

1 Research Article

2

3 **Intranasal vaccination induced cross-protective secretory IgA antibodies against**

4 **SARS-CoV-2 variants with reducing the potential risk of lung eosinophilic**

5 **immunopathology**

6

7 Takuya Hemmi^{1, 7}, Akira Ainai^{1, 7*}, Takao Hashiguchi^{2, 5}, Minoru Tobiume¹, Takayuki

8 Kanno¹, Naoko Iwata-Yoshikawa¹, Shun Iida¹, Yuko Sato¹, Sho Miyamoto¹, Akira Ueno¹,

9 ⁶, Kaori Sano¹, Shinji Saito¹, Nozomi Shiwa-Sudo¹, Noriyo Nagata¹, Koji Tamura⁷,

10 Ryosuke Suzuki^{3, 7}, Hideki Hasegawa⁴, Tadaki Suzuki¹

11

12 ¹ Department of Pathology, National Institute of Infectious Diseases.

13 ² Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto

14 University.

15 ³ Department of Virology II, National Institute of Infectious Diseases.

16 ⁴ Research Center for Influenza and Respiratory Virus, National Institute of Infectious

17 Diseases.

18 ⁵ Department of Virology, Faculty of Medicine, Kyushu University

19 ⁶ Department of Life Science and Medical Bioscience, Waseda University.

20 ⁷ Department of Biological Science and Technology, Tokyo University of Science.

21

22 * Correspondence to: Akira Ainai, PhD. Department of Pathology, National Institute of

23 Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640 Japan. Tel:

24 +81-3-4582-2701; Fax: +81-3-5285-1189; E-mail: ainai@niid.go.jp

25

26 **Abstract**

27 To control the coronavirus disease 2019 (COVID-19) pandemic, there is a need to
28 develop vaccines to prevent infection with severe acute respiratory syndrome coronavirus
29 2 (SARS-CoV-2) variants. One candidate is a nasal vaccine capable of inducing secretory
30 IgA antibodies in the mucosa of the upper respiratory tract, the initial site of infection.
31 However, regarding the development of COVID-19 vaccines, there is concern about the
32 potential risk of inducing lung eosinophilic immunopathology as a vaccine-associated
33 enhanced respiratory disease as a result of the T helper 2 (Th2)-dominant adaptive
34 immune response. In this study, we investigated the protective effect against virus
35 infection induced by intranasal vaccination of recombinant trimeric spike protein derived
36 from SARS-CoV-2 adjuvanted with CpG oligonucleotides, ODN2006, in mouse model.
37 The intranasal vaccine combined with ODN2006 successfully induced not only systemic
38 spike-specific IgG antibodies, but also secretory IgA antibodies in the nasal mucosa.
39 Secretory IgA antibodies showed high protective ability against SARS-CoV-2 variants
40 (Alpha, Beta and Gamma variants) compared to IgG antibodies in the serum. The nasal
41 vaccine of this formulation induced a high number of IFN- γ -secreting cells in the

42 draining cervical lymph nodes and a lower spike-specific IgG1/IgG2a ratio compared to
43 that of subcutaneous vaccination with alum as a typical Th2 adjuvant. These features are
44 consistent with the induction of the Th1 adaptive immune response. In addition, mice
45 intranasally vaccinated with ODN2006 showed less lung eosinophilic immunopathology
46 after viral challenge than mice subcutaneously vaccinated with alum adjuvant. Our
47 findings indicate that intranasal vaccine adjuvanted with ODN2006 could be a candidate
48 that can prevent the infection of antigenically different variant viruses, reducing the risk
49 of vaccine-associated enhanced respiratory disease.

50

51 **Keywords:** intranasal vaccination, secretory IgA antibody, COVID-19, SARS-CoV-2,
52 lung eosinophilic immunopathology

53

54 **1. Introduction**

55 The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory

56 syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide since December 2019 and

57 is presently a major public health concern [1, 2]. Vaccines could be the most promising

58 approach to protect us from the threat of this infectious disease. In fact, several new

59 vaccines have already been in use, showing high vaccine effectiveness [3-6]. Typical

60 examples include the mRNA vaccines [3, 4] and the viral vector vaccines [5, 6].

61 Particularly in the UK, it is noteworthy that mRNA vaccine, BNT162b2

62 (Pfizer-BioNTech), was approved for practical use on December 2, 2020, less than a year

63 after the epidemic began [7]. The advantage of the mRNA vaccine is that if the

64 formulation of the vaccine has already been determined, a new vaccine can be launched

65 for practical use in the shortest time, as long as the nucleic acid information of the target

66 antigen is available. However, the long-term adverse events associated with the new

67 modality of vaccines approved for emergency use are currently unknown; therefore, this

68 issue should be adequately evaluated in the future. On the other hand, although the

69 development of inactivated virus vaccines and subunit vaccines as conventional vaccine

70 formulations has been promoted, the development tends to be delayed because of time
71 taken to prepare the antigen. Unlike vaccines of new modality, these conventional
72 vaccines may have the advantage of being less burdensome to the vaccinees because
73 reactogenicity can be assumed to some extent.

74 Currently, most vaccines are administered intramuscularly or subcutaneously,
75 resulting in the induction of systemic antigen-specific IgG antibodies. In studies on nasal
76 influenza vaccines, we have already shown that a systemic antibody response is effective
77 for reducing mortality and morbidity associated with influenza but insufficient to prevent
78 infection, and that mucosal secretory IgA antibodies induced by intranasal vaccination
79 are highly protective against not only the vaccine-homologous virus but also
80 antigenically different viruses from the vaccine antigen [8-13]. The World Health
81 Organization (WHO) has recommended the development of a COVID-19 vaccine to
82 prevent infection with SARS-CoV-2 variants [14], therefore the study of vaccines
83 inducing mucosal immunity should be accelerated. In fact, 11 candidate intranasal
84 vaccines against SARS-CoV-2 have already been in clinical trials as of May 13, 2022 [15,
85 16].

86 However, there may be a risk of lung eosinophilic immunopathology caused by viral
87 infection among COVID-19 vaccinators, a phenomenon known as vaccine-associated
88 enhanced respiratory disease (VAERD) [17-23]. This phenomenon was first observed in
89 the 1960s in a clinical trial of formalin-inactivated respiratory syncytial virus (FI-RSV)
90 and measles vaccines. Two children died of severe pneumonia with eosinophilic
91 infiltration due to natural infection after vaccination in the clinical trial of the FI-RSV
92 vaccine [24]; thus, VAERD cannot be ignored in vaccine studies. Histological analysis of
93 postmortem lung sections revealed immune complex formation and complement
94 activation in the smaller airways. Similar eosinophilic immunopathology was observed in
95 a mouse experiment with SARS-CoV and Middle East respiratory syndrome
96 (MERS)-CoV vaccines. Some studies have suggested that lung eosinophilic
97 immunopathology is due to the induction of T helper 2 (Th2)-shifted immune responses
98 with high levels of antibody responses and insufficient neutralizing ability [21-23].
99 Although several studies on nasal COVID-19 vaccines in mouse models have already
100 been reported, these studies did not analyze vaccine-induced eosinophilic
101 immunopathology [25, 26]. Using a mouse model, we recently revealed that the

102 immunopathology of pneumonia with eosinophilic infiltration was induced by the
103 infection with SARS-CoV-2 among mice immunized with recombinant spike (S) protein
104 of the virus combined with alum adjuvant [23]. Thus, the U.S. Food and Drug
105 Administration (FDA) recommended that the balance of T-cell responses should be
106 properly assessed to avoid the risk of VAERD for vaccine candidates to be practically
107 used in the future[27].

108 In this study, we used a mouse model to evaluate both the protective effect and
109 neutralizing antibodies induced by intranasal administration of recombinant trimeric
110 spike protein derived from SARS-CoV-2 combined with synthetic oligodeoxynucleotides
111 containing the CpG motif, ODN2006 [28]. In addition, T-cell responses and the risk of
112 VAERD were examined after viral challenge in immunized mice. Our data showed that
113 intranasal administration of recombinant spike protein with ODN2006, rather than
114 subcutaneous administration in the presence of alum adjuvant, induced neutralizing
115 antibodies with well-balanced T-cell responses, resulting in the protection against
116 homologous or heterologous virus infection without lung eosinophilic immunopathology.
117

118 **2. Materials and Methods**

119 **2.1. Purification of recombinant SARS-CoV-2 Spike protein**

120 Recombinant trimeric ectodomain of SARS-CoV-2 S protein with two proline

121 mutations (rtS-ecto2P) as a vaccine antigen was produced using a *Drosophila* expression

122 system (Thermo Fisher Scientific, Grand Island, NY). The protein sequence was

123 modified to remove the furin cleavage site (RRAR to GSAG), and two stabilizing

124 mutations were introduced (K986P and V987P; wild-type numbering) [29, 30]. Protein

125 expression and purification were performed as previously described [31]. Recombinant

126 trimeric ectodomain of S protein with six proline mutations (rtS-ecto6P) for

127 enzyme-linked immunosorbent assay (ELISA) was produced using Expi293F cells

128 (Thermo Fisher Scientific). In addition to the mutation at the furin cleavage site, six

129 stabilizing mutations were introduced (F817P, A892P, A899P, A942P, K986P, and

130 V987P; wild-type numbering) [32].

131

132 **2.2. Immunization and sampling**

133 Female BALB/c mice (20-24 weeks old) (Japan SLC Inc., Hamamatsu, Shizuoka,

134 Japan) were maintained in specific pathogen-free facilities. The mice were either
135 intranasally or subcutaneously vaccinated with 3 μ g rtS-ecto2P three times at 2-week
136 intervals. Intranasal vaccination was performed by instillation of 6 μ L of vaccine solution
137 with or without 10 μ g of ODN2006 into each nostril (total, 12 μ L/mouse). Subcutaneous
138 vaccination was performed by inoculation with 100 μ L of vaccine solution containing 10
139 μ g of ODN2006 (InvivoGen, San Diego, CA) or 1 mg of Imject Alum adjuvant (Thermo
140 Fisher Scientific) in the dorsal part of the cervical region. ODN2006 and Imject Alum
141 were used as adjuvants to induce Th1- and Th2-dominant immune responses, respectively.
142 For the time-course evaluation of the antibody response, partial blood sampling from the
143 orbit was performed at 2-week intervals from the final vaccination. Serum, nasal and lung
144 wash, and cervical lymph nodes were collected from mice for the evaluation of antibody
145 and cellular immune responses, respectively, one week after the final vaccination.
146 All immunizations and partial blood sampling were performed under anesthesia. All
147 animal experiments were performed in accordance with the Guide for Animal
148 Experiments Performed at the National Institute of Infectious Diseases (NIID) and were
149 approved by the Animal Care and Use Committee of NIID.

150

151 **2.3 Virus challenge and sampling**

152 To evaluate effectiveness of protection against virus infection, vaccinated mice were

153 inoculated intranasally with the mouse adapted SARS-CoV-2 strain, QHmusX (GenBank

154 Accession No.: LC605054) [23], into the lungs (40 LD₅₀ per mouse) and nasal cavity (6

155 LD₅₀ per mouse) 2 weeks after the final immunization. To protect against SARS-CoV-2

156 variants—Alpha variant QHN001 (lineage B.1.1.7, GISAID: EPI_ISL_804007), Beta

157 variant TY8-612 (lineage B.1.351, GISAID: EPI_ISL_1123289), and Gamma variant

158 TY7-501 (lineage P.1, GISAID: EPI_ISL_833366)—were intranasally challenged with

159 3.5×10⁵ TCID₅₀ into the lungs and nasal cavity. Intranasal challenge into the upper and

160 lower respiratory tracts was performed by instillation of 30 µL and 4 µL (2 µL in each

161 nostril), respectively. To determine the viral titer in the nasal mucosa and lungs, nasal and

162 lung washes were collected 3 days after virus challenge, and the lungs were collected for

163 the evaluation of eosinophilic immunopathology at 6 days post-infection. In addition,

164 body weight was monitored for 10 days after the virus challenge. The humane endpoint

165 was defined as the appearance of clinical diagnostic signs of respiratory stress, including

166 respiratory distress and > 25% weight loss. The SARS-CoV-2 challenge was performed
167 in a biosafety level 3 facility according to the Guidelines for Animal Experiments
168 performed at NIID.

169

170 **2.4. Estimation of SARS-CoV-2 S-specific antibody responses**

171 SARS-CoV-2 S-specific antibodies were estimated using ELISA. Half-area
172 flat-bottomed microtiter plates (Corning Inc., NY) were coated with 50 ng/well
173 rtS-ecto6P, followed by blocking with PBS containing 5% skim milk and 0.05% Tween
174 20. Serial dilutions of serum samples from vaccinated mice were added to each well of
175 microtiter plates. IgG antibodies were detected using biotin-conjugated goat anti-mouse
176 IgG antibody (Jackson Immunoresearch, West Grove, PA), followed by alkaline
177 phosphatase-conjugated streptavidin (Invitrogen, CA, USA). The enzymatic reaction was
178 initiated by the addition of the substrate *p*-nitrophenylphosphate (Sigma-Aldrich,
179 Burlington, MA). The absorbance at 405 nm was measured using an iMark microplate
180 reader (Bio-Rad, Hercules, CA). All procedures were performed at room temperature.
181 The S-specific IgG antibody titer was defined as the reciprocal of the highest dilution of

182 the test sample, giving a higher absorbance than the cut-off value obtained as 2-fold mean

183 absorbance of serial dilutions of control naive mouse serum set in each plate.

184 Quantification of S-specific IgG1 or IgG2a antibodies in the serum and IgA

185 antibodies in nasal or lung washes was performed as previously described [23]. Chimeric

186 human-mouse monoclonal IgG1, IgG2a, and IgA antibodies bearing variable regions of

187 the S-specific human monoclonal antibody S309 [33] were used as standard antibodies

188 for quantification. Horseradish peroxidase (HRP)-conjugated polyclonal anti-mouse

189 IgG1 antibody (Bethyl Laboratories, Montgomery, TX), anti-mouse IgG2a antibody

190 (Bethyl Laboratories), or polyclonal anti-mouse IgA antibody (Bethyl Laboratories) were

191 used as detection antibodies. The enzymatic reaction was obtained by adding ABTS

192 substrate (Roche, Basel, Switzerland), and the absorbance of 405 nm was measured.

193

194 **2.5. SARS-CoV-2 neutralization assay**

195 The neutralization assay was performed as previously described [23, 34]. Briefly,

196 50uL of QHmusX (100TCID50) and 50uL of heat-inactivated serum serially diluted by

197 two-fold were mixed and incubated in 96-well microtiter plates for 1h at 37°C, followed

198 by the addition of 100 μ L of VeroE6-TMPRSS2 cells (JCRB1819, Japanese Collection of
199 Research Bioresources Cell Bank) [35, 36]. After five days of cultivation, samples were
200 examined for viral cytopathic effects (CPEs). Neutralizing antibody titers were
201 determined as the reciprocal of the highest dilution rate at which no CPEs were observed.
202 The neutralization assay was performed in a biosafety level 3 laboratory at the NIID,
203 Japan.

204

205 **2.6. Enzyme-linked immunospot assay**

206 Cells secreting interferon (IFN)- γ , interleukin (IL)-4, or IL-5 were determined using
207 a mouse enzyme-linked immunospot (ELISpot) assay kit (Mabtech, Cincinnati, OH)
208 according to the manufacturer's instructions. Briefly, in plates pre-coated with
209 anti-mouse IFN- γ , IL-4, or IL-5 antibodies, 3×10^5 cells harvested from the spleen or
210 cervical lymph nodes were incubated for 16 h in the presence of a peptide pool derived
211 from the S protein of SARS-CoV-2 (a mixture of PepTivator SARS-CoV-2 Prot_S, S1,
212 and S+; Miltenyi Biotec, Bergisch Gladbach, Germany). After washing the cells with
213 PBS, biotin-conjugated anti-IFN- γ , IL-4, or IL-5 detection antibodies were added and

214 incubated at RT for 2 h, followed by incubation with ALP-conjugated streptavidin at RT
215 for 1 h. The enzymatic reaction was initiated by addition of BCIP/NBT. Each experiment
216 was performed in duplicate. Spots formed by cytokine-secreting cells were counted and
217 analyzed using ELISpot reader S6 Universal with ImmunoSpot 7.0 software (Cellular
218 Technology, Ltd., Shaker Heights, OH).

219

220 **2.7. Flow cytometric analysis**

221 T follicular helper (Tfh) cells, germinal center B (GCB) cells, and eosinophils were
222 evaluated by flow cytometry. Single cell suspensions were obtained from the cervical
223 lymph nodes, spleen and lungs of immunized mice. One million cells were stained with
224 FVD506 (Thermo Fisher Scientific) for dead cell removal and blocked with anti-mouse
225 CD16/CD32 monoclonal antibody (BD Pharmingen, San Jose, CA). Cell surface markers
226 of Tfh cells were defined as CD4⁺ CD8⁻ PD-1⁺ CXCR5⁺ among TER119⁻ Ly-6G/Ly-6C⁻
227 CD11b⁻ CD19⁻ populations, and those of GCB cells were defined as CD19⁺ GL7⁺ CD95⁺
228 cells among TER119⁻ Ly-6G/Ly-6C⁻ CD11b⁻ CD3⁻ populations [37]. Eosinophils are
229 defined as CD45⁺ CD11b⁺ CD11c⁻ Ly6G⁺ Siglec-F⁻ cells [38]. The antibodies used in

230 flow cytometric analysis are summarized in Supplementary Table 1. Samples were
231 analyzed with CantoII (BD Biosciences), and data were analyzed using FlowJo software
232 version 10.8.0 (Tree Star Inc., Ashland, OR).

233

234 **2.8. Quantification of SARS-CoV-2 subgenomic RNA**

235 Total RNA was extracted from 125 µL of nasal or lung wash using ISOGEN-LS
236 (Nippon gene, Toyko, Japan) and purified using a Maxwell RSC 48 Instrument (Promega,
237 Madison, WI) with a Maxwell RSC miRNA Plasma and Serum Kit (Promega).
238 Quantification of subgenomic RNA was performed by real-time reverse transcription
239 PCR (RT-PCR) using a QuantiTect Probe RT-PCR Kit (QIAGEN, Hilden, Germany) with
240 primers and probes as previously described [39]. Real-time RT-PCR was performed using
241 Mx3005P (Stratagene, La Jolla, CA, USA).

242

243 **2.9. Immunohistochemistry**

244 The lungs collected from mice were fixed in phosphate buffer containing 10% formalin.
245 The fixed lungs were embedded in paraffin and sectioned. Eosinophils were identified

246 using Astra Blue/Vital New Red staining (C.E.M. Stain Kit, Diagnostic Biosystems,
247 Pleasanton, CA). The lung tissue sections were observed for eosinophil infiltration in the
248 peribronchiolar areas using an optical microscope.

249

250 **2.10. Statistical analysis**

251 Data analysis and visualization were performed using GraphPad Prism 7.0 software
252 (GraphPad Software Inc., San Diego, CA). For statistical analysis, the Kruskal-Wallis test
253 with Dunn's multiple comparison test was used for comparisons between groups.
254 Comparison of body weight and survival was performed using Dunnett's multiple
255 comparisons test following the mixed-effects model or log-rank (Mantel-Cox) test,
256 respectively. Statistical significance was set at $P < 0.05$.

257

258 **3. Results**

259 **3.1. Intranasal vaccines induced S-specific antibodies in nasal mucosa and lung as
260 well as serum**

261 To evaluate the S-specific antibody responses, serum, nasal and lung wash

262 specimens were collected from mice that received three doses of either intranasal or
263 subcutaneous vaccines (Fig. 1A). Intranasal vaccination was performed with or without
264 ODN2006 as a mucosal adjuvant and subcutaneous vaccination was performed with
265 ODN2006 or alum adjuvant. Naïve mice were used as negative controls. Serum
266 S-specific IgG antibody titers and neutralization titers were determined using ELISA and
267 microneutralization assays, respectively. The concentration of S-specific IgA antibodies
268 in the nasal or lung wash samples was quantified using ELISA. Intranasal administration
269 without mucosal adjuvant induced low levels of serum S-specific IgG antibodies. In
270 contrast, intranasal vaccination adjuvanted with ODN2006 successfully induced
271 S-specific IgG antibodies in serum at a level similar to that induced by subcutaneous
272 vaccination in the presence of ODN2006 or alum adjuvant (Fig. 1B). The results for the
273 neutralizing antibody titer were similar to those of the S-specific IgG antibody titer (Fig.
274 1C). Although intranasal vaccination in the absence of mucosal adjuvant failed to induce
275 local antibody responses, nasal and lung S-specific IgA antibodies were detected among
276 intranasally immunized mice in the presence of ODN2006 (Fig. 1D and 1E). No secretory
277 IgA antibodies were detected in samples from subcutaneously vaccinated mice.

278 These results indicated that intranasal vaccination with ODN2006 as a mucosal
279 adjuvant induced not only secretory IgA antibodies in the nasal mucosa and lungs but also
280 systemic IgG antibodies at the same level as those obtained from subcutaneous
281 vaccination with ODN2006 or alum adjuvant.

282

283 **3.2. Intranasal vaccine adjuvanted with ODN2006 effectively protect mice from**
284 **SARS-CoV-2 infection**

285 To evaluate the protection against viral challenge, intranasal inoculation of the
286 mouse-adapted SARS-CoV-2 strain, QHmusX, was performed on mice vaccinated under
287 the same conditions as described above (Fig. 2A). Nasal and lung wash samples were
288 collected at three days post-infection (dpi), and the amount of subgenomic RNA (sgRNA)
289 derived from SARS-CoV-2 in these samples was evaluated by real-time RT-PCR to
290 assess the protection of mice against infection. The number of sgRNA copies in the nasal
291 wash was significantly reduced in mice with S-specific IgA in the nasal mucosa induced
292 by intranasal vaccination adjuvanted with ODN2006 (Fig. 1D and 2B). No significant
293 decrease in sgRNA in the nasal mucosa was observed in mice that received subcutaneous

294 vaccine or mice intranasally vaccinated with antigen only. A significant decrease in
295 sgRNA copies in the lung wash was observed in mice vaccinated intranasally or
296 subcutaneously in the presence of ODN2006 or alum, respectively, which showed high
297 neutralizing antibody titers in serum (Fig. 1C and 2C). Simultaneously, the mice were
298 monitored for body weight and survival for 10 days after the challenge (Fig. 2D and 2E).
299 Naïve mice and those intranasally vaccinated with antigen only died by 6 dpi. Among
300 mice that received subcutaneous vaccine with ODN2006 or alum, although few mice died,
301 others recovered from the apparent decrease in body weight post challenge and survived
302 until 10 dpi; in contrast, all mice intranasally vaccinated with ODN2006 survived without
303 remarkable body weight change during the observation period.

304 In addition, protection against viral challenge with SARS-CoV-2 variants (Alpha,
305 Beta and Gamma variants) was assessed (Fig. 3A). Significant reductions in nasal sgRNA
306 derived from each variant virus were achieved in mice intranasally vaccinated in the
307 presence of ODN2006 when compared to naïve mice (Fig. 3B-3D). In the lungs, sgRNA
308 of Alpha and Gamma variants significantly decreased by both intranasal and
309 subcutaneous vaccination with antigen together with ODN2006, while that of Beta

310 variant presented a significant decrease only by intranasal but not subcutaneous

311 vaccination (Fig. 3E-3G).

312 These findings indicate that IgA antibodies in the nasal mucosa and lung induced by

313 intranasal, but not subcutaneous, vaccination combined with ODN2006 were

314 cross-protective against SARS-CoV-2 variants.

315

316 **3.3. Formation of germinal center and maintenance of antibody responses by**

317 **intranasal vaccination**

318 The induction of memory B cells and long-lasting humoral immune responses

319 derived from long-lived plasma cells is important for successful vaccine-evoking

320 protective antibody responses [40]. The formation of a germinal center is required for the

321 affinity maturation of antibodies and determination of the B cell life span [37]. Hence,

322 vaccination-induced changes in the percentage of Tfh cells and GCB cells were evaluated

323 in lymphocytes from draining cervical lymph nodes using flow cytometry. The

324 proportions of both Tfh and GCB cells in cervical lymph nodes were definitely increased

325 by intranasal vaccination with antigen plus ODN2006 (Fig. 4A and 4B). In addition,

326 systemic S-specific IgG antibody responses were evaluated in serum samples collected
327 for 20 weeks at 2-week intervals after the initial vaccination (Fig. 4C). The highest
328 responses were achieved two weeks after the final vaccination, and mice that received
329 subcutaneous vaccine adjuvanted with alum or ODN2006 showed the highest S-specific
330 IgG antibodies, followed by mice intranasally vaccinated in the presence of ODN2006.
331 Although systemic S-specific IgG antibodies slightly declined over time during the
332 observation period, IgG antibodies were well held in mice subcutaneously vaccinated
333 with alum compared to mice that received intranasal or subcutaneous vaccination with
334 ODN2006 (Fig. 4D). At 20 weeks after the initial vaccination, S-specific nasal IgA
335 antibodies were detected in five out of six mice with intranasal vaccination combined
336 with ODN2006 but not in mice with other vaccinations (Fig. 4E).
337 Overall, these results suggest that intranasal vaccination with ODN2006 induced the
338 formation of GCs in the draining lymph nodes and the maintenance of local secretory IgA
339 antibody responses in the nasal mucosa, despite a slight decline in systemic IgG
340 responses.
341

342 **3.4. Induction of Th1 response by using ODN2006 as an adjuvant**

343 Lung eosinophilic immunopathology as a phenomenon of VAERD was observed in
344 a clinical trial of FI-RSV and measles vaccine, and in a mouse model of SARS- or
345 MERS-CoV vaccine. This phenomenon is suspected to be dependent on the Th2
346 dominant immune response of vaccine candidates [21-23]. Therefore, the Th response
347 induced by intranasal vaccination with recombinant S protein in the presence of
348 ODN2006 should be carefully examined. In mice, Th1 cells produce IFN- γ resulting in
349 IgG2a induction, in contrast, Th2 cells produce IL-4 and IL-5 inducing IgG1 responses
350 [41].

351 Cells isolated from the spleen and cervical lymph nodes one week after the final
352 immunization were evaluated for cytokine production under stimulation of the peptide
353 pool of S protein by ELISpot assay (Fig. 5A). Significant induction of IFN- γ -secreting
354 cells was observed in the splenocytes of mice subcutaneously vaccinated with ODN2006
355 (Fig. 5B). In contrast, a significant induction of IL-4-secreting cells was observed in
356 splenocytes obtained from mice subcutaneously vaccinated with alum adjuvant, and a
357 similar tendency was observed in IL-5-secreting cells (Fig. 5C and 5D). In the case of

358 splenocytes, each cytokine-secreting cell significantly increased in mice that received
359 subcutaneous vaccination with ODN2006 or alum but not in those intranasally vaccinated.
360 Therefore, cytokine-secreting cells were evaluated using cells isolated from the draining
361 cervical lymph nodes of intranasally vaccinated or naive mice. Intranasal vaccination in
362 the presence of ODN2006 significantly increased the number of IFN- γ -secreting cells,
363 while IL-4 and IL-5 secreting cells decreased compared to intranasal vaccines with only
364 antigen (Fig. 5E). In contrast, intranasal vaccination with antigen in the absence of
365 mucosal adjuvant significantly induced IL-4 and IL-5 secreting cells, but not
366 IFN- γ -secreting cells, in draining lymph nodes (Fig 5F and 5G).

367 The dominant T cell response was estimated using an S-specific IgG antibody
368 subclass (Fig. 5H and 5I). Large amounts of S-specific IgG1 antibodies were obtained in
369 mice subcutaneously vaccinated with alum adjuvant compared to mice immunized in the
370 presence of ODN2006; however, S-specific IgG2a antibodies in mice intranasally or
371 subcutaneously vaccinated in the presence of ODN2006 were higher than those obtained
372 in mice vaccinated with alum. When the S-specific IgG1/IgG2a ratio was calculated, the
373 IgG1/IgG2a ratio after vaccination with ODN2006 was significantly lower than that after

374 vaccination with alum (Fig. 5J).

375 These results, obtained from the estimation of cytokine-secreting cells and

376 IgG1/IgG2a ratio, suggested that ODN2006, used as an adjuvant, induced Th1 dominant

377 immune responses regardless of the administration route.

378

379 **3.5. Lung eosinophilic immunopathology is reduced by vaccines that induce a**

380 **remarkable Th1 response**

381 The correlation between vaccine-induced Th2 dominant immune responses and lung

382 eosinophilic immunopathology was evaluated in a lethal challenge model in mice (Fig.

383 6A). S-specific IgG1/IgG2a ratios were calculated by ELISA in sera obtained one week

384 prior to challenge, and eosinophilic infiltration into the lungs was examined at 6 dpi by

385 histopathological and flow cytometric analyses. As shown in Fig. 6B, histological

386 analysis revealed that mice immunized in the presence of ODN2006, regardless of the

387 route of vaccination, showed small lesions with infiltration of inflammatory cells,

388 including neutrophils and mononuclear cells around the blood vessels and bronchi, but

389 little eosinophil infiltration. In contrast, eosinophilic infiltration around the bronchi and

390 blood vessels was observed in mice intranasally vaccinated with only antigen or
391 subcutaneously vaccinated with alum. Similar results were obtained in the flow
392 cytometric analysis. Although there were no significant differences in the percentages of
393 eosinophils induced among the different vaccines, these values correlated well with the
394 S-specific IgG1/IgG2a ratios ($r = 0.779$, $p = 0.0015$) (Fig. 6C and 6D).

395 Our results showed that Th2 dominant immune response, suspected by large values
396 of IgG1/IgG2a, caused lung eosinophilic immunopathology. In contrast, in immunization
397 combined with ODN2006, Th1 shifted immune responses correlating with low values of
398 IgG1/IgG2a ratio alleviated the risk of eosinophilic infiltration.

399

400 **4. Discussion**

401 In the current study, we revealed that intranasal vaccination with S protein together
402 with ODN2006, a toll-like receptor 9 agonist [28], could induce cross-protective
403 secretory IgA antibodies against SARS-CoV-2 variants in the nasal mucosa, which is the
404 initial site of infection. Furthermore, we demonstrated that this vaccine could reduce the
405 potential risk of lung eosinophilic immunopathology in the case of post-vaccination

406 infection.

407 In our previous studies on intranasal influenza vaccine, it has been revealed that

408 intranasal vaccination induces not only IgG antibodies in the serum but also

409 cross-protective secretory IgA antibodies on the surface of mucosal epithelial cells in the

410 upper respiratory tract [8-13]. Here, we evaluated serum and mucosal antibody responses

411 and protective effects induced in mice by intranasal vaccination with recombinant

412 SARS-CoV-2 S protein. Only mice immunized intranasally with antigen combined with

413 ODN2006 induced mucosal IgA as well as systemic IgG antibody responses

414 accompanied by a significant reduction in viral load in both the upper respiratory tract

415 and lungs. All individuals receiving this vaccine survived a lethal challenge with the

416 mouse adapted SARS-CoV-2 strain without significant weight loss. In addition, the

417 cross-protective ability by nasal vaccine was evaluated against SARS-CoV-2 Alpha, Beta

418 or Gamma variant. Results of neutralization assays using human sera collected from

419 mRNA vaccinees or individuals who suffered from breakthrough infections suggest that

420 the antigenicity of the Beta variant differs from those of the Alpha and Gamma variants.

421 [42-44]. When SARS-CoV-2 variants were challenged into the lungs, infections of Alpha

422 or Gamma variants were suppressed in mice intranasally or subcutaneously vaccinated,

423 whereas infection with the Beta variant could not be prevented by either vaccination. On

424 the other hand, all variants challenged into the nasal cavity were significantly prevented

425 in mice possessing mucosal secretory IgA antibody induced by intranasal vaccination, but

426 not in those subcutaneously vaccinated. These results indicate that, compared to systemic

427 IgG antibodies which are primarily responsible for protection against infection in the

428 lungs [11], secretory IgA antibodies that can be induced by intranasal vaccination possess

429 higher cross-protective activity against SARS-CoV-2 variantviruses with different

430 antigenicities. Thus, a nasal vaccine that could induce highly cross-protective secretory

431 IgA antibodies in the nasal mucosa, which is the gateway to respiratory infection, would

432 be a more effective, reasonable vaccine candidate. It has been shown that the Omicron

433 variant, which is currently prevalent around the world, could replicate more effectively in

434 the bronchi than in the lungs, compared with other variants and the ancestor [45-48].

435 Therefore, there is high chance that a nasal vaccine which could induce cross-protective

436 IgA antibodies in the upper respiratory tract would be effective against the Omicron

437 variant as well.

438 When considering the COVID-19 vaccine, there is a concern about the potential risk
439 of lung eosinophilic immunopathology in post-vaccination infections as VAERD. The
440 FDA recommends addressing the potential risk of VAERD in animal models [27]. Since it
441 has been considered that a Th2-dominant response increases the risk of VAERD, we
442 investigated the T-cell response induced by intranasal vaccination combined with
443 ODN2006 in detail. While IL-4- or IL-5-secreting cells were highly observed in spleen
444 collected from mice subcutaneously vaccinated with alum as a typical Th2 adjuvant,
445 individuals who received subcutaneous vaccination with ODN2006 showed high
446 amounts of IFN- γ -secreting cells. Although nasal vaccination had no significant impact
447 on spleen cells compared to subcutaneous vaccination, IFN- γ -secreting cells were
448 significantly detected in draining cervical lymph nodes of intranasally vaccinated
449 individuals with ODN2006. It was suggested that ELISpot assay using spleen cells might
450 be unsuitable for the evaluation of T cell responses induced by intranasal vaccines. In
451 contrast, the IgG1/IgG2a ratios determined from the quantification of S-specific IgG1
452 and IgG2 subclasses in serum were likely able to assess T cell responses reflecting
453 neutralizing antibody titers, because the tendency to show similar levels of the

454 IgG1/IgG2a ratio among mice subcutaneously or intranasally vaccinated with ODN2006
455 was consistent with that of neutralizing antibody titers. Interestingly, eosinophil
456 infiltration into the lung correlated well with the serum IgG1/IgG2a ratio in our mouse
457 model. At this time, although the threshold for eosinophil infiltration that causes
458 eosinophilic pneumonia is unknown, analyzing immunization-induced IgG subclasses
459 could be an indicator for estimating whether there is a potential risk of VAERD. Although
460 several substances have been reported as potential mucosal adjuvants (e.g., cholera toxin
461 B subunit and synthetic double-stranded RNA), the potential risk of lung eosinophilic
462 immunopathology should be adequately investigated when designing a COVID-19
463 vaccine [8, 13].

464 In addition, the induction of B-cell memory and long-lived plasma cells by
465 vaccination is noteworthy, since germinal center formation is essential not only for the
466 production of high-affinity antibodies, but also for the determination of the B cell life
467 span.. The induction of Tfh and GCB cells by vaccination is essential to address this issue
468 [47, 49, 50]. In the current study, intranasal vaccination in the presence of ODN2006
469 successfully induced Tfh and GCB cells, long-lasting IgG antibodies in the serum, and

470 IgA antibodies in the nasal mucosa up to 16 weeks after the final vaccination.

471 Considering the emergence of new SARS-CoV-2 variants, nasal vaccines inducing a

472 secretory IgA antibody with high cross-protective ability on the mucosal epithelium of

473 the upper respiratory tract, which is the site of infection, could be highly useful, avoiding

474 repeated vaccinations using newly manufactured antigens. In conclusion, our study

475 showed that an intranasal COVID-19 vaccine of recombinant spike protein combined

476 with an adjuvant inducing a Th1-shifted response would be a safe and effective vaccine

477 not only for preparing cross-protective secretory IgA antibodies, but also to reduce the

478 potential risk of VAERD, that is, lung eosinophilic immunopathology.

479

480 **Acknowledgements**

481 We thank A. Kojima and A. Sataka (Department of Pathology, NIID) and N. Kurisaki
482 (Department of Virology, Kyushu Univ) for excellent support, and S. Takatsuka
483 (Department of Fungal Infection, NIID) for technical suggestions and helpful
484 discussions. Additionally, we would like to thank Editage (www.editage.com) for English
485 language editing.

486

487 **Author Contributions**

488 Conceptualization: A.A, T.He., and T. S
489 Methodology: T.He., A.A., T.Ha., N.I.-Y., S.I., Y.S. A.U., K.S., N.S.-S., N.N. and T.S.
490 Investigation: T.He, T.Ha, M.T., T.K., N.I.-Y., Y.S., S.M., A.U., K.S., S.S. and A.A.
491 Visualization: T.He. and A.A.
492 Funding acquisition: H.H. and T.S.
493 Project administration: H.H. and T.S.
494 Supervision: R.S., K.T., H.H., and T.S.
495 Writing—Original draft: T.H. and A.A.

496 Writing—Review and editing: T.He., A.A., T.Ha., M.T., T.K., N.I.-Y., S.I., Y.S., S.M.,

497 A.U., K.S., S.S., N.S.-S., N.N., K.T., R.S., H.H. and T.S.

498

499 **Funding**

500 This work was supported in part by the Naito foundation, and by a Grant-in-Aid for

501 Research on Emerging and Reemerging Infectious Diseases from the Japanese Ministry

502 of Health, Labor and Welfare and the Japan Agency for Medical Research and

503 Development (AMED) under grant numbers JP20nk0101603, JP20nk0101604,

504 JP20nk0101626, JP20fk0108411 and JP21fk0108083. The funding agencies had no role

505 in the study design, data collection and analysis, decision to publish, or manuscript

506 preparation.

507

508 **Declaration of competing interest**

509 The authors declare that they have no known competing financial interests or personal

510 relationships that could have influenced the work reported in this study.

511

512 **References**

- 513 [1] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical
514 characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a
515 descriptive study. Lancet. 2020;395:507-13.
- 516 [https://doi.org/10.1016/S0140-6736\(20\)30211-7](https://doi.org/10.1016/S0140-6736(20)30211-7)
- 517 [2] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A Novel Coronavirus from
518 Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.
- 519 <https://doi.org/10.1056/NEJMoa2001017>
- 520 [3] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety
521 and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med.
522 2020;383:2603-15. <https://doi.org/10.1056/NEJMoa2034577>
- 523 [4] Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and
524 Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403-16.
- 525 <https://doi.org/10.1056/NEJMoa2035389>
- 526 [5] Knoll MD, Wonodi C. Oxford-AstraZeneca COVID-19 vaccine efficacy. Lancet.
527 2021;397:72-4. [https://doi.org/10.1016/S0140-6736\(20\)32623-4](https://doi.org/10.1016/S0140-6736(20)32623-4)

528 [6] Sadoff J, Gray G, Vandebosch A, Cardenas V, Shukarev G, Grinsztejn B, et al.

529 Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J

530 Med. 2021;384:2187-201. <https://doi.org/10.1056/NEJMoa2101544>

531 [7] Medicines and Healthcare products Regulatory Agency. UK medicines regulator

532 gives approval for first UK COVID-19 vaccine.,

533 <https://www.gov.uk/government/news/uk-medicines-regulator-gives-approval-for-first-u>

534 [k-covid-19-vaccine](https://www.gov.uk/government/news/uk-medicines-regulator-gives-approval-for-first-u); 2020 [accessed 15 May 2022]

535 [8] Tamura S, Samegai Y, Kurata H, Nagamine T, Aizawa C, Kurata T. Protection

536 against influenza virus infection by vaccine inoculated intranasally with cholera toxin B

537 subunit. Vaccine. 1988;6:409-13. [https://doi.org/10.1016/0264-410x\(88\)90140-5](https://doi.org/10.1016/0264-410x(88)90140-5)

538 [9] Tamura S, Funato H, Hirabayashi Y, Kikuta K, Suzuki Y, Nagamine T, et al.

539 Functional role of respiratory tract haemagglutinin-specific IgA antibodies in protection

540 against influenza. Vaccine. 1990;8:479-85.

541 [https://doi.org/10.1016/0264-410x\(90\)90250-p](https://doi.org/10.1016/0264-410x(90)90250-p)

542 [10] Tamura S, Funato H, Hirabayashi Y, Suzuki Y, Nagamine T, Aizawa C, et al.

543 Cross-protection against influenza A virus infection by passively transferred respiratory

544 tract IgA antibodies to different hemagglutinin molecules. Eur J Immunol.

545 1991;21:1337-44. <https://doi.org/10.1002/eji.1830210602>

546 [11] Asahi Y, Yoshikawa T, Watanabe I, Iwasaki T, Hasegawa H, Sato Y, et al.

547 Protection against influenza virus infection in polymeric Ig receptor knockout mice

548 immunized intranasally with adjuvant-combined vaccines. J Immunol. 2002;168:2930-8.

549 <https://doi.org/10.4049/jimmunol.168.6.2930>

550 [12] Asahi-Ozaki Y, Yoshikawa T, Iwakura Y, Suzuki Y, Tamura S, Kurata T, et al.

551 Secretory IgA antibodies provide cross-protection against infection with different strains

552 of influenza B virus. J Med Virol. 2004;74:328-35. <https://doi.org/10.1002/jmv.20173>

553 [13] Ichinohe T, Watanabe I, Ito S, Fujii H, Moriyama M, Tamura S, et al. Synthetic

554 double-stranded RNA poly(I:C) combined with mucosal vaccine protects against

555 influenza virus infection. J Virol. 2005;79:2910-9.

556 <https://doi.org/10.1128/JVI.79.5.2910-2919.2005>

557 [14] World Health Organization. Interim Statement on COVID-19 vaccines in the

558 context of the circulation of the Omicron SARS-CoV-2 Variant from the WHO

559 Technical Advisory Group on COVID-19 Vaccine Composition (TAG-CO-VAC),

560 <https://www.who.int/news/item/11-01-2022-interim-statement-on-covid-19-vaccines-in->

561 [the-context-of-the-circulation-of-the-omicron-sars-cov-2-variant-from-the-who-technica](https://www.who.int/technica)

562 [l-advisory-group-on-covid-19-vaccine-composition](https://www.who.int/advisory-group-on-covid-19-vaccine-composition); 2022 [accessed 6 May 2022]

563 [15] World Health Organization. The COVID-19 vaccine tracker and landscape

564 compiles detailed information of each COVID-19 vaccine candidate in development by

565 closely monitoring their progress through the pipeline.,

566 <https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccin>

567 [es](https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccin); 2022 [accessed 6 May 2022]

568 [16] Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: From

569 bench to bed. EBioMedicine. 2022;76:103841.

570 <https://doi.org/10.1016/j.ebiom.2022.103841>

571 [17] Bolles M, Deming D, Long K, Agnihothram S, Whitmore A, Ferris M, et al. A

572 double-inactivated severe acute respiratory syndrome coronavirus vaccine provides

573 incomplete protection in mice and induces increased eosinophilic proinflammatory

574 pulmonary response upon challenge. J Virol. 2011;85:12201-15.

575 <https://doi.org/10.1128/JVI.06048-11>

576 [18] Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL, et al.

577 Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology

578 on challenge with the SARS virus. PLoS One. 2012;7:e35421.

579 <https://doi.org/10.1371/journal.pone.0035421>

580 [19] Yasui F, Kai C, Kitabatake M, Inoue S, Yoneda M, Yokochi S, et al. Prior

581 immunization with severe acute respiratory syndrome (SARS)-associated coronavirus

582 (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with

583 SARS-CoV. J Immunol. 2008;181:6337-48.

584 <https://doi.org/10.4049/jimmunol.181.9.6337>

585 [20] Sekimukai H, Iwata-Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki T, et al.

586 Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response

587 against severe acute respiratory syndrome-related coronavirus infection, but fails to

588 induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol

589 Immunol. 2020;64:33-51. <https://doi.org/10.1111/1348-0421.12754>

590 [21] Iwata-Yoshikawa N, Uda A, Suzuki T, Tsunetsugu-Yokota Y, Sato Y, Morikawa S,

591 et al. Effects of Toll-like receptor stimulation on eosinophilic infiltration in lungs of

592 BALB/c mice immunized with UV-inactivated severe acute respiratory

593 syndrome-related coronavirus vaccine. J Virol. 2014;88:8597-614.

594 <https://doi.org/10.1128/JVI.00983-14>

595 [22] Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. Severe

596 acute respiratory syndrome-associated coronavirus vaccines formulated with delta

597 inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic

598 immunopathology. J Virol. 2015;89:2995-3007. <https://doi.org/10.1128/JVI.02980-14>

599 [23] Iwata-Yoshikawa N, Shiwa N, Sekizuka T, Sano K, Ainai A, Hemmi T, et al. A

600 lethal mouse model for evaluating vaccine-associated enhanced respiratory disease

601 during SARS-CoV-2 infection. Sci Adv. 2022;8:eabh3827.

602 <https://doi.org/10.1126/sciadv.abh3827>

603 [24] Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, et al.

604 Respiratory syncytial virus disease in infants despite prior administration of antigenic

605 inactivated vaccine. Am J Epidemiol. 1969;89:422-34.

606 <https://doi.org/10.1093/oxfordjournals.aje.a120955>

607 [25] An X, Martinez-Paniagua M, Rezvan A, Sefat SR, Fathi M, Singh S, et al.

608 Single-dose intranasal vaccination elicits systemic and mucosal immunity against
609 SARS-CoV-2. *iScience*. 2021;24:103037. <https://doi.org/10.1016/j.isci.2021.103037>

610 [26] Du Y, Xu Y, Feng J, Hu L, Zhang Y, Zhang B, et al. Intranasal administration of a
611 recombinant RBD vaccine induced protective immunity against SARS-CoV-2 in mouse.
612 *Vaccine*. 2021;39:2280-7. <https://doi.org/10.1016/j.vaccine.2021.03.006>

613 [27] U.S. Food and Drug Administration. Development and licensure of vaccines to
614 prevent COVID-19,
615 <https://www.fda.gov/regulatory-information/search-fda-guidance-documents/developme>
616 nt-and-licensure-vaccines-prevent-covid-19; 2020 [accessed 6 May 2022]

617 [28] Nakagawa T, Tanino T, Onishi M, Tofukuji S, Kanazawa T, Ishioka Y, et al.
618 S-540956, a CpG Oligonucleotide Annealed to a Complementary Strand With an
619 Amphiphilic Chain Unit, Acts as a Potent Cancer Vaccine Adjuvant by Targeting
620 Draining Lymph Nodes. *Front Immunol*. 2021;12:803090.
621 <https://doi.org/10.3389/fimmu.2021.803090>

622 [29] Amanat F, Stadlbauer D, Strohmeier S, Nguyen THO, Chromikova V, McMahon M,
623 et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. *Nat Med*.

- 624 2020;26:1033-6. <https://doi.org/10.1038/s41591-020-0913-5>
- 625 [30] Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, et al. A
- 626 SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by
- 627 coordinated recognition of a virus-vulnerable site. *Immunity*. 2021;54:2385-98 e10.
- 628 <https://doi.org/10.1016/j.jimmuni.2021.08.025>
- 629 [31] Hashiguchi T, Fukuda Y, Matsuoka R, Kuroda D, Kubota M, Shirogane Y, et al.
- 630 Structures of the prefusion form of measles virus fusion protein in complex with
- 631 inhibitors. *Proc Natl Acad Sci U S A*. 2018;115:2496-501.
- 632 <https://doi.org/10.1073/pnas.1718957115>
- 633 [32] Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, et al.
- 634 Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. *Science*.
- 635 2020;369:1501-5. <https://doi.org/10.1126/science.abd0826>
- 636 [33] Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al.
- 637 Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody.
- 638 *Nature*. 2020;583:290-5. <https://doi.org/10.1038/s41586-020-2349-y>
- 639 [34] Moriyama S, Adachi Y, Sato T, Tonouchi K, Sun L, Fukushi S, et al. Temporal

- 640 maturation of neutralizing antibodies in COVID-19 convalescent individuals improves
- 641 potency and breadth to circulating SARS-CoV-2 variants. *Immunity*. 2021;54:1841-52
- 642 e4. <https://doi.org/10.1016/j.immuni.2021.06.015>
- 643 [35] Nao N, Sato K, Yamagishi J, Tahara M, Nakatsu Y, Seki F, et al. Consensus and
- 644 variations in cell line specificity among human metapneumovirus strains. *PLoS One*.
- 645 2019;14:e0215822. <https://doi.org/10.1371/journal.pone.0215822>
- 646 [36] Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, et al. Enhanced
- 647 isolation of SARS-CoV-2 by TMPRSS2-expressing cells. *Proc Natl Acad Sci U S A*.
- 648 2020;117:7001-3. <https://doi.org/10.1073/pnas.2002589117>
- 649 [37] Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H, et al. SARS-CoV-2
- 650 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and
- 651 protection in mice. *Nat Commun*. 2021;12:372.
- 652 <https://doi.org/10.1038/s41467-020-20653-8>
- 653 [38] Misharin AV, Morales-Nebreda L, Mutlu GM, Budinger GR, Perlman H. Flow
- 654 cytometric analysis of macrophages and dendritic cell subsets in the mouse lung. *Am J*
- 655 *Respir Cell Mol Biol*. 2013;49:503-10. <https://doi.org/10.1165/rcmb.2013-0086MA>

656 [39] Ishii H, Nomura T, Yamamoto H, Nishizawa M, Thu Hau TT, Harada S, et al.

657 Neutralizing-antibody-independent SARS-CoV-2 control correlated with

658 intranasal-vaccine-induced CD8(+) T cell responses. *Cell Rep Med.* 2022;3:100520.

659 <https://doi.org/10.1016/j.xcrm.2022.100520>

660 [40] Hassan AO, Shrihari S, Gorman MJ, Ying B, Yaun D, Raju S, et al. An intranasal

661 vaccine durably protects against SARS-CoV-2 variants in mice. *Cell Rep.*

662 2021;36:109452. <https://doi.org/10.1016/j.celrep.2021.109452>

663 [41] Toellner KM, Luther SA, Sze DM, Choy RK, Taylor DR, MacLennan IC, et al. T

664 helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are

665 associated with an immediate ability to induce immunoglobulin class switching. *J Exp*

666 *Med.* 1998;187:1193-204. <https://doi.org/10.1084/jem.187.8.1193>

667 [42] Kotaki R, Adachi Y, Moriyama S, Onodera T, Fukushi S, Nagakura T, et al.

668 SARS-CoV-2 Omicron-neutralizing memory B cells are elicited by two doses of

669 BNT162b2 mRNA vaccine. *Sci Immunol.* 2022;7:eabn8590.

670 <https://doi.org/10.1126/sciimmunol.abn8590>

671 [43] Mantus G, Nyhoff LE, Edara VV, Zarnitsyna VI, Cricic CR, Flowers MW, et al.

- 672 Pre-existing SARS-CoV-2 immunity influences potency, breadth, and durability of the
- 673 humoral response to SARS-CoV-2 vaccination. *Cell Rep Med.* 2022;3:100603.
- 674 <https://doi.org/10.1016/j.xcrm.2022.100603>
- 675 [44] Miyamoto S, Arashiro T, Adachi Y, Moriyama S, Kinoshita H, Kanno T, et al.
- 676 Vaccination-infection interval determines cross-neutralization potency to SARS-CoV-2
- 677 Omicron after breakthrough infection by other variants. *Med (NY).* 2022;3:249-61 e4.
- 678 <https://doi.org/10.1016/j.medj.2022.02.006>
- 679 [45] Halfmann PJ, Iida S, Iwatsuki-Horimoto K, Maemura T, Kiso M, Scheaffer SM, et
- 680 al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. *Nature.*
2022;603:687-92. <https://doi.org/10.1038/s41586-022-04441-6>
- 682 [46] Hui KPY, Ho JCW, Cheung MC, Ng KC, Ching RHH, Lai KL, et al. SARS-CoV-2
- 683 Omicron variant replication in human bronchus and lung ex vivo. *Nature.*
2022;603:715-20. <https://doi.org/10.1038/s41586-022-04479-6>
- 685 [47] Haque A, Pant AB. Mitigating Covid-19 in the face of emerging virus variants,
- 686 breakthrough infections and vaccine hesitancy. *J Autoimmun.* 2022;127:102792.
- 687 <https://doi.org/10.1016/j.jaut.2021.102792>

688 [48] Uraki R, Kiso M, Iida S, Imai M, Takashita E, Kuroda M, et al. Characterization

689 and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. *Nature*. 2022.

690 <https://doi.org/10.1038/s41586-022-04856-1>

691 [49] Crotty S. T follicular helper cell differentiation, function, and roles in disease.

692 *Immunity*. 2014;41:529-42. <https://doi.org/10.1016/j.jimmuni.2014.10.004>

693 [50] Quast I, Tarlinton D. B cell memory: understanding COVID-19. *Immunity*.

694 2021;54:205-10. <https://doi.org/10.1016/j.jimmuni.2021.01.014>

695

696

697 **Figure legends**

698

699 **Fig. 1. The induction of S-specific antibodies in serum, nasal mucosa and lungs of**
700 **mice vaccinated intranasally.**

701 (A) Each of six mice were vaccinated three times at 2-week intervals. One week after the
702 final vaccination, serum, nasal wash (NW) and lung wash (LW) were collected for the
703 evaluation of antibody responses. (B, C) SARS-CoV-2 S-specific IgG titers and
704 neutralizing antibody titers in sera were measured by ELISA and microneutralization
705 assay, respectively. Graphs shown as the geometric mean titers \pm the geometric standard
706 deviation (SD). The dashed line indicates the detection limit of measurement. (D, E) The
707 concentration of S-specific IgA antibodies in NW and LW was estimated by ELISA. Data
708 shown as the means \pm SD. Each dotted line indicates the detection limit of measurement.
709 The p-values were calculated by Kruskal-Wallis test followed by Dunn's multiple
710 comparison test (*P < 0.05, **P < 0.01). in: intranasally, sc: subcutaneously.

711

712 **Fig. 2. Intranasal vaccination adjuvanted with ODN2006 protected mice from the**

713 **lethal challenge with SARS-CoV-2.**

714 (A) Each of 12 mice were vaccinated three times at 2-week intervals. Two weeks after the

715 final vaccination, mice were intranasally challenged with mouse adapted SARS-CoV-2

716 strain, QHmusX, into both lungs and nasal cavity (40 and 6 LD₅₀ per mouse, respectively).

717 NW and LW were collected from each of six mice for the evaluation of antibody

718 responses at 3 dpi. Body weight and survival of six mice were monitored 10 days after

719 viral challenge. (B, C) Copy numbers of SARS-CoV-2 subgenomic RNA (sgRNA) in

720 NW and LW were evaluated by real-time RT-PCR. Data shown as the geometric mean ±

721 the geometric SD. The p-values were calculated by Kruskal-Wallis test followed by

722 Dunn's multiple comparison test (*P < 0.05, *** P < 0.001). (D, E) Body weight changes

723 and survival rates during 10 days of observation after challenge with QHmusX. Data

724 shown as the means ± SD. The p-values of body weight and survival were compared with

725 mice intranasally vaccinated with ODN2006 by mixed-model analysis followed by

726 Dunnett's multiple comparisons test and log-rank (Mantel-Cox) test (**P < 0.01).

727

728 **Fig. 3. Secretory IgA antibodies were protective against SARS-CoV-2 variants.**

729 (A) Mice were vaccinated three times at 2-week intervals. Two weeks after the final
730 vaccination, each of six mice were intranasally challenged with 3.5×10^5 TCID₅₀ of Alpha
731 (B, E), Beta (C, F) or Gamma (D, G) variant into both lungs and nasal cavity. At 3 dpi,
732 NW and LW were collected. Copy numbers of sgRNA in NW (B-D) and LW (E-G) were
733 evaluated by real-time RT-PCR. Data shown as the geometric mean \pm the geometric SD.
734 The p-values were calculated by Kruskal-Wallis test followed by Dunn's multiple
735 comparison test (*P < 0.05, *** P < 0.001).

736

737 **Fig. 4. Germinal center formation and long-lasting antibody responses.**

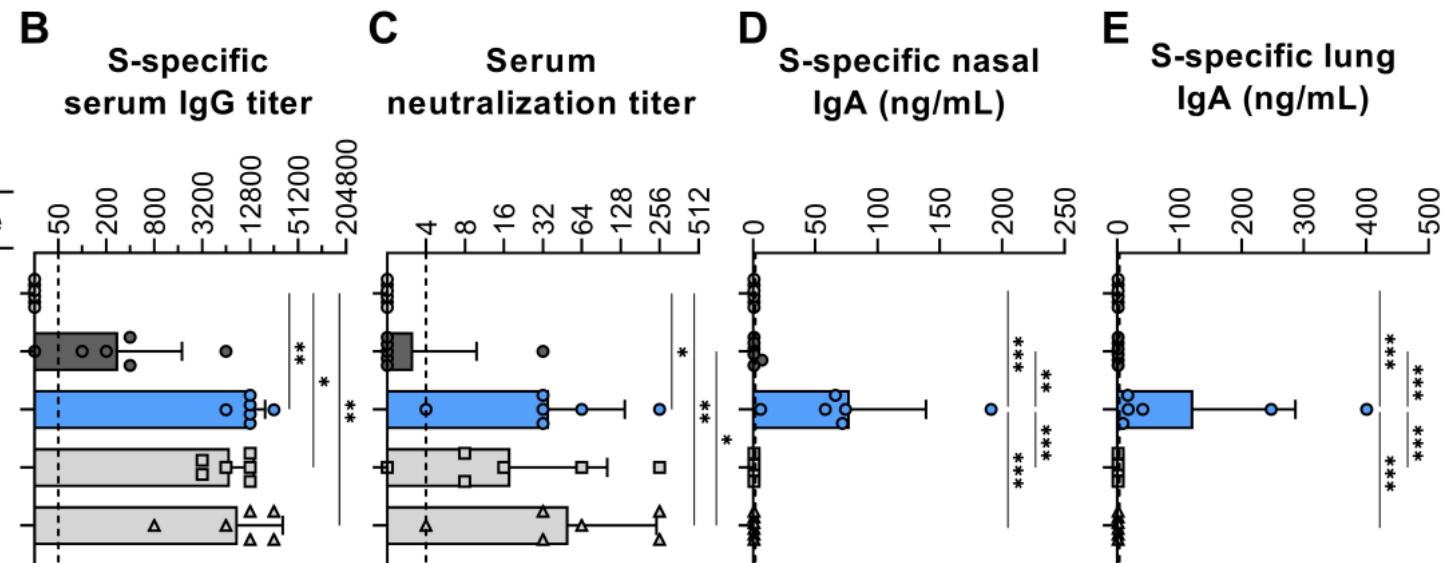
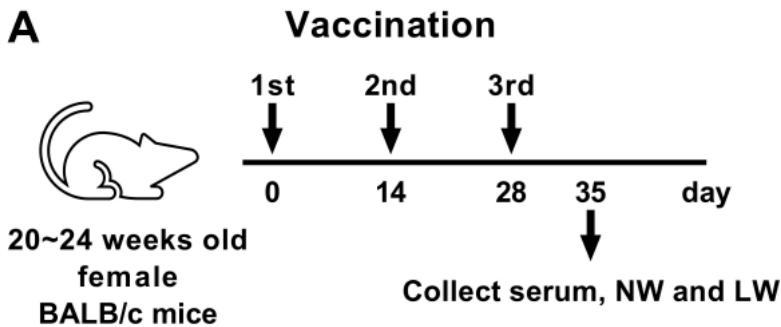
738 (A, B) The frequency of Tfh cells (CXCR5⁺ PD-1⁺) among CD4⁺ cells and GCB cells
739 (GL7⁺ CD95⁺) among CD19⁺ B cells was evaluated by flow cytometry in cervical lymph
740 nodes collected from mice one week after third vaccination. Results were shown as the
741 mean \pm SD. (C) To evaluate time-course of antibody responses induced by three doses of
742 vaccination, serum samples were collected every two weeks. After 20 weeks from the
743 initial vaccination, serum and NW samples were collected (six mice per group). (D) The
744 changes of optical density (405 nm) of S-specific IgG antibodies were shown as the mean

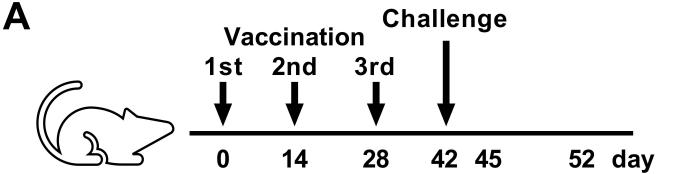
745 \pm SEM. (E) S-specific IgA concentration in NW collected at 20 weeks after the initial
746 vaccination was evaluated by ELISA. Results were shown as the mean \pm SD. Each dotted
747 line indicates the detection limit of measurement. The p-values were calculated by
748 Kruskal-Wallis test followed by Dunn's multiple comparison test (*P < 0.05, **P < 0.01,
749 ***P < 0.001).

750

751 **Fig. 5. Induction of significant Th1 response by using ODN2006 as an adjuvant.**
752 (A) Spleen and cervical lymph nodes were collected from individuals shown in
753 Figure.1(A). Single cell suspensions obtained from each tissue was cultured under the
754 stimulation of peptide pool of SARS-CoV-2 S protein. Spleen (B-D) or cervical lymph
755 node cells (E-G) were counted on the production of IFN- γ (B, E), IL-4 (C, F) and IL-5 (D,
756 G) by ELISpot assay. Data shown as the means \pm SD. (H, I) SARS-CoV-2 S-specific
757 IgG1 and IgG2a antibodies were quantified by ELISA, and (J) IgG1/IgG2a ratio was
758 calculated. Data shown as the geometric means \pm geometric SD. The p-values were
759 calculated by Kruskal-Wallis test followed by Dunn's multiple comparison test (*P < 0.05,
760 **P < 0.01, ***P < 0.001).

761



762 **Fig. 6. Eosinophilic infiltration into the lungs was suppressed in mice vaccinated**
763 **with ODN2006 inducing a remarkable Th1 response.**

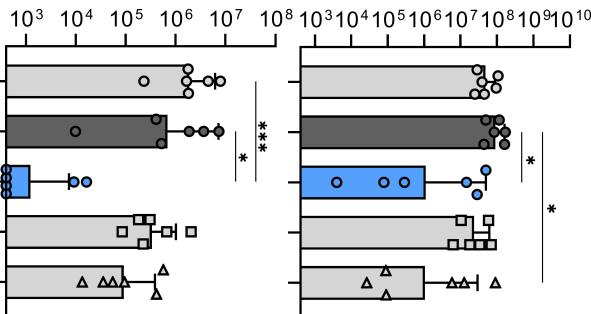

764 (A) Each of six mice were vaccinated three times at 2-week intervals. Two weeks after the
765 final vaccination, mice were intranasally challenged with mouse adopted SARS-CoV-2
766 strain, QHmusX, into both lungs and nasal cavity (40 LD₅₀ and 6 LD₅₀ per mouse,
767 respectively). At 6 dpi, infiltration of eosinophils was evaluated by histopathological or
768 flow cytometric analysis, on lungs collected from surviving 1~2 or 2~4 mice in each
769 group, respectively. (B) Histopathological findings of mouse lungs by eosinophil staining
770 using the combined eosinophil-mast cell staining (C.E.M.) kit. Green arrow heads point
771 to eosinophils. The images in the lower panels are enlargements of area boxed in the
772 upper images. The scale bar is 200 μ m for low magnification and 20 μ m for high
773 magnification. (C) The percentage of eosinophils (CD11b⁺ CD11c⁻ Siglec-F⁺ Ly-6G⁻)
774 among CD45+ cells was analyzed by flow cytometry. Results were shown as the mean \pm
775 SD. The p-values were calculated by Kruskal-Wallis test followed by Dunn's multiple
776 comparison test. (D) Correlation between S-specific IgG1/IgG2a ratio and the frequency

777 of eosinophils in lung cells was analyzed by Spearman correlation. S-specific

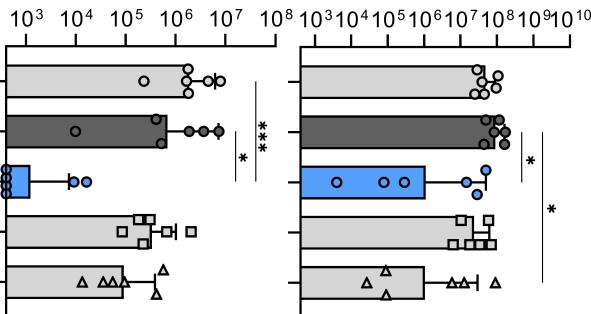
778 IgG1/IgG2a ratio was evaluated using serum samples collected seven days before the

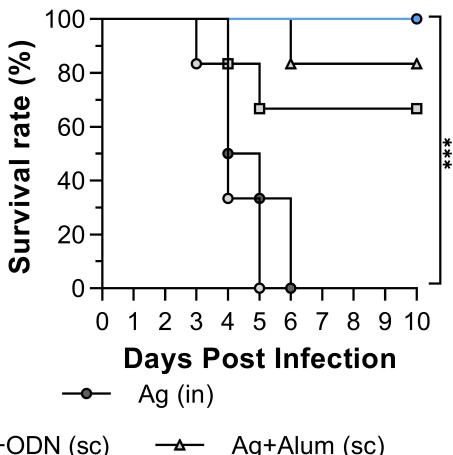
779 virus challenge.

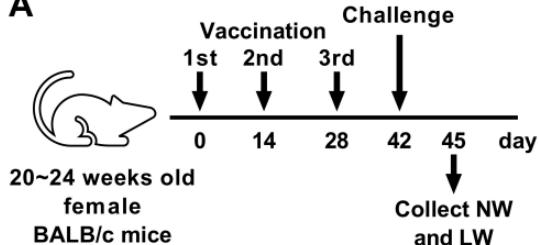
A


20~24 weeks old
female
BALB/c mice

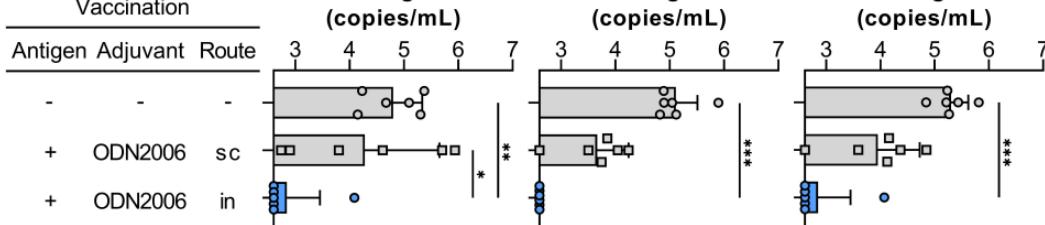
Collect NW
and LW
Sacrifice at the
end-point or 10 dpi



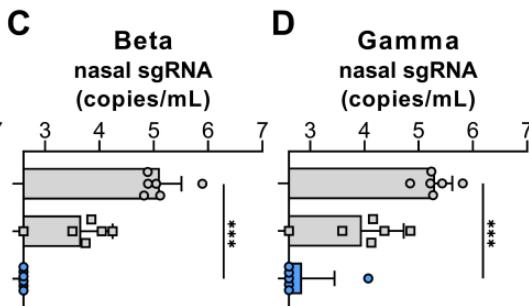

B


Nasal sgRNA
(copies/mL)

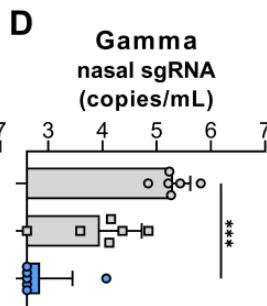
Vaccination		
Antigen	Adjuvant	Route
-	-	-
+	-	in
+	ODN2006	in
+	ODN2006	sc
+	Alum	sc


C

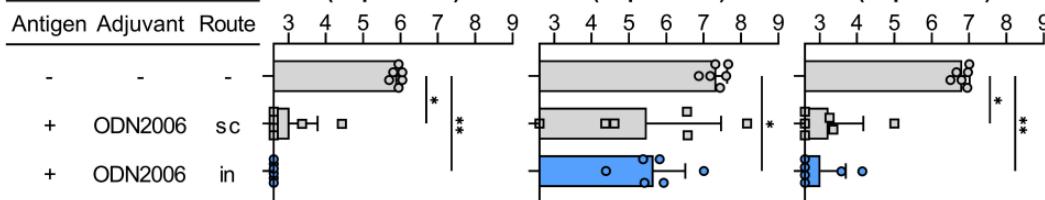
Lung sgRNA
(copies/mL)


D**E**

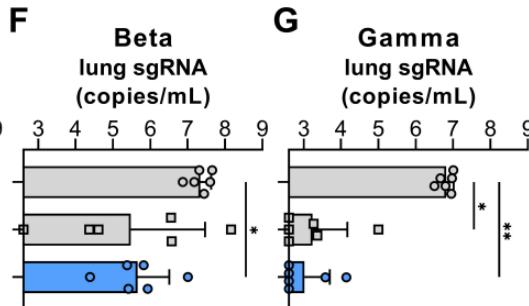
A**B**


Alpha
nasal sgRNA
(copies/mL)

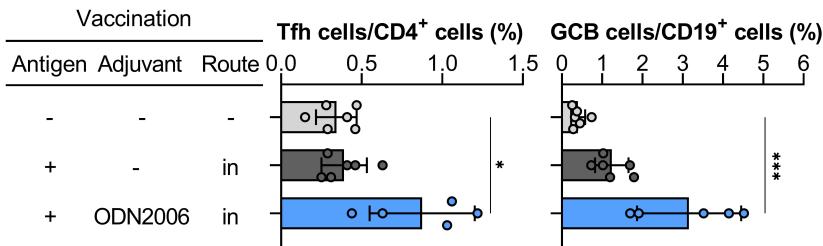
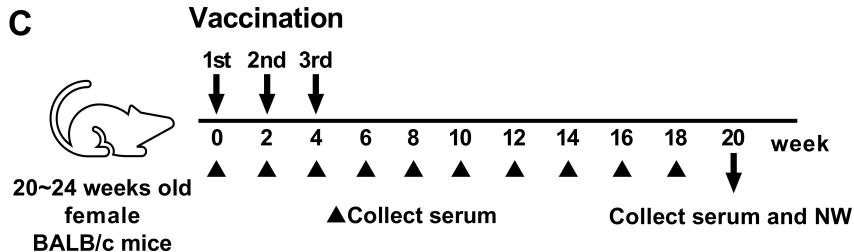
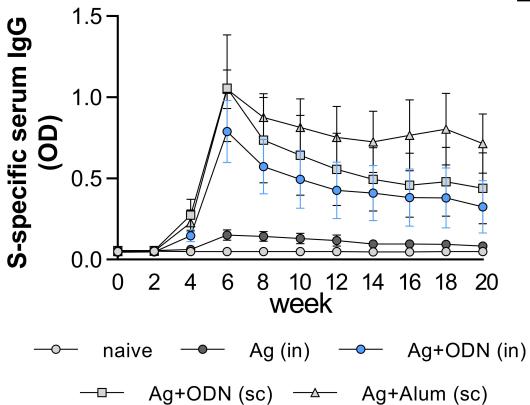
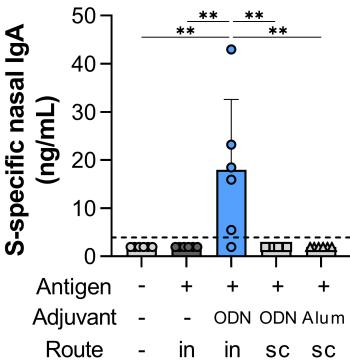
C


Beta
nasal sgRNA
(copies/mL)

D


Gamma
nasal sgRNA
(copies/mL)

E





Alpha
lung sgRNA
(copies/mL)


F

Beta
lung sgRNA
(copies/mL)

G

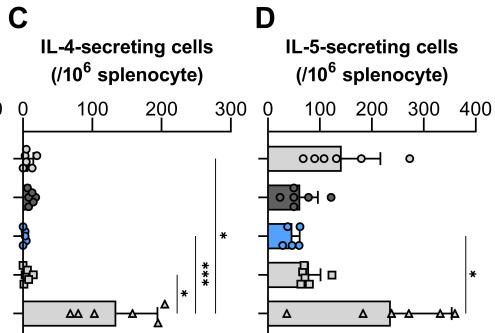
Gamma
lung sgRNA
(copies/mL)

A**B****D****E**

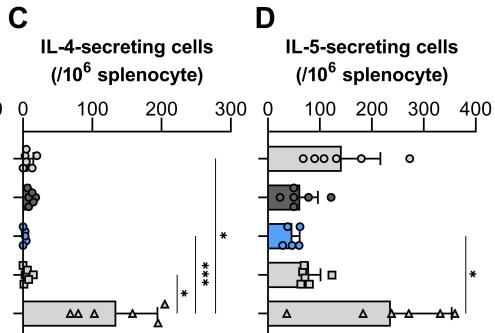
A

20~24 weeks old
female
BALB/c mice

Collect serum, spleen and
cervical lymphnode


B

IFN- γ -secreting cells
(/10⁶ splenocyte)

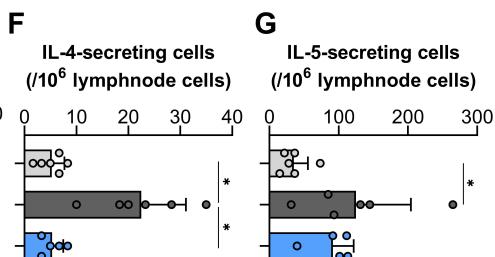

Vaccination		
Antigen	Adjuvant	Route
-	-	-
+	-	in
+	ODN2006	in
+	ODN2006	sc
+	Alum	sc

C

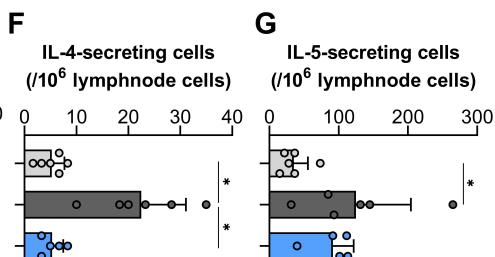
IL-4-secreting cells
(/10⁶ splenocyte)

D

IL-5-secreting cells
(/10⁶ splenocyte)


E

IFN- γ -secreting cells
(/10⁶ lymphnode cells)

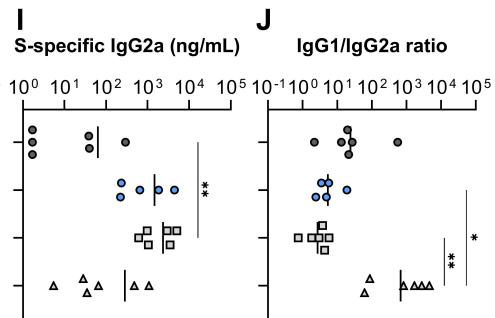

Vaccination		
Antigen	Adjuvant	Route
-	-	-
+	-	in
+	ODN2006	in

F

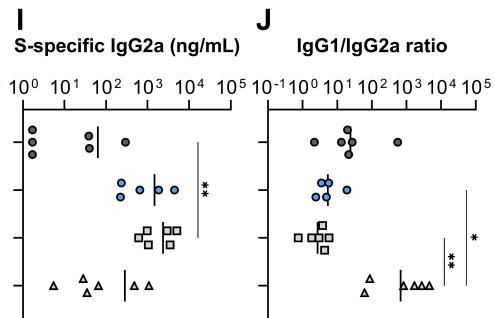
IL-4-secreting cells
(/10⁶ lymphnode cells)

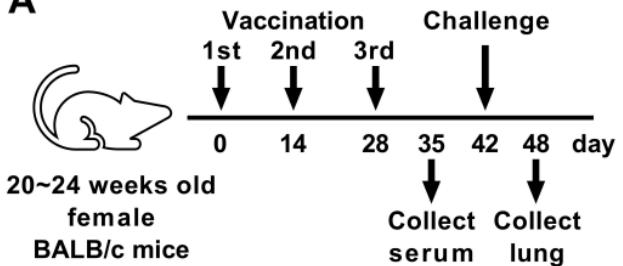
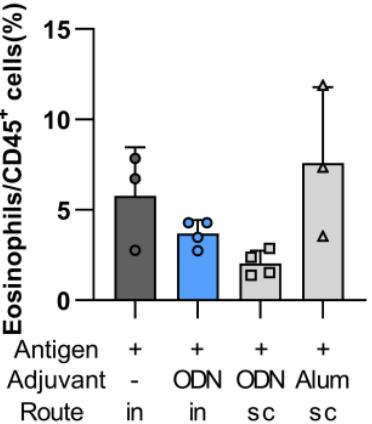
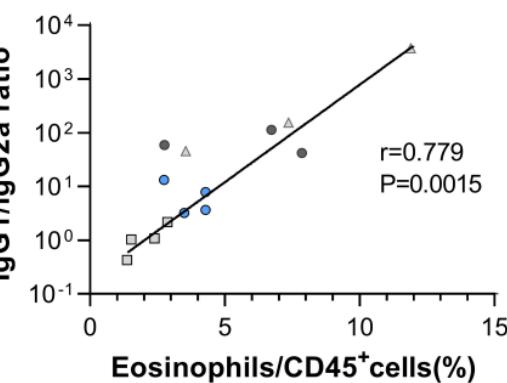
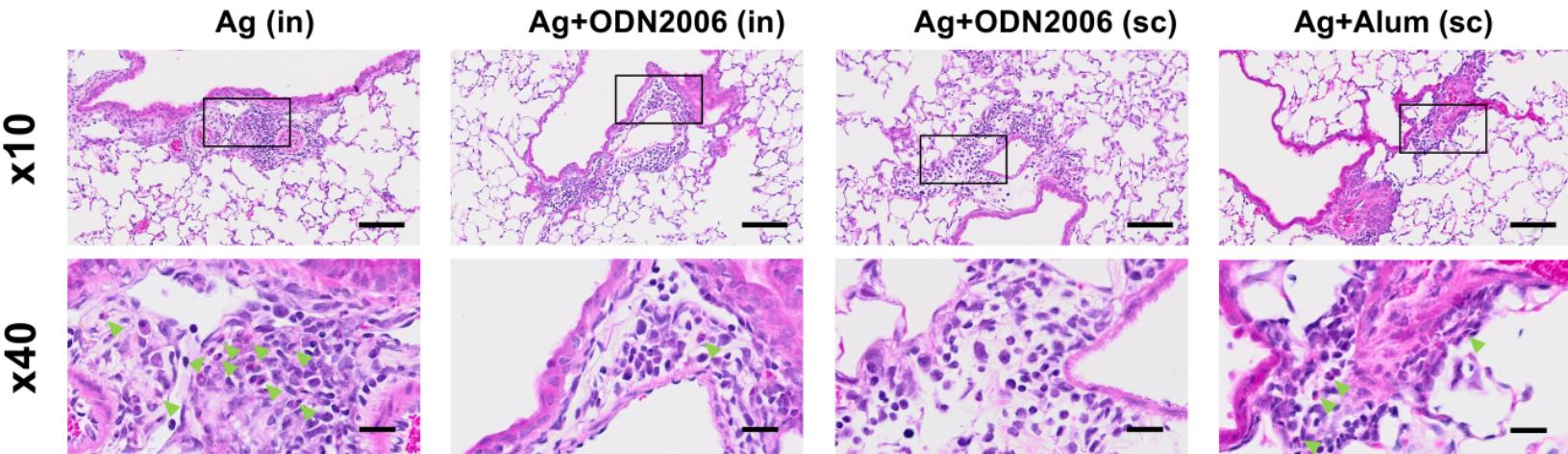
G

IL-5-secreting cells
(/10⁶ lymphnode cells)


H

S-specific IgG1 (ng/mL)


Vaccination		
Antigen	Adjuvant	Route
+	-	in
+	ODN2006	in
+	ODN2006	sc
+	Alum	sc





I

S-specific IgG2a (ng/mL)

J

IgG1/IgG2a ratio

A**C****D****B**