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Abstract: 

Background: Emerging evidence support the view that brain stimulation might 

improve essential tremor (ET) by altering brain dynamics and facilitating brain 

plasticity. Yet, we are still missing a mechanistic explanation of the whole brain 

dynamics underlying these plasticity defining changes. Method: In this study, we 

explored the effect of low-frequency repetitive transcranial magnetic stimulation 

(rTMS) over primary motor cortex (M1) on dynamic functional connectivity (DFC) in 

patients with ET. Resting state fMRI (RsfMRI) was acquired before and after a single 

session of rTMS in 30 patients with ET and compared with RsfMRI of 20 age, gender 

and education matched healthy controls (HCs). We have measured the effect of brain 

stimulation using network topological re-organization through whole brain integration 

and segregation, brain stability and capacity of neural propagation through 

metastability and intrinsic ignition. Results: Patients with ET had altered DFC 

measures compared to controls. After a single session rTMS, the connectivity measures 

approached normality and patients with ET revealed significantly higher integration, 

lower segregation with higher metastability and increased intrinsic ignition.  

Conclusion:  Brain metastability and intrinsic ignition measures could be valuable 

tools in appreciating mechanisms of brain stimulation in ET and other neurological 

diseases.  
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1. Introduction: 

Neurological disorders are characterized by several disabling symptoms for which 

effective, mechanism-based treatments remain elusive and more advanced non-

invasive therapeutic methods are being explored. Repetitive transcranial magnetic 

stimulation (rTMS) is a widely used classical non-invasive brain stimulation (NIBS) 

method which has been quite useful in management of drug resistant psychiatric 

disorders such as depression [1-4], mood disorders [5, 6], obsessive compulsive 

disorder [7-10], posttraumatic stress disorder (PTSD) [11-13] etc. These studies present 

mixed results in improvement of patient symptoms or clinical scores.  Over the last 

three decades, TMS has helped us in understanding pathophysiology of many 

neurological disorders. TMS studies in essential tremor (ET), the most common tremor 

syndrome, have been helpful in demonstrating cerebello-thalamo-cortical circuitry 

(CTC) that is likely to be involved in the generation of tremor [14]. Pathophysiological 

insights into tremor syndromes have been supportive in selecting appropriate 

stimulation regions and rTMS parameters in the management of these diseases 

clinically [15]. 

Resting state fMRI (RsfMRI) methods in duplicate, before and after brain stimulation, 

is a popular method to assess the neurobiology of brain stimulation owing to its non-

invasive nature, capability for whole brain analysis, better spatial resolution of deep-

seated brain regions, ease of acquisition, repeatability and lack of any known adverse 

effects. Majority of the studies, using RsfMRI reveal a diffuse increased whole brain 

connectivity immediately after stimulation irrespective of the frequency of stimulation 

[16-19].Though some studies reveal decreased or no changes in connectivity [20-22], 

most of the studies have reported increased connectivity that extended beyond the 

stimulated region or networks [17, 23, 24]. This suggests that the effects of rTMS could 

either spread through anatomical tracts [25] or entrain brain oscillations increasing 

neural synchrony as a whole [26]. Stimulation of “task irrelevant” brain area like vertex 

[27] or sham stimulation revealed no changes in connectivity [28], reiterating the 

validity of this tool in measuring changes induced by rTMS. Another interesting point 

is that majority of studies report increased connectivity both after single session of 

rTMS and after rTMS therapy indicating the potential of using single session rTMS for 

research. One study [23] explored the network and found an increase in clustering 

coefficient and reduction in the path-length emphasizing  enhancement in the  small-

world characteristic of network architecture after single session of rTMS. Recent 
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studies also indicate that these changes could be region specific, as the sensory cortex 

stimulation reveals different connectivity profile compared to motor cortex [29]. 

Homogeneous study groups, individualised target identification, uniform acquisition 

and analysis methods and longitudinal studies to measure sustainability of these 

changes are still required to completely decipher the connectivity changes encountered 

after rTMS.   

In the brain connectivity community, brain function is increasingly seen as a result of 

metastable large scale network interactions [30]. Even at rest it is thought that one stable 

pattern of reverberating neural activity dynamically shifts from one stable state to 

another and hence it is postulated that brain is always in a multistable state [31]. 

Multistability is advantageous because, when faced with a stimulus, shifting 

equilibrium among coexisting states is more efficient than creating situation specific 

equilibrium afresh [32]. Dynamic functional connectivity (DFC) measures such as 

reproducible patterns of sliding window correlations, single-volume co-activation 

patterns, and repeating sequence of BOLD activity assume some degree of 

multistability. Recently it is proposed that neural propagation of local events to the 

entire network could be used to quantify the alteration of whole brain integrations as 

proposed in “Intrinsic Ignition” framework [33]. A high intrinsic ignition corresponds 

to rich and flexible brain dynamics having higher capacity to process event information, 

whereas low intrinsic ignition is poor, rigid network interaction with reduced neural 

communication [34]. In contrast to multi-stable approaches intrinsic ignition methods 

do not assume the presence of true points of equilibrium and appear instead as the result 

of opposing tendencies of the dynamics towards coupling and independence. There are 

several electrophysiological and behavioral studies that provide evidence that brain 

dynamics have features that are consistent with metastability [35-41].   

 

Though significant imaging-based literature has accrued in the last couple of years   

revealing modulatory RsfMRI changes after single session of rTMS [42], to the best of 

our knowledge there are no previous literature on the effects of brain stimulation on the 

spatiotemporal dynamics and neural communication. We employ dynamic global 

functional connectivity assessments to test the hypothesis that the stimulatory effect of 

rTMS of M1 in ET might be caused by increases in neural propagation capacity, 

stability, and dynamic repertoire of the brain.   
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2. Method: 

2.1 Participants: Thirty patients with ET [mean (age ± SD 37.33) ± 10.67 years, 6 

Females] and twenty age, and education-matched HCs [mean (age ± SD) 38.2 ± 10.7 

years, 4 Females] participated in this study after providing written informed consent. 

The study was approved by the institutional (NIMHANS, Bengaluru, India) ethics 

committee for humans. All participants were evaluated in detail by movement disorders 

specialists [(PKP, RY, NM, and NK); Supplementary Table 1]. All participants were 

right-handed and were checked for MRI and TMS contraindications. Subjects with ET 

were either on propranolol, primidone or clonazepam and these drugs were withheld 

prior to evaluation based on their half-life, i.e., at least 12 hours after the last dose of 

propranolol or primidone and 40 hours after the last dose of clonazepam. Secondary 

causes of tremors were primarily ruled out during clinical evaluation, and other causes, 

for instance hyperthyroidism where suspected was ruled out via blood investigations 

such as a thyroid profile. Participants with a structural lesion on MRI, prior brain, spinal 

or peripheral nerve trauma/surgery, claustrophobia and on neuroleptic drugs were 

excluded from the study. HCs with no neurological or psychiatric illnesses were 

recruited for MRI.  

 

2.2 Experimental Design: Thirty patients of ET, diagnosed as per the consensus 

criteria of tremor [43, 44], and twenty, age and gender matched healthy controls were 

recruited from the neurology outpatient department at NIMHANS. The standard 

protocol followed for all patients of ET was as follows – informed written consent, 

clinical evaluation, estimation of resting motor threshold (RMT), resting state 

functional MRI siting 1 (RsfMRI-s1), rTMS, and a second resting state functional MRI 

siting 2 (RsfMRI-s2) within 10 minutes of the rTMS.  HCs underwent only a single 

session of resting state functional MRI (RsfMRI) and did not undergo rTMS as ethical 

approval could not be obtained.   

 

2.2.1 RsfMRI Data Acquisition: A 3T MRI scanner (Skyra; Siemens, Erlangen, 

Germany) was used for conducting this study. Data was collected between 2016-2019. 

The acquisition parameters were identical for RsfMRI-s1, RsfMRI-s2 in ET and for 

RsfMRI in HCs. To prevent head movement, sufficient padding and ear plugs were 

provided to all subjects. Whole brain Blood oxygen level dependent (BOLD) images 

were acquired using a spin echo sequence (TR = 2000 ms; TE = 20 ms; refocusing pulse 
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90°; 4.0 mm slice thickness in an inter-leaved manner with an FOV of 192 × 192 mm2; 

matrix 64 × 64 voxels; voxel size 3 × 3 × 4 mm3; 250 dynamics). A three-dimensional 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence was 

acquired (TR=1900 ms; TE=2.4 ms; voxel size 1×1×1 mm3, slice thickness=1mm) for 

spatial registration and segmentation. 

 

2.2.2 rTMS Parameters: After RsfMRI-s1, subjects were moved to another room 

adjacent to MRI, and rTMS was delivered using a Magstim Super Rapid stimulator 

(Magstim Co. Ltd, Whitland, UK) with a figure-of-eight coil configuration. rTMS was 

applied tangentially to the scalp with the handle pointing backward and laterally at an 

approximate angle of 45◦ to the mid-sagittal line, perpendicular to the presumed 

direction of the central sulcus. rTMS was delivered over the left primary motor cortex 

(M1) by delivering 900 stimuli at 90% of resting motor threshold (RMT) and 1 Hz for 

15 min. The RMT was determined as the lowest intensity that produced motor evoked 

potentials of >50 µV in at least five out of 10 consecutive single-pulse TMS stimuli 

using same Magstim Super Rapid stimulator. The stimulator was attached to an 

electromyography machine from the right hand first dorsal interosseous muscle using 

Ag-AgCl surface electrodes placed over the muscle in a belly-tendon arrangement. 

 

2.3 Data Analysis: RsfMRI data was recorded for 250 dynamics (~ 8.33 min), 

however, we removed first five dynamics from fMRI before pre-processing to avoid 

signal inhomogeneity during scanner start transition period.  

 

2.3.1 RsfMRI data pre-processing: RsfMRI data pre-processing steps included 

realignment, segmentation of the structural data for regressing out the white matter and 

cerebrospinal fluid (CSF) effects, normalization to MNI152 standard space of 3 × 3 × 

3 mm3, and motion correction using Friston’s 24-motion parameter [23]. Data was 

checked for head motion using the Artefact Detection Toolbox (ART) and found not 

being significantly different between RsfMRI-s1, RsfMRI-s2 and RsfMRI of HC. 

SPM12 was used for pre-processing of the fMRI data. 

 

2.3.2 Brain Region Parcellation: Shen’s 268 region atlas [45] was used to parcellate 

the resting state brain into 268 functionally segregated ROIs using MarsBaR toolbox. 
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The RsfMRI BOLD time series for each ROI was extracted as the average of all the 

voxels in that ROI. 

 

2.3.3 Phase-locking matrices and dynamic functional connectivity (DFC): To 

calculate the instantaneous phase of the BOLD signal, 𝜙௞(𝑡), we first band-pass filtered 

the BOLD timeseries corresponding to the brain area k in narrowband of 0.03-0.09 Hz. 

This frequency band has been mapped to the gray matter and found to capture more 

relevant information than any other frequency bands in terms of brain function. We 

computed the instantaneous 𝜙௞(𝑡) using the Hilbert transform ‘H’ which yields the 

associated analytical signal. The analytical signal represents a narrowband signal, 𝑠(𝑡), 

in time domain as a rotating vector with an instantaneous phase, 𝜙௞(𝑡), and an 

instantaneous amplitude, 𝐴(𝑡), i.e., 𝑠(𝑡) = 𝐴(𝑡). 𝑐𝑜𝑠 ൫𝜙(𝑡)൯. The phase and the 

amplitude are given by the argument and the modulus, respectively, of the complex 

signal, 𝑧(𝑡), given by 𝑧(𝑡) = 𝑠(𝑡) + 𝑖. 𝐻[𝑠(𝑡)], where 𝑖 is the imaginary unit and 

𝐻[𝑠(𝑡)] is the Hilbert transform of 𝑠(𝑡). 

The synchronization between pairs of brain regions was computed using the difference 

in instantaneous phases. For each time-point, the instantaneous phase-locking matrix 

was given as: 

𝑃௝௞(𝑡) = 𝑒௜ቀథೕ(௧)ିథೖ(௧)ቁ ∨    (1) 

where 𝜙௝(𝑡) is the extracted phase of brain area j at time t. The phase lock matrix 

describes the states of phase configuration and it has been proposed to contain relevant 

information for measuring global integration [46] and broadcasting of information [33]. 

The presence of repeating synchronized networks by calculating the recurrence matrix 

of phase-locking patterns is the measure of DFC. This measure was previously defined 

for FC matrices calculated in different time windows [47]. To assess whole brain 

functional connectivity differences, we averaged all the DFC matrices across time for 

each group/condition (Figure 1).  

 

2.3.3.1 Integration: We used the phase-locking matrix to compute the level of 

integration at time t based on the procedure presented in [46]. The integration, 𝜙, was 

determined using the length of the largest connected component of the phase-locking 

matrix 𝑃௝௞(𝑡). More specifically, for a given absolute threshold between 0 and 1 

(scanning the whole range), the phase-locking matrix was binarized and its largest 
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connected component was detected (i.e., the largest sub-group in which any two 

vertices are connected to each other by paths, and which connects to no additional 

vertices in the super-graph). The integration, 𝜙, was defined as the size of the largest 

connected component. 

 

2.3.3.2 Segregation: Similar to integration, we extracted the community structure of 

the phase-locking matrix for each time window t. Communities were detected using the 

Louvain algorithm that performs a subdivision of the matrix into non-overlapping 

groups of nodes which maximizes the number of within-group edges and minimizes the 

number of between-group edges [48]. The modularity index, Q, measures the statistics 

of the community detection. [49]. 

 

2.3.3.3 Metastability: To measure the global level of phase synchronization we used 

the Kuramoto order parameter [37], defined as the average phase of the system of N 

signals: 

𝑅(𝑡) = ଵ
ே

∨ ∑ 𝑒௜థೖ(௧)ே
௞ୀଵ ∨   (2) 

For independent signals, the N phases are uniformly distributed and thus R is nearly 

zero, whereas R = 1 if all phases are equal (full synchronization). In order to promote 

efficient information processing, the phases of different areas must be synchronized 

into coherent neural activity. The metastability measure [50] quantifies the temporal 

variability (of this synchronization) R(t) and it is measured by its standard deviation. 

 

2.3.3.4 Intrinsic Ignition: The capability of a given local node to propagate neural 

activity to other regions was quantified using the intrinsic ignition method [33, 34]. 

Intrinsic ignition describes the influence of spontaneously occurring events within the 

network over time. The propagation of neural activity was measured using the global 

integration, (𝜙), previously described [33], which determines the capacity of the whole 

network to become interconnected and exchange information. Local events are defined 

region wise as significantly large fluctuations taking place in the resting-state BOLD 

signal. To this end, first, the BOLD signals were z-scored (i.e., 𝑍௜(𝑡)) and then 

binarized by imposing a threshold θ (i.e., ± 2 standard deviation above the mean BOLD 

signal). This resulted in binary time-series per region for which events are indicated 

with 1 [i.e., 𝜎௜(𝑡) = 1, if 𝑍௜(𝑡) > 0 and 𝜎௜(𝑡) = 0, otherwise [34]]. Next, for each node 
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‘𝑖’, we calculated 𝜙 in a window of 4 TR after each triggering event (i.e., 𝜎௜(𝑡) = 1). 

Finally, the average 𝜙 over all triggering events was calculated to define the Ignition 

Driven Mean Integration (IDMI) denoted as “Intrinsic Ignition” [34].  

 

3. Result: 

A single session of rTMS was found to increase integration and decrease segregation 

in patients with ET. Metastability and intrinsic ignition were found to be higher after 

rTMS at a group level and at individual patient level. Details of these results are as 

follows: 

 

3.1 Dynamics Functional connectivity (DFC):  

The whole brain (i.e., averaged over time and regions) DFC was higher in controls 

(0.16±0.11) than ET patients (0.06±0.03; p=1.199E-06). After rTMS the patients with 

ET showed significantly increased mean connectivity (0.23±0.09; p=1.415E-13). The 

mean connectivity matrices are demonstrated in Figure 1. 

 

                  -Figure 1- 

Figure 1. Mean dynamic functional connectivity (DFC) matrix of (a) healthy controls 

(b) ET before rTMS (c) ET after rTMS stimulus. The DFC matrix shows ET having 

lower functional connectivity as compared to healthy control, which increased after 

rTMS.  

3.2 Whole Brain Integration and Segregation:  

The mean value of the integration was significantly lower for patients with ET with 

respect to controls (controls: 0.82±0.02; ET patients in pre rTMS: 0.79±0.009; p= 

4.14E-10); after rTMS the brain integration revealed significant increase (0.82±0.01; 

p=1.419E-14). On the other hand, the brain segregation showed the opposite tendency 
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of integration with increased segregation noted in patients at baseline (controls: 

0.43±0.04; ET patients in pre rTMS: 0.51±0.02; p=8.84E-10), that decreased after 

rTMS (0.41±0.04; p=8.65E-15) (Figure 2). 

 

     -Figure 2- 

Figure 2. Whole brain (a) network integration and (b) segregation. ET has lower 

network integration and higher segregation as compared to healthy controls. After 

rTMS, brain network integration increased, and segregation decreased in ET. 

3.3 Metastability:  

We found that, the mean metastability was lower in ET (0.1±0.03; p=2.25E-07) 

compared to control (0.16±0.04). After rTMS stimulation the brain metastability 

significantly increased (0.18±0.03; p=2.31E-14) (Figure 3.a). We also looked for 

individual subject metastability, and noted that, all subjects had increased metastability 

after rTMS stimulation (Figure 3.b). 
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     -Figure 3-  

Figure 3. Whole brain metastability (a) in violin plot representations for healthy control, 

ET pre and post rTMS and (b) individual subject whole-brain metastability pre and post 

rTMS in ET, depicting significant (* FDR p-value <0.001) increase in metastability 

after rTMS.  

3.4 Intrinsic Ignition:  

We found that the capacity of neural propagation measured by whole brain intrinsic 

ignition was significantly lower in ET (0.8±0.008; p=2.48E-10) when compared to 

control (0.84±0.02). After rTMS stimulation, the capacity of neural propagation 

significantly increased (0.84±0.018; p=7.05E-14) (Figure 4.a). We also analyzed region 

wise intrinsic ignition and noted, all brain regions have increased intrinsic ignition after 

rTMS [Supplementary Figure 1]. Further looking at individual subjects, we noted all 

the subjects having increased whole brain IDMI after rTMS stimulation (Figure 4.b). 
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-Figure 4- 

Figure 4. Whole Brain Ignition Driven Mean Integration (IDMI) (a) in violin plot 

representations for healthy control, ET pre and post rTMS and (b) individual subject 

whole-brain IDMI pre and post rTMS in ET, depicting significant (* FDR p-value 

<0.001) increase in IDMI after rTMS. 

4. Discussion: 

In this study, we used low-frequency rTMS in patients with ET to understand its 

mechanism of action, within the framework of brain network integration-segregation, 

intrinsic ignition, and metastability. In individuals with ET compared to HC at baseline, 

we saw considerably weaker integration, more segregation, low metastability, and low 

intrinsic ignition. A single rTMS session was found to reset these metrics by raising 

global integration, metastability, and intrinsic ignition to levels that were similar to 

those of healthy controls.  

 

Simulated computational models on metastability reveal small worldness, network 

interaction and degree of the structural connectivity to have positive predictive value 

on metastability [51]. Increased pathlength was associated with a decrease in 

metastability [52].  In the current study, there was reduced segregation and increased 

global integration after rTMS which is in line with the evidence from computational 

models and support increased global integration and reduced dynamism between nodes 

as one of the major determinants for improved metastability. Our prior work in patients 

with Writer’s cramp (WC) had revealed increased clustering coefficient, increased 

small worldness and reduced pathlength after single session of rTMS [23]. Though a 
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reduction in pathlength after rTMS, which denote increased network integration was a 

common denominator in both ET and WC, it needs to be noted that these diseases 

revealed opposite effects on the network segregation (i.e., clustering coefficient). In 

WC, brain network segregation increased whereas in ET it decreased. TMS studies have 

earlier reported differences between patients with ET and dystonic tremor with authors 

speculating that the thalamo-cortical part of CTC to be playing a prominent role in 

tremor genesis in patients with ET [53] whereas in patients with dystonic tremor the 

debate between oscillators within CTC or basal ganglia projections causing tremor is 

still ongoing [54]. Not discrediting the obvious differences in analyses methods 

between TMS and DFC we hypothesize that the findings we report could also be due 

to disease specific alterations in the network morphology. Future studies that are 

hypothesis driven and focused will be required to answer questions on the disease 

specific variations in the CTC network after rTMS.  

 

Further exploring the spatio-temporal aspects of brain dynamics, we found that rTMS 

increased brain metastability and neural propagation capacity as determined by intrinsic 

ignition. Because one evaluates brain stability and the other the brain's ability to spread 

neural activation, metastability and intrinsic ignition are complementary assessments 

of one another. According to a study on diffuse axonal injury, structural disconnection, 

decreased cognitive flexibility, and information processing were all associated with 

altered metastability [52]. Decreased metastability and ignition has been reported in 

unresponsive wakeful state and have been found to increase as patients regain 

consciousness or reach minimal conscious state [51, 55]. Neural responses to 

perturbations (i.e., TMS) in patients with unresponsive wakeful states, in contrast to 

patients in minimally conscious states [56, 57] provides proof of evidence that rTMS 

increases brain activity and connectivity and supports findings in the current study. 

Since metastability and intrinsic ignition increased in all subjects, it is possible that the 

measure may have the ability to evaluate the impact of rTMS at an individual subject 

level. We did not record changes in behavioral or cognitive scores after rTMS since 

clinically evident changes after single session of rTMS is less known. However, it 

seems reasonable to assume that increased metastability and intrinsic ignition measures 

could be further explored to ascertain its comparability with observed improvement in 

clinical scores in patients undergoing rTMS therapy.   
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The study had some limitations. First, the effect of sham stimulation in brain dynamics 

was not evaluated, and all patients were given real low frequency rTMS intervention. 

Second, we did not assess the effect of low frequency rTMS stimulation on healthy 

controls. Third, the described metastability alterations that we have observed are within 

10 minutes of single session of rTMS. It will be interesting to consider changes during 

stimulation and assess how long these alterations will persist to ensure that these 

changes are not due to anxiety, pain, or fatigue that are associated with rTMS. 

 

5. Conclusion: 

Our findings offer substantial evidence that rTMS alters dynamic functional 

connectivity measures especially brain metastability and intrinsic ignition. However, 

further research is necessary to make sure that these alterations are sustainable and can 

quantify the magnitude of changes required for clinically significant improvement. 
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Supplementary Figure 1. Region-wise [45] plot of Ignition Driven Mean Integration 

(IDMI) for healthy controls, ET pre and post rTMS.  
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Supplementary Table 1: Clinical and cortical excitability measures in subjects with 
essential tremor 
NAME Age Gender AAO DD RMT AMT CMCT 

[ms] 
CSP 

Subject 001 47 M 38 9 36 30 7.57 98.6 
Subject 002 24 M 20 4 35 31 8.6 64.8 
Subject 003 27 M 19 8 42 39 7.2 66.4 
Subject 004 25 M 21 4 44 41 9.5 52.8 
Subject 005 36 M 26 10 39 32 7.8 59.3 
Subject 006 22 M 7 15 38 31 8.1 66.4 
Subject 007 44 F 43 1 47 36 8.95 67.2 
Subject 008 32 M 17 15 40 34 8.2 48.4 
Subject 009 32 F 31 1 38 34 6.8 62.6 
Subject 010 41 F 38 3 39 29 6.9 67.9 
Subject 011 50 M 36 14 34 30 4.7 52.8 
Subject 012 42 M 37 5 30 28 5.8 58.4 
Subject 013 45 F 44.5 0.5 38 29 6.6 55.3 
Subject 014 35 M 22 13 39 31 5.9 59.1 
Subject 015 41 M 34 7 32 26 7.4 42.8 
Subject 016 28 M 13 15 34 30 8.45 46.4 
Subject 017 47 M 46 1 70 62 15.5 46.6 
Subject 018 23 M 16 7 24 22 7.9 37.6 
Subject 019 32 M 28 4 36 32 7.5 78.4 
Subject 020 25 M 24 1 32 26 8.24 48.4 
Subject 021 35 M 21 14 40 26 6.6 117.2 
Subject 022 55 M 54 1 38 36 5.4 48 
Subject 023 54 M 53 1 40 38 6.8 86.2 
Subject 024 20 F 14 6 28 25 7.4 64 
Subject 025 46 M 41 5 30 22 9.1 52.2 
Subject 026 33 M 31 2 38 32 8.3 56.7 
Subject 027 26 F 22.5 3.5 38 34 8.6 46.8 
Subject 028 49 M 44 5 42 32 6.8 91.5 
Subject 029 54 M 53 1 44 38 4.4 54 
Subject 030 51 M 49 2 42 34 5.4 78.6 

AAO: age at onset; DD: Disease duration; RMT: Resting Motor Threshold, AMT: 
Active Motor Threshold, CMCT: Central Motor Conduction Time; CSP: Contralateral 
Silent Period. 
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