crosses	 valleys	 before	 reaching	 stable	 state	 by	 occupying	 basins	 or	 attractor	

states,	 shaped	 by	 an	 underlining	 GRN	 (9).	 Once	 this	 stable	 state	 is	 reached,	 the	 state	

potential	decreases	and	the	associated	cell-fate	is	restricted	or	even	irreversible	(10).		

However,	it	is	now	clearly	accepted	that	some	cells	retain	fate	plasticity	(11,12).	Under	

the	forced	modification	of	transcription	factors	stoichiometry,	a	cell	that	have	reached	a	

differentiated	 state	 can	 return	 to	 a	 more	 pluripotent	 stage	 challenging	 the	 classical	
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hierarchical	 view	 of	 differentiation	 (13,14).	 Quite	 interestingly,	 spontaneous	 fate	

reversion	 can	 be	 observed	 under	 physiological	 or	 damaging	 condition	 where	

progenitors	or	 even	more	 committed	 cells	 return	 to	 an	earlier	 stage,	potentially	more	

pluripotent	and	re-acquire	progenitor	or	 stem-cell-like	phenotypes	and	characteristics	

(15–18).	 In	 this	 view,	 our	 recent	 study	 has	 shown	 that	 chicken	 primary	 erythroid	

progenitor	cells	(T2EC)	have	retained	the	capacity	to	go	back	to	self-renewal	state	for	up	

to	 24H	 after	 the	 induction	 of	 differentiation	 before	 they	 irreversibly	 engaged	 in	 the	

differentiation	 process	 (19).	 Despite	 intriguing	 and	 promising	 results,	 the	 molecular	

determinants	of	 this	so-called	 fate	reversion	and	the	molecular	characterization	of	 the	

reverting	cells	remain	unexplored.																																																																																																																																														

In	 this	 work,	 we	 go	 beyond	 the	 cellular	 and	 phenotypic	 characterization	 of	 the	 cell	

reversion	 process.	 We	 characterize	 the	 gene	 expression	 of	 primary	 erythroid	

progenitors	 and	 question	 if	 reverting	 cells	 undergo	 an	 actual	 fate	 reversion	 i.e.	 in	

addition	to	regaining	a	comparable	cellular	state,	reacquire	a	molecular	state	similar	to	

undifferentiated	cells.	

For	 this,	 differentiation	 of	 self-renewing	 cells	was	 induced	 by	medium	 change	 during	

24H.	 Then	 we	 splitted	 the	 differentiating	 population	 so	 that	 half	 could	 pursue	

differentiation,	 and	 the	 second	half	was	 shifted	back	 in	 self-renewal	medium	(FIGURE	

1).	 To	 provide	 robust	 quantitative	 measurements	 of	 gene	 expression	 variability,	 we	

combined	a	highly	sensitive	targeted	quantification	method	(scRT-qPCR)	with	genome-

wide	scRNASeq	data	to	characterize	the	transcriptome	of	each	population	at	single	cell	

level:	 undifferentiated	 (0H),	 differentiating	 (24H	 and	 48H)	 and	 reverting	 (48H	

reverting)	 cells.	 Our	 statistical	 analyses	 show	 that	 48H	 reverting	 cells	 and	

undifferentiated	cells	were	much	more	similar,	whereas	a	separation	was	clearly	visible	

between	 cells	 maintained	 in	 differentiation	 (48H	 differentiating	 cells)	 and	 cells	 in	

reversion	(48H	reverting	cells).	Furthermore,	statistical	comparison	of	cell	distributions	

indicated	no	significant	differences	between	0H	cells	and	48H	reverting	cells.	Moreover,	

gene	 expression	 pattern	 distribution	 of	 48H	 reverting	 cells	 showed	 a	 shift	 towards	

expression	pattern	distribution	of	0H	cells.	Finally,	we	identified	genes	that	discriminate	

48H	reverting	cells	and	0H	cells.	Using	sparse	Partial	Least	Square	(20),	we	were	able	to	

show	 that	 the	 expression	of	 3	 genes,	HBBA,	TBC1D7	 and	HSP90AA1,	was	discriminant	

between	 48H	 reverting	 cells	 and	 0H	 cells	 showing	 that	 reverting	 cells	 kept	

transcriptional	 traces	 of	 their	 induction	 to	 differentiation.	 In	 conclusion,	 our	 results	
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show	 that	 reverting	 cells	 display	 gene	 expression	 patterns	 that	 are	 very	 similar	 to	

undifferentiated	 cells	 while	 retaining	 traces	 of	 their	 response	 to	 differentiation	

induction,	 which	 suggests	 an	 almost	 complete	 molecular	 reversion	 after	 24H	 of	

differentiation	induction.	
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Results		

	

Robustness	of	single–cell	transcriptomics	analysis			

We	 sought	 to	 characterize	 at	 the	 molecular	 level	 the	 cells	 that	 were	 induced	 to	

differentiate	for	24	hours	and	that	retained	the	ability	to	proliferate	when	placed	back	

into	 self-renewal	 medium.	 We	 used	 two	 different	 complementary	 single-cell	

transcriptomic	 technologies,	 scRT-qPCR	 and	 scRNAseq.	 scRT-qPCR	 allows	 for	 highly	

sensitive	 quantification	 but	 is	 knowledge-driven	 and	 offers	 information	 of	 a	 limited	

number	 a	 genes	while	 scRNAseq,	 although	 less	 precise	 for	 low	 expression	 level	 (21),	

enables	genome-wide	quantification	without	prior	knowledge.		Furthermore,	using	two	

different	single-cell	technologies	allowed	us	to	cross	validate	our	observations	and	point	

toward	robust	conclusions.	

We	 first	 obtained	 by	 scRT-qPCR	 the	 expression	 level	 of	 83	 genes	 involved	 in	 T2EC	

differentiation,	 in	173,	173,	168,	171	cells	 for	0H,	24H,	48H	of	differentiation	and	48H	

reverting	 cells,	 respectively.	 Those	 genes	 are	 known	 to	 distinguish	 cells	 along	 the	

differentiation	process	and	include	sterol	biosynthesis,	metabolism,	globin	subunits,	and	

transcription	 factors	 expressed	 by	 erythroid	 progenitors	 as	 published	 in	 (19).	 The	

robustness	of	our	measurements	was	confirmed	by	a	Pearson’s	correlation	of	0,85	(p-

value	=	2.2e-16)	between	our	experiments	and	the	published	data	(19).	To	 investigate	

fate-reversion	genome-wide	by	scRNASeq,	we	adapted	the	MARSseq	protocol	((22)	-	see	

material	and	methods).	Then	we	obtained	gene	expression	levels	in	174,	181,	169,	186	

single-cells	for	0H,	24H,	48H	of	differentiation	and	48H	reverting	cells,	respectively.	The	

concordance	 between	 scRT-qPCR	 and	 scRNAseq	 data	 was	 confirmed	 by	 a	 Pearson’s	

correlation	of	0,73	(p-value	=	1,34e-13)	between	the	74	genes	common	to	both	datasets.		

	

Similarity	 between	 reverting	 and	 undifferentiated	 cells	 revealed	 by	 dimension	

reduction	

We	 used	 UMAP	 to	 uncover	 potential	 similarities	 between	 48H	 reverting	 cells	 and	

subgroups	 of	 differentiating	 cells	 by	 projecting	 the	 4	 conditions	 (FIGURE	 2:	 Panel	 A,	

scRT-qPCR	 data	 and	 Panel	 B,	 scRNAseq	 data).	 Then	 we	 focused	 on	 the	 normal	

differentiation	 process	 using	 the	 3	 times	 points	 of	 differentiation	 (0H,	 24H	 and	 48H	

differentiating	 cells)	 (FIGURE	 2:	 Panel	 C	 -	 H).	 For	 both	 experiments,	 pairwise	

representations	show	that	24H	differentiating	cells	 tend	 to	overlap	with	both	0H	cells	
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(Figure	2:	Panel	C	and	D)	and	48H	differentiating	cells	(Figure	2:	Panel	E	and	F).	On	the	

contrary,	 the	 undifferentiated	 cells	 and	 48h	 differentiating	 cells	 clearly	 differ.	

Interestingly,	pairwise	representations	also	reveal	that	48H	reverting	cells	separate	well	

from	the	48H	differentiating	cells	(FIGURE	2:	I	and	J)	and	from	24H	cells	(FIGURE	2:	K	

and	 L),	 but	 are	 visually	 not	 distinguishable	 from	 the	 0H	 cells	 (FIGURE	 2:	M	 AND	 N).	

Almost	 identical	 results	 were	 observed	when,	 instead	 of	 plotting	 cells	 on	 the	 UMAPs	

calculated	from	the	mix	of	the	4	conditions,	we	recalculated	the	UMAPs	for	each	pair	of	

conditions	 (Supplementary	1).	Those	 analyses	 suggest	 that	 the	 transcriptomes	of	 48H	

reverting	cells	are	more	similar	to	the	undifferentiated	cells	than	to	any	other	condition	

at	 both	 scales	 of	 observation.	 This	 was	 further	 confirmed	 by	 the	 pairwise	 statistical	

comparison	 of	 average	 scRNAseq	 distributions	 ((23)	 -	 see	material	 and	methods).	 As	

shown	in	Table	1,	the	average	transcriptomes	of	48H	reverting	and	48H	differentiating	

cells	 are	 significantly	 different,	 as	 well	 as	 of	 undifferentiated	 and	 48H	 differentiating	

cells.	 In	 contrast,	 no	 significant	 difference	 in	 average	 transcriptomes	 was	 detected	

between	 0H	 and	 48H	 reverting	 conditions	 (p-value	 >>	 0.05),	 indicating	 a	 very	 close	

proximity	of	48H	reverting	cells	to	undifferentiated	cells.	

	

48H	 reverting	 cells	 and	 undifferentiated	 cells	 have	 similar	 gene	 expression	

patterns	

We	then	questioned	if	48H	reverting	cells	had	gene	expression	patterns	identical	to	0H	

cells	 or	 retained,	 for	 some	 genes,	 an	 expression	 pattern	more	 similar	 to	 24H	 or	 48H	

differentiating	cells.	

Pairwise	 scRNAseq	DE	 analysis	 revealed	 that	 the	 “normal”	 erythrocyte	 differentiation	

process	 showed	an	 increase	 in	 the	expression	of	hemoglobin	 related	genes	during	 the	

kinetics	(Hemoglobin	subunit	epsilon	1	(HBBA),	Hemoglobin	Alpha-Locus	1	(HBA1),	and	

Hemoglobin	Alpha,	subunit	D	(HBAD))	(FIGURE	3:	panel	A,	B	and	C).	On	the	other	hand,	

0H	cells	expressed	high	level	of	LDHA	(Lactate	Dehydrogenase	A),	marker	for	glycolysis	

metabolism	 used	 by	 self-renewing	 cells	 (24)	 	 and	 ID2	 (Inhibitor	 Of	 DNA	 Binding	 2)	

coding	for	a	transcription	factor	involved	in	differentiation	inhibition		(25).	

Interestingly,	when	comparing	0H	with	48H	reverting	cells,	we	saw	only	one	gene	that	

was	significantly	differentially	expressed	just	above	the	threshold	(FIGURE	3:	panel	D),	

the	RSFR	(RNase	Super	Family	Related)	gene,	that	is	highly	expressed	in	precursor	cells	

from	chicken	bone	marrow	(26).	Furthermore,	when	comparing	48H	reverting	with	48H	
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differentiating	 cells,	we	 found	hemoglobin	 related	genes	up	 in	 the	differentiating	 cells	

and	LDHA	and	ID2	up	in	reverting	cells	(FIGURE	3:	panel	E).		

	

We	 more	 closely	 investigated	 gene	 expression	 distributions	 within	 the	 different	

conditions	 to	 see	 how	 gene	 expression	 patterns	 would	 evolve	 during	 the	 reversion	

process	(FIGURE	4).	We	selected	8	genes	differentially	expressed	and	which	expression	

increases	or	decreases	during	the	differentiation	process.	HBA1,	HBBA,	HBAD	(different	

hemoglobin	subunits)	and	FECH	(Ferrochelatase)	are	involved	in	hemoglobin	and	heme	

pathways	 and	 are	 more	 expressed	 by	 differentiating	 cells	 while	 LDHA,	 ID2,	 CSTA	

(cystatin	A1)	and	CRIP1	(Cysteine-rich	intestinal	protein1)	are	more	expressed	by	self-

renewing	 undifferentiated	 cells.	We	 plotted	 and	 compared	 their	 distribution	 between	

the	4	conditions.	For	the	genes	involved	in	differentiation,	we	see	a	gradual	shift	in	the	

distributions	 towards	 a	 higher	 level	 of	 expression	 as	 cells	 get	 more	 differentiated	

(FIGURE	4:	Panel	A	-	D)	and	we	see	the	opposite	shift	for	genes	involved	in	proliferation	

(FIGURE	4:	Panel	E	-	H).	In	all	cases,	the	48H	reverting	cell	expression	patterns	for	those	

genes	 shifted	 back	 to	 patterns	 closer	 to	 the	 0H	 cells.	 At	 the	 time	 of	 observation	 and	

especially	for	genes	up	in	differentiation,	the	48H	reverting	cell	expression	patterns	are	

not	 completely	 similar	 to	 those	 of	 0H	 cells.	 	 This	 was	 further	 confirmed	 by	 using	 a	

dedicated	statistical	tool,	Sparse	PLS	(see	below).		

To	go	further	on	gene	distribution	comparisons	we	computed	Wasserstein	distances,	a	

geometric	distances	well	suited	for	comparing	multimodal	distributions,	for	each	2000	

genes	of	 the	 scRNAseq	dataset	between	each	 condition	 two	by	 two.	We	 then	obtain	6	

distributions	of	Wasserstein	distance	values.	 Finally,	we	 computed	 the	Gini	 index	as	 a	

measure	of	 statistical	dispersion	 in	each	distribution	 (the	higher	 the	Gini	 index	 is,	 the	

higher	 inequality	among	the	values).	We	performed	100	bootstraps	and	compared	the	

Gini	 values	 obtained	 (FIGURE	 5A).	 Distribution	 of	Wasserstein	 distances	 between	 0H	

cells	and	48H	reverting	cells	had	the	smallest	average	Gini	index	among	all	distributions	

(Figure	5B).	This	result	points	towards	a	closer	global	transcriptional	state	between	48H	

reverting	cells	and	0H	cells.	

	

48H	reverting	cells	retain	molecular	traces	of	a	commitment	into	differentiation	

To	further	characterize	the	molecular	changes	that	persisted	after	reversion,	we	sought	

to	 identify	predictive	genes	that	discriminate	 the	most	 the	48H	reverting	cells	and	the	
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undifferentiated	 cells.	 We	 performed	 logistic	 regression	 combined	 with	 dimension	

reduction	 (Partial	 Least	 Square	 (20))	 between	 48H	 reverting	 cells	 and	 0H	 cells	 and	

retained	 common	 most	 discriminating	 genes	 between	 scRT-qPCR	 and	 scRNAseq	

datasets.	 Interestingly,	 our	 results	 showed	 that	 only	 3	 common	 genes	 discriminate	

between	the	two	cell	groups:	HBBA,	TBC1D7	and	HSP90AA1,	the	expression	of	which	is	

shown	in	FIGURE	6.	HBBA	is	a	subunit	of	the	hemoglobin	complex	which	carries	oxygen,	

TBC1D7	is	presumed	to	have	a	role	in	regulating	cell	growth	and	differentiation	(27)	and	

HSP90AA1	 codes	 for	 an	 isoform	 of	 the	 HSP90	 protein	 chaperone,	 which	 its	 specific	

transcription	 is	 known	 to	 be	 induced	 in	 response	 to	 insulin	 (28).	 Looking	 closely,	 the	

48H	reverting	cells	have	an	intermediate	expression	level	between	differentiating	cells	

and	undifferentiated	 cells	 for	 the	 three	predicted	 genes.	 The	 offset	 observed	 could	be	

due	to	a	longer	duration	of	mRNA	half-life	at	24H	of	differentiation.	We	had	previously	

performed	 a	 quantification	 of	mRNA	 half-life	 during	 avian	 erythrocyte	 differentiation	

((29)	 Supplementary	 2).	We	 focused	 on	mRNA	 half-life	 at	 24H	 for	 those	 three	 genes.	

TBC1D7	and	HSP90AA1	have	a	relatively	short	half-life	as	opposed	to	HBBA.		Other	genes	

analyzed	 whose	 expression	 increases	 during	 differentiation,	 such	 as	 DPP7,	 TPP1	 or	

RPL22L1	have	also	a	long	half-life	duration	mRNAs,	but	only	HBBA	was	identified	in	our	

statistical	analysis	as	discriminating	between	undifferentiated	and	48H	reverting	cells.	

These	results	confirmed	that	the	48H	reverting	cells	display	a	gene	expression	pattern	

very	close	 to	 those	of	0H	cells	while	still	 retaining	 traces	of	 their	engagement	 into	 the	

differentiation	 process	 independently	 of	 the	 mRNA	 half-life.	 The	 molecular	 process	

explaining	such	“lagging	genes”	will	have	to	be	explored.	

	

Cells	are	distributed	as	a	continuum	along	the	differentiation	path	

At	 that	 stage,	 two	 hypotheses	 could	 be	 made:	 1.	 Either	 all	 cells	 have	 engaged	 into	 a	

differentiation	process,	and	do	molecularly	revert	to	a	self-renewal	transcriptional	state	

or	 2.	 At	 24H	 of	 differentiation	 two	 subpopulations	 coexist:	 one	 that	 is	 still	

undifferentiated	 and	 would	 give	 rise	 to	 the	 48H	 reverting	 cells	 and	 a	 second	 more	

differentiated	 which	 would	 lead	 to	 the	 48H	 differentiating	 population	 and	 die	 in	 the	

reversion	experiment.	

We	hypothesized	that	the	existence	of	two	subpopulations	at	24	hours	should	lead	to	a	

higher	number	of	modes	in	the	distribution	of	some	genes	at	that	time	point.	To	test	this	

hypothesis,	we	therefore	estimated	for	each	condition	the	most-likely	number	of	modes	
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for	the	probability	distribution	of	each	gene,	as	assessed	through	a	Gamma	mixture	on	

scRNAseq	(see	material	and	methods).	We	found	no	significant	difference	in	the	number	

of	modes	observed	between	the	4	populations	(Figure	7),	which	confirms	that	the	cells	

collected	from	24H	do	not	show	more	multi-stability	than	the	other	groups,	and	are	thus	

unlikely	to	be	a	mix	of	two	populations.	

The	 second	hypothesis	would	also	 imply	 that	 in	 the	24H	population	 the	 cells	 engaged	

too	 far	 in	 the	differentiation	process	would	die	a	short	 time	after	media	was	changed,	

while	only	the	undifferentiated	ones	would	survive.	We	then	measured	the	viability	rate	

during	 the	 kinetics	 and	 found	 no	 difference	 in	 viability	 between	 the	 conditions	 and	

especially	 between	 the	 24H	 differentiation	 and	 the	 48H	 reversion	 conditions	

(Supplementary	3).	

Finally,	the	second	hypothesis	would	also	imply	that	the	reversion	cells	are	simply	cells	

that	have	not	entered	the	differentiation	process.	It	would	therefore	be	at	odds	with	the	

evidence	 that	 the	 48H	 reverting	 cells	 display	 slightly	 different	 pattern	 of	 gene	

expression	as	0H	cells,	but	do	retain	traces	of	their	engagement	into	the	differentiation	

process	(see	upper).	

Those	 results	 strongly	 suggest	 that	 the	 24H	 cell	 population	 is	 not	 composed	 of	 two	

coexisting	 subpopulations	 of	 cells	 and	 that	 48H	 reverting	 cells	 enter	 differentiation	

before	going	back	to	a	transcriptomic	state	close	to	0H	cells.	
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Discussion	

	

In	the	present	study,	we	couple	two	different	single-cell	transcriptomic	techniques	and	

state-of-the-art	 statistical	 approaches	 to	 demonstrate	 the	 fate	 reversibility	 of	 avian	

erythrocyte	progenitors	induced	to	differentiate	for	24	hours.	

Our	 results	 show	 a	 very	 close	 proximity	 of	 reverting	 and	 undifferentiated	 cell	

transcriptomes.	Indeed,	statistical	comparison	of	cell	distributions	showed	no	significant	

difference	between	0H	and	48H	reverting	cells	while,	as	expected,	significant	changes	in	

gene	 expression	 accompanied	 the	 differentiation	 sequence.	 The	 analysis	 of	 gene	

expression	distribution	patterns	of	 the	48H	reverting	 cells	 confirmed	a	 switch	 toward	

the	0H	cells	gene	expression	profiles.	First,	DE	analysis	of	scRNAseq	data	showed	only	

one	 gene	 significantly	 differentially	 expressed	 between	 the	 two	 conditions.	 Second,	

Wasserstein	distance	analysis	revealed	closer	distances	between	48H	reverting	and	0H	

cells	 than	 to	 any	 other	 group	 of	 cells.	 Third,	 Sparse	 PLS	 analysis	 indicated	 that	 the	

expression	level	of	only	three	gene,	HBBA,	TBC1D7	and	HSP90AA1,	was	predictive	of	the	

48H	 reverting	 and	 undifferentiated	 cells.	 	 Interestingly	 the	 persistence	 of	 those	 three	

genes	in	48H	reverting	cells	does	not	seem	to	be	caused	by	mRNA	half-life	duration.		

All	of	our	results	therefore	favor	the	hypothesis	that	a	vast	majority	of	the	48H	reverting	

cells	responded	to	differentiation	induction	by	modifying	their	gene	expression	profiles	

but	then	returned	to	the	self-renewal	transcriptional	state.	

One	must	 note	 that	 this	 would	 not	 be	 the	 sole	 example	 of	 large	 scale	 transcriptomic	

changes	on	(relatively)	short	time	scales	(18,30).	The	question	as	to	whether	such	large-

scale	 transcriptome	 changes	 are	 accompanied,	 or	 not,	 by	 (reversible)	 large	 scale	

epigenetic	changes	remains	an	open	question	for	future	studies.		

It	has	been	described	in	the	literature	that	during	cellular	decision	making,	the	cell	state	

is	 maintained	 by	 dynamic	 interactions	 between	 positive	 and	 negative	 regulatory	

molecules	 (31)	 within	 the	 frame	 of	 a	 Gene	 Regulatory	 Network	 (GRN).	 These	

interactions	can	be	repurposed	by	changing	the	stoichiometry	of	ubiquitous	and	specific	

regulatory	molecules	and	factors	(11,32).	 In	our	study,	the	analysis	of	gene	expression	

patterns	during	 the	 reversion	process	 confirmed	 that	 the	determination	 of	 the	 fate	 of	

erythrocyte	 progenitors	 is	 directed	 by	 the	 constraints	 of	 the	 dynamics	 of	 the	 GRN,	

influenced	by	 signals	 emitted	by	 changing	 conditions	of	 the	 environment	 surrounding	

the	 cells.	 In	 the	 absence	 of	 differentiation	 signals	 (or	 in	 the	 presence	 of	 self-renewal	
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inducing	signals),	there	is	no	ratchet	in	place	that	would	prevent	(at	least	at	early	stages	

in	 our	 case)	 the	 system	 to	 return	 back	 to	 its	 original	 quasi-steady	 state.	 This	 is	 in	

excellent	agreement	with	the	previous	demonstration	that	there	is	a	duration	threshold	

for	some	GRN	under	which	the	systems	can	return	back	to	 its	original	state	 (33).	This	

was	proposed	to	allow	cells	to	discriminate	between	bona	fide	signals	and	random	noise	

in	their	environment,	and	could	represent	a	physiological	system	for	finely	tuning	the	in	

vivo	production	of	red	blood	cells	while	preserving	the	pool	of	progenitors.	We	recently	

proposed	a	methodology	for	inferring	the	GRN	underlying	T2EC	differentiation	(29).	For	

that	we	kept	in	silico	cells	under	constant	differentiation	stimulus.	It	would	be	of	interest	

to	 see	 if	 the	 inferred	 GRN	 would	 be	 able	 to	 revert,	 up	 to	 a	 certain	 point	 where	 no	

“spontaneous”	return	is	possible	(19),	to	its	original	state.	This	would	be	a	very	strong	

constraint	 to	 impose	 and	 should	 severely	 limit	 the	 number	 of	 putative	 GRN	 able	 to	

reproduce	experimental	data	and	thus	approaching	the	most	accurate	network.	

Taken	 together,	 our	 results	 point	 towards	 a	 physiological	 plasticity	 and	 reversibility	

with	 respect	 to	 erythrocyte	 decision-making.	 It	 is	 also	 reminiscent	 of	 the	 plasticity	

observed	in	Cancer	Stem	Cells	that	might	not	be	specific	to	tumour	cells	(34).	In	terms	of	

epigenetic	 landscape,	 our	work	 implies	 that	 instead	 of	 a	 continuous	 gradient	 that	 the	

cells	will	roll	down	as	in	the	classical	Waddington's	depiction	(8),	they	may	go	through	

an	unstable	state	and	may,	sometimes,	roll	upwards	over	a	bump	in	the	landscape	(35).	

Thus,	differentiation	should	be	more	appropriately	described	as	cells	moving	from	well	

to	well,	that	is,	from	one	metastable	state	(36–38)	to	another	one	(Figure	8).	This	view	

abides	 by	 the	 multi-stability	 framework	 where	 a	 complex	 quasi-potential	 landscape	

aims	at	describing	both	normal	and	pathological	differentiation	processes	(39,40),	and	

exemplifies	the	fact	that	“commitment	(is)	a	dynamical	property	of	the	landscape”	(41).	

It	 is	 important	at	 this	stage	 to	remember	 that	Waddington	himself	was	aware	 that	his	

drawing	was	 but	 a	 simplification.	 Adapting	 and	 refining	 this	 landscape	 should	 not	 be	

considered	 as	 departing	 from	 his	 views.	 Such	 a	 non-monotonous	 landscape	 has	 been	

proposed	 to	 account	 for	 the	 depiction	 of	 regeneration	 in	 adult	 tissues	 (42),	 and	 is	

consistent	with	previously	proposed	dynamical	principles	of	cell	fate	restriction	(10).	It	

is	 in	 excellent	 accordance	 with	 the	 recent	 depiction	 that	 cells	 can	 “climb	 uphill	 on	

Waddington’s	epigenetic	landscape”	during	cranial	neural	crest	cells	development	(15),	

and	would	also	be	more	relevant	to	account	for	the	«	hesitant	»	behavior	of	human	CD34	

stem	cells	in	vitro	(43)	than	a	straight	slope.		It	is	beyond	the	scope	of	this	discussion	to	
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go	 into	more	 details,	 but	 a	 cell	 “climbing	 uphill”	 should	 be	 seen	 as	 equivalent	 as	 “the	

landscape	bending	into	a	new	valley”.	

In	 conclusion,	 our	 work	 has	 provided	 a	 detailed	 molecular	 characterization	 of	 the	

probabilistic	nature	of	erythrocyte	cell	fate	determination,	influenced	by	the	constraints	

of	 the	 underlying	 Gene	 Regulatory	 Network	 dynamics,	 and	 driven	 by	 environmental	

influences.	 These	 new	 insights	 into	 the	 process	 of	 cell	 reversion	 could	 also	 lead	 to	

significant	improvements	of	the	executable	GRN	inference	scheme	(29).	
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Material	and	methods		

	

Cellular	biology	

T2EC	were	 extracted	 from	 bone	marrow	 of	 19-d-old	 SPAFAS	white	 leghorn	 chicken’s	

embryos	 (INRA,	 Tours,	 France).	 Cells	were	 grown	 in	 self-renewal	 in	 LM1	medium	 (α-

MEM,	10%	Foetal	bovine	serum	(FBS),	1	mM	HEPES,	100	nM	β-mercaptoethanol,	100	U/	

mL	 penicillin	 and	 streptomycin,	 5	 ng/mL	 TGF-α,	 1	 ng/mL	 TGF-β	 and	 1	 mM	

dexamethasone)	as	previously	described	(44).	

Differentiation	was	induced	by	removing	LM1	medium	and	placing	the	cells	into	DM17	

medium	 (α-MEM,	 10%	 foetal	 bovine	 serum	 (FBS),	 1	 mM	 Hepes,	 100	 nM	 β-

mercaptoethanol,	 100	 U/mL	 penicillin	 and	 streptomycin,	 10	 ng/mL	 insulin	 and	 5%	

anemic	chicken	serum	(ACS;	(45)).		

Differentiation	kinetics	were	achieved	by	collecting	a	sub	fraction	of	the	cells	at	different	

times	 after	 induction	 of	 differentiation	 (0H	 and	 24H).	 After	 24H,	 DM17	medium	was	

removed	and	half	of	 the	cells	were	placed	back	 into	LM1	medium	while	 the	other	half	

was	kept	in	DM17	medium	to	achieve	48H	revertion	and	48H	differentiation	time	points	

respectively	(FIGURE	1).		

Cell	 population	 mortality	 was	 assessed	 by	 counting	 dead	 and	 living	 cells	 from	 the	

different	time	points	and	conditions	after	Trypan	blue	staining	and	using	a	Malassez	cell.	

	

Single-cell	sorting	

Single-cells	were	 sorted	using	 a	 FACS	Aria	 IIµ,	 BD.	We	 collected	 around	200	 cells	 per	

time	point	(8	plates)	for	each	experiment	(scRT-qPCR	and	scRNAseq,	see	below).	

	

Single-cell	RT-qPCR	analysis		

All	 the	 manipulations	 related	 to	 the	 high-throughput	 scRT-qPCR	 experiments	 in	

microfluidics	were	performed	according	to	the	protocol	recommended	by	the	Fluidigm	

company	 (PN	 68000088	 K1,	 p.157-172).	 All	 steps	 from	 single-cell	 isolation	 to	 	 scRT-

qPCR,	 genes	 selection,	 data	 generation	 and	 cleaning	 are	 described	 in	 detail	 in	 (19).	

Expression	matrix	was	log1p	transformed	before	subsequent	analysis.	
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Single-cell	RNAseq	

scRNAseq	 was	 performed	 using	 an	 adapted	 version	 of	 MARSseq	 protocol	 (Massively	

parallel	single-cell	RNA	sequencing)	(22).	Unless	specified,	all	 indicated	concentrations	

correspond	to	final	concentrations.	

Individual	cells	were	sorted	into	96-well	plates	containing	4μL	of	lysis	buffer	and	index	

RT	primers	(0,2%	Triton	(Sigma	Aldrich),	0,4	U/μL	RNaseOUT	(Thermofisher	Scientific),	

400nM	RT_primers	(Sigma	Aldrich)).	Index	RT_primers	(Table	1)	contain	oligo-dT	chain	

to	 capture	 mRNA,	 a	 T7	 RNA	 polymerase	 promoter	 for	 further	in	 vitro	transcription	

(IVT),	 unique	 cell	 barcodes	 for	 subsequent	 de-multiplexing	 and	 unique	 molecular	

identifiers	(UMIs)	for	PCR	bias	deduplication.	After	cell	sorting,	plates	were	immediately	

centrifuged	 and	 frozen	 on	 dry	 ice	 before	 storage	 at	 -80°C	 until	 reverse	 transcription	

(RT)	was	performed.	The	plates	were	put	at	72°C	for	3	minutes	for	denaturation.	4μL	of	

RT	mix	were	added	in	each	well	(2mM	dNTP	(Thermo	scientific),	20mM	DTT,	2X	First	

stranded	 buffer,	 5	 U/μL	 Superscript	 III	 RT	 enzyme	 (Superscript	 III	 RT	 enzyme	 kit	

Thermo	scientific),	10%	(W/V)	PEG	8000	(Sigma	Aldrich)).	ERCC	RNA	spike-in	(Thermo	

Scientific)	 were	 diluted	 into	 the	 RT	 mix	 (dilution	 5x10-7).	 The	 plates	 were	 then	

transferred	 into	 a	 thermocycler	 (program:	 42°C-2min,	 50°C-50min,	 85°C-5min,	 4°C	

hold).	

After	 reverse	 transcription,	 samples	 were	 pooled	 by	 plate	 and	 ExonucleaseI	 (NEB)	

digestion	 was	 performed,	 followed	 by	 1,2X	 AMpure	 beads	 purification	 (Beckman	

Coulter).	Samples	were	eluted	in	10mM	Tris-HCl,	pH=7,5.	Second	strand	cDNA	synthesis	

was	 performed	 with	 1X	 SSS	 buffer	 and	 SSS	 enzyme	 (NebNext	 mRNA	 second	 strand	

synthesis	 kit	 NEB;	 thermocycler	 program:	 16°C-150min,	 65°C-20min,	 4°C	 hold).	

Resulting	 double	 strand	 cDNA	were	 linearly	 amplified	 by	 IVT	 overnight	 (10mM	 ATP,	

10mM	GTP,	10mM	UTP,	10mM	GTP,	1X	reaction	buffer,	1/10	T7	RNA	polymerase	mix	

(HighScribe	T7	High	Yield	RNA	synthesis	NEB))	at	37°C.	IVT	products	were	purified	with	

1,3X	Ampure	beads	and	eluted	with	10mM	Tris-HCl,	0,1mM	EDTA.	Amplified	RNAs	were	

fragmented	(1X	RNA	fragmentation	buffer	(RNA	fragmentation	reagents	Invitrogen))	at	

70°C	 for	3	min.	The	 fragmentation	reaction	was	stopped	with	34μL	of	STOP	mix	(0,3X	

Stop	solution	(RNA	fragmentation	reagents	Invitrogen),	TE	buffer	1X	(10mM	Tris,	1mM	

EDTA,	pH	8	-	Invitrogen)	and	0,7X	AMpure	beads	to	procede	with	sample	purification).	

Differing	from	original	MARSseq	protocol,	 instead	of	ligation,	a	second	RT	was	done	to	

incorporate	P5N6	primers	(Table	2)	containing	random	hexamers	and	specific	barcodes	
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to	distinguish	the	different	plates	(5mM	DTT,	500μM	dNTP,	10μM	P5N6_XXXX,	1X	First	

stranded	 buffer,	 10U/μL	 Superscript	 III	 RT	 enzyme,	 2U/μL	 RNaseOUT;	 thermocycler	

program:	25°C	5min,	55°C	20min,	70°C	15min,	4°C	hold).	The	cDNAs	were	then	purified	

with	1,2x	AMpure	beads.	 Illumina	primers	 (Table	 1)	were	 added	by	PCR	 (0,5	 μM	Mix	

primer	P5.rd1/P7.Rd2,	1X	KAPA	Hifi	HotStart	PCR	Mix	(Kapa	Biosystem);	thermocycler	

program:	 95°C	 3min,	 12	 times	 [98°C	 20sec,	 57°C	 30sec,	 72°C	 40sec],	 72°C	 5min,	 4°C	

hold),	and	PCR	products	were	purified	with	0,7x	AMpure	beads	and	eluted	in	15μL.	

Libraries	were	sequenced	on	a	Next500	sequencer	(Illumina)	with	a	custom	paired-end	

protocol	 to	 avoid	 a	 decrease	of	 sequencing	quality	 on	 read1	due	 to	high	number	of	T	

added	during	polyA	reading	(130pb	on	read1	and	20pb	on	read2).	We	aimed	for	a	depth	

of	200	000	raw	reads	per	cell.	

Primer	Name	 5’	to	3’	
Index_RT_primers	

(cell	BC	and	UMI)	
5’-CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACG	

TGTGCTCTTCCGATCTXXXXXXNNNNNNNNTTTTTTTTTTTTTTTTTTTTV-3’	
P5N6_XXXX	

(Plate	BC)	
5’-CTACACGACGCTCTTCCGATCTXXXXNNNNNN-3’	

P5.rd1	 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCC	

CTACACGACGCTCTTCCGATCT-3’	

P7.rd2	 5’-CAAGCAGAAGACGGCATACGAGAT	

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’	

Table	2:	List	and	sequences	of	primers	used	for	scRNAseq	libraries	construction.	

	

Bio-informatic	pipeline	

Fastq	files	were	pre-processed	through	a	bio-informatic	pipeline	developed	in	the	team	

on	 the	 Nextflow	 platform	 (46).	 Briefly,	 the	 first	 step	 removed	 Illumina	 adaptors.	 The	

second	 step	de-multiplexed	 the	 sequences	 according	 to	 their	 plate	 barcodes.	 Then,	 all	

sequences	 containing	 at	 least	 4T	 following	 cell	 barcode	 and	 UMI	 were	 kept.	 	 Using	

UMItools	 whitelist,	 the	 cell	 barcodes	 and	 UMI	 were	 extracted	 from	 the	 reads.	 	 The	

sequences	were	then	mapped	on	the	reference	transcriptome	(Gallus	GallusGRCG6A.95	

from	Ensembl)	and	UMI	were	counted.	Finally,	a	 count	matrix	was	generated	 for	each	

plate.	

	

Data	filtering,	normalization	and	analysis	
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All	 analysis	 were	 carried	 out	 using	 R	 software	 (4.0.5;(47)).	 Matrixes	 from	 the	 eight	

plates	were	pooled	together.	Cells	were	filtered	based	on	several	criteria:	reads	number,	

genes	 number,	 counts	 number	 and	 ERCC	 content.	 For	 each	 criteria	 the	 cut	 off	 values	

were	determined	based	on	SCONE	(48)	pipeline	and	were	calculated	as	follows:		

mean	-	3*sd	

We	 selected	 genes	 present	 in	 at	 least	 two	 cells.	 Filtered	matrix	 was	 then	 normalized	

using	 SCTransform	 from	 Seurat	 package	 (49)	 and	we	 corrected	 for	 batch	 effect,	 time	

effect	and	sequencing	depth	effect.	Expression	matrix	was	finally	log1p	transformed.	

Variable	genes	were	identified	using	FindVariableFeatures	from	Seurat,	vst	method	(50).	

Based	on	visualization	of	genes	variance,	we	retained	the	2000	most	variable	features.	

Differentially	 expressed	 genes	 were	 identified	 using	 FindMarkerGenes	 function	 from	

Seurat	(50).	Analysis	was	by	pairwise	comparisons	between	conditions,	genes	with	log	

fold	change	>=0,5	and	adjusted	p-value	<0,05	were	kept	as	significant.	More	information	

on	QC	filtering	are	given	in	Supplementary	4.	

	

Statistical	analysis	

All	 statistical	 analyses	 were	 performed	 using	 the	 R	 software	 (4.0.5;	 (47)).	

Dimensionality	reduction	and	visualization	were	performed	using	UMAP	(51).	Adaptive	

Sparse	PLS	for	Logistic	Regression	was	performed	using	the	plsgenomics	package	(20).	

For	 this	 analysis,	 scRT-qPCR	 data	 were	 scaled.	 Sparse	 PLS	 is	 a	 supervised	 statistical	

analysis	that	allow	to	predict	the	most	discriminant	variables	between	two	groups.	

Wasserstein	distance	 computation	was	done	using	 the	Transport	R	package	 (52),	 and	

was	accomplished	for	each	gene	of	the	scRNAseq	dataset.	

Gini	 indexes	 were	 calculated	 using	 the	 Ineq	 R	 package	 on	 Wasserstein	 distance	

distributions	(53).	

Bootstraping	was	done	using	sample_frac	function	from	Dplyr	R	package(54).	

	

Estimation	of	multi-stability	levels	

For	estimating	the	level	of	multi-stability	in	the	data,	we	considered	that	the	probability	

distribution	of	each	gene	can	be	approximated	by	a	Gamma	distribution,	or	a	mixture	of	

Gamma	 distributions,	 since	 they	 are	 known	 to	 describe	 continuous	 single-cell	 data	

accurately	(55).	More	precisely,	we	parameterized	the	distribution	of	a	gene	𝑖	by:	
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𝑝!! 𝑥 =  𝜇 𝑗
!!!

!!!!!
!!
!
!!!!!

!(!!
!)

!
!!! ,	

Where	 Γ 	denotes	 the	 Gamma	 function:	 Γ 𝑧 =  𝑡!!!𝑒!!𝑑𝑡!
! .	 Note	 that	 only	 the	

parameters	(𝑎!
!)!!!,…,! 	depend	 on	 the	 mixture	 component	𝑗 :	 this	 is	 related	 to	 the	

distribution	arising	from	the	well-established	two-states	model	of	gene	expression	(56),	

when	only	the	frequency	of	mRNA	bursts	is	regulated,	as	described	in	(57).		

For	every	condition,	we	constructed	10	training	sets	consisting	of	80%	of	the	cells	in	the	

population	(randomly-chosen),	and	we	estimated	the	parameters	[(𝑎!
!)!!!,…,!, 𝑏!] with	a	

MCMC	 algorithm	 for	 the	 numbers	 of	mixture	 components	𝑚 = 1, 2, 3	successively.	We	

then	considered	 that	 the	optimal	number	of	components	 for	gene	𝑖 was	the	one	which	

minimized	the	average	BIC	score	estimated	on	the	10	corresponding	test	sets.	

	

Multivariate	two-sample	test	

Samples	were	compared	using	a	multivariate	two-sample	test	based	on	the	2000	most	

variable	 genes.	 We	 suppose	 that	 the	 normalized	 gene	 expression	X!		 and		X!	of	 two	

conditions	 (0H	 vs	 48H	 reversion,	 0H	 vs	 48H	 differentiation,	 48H	 reversion	 vs	 48H	

differentiation),	 follow	 a	 multivariate	 Gaussian	 distribution		𝒩(µ!, Σ) 	and	𝒩(µ!, Σ)	

respectively,	and	we	denote	by	𝑛 =  𝑛! +  𝑛!	the	total	number	of	cells.	Then	we	test	the	

null	 hypothesis	𝐻!: 𝜇! =  𝜇! using	 the	 generalized	 Hotelling's	𝑇! 	test	 (23).	 The	 data	

being	 high	 dimensional	(𝑝 > 𝑛),	 the	 between-gene	 pooled	 covariance	 matrix	 is	 not	

invertible,	and	 is	replaced	by	 its	Moore-Penrose	 inverse.	 In	this	setting	the	asymptotic	

distribution	 of	 the	 generalized	 Hotelling	 statistics	 is	χ!(𝑛 − 2) .	 The	 p-values	 were	

adjusted	according	to	the	Benjamini-Hochberg	correction	(58).	Analysis	was	performed	

using	the	fdahotelling	R	package	(59).	

	

Code	and	data	availability	

Pipelines	 and	 analysis	 scripts	 are	 available	 at	 https://gitbio.ens-

lyon.fr/LBMC/sbdm/mars_seq.	scRT-qPCR	data	are	available	at	https://osf.io/upw8d/.	

scRNAseq	 data	 are	 available	 at	 http://www.ncbi.nlm.nih.gov/bioproject/802343	

BioProject	ID	PRJNA802343.	
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Figures		

	
Figure	1:	Experimental	design.		

At	0H,	 cells	 grown	 in	 self-renewal	medium	are	 shifted	 in	differentiation	medium.	24H	

later,	the	cell	population	is	divided	in	two,	half	being	kept	in	differentiation	medium	and	

half	 being	 grown	 back	 into	 self-renewal	 medium.	 At	 each	 time	 point,	 192	 cells	 are	

collected	for	each	subsequent	experiment:	scRT-qPCR	and	scRNAseq.	
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Figure	 2:	 UMAP	 visualization	 of	 scRT-qPCR	 and	 scRNAseq	 data.	 All	 UMAPs	 are	

calculated	using	the	4	biological	conditions.	0H	cells	are	displayed	in	blue,	24H	cells	in	

green,	48H	differentiating	cells	in	red	and	48H	reverting	cells	in	purple.	

Panels	A,	C,	E,	G,	I,	K	and	M:		scRT-qPCR	data		

Panels	B,	D,	F,	H,	J,	L	and	N:	scRNAseq	data	

Panels	A	and	B:	all	4	conditions	

Panels	C	and	D:	0H	and	24H	differentiating	cells	

Panels	E	and	F:	24H	and	48H	differentiating	cells	

Panels	G	and	H:	0H	and	48H	differentiating	cells	

Panels	I	and	J:	48H	differentiating	and	48H	reverting	cells	

Panels	K	and	L:	24H	and	48H	reverting	cells	

Panels	M	and	N:	0H	and	48H	reverting	cells	
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Figure	 3:	 Volcano	 plot	 of	 genes	 from	 scRNAseq	 data	 differentially	 expressed	 between	

conditions	analyzed	two	by	two.	Genes	are	considered	significantly	differentially	expressed	
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when	the	fold	change	is	equal	or	above	0,5	and	adjusted	p-value	is	below	0,05	(grey	dotted	

line).	

Panel	 A:	 0H	 and	 24H	 differentiating	 cells.	 Blue	 dots	 represent	 significantly	 up-regulated	

genes	 in	 0H	 condition	 and	 green	 dots	 represent	 significantly	 up-regulated	 genes	 in	 24H	

condition.	

Panel	B:	24H	differentiating	and	48H	differentiating	cells.	Green	dots	represent	significantly	

up-regulated	 genes	 in	 24H	 differentiating	 cells	 and	 red	 dots	 represent	 significantly	 up-

regulated	genes	in	48H	differentiating	cells.	

Panel	 C:	 0H	 and	 48H	 differentiating	 cells.	 Blue	 dots	 represent	 significantly	 up-regulated	

genes	 in	 0H	 cells	 and	 red	 dots	 represent	 significantly	 up-regulated	 genes	 in	 48H	

differentiating	cells.	

Panel	D:	0H	and	48H	reverting	cells.	Blue	dots	represent	significantly	up-regulated	genes	in	

0H	cells	and	purple	dots	represent	significantly	up-regulated	genes	in	48H	reverting	cells.	

Panel	E:	48H	reverting	and	48H	differentiating	cells.	Purple	dots	represent	significantly	up-

regulated	 genes	 in	 48H	 reverting	 cells	 and	 red	 dots	 represent	 significantly	 up-regulated	

genes	in	48H	differentiating	cells.	
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Figure	 4:	 Comparison	 of	 gene	 expression	 pattern	 distributions	 between	 cells	 at	 four	

experimental	 time-points	 (0H,	 24H,	 48H	 differentiating	 and	 48H	 reverting	 cells).	 X	 scale	

represents	log1p	of	gene	expression	from	scRNAseq	data.	

Color	legend:	undifferentiated	cells	(0H	in	blue),	24H	differentiating	cells	(in	green),	48H	

differentiating	cells	(in	red)	and	48H	reverting	cells	(in	purple).	

Histograms	of	gene	expression	distribution	for	HBBA	(Panel	A),	for	HBAD	(Panel	B),	for	

HBA1	 (Panel	 C),	 for	 FECH	 (Panel	 D),	 for	 LDHA	 (Panel	 E),	 for	 ID2	 (Panel	 F),	 for	 CSTA	

(Panel	G)	and	for	CRIP1	(Panel	H).	
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Figure	5:	Comparison	of	dispersion	of	gene	distribution	between	cell	populations.	
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Panel	 A:	 Experiment	 design	 to	 compare	 gene	 distributions	 between	 the	 4	 biological	

conditions.	Wasserstein	distance	is	computed	for	each	gene	between	pair	of	conditions,	

then	dispersion	of	all	gene	distributions	is	calculated	using	Gini	index.	

Panel	 B:	 Plot	 of	 Gini	 index	 values	 of	 Wasserstein	 distance	 distributions	 between	

conditions	 in	 pairs	 computed	 for	 each	 of	 the	 2000	 genes	 from	 scRNAseq	 data	

bootstraped	100	times.	
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Figure	6:	Boxplots	with	mean	of	expression	levels	of	the	3	genes	identified	by	Sparse	PLS	

as	discriminating	genes	between	48H	reverting	cells	and	0H	cells.	

Boxplots	of	HBBA	expression	level	in	log1p	on	scRNAseq	data	(panel	A)	and	scRT-qPCR	

data	(panel	B)	in	the	4	biological	conditions.	

Boxplots	 of	TBC1D7	 expression	 level	 in	 log1p	 on	 scRNAseq	 data	 (panel	 C)	 and	 scRT-

qPCR	data	(panel	D)	in	the	4	biological	conditions.	

Boxplots	of	HSP90AA1	expression	level	in	log1p	on	scRNAseq	data	(panel	E)	and	scRT-

qPCR	data	(panel	F)	in	the	4	biological	conditions.	
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Figure	7:	The	repartition	in	the	number	of	basins	which	have	been	detected	for	the	200	

most	 variables	 genes	 from	 scRNAseq	 data,	 characterizing	 the	 level	 of	 multi-stability	

which	is	observed	for	each	condition.	

Panel	A:	Repartition	of	the	number	of	modes	for	each	biological	condition.	

Panel	B:	Examples	of	genes	which	distribution	fits	1	basin	(left),	2	basins	(middle)	or	3	

basins	(right).	 	
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Figure	 8:	 A	 quasi-potential	 well	 depictions	 of	 the	 erythroid	 differentiation	 process.	

While	 the	 cells	have	not	escaped	 the	zone	of	 influence	of	 the	progenitor	attractor	 (i.e.	

when	they	have	not	passed	the	point	of	commitment,	aka	 the	point	of	no	return	(19))	

the	 removal	 of	 the	 environmental	 influences	 results	 in	 their	 relaxing	 back	 to	 their	

original	attractor	state.		
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0H vs 48H reverting 0H vs 48H differentiating 48H reverting vs 48H 
differentiating 

p-
value 

1.00 0 0.00000000369 

Table	1:	P-values	output	of	multivariate	two	tests	between	pair	of	conditions	compared.		
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