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Abstract 22 

INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular 23 

heterogeneity of solid tumors, which is one of the main obstacles for the development of effective 24 

cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and 25 

transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer 26 

progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, 27 

an R package that enables the characterization of cell identity in solid tumors on the basis of 28 

multiple and complementary criteria applied on SC gene expression data. 29 

RESULTS: scMuffin provides a series of functions to calculate several different qualitative and 30 

quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway 31 

activity, cell state trajectories, CNVs, chromatin state and proliferation state. Thus, scMuffin 32 

facilitates the combination of various evidences that can be used to distinguish normal and 33 

tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to 34 

phenotypes and identify subtle differences between cell subtypes or cell states. As a proof-of-35 

concept, we applied scMuffin to a public SC expression dataset of human high-grade gliomas, 36 

where we found that some chromosomal amplifications might underlie the invasive tumor 37 

phenotype and identified rare quiescent cells that may deserve further investigations as candidate 38 

cancer stem cells. 39 

CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show 40 

that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression 41 

data from solid tumors. 42 

Keywords: single-cell transcriptomics, cancer, tumor heterogeneity, cell identity. 43 

1. Background 44 
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Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular 45 

heterogeneity of solid tumors, which is one of the main obstacles for the development of effective 46 

cancer treatments (1). A relevant number of software tools has been developed in recent years in 47 

the field of SC data analysis (2), a fact that stresses the key opportunities and challenges in this 48 

field. A recent study has shown that the development of tools that address common tasks (e.g. 49 

clustering of similar cells) and ordering of cells (e.g. definition of cell trajectories) is decreasing, 50 

while a greater focus is being paid on data integration and classification (2). These observations 51 

reflect the growing availability, scale and complexity of SC datasets (2). 52 

SC datasets of solid tumors are typical examples of complex datasets that present a series 53 

of computational challenges and whose analysis demands domain-specific and integrative 54 

approaches. In fact, solid tumors typically contain a mixture of cells with aberrant genomic and 55 

transcriptomic profiles affecting specific sub-populations that might play a pivotal role in cancer 56 

progression, whose identification eludes bulk RNA-sequencing approaches. The use of cell type-57 

specific markers (when available) is limited, and the alterations of gene expression that mark 58 

cancer cells makes the use of markers for normal cells not completely adequate. Moreover, the 59 

molecular heterogeneity of cancer cells (due to both intra-tumor and inter-individual differences) 60 

poses intrinsic limits in the definition of such markers. In addition, solid tumor samples typically 61 

comprise cells from the surrounding tissue or infiltrating cells that need to be distinguished from 62 

tumor populations for an effective analysis. Another challenge is the identification of clinically 63 

relevant cell subtypes that may be rare in the tumor mass, such as cancer stem cells or drug 64 

resistant subclones: because of their relatively low number, these cells are typically clustered 65 

together with many others. Lastly, an intrinsic problem of many SC datasets is the sequencing 66 

depth limit at the SC level. These limitations bound the number of detectable genes to the few 67 
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thousands of the highest expressed genes, which implies, for example, that some established 68 

markers may not be used for data analysis. 69 

To address these challenges, we developed scMuffin, an R package that implements a 70 

series of complementary analyses aimed at shedding light on the complexity of solid tumor SC 71 

expression data, including: a fast and customizable gene set scoring system; gene sets from 72 

various sources, including pathways, cancer functional states and cell markers; cell cluster 73 

association with quantitative (e.g. gene set scores) as well as categorical (e.g. mutation states, 74 

proliferation states) features; copy number variation (CNV) analysis; chromatin state analysis; 75 

proliferation rate quantification; and marker-based two-sample comparisons (Figure 1). scMuffin 76 

facilitates the integrative analysis of these multiple features, thus allowing the identification of cell 77 

subtypes that elude more general clustering and classification approaches. 78 

2. Implementation 79 

scMuffin is implemented in R and provides a series of functions that allows the user to 80 

perform various tasks, which can be combined to obtain various data analysis pipelines. The 81 

package includes a vignette that describes the use of the tool, and every function is documented. 82 

The results from the various analyses (e.g., gene set scores at SC level and cell chromatin state) 83 

can be organized in dedicated (simple) objects in order to enable subsequent analyses (e.g., 84 

assessment of associations between features and cell clusters) that jointly consider multiple cell 85 

features and various ways of cell clustering. Computationally intensive tasks (in particular, gene 86 

set scoring and CNV inference) are parallelized. In this section, we describe the algorithms used to 87 

perform the several tasks offered by scMuffin. 88 

2.1 Quantification of gene set expression scores at cell and cluster levels 89 
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The quantification of gene set expression scores follows the approach described in (8,9), in 90 

which a gene set is scored on the basis of its average deviation from an empirical null. In scMuffin 91 

the implementation of gene set scoring is parallel and the calculation can be tuned acting on a 92 

series of parameters, such as: the number of bins, the number of minimum genes that must have 93 

non negative values in a cell (“nmark_min”), the minimum number of cells in which at least 94 

nmark_min have to be found (“ncell_min”), the number of permutations (k), the minimum 95 

number of permutations required (k’). This tuning helps to address the issue of missing values - 96 

typical of SC datasets - and therefore maximizes the number of gene sets for which it is actually 97 

possible to obtain an expression score supported by an empirical null distribution. Briefly, given a 98 

gene set S: 99 

1. the genes occurring in the genes-by-cells matrix are grouped into a number of bins 100 

according to their average expression across cells; 101 

2. a number k of random gene sets Si
*
 are created, of the same size of S, tossing genes from 102 

the same bins of S, in order to match the distribution of gene expression of each Si
*
 with 103 

that of S; 104 

3. the averages mc and mic
*
 are calculated, respectively, over the values of S and Si

*
 in every 105 

cell c; 106 

4. the expression score Yc is calculated as the average difference between mc and mic
*
; 107 

5. the average value ��� , calculated over the Yc of a given cluster, is used as the representative 108 

score of S in that cluster. 109 

2.2 CNV estimation by adjacent gene windows approach 110 

CNV inference in scMuffin is based on the “adjacent gene windows” approach, which has 111 

been validated using both single nucleotide polymorphism arrays (10) and whole-exome 112 

sequencing (8) technologies. The approach is implemented in parallel and offers various 113 
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parameter tuning and data filtering possibilities, which allows the investigator to optimize the 114 

analysis on the characteristics of its dataset. The CNV profile of each cell is calculated as a moving 115 

average of scaled gene expression levels ordered by genomic location, with the possibility of 116 

subtracting a normal reference profile to identify sample-specific CNVs. The main steps are: 117 

1. the reference cells are added to the genes-by-cells matrix (optional); 118 

2. the expression of each gene is scaled subtracting its average (optional); 119 

3. the gene expression matrix is ordered by chromosome and gene location; 120 

4. in each chromosome h, the estimated copy number ���  of cell c is calculated for all the 121 

ordered genes � � ��� � 1, 
� � �
� �: 122 

��� 
 � ���
� � 1

���
�

���	�
�

 

where w is an even number that defines the window size, that is, the number of genes 123 

located before and after gene i which contribute to the estimation of ��� , and ejc is the 124 

gene expression value; 125 

5. ���  values are scaled subtracting their average in a cell (optional); 126 

6. cells are clustered by their CNV profile; 127 

7. the average CNV profile of the normal reference cells is subtracted from all the CNV 128 

profiles (optional).  129 

2.3 Chromatin state and proliferation rate 130 

The chromatin state �� of a cell is inferred on the basis of the number of expressed genes over the 131 

number of total mapped reads: 132 

�� 
 #� �� �  ��
∑

 ���
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where � is a threshold over the gene count  �� , which defines the gene i as “expressed”.  High 133 

values of �� indicate cells that are expressing many genes in relation to the number of mapped 134 

reads. 135 

The proliferation rate �� of a cell is quantified as the maximum value between the two 136 

gene set scores ����
� and ������, calculated on the gene sets �
  and �� that, respectively, 137 

characterize the G1/S and G2/M cell cycle phases: 138 

�� 
 max ����
�, ������! 

where �
  and ��  are defined as in Tirosh et al. (8). 139 

2.4 Cluster enrichment analysis for quantitative and categorical features 140 

The assessment of cluster enrichment in high values of quantitative features is computed using a 141 

procedure that we name “cell set enrichment analysis” (CSEA), because it is analogous to the gene 142 

set enrichment analysis (GSEA) (7), but operates on different input types. In particular, instead of a 143 

ranked list of genes, the CSEA considers a list of cells ranked by a feature of interest, and instead 144 

of testing a gene set, CSEA tests a cell set (i.e., a cluster of cells). Therefore, CSEA tests whether 145 

the cells assigned to a cluster are located at the top (or bottom) of the ranked list of cells. The 146 

assessment of a cluster enrichment in a particular value of a categorical feature is computed using 147 

the over-representation analysis (ORA) approach (11), which is based on the hypergeometric test. 148 

 Both CSEA and ORA are implemented in parallel in scMuffin. This is particularly important 149 

for CSEA, which uses permutations to build an empirical null distribution. Nonetheless, it is also 150 

effective for ORAs that are run over a large number of gene sets.  151 

2.5 Cell clustering 152 

Cell clustering is based on the approaches implemented in the R package Seurat (3). The results 153 

from multiple clustering procedures are compared by calculating the overlap coefficients among 154 
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all-pairs of clusters. Given two partitions A and B, defined as sets of cell clusters " 
 �#�� and 155 

$ 
 %&�', the similarity between the cell clusters #�  and &�  is calculated as: 156 

(�� 
 )#� * &�)
min |#�|, )&�)! 

Meta-clusters are defined as the union of cell clusters that have high oij and are found by 157 

hierarchical clustering of the matrix . 
 %(��'. 158 

2.6 Cluster marker-based two-sample comparison 159 

The cluster marker-based two-sample comparison is based on assessing the expression of cluster 160 

markers of every cluster of a sample (A) in every cluster of the other sample (B) and vice versa. 161 

Given a set of markers ���, which represents the cell cluster #� of sample A, the gene set score 162 

���� ���! quantifies the expression of ��� in the cell cluster &� of sample B, while vice versa ���� /���0  163 

quantifies the expression of ���  in the cell cluster #�  of sample A. The average value ������ 
164 


���������
��������
�  quantifies the similarity between cell clusters #�  and &�  on the basis of the 165 

expression of their markers. The procedure is repeated for all-pairs of clusters of sample A and 166 

sample B. 167 

3. Results and Discussion 168 

In this section, we present the user interface (Table 1), and the results obtained using our 169 

scMuffin package on the SC dataset generated by Yuan et al. (12) from human high-grade glioma 170 

(HGG) samples, and available on the Gene Expression Omnibus (GEO) repository (GSE103224) (13). 171 

Table 1. Main tasks and corresponding functions in scMuffin. 

Task Description User interface 
Gene set 

expression 

scoring 

• Average gene set expression deviation from matched 

empirical reference; 

• provided gene sets from CellMarker (4), PanglaoDB (5), 

CancerSEA (6) and MSigDB (7) 

• prepare_gsls 
• calculate_gs_scores 
• calculate_gs_scores_in_clusters 
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Copy number 

variations 

• Estimation of CNVs by means of the “moving window” 

approach, that is, considering the expression of 

adjacent genes; 

• calculation of CNV deviation from a normal reference 

profile; 

• processing of normal tissue-specific expression data 

from GTEx 

• calculate_CNV 
• cluster_by_features 
• apply_CNV_reference 
• CNV_heatmap 
• process_GTEx_gene_reads 

Chromatin 

state 

• Number of expressed genes in relation to the total 

reads 

• exp_rate 

Proliferation • Maximum between G1/S and G2/M gene set scores • proliferation_analysis 
Cell state 

trajectory 

• Diffusion map computation • diff_map 

Cell cluster 

annotation 

• Assessment of cluster enrichment for quantitative and 

categorical features 

• assess_cluster_enrichment 

Two-sample 

comparison 

• Quantification of the expression similarity between all-

pairs of clusters between two samples 

• quantify_samples_similarity 

Assembling 

cell features 

and cell 

partitions 

• Objects that host cell-level feature values and cell 

partitions 

• create_features_obj 
• create_partitions_obj 

Visualization • Automated UMAP visualizations for multiple features, 

heatmaps, box plots and dot plots 

• boxplot_cluster 
• dotplot_cluster 
• quantify_samples_similarity 
• heatmap_CNV 
• plot_umap_colored_features 
• plot_heatmap_features_by_cluste
rs 

 172 

3.1 Gene set scoring 173 

scMuffin provides functions to set up one or more gene set collections and perform SC-174 

level estimation of gene set expression scores in relation to an empirical null model (see 175 

Implementation section). This can be applied to any gene set and can therefore be used to 176 

estimate several different cell phenotypes, like pathway activities or marker set expression. 177 

The function prepare_gsls allows the user to collect gene sets of cell types, pathways, 178 

cancer functional states, as well as other collections of gene sets (e.g. positional gene sets, 179 

hallmarks) from CellMarker (4), PanglaoDB (5), CancerSEA (6) and MSigDB (7) databases. Unlike 180 

many existing tools that are used to perform marker-based cell annotation (14), the availability of 181 

these gene sets within scMuffin package spares the user the effort of data collection and 182 

harmonization. The function, which also accepts any user-given gene sets, applies a series of 183 
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criteria (e.g., minimum and maximum number of genes in a gene set) to filter the chosen gene 184 

sets. 185 

The cell-level expression scores for these gene sets can be calculated using 186 

calculate_gs_scores, which requires the expression matrix, the gene sets, as well as a 187 

series of optional parameters to fine-tune the calculation in relation to the characteristics of the 188 

SC dataset under analysis. This tuning is important to address the heterogeneity of size and 189 

sparsity that characterizes different SC datasets, attributable to both the biological specimen 190 

under analysis and the SC platform used. For instance, the following code shows how to quantify 191 

cell-level, and then cluster-level, expression score of the cancer functional states from CancerSEA  192 

(“SIG_CancerSEA”) (6) in a normalized genes-by-cells (“gbc”) expression matrix: 193 

gsc <- prepare_gsls(gs_sources = "SIG_CancerSEA", genes = rownames(gbc)) 194 

gs_scores_obj <- calculate_gs_scores(genes_by_cells = gbc, gs_list = 195 

gsc$SIG_CancerSEA) 196 

res_sig_cl <- calculate_gs_scores_in_clusters(gs_scores_obj = gs_scores_obj, 197 

cell_clusters = cell_clusters) 198 

The cell-level value of any gene set (and more generally of any feature) can be visualized 199 

over the UMAP by means of plot_umap_colored_features, while cluster-level values of 200 

multiple gene sets (features) can be visualized as a heatmap using 201 

plot_heatmap_features_by_clusters, which relies on the ComplexHeatmap R package 202 

(15). For example, in our case study, the analysis of the CancerSEA functional states in the HGG 203 

sample PJ016 showed that the two groups of cell clusters (Figure 2a, left and right of the UMAP) 204 

reflect distinct functional states (Figure 2b): for example, the expression of the CancerSEA 205 

“Invasion” markers was particularly high in cell clusters 0 and 9 as compared to all the other 206 

clusters (Figure 2b-c).  207 

3.2 CNV estimation and association with CancerSEA functional states 208 
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CNV inference from SC expression data estimates the presence of relevant genomic 209 

aberrations (amplifications and deletions) based on the expression of adjacent genes. This 210 

knowledge offers crucial clues to address the difficult task of distinguishing normal from malignant 211 

cells, and provides quantitative information to reconstruct the tumor clonal substructure. 212 

Moreover, CNV pattern allows the investigator to hypothesize link between genomic alterations 213 

and cell phenotypes. 214 

 The function calculate_CNV basically retrieves the genomic locations and performs the 215 

CNV estimation; cluster_by_features executes the cell clustering based on CNV profiles; 216 

apply_CNV_reference redefines the CNV values on the basis of normal reference cells; the 217 

dedicated plotting function CNV_heatmap handles the visualization, where the cell cluster that 218 

contains the reference is marked in red. Here is an example that illustrates CNV inference using a 219 

100 genes window size and a normal reference profile from The Genotype-Tissue Expression 220 

(GTEx) portal (16):  221 

cnv_res <- calculate_CNV(gbc, wnd_size = 100, reference = 222 

GTEx_mean) 223 

cnv_clustering <- cluster_by_features(cnv_res, cnv=TRUE) 224 

cnv_res_ref <- apply_CNV_reference(cnv = cnv_res, cnv_clustering = 225 

cnv_clustering, reference="reference") 226 

cnv_res_ref <- CNV_heatmap(cnv = cnv_res, cnv_clustering = 227 

cnv_clustering, reference="reference") 228 

To illustrate the use of this workflow, we selected two different HGG samples by Yuan et al. 229 

(12), that is, PJ030, composed by tumor cells as well as not transformed cells  and PJ016, including 230 

only transformed cells. We observed that the reference profile (obtained using the average gene 231 

expression values of the normal brain samples available in GTEx portal) falls into cluster 3 of PJ030 232 

(Figure 3a-b). With respect to cluster 3 (corresponding to the not transformed cells included in this 233 
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sample), the clusters 0, 1 and 2 showed large recurrent aneuploidies, some of which are typical of 234 

HGG, like the amplification of chromosome 7 (Figure 3a). The CNV pattern here inferred is 235 

fundamentally coherent with that reported by Yuan et al. (12), even if the authors just quantified a 236 

summary value per chromosome, while scMuffin provides multiple CNV estimations per 237 

chromosome. For sample PJ016, the CNV inference analysis highlighted two groups of “CNV 238 

clusters” that map to two distinct components of the UMAP, while it did not identify a diploid 239 

cluster, accordingly to the presence of only transformed cells in this sample (Figure 3c-d). 240 

Interestingly, clusters 1 and 3 were marked by peculiar amplifications in chromosomes 1p and 241 

19p. 242 

scMuffin enables the comparison of clusters obtained using different procedures. In 243 

particular, the overlap among all-pairs of clusters can be quantified using: 244 

cl_list <- partitions_to_list(clust_obj) 245 

ov_mat <- overlap_matrix(cl_list) 246 

In our case study, the comparison between expression clusters and CNV clusters of sample PJ016 247 

confirmed the presence of two groups of cells: for example, CNV clusters 1 and 3 showed a 248 

relevant overlap with expression clusters 0, 6, 8 and 9 (Figure 3e). 249 

An example of integrative analysis enabled by scMuffin is the functional assessment of CNV 250 

patterns. We quantified the expression scores of the CancerSEA functional states throughout the 251 

CNV clusters of sample PJ016. As expected, the two aforementioned groups of CNV clusters (0-2-4 252 

and 1-3) were characterized by different functional states (Figure 3f), like the corresponding 253 

expression clusters. In particular, CNV cluster 3 – which is mainly located in the top-left region of 254 

the UMAP visualization (Figure 3d) and has a strong overlap with expression clusters 0 and 9 255 

(Figure 3e) – contains cells that highly express the CancerSEA “Invasion” markers (Figure 3f and 256 

Figure 2). This finding suggests that the peculiar amplifications of chromosomes 1p and 19p found 257 
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in this cluster might be linked to the invasive phenotype. This hypothesis is supported by the 258 

finding of two CancerSEA invasion markers, Y-Box Binding Protein 1 (YBX1) and Heterogeneous 259 

Nuclear Ribonucleoprotein M (HNRNPM), located within the amplified regions of chromosome 1p 260 

and 19p specifically found in CNV clusters 1 and 3 (Figure 3c). YBX1 is a DNA/RNA-binding protein 261 

and transcription factor which plays a central role in coordinating tumor invasion in glioblastoma 262 

(17). HNRNPM belongs to a family of spliceosome auxiliary factors and is involved in the regulation 263 

of splicing; the upregulation of these factors results in tumor-associated aberrant splicing, which 264 

promotes glioma progression and malignancy (18,19). In particular, HNRNPM was identified as an 265 

interactor of the DNA/RNA binding protein SON, which drives oncogenic RNA splicing in 266 

glioblastoma (20). While it is beyond the scope of this article to further study this hypothesis, 267 

these findings clearly highlight the usefulness of the integrative analysis of CNVs and CancerSEA 268 

functional states provided by our scMuffin tool. 269 

3.3 Clustering, features and annotation 270 

scMuffin contains functions for assessing the association between cell clusters and 271 

quantitative as well as categorical features, by means of CSEA and ORA, respectively. Here is the 272 

user interface, where, firstly, the objects containing cell clusters and cell features are set up; then, 273 

the enrichment is quantified for all partitions (various ways of clustering cells) and all features: 274 

clust_obj <- create_partitions_obj(cell_clusters) 275 

feat_obj <- create_features_obj(feature_values) 276 

cl_enrich <- assess_cluster_enrichment(features = feat_obj, 277 

partitions = clust_obj) 278 

The results of CSEA and ORA can be extracted to produce features-by-clusters matrices 279 

that contain any score calculated by CSEA or ORA, like, for example, normalized enrichment scores 280 

(NES) values and enrichment ratios (er): 281 
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cl_enrich_table <- 282 

extract_cluster_enrichment_table(cl_enrich, q_type = "nes", c_type 283 

= "er") 284 

The results of enrichment analysis can be visualized as box plots (quantitative features) and 285 

dot plots (categorical features):  286 

top_feat_lab_CSEA <- boxplot_cluster(features = feat_obj, 287 

partitions = clust_obj, clustering_name = "global", 288 

clust_enrich_res = cl_enrich, criterion = "fdr") 289 

top_feat_lab_ORA <- dotplot_cluster(features = feat_obj, 290 

partitions = clust_obj, clustering_name = "global", 291 

clust_enrich_res = cl_enrich, text_val = "p") 292 

These plots show, for each cluster, the distribution of values of the most significant features in the 293 

cluster in comparison to all the other clusters, and the related scores (e.g., NES, p-value and FDR). 294 

In addition, boxplot_cluster and dotplot_cluster provide the labels of the most 295 

significant features associated with any cluster. These labels can be extracted from the enrichment 296 

analysis results also by means of extract_cluster_enrichment_tags, according to 297 

various criteria (e.g., NES, enrichment ratio, p-value, FDR) that are specific to CSEA or ORA. 298 

To illustrate these functions, we assessed the enrichment of the expression clusters of 299 

sample PJ016 in terms of both CancerSEA functional states (quantitative features) and three 300 

categorical features, namely: cell clusters obtained analyzing ribosomal gene expression, a gene 301 

set included in scMuffin because changes in ribosomal gene expression were associated with 302 

specific cancer phenotype and can reveal specific malignant subpopulations (21–23); cell clusters 303 

obtained using a glioblastoma signature of 500 genes (24) whose expression can be used to 304 

classify glioblastoma subtypes; cell cycle phase. Considering as an example the cluster 0 of sample 305 

PJ016, the analysis showed that it was significantly enriched in cells that, in comparison with cells 306 

of other clusters, highly express the gene markers of CancerSEA “Invasion” state (Figure 4a) and 307 
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are in S and G2M phases (Figure 4b). The labels of the most significant features of any cluster can 308 

be used, by means of plot_umap, to plot an annotated UMAP (Figure 4c). 309 

3.4 Chromatin state, proliferation rate and cell state trajectories 310 

Chromatin state and proliferation rate carry two relevant pieces of information for the 311 

characterization of a cancer cell.  312 

In particular, an open chromatin state is peculiar of stem cells (and cancer stem cells 313 

(CSCs)), might indicate de-differentiation processes of tumor progression and might influence cell 314 

plasticity, favoring cancer cell adaptability and drug resistance (25,26). In a recent study on 315 

glioblastoma, chromatin accessibility was associated to a specific subpopulation of putative tumor-316 

initiating CSCs with invasive phenotype and low survival prediction (27). The global state of the 317 

chromatin at SC level can be inferred from SC transcriptomic data and provides a simple and useful 318 

score that can be used to distinguish specific cell types, such as CSCs. The chromatin state can be 319 

quantified by means of the function exp_rate on the genes-by-cells count matrix: 320 

res <- exp_rate(gbc, min_counts = 5) 321 

where 5 is the required threshold above which a gene is considered expressed. 322 

The proliferation rate is a relevant indicator for distinguishing cell types in solid tumors and 323 

helps to identify cells with potential clinical relevance and interest as candidate therapeutic 324 

targets (28,29). In scMuffin, we quantify cell proliferation rate on the basis of the expression of 325 

G1/S and G2/M genes: 326 

res <- proliferation_analysis(gbc) 327 

As a proof-of-concept, we show the joint analyses of chromatin state and proliferation rate 328 

in sample PJ016 and visualize the results in the state space of cell differentiation trajectories. In 329 

scMuffin, cell state trajectories are inferred using the “diffusion maps” approach available in the 330 

destiny R package (30), by means of the wrapper function: 331 
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res <- diff_map(gbc) 332 

Interestingly, we observed that cells showing high values of chromatin state score - cells that are 333 

expressing a relatively high number of genes (i.e., an open chromatin state) - are located at the 334 

root of the trajectory state space (Figure 5a), while the cells that show the highest proliferation 335 

rates are located at a corner of the state space (Figure 5b). This pattern suggests that the cells 336 

with high values of chromatin state could be quiescent cells, which express a large number of 337 

genes but are not actively dividing. Therefore, these cells are interesting candidates for further 338 

analysis aimed at studying CSCs in HGG. More generally, this proof-of-concept demonstrates the 339 

usefulness of the chromatin state score defined here, especially if used in combination with the 340 

proliferation rate for the identification of particular cell types or cell states. 341 

3.5 Comparison of samples 342 

A SC dataset carries an extensive amount of information. The integration of multiple SC 343 

datasets is a challenging task and multiple approaches have been proposed to address it (31). 344 

Typically, the integrated datasets are computationally demanding due to their huge size. An 345 

alternative possibility lies in cross-checking the expression of cluster markers between two 346 

samples: the expression of the cluster markers of a sample is assessed in the other sample – and 347 

vice versa – obtaining the similarities among all pairs of clusters. For example, Nguyen et al. (9) 348 

used this approach to study the occurrence of the characteristic cell types of normal mammary 349 

gland across samples collected from different subjects. 350 

scMuffin provides a function to quantify the similarity between all-pairs of clusters of two 351 

samples on the basis of cluster-specific markers: 352 

sim_res <- quantify_samples_similarity(gbc_1, gbc_2, clusters_1, 353 

clusters_2, cluster_markers_1, cluster_markers_2) 354 
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Concerning our case study, the comparison of samples PJ016 and PJ018 showed a series of 355 

similarities between their clusters. For instance, the clusters 0 and 9 of sample PJ1016 are 356 

composed of cells highly similar to those grouped into clusters 2 and 5 of sample PJ018 (Figure 357 

6a). This analysis revealed a pattern of cluster-cluster similarities that is fundamentally coherent 358 

with the results obtained by performing the alternative approach of integrating the two datasets 359 

and then clustering the cells (Figure 6b-c). For example, both approaches showed that clusters 0 360 

and 9 of PJ1016 are similar to clusters 2 and 5 of PJ018, and cluster 4 of PJ016 is close to cluster 7 361 

of PJ018. There were also some differences, which, yet again, remark the challenge of this task: for 362 

example, cluster 8 of PJ016 is similar to cluster 9 of PJ018 using the marker-based similarity 363 

(Figure 6a), while the UMAP obtained by the integrated dataset places cluster 8 of PJ016 close to 364 

clusters 6 and 3 of PJ018 (Figure 6b-c). 365 

4. Conclusions 366 

Here, we presented scMuffin, an R package that we developed to offer a series of useful functions 367 

to perform and integrate multiple types of analyses on SC expression data. As a proof-of-concept, 368 

we applied scMuffin on a publicly available SC expression dataset of human HGG. We described 369 

two examples of integrative analyses which returned particularly interesting findings that would 370 

deserve further investigations. The functional characterization of CNVs highlighted a possible link 371 

between amplifications of chromosomes 1p and 19p and invasive tumor phenotype. The joint 372 

analysis of chromatin state, proliferation rate and cell state trajectories suggested possible 373 

candidates of CSCs in HGG. The analyses offered by scMuffin and the results achieved in this case 374 

study show that scMuffin helps addressing the main challenges in the bioinformatics analysis of SC 375 

datasets from solid tumors. 376 
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5. Figure captions 377 

Figure 1. Overview of scMuffin package. scMuffin offers the possibility to perform several 378 

different analyses and data integration approaches to address the main challenges of SC gene 379 

expression analysis in solid tumors.  380 

Figure 2. Quantification of CancerSEA functional states in the HGG sample PJ016. a) UMAP 381 

visualization where cells are coloured by expression clusters. b) Cluster-level expression scores of 382 

all the CancerSEA functional states. c)  UMAP visualization where cells are colored by  383 

“CSEA_Invasion” gene set score. 384 

Figure 3. CNV analysis. a-d) CNV heatmaps (a, c) where cells (columns) are grouped into CNV 385 

clusters, and UMAP visualizations (b, d) where cells are colored by CNV clusters, for sample PJ030 386 

(a, b) and sample PJ016 (c, d). e) Overlap between cell clusters of sample PJ016 obtained by 387 

analyzing gene expression (rows, “global_” prefix) and CNV clusters (columns, “cnv_” prefix); YBX1 388 

and HNRNPM are two CancerSEA invasion markers located within the amplified 1p and 19p 389 

regions found in CNV clusters 1 and 3. f) Expression scores for CancerSEA functional states in CNV 390 

clusters of sample PJ016. 391 

Figure 4. Cluster enrichment in HGG sample PJ016. a) The top five most significant (fdr < 0.05) 392 

CancerSEA functional states in cluster 0: distribution of expression scores in cluster 0 (red) in 393 

comparison with all the other clusters (grey); normalized enrichment score (NES) and false 394 

discovery rate (FDR) values. b) Distribution of cells by their values (red labels) in cluster 0 (red 395 

dots) in comparison with all the others (grey dots) for three categorical variables, namely, the 396 

clusters obtained analyzing ribosomal gene expression (“ribosomes”), the clusters obtained 397 

analyzing the expression of a Glioblastoma signature (“GB500”), and cell cycle phase (“Phase”, 398 

obtained with the Seurat package function “CellCycleScoring”); the numbers over each cell group 399 
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are ORA p-values. c) UMAP visualization with expression clusters annotated with the names of the 400 

top two CancerSEA gene sets with the highest enrichment (CSEA) for each cluster. 401 

Figure 5. Chromatin state, proliferation rate and cell state trajectories of HGG sample PJ016. (a-402 

b). Cell state trajectories colored by chromatin state (a) and proliferation rate (b). 403 

Figure 6. Cluster marker-based comparison of HGG samples PJ016 and PJ018. a) Similarity among 404 

all-pairs of clusters. b-c) UMAP visualizations obtained by integrating the two samples with the 405 

“FindIntegrationAnchors” and “IntegrateData” Seurat functions, showing PJ016 cells (b) and PJ018 406 

cells (c) colored by the clusters found by independent analysis of each sample. 407 

6. Availability and requirements 408 

Project name: scMuffin 409 

Project home page: https://github.com/emosca-cnr/scMuffin 410 

Operating system: Platform independent 411 

Programming language: R (>= 4.0.0) 412 

Other requirements: The R Project for Statistical Computing.  413 

License: GPL-3 414 

Any restrictions to use by non-academics: According to GPL-3 415 

7. List of abbreviations 416 

CNV: Copy Number Variation 417 

CSEA: Cell Set Enrichment Analysis 418 

GSEA: Gene Set Enrichment Analysis 419 

HGG: high grade glioma 420 

ORA: over representation analysis 421 
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SC: single cell 422 

CSC: cancer stem cells 423 

UMAP: Uniform Manifold Approximation and Projection 424 

GTEx: The Genotype-Tissue Expression project 425 

NES: normalized enrichment score 426 

FDR: False discovery rate 427 
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