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Abstract 

Complex and irregular cell architecture is known to statistically exhibit fractal geometry, i.e., 

a pattern resembles a smaller part of itself. Although fractal variations in cells are proven to 
be closely associated with the disease-related phenotypes that are otherwise obscured in 

the standard cell-based assays, fractal analysis with single-cell precision remains largely 
unexplored. To close this gap, here we develop an image-based approach that quantifies a 

multitude of single-cell biophysical fractal-related properties at subcellular resolution. Taking 
together with its high-throughput single-cell imaging performance (~10,000 cells/sec), this 

technique, termed single-cell biophysical fractometry, offers sufficient statistical power for 
delineating the cellular heterogeneity, in the context of classification of lung-cancer cell 

subtypes and tracking of cell-cycle progression. Further correlative fractal analysis shows 
that single-cell biophysical fractometry can enrich the standard morphological profiling depth 

and spearhead systematic fractal analysis of how cell morphology encodes cellular health 
and pathological conditions.   
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Introduction  

Cell morphology is constituted by the complex biomolecular machinery at the genomic, 

transcriptomics, and proteomic levels. Hence, it is a valuable readout, which can be captured by 

microscopy, for assaying the functional state of individual cells. Dramatic advancements in high-

throughput imaging and computer vision in the past decade have sparked the major drive in the 

use of microscopy to extract quantifiable information from cell morphology (i.e., morphological 

profiling) 1,2. Creating the catalogues of the cell morphological features, this cell profiling strategy 
enables mining the underlying feature signatures or patterns that can infer cell age 3, metastatic 

potential 4, screening chemical 5 and genetic perturbation 6. 

 

In morphological profiling, a wealth of quantitative metrics (features) can be extracted from the 

individual cell images, including cell size, shape, texture etc., representing a fingerprint of each 

cell. Downstream analysis is then applied to investigate the similarities or correlations between 

profiles in order to identify the phenotypes specific to the cell types and states. Traditionally, the 
morphological features are defined based on Euclidean geometry, which can be easily coupled 

with general variations in geometry (e.g., size and shape), however, irregular spatial information 

hidden in the complex cellular structure (e.g., statistical properties of shape and texture) could 

often be missed. This is particularly relevant to the cellular malignancy, in which the intracellular 

mass growth shows a significant degree of randomness and disorder 7. Specifically, conventional 

Euclidean geometry fails to holistically quantify the textural or shape irregularity at different length 

scales. This explains the need for an extended set of local and global features to separately 

examine the heterogeneity at different spatial scales 8. Yet, they do not capture an important 
property shared in a wide variety of biological cells, i.e., “fractality”. It refers to the fact that the 

texture/shape of an object does not significantly differ from the same property measured on the 

larger scale. To this end,  fractal dimension (FD) has been adopted as an effective metric that 

quantifies and classifies the irregular biological structures and the self-similarity characteristics 

that are not well represented by the Euclidean geometry 9. FD is typically a non-integer value, in 

contrast to the dimensions defined in Euclidean geometry, i.e., 1 for a line (1D), 2 for a plane 

(2D) and 3 for a cube (3D). 

 
Indeed, fractal analysis has been demonstrated an effective tool in clinical diagnosis, such as 

examination of aberrant histopathological features in tissues 10, and assessment of abnormal 

organ morphology (e.g. tumor vasculatures) in radiology 11. Further down to the cellular or even 

subcellular level, fractal behavior can be observed in the chromatin topology in the nucleus 12-14, 

cell membrane contour and adhesion topology 15, mitochondrial 16 and cytoskeleton 17 

morphology. For instance, the mitochondria organization undergoing fission and fusion regulated 

by cellular metabolism follows the statistics of self-similarity 18; the protein interaction and 
structural interminglement of chromatin are both highly consistent with a fractal framework 12; the 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2022. ; https://doi.org/10.1101/2022.05.24.493226doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.24.493226
http://creativecommons.org/licenses/by-nc/4.0/


architecture of cytoskeleton and plasma membrane also shows a self-similar topology where 

molecules are confined hierarchically over time and length scales 19. Hence, the knowledge of 

fractal characteristics of cells could offer new physical insights of cell types and states. 

Specifically, changes in cellular and subcellular FDs are now known to be closely related to the 
epigenetic states 20, the gene expression levels 16. Hence, they can be indicative of the functional 

states of cells (e.g., metabolic states 21, cell differentiation states 22, and cell malignancy 23).  

 

However, these promises, together with the cellular fractal characteristics that can readily be 

analyzed by standard microscopy, have not yet made fractal analysis widely applicable in 

cytometry and morphological profiling of cells. The key challenge stems from the fact that the 

cellular/subcellular morphology exhibits fractal properties in a statistical sense, instead of the 

archetypal geometrical sense. Yet, current imaging techniques lack the scale and throughput to 
guarantee that fractal analysis could show the sufficient statistical power for delineating the 

cellular heterogeneity and complexity on the single-cell level (e.g., limited to ~10’s -100’s single 

cells 15,23,24). 

 

To address this challenge, here we employ an ultrahigh-throughput quantitative phase imaging 

(QPI) flow cytometer called multiplexed asymmetric-detection time-stretch optical microscopy 

(multi-ATOM) 25,26 to analyse single-cell biophysical fractal characteristics (termed single-cell 

biophysical fractometry) at the breadth and depth not achievable by the existing methods. This 
strategy of single-cell fractometry is achieved by two key attributes: (1) Establishing label-free 

morphological profiling that includes not only the common shape and texture features based on 

Euclidean geometry, but also a collection of biophysical fractal parameters (not only FD) of each 

cell. This is enabled by the core strength of QPI inherited by multi-ATOM, in which the complex-

field image information of individual cells (i.e., both amplitude and quantitative phase images) 

can be obtained at subcellular resolution. Such complex-field information can then be harnessed 

to compute the corresponding far-field light scattering pattern (by means of Fourier Transform 
light scattering (FTLS) 27), which provides a catalogue of single-cell fractal and the associated 

ALS features. Defining these fractal features as an intrinsic morphological profile aligns precisely 

with the growing interest in new strategies for in-depth biophysical phenotyping of cells, that has 

already generated new mechanistic knowledge of cell heterogeneity and showed initial promises 

in identifying cost-effective biomarkers of disease, thanks to its label-free nature 28. (2) Enabling 

large-scale single-cell fractometry by the ultrafast QPI operation in multi-ATOM, at the speed at 

least 100 times faster than the existing QPI modalities that rely on camera technology for image 

recording 29. Combined with the high-throughput microfluidics platform 8,25,26,30, this approach 
enables single-cell fractometry at a throughput of at least 10,000 cells/sec without sacrificing the 

subcellular imaging resolution. This attribute critically provides in-depth statistical fractal analysis, 

which has largely been underexploited in the previous work on fractal analysis, especially at the 

single-cell screening resolution. Indeed, comprehensive morphological profiling often relies on 
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analysing the deeper statistics of cell phenotypes in order to detect cellular heterogeneity and 

subpopulation with an improved sensitivity and robustness 31.   

 

In this work, we show that high-throughput single-cell biophysical fractometry allows us to 
distinguish the histologically differentiated subtypes of lung cancer cell by fractal-related features. 

We also demonstrate that these fractal-related features play an important role in identifying 

different stages of cell cycle progression (G1, S and G2). To gain a better interpretation of the 

significance of the extracted fractal-related features, we further investigate the underlying 

connections, if any, between Euclidean-defined morphological features and the fractal features.  

 

 

 

Results 

Key workflow and basic performance of single-cell biophysical fractometry. We applied 

multi-ATOM, an ultrafast QPI modality, to perform high-throughput single-cell imaging in 

microfluidic flow (See Methods) (Fig. 1a).  Detailed working principle and experimental 

configuration were reported previously 8,25,26. The general principle is to first record the complex 

optical field at the image plane of the flowing cell by multi-ATOM, i.e., 𝐸(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑒!"($,&), 

where 𝐴(𝑥, 𝑦) is amplitude (i.e. bright-field) image and 𝜙(𝑥, 𝑦)is the quantitative phase image 

(Fig. 1b). Subsequently, the complex field at the image plane is then numerically propagated to 
the far field using the Fourier transform operation – yielding the (far-field) scattered light-field 

pattern 𝑆,𝑘$ , 𝑘&. = 	ℱ[𝐸(𝑥, 𝑦)]27, from which the fractal properties of the cell can be measured 

(Fig. 1c). It is due to the fact that the cellular and subcellular fractal structures give rise to the 

heterogeneity of the refractive index within the cells, and thus directly impact the scattered light 

pattern 32. Here, we further convert the scattered light pattern into an angular light scattering 

(ALS) profile 𝑆(𝑞) in which scattered light intensity is averaged over rings of constant wave vector 

𝑞 = 4𝜋 𝜆⁄ sin	(θ 2⁄ ), where 𝜃 is the polar scattering angle 27 (Fig. 1d). This approach has been 

adopted in characterizing different metabolic states of red blood cells (RBCs) 33, assessing 

different intracellular organelles 34, and classification of bacterial species 35, and analyzing the 

fractal characterization of the fibrin network 36, all in a label-free manner.  
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Figure 1 General workflow and performance of high-throughput single-cell fractal profiling. (a) Ultrafast imaging 
flow cytometry by multi-ATOM. (b) Label-free single-cell image capture (Top: QPI; bottom: Bright-field image (BF)) 
(Example: polymer microspheres). Scale bar = 5 μm. (c) Complex-field light scattering profile reconstruction via FTLS 
(Example: polymer microspheres). Scale bar = 2 rad/μm. (d) Retrieval of the ALS profile. (Example: Experimental 
microsphere data acquired by multi-ATOM (red) and theoretical simulation result (blue) and the analytical Mie light 
scattering theory of ideal sphere with the same size as the spheres (black). (e) Schematics of fractal fitting of 𝐶!(𝑟). FD 
is determined from the fractal fitting of the overall curve, whereas the fitting within FW gives FD with FW. (f) ALS and 
fractal profiles extracted from (d) and (e). (g) Label-free single-cell image capture of leukemia cell line (ACC220). Spatial 
scale bar = 5 μm. Frequency scale bar = 2 rad/μm. (h) ALS plots summarizing ALS profiles of 2,500 ACC220 cells. 
Shaded area indicates the statistical variance. (i) Plot summarizing 𝐶!(𝑟) of 2,500 ACC220 cells. Shaded area indicates 
the statistical variance. (j) Label-free single-cell image capture exampled by leukemia cell line (THP-1). Spatial scale bar 
= 5 μm. Frequency scale bar = 2 rad/μm. (k) ALS plot summarizing ALS profiles of 2,500 THP-1 cells. Shaded area 
indicates the statistical variance. (l) Plot summarizing 𝐶!(𝑟) of 2,500 THP-1 cells. Shaded area indicates the statistical 
variance.  
 

Based on the light scattering theory 37, we can further relate the ALS with the dry-mass density 

variation 𝜌(𝑟)  (quantified through spatial correlation of the density fluctuation 𝐶((𝑟)) (See 

Methods) 38 in such a way that the Fourier transform of an ALS intensity profile will obey an 

inverse power law relationship, i.e., ℱ[|𝑆(𝜃)|)] ∝ 𝐶((𝑟) ∝ 𝑟*+ , where 𝛼  is the exponent, and 

𝐶((𝑟) is the spatial correlation of 𝜌(𝑟). In practice, by fitting the slope 𝛼 of the log-scaled plot 

of	ℱ[|𝑆(𝜃)|)], we could calculate the FD = 3 − 𝛼 (See detailed derivation in Methods) (Fig. 1e). 

As cells exhibit fractal properties (e.g., self-similarity) only within a limited range of length scales, 

referred to as the fractal window (FW), ALS offers an effective tool to identify the FW where the 

inverse power law behavior is present 21,39. In addition, as mentioned earlier, the fractal behaviors 

of cells are manifested in a quantitative statistical sense. We exploited a catalogue of parameters 

that quantify the statistics of the ALS profiles, and the statistics related to FW fitting, e.g., the 

mean square error (MSE), the FW width and the estimated FD (See the complete list of 

parameters in Supplementary Table S1) (Fig. 1f). We note that these FD-related parameters 
can reflect how well the fractality is preserved in different scales and allow us to quantify the 
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degree of self-similarity. The basic performance of imaging and the ALS analysis were tested 

with polystyrene microbeads (Fig. 1b-d), and two different types of leukemic cells, ACC220 (Fig. 
1g-i) and THP-1 (Fig. 1j-l). 
 
 
Single-cell fractal profiles distinguish different lung cancer cell subtypes. 
 

 
Figure 2 Fractometry of multiple lung cancer cell subtypes. (a) Randomly selected phase gradient images 
(Ñfx, top), QPI (middle) and the correlation function plots (bottom) of 3 lung cancer cell lines, respectively. Scalar 
bar is 5 μm. Shaded area indicates the statistical variance. (b) Statistical distributions of FD. (c) Statistical 
distributions of FD MSE2. (d) A fractal phenotypic profile of 7 lung cancer cell lines. Each row represents a fractal 
feature, and each column represents a single cell. The scale bar stands for 1,000 cells, which were randomly 
subsampled from each cell line. The AUROC ranking results are shown in the right panel. (e) 3D UMAP 
visualization of the 17 fractal and ALS-related phenotypes extracted from single-cell images of the lung cancer 
cell lines. Clusters are colored according to the three lung cancer subtypes. 

 
Cell morphology assessment is commonly practiced in cancer diagnosis and classification. 

Taking lung cancer,  the leading cause of cancer-related mortality worldwide 40, as an example, 

histological characterizations of small biopsies or cytology specimens play an integral role in the 

pipeline for classifying different lung cancer types, according to the criteria long-established by 

World Health Organization (WHO) 41,42. However, these assessments are often confounded by 

subjective and biased visual inspection and are mostly limited to obvious morphological 
abnormalities across the histochemically stained tissues, e.g., cell shapes and intercellular 

textural complexity. As abnormal subcellular morphology (e.g. nucleus/nucleoli and cytoplasm) 

is also found to be indicative of malignancy and different cancer subtypes 43,44, we sought to 

investigate if the single-cell fractal properties of different lung cancer cell subtypes extracted from 

the label-free ALS profiles can provide unbiased classification of the three key histologically 

different lung cancer subtypes: small cell lung carcinoma (SCLC) and two subtypes of non–small 

cell lung carcinoma (NSCLC), which are squamous cell carcinoma (SCC) and adenocarcinoma 

(ADC) 41.  
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Based on the visual examination of the randomly selected reconstructed single-cell phase 

gradient  and quantitative phase images captured by multi-ATOM (Fig. 2a), it is generally 

impractical to distinguish the 3 subtypes by standard bulk features such as cell size and optical 
density (or opacity). Notably, although the general size distribution of the population differs 

between SCLC and NSCLC, there is a significant size variation on the single-cell level even 

within the same subtype because of the heterogeneity among individual cells. Therefore, cell 

size alone is not an effective feature for single-cell identification between SCLC and NSCLC in 

such as broad populations. Going beyond these bulk features, we evaluated the 𝐶((𝑟) from the 

ALS profile (𝑆(𝜃)) of individual cells (Fig. 2a). We observed that 𝐶((𝑟)	appears to be statistically 

different among 3 subtypes (including a total of 7 different lung cancer cell lines (Supplementary 
Fig. S1)). Furthermore, we calculated the FD of individual cells through inverse power law fitting 

and observed that the FD distributions can relatively be categorized into the low/middle/high level 

for SCLC, SCC and ADC, respectively (Fig. 2b), with a significant effect size (|𝑑| ~0.57-0.89 

between subtypes using Cliff’s delta statistics). The statistics of the overall fitting error (FD MSE2) 

also shows significant difference among the subtypes (|𝑑|> 0.57 – 0.88). More importantly, FD 

MSE2 indicates that there is a larger variance (or dispersion) of 𝐶((𝑟) for SCLC, while the cells 

of SCC and ADC both tend to keep a better linearity, implying the self-similarity of cellular 

structure is more consistently preserved in a wider length scale (Fig. 2c). We stress that effect 

size, which is independent of sample size, is adopted here to show the significance of sample 
difference. This is due to the fact that the common p-value will show misleading high statistical 

significance when using a large sample size 45, which is challenging to achieve in other fractal 

cellular measurements but realized by our multi-ATOM system (> 10,000 cells). Besides effective 

size analysis, we also computed the Spearman correlation coefficient of fractal features and lung 

cancer subtype (1 for SCLC, 2 for SCC and 3 for ADC) to prove their close bonding (FD: 0.7174; 

FD MSE2: -0.6791).  

 

Leveraging the statistical power offered by multi-ATOM, we further extracted the statistics of 

other fractal-related features from 𝐶((𝑟) (normalized based on the z-score, subsampled from 

randomly selected 1,000 cells per cell line) to form a fractal profile for each cell (Fig. 2d). Based 

on the heatmap of the five most significant fractal features (ranked by area-under-curve of the 

receiver operating characteristics (AUROC) of one-versus-all classification (right panel of Fig. 
2d), we observe that each of the three lung cancer subtypes exhibits its distinct characteristic 
pattern in the fractal profile. For instance, the three ADC cell lines (H358, H1975, HCC827) share 

the similar profile that shows high FD, low FD MSE2 and high FD width. When we further included 

other ALS features for higher-dimensional analysis (a total of 17 dimensions, see 

Supplementary Table S1), visualized by the uniform manifold approximation and projection 

(UMAP) algorithm (Fig. 2e), we observed the three distinct main clusters corresponding to the 
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key lung-cancer subtypes. Although overlapping is observable to some degree in the clusters of 

ADC and SCC, most cells of SCLC are highly dispersed from NSCLC. Hence, this study suggests 

that morphological profiling based on these label-free single-cell fractal features, which are 

closely linked to the intracellular mass-density distribution characteristics, could provide the 
discriminative power to distinguish the key histologically different lung cancer subtypes. 

 

 

Single-cell fractal profile recapitulates cell-cycle progression 
Going beyond cell-type classification, we sought to investigate if and how the label-free single-

cell fractal characteristics are impacted by different cell states in the cell-cycle progression. In 

this study, the single-cell QPI/BF image recording of over 15,000 fixed breast cancer cells (MDA-

MB231) is synchronized with 2-color fluorescence detection (Fig. 3a, and see Methods). This 
multimodality allows us to correlate the label-free fractal properties with the DNA content 

quantified by the fluorescence labels, at the single-cell precision, as the ground truth of cell-cycle 

progression from G1, S to G2 phase (by the propidium iodide (PI) label which quantifies DNA 

content whereas EdU (5-ethynyl-2'-deoxyuridine) indicates the newly synthesized DNA in S-

phase cells) (Fig. 3b). We note that the variation in the DNA content, and thus the changes in 

the biophysical properties (including the fractal characteristics) reflects the continuous 

progression of cells, instead of discrete states of G1, S, and G2 46. Hence, the “ground truth” 

given by the 2-color cell-cycle fluorescence markers/labels should cautiously be treated as the 
reference, which allows us to interpret the biophysical properties (especially FD) based on the 

established biochemical signatures (e.g., DNA synthesis and replication) and the related 

biological events (e.g., cell growth and protein synthesis).    

 

To further harness the strength of information-rich morphological profiling, we defined an 

extensive set of multi-faceted label-free morphological readouts, encompassing the spatial 

features (directly computed from QPI and BF following a hierarchical strategy 8), the light-
scattering characteristics (extracted from ALS profile), as well as the fractal profile. We observed 

that this label-free profile revealed the overall trajectory of the cell-cycle progression from G1, S 

to G2 phase in the UMAP visualization (Fig. 3c). Importantly, the expression variations of the 

key fractal features, such as FD and FD with FW, also consistently follow the progression (Fig. 
3d-e), and show significant differences across the three phases (|𝑑| > 0.40 for FD; |𝑑| > 0.38 for 

FD with FW) (Fig. 3f-g). FD exhibits a progressive increase along the G1-S-G2 order (Fig. 3f), 
which is consistent with the trend shown by cell size and cell mass (Supplementary Fig. S2), as 

the size enlargement and mass accumulation are common biophysical traits during cell cycle 

progression. This suggests a growing complexity and irregularity of intracellular mass 

distribution, which could be attributable to DNA replication and the subsequent protein synthesis 

process (e.g.  microtubule production) as the cell evolves from the G1, S to G2 phase.  
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Figure 3 Fractal analysis of cell cycle progression (MB231 cells). (a) Randomly selected single-cell images 
(Phase gradient (∇𝜙) and QPI) and the synchronized fluorescence detection of the same cells in different cell cycle 
phases (G1, S, G2): (From left to right), ∇𝜙 images, QPI images, fluorescence profile of PI, and fluorescence profile 
of EdU. Scale bar = 5 μm. (b) Synchronized 2-color (EdU versus PI) fluorescence detection in multi-ATOM. DNA 
content is quantified by PI intensity, whereas the S-phase cells are recognized by EdU (in log scale). A standard flow 
cytometry result for cell cycle determination is shown in Supplementary Fig. S3 for reference. (c) 3D UMAP 
visualization of the full set of phenotypes (both Fourier and spatial) showing the trend of cell cycle progression. (d,e) 
The same UMAP plot in (c) color-coded with the FD value, the FW value, respectively. (f,g) Violin plots of FD, and 
FD with FW, respectively, across the G1, S, and G2 phase. (h) ROC curves of the linear regression classifier 
constructed from all the fractal and ALS features. AUROC values are labeled in the legend. (i) Feature ranking by 
AUROC mean (Top 30 features). 
 

We further assessed the ability of using fractal features to identify the three cell-cycle phases in 

a one-versus-all mode through the receiver operating characteristic (ROC) analysis. While using 

FD alone is found to be not sensitive to detect the S-phase, this single fractal feature is on the 

other hand effective in identifying the G1 and G2 phases, with the AUROC of 0.822 and 0.790 

for G1 and G2 phase, respectively. As S phase is a transit state between G1 and G2, it is 
acceptable that more features are needed for an accurate identification. Therefore, we performed 
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the same ROC analysis with a linear regression classifier integrating all the features extracted 

from Fourier domain (17 dimensions), and found an improvement of the AUROC for all the three 

phases (G1:0.899, S:0.646, G2:0.889), especially for S phase (Fig. 3h).  

 
By performing the same ROC analysis including all the features extracted from QPI/BF 

morphology the ALS features and the fractal profile (Supplementary Fig. S4), we also quantified 

the significance of these features in performing the (one-versus-all) classification of the cell-cycle 

phases (Fig. 3i). We observed that, apart from the cell size and cell mass, which are known to 

be tightly linked to cell-cycle progression, multiple fractal and ALS features (e.g., FW width and 

FD) extracted from the FTLS analysis are among the top 30 features with the highest averaged 

AUROC, which implicates the informativeness of these Fourier-domain features.  

 
Notably, the high-rank of FW width could suggest that an irregular cell mass growth and 

distribution occur across a longer length-scale (i.e., the scale-invariant property of fractals). We 

further visualized the expression pattern of a total of 101 morphological features (see the circular 

heatmap in Fig. 4a) and observed that more than half of the spatial features extracted by 

Euclidean geometry (from the bulk, global to local spatial features) do not show as clear changes 

as many ALS and fractal features across the three cell-cycle phases. The above analyses 

suggest that the fractal features could offer the label-free specificity and sensitivity to track the 

cell-cycle progression. 
 

We further investigated if and how the common spatial features extracted by Euclidean geometry 

can be correlated with the ALS and fractal features during the cell cycle progression (a total of 

101 dimensions) – gaining additional insight of these classical morphological features in the 

context of the fractal behavior (Fig. 4a-c). We observed that the Fourier features, i.e., ALS and 

fractal features, are in general not strongly correlated with the (Euclidean) spatial features, except 

a handful of 12 spatial features (i.e., ~12% of all the features) with the absolute value of 
Spearman correlation coefficients > 0.6, see the orange lines in Fig. 4a and the heatmap in Fig. 
4b). It indicates the low redundancy between these two classes of features in describing the 

morphological characteristics of cells. We noted that the fractal and some ALS features are 

particularly correlated with the cell (dry) mass and size – all of which are the important features 

sensitive to the cell cycle progression, consistent with the earlier feature ranking analysis (Fig. 
3i). We further identified that the ALS features are more favorably linked to the local textures 

(derived from both the BF and QPI images) (Fig. 4b). For instance, by ranking the spatial features 

according to their correlations with FD (Fig. 4(c)), we further identified a tight connection between 
the changes in FD and dry mass, the local textures that are related to the statistics of the fiber 

textures and structural entropy. Based on this analysis, we thus could enrich the label-free 

morphological profile that characterizes the biophysics of cell cycle progression. Not only the 

well-known features of cell and mass varies during the cell cycle, but also the local textures linked 
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to subcellular mass density (from QPI) and optical density (from BF) distributions, many of which 

follow the fractal behavior. A full view of the correlation analysis can be referred to 

Supplementary Fig. S5. 

 

 
Figure 4 Analysis of the single-cell phenotypic correlation among the fractal, ALS and spatial features. 
(a) A Circular plot summarizing the mean heatmap and the correlations among all features in cell-cycle 
progression. The feature type is labelled by the outmost colored ring (bulk - orange, global - blue, local - green, 
fractal – purple and ALS - pink), and the full labels can be referred to Supplementary Fig. S6. The mean feature 
values of in different cell cycle phases are color-coded in the three ring-shaped heatmap. In the inner circle, all 
the feature pair with an absolute value of Spearman correlation coefficient over 0.6 are linked together by gray 
lines, while the Fourier-morphology connections are colored with orange specifically. Thickness of the lines is 
also encoded by the absolute value of correlation coefficient. (b) Spearman correlation heatmap between Fourier-
domain and spatial-domain features. Fourier features are ranked by AUROC test. Spatial domain features are 
ranked by the average of correlation coefficient with all Fourier features. (c) Correlation coefficient bar chart of 
FD ranked by absolute value. Only 30 features with the largest coefficient magnitude with FD are listed. 

 
 
 

Discussion  

Fractal characteristics of cell morphology has been well acknowledged for four decades 47, and 
has also been proven indicative of complex cellular functions, especially disease progression. 

However, practices of defining cellular fractal phenotypes have not been widely adopted in 

cytometry and cell-based assay. This gap stems from that the fractal feature, e.g., FD, is a 

statistical measure reflecting the morphological structural complexity (especially the self-similar 

properties) of cellular/sub-cellular components. Yet, current imaging cell-based assays lack the 

throughput to demonstrate the fractal analysis with sufficient statistical power for delineating 

cellular heterogeneity, especially at the single-cell precision. In this study, we demonstrated a 

high-throughput morphological profiling strategy (~10,000 cells/sec) that empowers biophysical 
single-cell fractometry based on a catalogue of label-free single-cell fractal-related features 
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extracted from an ultrafast QPI flow cytometry platform. Specifically, the information content of 

the single-cell fractal profile is enriched by (1) harnessing the fractal signature of a cell is 

intimately linked to its light scattering characteristics, which can readily be read out by our QPI 

platform through single-cell FTLS analysis; and (2) quantifying the statistics of these single-cell 
fractal features, thanks to the throughput offered by the QPI platform in this work.  

 

We stress that QPI, in contrast to other optical imaging modalities, has a unique capability of 

quantifying dry mass density distribution of a cell at high sensitivity, that is derived from the optical 

path length profile given by QPI (Methods) 48. For instance, in the current multi-ATOM platform, 

the detection sensitivity of the optical path length was reported to be as small as 4 – 8 nm 25, 

which corresponds to the dry mass surface density resolution of ~ 0.02-0.04 pg/mm2, taking the 

refractive increment of 0.19 ml/g for biological cells 49. Therefore, biophysical single-cell 
fractometry described in this work measures not only the fractal properties of the cellular 

morphology with subcellular resolution, but also the subtle variation in the (dry) mass fractal 

characteristics. 

 

We demonstrated that the label-free single-cell fractal profiles exhibited the discriminative power 

for unbiased classification of the histologically different lung cancer subtypes, and are highly 

correlated with the cell-cycle progression. More importantly, the fractal profile could also be 

integrated with the conventional morphological profile based on the spatial features extracted 
using the Euclidean geometry. This enables extensive feature extraction which has a two-fold 

benefit: first, it further augments the profiling dimensionality (and thus potentially better encode 

relevant biological information). This allows us to identify feature correlation, based on which 

further feature selection (e.g., removing noisy or redundant features 50) can be done for 

extracting/refining relevant information for downstream analysis.  Second, it permits us to mine 

the potential correlative patterns between fractal features and other spatial Euclidean features. 

Hence, we could gain better interpretability, and thus biophysical insights of the morphological 
features, in the context of fractal behaviour (e.g., the correlation between FD and the local fiber 

textures and structural entropy identified in the cell cycle study) (Fig. 4c). We note that the 

fractometry strategy presented in this work could also be immediately applicable to the existing 

QPI modalities, especially because the imaging speed and throughput of the existing QPI 

modalities continue to increase to the scale comparable to those of flow cytometry 51.  

 

As QPI can generally be adaptable with the typical fluorescence microscopes 29,52, we anticipate 

that single-cell fractometry could readily be incorporated into the current fluorescence-based 
morphological profiling strategies which are increasingly promising in many applications, from 

drug discovery to basic biology research 53-55. Using this multimodal imaging approach (especially 

in a high-throughput configuration 56), future studies could aim to systematically investigate how 

the biophysical fractal behaviours (i.e. mass fractal studied in this work) of different subcellular 
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organelles (e.g. nucleus 12, mitochondria 18, and cytoskeleton 19) are influenced by chemical and 

even genetic perturbations.  As the state-of-the-art single-cell computational tools become 

increasingly versatile in analysing not only traditional omics data (e.g. genomics, epigenetic, 

transcriptomic and proteomic etc.) but also cell morphological data 57, we anticipate that the 
inclusion of fractometry in morphological profiling could facilitate the discovery of the connections 

between multi-omics and cell fractal at single-cell resolution morphology, (especially how the 

molecular signatures dictates the disease-related fractal behaviors) – thus offering a new 

dimension for deciphering complex cellular heterogeneity.  

 
 
 

Methods  

Cell culture. Seven cancer cell lines were authenticated via the Human STR profiling cell 

authentication service, including three adenocarcinoma cell lines (ADC, H358 (EGFR WT), 

HCC827 (EGFR exon 19 del) and H1975 (L858R and T790M)), two squamous cell carcinoma 

cell lines (SCC, H520 and H2170) and two small cell lung cancer cell lines (SCLC, H526 and 

H69).  The breast cancer cell line used for the cell cycle experiments was MDA-MB231. Leukemia 
cell lines used in this work were THP-1 (TIB- 202TM) and Kasumi-1/ACC220 (CRL-2724TM). All 

cell lines used in this study were purchased from American Type Culture Collection (ATCC). 

Leukemia and lung cancer cell lines were cultured in the tissue culture flasks (surface area of 

75cm2) (TPP) and MB231 in100mm culture dish (Labserv), which were both placed in a CO2 

incubator with 5% CO2 under 37 °C. The full culture medium was ATCC modified RPMI-1640 

(Gibco) supplemented with 10% fetal bovine serum (FBS) (Gibco) and 1% antibiotic–antimycotic 

(Gibco). Depending on cell confluency observed by a standard light microscope, passage or 

medium replacement was performed 2–3 times each week.  
 

Fluorescence labeling for cell-cycle tracking. Click-iT Plus EdU Flow Cytometry Assay Kits 

Alexa Fluor 488 and FxCycle PI/RNase Staining Solution were obtained from Invitrogen to define 

the ground-truth of the cell cycle stages (G1, S and G2 phases). The MDA-MB231 cell culture 

was firstly renewed for 8 mL medium mixed with 8 μL of 10 mM EdU staining solution. After 2-

hour incubation, the cells were harvested by 0.25% Trypsin (Thermo Scientific) and washed by 

PBS with 1% BSA. The cells were then brought to protection from light for the following steps. 
The centrifuged cells were fixed by 100 μL Click-iT fixative (4% paraformaldehyde in PBS) and 

then permeabilized by the permeabilization and wash reagent (sodium azide) with 15-minute 

incubation. Next, 500 μL Click-iT Plus reaction cocktail was added into 100 μL cell suspension 

for 30 minutes under room temperature. After washing with 3 mL Click-iT permeabilization and 

wash reagent, the cell pellet was then mixed with 500 μL Click-iT permeabilization and wash 
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reagent and 500 μL FxCycle PI/RNase staining solution for 30 minutes at room temperature. 

Lastly, after washing away the staining solution, PBS was added to make up a total volume of 7 

mL cell suspension for the subsequent imaging experiments.  

 
Microfluidic channel fabrication. The channel was designed for optimization of inertial focusing 

to generate an in-focus single-cell stream under fast microfluidic flow (>2 m/s) and then fabricated 

by polydimethylsiloxane (PDMS) by soft lithography technique. Firstly, a layer of photoresist (SU-

82025, MicroChem, US) was coated on a silicon wafer by a spin coater (spinNXG-P1, Apex 

Instruments Co., India), which was soft-baked for two times (65 °C for 3 minutes and 95 °C for 6 

minutes). After cooling down under room temperature, a computer-aided design (CAD) pattern 

was transferred onto the photoresist by a maskless soft lithography machine (SF-100 XCEL, 

Intelligent Micro Patterning, LLC, US) through a 4-second exposure and a two-step post-baking 
(65 °C for 1 minute and 95 °C for 6 minutes). After photoresist development with SU-8 developer 

(MicroChem, US) for 5 minutes, the wafer was rinsed and dried for subsequent PDMS mixture 

pouring, which was mixed with PDMS precursor (SYLGARD® 184 Silicone Elastomer kit, Dow 

Corning, US) and curing agent at a ratio of 10:1. The height control of the imaging section in the 

microfluidic chip was performed by placing a custom-designed acrylic block on the wafer, yielding 

a channel dimension of 30 μm in height and 60 μm in width. After the channel curing in an oven 

at 65 °C for 2 hours before demolding, a biopsy punch (Miltex 33-31 AA, Integra LifeSciences, 

US) was used to punch two holes for later tube insertion as the inlet and outlet of the channel. 
Afterwards, the bonding between the channel and glass slide was activated by oxygen plasma 

(PDC-002, Harrick Plasma, US) and oven baking under 65 °C for 30 minutes. Lastly, plastic 

tubings were inserted to the chip as channel inlet/outlet (BB31695-PE/2, Scientific Commodities, 

Inc., US).  

 

Multi-ATOM imaging. Multi-ATOM combines the time-stretch imaging technique58,59 and phase 

gradient multiplexing method to retrieve complex optical field information (including the bright-
field and quantitative-phase contrasts) of the cells at high speed in an interferometry-free manner 

(Fig. 1(a)). Detailed working principle and experimental configuration were reported 

previously8,25,26. In brief, a wavelength-swept laser source was firstly generated by a home-built 

all-normal dispersion (ANDi) laser (centered wavelength: 1064 nm; bandwidth: ∼10 nm; 

repetition rate: 11 MHz; pulse width = ~12 ps). The laser pulses were temporally stretched in a 

single-mode dispersive fiber (group-velocity dispersion (GVD): 1.78 ns/nm), and were then 

amplified by an ytterbium-doped fiber amplifier module (output power = 36 dBm with an on–off 

power gain = 36 dB). The pulsed beam was subsequently launched to and spatially dispersed 

by a diffraction grating (groove density = 1,200/mm) into a 1D line-scan beam which was 

projected orthogonally onto the cells flowing in the microfluidic channel. This line-scan beam was 

transformed back to a single collimated beam after passing through a double-pass configuration 
formed by a pair of objective lenses (N.A. = 0.75/0.8). Afterwards, the beam conveying phase-
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gradient information of the cell was split into 4 replicas by a one-to-four de-multiplexer, where 

each beam profile ( 𝐼$,  , 𝐼$*, 𝐼&,  , 𝐼&* ) was half-blocked by a knife edge from 4 different 

orientations (left, right, top and bottom) respectively. Recombining the 4 beams by a four-to-one 

fiber-based time-multiplexer, we were able to detect the line-scan phase-gradient information in 

4 directions in time sequence at high speed by a single-pixel photodetector (electrical bandwidth 
= 12 GHz (Newport, US)). The digitized data stream was processed by a real-time field 

programmable gate array (FPGA) based signal processing system (electrical bandwidth = 2 GHz, 

sampling rate = 4 GSa/s) for primary cell detection and image segmentation with a processing 

throughput of >10,000 cells/s in real-time. These segmented phase-gradient images of cells were 

sent to four data storage nodes (memory capacity > 800 GB) through four 10G Ethernet links, 

which were reconstructed to 2D complex field information following a complex Fourier integration 

algorithm, detailed elsewhere 25 (Fig. 1(b-c)). 
 
Fluorescence detection. 2-channel (i.e., 2-color) fluorescence detection was also synchronized 

with multi-ATOM, i.e., the bright-field, quantitative-phase contrasts and fluorescence signal from 

the same cell can be detected simultaneously. It was employed to generate the ground-truth of 

the cell-cycle stages for single-cell fractometry based on multi-ATOM images. When flowing 

through the imaging section in the microfluidic channel, the cells were excited by two continuous 

wave (CW) lasers (wavelength: 488 nm and 532 nm) simultaneously to generate epi-

fluorescence signals, which were detected by two photomultiplier tubes (PMT) in the end. 
Frequency modulation was done (11.8 MHz and 35.4 MHz respectively) by a multichannel 

direction digital synthesizer to multiplex the PMT-received signals. After digital demodulation and 

low-pass filtering, the two fluorescence signals of each segmented cell were synchronized with 

multi-ATOM signal by the same FPGA configuration. 
 

Single-cell fractal analysis. The complex field at the image plane of the flowing cell measured 

by multi-ATOM is denoted as  

𝐸(𝑥, 𝑦) = 𝐴(𝑥, 𝑦)𝑒!"($,&) 
 

where 𝐴(𝑥, 𝑦) is amplitude profile and 𝜙(𝑥, 𝑦)is the quantitative phase profile. In multi-ATOM, the 

phase gradient along the x-direction -"
-$
	 is first extracted based on the two raw knife-edged 

images (cut from left and right orientations):  𝐼$,(𝑥, 𝑦) and 𝐼$*(𝑥, 𝑦), through the relationship: 

𝜕𝜙
𝜕𝑥.

∝
𝐼$, − 𝐼$*

𝐼$, + 𝐼$*
 

 the same expression of the phase gradient along the y-direction -"
-&
	can be applied to the knife 

edges in the y-direction, 𝐼&,(𝑥, 𝑦) and 𝐼&*(𝑥, 𝑦). Hence, the quantitative phase 𝜙(𝑥, 𝑦) was then 
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obtained by applying complex Fourier integration on the phase gradient images captured in multi-

ATOM	∇𝜙(𝑥, 𝑦) = -"
-$!

(𝑥, 𝑦) + 𝑖 -"
-&!

(𝑥, 𝑦): 

 

𝜙(𝑥, 𝑦) = 𝐶𝐹 ∙ 𝐼𝑚	Tℱ*/{𝑁𝐹 ∙ ℱ[∇𝜙(𝑥, 𝑦)]}X 

𝑤ℎ𝑒𝑟𝑒	𝑁𝐹 = [𝐹𝑂𝑉/[2𝜋𝑗 ∙ 𝑘(𝑥, 𝑦)]0	
	, 𝑘
(𝑥, 𝑦) ≠ 0

, 𝑘(𝑥, 𝑦) = 0 

 

where 𝐼𝑚 is the imaginary part of a complex number; and ℱ*/  is inverse Fourier transform 

operator; 𝑁𝐹 is a normalization factor for quantifying the phase and avoiding singularity in the 

integration operation; 𝑘(𝑥, 𝑦)  is the 2D wavenumber; 𝐹𝑂𝑉  is the 2D field-of-view; 	𝐶𝐹  is the 

calibration factor for correcting the systematic phase deviation arise from non-ideal system 

setting8. On the other hand, the amplitude image of the cell (𝐴(𝑥, 𝑦)) is the sum of two images 

obtained from opposite knife edges normalized by the background (i.e., 𝐵 , regions without 

samples).  

𝐴(𝑥, 𝑦) =
1
𝐵 (𝐼$

, + 𝐼$*) =
1
𝐵 (𝐼&

, + 𝐼&*). 

Subsequently, the complex field at the image plane is then numerically propagated to the far field 

using the Fourier transform operation – effectively yielding the (far-field) scattered light-field 

pattern 𝑆,𝑘$ , 𝑘&. = 	ℱ[𝐸(𝑥, 𝑦)]27, from which the fractal properties of cell can be measured. We 

then convert the scattered light pattern into an angular light scattering (ALS) profile 𝑆(𝑞) in which 

scattered light intensity is averaged over rings of constant wave vector 𝑞 = 4𝜋 𝜆⁄ sin	(θ 2⁄ ), where 

𝜃 is the polar scattering angle 27.  

 

To quantify the fractal characteristics from the ALS, we also define a density-density correlation 
function in the real space, which is related to the ALS intensity via the Fourier transform 

relationship as the refractive index variation arises from density fluctuation 𝜌(𝑟)38: 

 

ℱ cd𝑆,𝜃⃗.d
)
f 	= 	 〈𝑆(𝑟⃗′)𝑆∗,𝑟′ + 𝑟𝜃i.	〉 ∝ 〈𝜌(𝑟′)𝜌∗,𝑟′ + 𝑟𝜃i.〉 ≡ 𝐶((𝑟) 

 

where 𝜌(𝑟) means the density at point 𝑟, and thus 𝐶((𝑟) is the density correlation of an arbitary 

pair of occupied particles with a correlation distance of 	𝑟  60. As It is known that the mass 

distribution of a fractal object can be expressed as 9, 𝑚(𝑟) ∝ 𝑟12, where 𝑚(𝑟) is the mass within 

a sphere of radius 𝑟. It can be also linked to 𝐶((𝑟) as 60: 

𝑚(𝑟′) ∝ 	l 𝐶((𝑟)𝑑3𝑟	
45

6
 

which indicates 𝐶((𝑟) ∝ 𝑟12*3. Hence, the Fourier transform of an ALS profile will obey an inverse 

power law relationship, i.e., ℱ[|𝑆(𝜃)|)] ∝ 𝑟*+, where 𝛼 is the exponent, and FD can be expressed 

as: 
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𝐹𝐷 = 3 − 𝛼 

Therefore, by fitting the slope 𝛼  of the log-scaled plot of 	ℱ cd𝑆,𝜃⃗.d
)
f  versus the correlation 

distance 𝑟 we could quantify the FD, i.e., 3 − 𝛼 (Fig. 1(e)).  
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