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Abstract

Small cell lung cancer (SCLC) is an aggressive cancer recalcitrant to treatment, arising
predominantly from epithelial pulmonary neuroendocrine (NE) cells. Intra-tumor heterogeneity
plays critical roles in SCLC disease progression, metastasis and treatment resistance. At least
five transcriptional SCLC NE and non-NE cell subtypes were recently defined by gene expression
signatures. Transition from NE to non-NE cell states and cooperation between subtypes within a
tumor likely contribute to SCLC progression by mechanisms of adaptation to perturbations.
Therefore, gene regulatory programs distinguishing SCLC subtypes or promoting transitions are
of great interest. Here, we systematically analyze the relationship between SCLC NE/non-NE
transition and epithelial to mesenchymal transition (EMT)—a well-studied cellular process
contributing to cancer invasiveness and resistance—using multiple transcriptome datasets from
SCLC mouse tumor models, human cancer cell lines and tumor samples. The NE SCLC-A2
subtype maps to the epithelial state. In contrast, SCLC-A and SCLC-N (NE) map to a
mesenchymal state (M1) that is distinct from the non-NE mesenchymal state (M2). The
correspondence between SCLC subtypes and the EMT program paves the way for further work
to understand gene regulatory mechanisms of SCLC tumor plasticity with applicability to other
cancer types.
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Introduction

Small cell lung cancer (SCLC) is one of the most aggressive human cancers, characterized by
early metastasis and acquisition of therapeutic resistance (Gazdar et al., 2017). SCLC tumors are
neuroendocrine (NE) tumors that arise in the lung epithelium, and pulmonary NE cells (PNEC)
are considered their normal counterparts (Borges et al., 1997; Song et al., 2012). However,
multiple reports have demonstrated considerable intratumoral heterogeneity in SCLC (Calbo et
al., 2011; Gay et al., 2021; Lim et al., 2017; Shue et al., 2018; Stewart et al., 2020; Wooten et al.,
2019). There is accumulating evidence that SCLC NE cells can transition into non-NE states
(Ireland et al., 2020; Lim et al., 2017; Stewart et al., 2020). Furthermore, prior studies suggest
cooperative interactions occur between NE and non-NE cells during SCLC tumor progression
(Calbo et al., 2011; Ko et al., 2021; Kwon et al., 2015). An open question is whether transitions
from NE to non-NE subtypes, and possibly vice versa, are driven by intrinsic factors (e.g.,
transcription factor network dynamics (Wooten et al, 2019)), extrinsic factors (i.e.,
microenvironmental influences, such as hypoxia or therapeutic agents) (Gay et al., 2021; Udyavar
et al., 2017), or a combination of both.

A standard to classify SCLC cells based on expression levels of four key transcription factors
(TFs), ASCL1, NEUROD1, YAP1, and POUZ2F3, was recently adopted (Rudin et al., 2019;
Yazawa, 2015). Based on the most abundantly expressed TF, or an underlying signature, three
NE (A, A2 and N) and two non-NE (Y and P) subtypes have been proposed (Groves et al., 2022;
Wooten et al., 2019). An additional subtype enriched in inflammatory genes, SCLC-I, has also
been described (Gay et al., 2021). However, the gene regulatory mechanisms that generate and
maintain the molecular and phenotypic identities of SCLC subtypes remain unclear. Of particular
interest are mechanisms underlying NE to non-NE phenotypic transitions since they may directly
contribute to tumor progression (Ireland et al., 2020; Lim et al., 2017; Wu et al., 2021; Zhang et
al., 2018). Because PNECs and SCLC cells are of epithelial origin (endodermally derived)
(Noguchi et al., 2020) and SCLC tumors are highly metastatic, we hypothesize that similarities
may exist between NE/non-NE transitions and the well-studied epithelial-mesenchymal transition
(EMT). EMT is a cellular process in which epithelial cells lose tight cell-junction and gain the ability
to migrate, characteristic features of metastatic spread (Kalluri and Weinberg, 2009). EMT also
contributes to tumor drug resistance (Fischer et al., 2015; Krebs et al., 2017; Mani et al., 2008),
and EMT transition has been associated with drug resistance in human SCLC tumors (Stewart et
al., 2020; Sutherland et al., 2022). Theoretical and experimental studies have revealed that EMT
is a multi-stage process and the transcriptional programs (e.g., subsets of mesenchymal signature
genes) activated in different contexts can be diverse (Cook and Vanderhyden, 2020; Hong et al.,
2015; Lu et al., 2013; Watanabe et al., 2019; Ye et al., 2015; Zhang et al., 2014). For example,
different EMT stimulants can activate diverse transcriptional programs (Cook and Vanderhyden,
2020). Thus, while multiple reports have suggested a role for EMT in SCLC phenotypic plasticity,
drug resistance, and metastasis, to the best of our knowledge, a systematic analysis of the
relationships between NE and non-NE SCLC subtypes and EMT has not been previously
reported.
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In this paper, we use accepted scoring metrics for epithelial (E) and mesenchymal (M) programs
to position NE and non-NE SCLC subtypes within the EMT spectrum. We find that the A2 subtype
is strongly epithelial-like (scores high along the E axis) and weakly mesenchymal-like (scores low
along the M axis), supporting it as the most E-like subtype of SCLC. In contrast, the non-NE
subtypes (P and Y) score higher on the M axis, while being lowest along the E axis. Surprisingly,
the NE subtypes A and N consistently score significantly lower than A2 along the E axis.
Moreover, transcripts of some mesenchymal genes, such as ZEB1, are more abundant in N than
in non-NE subtypes, suggesting the existence of distinct mesenchymal gene programs across
SCLC subtypes. These findings support the involvement of EMT programs in SCLC phenotypic
heterogeneity and provide potential mechanistic insights into NE/non-NE transitions.

Results
The SCLC-A2 subtype is highly enriched in epithelial gene expression

We first analyzed a time course of single-cell RNA-sequencing (scRNA-seq) dataset from an
SCLC genetically engineered mouse model (GEMM) with an overactive Myc oncogene (Rb1"":
Trp53"": Lox-Stop-Lox [LSL]-Myc™®, RPM) (Ireland et al., 2020). The 15,138 single cells were
annotated with the SCLC subtypes using gene expression signatures and archetype analysis, as
recently described (Groves et al., 2022). An SCLC signature comprising 105 genes that
distinguishes the five SCLC subtypes was used to classify individual cells relative to  extreme
expression patterns of NE and non-NE subtypes, with some subpopulations enriched in multiple
subtype signatures, resulting in four classes (A/N, A2, P/Y, and Y) (see Methods) (Groves et al.,
2022). In parallel, using normalized gene expression, we computed the epithelial (E) and
mesenchymal (M) scores for this dataset. The scores were computed using single-sample gene
set enrichment analysis (ssGSEA) with a list of 232 epithelial (E) associated genes and 193
mesenchymal (M) associated genes (see Methods) (Deshmukh et al., 2021; Krug et al., 2019;
Tan et al., 2014). In the EMT spectrum depicted by the E and M scores, we observed a striking
difference between the position of the NE A2 subtype and other NE and non-NE subtypes (Figure
1A). The A2 cells had a significantly higher E score and a significantly lower M score compared
to other subtypes (p<10° for each comparison). Consistent with the E/M scores, we found that
A2 cells had significantly higher levels of Cdh7 (coding E-cadherin) (p<107°), a widely used E
marker gene crucial for cell adhesion, compared to other cells (Figure 1A inset). These results
indicate that gene expression in the A2 subtype is most restricted to an epithelial phenotype
whereas, in all other SCLC subtypes (NE and non-NE), M gene expression appears to be
permitted to various extents.

We next asked whether the association between the A2 subtype and the epithelial lineage in RPM
mouse SCLC tumor cells extends to human SCLC cells. We first analyzed bulk RNA-seq data
from 120 human SCLC cell lines assigned with subtype identities (see Methods). Several A2 cell
lines (e.g., DMS53) were located in the extreme E position on the EMT spectrum (Figure 1B), in
agreement with A2 cells from RPM tumors (Figure 1A). As a group, A2 cell lines had the highest
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mean E score and the lowest M score among SCLC subtypes, although these scores were closer
to A and Y cells than in the RPM tumor cell data (Figure 1B). This partial overlap could be due to
cell-cell heterogeneity within cell lines that is not resolved in bulk RNA-seq data. Therefore, we
visualized 13,945 single-cell transcriptomes from eight human SCLC cell lines (Groves et al.,
2022) with the same E/M projection method. In this dataset, A2 cells are more distinct from other
subtypes than in the bulk RNA-seq data, and the separation is more similar to the RPM tumor cell
data (Figure 1C). Interestingly, in both bulk and single-cell RNA-seq datasets for SCLC cell lines,
the NE subtype A has an intermediate EMT expression profile (Figure 1B, C).

The strong association between SCLC subtypes and EMT progression raises the question of
whether this connection is trivially due to a sharing of genes between the 105 SCLC subtype
signature gene set and the 425 EMT signature gene set. However, there are only 20 genes
appearing in both gene sets, indicating limited overlap (Jaccard index 0.039). Furthermore,
excluding the 20 overlapping SCLC signature genes from the EMT gene set had minimal effect
on the distributions of SCLC cells in the EMT spectrum in each of the three datasets (Figure S1).
Taken together, our analyses indicate a strong and nontrivial association between SCLC subtypes
and EMT progression. In particular, a specific SCLC NE subtype, A2, exhibits phenotypes
associated with highly restricted epithelial lineages in mammals.
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Figure 1. Distributions of SCLC cells across the epithelial and mesenchymal spectrum.
E and M scores of A. 15,138 mouse Myc-overexpressing SCLC GEMM tumor cells in an ex vivo
model; B. 120 SCLC cell lines; and C. 13,945 cells from eight SCLC cell lines. Scores were
computed with ssGSEA and 425 previously identified EMT genes. Circles and black bars indicate
means and standard deviations. Inset in A shows normalized expression of Cdh1 in four classes
of cells.

Mesenchymal scoring is diverse across non-A2 subtypes

The ssGSEA-based E/M scoring did not show any dramatic difference among A, N, P, and Y (i.e.
non-A2) subtypes (Figure 1). However, the expression of individual M genes, such as Vim,
differed significantly among non-A2 subtypes (Figure 2A, B). This suggests the possibility that M
genes have divergent expression patterns across the SCLC subtypes which may mask the
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ssGSEA-based scoring. Recent studies in tumors and cell lines also suggested diversity of EMT
programs (Cook and Vanderhyden, 2020; Pastushenko et al., 2018; Watanabe et al., 2019). For
example, activation of a subset of M genes depends on EMT transcription factor ZEB1, while that
of other M genes are activated via ZEB1-independent pathways (Watanabe et al., 2019). To
determine potentially distinct M programs in SCLC cells, we used an alternative scoring method
based on nonnegative principal component analysis (nnPCA), which generates leading PCs that
describe the variance for each gene set (see Methods). With the single-cell data from both the
mouse RPM model and the SCLC cell lines, we noticed that the first PC for M scores explained
less variance compared to the first PC for E scores (Figure 2C, D top). Furthermore, the first two
M PCs produced comparable variances explained. These results indicate that M gene expression
is spread evenly over at least two orthogonal dimensions, suggesting diversity of M scoring and
warranting further investigation. Interestingly, M scores obtained from the first and second PCs
ranked the SCLC subtypes differently: A/N subtypes have higher scores than Y subtype cells
based on the first M PC (nnPC1) but lower scores than Y subtype with the second M PC (nnPC2)
(Figure 2C, D scatter plots). In fact, two representative M genes—Vim (the gene encoding
vimentin, an intermediate filament protein component of mesenchymal cell cytoskeletons) and
Zeb1 (a widely studied EMT transcription factor)—had an anticorrelated pattern between A/N and
Y subtypes in the RPM dataset (compare Figure 2E to Figure 2A) (Mendez et al., 2010; Wellner
et al., 2009). Although this anticorrelation was less prominent in the cell line data (compare Figure
2F to Figure 2B), distinct Vim and Zeb1 expressions of SCLC subtypes were observed.

Overall, like the case of Vim and Zeb1, the mean differences in expression of M genes between
A/N subtypes and Y subtype were diverse, and these differences were positively correlated
between the RPM data and the cell line data (Figure 2G, Pearson correlation coefficient 0.29,
p<10?®). Some M genes, such as Zeb1, had higher expression in the A/N subtypes than in the Y
subtype, while some others, such as Vim, had the opposite pattern (Figure 2G, H). We defined
these two groups of M genes as M1 and M2 respectively (FDR<0.05 for N-Y differences). We
performed gene ontology analysis and found that, while 20 enriched biological processes were
shared between the two groups, M1 genes were uniquely enriched in more than 200 processes
including ‘negative regulation of cell adhesion involved in substrate-bound cell migration’ (fold
enrichment >100, FDR=0.005), whereas M2 were uniquely enriched in 11 processes including
‘extracellular matrix organization’ (fold enrichment =14.08, FDR=0.02) (Tables S1 and S2). As
these two groups of processes may both contribute to enhanced cell motility, this result suggests
that NE and non-NE subtypes may use distinct strategies to achieve mesenchymal-like cellular
functions such as cell migration. In summary, our result supports the functional divergence of the
M genes differentially expressed in NE and non-NE SCLC subtypes.
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Figure 2. Divergence of mesenchymal gene expressions in SCLC subtypes. A, B.
Normalized expression levels of Vim (M gene) and Cdh1 (E gene) in 15138 mouse Myc-driven
tumor cells (A) and in 13945 cells from eight SCLC cell lines (B). Imputed data were plotted in B
for visual aid. Circles and black bars show means and standard deviations of SCLC subtypes. C,
D. Line plots: nnPCA was performed. Plots show standard deviations of SCLC subtype means
for mouse and human SCLC cells from the top 5 PCs. Scatter plots: nnPCA-based E and M
scores. E, F. Normalized expression levels of Zeb1 (M gene) and Cdh1 (E gene) in 15138 mouse
Myc-driven tumor cells (E) and in 13945 cells from 8 SCLC cell lines (F). Imputed data were
plotted in F for visual aid. G. Mean differences between N cells (A/N cells for mouse) and Y cells
in individual M gene’s expression in mouse and human SCLC cells. H. A heatmap showing the
diversity of M gene expression across N (A/N) and Y subtypes.

The highly epithelial A2 subtype and diverse M gene expression patterns are detectable in
human SCLC tumor

The distinction between the A2 and A subtypes has generally not been considered in previous
studies by other investigators. For example, Chan et al. profiled 54,523 individual SCLC cells from
19 human samples and classified them into A, N, and P subtypes (note the absence of the Y
subtype) (Chan et al., 2021). We therefore asked whether our analytical framework can be used
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to discover previously unknown, extremely epithelial-like cells in this human SCLC tumor dataset.
We first performed E and M scoring for this dataset (Figure 3A) and found the A cells (as subtyped
in Chan et al., 2021) fell into two distinct groups, one of which was highly E-like (Figure 3B, red
arrow). We hypothesized that the cells labeled as A subtype by Chan et al. include both extreme
E-like (A2) and EMT-intermediate-like (A) subtypes. We re-subtyped the SCLC cells from Chan
et al. using our subtype gene signatures (see Methods), and we found a significant fraction of the
previously labeled A cells had high scores for the A2 subtype and low scores for the A subtype,
which we labeled A2* (Figure 3C, D, S2). In particular, the distinct group of E-like cells
corresponds to the group of cells that had high A2 scores and low A scores (Figure 3C, D. Figure
S2). Interestingly, the cell cluster with high A2 scores corresponds to a unique tumor sample
(Figure 3A, pink) with a unique treatment type (Figure S3). We found that the A2 scores of these
11,056 A2-enriched SCLC cells were strongly positively correlated with their E scores (nnPCA
performed with RU1108 cells alone) (Figure 3E) (Spearman correlation coefficient s, = 0.69). In
contrast, A scores were negatively correlated with E scores in these cells (Figure 3E) (s, =
—0.23). In addition, A2 scores had a moderately negative correlation with M scores (nnPCA) (s, =
—0.17) (Figure 3F).

Systematic analysis for divergent M programs could not be performed due to the absence of any
Y subtype cells in the dataset. Nonetheless, heterogeneous expressions of M genes ZEB17 and
VIM were observed within the N subtype (Figure 3G). Furthermore, three M-like cell clusters with
similar E and M score rankings (Figure 3A, red, dark green, and brown) had dramatically different
profiles of VIM and ZEB1 expression (Figure 3G) even though all were classified as N (Figure
3H). These results further support the association between SCLC and EMT programs and reveal
a previously underappreciated connection between SCLC tumor cell heterogeneity and EMT.
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Figure 3. Detection of epithelial- and mesenchymal-like SCLC subtypes in human tumor
cells. A. Scatter plot shows nnPCA-based E and M scores for 54,523 SCLC cells (Chan et al.,
2021). Color code represents each of the 19 patients. Circles and black bars show means and
standard deviations of cell scores for each patient. B. Same data as in A with SCLC subtype
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labels obtained from Chan et al. (2021). Circles and black bars show means and standard
deviations of scores across the previously determined SCLC subtypes. C, D. Scatter plots show
A2 and A subtype scores in the previously determined SCLC-A subtype cells from the data in B.
E, F. Transcriptome data of 11,056 SCLC cells from tumor RU1108 of the Chan et al. study (Chan
et al., 2021) were projected onto indicated score axes. Linear regression lines and confidence
intervals were obtained for all cells and ASCL1* cells. s, is Spearman correlation coefficient. G.
Normalized expression of ZEB1 and VIM in the same dataset as in A. Color code represents each
of the 19 patients as in A. H. The same data as in G but color labels are defined by SCLC subtype
shown in B.

Intratumor heterogeneity of SCLC indicates strong A2-epithelial association at single-cell
level

The A2-epithelial (A2-E) association in human tumors described in the previous section relies on
gene set analyses across multiple tumors, where all cells within each tumor were classified into
a single subtype (Chan et al., 2021) (Figure 3A-D). We next analyzed a scRNA-seq dataset of
two human SCLC circulating tumor cell-derived xenografts (CDXs) (Gay et al., 2021), which each
underwent an EMT-like cell state transition upon cisplatin treatment such that multiple subtypes
exist within individual tumors. We first performed subtyping analysis and computed scores of five
SCLC subtypes for 5,268 cells (untreated and cisplatin-treated) of tumor SC53. We visualized the
SCLC scores in the E-M space obtained from nnPCA (Figure 4A) and found that while there was
a distinct, small population corresponding to an M-like state as previously reported (Gay et al.,
2021), most tumor cells were located in a continuous region with relatively high A2 and A scores
(Figure 4A), consistent with their positivity for ASCL1 previously shown. Furthermore, N and P
subtypes seem to be absent from this tumor (Figure 4A). Interestingly, although both A and A2
scores were positively correlated with E scores for all cells in the tumor (s, = 0.43 for A2; s, =
0.09 for A), only A2 scores had a strong correlation with E scores for cells that express ASCL1
(Figure 4E and F) (s, = 0.35 for A2; s, = —0.08 for A). In addition, neither the SC53 tumor cells
nor its ASCL1* subpopulation showed a strong correlation between A2 scores and M scores
(Figure 4G).

We next extended our analysis to SC68, another tumor that underwent an EMT-like transition
upon cisplatin treatment (Gay et al., 2021). Similar to SC53, there was a strong positive correlation
between A2 and E scores both in all cells in the tumor and in ASCL1* cells, whereas the
correlations between other subtypes’ scores and E scores were either significantly weaker or
negative (Figure 4H). We also found that the strong A2-E association was partly explained by a
positive correlation between A2 scores and the expression of CDH1 (Figure 4H). Again, the A2-
E association was not due to shared genes between the two gene sets that we used for scoring
(Figure S3). Together, our results show that the intratumor association between A2 and E
transcriptional programs is a consensus pattern across RU1108, SC53, and SC68 tumors.

We next asked whether the A2-E correlation in SC53 was driven by cisplatin treatment or intrinsic
cell-to-cell heterogeneity. We found that cisplatin-treated ASCL1* cells showed both greater
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variance in the E-M space and stronger correlation between A2 and E scores compared to
untreated cells (Figure 4l) (s, = 0.31 for untreated cells; s, = 0.42 for treated cells). Nonetheless,
even in the untreated cells, a positive correlation between A2 and E scores was observed (Figure
41). Therefore, this A2-E association was found across all cells of both tumors before and after
treatment (Figure 4J). These results excluded the possibility that the observed A2-E association
was due to Simpson’s paradox in which the treatment condition may be a hidden variable. Instead,
they suggest that both cisplatin treatment and intrinsic cell-to-cell heterogeneity contribute to the
A2-E correlation and that treatment can induce a cell state transition towards an M-like state
without turning off ASCL1 transcription.
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Figure 4. Correlations between A2 and epithelial transcriptional programs in individual
human tumor cells. D. 5,268 single-cell transcriptomes from SCLC tumor SC53 (Gay et al.,
2021) were projected onto the E and M score axes using nnPCA. Colors indicate SCLC subtype
scores (see Methods). E-G. Linear regression lines and confidence intervals were obtained for all
cells and ASCL1" cells from data in D. H. Datasets of three tumors (top labels) were used to
compute the Spearman correlation coefficients between SCLC subtype scores (left labels) and E
scores from nnPCA or CDH1 expression levels. All cells and ASCL1" cells were analyzed
separately. I. Correlations between A2 scores and E scores (nnPCA) in untreated and cisplatin-
treated cells of SC53 tumor. J. Datasets of SC53 and SC68 tumors were used to compute the
Spearman correlation coefficients between SCLC subtype scores (left labels) and E scores from
nnPCA or CDH1 expression levels. All cells and ASCL1* cells were analyzed separately.
Untreated and cisplatin-treated cells were analyzed separately.
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Discussion

Understanding the molecular basis for tumor heterogeneity is crucial for developing next-
generation therapeutic strategies (Altschuler and Wu, 2010; Jordan et al., 2016; Saez-Ayala et
al., 2013; Shaffer et al., 2017). Recent advances in defining subtypes of SCLC tumors provides
such potential (Gay et al.,, 2021), but cellular and molecular mechanisms contributing to
phenotypic heterogeneity are still unclear. Interestingly, SCLC tumors have both NE and epithelial
characteristics (Stovold et al., 2013). We therefore asked whether SCLC cells hijack EMT,
canonically defined as a developmental program (Thiery et al., 2009), to increase invasiveness
and drug resistance which has been shown to occur in other cancer types (Fischer et al., 2015;
Mani et al., 2008).

While it was shown that some genes promoting EMT are activated in NE/non-NE transitions of
SCLC (Groves et al., 2022; Ireland et al., 2020; Ito et al., 2017), connections between SCLC
subtypes to the EMT spectrum have not been studied in depth. It is also unclear whether SCLC
involves multiple (unique) partial EMT states. Through analysis of transcriptome datasets from
multiple sources including a mouse tumor model, human cell lines, and human tumor samples,
our work reveals a strong correspondence between the EMT spectrum, containing an epithelial
state and several divergent mesenchymal states, and recently defined SCLC subtypes. Our study
indicates the partial EMT status of the NE subtypes A and N, whereas the NE subtype A2 is fully
epithelial-like. In addition, we show divergence of mesenchymal gene expression in N (an NE)
and Y (a non-NE) subtypes.

Our analysis shows diverse expressions of mesenchymal factors across SCLC subtypes. This is
consistent with recent observations showing EMT is a context-specific dynamic process (Cook
and Vanderhyden, 2020). Interestingly, the EMT transcription factor ZEB1 and EMT effector gene
VIM have an anti-correlated expression pattern between N and Y subtypes. Although the
contribution of ZEB1 to EMT was demonstrated in vivo and in vitro (Celia-Terrassa et al., 2018;
Cieply et al., 2013; Han et al., 2022; Watanabe et al., 2019), its high expression may not be
required for some partial EMT states. Our previous work showed that expressions of some
mesenchymal genes do not require ZEB1 activation, and that the high expression of a group of
EMT genes positively controlled by ZEB1, but not TGF-B, is correlated with better prognosis of
breast cancer patients (Watanabe et al., 2019). It is possible that ZEB1 is transiently required for
maintaining a group of NE cells during SCLC progression, and the transitions to more drug-
resistant subtypes may require the down-regulation of ZEB1.

This work builds on our prior studies that suggested the partial EMT status of N, based on mixed
morphological features and expression of ZEB1, SNAI1, and TWIST1 but not VIM (Groves et al.,
2022). Here, we expand this work by analyzing EMT-related gene signatures in this subtype
across multiple datasets. While SCLC-N is canonically defined by expression of NEUROD1,
characterizing this subtype as a partial-EMT state may lead to new insights regarding its functional
role in SCLC tumor progression and metastasis. Further work is needed to understand how
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enrichment of a mesenchymal signature (M1) in this subtype is related to this partial-EMT
characterization.

The heterogeneity of NE and non-NE SCLC subtypes has been observed previously. However,
the factors driving transitions between NE and non-NE subtypes are not well characterized. It has
long been known that EMT is reversible in both embryonic and postnatal development, and this
reversible process can also be triggered in cancer cell lines using either dynamic extracellular
signals (e.g. TGF-B) or forced expression of intracellular factors (e.g. TFs or microRNAs)
(Cursons et al., 2018; Grande et al., 2015; Hong et al., 2015; Watanabe et al., 2019). Our findings
suggest that the machinery for reversible EMT may also be responsible for the transitions
between NE and non-NE cells during the progression of SCLC. Future work is warranted to
determine the temporal sequence of activation among EMT TFs, signaling molecules, and
subtype-defining factors for SCLC, such that the intrinsic and extrinsic factors contributing to the
NE/non-NE transition can be dissected. Overall, by revealing the relationships between NE/non-
NE subtypes and EMT progressions, this study will help guide future work to improve our
understanding of SCLC tumor heterogeneity and cell state transitions that may be driven by EMT
programs.
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Resource availability

Lead contact
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Tian Hong.

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code generated during this study is available at GitHub
(https://github.com/smgroves/EMT_SCLC _project). No new data was generated for this study.

Methods

RNA-sequencing data

We obtained and batch-corrected bulk RNA sequencing expression data on SCLC cell lines from
the Cancer Cell Line Encyclopedia (50) and cBioPortal (70) (Cerami et al., 2012). Preprocessing
of this data was described in Groves et al. (2022).

Single-cell RNA sequencing data was downloaded from Gene Expression Omnibus (GEO) at
GSE193959 (human cell lines), GSE149180 (RPM mouse tumor time course), and GSE138474
(human CDX tumor samples) (Gay et al., 2021; Groves et al., 2022; Ireland et al., 2020).
Preprocessed human tumor data was downloaded from the Human Tumor Atlas Network
deposited by Chan et al. (Chan et al., 2021) at Synapse ID syn23630203. Human cell line and
RPM mouse tumor datasets were preprocessed as described in Groves et al. (Groves et al.,
2022), including filtering and normalization of total counts using the Python package Scanpy (Wolf
et al., 2018), log-transformation using the log7p function from the Numpy package, and scaling
using Scanpy. Log-normalized expression levels were used for comparisons (Mann-Whitney U
test) between subtypes.

Human CDX data was preprocessed as described in Gay et al. (2022). Briefly, cells were filtered
as described (Gay et al.,, 2021)) to remove non-tumor cells. SC53 tumors (before and after
cisplatin treatment) were concatenated together, and SC68 tumors were concatenated together.
For each dataset (SC53 and SC68), Scanpy was used: total counts were normalized by cell, then
data was log transformed (log1p). Highly variable genes were determined with min_mean =
0.0125, max_mean 5, and min_dsip = 0.8. A PCA, tSNE, and Leiden clustering were then
calculated using Scanpy.

Subtyping of SCLC cells
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Single cell subtype labeling was done as described in Groves et al. (Groves et al., 2022). Briefly,
after archetype analysis was applied to the MAGIC-imputed single cell datasets and vertices were
identified (Hart et al., 2015; Van Dijk et al., 2018), we labeled the cells closest to each archetype
as that subtype if the archetype score was > 0.95 (each cell receives weighted archetype scores
that sum to 1). SCLC archetypal signatures were generated from bulk human cell line and tumor
transcriptomics data, giving a matrix of 105 genes by 5 archetypes (SCLC-A, SCLC-A2, SCLC-
N, SCLC-P, and SCLC-Y). In order to align the single-cell archetypes with our bulk archetype
signatures, we consider the scores for each cell described in the STAR Methods section “Bulk
gene signature scoring of single cells using archetype signature matrix” from Groves et al.
(Groves et al., 2022). For each bulk signature x and for each single-cell archetype a, we ran the
following significance test:

(1) Find the mean bulk score x for a specialist, m.

(2) Choose a random sample of size n,, where n, is the number of specialists, with
replacement from the remaining cells (i.e. cells that are not specialists, including
generalists and other specialist cells). Find the mean bulk score for this sample. N.B.
Because some time points have very few cells, we sample evenly from each time point to
ensure adequate representation across the time points.

(3) Repeat this random selection 1000 times.

(4) Generate a p-value, which is equal to the percentage of means from this random
distribution above m.

(5) Using statsmodels.states.multitest, correct p-values for multiple tests. We used the
Bonferroni-Holm method to control the family-wise error rate. Consider g < 0.1
significant.

Therefore, each archetype was labeled with an SCLC subtype if enriched in that subtype’s
signature. For this work, we considered only the cells labeled with such a subtype (i.e. specialists).
For the RPM tumor cells, six archetypes were originally found in Groves et al., 2022 (A/N, A2,
P/Y, two Y groups, and one archetype not enriched in any signatures). Here, we consider those
enriched in SCLC subtype signatures, combining the two Y groups resulting in A/N, A2, P/Y and
Y.

Single sample gene set enrichment analysis (ssGSEA)

ssGSEA was performed to compute the enrichment scores for individual cells (for scRNA-seq
data) or individual cell lines (for bulk RNA-seq data) (Deshmukh et al., 2021; Krug et al., 2019). A
list of 232 epithelial signature genes, and a list of 193 mesenchymal signature genes were used
to compute the E enrichment score (E score) and M enrichment score (M score) respectively
(Cursons et al., 2018; Panchy et al., 2022; Tan et al., 2014). The combined list of 425 EMT genes
has 20 genes that also appear in the 105 signature genes used for SCLC subtyping. To ensure
that the inferred relationship between EMT scoring and SCLC subtyping was not simply due to
the shared list of genes, we excluded the intersection of the two gene sets and performed
additional ssGSEA scoring for each dataset. The patterns of the scoring were not altered by the
exclusion.

Non-negative principal component analysis (nnPCA)
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To quantify the divergent progression of EMT across the subtypes of SCLC cells, we used a
second approach to compute the E and M scores. We performed nnPCA using the gene sets
mentioned above (Panchy et al., 2021; Panchy et al., 2022). nnPCA determines the approximately
orthogonal axes with non-negative coefficients (loadings) for features (genes). Variances of
projections of data points (cell or cell lines) onto these axes are maximized via an optimization
method (Sigg and Buhmann, 2008). To select the principal components (PCs) that best represent
the EMT programs across SCLC subtypes, we used two criteria to rank the PCs in a semi-
supervised manner. We first selected the top five PCs that have the highest variances explained
for individual samples (cells or cell lines). Among the five PCs, we re-rank them based on the
variances of means of individual SCLC subtypes. Similar to ssGSEA, we excluded the EMT gene
set and the SCLC gene set and performed additional nnPCA scoring for each dataset. The ranks
of the PCs and the patterns of the nnPCA were not altered by the exclusion.
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Supplementary Figures
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Figure S1. Distributions of SCLC cells across the epithelial and mesenchymal spectrum
using non-overlapping gene sets. A. E and M scores of 15138 mouse Myc-driven tumor cells
in an ex vivo model. Archetype analysis was performed to determine generalist cells and specialist
cells of four types (SCLC subtypes). Scores were computed with ssGSEA and 405 previously
identified EMT genes that were not used for SCLC subtyping. B. E and M scores of 120 SCLC
cell lines computed with the same method as in A. C. E and M scores of 13945 cells from 8 SCLC
cell lines computed with the same method as in A.
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Figure S2. Subtype scores for human tumor cells. Boxplots show subtype scores including
newly defined A* and A2* subtypes based on the threshold indicated in Figure 3C and D, as well
as N and P subtypes defined by Chan et al. (Chan et al., 2021).
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Figure S3. Treatments of human tumor cells visualized in EMT space. Scatter plot shows
nnPCA-based E and M scores for 54,523 SCLC cells (Chan et al., 2021). Color code represents

each of the treatment types. Circles and black bars show means and standard deviations of cell
scores for each treatment type.
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Figure S4. Correlations between A2 and epithelial transcriptional programs in individual
human tumor cells using non-overlapping gene sets. A. Datasets of three tumors (top labels)
were used to compute the Spearman correlation coefficients between SCLC subtype scores (left
labels) and E scores from nnPCA or CDH1 expression levels. All cells and ASCL1* cells were
analyzed separately. B. Datasets of SC53 and SC68 tumors were used to compute the Spearman
correlation coefficients between SCLC subtype scores (left labels) and E scores from nnPCA or
CDH1 expression levels. All cells and ASCL1* cells were analyzed separately. Untreated and
cisplatin-treated cells were analyzed separately.
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