bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478637; this version posted February 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Evidence for close molecular proximity between reverting and

undifferentiated cells

Souad Zreikal'zﬂ, Camille Fourneauxlﬂ, Elodie Vallin!, Laurent Modolo?l, Rémi Seraphin,
Alice Moussys3, Elias Ventrel#>, Matteo Bouvier¢, Anthony Ozier-Lafontaine’, Arnaud
Bonnaffoux6, Franck Picard?, Olivier Gandrillon'#%, Sandrine Giraud!**

1- Laboratory of Biology and Modelling of the Cell, Université de Lyon, Ecole Normale
Supérieure de Lyon, CNRS, UMR5239, Université Claude Bernard Lyon 1, Lyon, France.
2- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST,
Lebanese University, Tripoli 1300, Lebanon

3- Ecole Pratique des Hautes Etudes, PSL Research University, UMRS951, INSERM, Univ-
Evry, Paris, France

4- Inria Team Dracula, Inria Center Grenoble Rhone-Alpes, Grenoble, France

5- Institut Camille Jordan, CNRS UMR 5208, Université Claude Bernard Lyon 1,
Villeurbanne, France

6- Vidium solutions, Lyon, France

7- Nantes Université, Centrale Nantes, Laboratoire de mathématiques Jean Leray, LM]L,
F-44000 Nantes, France

| These authors contributed equally to this work

& These authors contributed equally to this work

* Corresponding author: sandrine.giraud@ens-lyon.fr


https://doi.org/10.1101/2022.02.01.478637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478637; this version posted February 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Abstract

According to Waddington’s epigenetic landscape concept, the differentiation process can
be illustrated by a cell akin to a ball rolling down from the top of a hill (proliferation
state) and crossing furrows before stopping in basins or “attractor states” to reach its
stable differentiated state. However, it is now clear that some committed cells can retain
a certain degree of plasticity and reacquire phenotypical characteristics of a more
pluripotent cell state. In line with this dynamic model, we have previously shown that
differentiating cells (chicken erythrocytic progenitors (T2EC)) retain for 24 hours the
ability to self-renew when transferred back in self-renewal conditions. Despite those
intriguing and promising results, the underlying molecular state of those “reverting”
cells remains unexplored. The aim of the present study was therefore to molecularly
characterize the T2EC reversion process by combining advanced statistical tools to
make the most of single cell transcriptomic data. For this purpose, T2EC, initially
maintained in a self-renewal medium (OH), were induced to differentiate for 24h (24H
differentiating cells); then a part of these cells was transferred back to the self-renewal
medium (48H reverting cells) and the other part was maintained in the differentiation
medium for another 24h (48H differentiating cells). For each time point, cell
transcriptomes were generated using scRT-qPCR and scRNAseq. Our results showed a
strong overlap between OH and 48H reverting cells when applying dimensional
reduction. Moreover, the statistical comparison of cell distributions and differential
expression analysis indicated no significant differences between these two cell groups.
Interestingly, gene pattern distributions highlighted that, while 48H reverting cells have
gene expression pattern more similar to OH cells, they retained traces of their
engagement in the differentiation process. Finally, Sparse PLS analysis showed that only
the expression of 3 genes discriminates 48H reverting and OH cells. Altogether, we show
that reverting cells return to an earlier molecular state almost identical to
undifferentiated cells and demonstrate a previously undocumented physiological and
molecular plasticity during the differentiation process, which most likely results from
the dynamic behavior of the underlying molecular network.
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Introduction

The integration and processing of endogenous and exogenous information constitute a
fundamental requirement for cells to ensure functions and survival of unicellular or
multicellular organisms. Cellular decision-making is then at the core of the physiological
or pathological functioning of living organisms. Early views of the mechanisms
governing cell-fate decision-making, and in particular cell differentiation, were based on
bulk population data, leading to an over-simplifying deterministic framework. In these
first views, cell commitment to a predefined cell-type was thought to be triggered
through a stereotyped sequence of intermediate states under the influence of specific
signals (1).

Single-cell approaches have allowed to change the scale of observation of many
molecular processes and revealed that an important heterogeneity in gene expression
lies at the heart of isogenic cell populations (2,3). Stochasticity in gene expression arises
from different causes, such as the probabilistic nature of molecular interactions or
transcriptional bursts (4). Cell-to-cell variability is visible at all omics levels of gene
expression, but is being widely studied at the transcriptomic level since various
molecular biology tools are available for this scale of investigation (5). Overall, this
heterogeneity in gene expression has been shown to be critical for the process of
differentiation, as it provides diversity without the cost of hardwire-encoded fate
programs (6,7).

Furthermore, single-cell studies have also enabled the development of stochastic models
to describe differentiation from single-cell transcriptomics data. One of the best-known
stochastic model is Conrad Waddington's landscape, that also includes the non-genetic
part of cell-to-cell heterogeneities (8). According to Waddington’s model, the shape of
the landscape is determined by Gene Regulatory Networks (GRN) and state transitions
are modelled as channelling events: a cell, presented as a ball, starts from a mountain
top and crosses valleys before reaching stable state by occupying basins or attractor
states, shaped by an underlining GRN (9). Once this stable state is reached, the state
potential decreases and the associated cell-fate is restricted or even irreversible (10).
However, it is now clearly accepted that some cells retain fate plasticity (11,12). Under
the forced modification of transcription factors stoichiometry, a cell that have reached a

differentiated state can return to a more pluripotent stage challenging the classical
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hierarchical view of differentiation (13,14). Quite interestingly, spontaneous fate
reversion can be observed under physiological or damaging condition where
progenitors or even more committed cells return to an earlier stage, potentially more
pluripotent and re-acquire progenitor or stem-cell-like phenotypes and characteristics
(15-18). In this view, our recent study has shown that chicken primary erythroid
progenitor cells (T2EC) have retained the capacity to go back to self-renewal state for up
to 24H after the induction of differentiation before they irreversibly engaged in the
differentiation process (19). Despite intriguing and promising results, the molecular
determinants of this so-called fate reversion and the molecular characterization of the
reverting cells remain unexplored.

In this work, we go beyond the cellular and phenotypic characterization of the cell
reversion process. We characterize the gene expression of primary erythroid
progenitors and question if reverting cells undergo an actual fate reversion i.e. in
addition to regaining a comparable cellular state, reacquire a molecular state similar to
undifferentiated cells.

For this, differentiation of self-renewing cells was induced by medium change during
24H. Then we splitted the differentiating population so that half could pursue
differentiation, and the second half was shifted back in self-renewal medium (FIGURE
1). To provide robust quantitative measurements of gene expression variability, we
combined a highly sensitive targeted quantification method (scRT-qPCR) with genome-
wide scRNASeq data to characterize the transcriptome of each population at single cell
level: undifferentiated (OH), differentiating (24H and 48H) and reverting (48H
reverting) cells. Our statistical analyses show that 48H reverting cells and
undifferentiated cells were much more similar, whereas a separation was clearly visible
between cells maintained in differentiation (48H differentiating cells) and cells in
reversion (48H reverting cells). Furthermore, statistical comparison of cell distributions
indicated no significant differences between OH cells and 48H reverting cells. Moreover,
gene expression pattern distribution of 48H reverting cells showed a shift towards
expression pattern distribution of OH cells. Finally, we identified genes that discriminate
48H reverting cells and OH cells. Using sparse Partial Least Square (20), we were able to
show that the expression of 3 genes, HBBA, TBC1D7 and HSP90AA1, was discriminant
between 48H reverting cells and OH cells showing that reverting cells kept

transcriptional traces of their induction to differentiation. In conclusion, our results
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show that reverting cells display gene expression patterns that are very similar to
undifferentiated cells while retaining traces of their response to differentiation
induction, which suggests an almost complete molecular reversion after 24H of

differentiation induction.
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Results

Robustness of single-cell transcriptomics analysis

We sought to characterize at the molecular level the cells that were induced to
differentiate for 24 hours and that retained the ability to proliferate when placed back
into self-renewal medium. We used two different complementary single-cell
transcriptomic technologies, scRT-qPCR and scRNAseq. scRT-qPCR allows for highly
sensitive quantification but is knowledge-driven and offers information of a limited
number a genes while scRNAseq, although less precise for low expression level (21),
enables genome-wide quantification without prior knowledge. Furthermore, using two
different single-cell technologies allowed us to cross validate our observations and point
toward robust conclusions.

We first obtained by scRT-qPCR the expression level of 83 genes involved in T2EC
differentiation, in 173, 173, 168, 171 cells for OH, 24H, 48H of differentiation and 48H
reverting cells, respectively. Those genes are known to distinguish cells along the
differentiation process and include sterol biosynthesis, metabolism, globin subunits, and
transcription factors expressed by erythroid progenitors as published in (19). The
robustness of our measurements was confirmed by a Pearson’s correlation of 0,85 (p-
value = 2.2e-16) between our experiments and the published data (19). To investigate
fate-reversion genome-wide by scRNASeq, we adapted the MARSseq protocol ((22) - see
material and methods). Then we obtained gene expression levels in 174, 181, 169, 186
single-cells for OH, 24H, 48H of differentiation and 48H reverting cells, respectively. The
concordance between scRT-qPCR and scRNAseq data was confirmed by a Pearson’s

correlation of 0,73 (p-value = 1,34e-13) between the 74 genes common to both datasets.

Similarity between reverting and undifferentiated cells revealed by dimension
reduction

We used UMAP to uncover potential similarities between 48H reverting cells and
subgroups of differentiating cells by projecting the 4 conditions (FIGURE 2: Panel A,
scRT-qPCR data and Panel B, scRNAseq data). Then we focused on the normal
differentiation process using the 3 times points of differentiation (OH, 24H and 48H
differentiating cells) (FIGURE 2: Panel C - H). For both experiments, pairwise

representations show that 24H differentiating cells tend to overlap with both OH cells
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(Figure 2: Panel C and D) and 48H differentiating cells (Figure 2: Panel E and F). On the
contrary, the undifferentiated cells and 48h differentiating cells clearly differ.
Interestingly, pairwise representations also reveal that 48H reverting cells separate well
from the 48H differentiating cells (FIGURE 2: I and ]) and from 24H cells (FIGURE 2: K
and L), but are visually not distinguishable from the OH cells (FIGURE 2: M AND N).
Almost identical results were observed when, instead of plotting cells on the UMAPs
calculated from the mix of the 4 conditions, we recalculated the UMAPs for each pair of
conditions (Supplementary 1). Those analyses suggest that the transcriptomes of 48H
reverting cells are more similar to the undifferentiated cells than to any other condition
at both scales of observation. This was further confirmed by the pairwise statistical
comparison of average scRNAseq distributions ((23) - see material and methods). As
shown in Table 1, the average transcriptomes of 48H reverting and 48H differentiating
cells are significantly different, as well as of undifferentiated and 48H differentiating
cells. In contrast, no significant difference in average transcriptomes was detected
between OH and 48H reverting conditions (p-value >> 0.05), indicating a very close

proximity of 48H reverting cells to undifferentiated cells.

48H reverting cells and undifferentiated cells have similar gene expression
patterns

We then questioned if 48H reverting cells had gene expression patterns identical to OH
cells or retained, for some genes, an expression pattern more similar to 24H or 48H
differentiating cells.

Pairwise scRNAseq DE analysis revealed that the “normal” erythrocyte differentiation
process showed an increase in the expression of hemoglobin related genes during the
kinetics (Hemoglobin subunit epsilon 1 (HBBA), Hemoglobin Alpha-Locus 1 (HBA1), and
Hemoglobin Alpha, subunit D (HBAD)) (FIGURE 3: panel A, B and C). On the other hand,
OH cells expressed high level of LDHA (Lactate Dehydrogenase A), marker for glycolysis
metabolism used by self-renewing cells (24) and [DZ (Inhibitor Of DNA Binding 2)
coding for a transcription factor involved in differentiation inhibition (25).
Interestingly, when comparing OH with 48H reverting cells, we saw only one gene that
was significantly differentially expressed just above the threshold (FIGURE 3: panel D),
the RSFR (RNase Super Family Related) gene, that is highly expressed in precursor cells

from chicken bone marrow (26). Furthermore, when comparing 48H reverting with 48H
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differentiating cells, we found hemoglobin related genes up in the differentiating cells

and LDHA and IDZ up in reverting cells (FIGURE 3: panel E).

We more closely investigated gene expression distributions within the different
conditions to see how gene expression patterns would evolve during the reversion
process (FIGURE 4). We selected 8 genes differentially expressed and which expression
increases or decreases during the differentiation process. HBA1, HBBA, HBAD (different
hemoglobin subunits) and FECH (Ferrochelatase) are involved in hemoglobin and heme
pathways and are more expressed by differentiating cells while LDHA, ID2, CSTA
(cystatin A1) and CRIP1 (Cysteine-rich intestinal proteinl) are more expressed by self-
renewing undifferentiated cells. We plotted and compared their distribution between
the 4 conditions. For the genes involved in differentiation, we see a gradual shift in the
distributions towards a higher level of expression as cells get more differentiated
(FIGURE 4: Panel A - D) and we see the opposite shift for genes involved in proliferation
(FIGURE 4: Panel E - H). In all cases, the 48H reverting cell expression patterns for those
genes shifted back to patterns closer to the OH cells. At the time of observation and
especially for genes up in differentiation, the 48H reverting cell expression patterns are
not completely similar to those of OH cells. This was further confirmed by using a
dedicated statistical tool, Sparse PLS (see below).

To go further on gene distribution comparisons we computed Wasserstein distances, a
geometric distances well suited for comparing multimodal distributions, for each 2000
genes of the scRNAseq dataset between each condition two by two. We then obtain 6
distributions of Wasserstein distance values. Finally, we computed the Gini index as a
measure of statistical dispersion in each distribution (the higher the Gini index is, the
higher inequality among the values). We performed 100 bootstraps and compared the
Gini values obtained (FIGURE 5A). Distribution of Wasserstein distances between OH
cells and 48H reverting cells had the smallest average Gini index among all distributions
(Figure 5B). This result points towards a closer global transcriptional state between 48H

reverting cells and OH cells.

48H reverting cells retain molecular traces of a commitment into differentiation
To further characterize the molecular changes that persisted after reversion, we sought

to identify predictive genes that discriminate the most the 48H reverting cells and the


https://doi.org/10.1101/2022.02.01.478637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478637; this version posted February 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

undifferentiated cells. We performed logistic regression combined with dimension
reduction (Partial Least Square (20)) between 48H reverting cells and OH cells and
retained common most discriminating genes between scRT-qPCR and scRNAseq
datasets. Interestingly, our results showed that only 3 common genes discriminate
between the two cell groups: HBBA, TBC1D7 and HSP90AA1, the expression of which is
shown in FIGURE 6. HBBA is a subunit of the hemoglobin complex which carries oxygen,
TBC1D7 is presumed to have a role in regulating cell growth and differentiation (27) and
HSP90AA1 codes for an isoform of the HSP90 protein chaperone, which its specific
transcription is known to be induced in response to insulin (28). Looking closely, the
48H reverting cells have an intermediate expression level between differentiating cells
and undifferentiated cells for the three predicted genes. The offset observed could be
due to a longer duration of mRNA half-life at 24H of differentiation. We had previously
performed a quantification of mRNA half-life during avian erythrocyte differentiation
((29) Supplementary 2). We focused on mRNA half-life at 24H for those three genes.
TBC1D7 and HSP90AA1 have a relatively short half-life as opposed to HBBA. Other genes
analyzed whose expression increases during differentiation, such as DPP7, TPP1 or
RPL22L1 have also a long half-life duration mRNAs, but only HBBA was identified in our
statistical analysis as discriminating between undifferentiated and 48H reverting cells.

These results confirmed that the 48H reverting cells display a gene expression pattern
very close to those of OH cells while still retaining traces of their engagement into the
differentiation process independently of the mRNA half-life. The molecular process

explaining such “lagging genes” will have to be explored.

Cells are distributed as a continuum along the differentiation path

At that stage, two hypotheses could be made: 1. Either all cells have engaged into a
differentiation process, and do molecularly revert to a self-renewal transcriptional state
or 2. At 24H of differentiation two subpopulations coexist: one that is still
undifferentiated and would give rise to the 48H reverting cells and a second more
differentiated which would lead to the 48H differentiating population and die in the
reversion experiment.

We hypothesized that the existence of two subpopulations at 24 hours should lead to a
higher number of modes in the distribution of some genes at that time point. To test this

hypothesis, we therefore estimated for each condition the most-likely number of modes
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for the probability distribution of each gene, as assessed through a Gamma mixture on
scRNAseq (see material and methods). We found no significant difference in the number
of modes observed between the 4 populations (Figure 7), which confirms that the cells
collected from 24H do not show more multi-stability than the other groups, and are thus
unlikely to be a mix of two populations.

The second hypothesis would also imply that in the 24H population the cells engaged
too far in the differentiation process would die a short time after media was changed,
while only the undifferentiated ones would survive. We then measured the viability rate
during the kinetics and found no difference in viability between the conditions and
especially between the 24H differentiation and the 48H reversion conditions
(Supplementary 3).

Finally, the second hypothesis would also imply that the reversion cells are simply cells
that have not entered the differentiation process. It would therefore be at odds with the
evidence that the 48H reverting cells display slightly different pattern of gene
expression as OH cells, but do retain traces of their engagement into the differentiation
process (see upper).

Those results strongly suggest that the 24H cell population is not composed of two
coexisting subpopulations of cells and that 48H reverting cells enter differentiation

before going back to a transcriptomic state close to OH cells.
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Discussion

In the present study, we couple two different single-cell transcriptomic techniques and
state-of-the-art statistical approaches to demonstrate the fate reversibility of avian
erythrocyte progenitors induced to differentiate for 24 hours.

Our results show a very close proximity of reverting and undifferentiated cell
transcriptomes. Indeed, statistical comparison of cell distributions showed no significant
difference between OH and 48H reverting cells while, as expected, significant changes in
gene expression accompanied the differentiation sequence. The analysis of gene
expression distribution patterns of the 48H reverting cells confirmed a switch toward
the OH cells gene expression profiles. First, DE analysis of scRNAseq data showed only
one gene significantly differentially expressed between the two conditions. Second,
Wasserstein distance analysis revealed closer distances between 48H reverting and OH
cells than to any other group of cells. Third, Sparse PLS analysis indicated that the
expression level of only three gene, HBBA, TBC1D7 and HSP90AA1, was predictive of the
48H reverting and undifferentiated cells. Interestingly the persistence of those three
genes in 48H reverting cells does not seem to be caused by mRNA half-life duration.

All of our results therefore favor the hypothesis that a vast majority of the 48H reverting
cells responded to differentiation induction by modifying their gene expression profiles
but then returned to the self-renewal transcriptional state.

One must note that this would not be the sole example of large scale transcriptomic
changes on (relatively) short time scales (18,30). The question as to whether such large-
scale transcriptome changes are accompanied, or not, by (reversible) large scale
epigenetic changes remains an open question for future studies.

It has been described in the literature that during cellular decision making, the cell state
is maintained by dynamic interactions between positive and negative regulatory
molecules (31) within the frame of a Gene Regulatory Network (GRN). These
interactions can be repurposed by changing the stoichiometry of ubiquitous and specific
regulatory molecules and factors (11,32). In our study, the analysis of gene expression
patterns during the reversion process confirmed that the determination of the fate of
erythrocyte progenitors is directed by the constraints of the dynamics of the GRN,
influenced by signals emitted by changing conditions of the environment surrounding

the cells. In the absence of differentiation signals (or in the presence of self-renewal
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inducing signals), there is no ratchet in place that would prevent (at least at early stages
in our case) the system to return back to its original quasi-steady state. This is in
excellent agreement with the previous demonstration that there is a duration threshold
for some GRN under which the systems can return back to its original state (33). This
was proposed to allow cells to discriminate between bona fide signals and random noise
in their environment, and could represent a physiological system for finely tuning the in
vivo production of red blood cells while preserving the pool of progenitors. We recently
proposed a methodology for inferring the GRN underlying T2EC differentiation (29). For
that we kept in silico cells under constant differentiation stimulus. It would be of interest
to see if the inferred GRN would be able to revert, up to a certain point where no
“spontaneous” return is possible (19), to its original state. This would be a very strong
constraint to impose and should severely limit the number of putative GRN able to
reproduce experimental data and thus approaching the most accurate network.

Taken together, our results point towards a physiological plasticity and reversibility
with respect to erythrocyte decision-making. It is also reminiscent of the plasticity
observed in Cancer Stem Cells that might not be specific to tumour cells (34). In terms of
epigenetic landscape, our work implies that instead of a continuous gradient that the
cells will roll down as in the classical Waddington's depiction (8), they may go through
an unstable state and may, sometimes, roll upwards over a bump in the landscape (35).
Thus, differentiation should be more appropriately described as cells moving from well
to well, that is, from one metastable state (36-38) to another one (Figure 8). This view
abides by the multi-stability framework where a complex quasi-potential landscape
aims at describing both normal and pathological differentiation processes (39,40), and
exemplifies the fact that “commitment (is) a dynamical property of the landscape” (41).
It is important at this stage to remember that Waddington himself was aware that his
drawing was but a simplification. Adapting and refining this landscape should not be
considered as departing from his views. Such a non-monotonous landscape has been
proposed to account for the depiction of regeneration in adult tissues (42), and is
consistent with previously proposed dynamical principles of cell fate restriction (10). It
is in excellent accordance with the recent depiction that cells can “climb uphill on
Waddington’s epigenetic landscape” during cranial neural crest cells development (15),
and would also be more relevant to account for the « hesitant » behavior of human CD34

stem cells in vitro (43) than a straight slope. It is beyond the scope of this discussion to
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go into more details, but a cell “climbing uphill” should be seen as equivalent as “the
landscape bending into a new valley”.

In conclusion, our work has provided a detailed molecular characterization of the
probabilistic nature of erythrocyte cell fate determination, influenced by the constraints
of the underlying Gene Regulatory Network dynamics, and driven by environmental
influences. These new insights into the process of cell reversion could also lead to

significant improvements of the executable GRN inference scheme (29).
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Material and methods

Cellular biology

T2EC were extracted from bone marrow of 19-d-old SPAFAS white leghorn chicken'’s
embryos (INRA, Tours, France). Cells were grown in self-renewal in LM1 medium (a-
MEM, 10% Foetal bovine serum (FBS), 1 mM HEPES, 100 nM 3-mercaptoethanol, 100 U/
mL penicillin and streptomycin, 5 ng/mL TGF-a, 1 ng/mL TGF- and 1 mM
dexamethasone) as previously described (44).

Differentiation was induced by removing LM1 medium and placing the cells into DM17
medium (a-MEM, 10% foetal bovine serum (FBS), 1 mM Hepes, 100 nM -
mercaptoethanol, 100 U/mL penicillin and streptomycin, 10 ng/mL insulin and 5%
anemic chicken serum (ACS; (45)).

Differentiation kinetics were achieved by collecting a sub fraction of the cells at different
times after induction of differentiation (OH and 24H). After 24H, DM17 medium was
removed and half of the cells were placed back into LM1 medium while the other half
was kept in DM17 medium to achieve 48H revertion and 48H differentiation time points
respectively (FIGURE 1).

Cell population mortality was assessed by counting dead and living cells from the

different time points and conditions after Trypan blue staining and using a Malassez cell.

Single-cell sorting
Single-cells were sorted using a FACS Aria Iy, BD. We collected around 200 cells per
time point (8 plates) for each experiment (scRT-qPCR and scRNAseq, see below).

Single-cell RT-qPCR analysis

All the manipulations related to the high-throughput scRT-qPCR experiments in
microfluidics were performed according to the protocol recommended by the Fluidigm
company (PN 68000088 K1, p.157-172). All steps from single-cell isolation to scRT-
qPCR, genes selection, data generation and cleaning are described in detail in (19).

Expression matrix was loglp transformed before subsequent analysis.
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Single-cell RNAseq

scRNAseq was performed using an adapted version of MARSseq protocol (Massively
parallel single-cell RNA sequencing) (22). Unless specified, all indicated concentrations
correspond to final concentrations.

Individual cells were sorted into 96-well plates containing 4pL of lysis buffer and index
RT primers (0,2% Triton (Sigma Aldrich), 0,4 U/uL RNaseOUT (Thermofisher Scientific),
400nM RT_primers (Sigma Aldrich)). Index RT_primers (Table 1) contain oligo-dT chain
to capture mRNA, a T7 RNA polymerase promoter for further in vitro transcription
(IVT), unique cell barcodes for subsequent de-multiplexing and unique molecular
identifiers (UMIs) for PCR bias deduplication. After cell sorting, plates were immediately
centrifuged and frozen on dry ice before storage at -80°C until reverse transcription
(RT) was performed. The plates were put at 72°C for 3 minutes for denaturation. 4uL of
RT mix were added in each well (2mM dNTP (Thermo scientific), 20mM DTT, 2X First
stranded buffer, 5 U/uL Superscript Il RT enzyme (Superscript Il RT enzyme kit
Thermo scientific), 10% (W/V) PEG 8000 (Sigma Aldrich)). ERCC RNA spike-in (Thermo
Scientific) were diluted into the RT mix (dilution 5x10-7). The plates were then
transferred into a thermocycler (program: 42°C-Zmin, 50°C-50min, 85°C-5min, 4°C
hold).

After reverse transcription, samples were pooled by plate and Exonucleasel (NEB)
digestion was performed, followed by 1,2X AMpure beads purification (Beckman
Coulter). Samples were eluted in 10mM Tris-HCI, pH=7,5. Second strand cDNA synthesis
was performed with 1X SSS buffer and SSS enzyme (NebNext mRNA second strand
synthesis kit NEB; thermocycler program: 16°C-150min, 65°C-20min, 4°C hold).
Resulting double strand cDNA were linearly amplified by IVT overnight (10mM ATP,
10mM GTP, 10mM UTP, 10mM GTP, 1X reaction buffer, 1/10 T7 RNA polymerase mix
(HighScribe T7 High Yield RNA synthesis NEB)) at 37°C. IVT products were purified with
1,3X Ampure beads and eluted with 10mM Tris-HCI, 0,1mM EDTA. Amplified RNAs were
fragmented (1X RNA fragmentation buffer (RNA fragmentation reagents Invitrogen)) at
70°C for 3 min. The fragmentation reaction was stopped with 34pL of STOP mix (0,3X
Stop solution (RNA fragmentation reagents Invitrogen), TE buffer 1X (10mM Tris, 1ImM
EDTA, pH 8 - Invitrogen) and 0,7X AMpure beads to procede with sample purification).
Differing from original MARSseq protocol, instead of ligation, a second RT was done to

incorporate P5N6 primers (Table 2) containing random hexamers and specific barcodes
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to distinguish the different plates (5mM DTT, 500uM dNTP, 10uM P5N6_XXXX, 1X First
stranded buffer, 10U/uL Superscript III RT enzyme, 2U/uL. RNaseOUT; thermocycler
program: 25°C 5min, 55°C 20min, 70°C 15min, 4°C hold). The cDNAs were then purified
with 1,2x AMpure beads. [llumina primers (Table 1) were added by PCR (0,5 pM Mix
primer P5.rd1/P7.Rd2, 1X KAPA Hifi HotStart PCR Mix (Kapa Biosystem); thermocycler
program: 95°C 3min, 12 times [98°C 20sec, 57°C 30sec, 72°C 40sec], 72°C 5min, 4°C
hold), and PCR products were purified with 0,7x AMpure beads and eluted in 15uL.
Libraries were sequenced on a Next500 sequencer (Illumina) with a custom paired-end
protocol to avoid a decrease of sequencing quality on readl due to high number of T
added during polyA reading (130pb on read1 and 20pb on read2). We aimed for a depth
of 200 000 raw reads per cell.

Primer Name 5to3

Index_RT_primers | 5’-CGATTGAGGCCGGTAATACGACTCACTATAGGGGCGACG
(cell BCand UMI) | TGTGCTCTTCCGATCTXXXXXXNNNNNNNNTTTTTTTTTTTTTTTTTTTTV-3’

P5N6_XXXX 5’-CTACACGACGCTCTTCCGATCTXXXXNNNNNN-3’
(Plate BC)
P5.rd1 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCC

CTACACGACGCTCTTCCGATCT-3’

P7.rd2 5’-CAAGCAGAAGACGGCATACGAGAT
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3’

Table 2: List and sequences of primers used for scRNAseq libraries construction.

Bio-informatic pipeline

Fastq files were pre-processed through a bio-informatic pipeline developed in the team
on the Nextflow platform (46). Briefly, the first step removed Illumina adaptors. The
second step de-multiplexed the sequences according to their plate barcodes. Then, all
sequences containing at least 4T following cell barcode and UMI were kept. Using
UMItools whitelist, the cell barcodes and UMI were extracted from the reads. The
sequences were then mapped on the reference transcriptome (Gallus GallusGRCG6A.95
from Ensembl) and UMI were counted. Finally, a count matrix was generated for each

plate.

Data filtering, normalization and analysis
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All analysis were carried out using R software (4.0.5;(47)). Matrixes from the eight
plates were pooled together. Cells were filtered based on several criteria: reads number,
genes number, counts number and ERCC content. For each criteria the cut off values
were determined based on SCONE (48) pipeline and were calculated as follows:
mean - 3*sd

We selected genes present in at least two cells. Filtered matrix was then normalized
using SCTransform from Seurat package (49) and we corrected for batch effect, time
effect and sequencing depth effect. Expression matrix was finally log1p transformed.
Variable genes were identified using FindVariableFeatures from Seurat, vst method (50).
Based on visualization of genes variance, we retained the 2000 most variable features.
Differentially expressed genes were identified using FindMarkerGenes function from
Seurat (50). Analysis was by pairwise comparisons between conditions, genes with log
fold change >=0,5 and adjusted p-value <0,05 were kept as significant. More information

on QC filtering are given in Supplementary 4.

Statistical analysis

All statistical analyses were performed using the R software (4.0.5; (47)).
Dimensionality reduction and visualization were performed using UMAP (51). Adaptive
Sparse PLS for Logistic Regression was performed using the plsgenomics package (20).
For this analysis, scRT-qPCR data were scaled. Sparse PLS is a supervised statistical
analysis that allow to predict the most discriminant variables between two groups.
Wasserstein distance computation was done using the Transport R package (52), and
was accomplished for each gene of the scRNAseq dataset.

Gini indexes were calculated using the Ineq R package on Wasserstein distance
distributions (53).

Bootstraping was done using sample_frac function from Dplyr R package(54).

Estimation of multi-stability levels

For estimating the level of multi-stability in the data, we considered that the probability
distribution of each gene can be approximated by a Gamma distribution, or a mixture of
Gamma distributions, since they are known to describe continuous single-cell data

accurately (55). More precisely, we parameterized the distribution of a gene i by:
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Where I' denotes the Gamma function: I'(z) = fooo t?“le~tdt. Note that only the

parameters (a{)jzl,...,m depend on the mixture component j: this is related to the
distribution arising from the well-established two-states model of gene expression (56),
when only the frequency of mRNA bursts is regulated, as described in (57).

For every condition, we constructed 10 training sets consisting of 80% of the cells in the
population (randomly-chosen), and we estimated the parameters [(a{)j=1,...,m: b;] with a
MCMC algorithm for the numbers of mixture components m = 1, 2, 3 successively. We

then considered that the optimal number of components for gene i was the one which

minimized the average BIC score estimated on the 10 corresponding test sets.

Multivariate two-sample test

Samples were compared using a multivariate two-sample test based on the 2000 most
variable genes. We suppose that the normalized gene expression X; and X, of two
conditions (OH vs 48H reversion, OH vs 48H differentiation, 48H reversion vs 48H
differentiation), follow a multivariate Gaussian distribution N (4, Z) and N (p,, %)
respectively, and we denote by n = n; + n, the total number of cells. Then we test the
null hypothesis Hy: u; = u, using the generalized Hotelling's T? test (23). The data
being high dimensional (p > n), the between-gene pooled covariance matrix is not
invertible, and is replaced by its Moore-Penrose inverse. In this setting the asymptotic
distribution of the generalized Hotelling statistics is x?(n — 2). The p-values were
adjusted according to the Benjamini-Hochberg correction (58). Analysis was performed

using the fdahotelling R package (59).

Code and data availability

Pipelines @ and  analysis  scripts are available at  https://gitbio.ens-

lyon.fr/LBMC/sbdm/mars_seq. scRT-qPCR data are available at https://osf.io/upw8d/.

scRNAseq data are available at http://www.ncbi.nlm.nih.gov/bioproject/802343
BioProject ID PRJNA802343.
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Figures

OH CELLS 24H DIFFERENTIATING 48H DIFFERENTIATING
CELLS CELLS

48H REVERTING
CELLS

Differentiation time line

Figure 1: Experimental design.

At OH, cells grown in self-renewal medium are shifted in differentiation medium. 24H
later, the cell population is divided in two, half being kept in differentiation medium and
half being grown back into self-renewal medium. At each time point, 192 cells are

collected for each subsequent experiment: scRT-qPCR and scRNAseq.

19


https://doi.org/10.1101/2022.02.01.478637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478637; this version posted February 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

sc-RTgPCR sc-RNA-Seq

>
oY)

® OH o 8
2 ©
<] £
c T
24H DIFFERENTIATING 3T 8
CELLS g° S
48H DIFFERENTIATING 2 3 x g
CELLS £ S g
48H REVERTING CELLS "= 2%
- o 1 2
umap x coordinates umap X coordinates
C sc-RTgPCR D sc-RNA-Seq I sc-RTgPCR J sc-RNA-Seq
@ ® @ @
2 2 2 5]
© «© © ©
£ < £ <
] ] P ]
8 § 8 8
> > > >
Q o [=8 a
] «© «© ©
£ E E £
3 a - -
umap x coordinates umap x coordinates umap x coordinates umap x coordinates
sc-RTgPCR sc-RNA-Se sc-RTqPCR sc-RNA-Se
E g F a K q L q
8 8 8 8
© © [} @
] £ S ]
2 2 2 2
o =3 c o
8 8 8 8
> > > >
Q [=X o Q
] © © @
£ E E £
- - 3 3
umap x coordinates umap x coordinates umap x coordinates umap x coordinates
sc-RTqPCR sc-RNA-Se sc-RTqPCR sc-RNA-Se
G J H i M a N q
3 3 8 3
o s © T
- c £ <
2 1 2 2
o =]
8 8 8 8
> > > >
Q [=X o Q
(] © @© @
£ E E £
=] S 3 3
umap x coordinates umap x coordinates umap x coordinates umap x coordinates

Figure 2: UMAP visualization of scRT-qPCR and scRNAseq data. All UMAPs are
calculated using the 4 biological conditions. OH cells are displayed in blue, 24H cells in
green, 48H differentiating cells in red and 48H reverting cells in purple.

Panels A, G, E, G, I, Kand M: scRT-qPCR data

Panels B, D, F, H, ], L and N: scRNAseq data

Panels A and B: all 4 conditions

Panels C and D: OH and 24H differentiating cells

Panels E and F: 24H and 48H differentiating cells

Panels G and H: OH and 48H differentiating cells

Panels | and J: 48H differentiating and 48H reverting cells

Panels K and L: 24H and 48H reverting cells

Panels M and N: OH and 48H reverting cells
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Figure 3: Volcano plot of genes from scRNAseq data differentially expressed between

conditions analyzed two by two. Genes are considered significantly differentially expressed
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when the fold change is equal or above 0,5 and adjusted p-value is below 0,05 (grey dotted
line).

Panel A: OH and 24H differentiating cells. Blue dots represent significantly up-regulated
genes in OH condition and green dots represent significantly up-regulated genes in 24H
condition.

Panel B: 24H differentiating and 48H differentiating cells. Green dots represent significantly
up-regulated genes in 24H differentiating cells and red dots represent significantly up-
regulated genes in 48H differentiating cells.

Panel C: OH and 48H differentiating cells. Blue dots represent significantly up-regulated
genes in OH cells and red dots represent significantly up-regulated genes in 48H
differentiating cells.

Panel D: OH and 48H reverting cells. Blue dots represent significantly up-regulated genes in
OH cells and purple dots represent significantly up-regulated genes in 48H reverting cells.
Panel E: 48H reverting and 48H differentiating cells. Purple dots represent significantly up-
regulated genes in 48H reverting cells and red dots represent significantly up-regulated

genes in 48H differentiating cells.
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Figure 4: Comparison of gene expression pattern distributions between cells at four
experimental time-points (OH, 24H, 48H differentiating and 48H reverting cells). X scale
represents log1p of gene expression from scRNAseq data.

Color legend: undifferentiated cells (OH in blue), 24H differentiating cells (in green), 48H
differentiating cells (in red) and 48H reverting cells (in purple).

Histograms of gene expression distribution for HBBA (Panel A), for HBAD (Panel B), for
HBA1 (Panel C), for FECH (Panel D), for LDHA (Panel E), for IDZ (Panel F), for CSTA
(Panel G) and for CRIP1 (Panel H).
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Figure 5: Comparison of dispersion of gene distribution between cell populations.

24


https://doi.org/10.1101/2022.02.01.478637
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.01.478637; this version posted February 3, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Panel A: Experiment design to compare gene distributions between the 4 biological
conditions. Wasserstein distance is computed for each gene between pair of conditions,
then dispersion of all gene distributions is calculated using Gini index.

Panel B: Plot of Gini index values of Wasserstein distance distributions between
conditions in pairs computed for each of the 2000 genes from scRNAseq data

bootstraped 100 times.
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Figure 6: Boxplots with mean of expression levels of the 3 genes identified by Sparse PLS
as discriminating genes between 48H reverting cells and OH cells.

Boxplots of HBBA expression level in loglp on scRNAseq data (panel A) and scRT-qPCR
data (panel B) in the 4 biological conditions.

Boxplots of TBC1D7 expression level in loglp on scRNAseq data (panel C) and scRT-
gPCR data (panel D) in the 4 biological conditions.

Boxplots of HSP90AA1 expression level in loglp on scRNAseq data (panel E) and scRT-
gPCR data (panel F) in the 4 biological conditions.
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Figure 7: The repartition in the number of basins which have been detected for the 200

most variables genes from scRNAseq data, characterizing the level of multi-stability

which is observed for each condition.
Panel A: Repartition of the number of modes for each biological condition.

Panel B: Examples of genes which distribution fits 1 basin (left), 2 basins (middle) or 3

basins (right).
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Figure 8: A quasi-potential well depictions of the erythroid differentiation process.
While the cells have not escaped the zone of influence of the progenitor attractor (i.e.

when they have not passed the point of commitment, aka the point of no return (19))

the removal of the environmental influences results in their relaxing back to their
original attractor state.
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OH vs 48H reverting OH vs 48H differentiating | 48H reverting vs 48H
differentiating

p- 1.00 0 0.00000000369
value

Table 1: P-values output of multivariate two tests between pair of conditions compared.
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