

1 **scMuffin: an R package for resolving solid tumor**
2 **heterogeneity from single-cell expression data**

3 Valentina Nale^{1*}, Noemi Di Nanni^{1*}, Alice Chiodi¹, Ingrid Cifola¹, Marco Moscatelli¹, Cinzia Cocola¹,
4 Matteo Gnocchi¹, Eleonora Piscitelli¹, Rolland Reinbold¹, Illeana Zucchi¹, Luciano Milanesi¹,
5 Alessandra Mezzelani¹, Paride Pelucchi^{1*+}, and Ettore Mosca^{1*+}

6

7 ¹National Research Council, Institute of Biomedical Technologies, Via Fratelli Cervi 93, 20054,
8 Segrate (Milan), Italy

9

10 e-mail addresses:

11 - ettore.mosca@itb.cnr.it

12 - paride.pelucchi@itb.cnr.it

13 *Equal contribution

14 [†]Corresponding author

15

16

17

18

19

20

21

22 Abstract

23 INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular
24 heterogeneity of solid tumors, which is one of the main obstacles for the development of effective
25 cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and
26 transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer
27 progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin,
28 an R package that enables the characterization of cell identity in solid tumors on the basis of
29 multiple and complementary criteria applied on SC gene expression data.

30 RESULTS: scMuffin provides a series of functions to calculate several different qualitative and
31 quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway
32 activity, cell state trajectories, CNVs, chromatin state and proliferation state. Thus, scMuffin
33 facilitates the combination of various evidences that can be used to distinguish normal and
34 tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to
35 phenotypes and identify subtle differences between cell subtypes or cell states. As a proof-of-
36 concept, we applied scMuffin to a public SC expression dataset of human high-grade gliomas,
37 where we found that some chromosomal amplifications might underlie the invasive tumor
38 phenotype and identified rare quiescent cells that may deserve further investigations as candidate
39 cancer stem cells.

40 CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show
41 that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression
42 data from solid tumors.

43 **Keywords:** single-cell transcriptomics, cancer, tumor heterogeneity, cell identity.

44 1. Background

45 Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular
46 heterogeneity of solid tumors, which is one of the main obstacles for the development of effective
47 cancer treatments (1). A relevant number of software tools has been developed in recent years in
48 the field of SC data analysis (2), a fact that stresses the key opportunities and challenges in this
49 field. A recent study has shown that the development of tools that address common tasks (e.g.
50 clustering of similar cells) and ordering of cells (e.g. definition of cell trajectories) is decreasing,
51 while a greater focus is being paid on data integration and classification (2). These observations
52 reflect the growing availability, scale and complexity of SC datasets (2).

53 SC datasets of solid tumors are typical examples of complex datasets that present a series
54 of computational challenges and whose analysis demands domain-specific and integrative
55 approaches. In fact, solid tumors typically contain a mixture of cells with aberrant genomic and
56 transcriptomic profiles affecting specific sub-populations that might play a pivotal role in cancer
57 progression, whose identification eludes bulk RNA-sequencing approaches. The use of cell type-
58 specific markers (when available) is limited, and the alterations of gene expression that mark
59 cancer cells makes the use of markers for normal cells not completely adequate. Moreover, the
60 molecular heterogeneity of cancer cells (due to both intra-tumor and inter-individual differences)
61 poses intrinsic limits in the definition of such markers. In addition, solid tumor samples typically
62 comprise cells from the surrounding tissue or infiltrating cells that need to be distinguished from
63 tumor populations for an effective analysis. Another challenge is the identification of clinically
64 relevant cell subtypes that may be rare in the tumor mass, such as cancer stem cells or drug
65 resistant subclones: because of their relatively low number, these cells are typically clustered
66 together with many others. Lastly, an intrinsic problem of many SC datasets is the sequencing
67 depth limit at the SC level. These limitations bound the number of detectable genes to the few

68 thousands of the highest expressed genes, which implies, for example, that some established
69 markers may not be used for data analysis.

70 To address these challenges, we developed scMuffin, an R package that implements a
71 series of complementary analyses aimed at shedding light on the complexity of solid tumor SC
72 expression data, including: a fast and customizable gene set scoring system; gene sets from
73 various sources, including pathways, cancer functional states and cell markers; cell cluster
74 association with quantitative (e.g. gene set scores) as well as categorical (e.g. mutation states,
75 proliferation states) features; copy number variation (CNV) analysis; chromatin state analysis;
76 proliferation rate quantification; and marker-based two-sample comparisons (**Figure 1**). scMuffin
77 facilitates the integrative analysis of these multiple features, thus allowing the identification of cell
78 subtypes that elude more general clustering and classification approaches.

79 **2. Implementation**

80 scMuffin is implemented in R and provides a series of functions that allows the user to
81 perform various tasks, which can be combined to obtain various data analysis pipelines. The
82 package includes a vignette that describes the use of the tool, and every function is documented.
83 The results from the various analyses (e.g., gene set scores at SC level and cell chromatin state)
84 can be organized in dedicated (simple) objects in order to enable subsequent analyses (e.g.,
85 assessment of associations between features and cell clusters) that jointly consider multiple cell
86 features and various ways of cell clustering. Computationally intensive tasks (in particular, gene
87 set scoring and CNV inference) are parallelized. In this section, we describe the algorithms used to
88 perform the several tasks offered by scMuffin.

89 **2.1 Quantification of gene set expression scores at cell and cluster levels**

90 The quantification of gene set expression scores follows the approach described in (8,9), in
91 which a gene set is scored on the basis of its average deviation from an empirical null. In scMuffin
92 the implementation of gene set scoring is parallel and the calculation can be tuned acting on a
93 series of parameters, such as: the number of bins, the number of minimum genes that must have
94 non negative values in a cell (“nmark_min”), the minimum number of cells in which at least
95 nmark_min have to be found (“ncell_min”), the number of permutations (k), the minimum
96 number of permutations required (k'). This tuning helps to address the issue of missing values -
97 typical of SC datasets - and therefore maximizes the number of gene sets for which it is actually
98 possible to obtain an expression score supported by an empirical null distribution. Briefly, given a
99 gene set S :

- 100 1. the genes occurring in the genes-by-cells matrix are grouped into a number of bins
101 according to their average expression across cells;
- 102 2. a number k of random gene sets S_i^* are created, of the same size of S , tossing genes from
103 the same bins of S , in order to match the distribution of gene expression of each S_i^* with
104 that of S ;
- 105 3. the averages m_c and m_{ic}^* are calculated, respectively, over the values of S and S_i^* in every
106 cell c ;
- 107 4. the expression score Y_c is calculated as the average difference between m_c and m_{ic}^* ;
- 108 5. the average value \bar{Y}_c , calculated over the Y_c of a given cluster, is used as the representative
109 score of S in that cluster.

110 **2.2 CNV estimation by adjacent gene windows approach**

111 CNV inference in scMuffin is based on the “adjacent gene windows” approach, which has
112 been validated using both single nucleotide polymorphism arrays (10) and whole-exome
113 sequencing (8) technologies. The approach is implemented in parallel and offers various

114 parameter tuning and data filtering possibilities, which allows the investigator to optimize the
115 analysis on the characteristics of its dataset. The CNV profile of each cell is calculated as a moving
116 average of scaled gene expression levels ordered by genomic location, with the possibility of
117 subtracting a normal reference profile to identify sample-specific CNVs. The main steps are:

118 1. the reference cells are added to the genes-by-cells matrix (optional);
119 2. the expression of each gene is scaled subtracting its average (optional);
120 3. the gene expression matrix is ordered by chromosome and gene location;
121 4. in each chromosome h , the estimated copy number V_{ic} of cell c is calculated for all the
122 ordered genes $i \in \left[\frac{w}{2} + 1, n_h - \frac{w}{2}\right]$:

$$V_{ic} = \sum_{j=i-\frac{w}{2}}^{i+\frac{w}{2}} \frac{e_{jc}}{w + 1}$$

123 where w is an even number that defines the window size, that is, the number of genes
124 located before and after gene i which contribute to the estimation of V_{ic} , and e_{jc} is the
125 gene expression value;

126 5. V_{ic} values are scaled subtracting their average in a cell (optional);
127 6. cells are clustered by their CNV profile;
128 7. the average CNV profile of the normal reference cells is subtracted from all the CNV
129 profiles (optional).

130 **2.3 Chromatin state and proliferation rate**

131 The chromatin state R_c of a cell is inferred on the basis of the number of expressed genes over the
132 number of total mapped reads:

$$R_c = \frac{\#\{i_c \geq \alpha\}}{\sum_i i_c}$$

133 where α is a threshold over the gene count i_c , which defines the gene i as “expressed”. High
134 values of R_c indicate cells that are expressing many genes in relation to the number of mapped
135 reads.

136 The proliferation rate P_c of a cell is quantified as the maximum value between the two
137 gene set scores $Y_c(S_1)$ and $Y_c(S_2)$, calculated on the gene sets S_1 and S_2 that, respectively,
138 characterize the G1/S and G2/M cell cycle phases:

$$P_c = \max(Y_c(S_1), Y_c(S_2))$$

139 where S_1 and S_2 are defined as in Tirosh *et al.* (8).

140 **2.4 Cluster enrichment analysis for quantitative and categorical features**

141 The assessment of cluster enrichment in high values of quantitative features is computed using a
142 procedure that we name “cell set enrichment analysis” (CSEA), because it is analogous to the gene
143 set enrichment analysis (GSEA) (7), but operates on different input types. In particular, instead of a
144 ranked list of genes, the CSEA considers a list of cells ranked by a feature of interest, and instead
145 of testing a gene set, CSEA tests a cell set (i.e., a cluster of cells). Therefore, CSEA tests whether
146 the cells assigned to a cluster are located at the top (or bottom) of the ranked list of cells. The
147 assessment of a cluster enrichment in a particular value of a categorical feature is computed using
148 the over-representation analysis (ORA) approach (11), which is based on the hypergeometric test.

149 Both CSEA and ORA are implemented in parallel in scMuffin. This is particularly important
150 for CSEA, which uses permutations to build an empirical null distribution. Nonetheless, it is also
151 effective for ORAs that are run over a large number of gene sets.

152 **2.5 Cell clustering**

153 Cell clustering is based on the approaches implemented in the R package Seurat (3). The results
154 from multiple clustering procedures are compared by calculating the overlap coefficients among

155 all-pairs of clusters. Given two partitions A and B , defined as sets of cell clusters $A = \{a_i\}$ and
156 $B = \{b_j\}$, the similarity between the cell clusters a_i and b_j is calculated as:

$$o_{ij} = \frac{|a_i \cap b_j|}{\min(|a_i|, |b_j|)}$$

157 Meta-clusters are defined as the union of cell clusters that have high o_{ij} and are found by
158 hierarchical clustering of the matrix $O = \{o_{ij}\}$.

159 **2.6 Cluster marker-based two-sample comparison**

160 The cluster marker-based two-sample comparison is based on assessing the expression of cluster
161 markers of every cluster of a sample (A) in every cluster of the other sample (B) and *vice versa*.

162 Given a set of markers S_{a_i} , which represents the cell cluster a_i of sample A , the gene set score

163 $\bar{Y}_{b_j}(S_{a_i})$ quantifies the expression of S_{a_i} in the cell cluster b_j of sample B , while *vice versa* $\bar{Y}_{a_i}(S_{b_j})$
164 quantifies the expression of S_{b_j} in the cell cluster a_i of sample A . The average value $\bar{Y}_{a_i b_j} =$

165 $\frac{\bar{Y}_{b_j}(S_{a_i}) + \bar{Y}_{a_i}(S_{b_j})}{2}$ quantifies the similarity between cell clusters a_i and b_j on the basis of the
166 expression of their markers. The procedure is repeated for all-pairs of clusters of sample A and
167 sample B .

168 **3. Results and Discussion**

169 In this section, we present the user interface (**Table 1**), and the results obtained using our
170 scMuffin package on the SC dataset generated by Yuan *et al.* (12) from human high-grade glioma
171 (HGG) samples, and available on the Gene Expression Omnibus (GEO) repository (GSE103224) (13).

Table 1. Main tasks and corresponding functions in scMuffin.

Task	Description	User interface
Gene set expression scoring	Average gene set expression deviation from matched empirical reference; provided gene sets from CellMarker (4), PanglaoDB (5), CancerSEA (6) and MSigDB (7)	<ul style="list-style-type: none">• <code>prepare_gsds</code>• <code>calculate_gs_scores</code>• <code>calculate_gs_scores_in_clusters</code>

Copy number variations	Estimation of CNVs by means of the “moving window” approach, that is, considering the expression of adjacent genes; calculation of CNV deviation from a normal reference profile; processing of normal tissue-specific expression data from GTEx	<ul style="list-style-type: none">• calculate_CNV• cluster_by_features• apply_CNV_reference• CNV_heatmap• process_GTEEx_gene_reads
Chromatin state	Number of expressed genes in relation to the total reads	<ul style="list-style-type: none">• exp_rate
Proliferation	Maximum between G1/S and G2/M gene set scores	<ul style="list-style-type: none">• proliferation_analysis
Cell state trajectory	Diffusion map computation	<ul style="list-style-type: none">• diff_map
Cell cluster annotation	Assessment of cluster enrichment for quantitative and categorical features	<ul style="list-style-type: none">• assess_cluster_enrichment
Two-sample comparison	Quantification of the expression similarity between all-pairs of clusters between two samples	<ul style="list-style-type: none">• quantify_samples_similarity
Assembling cell features and cell partitions	Objects that host cell-level feature values and cell partitions	<ul style="list-style-type: none">• create_features_obj• create_partitions_obj
Visualization	Automated UMAP visualizations for multiple features, heatmaps, box plots and dot plots	<ul style="list-style-type: none">• boxplot_cluster• dotplot_cluster• quantify_samples_similarity• heatmap_CNV• plot_umap_colored_features• plot_heatmap_features_by_clusters

172

173 **3.1 Gene set scoring**

174 scMuffin provides functions to set up one or more gene set collections and perform SC-
175 level estimation of gene set expression scores in relation to an empirical null model (see
176 Implementation section). This can be applied to any gene set and can therefore be used to
177 estimate several different cell phenotypes, like pathway activities or marker set expression.

178 The function `prepare_gsls` allows the user to collect gene sets of cell types, pathways,
179 cancer functional states, as well as other collections of gene sets (e.g. positional gene sets,
180 hallmarks) from CellMarker (4), PanglaoDB (5), CancerSEA (6) and MSigDB (7) databases. Unlike
181 many existing tools that are used to perform marker-based cell annotation (14), the availability of
182 these gene sets within scMuffin package spares the user the effort of data collection and
183 harmonization. The function, which also accepts any user-given gene sets, applies a series of

184 criteria (e.g., minimum and maximum number of genes in a gene set) to filter the chosen gene
185 sets.

186 The cell-level expression scores for these gene sets can be calculated using
187 `calculate_gs_scores`, which requires the expression matrix, the gene sets, as well as a
188 series of optional parameters to fine-tune the calculation in relation to the characteristics of the
189 SC dataset under analysis. This tuning is important to address the heterogeneity of size and
190 sparsity that characterizes different SC datasets, attributable to both the biological specimen
191 under analysis and the SC platform used. For instance, the following code shows how to quantify
192 cell-level, and then cluster-level, expression score of the cancer functional states from CancerSEA
193 ("SIG_CancerSEA") (6) in a normalized genes-by-cells ("gbc") expression matrix:

```
194 gsc <- prepare_gslists(gs_sources = "SIG_CancerSEA", genes = rownames(gbc))  
195 gs_scores_obj <- calculate_gs_scores(genes_by_cells = gbc, gs_list =  
196 gsc$SIG_CancerSEA)  
197 res_sig_cl <- calculate_gs_scores_in_clusters(gs_scores_obj = gs_scores_obj,  
198 cell_clusters = cell_clusters)
```

199 The cell-level value of any gene set (and more generally of any feature) can be visualized
200 over the UMAP by means of `plot_umap_colored_features`, while cluster-level values of
201 multiple gene sets (features) can be visualized as a heatmap using
202 `plot_heatmap_features_by_clusters`, which relies on the ComplexHeatmap R package
203 (15). For example, in our case study, the analysis of the CancerSEA functional states in the HGG
204 sample PJ016 showed that the two groups of cell clusters (**Figure 2a**, left and right of the UMAP)
205 reflect distinct functional states (**Figure 2b**): for example, the expression of the CancerSEA
206 "Invasion" markers was particularly high in cell clusters 0 and 9 as compared to all the other
207 clusters (**Figure 2b-c**).

208 **3.2 CNV estimation and association with CancerSEA functional states**

209 CNV inference from SC expression data estimates the presence of relevant genomic
210 aberrations (amplifications and deletions) based on the expression of adjacent genes. This
211 knowledge offers crucial clues to address the difficult task of distinguishing normal from malignant
212 cells, and provides quantitative information to reconstruct the tumor clonal substructure.
213 Moreover, CNV pattern allows the investigator to hypothesize link between genomic alterations
214 and cell phenotypes.

215 The function `calculate_CNV` basically retrieves the genomic locations and performs the
216 CNV estimation; `cluster_by_features` executes the cell clustering based on CNV profiles;
217 `apply_CNV_reference` redefines the CNV values on the basis of normal reference cells; the
218 dedicated plotting function `CNV_heatmap` handles the visualization, where the cell cluster that
219 contains the reference is marked in red. Here is an example that illustrates CNV inference using a
220 100 genes window size and a normal reference profile from The Genotype-Tissue Expression
221 (GTEx) portal (16):

```
222 cnv_res <- calculate_CNV(gbc, wnd_size = 100, reference =  
223 GTEx_mean)  
224 cnv_clustering <- cluster_by_features(cnv_res, cnv=TRUE)  
225 cnv_res_ref <- apply_CNV_reference(cnv = cnv_res, cnv_clustering =  
226 cnv_clustering, reference="reference")  
227 cnv_res_ref <- CNV_heatmap(cnv = cnv_res, cnv_clustering =  
228 cnv_clustering, reference="reference")
```

229 To illustrate the use of this workflow, we selected two different HGG samples by Yuan *et al.*
230 (12), that is, PJ030, composed by tumor cells as well as not transformed cells and PJ016, including
231 only transformed cells. We observed that the reference profile (obtained using the average gene
232 expression values of the normal brain samples available in GTEx portal) falls into cluster 3 of PJ030
233 (**Figure 3a-b**). With respect to cluster 3 (corresponding to the not transformed cells included in this

234 sample), the clusters 0, 1 and 2 showed large recurrent aneuploidies, some of which are typical of
235 HGG, like the amplification of chromosome 7 (**Figure 3a**). The CNV pattern here inferred is
236 fundamentally coherent with that reported by Yuan *et al.* (12), even if the authors just quantified a
237 summary value per chromosome, while scMuffin provides multiple CNV estimations per
238 chromosome. For sample PJ016, the CNV inference analysis highlighted two groups of “CNV
239 clusters” that map to two distinct components of the UMAP, while it did not identify a diploid
240 cluster, accordingly to the presence of only transformed cells in this sample (**Figure 3c-d**).
241 Interestingly, clusters 1 and 3 were marked by peculiar amplifications in chromosomes 1p and
242 19p.

243 scMuffin enables the comparison of clusters obtained using different procedures. In
244 particular, the overlap among all-pairs of clusters can be quantified using:

```
245 cl_list <- partitions_to_list(clust_obj)  
246 ov_mat <- overlap_matrix(cl_list)
```

247 In our case study, the comparison between expression clusters and CNV clusters of sample PJ016
248 confirmed the presence of two groups of cells: for example, CNV clusters 1 and 3 showed a
249 relevant overlap with expression clusters 0, 6, 8 and 9 (**Figure 3e**).

250 An example of integrative analysis enabled by scMuffin is the functional assessment of CNV
251 patterns. We quantified the expression scores of the CancerSEA functional states throughout the
252 CNV clusters of sample PJ016. As expected, the two aforementioned groups of CNV clusters (0-2-4
253 and 1-3) were characterized by different functional states (**Figure 3f**), like the corresponding
254 expression clusters. In particular, CNV cluster 3 – which is mainly located in the top-left region of
255 the UMAP visualization (**Figure 3d**) and has a strong overlap with expression clusters 0 and 9
256 (**Figure 3e**) – contains cells that highly express the CancerSEA “Invasion” markers (**Figure 3f** and
257 **Figure 2**). This finding suggests that the peculiar amplifications of chromosomes 1p and 19p found

258 in this cluster might be linked to the invasive phenotype. This hypothesis is supported by the
259 finding of two CancerSEA invasion markers, Y-Box Binding Protein 1 (*YBX1*) and Heterogeneous
260 Nuclear Ribonucleoprotein M (*HNRNPM*), located within the amplified regions of chromosome 1p
261 and 19p specifically found in CNV clusters 1 and 3 (**Figure 3c**). *YBX1* is a DNA/RNA-binding protein
262 and transcription factor which plays a central role in coordinating tumor invasion in glioblastoma
263 (17). *HNRNPM* belongs to a family of spliceosome auxiliary factors and is involved in the regulation
264 of splicing; the upregulation of these factors results in tumor-associated aberrant splicing, which
265 promotes glioma progression and malignancy (18,19). In particular, *HNRNPM* was identified as an
266 interactor of the DNA/RNA binding protein SON, which drives oncogenic RNA splicing in
267 glioblastoma (20). While it is beyond the scope of this article to further study this hypothesis,
268 these findings clearly highlight the usefulness of the integrative analysis of CNVs and CancerSEA
269 functional states provided by our scMuffin tool.

270 **3.3 Clustering, features and annotation**

271 scMuffin contains functions for assessing the association between cell clusters and
272 quantitative as well as categorical features, by means of CSEA and ORA, respectively. Here is the
273 user interface, where, firstly, the objects containing cell clusters and cell features are set up; then,
274 the enrichment is quantified for all partitions (various ways of clustering cells) and all features:

```
275 clust_obj <- create_partitions_obj(cell_clusters)
276 feat_obj <- create_features_obj(feature_values)
277 cl_enrich <- assess_cluster_enrichment(features = feat_obj,
278 partitions = clust_obj)
```

279 The results of CSEA and ORA can be extracted to produce features-by-clusters matrices
280 that contain any score calculated by CSEA or ORA, like, for example, normalized enrichment scores
281 (NES) values and enrichment ratios (er):

```
282     cl_enrich_table           <-  
283     extract_cluster_enrichment_table(cl_enrich, q_type = "nes", c_type  
284     = "er")  
285  
286     The results of enrichment analysis can be visualized as box plots (quantitative features) and  
287     dot plots (categorical features):  
288  
289     top_feat_lab_CSEA      <-      boxplot_cluster(features      =      feat_obj,  
290     partitions      =      clust_obj,      clustering_name      =      "global",  
291     clust_enrich_res = cl_enrich, criterion = "fdr")  
292     top_feat_lab_ORA      <-      dotplot_cluster(features      =      feat_obj,  
293     partitions      =      clust_obj,      clustering_name      =      "global",  
294     clust_enrich_res = cl_enrich, text_val = "p")  
295  
296     These plots show, for each cluster, the distribution of values of the most significant features in the  
297     cluster in comparison to all the other clusters, and the related scores (e.g., NES, p-value and FDR).  
298  
299     In addition, boxplot_cluster and dotplot_cluster provide the labels of the most  
300     significant features associated with any cluster. These labels can be extracted from the enrichment  
301     analysis results also by means of extract_cluster_enrichment_tags, according to  
302     various criteria (e.g., NES, enrichment ratio, p-value, FDR) that are specific to CSEA or ORA.  
303  
304     To illustrate these functions, we assessed the enrichment of the expression clusters of  
305     sample PJ016 in terms of both CancerSEA functional states (quantitative features) and three  
306     categorical features, namely: cell clusters obtained analyzing ribosomal gene expression, a gene  
307     set included in scMuffin because changes in ribosomal gene expression were associated with  
308     specific cancer phenotype and can reveal specific malignant subpopulations (21–23); cell clusters  
309     obtained using a glioblastoma signature of 500 genes (24) whose expression can be used to  
310     classify glioblastoma subtypes; cell cycle phase. Considering as an example the cluster 0 of sample  
311     PJ016, the analysis showed that it was significantly enriched in cells that, in comparison with cells  
312     of other clusters, highly express the gene markers of CancerSEA “Invasion” state (Figure 4a) and
```

308 are in S and G2M phases (**Figure 4b**). The labels of the most significant features of any cluster can
309 be used, by means of `plot_umap`, to plot an annotated UMAP (**Figure 4c**).

310 **3.4 Chromatin state, proliferation rate and cell state trajectories**

311 Chromatin state and proliferation rate carry two relevant pieces of information for the
312 characterization of a cancer cell.

313 In particular, an open chromatin state is peculiar of stem cells (and cancer stem cells
314 (CSCs)), might indicate de-differentiation processes of tumor progression and might influence cell
315 plasticity, favoring cancer cell adaptability and drug resistance (25,26). In a recent study on
316 glioblastoma, chromatin accessibility was associated to a specific subpopulation of putative tumor-
317 initiating CSCs with invasive phenotype and low survival prediction (27). The global state of the
318 chromatin at SC level can be inferred from SC transcriptomic data and provides a simple and useful
319 score that can be used to distinguish specific cell types, such as CSCs. The chromatin state can be
320 quantified by means of the function `exp_rate` on the genes-by-cells count matrix:

321 `res <- exp_rate(gbc, min_counts = 5)`

322 where 5 is the required threshold above which a gene is considered expressed.

323 The proliferation rate is a relevant indicator for distinguishing cell types in solid tumors and
324 helps to identify cells with potential clinical relevance and interest as candidate therapeutic
325 targets (28,29). In scMuffin, we quantify cell proliferation rate on the basis of the expression of
326 G1/S and G2/M genes:

327 `res <- proliferation_analysis(gbc)`

328 As a proof-of-concept, we show the joint analyses of chromatin state and proliferation rate
329 in sample PJ016 and visualize the results in the state space of cell differentiation trajectories. In
330 scMuffin, cell state trajectories are inferred using the “diffusion maps” approach available in the
331 `destiny` R package (30), by means of the wrapper function:

332 res <- diff_map(gbc)
333 Interestingly, we observed that cells showing high values of chromatin state score - cells that are
334 expressing a relatively high number of genes (i.e., an open chromatin state) - are located at the
335 root of the trajectory state space (**Figure 5a**), while the cells that show the highest proliferation
336 rates are located at a corner of the state space (**Figure 5b**). This pattern suggests that the cells
337 with high values of chromatin state could be quiescent cells, which express a large number of
338 genes but are not actively dividing. Therefore, these cells are interesting candidates for further
339 analysis aimed at studying CSCs in HGG. More generally, this proof-of-concept demonstrates the
340 usefulness of the chromatin state score defined here, especially if used in combination with the
341 proliferation rate for the identification of particular cell types or cell states.

342 **3.5 Comparison of samples**

343 A SC dataset carries an extensive amount of information. The integration of multiple SC
344 datasets is a challenging task and multiple approaches have been proposed to address it (31).
345 Typically, the integrated datasets are computationally demanding due to their huge size. An
346 alternative possibility lies in cross-checking the expression of cluster markers between two
347 samples: the expression of the cluster markers of a sample is assessed in the other sample – and
348 *vice versa* – obtaining the similarities among all pairs of clusters. For example, Nguyen *et al.* (9)
349 used this approach to study the occurrence of the characteristic cell types of normal mammary
350 gland across samples collected from different subjects.

351 scMuffin provides a function to quantify the similarity between all-pairs of clusters of two
352 samples on the basis of cluster-specific markers:
353 sim_res <- quantify_samples_similarity(gbc_1, gbc_2, clusters_1,
354 clusters_2, cluster_markers_1, cluster_markers_2)

355 Concerning our case study, the comparison of samples PJ016 and PJ018 showed a series of
356 similarities between their clusters. For instance, the clusters 0 and 9 of sample PJ016 are
357 composed of cells highly similar to those grouped into clusters 2 and 5 of sample PJ018 (**Figure**
358 **6a**). This analysis revealed a pattern of cluster-cluster similarities that is fundamentally coherent
359 with the results obtained by performing the alternative approach of integrating the two datasets
360 and then clustering the cells (**Figure 6b-c**). For example, both approaches showed that clusters 0
361 and 9 of PJ016 are similar to clusters 2 and 5 of PJ018, and cluster 4 of PJ016 is close to cluster 7
362 of PJ018. There were also some differences, which, yet again, remark the challenge of this task: for
363 example, cluster 8 of PJ016 is similar to cluster 9 of PJ018 using the marker-based similarity
364 (**Figure 6a**), while the UMAP obtained by the integrated dataset places cluster 8 of PJ016 close to
365 clusters 6 and 3 of PJ018 (**Figure 6b-c**).

366 **4. Conclusions**

367 Here, we presented scMuffin, an R package that we developed to offer a series of useful functions
368 to perform and integrate multiple types of analyses on SC expression data. As a proof-of-concept,
369 we applied scMuffin on a publicly available SC expression dataset of human HGG. We described
370 two examples of integrative analyses which returned particularly interesting findings that would
371 deserve further investigations. The functional characterization of CNVs highlighted a possible link
372 between amplifications of chromosomes 1p and 19p and invasive tumor phenotype. The joint
373 analysis of chromatin state, proliferation rate and cell state trajectories suggested possible
374 candidates of CSCs in HGG. The analyses offered by scMuffin and the results achieved in this case
375 study show that scMuffin helps addressing the main challenges in the bioinformatics analysis of SC
376 datasets from solid tumors.

377 **5. Figure captions**

378 **Figure 1. Overview of scMuffin package.** scMuffin offers the possibility to perform several
379 different analyses and data integration approaches to address the main challenges of SC gene
380 expression analysis in solid tumors.

381 **Figure 2. Quantification of CancerSEA functional states in the HGG sample PJ016.** **a)** UMAP
382 visualization where cells are coloured by expression clusters. **b)** Cluster-level expression scores of
383 all the CancerSEA functional states. **c)** UMAP visualization where cells are colored by
384 “CSEA_Invasion” gene set score.

385 **Figure 3. CNV analysis.** **a-d)** CNV heatmaps (a, c) where cells (columns) are grouped into CNV
386 clusters, and UMAP visualizations (b, d) where cells are colored by CNV clusters, for sample PJ030
387 (a, b) and sample PJ016 (c, d). **e)** Overlap between cell clusters of sample PJ016 obtained by
388 analyzing gene expression (rows, “global_” prefix) and CNV clusters (columns, “cnv_” prefix); *YBX1*
389 and *HNRNPM* are two CancerSEA invasion markers located within the amplified 1p and 19p
390 regions found in CNV clusters 1 and 3. **f)** Expression scores for CancerSEA functional states in CNV
391 clusters of sample PJ016.

392 **Figure 4. Cluster enrichment in HGG sample PJ016.** **a)** The top five most significant ($fdr < 0.05$)
393 CancerSEA functional states in cluster 0: distribution of expression scores in cluster 0 (red) in
394 comparison with all the other clusters (grey); normalized enrichment score (NES) and false
395 discovery rate (FDR) values. **b)** Distribution of cells by their values (red labels) in cluster 0 (red
396 dots) in comparison with all the others (grey dots) for three categorical variables, namely, the
397 clusters obtained analyzing ribosomal gene expression (“ribosomes”), the clusters obtained
398 analyzing the expression of a Glioblastoma signature (“GB500”), and cell cycle phase (“Phase”,
399 obtained with the Seurat package function “CellCycleScoring”); the numbers over each cell group

400 are ORA p-values. **c)** UMAP visualization with expression clusters annotated with the names of the
401 top two CancerSEA gene sets with the highest enrichment (CSEA) for each cluster.

402 **Figure 5. Chromatin state, proliferation rate and cell state trajectories of HGG sample PJ016. (a-**
403 **b).** Cell state trajectories colored by chromatin state (a) and proliferation rate (b).

404 **Figure 6. Cluster marker-based comparison of HGG samples PJ016 and PJ018. a)** Similarity among
405 all-pairs of clusters. **b-c)** UMAP visualizations obtained by integrating the two samples with the
406 “FindIntegrationAnchors” and “IntegrateData” Seurat functions, showing PJ016 cells (b) and PJ018
407 cells (c) colored by the clusters found by independent analysis of each sample.

408 **6. Availability and requirements**

409 **Project name:** scMuffin

410 **Project home page:** <https://github.com/emosca-cnr/scMuffin>

411 **Operating system:** Platform independent

412 **Programming language:** R (>= 4.0.0)

413 **Other requirements:** The R Project for Statistical Computing.

414 **License:** GPL-3

415 **Any restrictions to use by non-academics:** According to GPL-3

416 **7. List of abbreviations**

417 CNV: Copy Number Variation

418 CSEA: Cell Set Enrichment Analysis

419 GSEA: Gene Set Enrichment Analysis

420 HGG: high grade glioma

421 ORA: over representation analysis

422 SC: single cell
423 CSC: cancer stem cells
424 UMAP: Uniform Manifold Approximation and Projection
425 GTEx: The Genotype-Tissue Expression project
426 NES: normalized enrichment score
427 FDR: False discovery rate

428 **8. Declarations**

429 **Ethics approval and consent to participate.** Not applicable.
430 **Consent for publication.** Not applicable.
431 **Availability of data and materials.** The data used for the analyses described in this manuscript
432 were obtained from: The Gene Expression Omnibus (13), under the accession GSE103224; the
433 GTEx Portal (16) on 04/08/2020.
434 **Competing interests.** The authors declare that they have no competing interests.
435 **Funding.** The work was supported by: the Italian Ministry of Education, University and Research
436 (MIUR) [INTEROMICS PB05].
437 **Author's contributions.** VN implemented the CNV functions, carried out the analyses, interpreted
438 the results and wrote the article. NDN drafted the package, carried out the analyses and wrote the
439 article. AC implemented clustering functions, carried out the analyses and wrote the manuscript.
440 IC curated the biological aspects of CNV analysis and revised the manuscript. MM and MG set up
441 the computational infrastructure for data analysis. CC and EP curated the biological aspects of
442 solid tumor data analysis. RR, IZ, LM and AM contributed to the design of the study. PP
443 contributed to the software design, case study definition, interpretation of the results and wrote
444 the article. EM designed the study, implemented the software, performed the analysis,

445 interpreted the results and wrote the manuscript. All authors read and approved the final
446 manuscript.

447 **9. References**

- 448 1. Baslan T, Hicks J. Unravelling biology and shifting paradigms in cancer with single-cell
449 sequencing. *Nat Rev Cancer* [Internet]. 2017 Sep 24;17(9):557–69. Available from:
450 <https://www.nature.com/articles/nrc.2017.58>
- 451 2. Zappia L, Theis FJ. Over 1000 tools reveal trends in the single-cell RNA-seq analysis
452 landscape. *Genome Biol.* 2021 Dec;22(1):301.
- 453 3. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al. Integrated analysis of
454 multimodal single-cell data. *Cell* [Internet]. 2021 Jun;184(13):3573-3587.e29. Available
455 from: <https://linkinghub.elsevier.com/retrieve/pii/S0092867421005833>
- 456 4. Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. CellMarker: a manually curated resource
457 of cell markers in human and mouse. *Nucleic Acids Res* [Internet]. 2019 Jan 8;47(D1):D721–
458 8. Available from: <https://academic.oup.com/nar/article/47/D1/D721/5115823>
- 459 5. Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and
460 human single-cell RNA sequencing data. *Database* [Internet]. 2019 Jan 1;2019. Available
461 from: <https://academic.oup.com/database/article/doi/10.1093/database/baz046/5427041>
- 462 6. Yuan H, Yan M, Zhang G, Liu W, Deng C, Liao G, et al. CancerSEA: a cancer single-cell state
463 atlas. *Nucleic Acids Res* [Internet]. 2019 Jan 8;47(D1):D900–8. Available from:

464 <https://academic.oup.com/nar/article/47/D1/D900/5133662>

465 7. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set
466 enrichment analysis: A knowledge-based approach for interpreting genome-wide
467 expression profiles. *Proc Natl Acad Sci* [Internet]. 2005 Oct 25;102(43):15545–50. Available
468 from: <https://pnas.org/doi/full/10.1073/pnas.0506580102>

469 8. Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the
470 multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. *Science* (80-)
471 [Internet]. 2016 Apr 8;352(6282):189–96. Available from:
472 <https://www.science.org/doi/10.1126/science.aad0501>

473 9. Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, et al. Profiling human breast
474 epithelial cells using single cell RNA sequencing identifies cell diversity. *Nat Commun*
475 [Internet]. 2018 Dec 23;9(1):2028. Available from: <http://www.nature.com/articles/s41467-018-04334-1>

477 10. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-
478 seq highlights intratumoral heterogeneity in primary glioblastoma. *Science* (80-) [Internet].
479 2014 Jun 20;344(6190):1396–401. Available from:
480 <https://www.science.org/doi/10.1126/science.1254257>

481 11. Khatri P, Sirota M, Butte AJ. Ten Years of Pathway Analysis: Current Approaches and
482 Outstanding Challenges. Ouzounis CA, editor. *PLoS Comput Biol* [Internet]. 2012 Feb
483 23;8(2):e1002375. Available from: <https://dx.plos.org/10.1371/journal.pcbi.1002375>

484 12. Yuan J, Levitin HM, Frattini V, Bush EC, Boyett DM, Samanamud J, et al. Single-cell
485 transcriptome analysis of lineage diversity in high-grade glioma. *Genome Med* [Internet].
486 2018 Dec 24;10(1):57. Available from:
487 <https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-018-0567-9>

488 13. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO:
489 archive for functional genomics data sets—update. *Nucleic Acids Res* [Internet]. 2012 Nov
490 26;41(D1):D991–5. Available from:
491 <http://academic.oup.com/nar/article/41/D1/D991/1067995/NCBI-GEO-archive-for-functional-genomics-data>

493 14. Clarke ZA, Andrews TS, Atif J, Pouyabahar D, Innes BT, MacParland SA, et al. Tutorial:
494 guidelines for annotating single-cell transcriptomic maps using automated and manual
495 methods. *Nat Protoc* [Internet]. 2021 Jun 24;16(6):2749–64. Available from:
496 <http://www.nature.com/articles/s41596-021-00534-0>

497 15. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in
498 multidimensional genomic data. *Bioinformatics* [Internet]. 2016 Sep 15;32(18):2847–9.
499 Available from: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btw313>

501 16. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Available from:
502 <https://www.gtexportal.org/home/index.html>

503 17. Gupta MK, Polisetty RV, Sharma R, Ganesh RA, Gowda H, Purohit AK, et al. Altered
504 transcriptional regulatory proteins in glioblastoma and YBX1 as a potential regulator of

505 tumor invasion. *Sci Rep* [Internet]. 2019 Dec 29;9(1):10986. Available from:
506 <http://www.nature.com/articles/s41598-019-47360-9>

507 18. LeFave C V, Squatrito M, Vorlova S, Rocco GL, Brennan CW, Holland EC, et al. Splicing factor
508 hnRNPH drives an oncogenic splicing switch in gliomas. *EMBO J* [Internet]. 2011 Oct
509 5;30(19):4084–97. Available from:
510 <http://emboj.embopress.org/cgi/doi/10.1038/emboj.2011.259>

511 19. Golan-Gerstl R, Cohen M, Shilo A, Suh S-S, Bakàcs A, Coppola L, et al. Splicing Factor hnRNP
512 A2/B1 Regulates Tumor Suppressor Gene Splicing and Is an Oncogenic Driver in
513 Glioblastoma. *Cancer Res* [Internet]. 2011 Jul 1;71(13):4464–72. Available from:
514 <http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-10-4410>

515 20. Kim J-H, Jeong K, Li J, Murphy JM, Vukadin L, Stone JK, et al. SON drives oncogenic RNA
516 splicing in glioblastoma by regulating PTBP1/PTBP2 switching and RBFOX2 activity. *Nat
517 Commun* [Internet]. 2021 Dec 21;12(1):5551. Available from:
518 <https://www.nature.com/articles/s41467-021-25892-x>

519 21. Bastide A, David A. The ribosome, (slow) beating heart of cancer (stem) cell. *Oncogenesis*
520 [Internet]. 2018 Apr 20;7(4):34. Available from: <http://www.nature.com/articles/s41389-018-0044-8>

522 22. Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify normal and
523 malignant human cells. *Genome Biol* [Internet]. 2016 Dec 24;17(1):236. Available from:
524 <http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1104-z>

525 23. Dolezal JM, Dash AP, Prochownik E V. Diagnostic and prognostic implications of ribosomal
526 protein transcript expression patterns in human cancers. *BMC Cancer* [Internet]. 2018 Dec
527 12;18(1):275. Available from:
528 <https://bmccancer.biomedcentral.com/articles/10.1186/s12885-018-4178-z>

529 24. Teo W-Y, Sekar K, Seshachalam P, Shen J, Chow W-Y, Lau CC, et al. Relevance of a TCGA-
530 derived Glioblastoma Subtype Gene-Classifier among Patient Populations. *Sci Rep*
531 [Internet]. 2019 Dec 15;9(1):7442. Available from: <http://www.nature.com/articles/s41598-019-43173-y>

533 25. Wainwright EN, Scaffidi P. Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and
534 Restricting Cellular Plasticity. *Trends in Cancer* [Internet]. 2017 May;3(5):372–86. Available
535 from: <https://linkinghub.elsevier.com/retrieve/pii/S240580331730081X>

536 26. Gaspar-Maia A, Alajem A, Meshorer E, Ramalho-Santos M. Open chromatin in pluripotency
537 and reprogramming. *Nat Rev Mol Cell Biol* [Internet]. 2011 Jan 22;12(1):36–47. Available
538 from: <http://www.nature.com/articles/nrm3036>

539 27. Guilhamon P, Chesnelong C, Kushida MM, Nikolic A, Singhal D, MacLeod G, et al. Single-cell
540 chromatin accessibility profiling of glioblastoma identifies an invasive cancer stem cell
541 population associated with lower survival. *Elife* [Internet]. 2021 Jan 11;10. Available from:
542 <https://elifesciences.org/articles/64090>

543 28. Feitelson MA, Arzumanyan A, Kulathinal RJ, Blain SW, Holcombe RF, Mahajna J, et al.
544 Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. *Semin Cancer
545 Biol* [Internet]. 2015 Dec;35:S25–54. Available from:

546 https://linkinghub.elsevier.com/retrieve/pii/S1044579X15000140

547 29. Al-Hajj M, Clarke MF. Self-renewal and solid tumor stem cells. *Oncogene* [Internet]. 2004

548 Sep 20;23(43):7274–82. Available from: <https://www.nature.com/articles/1207947>

549 30. Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. *destiny*: diffusion maps for

550 large-scale single-cell data in R. *Bioinformatics* [Internet]. 2016 Apr 15;32(8):1241–3.

551 Available from: <https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btv715>

553 31. Forcato M, Romano O, Bicciato S. Computational methods for the integrative analysis of

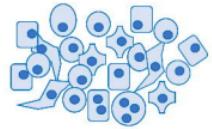
554 single-cell data. *Brief Bioinform* [Internet]. 2021 May 20;22(3). Available from:

555 <https://academic.oup.com/bib/article/doi/10.1093/bib/bbaa042/5828125>

556

Challenges in solid tumor analysis at single-cell level

- Limited availability of markers for definition of cell subtype identity
- Potentially strongly altered and highly heterogeneous gene expression profiles
- Presence of infiltrating cells and cells from the surrounding (healthy) tissue
- Potentially clinically relevant cell subtypes at very low number (e.g., drug resistant subclones)
- Often limited number of detected genes



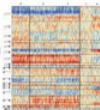
scMuffin
Single-cell
multi-feature
integrative
analysis

Gene sets from various sources

- General: MSigDB
- Cell markers: CellMarker, PanglaoDB
- Functional states: CancerSEA
- Proliferation: G1/S & G2/M
- Ribosomal proteins

CNV inference

- Adjacent gene windows
- Reference (optional)
- Support of normal tissue expression data from GTEx



Gene set scoring

- Against empirical null
- Optimized to handle missing data

Chromatin state

- Relative number of expressed genes

Cell state trajectory

- Diffusion map

Cell cluster statistics

- mean values
- variability

Proliferation rate

- Proportional to G1/S and G2/M genes

Cell cluster enrichment

- Quantitative features: CSEA
- Categorical features: ORA

Cluster-marker based two-samples comparison

- All-pairs of clusters comparison

Comparison of multiple partitions

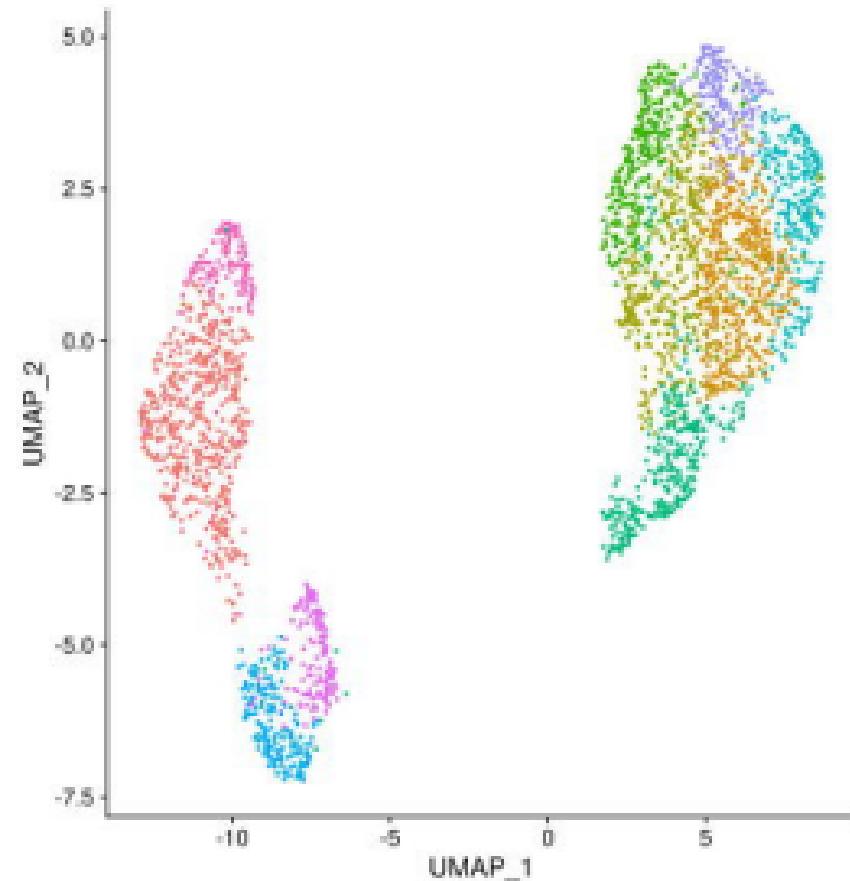
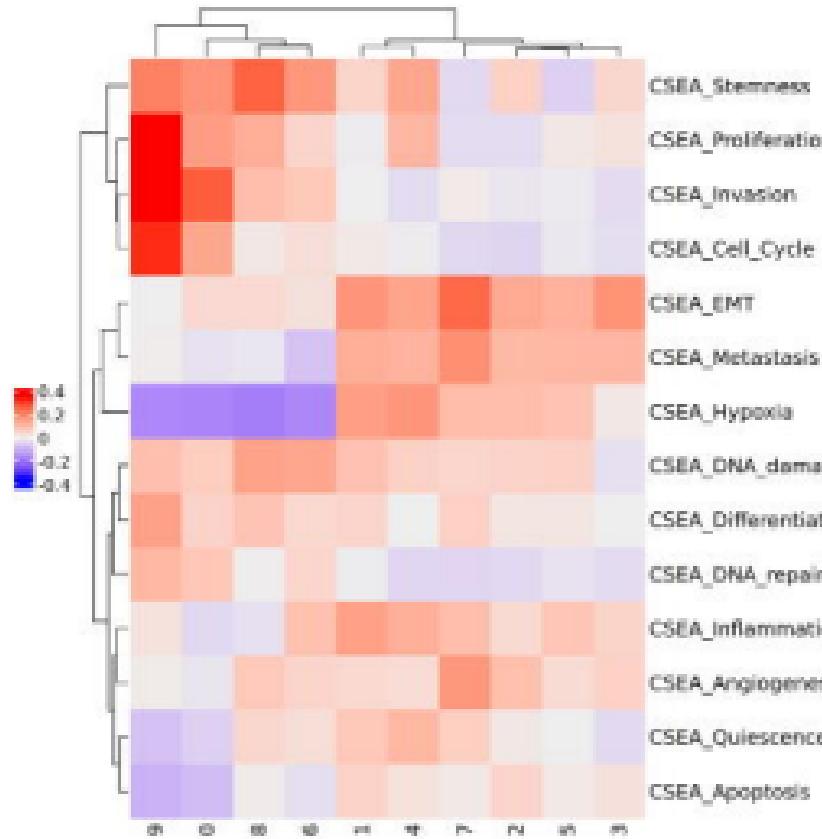
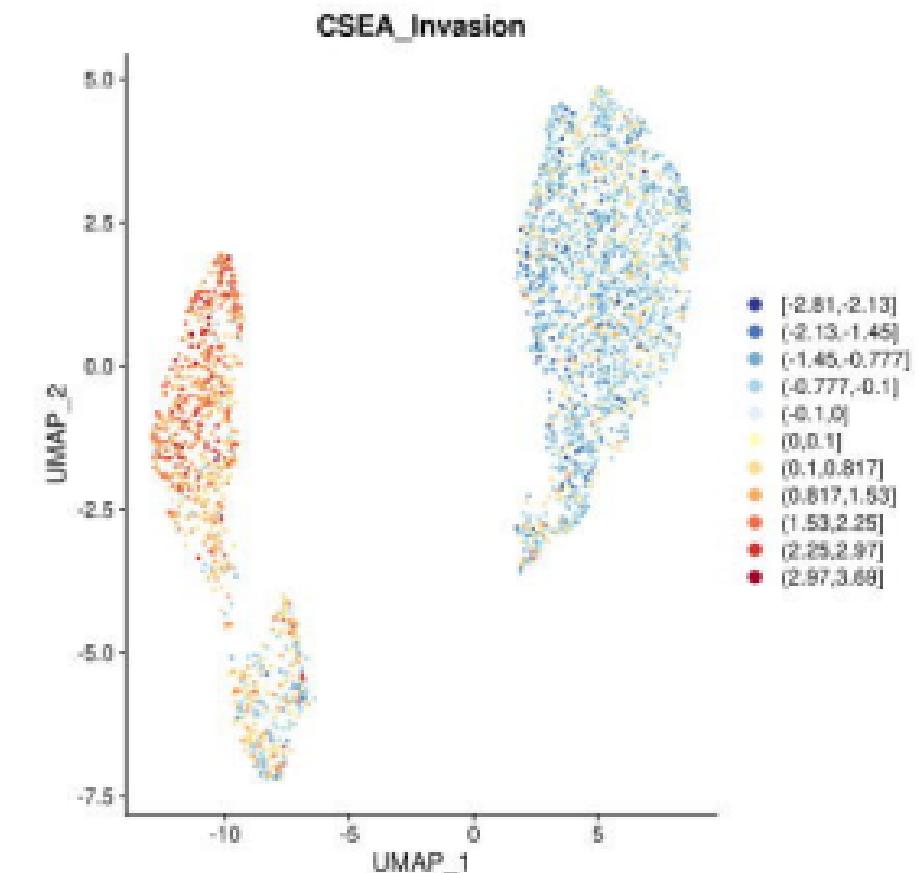
- Overlap matrix

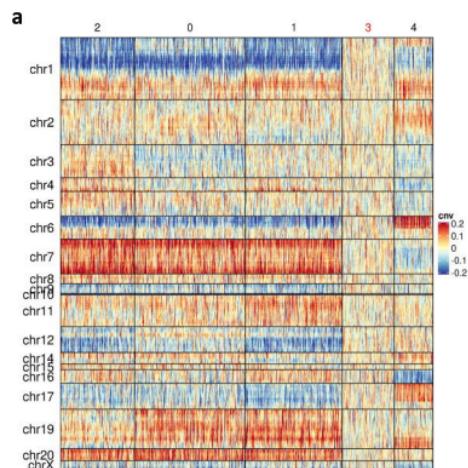
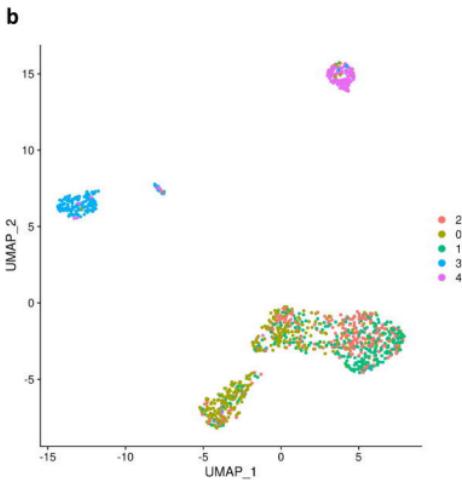
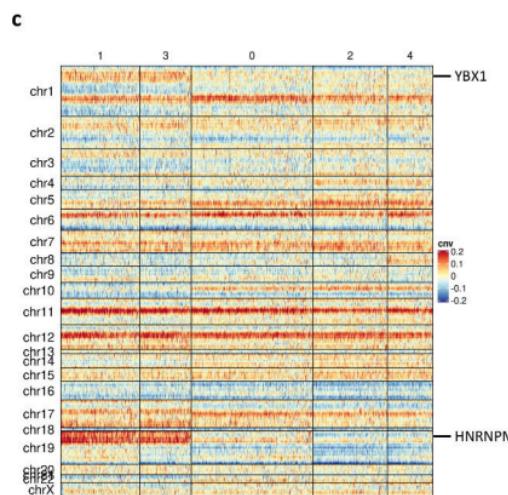
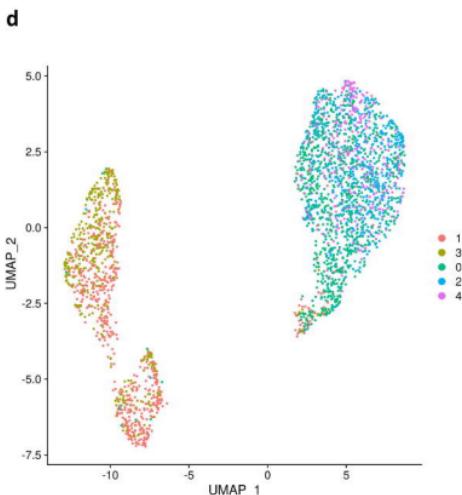
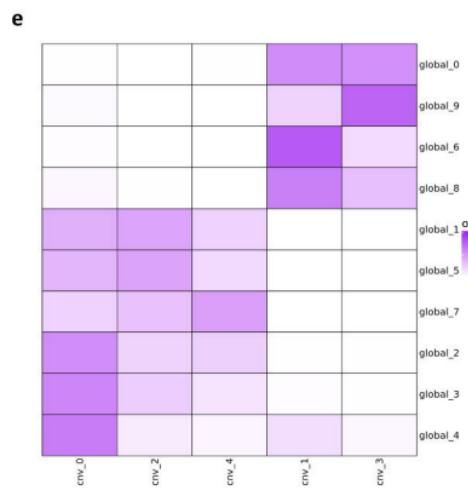
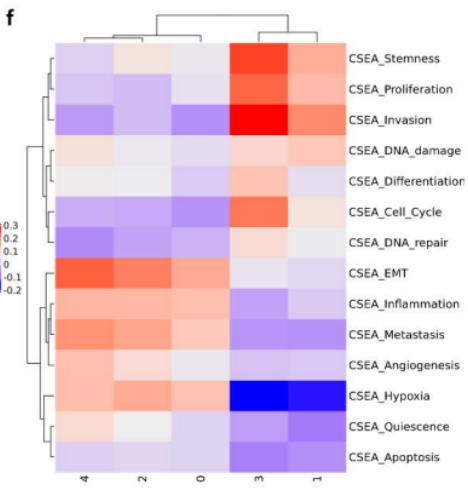
Implementation

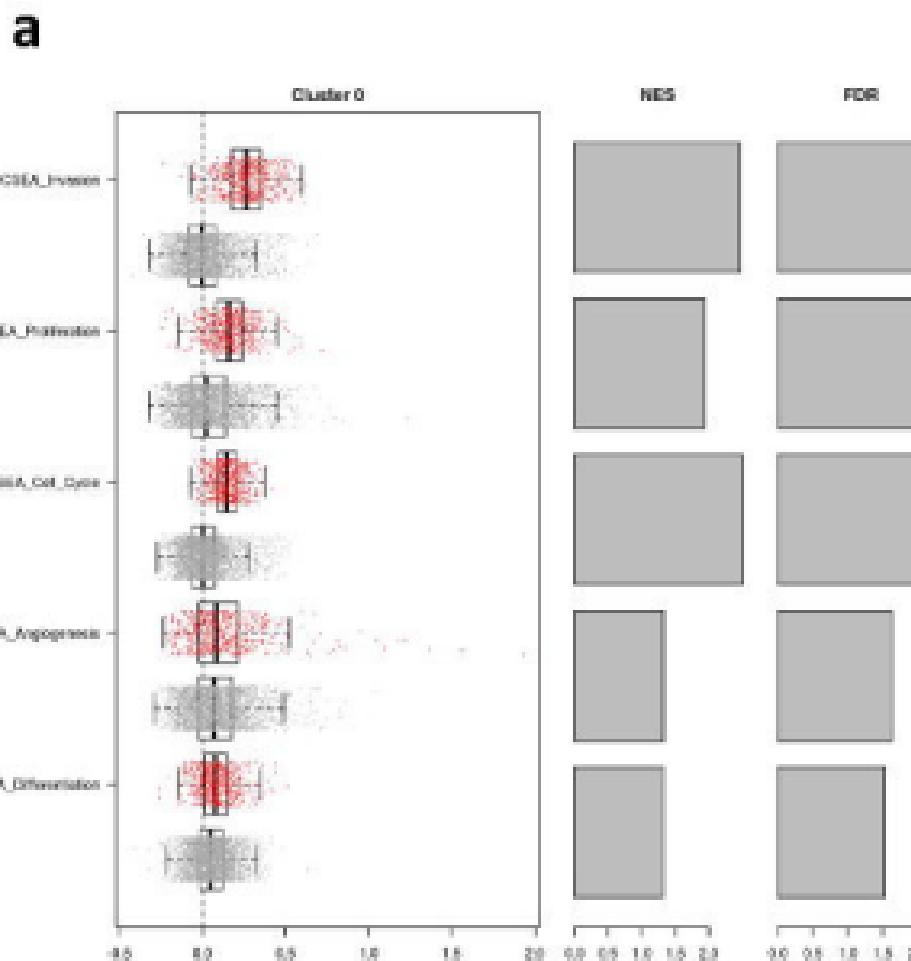
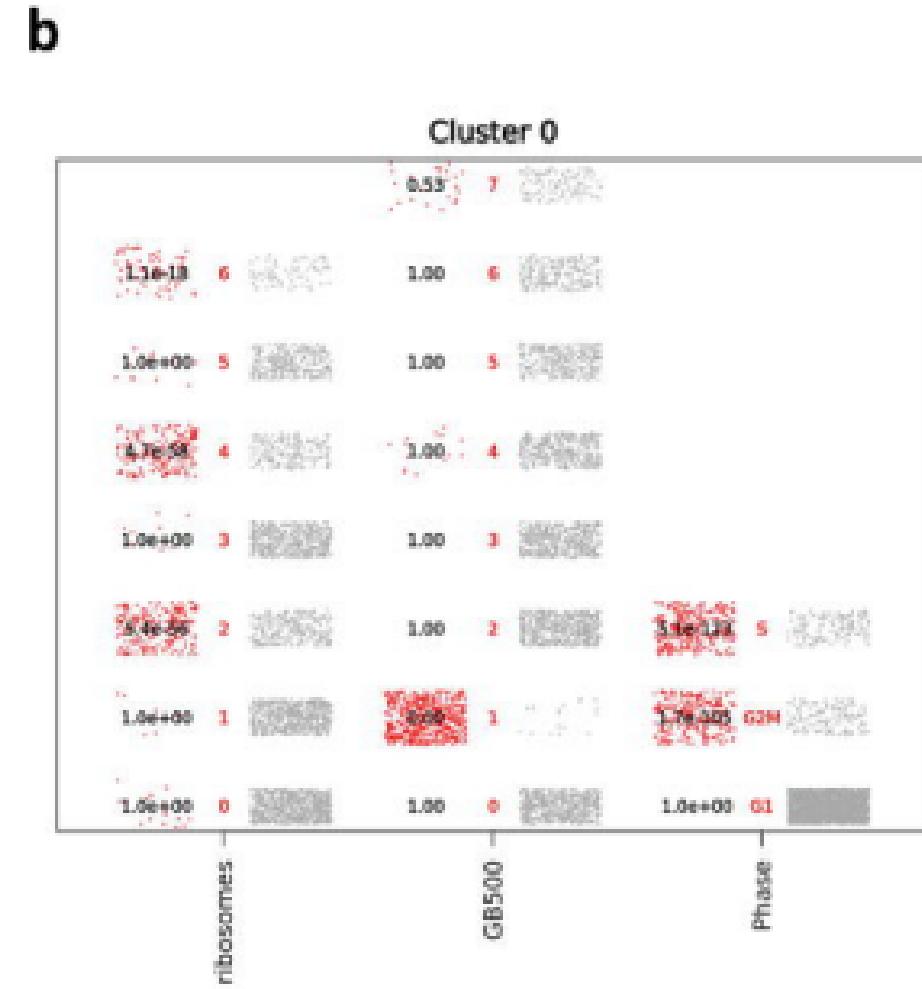
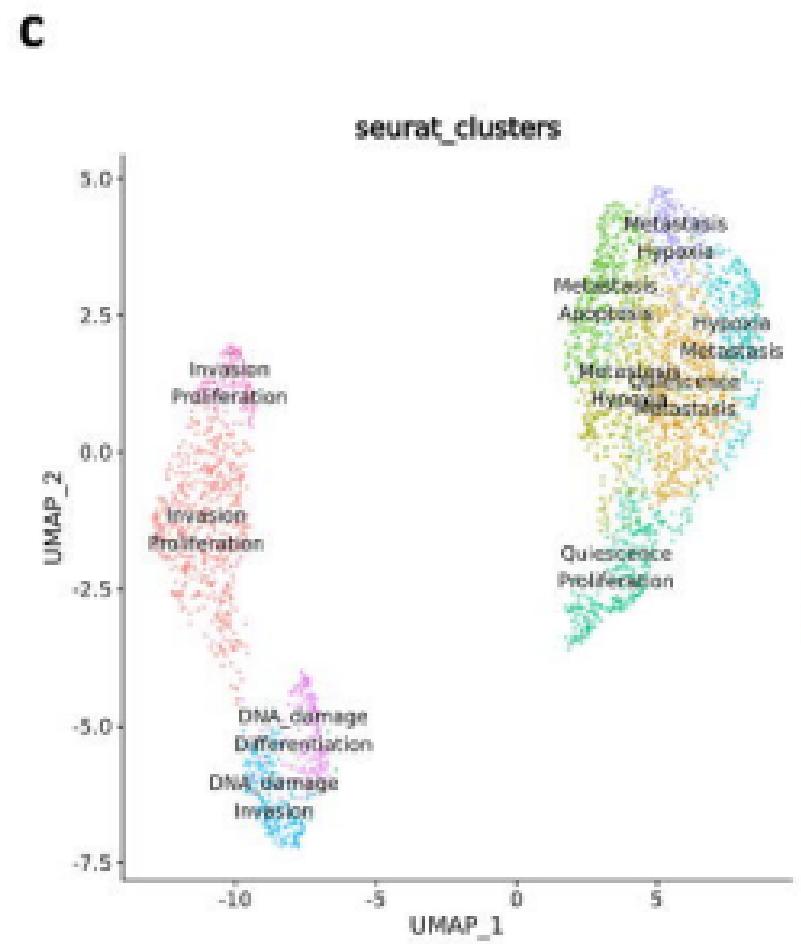
- Computationally intensive tasks are parallelized
- Integration of various results in dedicated objects to enable automated subsequent analyses
- Parametrization of analyses to address dataset-specific characteristics

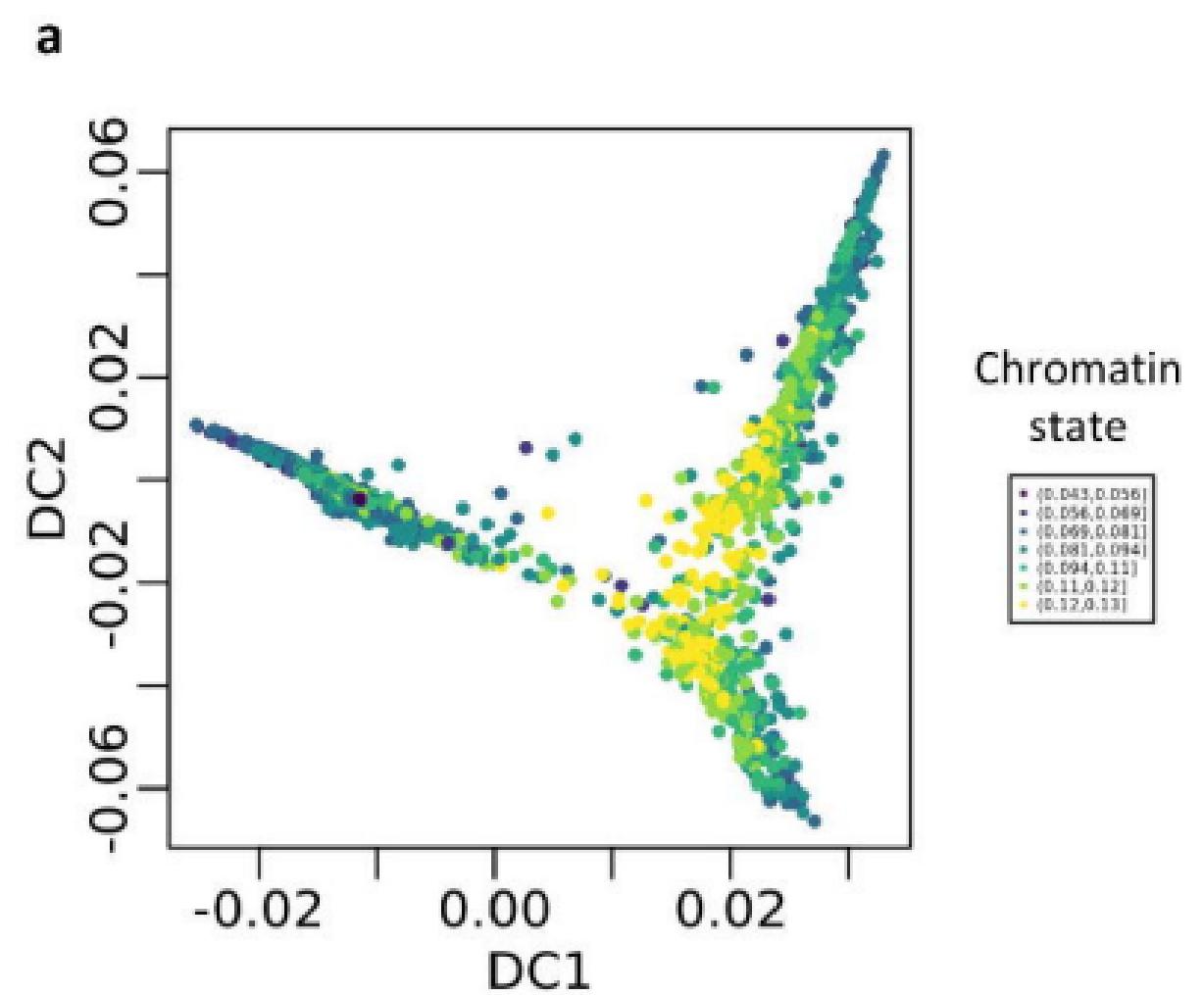
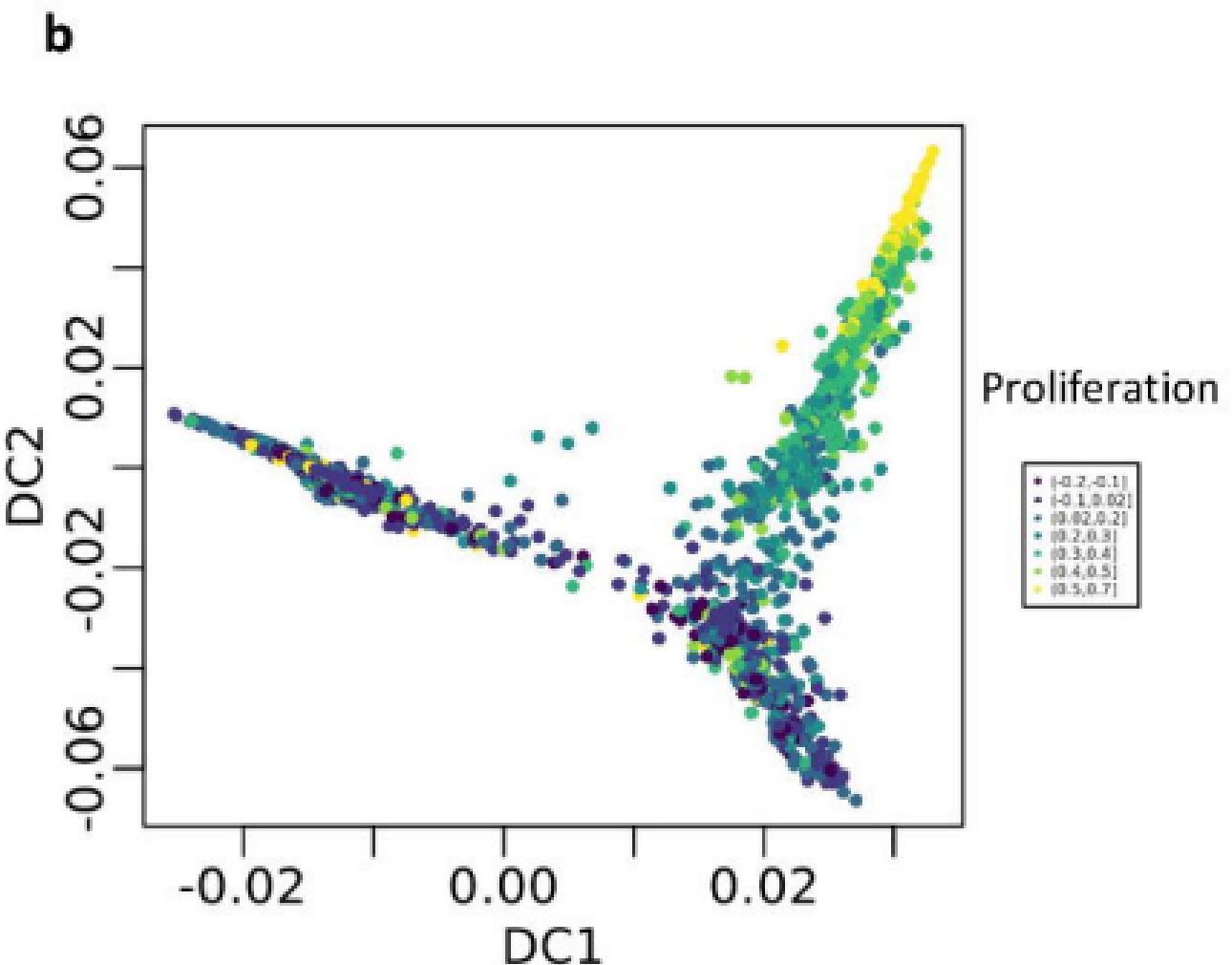
Visualization

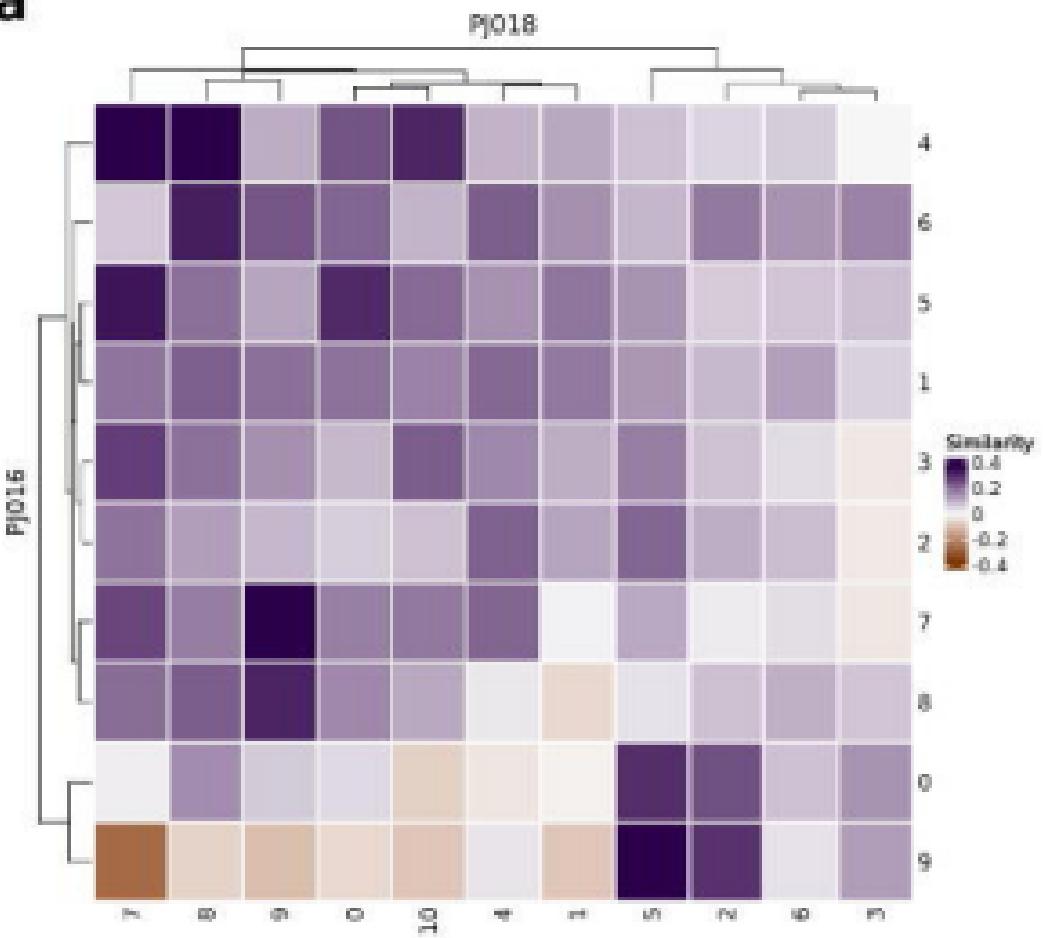
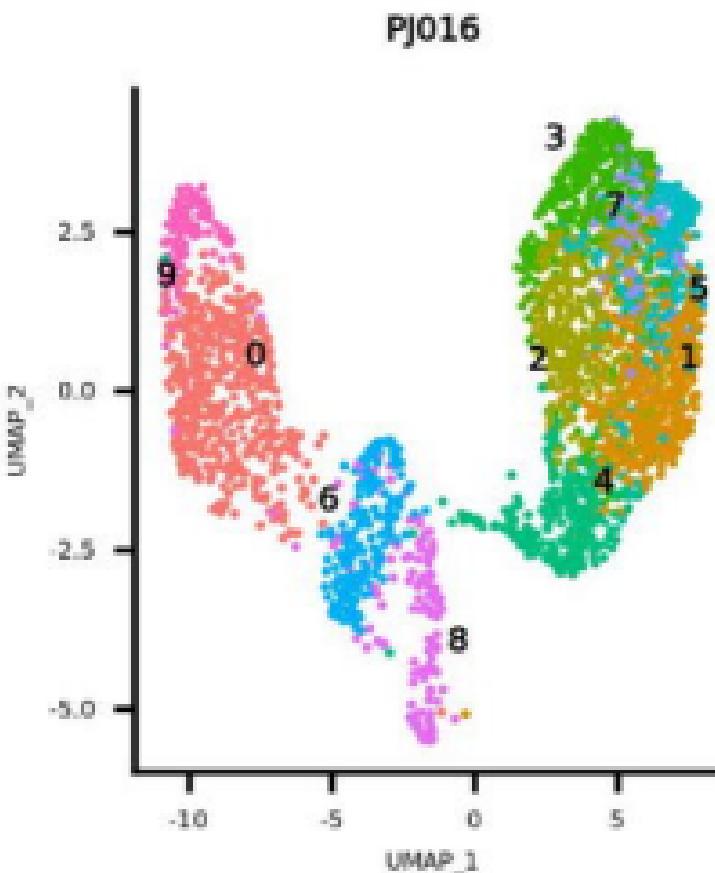
- Automated UMAP visualization for multiple quantitative and categorical features
- Clusters-by-cells heatmaps
- CNV heatmap
- Two-samples similarity heatmap
- Cluster enrichment boxplots and dotplots

a**b****c**







a**b****c**