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22 Abstract

23 INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular
24 heterogeneity of solid tumors, which is one of the main obstacles for the development of effective
25 cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and
26  transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer
27 progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin,
28 an R package that enables the characterization of cell identity in solid tumors on the basis of
29  multiple and complementary criteria applied on SC gene expression data.

30 RESULTS: scMuffin provides a series of functions to calculate several different qualitative and
31 quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway
32  activity, cell state trajectories, CNVs, chromatin state and proliferation state. Thus, scMuffin
33 facilitates the combination of various evidences that can be used to distinguish normal and
34  tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to
35 phenotypes and identify subtle differences between cell subtypes or cell states. As a proof-of-
36 concept, we applied scMuffin to a public SC expression dataset of human high-grade gliomas,
37 where we found that some chromosomal amplifications might underlie the invasive tumor
38 phenotype and identified rare quiescent cells that may deserve further investigations as candidate
39  cancer stem cells.

40  CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show
41  that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression
42  data from solid tumors.

43  Keywords: single-cell transcriptomics, cancer, tumor heterogeneity, cell identity.

44 1. Background


https://doi.org/10.1101/2022.06.01.494129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494129; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

45 Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular
46  heterogeneity of solid tumors, which is one of the main obstacles for the development of effective
47  cancer treatments (1). A relevant number of software tools has been developed in recent years in
48 the field of SC data analysis (2), a fact that stresses the key opportunities and challenges in this
49 field. A recent study has shown that the development of tools that address common tasks (e.g.
50 clustering of similar cells) and ordering of cells {e.g. definition of cell trajectories) is decreasing,
51 while a greater focus is being paid on data integration and classification (2). These observations

52  reflect the growing availability, scale and complexity of SC datasets (2).

53 SC datasets of solid tumors are typical examples of complex datasets that present a series
54  of computational challenges and whose analysis demands domain-specific and integrative
55  approaches. In fact, solid tumors typically contain a mixture of cells with aberrant genomic and
56 transcriptomic profiles affecting specific sub-populations that might play a pivotal role in cancer
57  progression, whose identification eludes bulk RNA-sequencing approaches. The use of cell type-
58  specific markers (when available) is limited, and the alterations of gene expression that mark
59  cancer cells makes the use of markers for normal cells not completely adequate. Moreover, the
60  molecular heterogeneity of cancer cells {due to both intra-tumor and inter-individual differences)
61 poses intrinsic limits in the definition of such markers. In addition, solid tumor samples typically
62 comprise cells from the surrounding tissue or infiltrating cells that need to be distinguished from
63  tumor populations for an effective analysis. Another challenge is the identification of clinically
64  relevant cell subtypes that may be rare in the tumor mass, such as cancer stem cells or drug
65 resistant subclones: because of their relatively low number, these cells are typically clustered
66 together with many others. Lastly, an intrinsic problem of many SC datasets is the sequencing

67  depth limit at the SC level. These limitations bound the number of detectable genes to the few
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68 thousands of the highest expressed genes, which implies, for example, that some established

69  markers may not be used for data analysis.

70 To address these challenges, we developed scMuffin, an R package that implements a
71  series of complementary analyses aimed at shedding light on the complexity of solid tumor SC
72  expression data, including: a fast and customizable gene set scoring system; gene sets from
73  various sources, including pathways, cancer functional states and cell markers; cell cluster
74 association with quantitative (e.g. gene set scores) as well as categorical (e.g. mutation states,
75  proliferation states) features; copy number variation (CNV) analysis; chromatin state analysis;
76  proliferation rate quantification; and marker-based two-sample comparisons (Figure 1). scMuffin
77  facilitates the integrative analysis of these multiple features, thus allowing the identification of cell

78  subtypes that elude more general clustering and classification approaches.

79 2. Implementation

80 scMuffin is implemented in R and provides a series of functions that allows the user to
81 perform various tasks, which can be combined to obtain various data analysis pipelines. The
82  package includes a vignette that describes the use of the tool, and every function is documented.
83  The results from the various analyses (e.g., gene set scores at SC level and cell chromatin state)
84 can be organized in dedicated (simple) objects in order to enable subsequent analyses (e.g.,
85 assessment of associations between features and cell clusters) that jointly consider multiple cell
86 features and various ways of cell clustering. Computationally intensive tasks (in particular, gene
87  setscoring and CNV inference) are parallelized. In this section, we describe the algorithms used to

88  perform the several tasks offered by scMuffin.

89 2.1 Quantification of gene set expression scores at cell and cluster levels
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90 The quantification of gene set expression scores follows the approach described in (8,9), in
91 which a gene set is scored on the basis of its average deviation from an empirical null. In scMuffin
92 the implementation of gene set scoring is parallel and the calculation can be tuned acting on a
93  series of parameters, such as: the number of bins, the number of minimum genes that must have
94 non negative values in a cell (“nmark_min”), the minimum number of cells in which at least
95 nmark_min have to be found (“ncell_min”), the number of permutations (k), the minimum
96 number of permutations required (k’). This tuning helps to address the issue of missing values -
97  typical of SC datasets - and therefore maximizes the number of gene sets for which it is actually
98 possible to obtain an expression score supported by an empirical null distribution. Briefly, given a

99 genesetS:

100 1. the genes occurring in the genes-by-cells matrix are grouped into a number of bins
101 according to their average expression across cells;

102 2. a number k of random gene sets S; are created, of the same size of S, tossing genes from
103 the same bins of S, in order to match the distribution of gene expression of each S;” with
104 that of S;

105 3. the averages m. and m;. are calculated, respectively, over the values of S and S in every
106 cell c;

107 4. the expression score Y. is calculated as the average difference between m.and Mic ;

108 5. the average value Y,, calculated over the Y. of a given cluster, is used as the representative
109 score of S in that cluster.

110 2.2 CNV estimation by adjacent gene windows approach

111 CNV inference in scMuffin is based on the “adjacent gene windows” approach, which has
112  been validated using both single nucleotide polymorphism arrays (10) and whole-exome

113 sequencing (8) technologies. The approach is implemented in parallel and offers various

5
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114  parameter tuning and data filtering possibilities, which allows the investigator to optimize the
115 analysis on the characteristics of its dataset. The CNV profile of each cell is calculated as a moving
116 average of scaled gene expression levels ordered by genomic location, with the possibility of

117  subtracting a normal reference profile to identify sample-specific CNVs. The main steps are:

118 1. the reference cells are added to the genes-by-cells matrix (optional);
119 2. the expression of each gene is scaled subtracting its average (optional);
120 3. the gene expression matrix is ordered by chromosome and gene location;
121 4. in each chromosome h, the estimated copy number V;. of cell ¢ is calculated for all the
122 ordered genes i € [% +1,n, — %]
i+2
e
Vie = ZWW fl-c 1
j=i-%
123 where w is an even number that defines the window size, that is, the number of genes
124 located before and after gene i which contribute to the estimation of V., and e is the
125 gene expression value;
126 5. V. values are scaled subtracting their average in a cell (optional);
127 6. cells are clustered by their CNV profile;
128 7. the average CNV profile of the normal reference cells is subtracted from all the CNV
129 profiles {optional).

130 2.3 Chromatin state and proliferation rate

131  The chromatin state R, of a cell is inferred on the basis of the number of expressed genes over the
132  number of total mapped reads:

_ #{ic = a}

R - = -
¢ Ziic
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133 where a is a threshold over the gene count ;., which defines the gene i as “expressed”. High
134  values of R, indicate cells that are expressing many genes in relation to the number of mapped
135 reads.

136 The proliferation rate P, of a cell is quantified as the maximum value between the two
137  gene set scores Y.(S;) and Y,(S,), calculated on the gene sets S; and S, that, respectively,
138 characterize the G1/S and G2/M cell cycle phases:

F.= maX(Yc(Sﬂ:Yc(Sz))
139 whereS; and S, are defined as in Tirosh et al. (8).

140 2.4 Cluster enrichment analysis for quantitative and categorical features

141 The assessment of cluster enrichment in high values of quantitative features is computed using a
142  procedure that we name “cell set enrichment analysis” (CSEA), because it is analogous to the gene
143  set enrichment analysis {(GSEA) (7), but operates on different input types. In particular, instead of a
144  ranked list of genes, the CSEA considers a list of cells ranked by a feature of interest, and instead
145  of testing a gene set, CSEA tests a cell set (i.e., a cluster of cells). Therefore, CSEA tests whether
146  the cells assigned to a cluster are located at the top (or bottom) of the ranked list of cells. The
147  assessment of a cluster enrichment in a particular value of a categorical feature is computed using
148  the over-representation analysis (ORA) approach (11), which is based on the hypergeometric test.

149 Both CSEA and ORA are implemented in parallel in scMuffin. This is particularly important
150 for CSEA, which uses permutations to build an empirical null distribution. Nonetheless, it is also

151  effective for ORAs that are run over a large number of gene sets.
152 2.5 Cell clustering

153  Cell clustering is based on the approaches implemented in the R package Seurat (3). The results

154  from multiple clustering procedures are compared by calculating the overlap coefficients among


https://doi.org/10.1101/2022.06.01.494129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494129; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

155  all-pairs of clusters. Given two partitions A and B, defined as sets of cell clusters A = {a;} and

156 B = {bj}, the similarity between the cell clusters a; and b; is calculated as:

0 = |ai N b]|
Y min(lai|, bjD
157 Meta-clusters are defined as the union of cell clusters that have high o; and are found by

158  hierarchical clustering of the matrix 0 = {o;;}.
159 2.6 Cluster marker-based two-sample comparison
160 The cluster marker-based two-sample comparison is based on assessing the expression of cluster

161  markers of every cluster of a sample (A) in every cluster of the other sample (B) and vice versa.

162  Given a set of markers S,,, which represents the cell cluster a; of sample A, the gene set score

163 Vbj(Sai) quantifies the expression of S, in the cell cluster b; of sample B, while vice versa Vai (Sbj)

164  quantifies the expression of Sbj in the cell cluster a; of sample A. The average value Yaibj =

ij(sai)J“Yai(sbj) . o ]
165 — quantifies the similarity between cell clusters a; and b; on the basis of the

166  expression of their markers. The procedure is repeated for all-pairs of clusters of sample A and

167 sample B.

168 3. Results and Discussion

169 In this section, we present the user interface (Table 1), and the results obtained using our
170  scMuffin package on the SC dataset generated by Yuan et al. (12) from human high-grade glioma

171  (HGG) samples, and available on the Gene Expression Omnibus (GEO) repository (GSE103224) (13).

Table 1. Main tasks and corresponding functions in scMuffin.

Task Description User interface

Gene set Average gene set expression deviation from matched e prepare gsls

expression empirical reference; e calculate _gs_scores

scoring provided gene sets from CellMarker (4), PanglaoDB (5), e calculate gs scores_in clusters
CancerSEA (6) and MSigDB (7)
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Copy number | Estimation of CNVs by means of the “moving window” e calculate CNV
variations approach, that is, considering the expression of e cluster by features
adjacent genes; e apply CNV_reference
calculation of CNV deviation from a normal reference e CNV_heatmap
profile; e process_GTEx gene reads
processing of normal tissue-specific expression data
from GTEx
Chromatin Number of expressed genes in relation to the total e exp rate
state reads B
Proliferation Maximum between G1/S and G2/M gene set scores e proliferation analysis
Cell state Diffusion map computation e diff map
trajectory B
Cell cluster Assessment of cluster enrichment for quantitative and e assess_cluster_enrichment
annotation categorical features
Two-sample Quantification of the expression similarity between all- e quantify samples similarity
comparison pairs of clusters between two samples
Assembling Objects that host cell-level feature values and cell e create_features_obj
cell features partitions e create partitions obj
and cell
partitions
Visualization Automated UMAP visualizations for multiple features, e boxplot cluster
heatmaps, box plots and dot plots e dotplot cluster
e quantify samples similarity
® heatmap_CNV
e plot_umap colored features
e plot heatmap features by cluste
rs
172
173 3.1 Gene set scoring
174 scMuffin provides functions to set up one or more gene set collections and perform SC-

175 level estimation of gene set expression scores in relation to an empirical null model (see
176 Implementation section). This can be applied to any gene set and can therefore be used to
177  estimate several different cell phenotypes, like pathway activities or marker set expression.

178 The function prepare gsls allows the user to collect gene sets of cell types, pathways,
179 cancer functional states, as well as other collections of gene sets (e.g. positional gene sets,
180 hallmarks) from CellMarker (4), PanglaoDB (5), CancerSEA (6) and MSigDB (7) databases. Unlike
181 many existing tools that are used to perform marker-based cell annotation (14), the availability of
182 these gene sets within scMuffin package spares the user the effort of data collection and

183  harmonization. The function, which also accepts any user-given gene sets, applies a series of
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184  criteria (e.g., minimum and maximum number of genes in a gene set) to filter the chosen gene
185  sets.

186 The cell-level expression scores for these gene sets can be calculated using
187 calculate gs_ scores, which requires the expression matrix, the gene sets, as well as a
188 series of optional parameters to fine-tune the calculation in relation to the characteristics of the
189 SC dataset under analysis. This tuning is important to address the heterogeneity of size and
190 sparsity that characterizes different SC datasets, attributable to both the biological specimen
191  under analysis and the SC platform used. For instance, the following code shows how to quantify
192  cell-level, and then cluster-level, expression score of the cancer functional states from CancerSEA

193  (“SIG_CancerSEA”) (6) in a normalized genes-by-cells (“gbc”) expression matrix:

194 gsc <- prepare gsls(gs_sources = "SIG CancerSEA", genes = rownames (gbc))

195 gs_scores_obj <- calculate gs scores (genes by cells = gbc, gs_list =
196 gsc$SIG_CancerSEA)

197 res _sig cl <- calculate gs scores_in clusters(gs_scores obj = gs_scores obj,

198 cell clusters = cell clusters)

199 The cell-level value of any gene set (and more generally of any feature) can be visualized
200 over the UMAP by means of plot umap colored features, while cluster-level values of
201  multiple gene sets (features) <can be visualized as a heatmap  using
202 plot heatmap features by clusters, which relies on the ComplexHeatmap R package
203  (15). For example, in our case study, the analysis of the CancerSEA functional states in the HGG
204  sample PJ016 showed that the two groups of cell clusters (Figure 2a, left and right of the UMAP)
205 reflect distinct functional states (Figure 2b): for example, the expression of the CancerSEA
206  “Invasion” markers was particularly high in cell clusters O and 9 as compared to all the other
207  clusters (Figure 2b-c).

208 3.2 CNV estimation and association with CancerSEA functional states

10
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209 CNV inference from SC expression data estimates the presence of relevant genomic
210 aberrations (amplifications and deletions) based on the expression of adjacent genes. This
211  knowledge offers crucial clues to address the difficult task of distinguishing normal from malignant
212  cells, and provides quantitative information to reconstruct the tumor clonal substructure.
213  Moreover, CNV pattern allows the investigator to hypothesize link between genomic alterations
214  and cell phenotypes.

215 The function calculate CNV basically retrieves the genomic locations and performs the
216  CNV estimation; cluster by features executes the cell clustering based on CNV profiles;
217 apply CNV_reference redefines the CNV values on the basis of normal reference cells; the
218  dedicated plotting function CNV_heatmap handles the visualization, where the cell cluster that
219  contains the reference is marked in red. Here is an example that illustrates CNV inference using a
220 100 genes window size and a normal reference profile from The Genotype-Tissue Expression

221  (GTEx) portal (16):

222 cnv_res <- calculate CNV(gbc, wnd size = 100, reference =
223 GTEx_mean)

224 cnv_clustering <- cluster by features(cnv res, cnv=TRUE)

225 cnv_res ref <- apply CNV _reference(cnv = cnv_res, cnv_clustering =
226 cnv_clustering, reference="reference")

227 cnv_res ref <- CNV _heatmap(cnv = cnv res, cnv_clustering =

228 cnv_clustering, reference="reference")

229 To illustrate the use of this workflow, we selected two different HGG samples by Yuan et al.
230 (12), thatis, PJO30, composed by tumor cells as well as not transformed cells and PJ016, including
231  only transformed cells. We observed that the reference profile (obtained using the average gene
232  expression values of the normal brain samples available in GTEx portal) falls into cluster 3 of PJ030

233  (Figure 3a-b). With respect to cluster 3 (corresponding to the not transformed cells included in this

11
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234 sample), the clusters 0, 1 and 2 showed large recurrent aneuploidies, some of which are typical of
235 HGQG, like the amplification of chromosome 7 (Figure 3a). The CNV pattern here inferred is
236 fundamentally coherent with that reported by Yuan et al. {12), even if the authors just quantified a
237 summary value per chromosome, while scMuffin provides multiple CNV estimations per
238 chromosome. For sample PJ016, the CNV inference analysis highlighted two groups of “CNV
239 clusters” that map to two distinct components of the UMAP, while it did not identify a diploid
240  cluster, accordingly to the presence of only transformed cells in this sample (Figure 3c-d).
241  Interestingly, clusters 1 and 3 were marked by peculiar amplifications in chromosomes 1p and
242 19p.

243 scMuffin enables the comparison of clusters obtained using different procedures. In
244 particular, the overlap among all-pairs of clusters can be quantified using:

245 cl list <- partitions to list(clust obj)
246 ov _mat <- overlap matrix(cl list)

247  In our case study, the comparison between expression clusters and CNV clusters of sample PJO16
248  confirmed the presence of two groups of cells: for example, CNV clusters 1 and 3 showed a
249  relevant overlap with expression clusters 0, 6, 8 and 9 (Figure 3e).

250 An example of integrative analysis enabled by scMuffin is the functional assessment of CNV
251 patterns. We quantified the expression scores of the CancerSEA functional states throughout the
252  CNV clusters of sample PJ016. As expected, the two aforementioned groups of CNV clusters (0-2-4
253 and 1-3) were characterized by different functional states (Figure 3f), like the corresponding
254  expression clusters. In particular, CNV cluster 3 — which is mainly located in the top-left region of
255  the UMAP visualization (Figure 3d) and has a strong overlap with expression clusters 0 and 9
256  (Figure 3e) — contains cells that highly express the CancerSEA “Invasion” markers (Figure 3f and

257  Figure 2). This finding suggests that the peculiar amplifications of chromosomes 1p and 19p found

12


https://doi.org/10.1101/2022.06.01.494129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494129; this version posted June 1, 2022. The copyright holder for this preprint (which

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275
276
277
278

279

280

281

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

in this cluster might be linked to the invasive phenotype. This hypothesis is supported by the
finding of two CancerSEA invasion markers, Y-Box Binding Protein 1 (YBX1) and Heterogeneous
Nuclear Ribonucleoprotein M (HNRNPM), located within the amplified regions of chromosome 1p
and 19p specifically found in CNV clusters 1 and 3 (Figure 3c). YBX1 is a DNA/RNA-binding protein
and transcription factor which plays a central role in coordinating tumor invasion in glioblastoma
(17). HNRNPM belongs to a family of spliceosome auxiliary factors and is involved in the regulation
of splicing; the upregulation of these factors results in tumor-associated aberrant splicing, which
promotes glioma progression and malignancy (18,19). In particular, HNRNPM was identified as an
interactor of the DNA/RNA binding protein SON, which drives oncogenic RNA splicing in
glioblastoma (20). While it is beyond the scope of this article to further study this hypothesis,
these findings clearly highlight the usefulness of the integrative analysis of CNVs and CancerSEA

functional states provided by our scMuffin tool.
3.3 Clustering, features and annotation

scMuffin contains functions for assessing the association between cell clusters and
quantitative as well as categorical features, by means of CSEA and ORA, respectively. Here is the
user interface, where, firstly, the objects containing cell clusters and cell features are set up; then,

the enrichment is quantified for all partitions (various ways of clustering cells) and all features:

clust obj <- create partitions obj (cell clusters)

feat obj <- create features obj (feature values)

cl enrich <- assess_cluster enrichment (features = feat obj,
partitions = clust obj)

The results of CSEA and ORA can be extracted to produce features-by-clusters matrices
that contain any score calculated by CSEA or ORA, like, for example, normalized enrichment scores

(NES) values and enrichment ratios (er):

13
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282 cl enrich table <-
283 extract cluster enrichment table(cl enrich, g type = "nes", c_type
284 = "er")

285 The results of enrichment analysis can be visualized as box plots (quantitative features) and

286  dot plots (categorical features):

287 top feat lab CSEA <- boxplot cluster (features = feat obj,
288 partitions = clust_obj, clustering name = "global",
289 clust _enrich res = cl enrich, criterion = "fdr")

290 top feat lab ORA <- dotplot cluster (features = feat obj,
291 partitions = clust obj, clustering name = "global",
292 clust _enrich res = cl enrich, text val = "p")

293 These plots show, for each cluster, the distribution of values of the most significant features in the
294  cluster in comparison to all the other clusters, and the related scores (e.g., NES, p-value and FDR).
295 In addition, boxplot cluster and dotplot cluster provide the labels of the most
296 significant features associated with any cluster. These labels can be extracted from the enrichment
297  analysis results also by means of extract cluster enrichment tags, according to
298 various criteria (e.g., NES, enrichment ratio, p-value, FDR) that are specific to CSEA or ORA.

299 To illustrate these functions, we assessed the enrichment of the expression clusters of
300 sample PJ0O16 in terms of both CancerSEA functional states (quantitative features) and three
301 categorical features, namely: cell clusters obtained analyzing ribosomal gene expression, a gene
302 set included in scMuffin because changes in ribosomal gene expression were associated with
303  specific cancer phenotype and can reveal specific malignant subpopulations (21-23); cell clusters
304 obtained using a glioblastoma signature of 500 genes (24) whose expression can be used to
305 classify glioblastoma subtypes; cell cycle phase. Considering as an example the cluster O of sample
306 PJO16, the analysis showed that it was significantly enriched in cells that, in comparison with cells

307  of other clusters, highly express the gene markers of CancerSEA “Invasion” state (Figure 4a) and

14


https://doi.org/10.1101/2022.06.01.494129
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.06.01.494129; this version posted June 1, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

308 arein S and G2M phases (Figure 4b). The labels of the most significant features of any cluster can

309  be used, by means of plot umap, to plot an annotated UMAP (Figure 4c) .

310 3.4 Chromatin state, proliferation rate and cell state trajectories

311 Chromatin state and proliferation rate carry two relevant pieces of information for the
312 characterization of a cancer cell.

313 In particular, an open chromatin state is peculiar of stem cells {(and cancer stem cells
314  (CSCs)), might indicate de-differentiation processes of tumor progression and might influence cell
315 plasticity, favoring cancer cell adaptability and drug resistance (25,26). In a recent study on
316 glioblastoma, chromatin accessibility was associated to a specific subpopulation of putative tumor-
317 initiating CSCs with invasive phenotype and low survival prediction (27). The global state of the
318 chromatin at SC level can be inferred from SC transcriptomic data and provides a simple and useful
319 score that can be used to distinguish specific cell types, such as CSCs. The chromatin state can be
320 quantified by means of the function exp rate on the genes-by-cells count matrix:

321 res <- exp rate(gbc, min counts = 5)

322  where 5 is the required threshold above which a gene is considered expressed.

323 The proliferation rate is a relevant indicator for distinguishing cell types in solid tumors and
324  helps to identify cells with potential clinical relevance and interest as candidate therapeutic
325 targets (28,29). In scMuffin, we quantify cell proliferation rate on the basis of the expression of

326 G1/Sand G2/M genes:

327 res <- proliferation analysis (gbc)

328 As a proof-of-concept, we show the joint analyses of chromatin state and proliferation rate
329 in sample PJO16 and visualize the results in the state space of cell differentiation trajectories. In
330 scMuffin, cell state trajectories are inferred using the “diffusion maps” approach available in the

331 destiny R package (30), by means of the wrapper function:
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332 res <- diff map (gbc)

333 Interestingly, we observed that cells showing high values of chromatin state score - cells that are
334  expressing a relatively high number of genes (i.e., an open chromatin state) - are located at the
335 root of the trajectory state space (Figure 5a), while the cells that show the highest proliferation
336 rates are located at a corner of the state space (Figure 5b). This pattern suggests that the cells
337  with high values of chromatin state could be quiescent cells, which express a large number of
338 genes but are not actively dividing. Therefore, these cells are interesting candidates for further
339 analysis aimed at studying CSCs in HGG. More generally, this proof-of-concept demonstrates the
340  usefulness of the chromatin state score defined here, especially if used in combination with the

341  proliferation rate for the identification of particular cell types or cell states.
342 3.5 Comparison of samples

343 A SC dataset carries an extensive amount of information. The integration of multiple SC
344  datasets is a challenging task and multiple approaches have been proposed to address it (31).
345 Typically, the integrated datasets are computationally demanding due to their huge size. An
346  alternative possibility lies in cross-checking the expression of cluster markers between two
347 samples: the expression of the cluster markers of a sample is assessed in the other sample — and
348  vice versa — obtaining the similarities among all pairs of clusters. For example, Nguyen et al. (9)
349  used this approach to study the occurrence of the characteristic cell types of normal mammary
350 gland across samples collected from different subjects.

351 scMuffin provides a function to quantify the similarity between all-pairs of clusters of two

352  samples on the basis of cluster-specific markers:

353 sim res <- quantify samples similarity(gbc 1, gbc 2, clusters 1,

354 clusters 2, cluster markers 1, cluster markers 2)
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355 Concerning our case study, the comparison of samples PJ016 and PJ018 showed a series of
356 similarities between their clusters. For instance, the clusters 0 and 9 of sample PJ1016 are
357 composed of cells highly similar to those grouped into clusters 2 and 5 of sample PJO18 (Figure
358  6a). This analysis revealed a pattern of cluster-cluster similarities that is fundamentally coherent
359  with the results obtained by performing the alternative approach of integrating the two datasets
360 and then clustering the cells (Figure 6b-c). For example, both approaches showed that clusters 0
361 and 9 of PJ1016 are similar to clusters 2 and 5 of PJO18, and cluster 4 of PJO16 is close to cluster 7
362 of PJ018. There were also some differences, which, yet again, remark the challenge of this task: for
363 example, cluster 8 of PJO16 is similar to cluster 9 of PJO18 using the marker-based similarity
364  (Figure 6a), while the UMAP obtained by the integrated dataset places cluster 8 of PJO16 close to

365  clusters 6 and 3 of PJ018 (Figure 6b-c).

366 4. Conclusions

367 Here, we presented scMuffin, an R package that we developed to offer a series of useful functions
368 to perform and integrate multiple types of analyses on SC expression data. As a proof-of-concept,
369 we applied scMuffin on a publicly available SC expression dataset of human HGG. We described
370 two examples of integrative analyses which returned particularly interesting findings that would
371  deserve further investigations. The functional characterization of CNVs highlighted a possible link
372  between amplifications of chromosomes 1p and 19p and invasive tumor phenotype. The joint
373 analysis of chromatin state, proliferation rate and cell state trajectories suggested possible
374  candidates of CSCs in HGG. The analyses offered by scMuffin and the results achieved in this case
375  study show that scMuffin helps addressing the main challenges in the bioinformatics analysis of SC

376  datasets from solid tumors.
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377 5. Figure captions

378  Figure 1. Overview of scMuffin package. scMuffin offers the possibility to perform several
379 different analyses and data integration approaches to address the main challenges of SC gene
380 expression analysis in solid tumors.

381  Figure 2. Quantification of CancerSEA functional states in the HGG sample PJ016. a) UMAP
382  visualization where cells are coloured by expression clusters. b) Cluster-level expression scores of
383 all the CancerSEA functional states. ¢) UMAP visualization where cells are colored by
384  “CSEA_Invasion” gene set score.

385  Figure 3. CNV analysis. a-d) CNV heatmaps (a, c) where cells (columns) are grouped into CNV
386 clusters, and UMAP visualizations (b, d) where cells are colored by CNV clusters, for sample PJ030
387 (a, b) and sample PJO16 (c, d). e) Overlap between cell clusters of sample PJO16 obtained by
388 analyzing gene expression (rows, “global_” prefix) and CNV clusters (columns, “cnv_" prefix); YBX1
389 and HNRNPM are two CancerSEA invasion markers located within the amplified 1p and 19p
390 regions found in CNV clusters 1 and 3. f) Expression scores for CancerSEA functional states in CNV
391 clusters of sample PJO16.

392  Figure 4. Cluster enrichment in HGG sample PJ016. a) The top five most significant (fdr < 0.05)
393  CancerSEA functional states in cluster 0: distribution of expression scores in cluster 0 (red) in
394  comparison with all the other clusters (grey); normalized enrichment score (NES) and false
395 discovery rate (FDR) values. b) Distribution of cells by their values (red labels) in cluster O (red
396 dots) in comparison with all the others (grey dots) for three categorical variables, namely, the
397 clusters obtained analyzing ribosomal gene expression (“ribosomes”), the clusters obtained
398 analyzing the expression of a Glioblastoma signature (“GB500”), and cell cycle phase (“Phase”,

399  obtained with the Seurat package function “CellCycleScoring”); the numbers over each cell group
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are ORA p-values. ¢) UMAP visualization with expression clusters annotated with the names of the
top two CancerSEA gene sets with the highest enrichment (CSEA) for each cluster.

Figure 5. Chromatin state, proliferation rate and cell state trajectories of HGG sample PJ016. (a-
b). Cell state trajectories colored by chromatin state (a) and proliferation rate (b).

Figure 6. Cluster marker-based comparison of HGG samples PJ016 and PJ018. a) Similarity among
all-pairs of clusters. b-c) UMAP visualizations obtained by integrating the two samples with the
“FindIntegrationAnchors” and “IntegrateData” Seurat functions, showing PJ016 cells (b) and PJ018

cells (c) colored by the clusters found by independent analysis of each sample.

6. Availability and requirements

Project name: scMuffin

Project home page: https://github.com/emosca-cnr/scMuffin
Operating system: Platform independent

Programming language: R (>= 4.0.0)

Other requirements: The R Project for Statistical Computing.
License: GPL-3

Any restrictions to use by non-academics: According to GPL-3

7. List of abbreviations

CNV: Copy Number Variation

CSEA: Cell Set Enrichment Analysis
GSEA: Gene Set Enrichment Analysis
HGG: high grade glioma

ORA: over representation analysis
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422  SC:single cell

423  CSC: cancer stem cells

424  UMAP: Uniform Manifold Approximation and Projection
425  GTEx: The Genotype-Tissue Expression project

426  NES: normalized enrichment score

427  FDR: False discovery rate
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Challenges in solid tumor analysis at single-cell level

* Limited availability of markers for definition of cell subtype identity
* Potentially strongly altered and highly heterogeneous gene expression profiles
* Presence of infiltrating cells and cells from the surrounding (healthy) tissue

* Potentially clinically relevant cell subtypes at very low number (e.g., drug resistant subclones)

* Often limited number of detected genes
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comparison

Comparison of multiple

partitions
* Overlap matrix @

Implementation

* Computationally intensive tasks
are parallelized

* Integration of various results in
dedicated objects to enable
automated subsequent analyses

* Parametrization of analyses to
address dataset-specific
characteristics

* Automated UMAP visualization
for multiple quantitative and
categorical features

* Clusters-by-cells heatmaps

* CNV heatmap

* Two-samples similarity heatmap

¢ Cluster enrichment boxplots and
dotplots
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