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Abstracts: 
 
 Enhancers are genomic elements and contain all necessary cis-regulatory contexts. 

Such enhancers are convened to the appropriate promoter of target genes for gene 

regulations even though the enhancers and the promoters are apart a few mega-base pairs 

away from each other. In addition to physical distance, nucleotide mutations in enhancers 

influence a partial group of the target genes. Those make it more complicated to reveal the 

paired relationship between enhancer and promoter of target genes. Recently, advanced 

computational approaches are employed to predict such interactions. One approach 

requires a large number of different high-throughput datasets to predict such interactions; 

however, in practical aspects, all datasets for tissues and conditions of interest are not 

available. Whereas the alternative approach requires only genome sequences for particular 

predictions, their predictions are insufficient for practical applications. We address those 

issues by developing the digital Hi-C assay with a transformer-algorithm basis. This assay 

allows us to create models from simple/small/limited sequence-based datasets only. We 

apply the trained models to be able to identify long-distance interactions of genomic loci 

and three-dimensional (3D) genomic architectures in any other tissue/cell datasets; 

additionally, we demonstrated the predictions of genomic contexts by analysing the 

prediction patterns around the target locus in the three following genomic-context 

problems: enhancer-promoter interactions (i.e., promoter-capture Hi-C), the CTCF-enriched 

regions, and TAD-boundary regions. Because our approach adopted a sequence-based 

approach, we can predict the long-distance interactions of genomic loci by using the 

genomic sequences of the user's interest (e.g., input sequences from high-throughput assay 

datasets such as ATAC-seq and ChIP-seq assays). Consequently, we provide an opportunity 

to predict interactions of genomic loci from a minimum dataset.
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Introduction:  
 
Enhancers are genomic elements and are often encountered outside the endogenous 
genomic context of their nearest genes1. The sequences of enhancers contain all necessary 
cis-regulatory contexts such as transcription factor binding sites (TFBSs). By using those 
contexts, the enhancers are convened to the appropriate promoter of target genes closely 
even though the enhancer and the promoter are apart a few mega-base pairs away from 
each other2,3. Those enhancers' functions and features can be altered by single nucleotide 
polymorphism (SNP) and indel mutations in the enhancer sequences significantly, resulting 
in leading to dysregulated target genes and developmental defects and causing a wide 
range of diseases4–9. However, such mutations influence a partial group of the target genes, 
which makes it more complicated to reveal the paired relationship between enhancer and 
promoter of target genes. Thus, it is important, but still largely unknown the general rules of 
controlling chromosome contacts and long-distance interactions. 

With developing the latest sequencing technologies, we can identify the long-
distance interactions of genomic loci such as enhancer-promoter interactions (EPIs) by 
conducting multiple high-throughput assays and integrating their results. For instance, 
DNase-seq and ATAC-seq assays can identify the open/active regulatory regions in 
chromosomes10–12. Chromatin immunoprecipitation (ChIP) with sequencing technologies13 
can identify the genomic regions having specific histone markers. Among such histone 
markers, for example, H3K27ac and H3K4me1 correlate with the activations of transcription 
and promoters, respectively. Integrating these results allows us to narrow down the genomic 
locations of active enhancers and promoters in a specific condition (e.g., tissue-/cell-type, 
chemical treatments). Furthermore, capturing chromosome conformation (3C) technologies 
and their variants including Hi-C14 and ChIA-PET15,16 allow us to identify the long-distance 
interactions of genomic loci comprehensively17. Integrating those experimental results allows 
us to identify the long-distance interactions of genomic loci including enhancer-promoter 
interactions. More recently, a variant and a highly specialised Hi-C, promoter-capture Hi-C 
(PCHi-C) has been introduced and applied to capture the interactions of more specific 
genomic loci (e.g., between promoter and enhancers regions)18,19.  

Despite these successes, those experimental approaches still have shortcomings. 
Firstly, it often overlooks a massive number of interactions. A single Hi-C and its variant 
approaches can capture millions of interactions but detect only 10-15% of genuine 
interactions (i.e., vital interactions with high false negatives) which hampers the identification 
of true positive interactions20. Secondly, those contemporary strategies require conducting 
multiple different types of high-throughput assays. Each assay result contains human and 
technical errors and biases; thus, the combined results potentially lose true positives, 
especially the ones in the long-range distance which rarely happens. Thirdly, due to 
technical difficulties including N-bp-cutter restriction enzymes, the resolutions of interactions 
are still as low as 1,000bp or longer if genome-scale research is conducted. A variant 
technology, Micro-C, overcomes this issue and allows us to access shorter-range 
interactions (between 200 bp and 4kb) at high resolution21. However, this approach tends to 
capture at most ~10% of interactions even in their sample preparations (i.e., crosslinking), 
which again falls in the first shortcoming mentioned above. These technical drawbacks 
prevent identifying the interactions of genomic loci at a great distance, thus, hardly 
addressing to reveal the regulatory mechanisms of gene regulations and dysregulated genes 
causing medical diseases or developmental issues.  
           To complement these difficulties and to identify the long-distance interactions of 
genomic loci, especially enhancer-promoter interactions (EPIs), many advanced statistical 
and computational approaches including machine-/deep-learning algorithms have been 
applied22–28. As an advantage of those approaches, they allow us to train accurate models 
from raw data without prior knowledge; additionally, we can use these trained models to 
apply to a similar type of data to interpret the learned features and rules. Those approaches 
can be categorized into (1) genomic feature approach26,27,29–36 and (2) sequence-based 
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approach25,37–40. The genomic feature approach accepts similar concepts for determining 
EPIs experimentally and requires a large number of different high-throughput datasets to 
create prediction models, resulting in better prediction performance. In experimental aspects, 
however, all datasets for tissues and conditions of interest are not always available; hence, 
the datasets requirements can be a bottleneck of this approach26,27,35,41. The sequence-
based approach, whereas, aimed to achieve that the information in genome sequences 
within enhancers and promoters alone may be sufficient to distinguish EPIs. To do this, they 
require only a relatively simple and small pre-defined dataset (e.g., defined EPIs from Hi-C 
data) to create models25,38,42. However, their standard datasets contained largely overlapped 
regions; it has been reported that this approach performed poorly on cleaner datasets which 
removed overlapped regions or duplicated lines43. Nonetheless, both approaches achieved 
some success; thus, it is clear that signals from functional genomic data are informative in 
computationally distinguishing EPIs from non-interacting enhancer-promoter pairs.  

With aiming an application in experimental aspects, we address the following 
question: can we develop a new computational approach which allows us to create models 
from simple/small/limited sequence-based datasets only and apply the trained models to 
identify EPIs and three-dimensional (3D) genomic architectures in any other tissue/cell 
datasets? To conduct this, we employ the sequence-based approach and address the 
shortcomings of this approach by adapting the several following conditions. Firstly, unlike the 
previous studies, we use shorter input sequences of a few hundred base pairs (bp), each of 
which is considered a representative region of a larger genomic region (e.g., a few thousand 
bp). Secondly, we do not predefine the enhancer or promoter regions. Instead, we use all 
raw interactions captured by a single Hi-C assay. Thirdly, we apply the custom one-
chromosome-leave-out rule in which we train a model with all chromosomes leaving one 
chromosome out (i.e., inter-chromosome interactions) and then use the trained models to 
predict the interactions on the removed chromosome (i.e., intra-chromosome interactions) 
(material and methods). Finally, we employ the transformer algorithm44 instead of a recurrent 
neural network such as Long short-term memory (LSTM)45. Unlike the LSTM method, the 
transformer has an attention process: output at the decoder will try to look into multiple 
sections of the encoder. Since the transformer is a popular natural language processing for 
automated translating languages, we consider the interactions of genomic loci as a two-
language relationship; a genomic locus (e.g., enhancer) as the input language and another 
genomic locus (e.g., promoter) as the output language. 

Here we introduce the digital Hi-C assay with a transformer-algorithm basis. This 
assay requires only a single Hi-C data to predict comprehensive and long-distance 
interactions (i.e., equivalent to the interactions 10 times experimental assays). As a model 
case, we demonstrated this by training the models based on all raw interactions of the Hi-C 
data20 with the custom one-chromosome-leave-out rule and applying the trained model to 
predict interactions on the removed chromosome. We found our approach could predict 80-
90% of interactions captured by cell-line specific Hi-C. By applying the trained models, 
further, we showed that our digital assay could predict the long-distance interactions in the 
same tissue/cell and different tissues. Furthermore, we showed that our approach could 
detect genomic context by characterising the patterns of overlooked (e.g., not predicting) 
interactions around the neighbour regions of the target locus. We demonstrated this on the 
datasets of three following genomic-context problems; enhancer-promoter interactions (i.e., 
PCHi-C)46, the CTCF-enriched regions47, and TAD-boundary regions20,48. Because our 
approach adopted a sequence-based approach, we could predict the long-distance 
interactions of genomic loci by accepting input sequences from other high-throughput assay 
datasets such as ATAC-seq and ChIP-seq assays or even the sequence of the user's 
interest. Consequently, we showed that our approach could provide an opportunity to predict 
interactions of genomic loci from a small dataset. 

 
 

Materials and Methods: 
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Data collection and vertical search approach to predict by transformer algorithm 

All data are downloadable from either NCBI or European Nucleotide Archive (ENA) 
(figure 1 process 0). In the case of *.hic format, sequences are generated with Knight-Ruiz 
(KR) normalization49 with 5,000bp resolution. In the case of paired sequence format (i.e., 
*seq1 and 2), the KR normalization is applied. The sequence information is converted into 
genomic loci information and bins the interaction positions by 5,000bp (figure 1a process 1). 
The genomic versions were used originally cited. A 300 bp-length sequence is selected from 
the middle of each 5,000bp region (i.e., locus) and considered as a representative sequence 
for the region (figure 1a process 1). If highly similar sequences (i.e., sequence homology 
>90%) exist in the same dataset, new 300bp-length sequence candidates are re-selected 
randomly and checked for sequence similarity with other sequences in the same dataset. 
Repeat this process per re-selected sequence until all sequences in the dataset are not 
satisfied with the criteria of sequence similarity. To reduce the computational process, those 
sequences were converted into ‘N’-mer elements which were separated by a space (e.g., 
“acgtgctagc…” is converted to “acgtgcta cgtgctag gtgctagc …”). Note the N should be the 
same number as those of the ‘N’-mer token. In our study, N = 8 was set as a default 
condition (figure 1b-d, supplemental figure 1). 

Two interaction datasets; training and validation datasets, were generated from each 
raw Hi-C dataset followed by the custom one-chromosome-leave-out rule (figure 1a process 
2). The removed chromosome is considered as the target chromosome, then the training 
dataset contained inter-chromosome contacts to the target chromosome whereas the 
validation dataset contained intra-chromosome contacts on the target chromosome. These 
interaction datasets contained the paired sequences of genomic loci separated by a comma. 
Note that the interaction information can be considered separated information per locus; 
theoretically, these datasets can be split into multiple ways depending on the user’s will 
(e.g., loci on p/q-arms). A transformer algorithm is applied to create a model per 
chromosome and dataset (e.g., tissue-/condition-specificity). By the rule of thumb, the 
training process would be completed by the epoch = 30. The trained model is used for 
predicting the target sequence (e.g., enhancer) by using the input sequence (e.g., promoter). 
In the validation process, two criteria must be satisfied to call the prediction successful 
among the target sequences; the first 50bp-length nucleotides in the target sequence must 
be a perfect match on the genomic sequence, and it must locate within the fixed-length bp 
(default 1,000,000bp in human genome case) from the input sequence. Otherwise, those 
sequences are not called successful (i.e., fail predictions, the locus does not interact with the 
input sequence). This search approach is called the “vertical search approach”. 

The computational code is written in python which is available on GitHub (link). Two 
notices are mentioned; (1) it takes more than 24 hours to complete a model with “spec of 
GPUs”, and (2) depending on the GPU environment user used, you may be required to 
modify the size of chunk data for training depending on the memory capability.  
 

Horizontal search approach to predict genomic contexts from the result of vertical 
search approach:  

A one-dimension (1D) weighted matrix (WM) with 2N-length (default N=5 unless 
stated) represented the neighbouring regions of a target locus (i.e., the position of target 
locus = the fifth position in the WM).  

In the predictions of enhancer-promoter interactions (EPIs) and CTCF-enriched 
regions, the WM contains '1' in all elements. If the locus has a predicted interaction with the 
input sequence in vertical search results, multiply the value at the position of the WM with '1'. 
Otherwise, multiply the value with '0'. For example, if all loci in neighbouring regions do not 
have predicted interactions with the input sequence, the WM should contain 10 zeros. In 
addition to the neighbouring information, the following two factors are considered: the 
lowess-normalized GC percentage and the binary information of gene body or intergenic 
region at the target locus. Those are input data for the random forest (RF) algorithm 
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prediction (in python random-forest package) for genomic context. As validation data for the 
RF, whether the target locus has an interaction (i.e., EPI information) with the input 
sequence has been checked for a positive-validation score in the reference dataset. 
Balancing the positive/negative ratio in the data, a randomly-selected locus which was not 
conflicted with reference data is additionally prepared as a negative-validation score. A total 
of 13 data points (i.e., 12 for input data and 1 for validation scores) were used for the RF. 
We collected those data at 200 loci which were randomly selected on the target 
chromosome. After removing duplicated information, the information was shuffled, 90% of 
the data was used for training to create an RF model and the remained 10% of the data was 
used for the RF-model performance validation. If training and validation data are different 
conditions (i.e., different cell lines), then all training data of a cell type was used for the RF to 
create an RF model and the RF-model performance was measured on the validation data of 
different cell types. Repeat this process 100 times to compute the performance stats of the 
following five factors: accuracy, specificity, precision, sensitivity, and F1-score. 

In the predictions of TAD-boundary regions, the same strategy is applied with two 
modified factors. The WM contained the highest values in the middle positions, gradually 
declined the values at each position toward the edge, and the lowest values in the edge 
positions. Only WM and lowess-normalized GC percentage at the target locus were 
considered for prediction.  
 

GC % normalization per region for prediction of genomic contexts 
GC％ were computed per unit (i.e. default = 5,000bp length). The GC％ within the 

target region (target loci +/- 1Mbp) are normalized by applying LOWESS (in python lowess 

package) with option bandwidth=0.4 and polynomial Degree=1.  
 
 
Predicting the interactions in promoter-captured Hi-C assay: 

Promoter-capture Hi-C (PCHi-C) data19 was used and contained two types of 
datasets: PP and PO data in a total of 27 human cell/tissue types. The ‘PP’ data contained 
‘promoter-promoter’ interactions whereas the ‘PO’ contain “promoter-other” interactions. 
Here, all of the ‘other’ regions in ‘PO’ interactions were assumed as enhancer regions; thus, 
PO interaction was considered as ‘enhancer-promoter interactions’ Their genomic loci data 
which have defined interactions were converted into the genomic loci information and bin the 
interaction positions by 5,000bp. In PCHi-C data, only interactions of genomic loci apart 
1Mbp or less were considered. Apply horizontal search to predict PCHi-C interaction 
[materials and methods]. Since PCHi-C predicted regions (20,000bp on average) were 
relatively wider than ours (5,000bp), thus, if our results were predicted within the PCHi-C 
regions, then the prediction was successful. Repeat this process 100 times to compute the 
average statistical scores; Accuracy, Specificity, Precision, Sensitivity, and F1-score.  
 

Predicting the CTCF-enriched regions: 
 The data of CTCF-enriched regions are collected from Khoury et al., (2020)47. The 
narrow peak of the control condition was used as validation data. A horizontal search 
approach is applied to create a model for the CTCF-enriched regions with the input of 
neighbouring predicting information, lowess-normalized GC% and the status of gene-
body/intergenic region. The average length of defined enriched regions is approximately 
300bp. If our results (minimum 5,000bp) contained the CTCF-enriched regions, then the 
prediction was successful. Repeat this process 100 times to compute the average statistical 
scores; Accuracy, Specificity, Precision, Sensitivity, and F1-score.     
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Predicting the TAD-boundary regions: 
The original data of TAD regions are collected from Rao et al., (2014)20. The TAD 

information is used in the regions defined in the 3D Genome Browser at Northwestern 
University48. Thus, the TAD boundary information is the regions which are not covered by 
the TAD information and are used for reference data for horizontal search. Custom TAD 
scores were computed with five neighbouring regions of the target locus, and normalized 
scores by LOWESS were used as input data for the random forest algorithm together with 
lowess-normalised GC%. Repeat this process 100 times to compute the average statistical 
scores; accuracy, specificity, precision, sensitivity, and F1-score.     
 
  
Motif search in TAD-boundary candidates: 
The energy method, so-called BEEML50, was employed for identifying the enrichment of 
transcription factor binding sites (TFBS) followed by previous studies51. Briefly, all TFBS 
information, position weight matrix (PWM), is collected from CIS-BP52 and Uniprobe53. Due 
to computing penalty score in the BEEML, the length of PWMs trimmed on both edge sides if 
the edge of PWM is not conserved well (i.e., max score at a position in PWM is less than 
0.5). BEEML score >= 0.09 is considered motif candidates. The regions categorised as TAD-
boundary (e.g., N-bp x 5,000bp region) are used for motif search. The occurrence/frequency 
of PWMs on the target regions is normalized by the length of regions. The enrichment of 
TFBS is determined by comparing those in the negative datasets that contain the randomly 
selected 50,000 sequences of 5,000 bp-length from the target genome. Subcategoriezed 
TAD boundary regions are computed in the same approach per sub-group instead of the 
whole group. 
 
 
 
Result: 
 
Flowchart of this study 

Here, we introduced a digital Hi-C assay by demonstrating the predictions of (1) the 
long-distance interactions of genomic loci (e.g., enhancer-promoter interactions), (2) the 
location of CTCF-enriched regions, and (3) TAD boundary regions. In this computational 
assay, we aimed to create machine-/deep-learning-based models per chromosome by using 
the genomic-loci interactions data only (i.e., Hi-C dataset).  

We achieved this goal by considering predicting the long-distance interactions of 
genomic loci was conceptually the same as language translating; a sentence (i.e., input 
sequence) in one language translated to another sentence in another language which was 
the paired target sequence. We maximized the opportunity for better prediction by 
considering the following several points. Firstly, we did not employ pre-defined genomic 
features such as defined enhancer and promoter regions. Instead, we used all raw 
interactions captured by Hi-C assays (figure 1a process 0). Secondly, we employed shorter-
length sequences for input data (e.g., a few hundred base pairs (bp)), each of which was a 
representative of a wider genomic locus (e.g., a few thousand bp). In particular, we fixed the 
lengths of input and target sequences to be 300bp which was the represented sequence of a 
5,000bp-length genomic locus (discussed below in figure 1a process 1). Thus, the 
interaction information of our training/validation datasets ought to contain pairs of 300bp-
length sequences. We predicted the long-distance interactions of genomic loci by predicting 
only hundred-bp sequences that were associated with target genomic loci. Thirdly, we 
applied the customized one-chromosome-leave-out rule (material and methods, figure 1a 
process 2) for preparing training/validation datasets to predict interactions. We selected a 
target chromosome, say chromosome 10. The training dataset contained inter-chromosome 
interactions to the leave-out chromosome 10 whereas the validation dataset contained intra-
chromosome interactions onto the removed chromosome. The benefit of this approach was 
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that users could select the sizes of target ‘leave-out’ regions by splitting into multiple sub-
groups without losing information (i.e., the range from an entire single chromosome to a 
single locus). Fourthly, we adopted a sequence-based approach with a deep-learning 
method, the transformer algorithm44 (figure 1a process 3). A sequence-based approach 
could predict the interactions of genomic loci from a simple and limited number of datasets. 
The transformer algorithm44 was used in natural language processing (NLP). Unlike another 
popular recurrent neural network such as a Long Short-Term Memory45 (LSTM), the 
transformer algorithm contained an attention process that assessed nucleotide positions, 
patterns, order, and other unknown sequence features and contexts in given sequences. In 
the training and validation process, we trained computational models on created training 
datasets. We utilized the trained models to predict target sequences (figure 1a process 4). 
As an advantage of the transformer algorithm, the trained model could apply to other 
datasets even under different conditions such as tissues, developmental stages, different 
types of Hi-C methods (e.g., in situ or promoter-capture Hi-C) or integrating other high-
throughput sequencing datasets such as ATAC-seq, ChIP-seq, GWAS etc, and the 
sequences of the user’s interest (e.g. input: active promoter region, target: enhancer region) 
(figure 1a process 5).  

Our predicted outputs did not contain any information on genomic features and 
context because our approach did not use pre-defined information for input data. We 
addressed this issue by analysing the neighbouring predicted patterns with the GC% in the 
regions by applying a random forest algorithm54 (discussed later). We called this process 
horizontal search. We used the publicly available datasets of promoter-capture Hi-C, ChIP-
seq, and Hi-C assay for training and demonstrated that our digital assay could predict the 
long-distance interactions of genomic loci, CTCF-enriched regions and TAD-boundary 
regions efficiently.  

In this study, there were different categories among the interactions; hereafter, we 
categorized the types of interactions in the following manner. A 'captured' interaction was the 
one experimentally captured in the Hi-C assay, and a 'predicted' interaction was the one 
predicted by our method. If an interaction satisfied the above two categories, we called it a 
‘detected’ interaction.   
 

Suitable conditions for the length and its token length of input sequences 
We reconsidered the conditions of the input sequences for the transformer algorithm, 

especially following two lengths; an input/target sequence and a token (i.e., the minimum 
length of nucleotides to convert the nucleotides to a numerical index). Previous sequence-
based approaches used the same paired information of enhancer and promoter sequences 
defined in a pioneer study20,33,55. The majority of those sequences in those datasets overlaid 
other sequences, thus, influencing the training performance and the prediction results 
unconsciously and significantly. A previous study reported that the prediction performance 
declined drastically if such conflicted parts were removed43. As a second factor, we 
wondered about the token length being fixed at six nucleotides (i.e., 6nt) which were used for 
the predictions with the LSMT algorithm due to computational performances and costs. 
However, it was unknown whether the length was optimized for the sequence prediction with 
the transformer algorithm or our assay. We evaluated the optimization of each condition in 
terms of prediction accuracy, loss, and computational cost. 

Firstly, we optimized the length of input sequences under the fixed-token-length 
condition. As a model case, we used datasets for chromosomes 10 and 16 in four datasets 
(HIC001, HIC002, HIC003, and HIC017) from Rao et al., (2014)20 (i.e., eight datasets in 
total). To begin with, we tested the standard conditions; the input-sequence length was 
3,000bp with the 6nt-length token. We found that our assay took more than 24 hours to 
generate/update a model per epoch, resulting in those standard conditions were not realistic 
for our approach (data not shown). Next, we varied the lengths of input sequences as 
follows; 100, 200, 300, 600, and 1,200bp. We found that the maximum accuracy declined as 
the length of the input sequence become longer (supplemental figure 1a, g). For instance, on 
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chromosome 10, we found that the maximum accuracy at 20 epochs reached 0.85, 0.7, 0.6, 
and 0.55 for 100bp, 200bp, 300bp and 600bp, respectively. As correlated with those trends, 
the longer input sequence returned larger scores in loss (supplemental figure 1b, h). 
Additionally, we found that the length of the input sequence correlated with the time length of 
computations exponentially (supplemental figure 1c, i). We could find similar trends at token 
length was 8nt (supplemental figure 1d-f, j-l). As considered less redundancy in input 
sequences and avoided mammalian ‘super-conserved region’ which might hamper our 
predictions, the input sequence length ought to be at least 300bp.   

Next, we evaluated the effect of the token length on the prediction performance 
under the 300bp-length input sequence. We varied the length of a token as follows; 4, 6, 8, 
and 9nt. We again evaluated the training performance by the same three factors. 
Unexpectedly, we found that the token length of 8nt gave the highest accuracy; the longer 
token the better prediction. At nine or longer nucleotides (nt) in length, however, it took more 
than 24 hours per epoch to learn. We noted that accuracy and loss for the learning process 
could reach accuracy > 0.98 and loss < 0.05 under 300bp-length input sequence and 8nt-
length token on chromosomes 10 and 20 (supplemental figure 1m-n, p-q). The 
computational cost also increased exponentially as the length of tokens was longer on both 
chromosomes 10 and 20 (supplemental figure 1o, r). We observed similar trends in the case 
of the 600bp-length input sequence (data not shown).    

The combination of the ‘local’ best conditions might not be suitable condition overall. 
Hence, we directly compared the prediction performance with the combinational conditions; 
300bp vs 600bp in input sequence length and 6nt vs 8nt in token length. As a result, we 
found that the highest accuracies and lowest loss returned at 8nt-length tokens with 300bp 
and 600bp-length input sequences and terminated their computational training earlier than 
other conditions because it reached saturation conditions (figure 1b, c). By considering 
computational costs, we found the shorter sequences were, the quicker computation was 
completed per epoch (figure 1d). Thus, we concluded that the appropriate lengths of the 
input sequence and token for our transformer-basis assay were 300bp and 8nt, respectively. 
 

Comparison of prediction and captured interactions (chromosomes 5, 10, and 16 in 
GM12878 cell lines of in situ Hi-C) 

We evaluated the prediction performance of our digital assay by demonstrating how 
efficiently our trained models could predict the captured interactions in the Hi-C assay. To 
conduct this, we used the HIC-001 dataset of GM12878 cells in Rao et al., (2014)20 and here 
used chromosomes 5, 10 and 16 as model cases. As we mentioned above, our training 
datasets contained inter-chromosome interactions whereas the validation datasets contained 
intra-chromosome interactions (figure 1a process 2, materials and methods). Each dataset 
contained the paired 300bp-length sequences which represented input and target 
sequences. We randomly selected 200 loci (i.e., input sequences for prediction) on each of 
the chromosomes for validation performance stats. We computed the performance stats in 
the following five factors; accuracy, precision, recall, sensitivity, and F-1 scores, by counting 
the number of predicted and captured interactions of the target loci (materials and methods). 
We simplified to visualizing the predicted/reference interactions with a ‘bar’ on the locus if 
the target locus (i.e., target sequence) predictably interacted with the input locus (i.e., input 
sequences) (figure 2a).    

Firstly, we looked at predicted and captured interactions around the region of 3.43Mb 
+/- 1.0Mb on chromosome 5 as a represented result and visualized the 10 results per 
reference data (figure 2b, HIC001 - HIC010). We found that predicted results (i.e., the grey-
colour bar on top) could completely detect the raw interactions (i.e., the blue-colour bar on 
the bottom) within the target regions (figure 2c (single data with HIC001), supplemental 
figure 3c). Whereas those results also showed that we predicted a lot more interactions than 
those of captured interactions in each reference data (figure 2b-c, e.g., a predicted vs 
HIC001 top blue bar). Consistently, this result was shown in poor performance stats; 0.4 in 
accuracy, 0.4 in F-1 score (figure 3b). This trend was not difference in different datasets in 
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the same cell lines (e.g., HIC002), at different loci (data not shown), and different 
chromosomes (supplemental figure 2a-c,d-f). It is known that single Hi-C experiments could 
limitedly capture the number of true interactions; indeed, they might detect only 10-15% of 
genuine interactions20. To confirm this idea, we made a dataset of ‘total’ interactions (i.e., 
orange-colour bar) which contained all captured interactions of the targeted 10 reference 
datasets (i.e., HIC001 – HIC0010) for the target region. We labelled the results with ‘total’ 
instead of a specific reference dataset name. We found that our assay efficiently predicted 
the total interactions of the target locus on this dataset (figure 2b, c bottom); the performance 
stats on total reference data showed above 0.8 scores in all categories (figure 3b). 
Furthermore, we looked at all selected 200 loci and found the result still showed our assay 
predicted 93% of reference interactions (figure 3d); consistently, it supported with high-
performance stats; at least 0.95 scores in all categories (figure 3e). Although we closely 
looked at the prediction patterns to investigate any correlated or biases of the interaction 
positions that existed between predicted and captured interactions, we could not find 
particular correlations between the two types of interactions. Taken together, we concluded 
that our method could efficiently predict the captured interactions in the Hi-C assay; 
especially those redundantly captured by multiple assays.  
 

Efficiently predicting the interactions of genomic loci in datasets by using the models 
trained on different datasets.  
 In practical issues, it would be desired to predict long-distance interactions of 
genomic loci even if Hi-C datasets were not fully available for particular conditions of 
interest. Next, thus, we aimed to evaluate how efficiently a model trained on a dataset could 
predict the long-distance interactions of genomic loci in different datasets (e.g., different cell 
lines, experimental conditions etc).  

We first address this by applying the HIC001-trained models, as a model case, to 
predict long-distance interactions in the NHEK-cell-line datasets (i.e., HIC065 - HIC068). As 
a represented result, we showed all predicted and reference interactions around 42.56Mb +/- 
1Mb on chromosome 5 (figure 4a). Around the target regions, the prediction performance 
stats had > 0.6 scores in both accuracy and F1-score, indicating that the HIC001-(GM12878-
cell-line) trained model was a good prediction model for the long-distance interactions in 
NHEK-cell-line (figure 4b). To be consistent with this result, we showed that regions at 
8.435Mb +/- 1Mb on chromosome 16 had similar trends in their prediction results (figure 4c) 
and their overall performance stats remained above 0.6 in the F-1 score (figure 4d). We 
looked at all randomly selected 200 loci on chromosomes 5 and 16. We found the result 
showed a relatively lower prediction rate (38.0% for chromosome 5 and 30.2% for 
chromosome 16) (figure 4e, f). The prediction performance stats on chromosome 5 showed 
0.6 scores in F-1 score (figure 4g) whereas that on chromosome 16 was around 0.5 in F-1 
score (figure 4h). The overall trends on chromosome 10 were similar to those of 
chromosome 5 (supplemental figure 3a,b). A represented result around 33.295Mb +/- 1Mb 
on chromosome 10 and their performance stats around the target regions were described in 
supplemental figure c.     

Those prediction performances were worse than those in previous sections (e.g., 
training and validation data have been used for the interactions in the same cell line). We 
investigated the causative factors which returned poorer prediction performance. Hence, we 
hypothesized these cases might be the outcomes in which the number of experimental 
datasets was limited (e.g., there were four datasets for NHEK-cell-line datasets while the 
GM12878 we tested above had 10 datasets.), thus, could not experimentally recapture total 
interactions of genuine positives. We verified the hypothesis by using the GM12878-cell-line 
datasets and creating two sets of four reference datasets from the GM12878-cell-line 
datasets; the first set contained the HIC002 - HIC005 datasets, and the second set 
contained the HIC006 - HIC009 datasets. Although we applied the same HIC001-trained 
model which showed excellent prediction performance in the previous section (figure 2), we 
found that the prediction performances on both data groups declined to a similar level as 
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those on NHEK-cell-line datasets (supplemental figure 4a-e). We found that lower prediction 
rates (50.6% for HIC002 - HIC005 (supplemental figure 4a) and 33.3% for HIC006 - HIC009 
(supplemental figure 4b)) while lower prediction performance stats were on 0.5 - 0.7 in F1 
scores (supplemental figure 4c, d). We noted that our model still predicted long-distance 
interactions of genomic loci (supplemental figure 4e), and the performance stats (e.g., 
accuracy and sensitivity etc) were lower in comparison to those having a large number of 
reference datasets. Those results indicated that the number of available reference datasets 
might significantly influence the systematic scorings for our prediction performances on long-
distance interactions.   

To support this hypothesis further, we verified the prediction performances of 
HIC001-trained models on the three additional datasets: IMR90, HMEC, and HUVEC-cell-
lines20. We noted that these datasets contained in the range of four to eight datasets. As a 
model case, we focus on chromosome 10. We found that our HIC001-trained models could 
predict all captured interactions at randomly-selected 200 loci in those three cases 
(supplemental figure 5a,b,d), consistent with those of NHEK-cell-line case (supplemental 
figure 5c). This time, we found that prediction performance based on the F1-score was 
slightly lower than those of the HIC065s datasets, but its F1-score remained above 0.6 
under those conditions (supplemental figure 5e-h). The represented results for each dataset 
were shown in supplemental figure 5i-l. Taken together, we showed that our approach 
allowed the models trained on a dataset to apply to predict long-distance interactions on 
different datasets efficiently. Due to lack the number of reference datasets, the standard 
prediction performance might not be successful; however, all results suggested that our 
strategy and digital assay might predict genuine interactions of genomic loci even though the 
Hi-C datasets in the cell lines might not be available in specific conditions.  
 
 
Toward identifying genomic contexts from our predicted results 

In the following sections, we addressed whether our digital assay could predict the 
genomic contexts and compartments from its prediction results. One of our ultimate goals 
was to develop a digital assay which allowed us to predict the long-distance interactions of 
genomic loci even under all high-throughput experimental results (e.g., Hi-C, ATAC-seq, 
ChIP-seq etc) have not available for the target and specific conditions of interest. Massive 
lines of evidence showed that genomic context (e.g., enhancer-promoter interactions) and 
genomic three-dimensional (3D) architecture (e.g., topological associating domains (TAD)) 
could be detectable from Hi-C data by integrating other high-throughput data such as ATAC-
seq and ChIP-seq and applying advanced statistical and computational methods. For 
example, those genomic compartments could be defined bioinformatically by using chartink 
patterns of interaction frequency in analysed Hi-C data9. This indicated that Hi-C data ought 
to contain all information. In addition, hypothetically, it is possible to extract such genomic 
contexts and 3D architectures from Hi-C data with appropriate advanced strategies without 
using other types of high-throughput data. Up to this point, our digital assay demonstrated 
that it could flexibly and reliably predict the long-distance interactions of genomic loci by 
using the paired sequences directly (i.e., raw captured interactions) from Hi-C datasets. In 
those prediction results, we observed that some genomic loci tended to have 'dense' 
interactions in their neighbouring whereas others had 'sparse' interactions. We speculated 
that the prediction patterns around a target genomic locus might correlate with specific 
genomic contexts.  

To address this, we introduced an additional function, so-called the horizontal search 
approach, to predict genomic context (e.g., enhancer-promoter interaction) (figure 5a) 
[materials and methods]. Although the targeting genomic features were slightly optimized for 
each study case, the overall strategy in the prediction of these features was the same. 
Briefly, this horizontal search approach considered 2N-length neighbouring regions (default 
N = 5) around a target locus (i.e., target locus = the fifth position in the 2N-region). Each 
position of the 2N region contained the predicted/un-predicted information of vertical search 
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results. In addition to the target local region, we consider two additional reliable factors, 
normalized GC percentage and binary information of gene body or intergenic region at the 
target locus. All information was used to create a Random-Forest (RF) model and judge 
whether the new targeted locus had genomic contexts. In the following sections, we 
investigated whether our digital assay could predict the genomic contexts and compartments 
from its prediction results. To conduct this, we applied this horizontal search and categorized 
whether the target locus had genomic contexts or not. We aimed at the following three 
contexts: enhancer-promoter interactions, CTCF-enriched regions, and TAD boundary 
regions. 
 

Predicting enhancer-promoter interaction by using promoter-captured Hi-C 
interactions: 

As a first example to predict genomic contexts, we applied a horizontal search 
approach to predict enhancer-promoter interaction. In this approach, we considered 
neighbouring predicted patterns with two additional factors: normalized GC percentage and 
binary information of gene body or intergenic region at the target locus [materials and 
methods]. Information from 13 data points in total was used to create an RF model and 
judge whether the new targeted locus had EPIs at a target locus.  

We evaluated whether the horizontal search approach could efficiently predict the 
enhancer-promoter interactions (EPIs). We used the datasets of promoter-capture Hi-C 
(PCHi-C)19 as reference data. In addition to the 27 original datasets, we created an 
additional dataset; "ALL'' contained all EPIs of 27 human tissues. In those datasets, the 
authors provided two types of interactions of genomic loci: promoter-promoter (‘pp’) and 
promoter-other (‘po’) interactions. We assumed and used the “po” data representing EPIs. 
We again used HIC-001-trained models to predict long-distance interactions on chromosome 
10 as a model case. We considered 90% of the data for training and remained 10% for 
validation and computed the performance stats each time [materials and methods]. We 
repeated this process 100 times to generate the overall performance stats. As represented 
cases, we showed the performance stats on the following three cases: "AO", "BL", and ALL 
(figure 5b). We mentioned that the "ALL'' case tended to have higher scores on all 
performance stats because they contained much larger positive datasets which made the 
trained model better. Although the performance stats were slightly better on the AO dataset 
compared to those on the BL datasets, the difference was neglectable. Their F-1 score 
showed > 0.85, indicating our models-based horizontal search was excellent to capture 
EPIs. We closely looked at the details of the results in the representative results. We showed 
the predicted (black-colour bar on top) and reference interactions (blue-colour bar on 
bottom) around the regions around 15,490,000 bp (input sequence indicating orange-colour 
bar) on chromosome 10 (figure 5d). We noted the black/blue-colour bar indicated that the 
locus had predicted/reference interactions to the input sequence (orange-colour bar), 
respectively (figure 5c). Although the regions with the EPIs in PCHi-C data tended to be 
wider than ours (e.g., average length of such regions was 25,000 bp), we showed our 
horizontal search could predict the EPIs regions efficiently at a single locus.  

Furthermore, to address generality, we asked whether a trained model in a cell type 
could predict EPIs in other cell types. We addressed this by demonstrating the RF model of 
the ‘AO’ could predict EPIs in the ‘BL’ dataset (figure 5e), We showed a representative result 
of around 2,530,000 bp on chromosome 10. The result showed that a horizontal approach 
could predict the EPIs in the regions efficiently. We mentioned that this region does not 
contain the ‘AO’ dataset; thus, it was also supported that a trained model in a cell type could 
be used for predictions in other cell types. We emphasized that some of the interactions 
apart more than 750,000 bp between the loci, and our model could precisely predict the 
interactions within 5,000 bp resolution. We applied this strategy to predict EPIs at 200 loci 
which were randomly selected on the chromosome. We found that 85.3% of AO-model 
predicted results could capture EPIs in BL-dataset (figure 5f), and the prediction 
performance stats showed the model was sufficiently good enough for the prediction (figure 
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5g). Further, we applied the same AO-model to other cell lines in other datasets of Jung et 
al., (2019)19 (Supplemental figure 6a-aa). The prediction rate could vary between 80.5 and 
86.7%, which might reflect the variability and similarity of cell-line specific features. These 
results also showed that a trained model in a cell type could predict to EPIs in other cell 
types efficiently, indicating that even in the case of fewer numbers and small regions of EPIs, 
our predictions could predict the EPIs efficiently. Taken together, we concluded that our 
horizontal search approach could efficiently predict enhancer-promoter interactions. Further, 
we could show that our approach had general versatility as an application and predict EPIs 
in the situation of the cell type, not having reference data. Those results suggested that the 
horizontal search approach could efficiently predict the enhancer-promoter interactions 
(EPIs), and the trained model on a dataset could be applicable to predict the interactions in 
different datasets (e.g., different cell lines). 
 
The regions having no predicted interactions represent the CTCF-enriched regions 
with specific prediction patterns. 
 

Next, we addressed whether the horizontal search approach could predict another 
genomic context (figure 6a); CTCF-enriched regions. In our predicted result for long-distance 
interactions, we found some regions did not contain any prediction. Since Hi-C data could 
not capture any or a fewer number of interactions of genomic loci around the topological 
boundary domain (TAD) boundaries, we speculated the regions without predicted 
interactions in our results might correlate with the TAD boundary regions. It has been known 
that the boundary regions correlate with the enrichment of the CCCTC binding factor binding 
sites (CTCF)9,56; additionally, the number of CTCF-enriched regions determined 
experimentally were larger than those of TAD boundary regions, hence, could be used as a 
positive control to confirm a prediction performance. Thus, we demonstrated, firstly, the 
horizontal search approach could efficiently predict CTCF-enriched regions (materials and 
methods). To conduct this, we used the datasets of ChIP-seq for CTCF47 for training and 
validating our predicted results; the authors provided the datasets of two cell types; IMR90 
and LNCaP. We created an RF model by using 90% of the data for training and validated the 
prediction performance by using the remaining 10% on the CTCF dataset. We evaluated the 
prediction of the RF model by computing the performance stats of the five measurements. 
We repeated this process 100 times to compute the performance stats. As a result, we found 
our models showed 92.9% accuracy, 89.4% precision, and 85.1% F1 on chromosome 5 in 
LNCaP-cell (figure 6b). Even though we tested this procedure on chromosomes 10 and 16 in 
the same dataset, these statistical scores remained high (data not shown).  

Likewise in the case of PCHi-C prediction, we further demonstrated a broader 
application by showing those trained models on the LNCaP dataset could efficiently predict 
the CTCF-enriched regions on another dataset, the IMR90 dataset or vice versa. As a result, 
we found that the accuracy and other measurable factors remained high; 0.96 in accuracy 
and 0.94 in F-1 score on chromosome 5. We also confirmed a similar level of predicted 
performance was conducted on chromosomes 10 and 16. We showed a representative 
result of around 36,345kbp on chromosome 10 (figure 6d). As we expected from CPHi-C 
cases, the results showed our prediction detected CTCF-enriched regions in reference data 
nearly perfectly at this target locus. Further, we applied this strategy to predict CTCF-
enriched regions at randomly-selected 200 loci on the chromosome 10. We found the 
LNCaP-based model could predict 91% success ratio on the dataset of IMR90 (figure 6e,g). 
Its performance stats showed more than 0.9 scores in all categories. The other 
chromosomes 5 and 16 also showed the similar trends (supplemental figure 7a,c,e,g). We 
also validated the other case; predict with IMR90-based model and validate on LNCaP data. 
Due to smaller size of data in IMR90, the prediction rate was slightly lower (76.2%) on the 
chromosome 10 (figure 6f,h), and the performance stats showed still 0.8 scores, indicating 
the model was excellent. The other results on two chromosomes 5 and 16 also showed the 
similar trends (supplemental figure 7b,d,f,h). Those results suggested that the horizontal 
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search approach could efficiently predict the CTCF-enriched regions. Although the size of 
positive data might influence the prediction performance, the trained model on a dataset 
could be applicable to predict the interactions in different datasets. 
 
Predicting TAD boundaries and four sub-categorized TAD boundaries based on digital 
Hi-C scores. 
 

We have shown that our horizontal search approach could predict genomic context 
based on our prediction results in two following cases: enhancer-promoter interactions and 
CTCF-enriched regions. Those datasets contained relatively large volumes of positive data 
which, in general, helped us to conduct better training and accurate outcomes. Next, our 
challenge was whether the horizontal search approach was still functional to predict genomic 
contexts even from smaller volumes of positive data.  

  
To address this, we demonstrated to predict TAD boundary regions by applying the 

horizontal search approach. To conduct this, we again used the datasets of Rao et al., 
(2014)20. In particular, we collected the reference information of TAD boundary regions in 
IMR90 dataset from the 3D Genome Browser at Northwestern University48. We focus on 
chromosome 10 as a model case. This time, we modified a horizontal search approach in 
the following two points; using a custom weighted matrix to compute a custom TAD score 
which was a similar concept of the directionality index9, and using a custom TAD score and 
normalized GC % as input data for RF algorithm (figure 7a). We showed representative 
results of around 2.98Mbp on chromosome 10. We predicted three regions as TAD 
boundary regions (i.e., black-colour region) whereas the reference data was called a single 
TAD boundary region (red-colour region) in the target genomic region. We found only one of 
our predictions detected reference data; we found that our model returned many ‘false 
positives' regions. We closely investigated those regions manually with using the 3D 
Genome Browser to view raw data. We found that the reference boundary had a strong/clear 
status whereas one of our predictions showed a weak TAD boundary region. To support this 
idea, small TAD boundaries were defined (e.g., orange-/blue-color bars) and our prediction 
was located between the two boundaries (figure 7b). We repeated this process 100 times to 
compute performance stats. As a result, we found that the model performed 0.766 in 
accuracy, 0.74 in precision, 0.55 in recall, 0.89 in specificity, and 0.63 in F1 scores (figure 
7c). We noticed that the F1 and recall scores were lower than those of the previous cases of 
the horizontal search approach because the number of defined TAD boundaries was limited 
(e.g., relatively small number of positive datasets for training). Having said that, the F1 score 
was 0.63, indicating the RF model and our horizontal search approach were good in the 
prediction of TAD boundaries as well. In both training and validation datasets were the 
same, the performance stats on other datasets show similar trends (supplemental figure 8a). 
When we trained a model on IMR90 and validated the prediction performance on other 
datasets, we found that some of F1 score were below 0.6 score. However, this might 
represent that our model could detected weaker TAD boundaries which were not originally 
defined, computed as negative score, resulting in lower performance stats (supplemental 
figure 8b).  
 It is known that a couple of transcription factor binding sites (TFBSs) such as CTCF9 
and YY157 were enriched in the TAD boundary region. Firstly, we addressed whether we 
could recapture the trend in our data on chromosome 10. To conduct this, we collected 
4,719 TFBSs information, (i.e., position weight matrix) or a total of 983 transcription factors 
from CIS-BP52 and UniProbe53 (see materials and methods). We predicted binding sites on 
the boundary regions by applying the energy method50. With the same strategy, we 
randomly selected 500 loci and compute the average occurrence of TFBSs as background 
stats of the occurrences of TFBSs on the genome. We used those estimated occurrences of 
each TFBS to compute the z-score of each TFBS for the enrichment of TFBSs in TAD 
boundary regions. The result was sorted by the z-scores with known enriched TFBSs and 
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showed those regions contained statistical-significant enrichments of known TFBSs; CTCF9 
(blue-colour dot) and YY157 (orange-colour dot) whereas ZNF27458 (green-colour dot) 
binding sites did not show statistical significancy on chromosome 10 (figure 7d). We found 
that those known enriched TFBSs did not have the highest score in z-scores. However, we 
recaptured that the previously known TFBSs, CTCF and YY1, were enriched in TAD 
boundary regions on chromosome 10. We showed the top 10 TFBSs enrichment with the 
highest z-scores listed in our prediction results (figure 7e). 
 

Next, we investigated whether these TAD boundary regions could be sub-
categorized by using the prediction scores of our horizontal search. We have two reasons. A 
previous study showed that TAD boundary regions could be sub-categorized into at least 
two groups, 'strong' and 'weak' TAD boundaries, by their binding affinity47 under chemical 
treatments. Hence, we asked whether our digital assay approach also could subcategorise 
the TAD boundary regions based on our computed scores. Another reason is, while we 
predicted the TAD boundary regions, we had seen that a trend in reference TAD boundary 
regions on chromosome 10 could have multiple subgroups by two factors: custom TAD 
score and normalized GC %. Hence, we addressed this by applying an unsupervised 
classification method, K-mean, to the scores. We classified the boundary regions into four 
groups (i.e., K=4) which were determined by the Elbow algorithm (figure 8a). We noted that 
we could not see the obvious location bias of the members of the subcategorised groups.  
 

Firstly, we investigated the enriched TFBSs in each sub-group. We found each sub-
group had the enrichments of known TFBSs (CTCF9 and YY157) (figure 8c). When we 
compared the top 300 enriched TFBSs having the highest z-score in each sub-group (i.e., 
top 10% of tested TFBSs), the four-way Venn diagram showed that 224 TFBSs were shared 
across four sub-groups (figure 8b), indicating those boundary regions shared similar or 
common functions as TAD structures (e.g., structural maintenances). Whereas we found that 
each group had unique sets of TFBSs, and their sizes were in the range between 8 and 45 
TFBSs. For example, Sox (M03501_2.00) in group 1 had 6.43 in z-score and uniquely 
appeared in this analysis, indicating that those sub-groups might have distinct contributions. 
We listed that the top five group-specific TFBSs were listed in figure 8d. Additionally, we 
found that the enriched TFBSs in Groups 1 and 3 remained relatively similar types whereas 
those in Groups 2 and 4 held similarly. Since that grouping was not reflected based on the 
score of horizontal searches and GC % (figure 8d), it might exist hidden biological 
information to characterize the sub-category of TAD boundary regions. Although we needed 
further experimental and computational verifications, these sub-categories were based on a 
custom TAD score and GC% which were based on the prediction pattern of our long-
distance interactions. Thus, without our predictions, it was hardly sub-categories of the TAD 
boundary. This result indicates that our digital assay prediction potentially extracts biological 
features associated with a TAD structure. 
   

In conclusion, we showed that our digital Hi-C assay with vertical and horizontal 
searches efficiently predicted the long-distance interactions of genomic loci and genomic 
contexts in three cases: enhancer-promoter interactions, CTCF-enrichments, and TAD-
boundary regions. We showed that those trained models could predict these interactions and 
contexts even in different datasets (different cells/tissues/experimental conditions). 
Additionally, our prediction scores in our approach could be useful by demonstrating the sub-
categorization of the TAD boundaries. Therefore, we have shown that our digital Hi-C assay 
could efficiently recapture the genomic information from experimental Hi-C assay by 
applying machine and deep learning methods.      
  
      
Discussion: 
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Here, we discuss the following points: generalizing models, the duration time for 
training, horizontal search, predicting the interaction or active regions, and the advantage of 
our digital assay. 
 

We ultimately aim to create a more generalized model that describes 3D genome 
architectures in the status of multiple conditions (e.g., mutants, wild-type). Theoretically, the 
model allows us to identify unique and descriptive features in a given condition. Identifying 
those features would be a crucial step to understanding the gene regulatory mechanisms of 
abnormality or development. Under our current strategy, although the trained models could 
apply to other tissue/condition datasets, we are still required to create a model per training 
dataset and chromosome. In our way, we can define key features for a specific condition by 
detecting the difference between two predicted statuses (e.g., normal, abnormal/mutant). We 
can also apply the same strategies to the random forest filtering for identifications of PCHi-C 
and CTCF-enriched regions. In doing so, the current obstacle and limitation is the amount of 
learning data (e.g., the number of interactions of genomic loci) in training datasets. The 
mutant/tested data size sometimes can shrink up to 20 folds compared to the control data 
size. This makes it difficult to fully and accurately learn models, results in a poor prediction 
rate, overlooks the distinguished interactions and returns high false-positive and true-
negative results. To overcome those issues, thus, it is desired to improve our system to 
satisfy both statuses simultaneously, mutant and wild type. 
 

The long duration time to train each of the models from raw genomic-loci interactions 
per chromosome is another bottleneck with aiming to develop a more generalized model 
which describes all human chromosomes. In the performance comparison with other famous 
deep learning methods, the transformer algorithm does not have to process one word at a 
time, indicating that the algorithm allows us to parallel than RNNs, thus, reducing training 
times. However, it still takes a longer time to complete the process in comparison to those 
LSTM which is often used for traditional sequence-based prediction. We note that the 
transformer algorithm has an attention process which outperforms LSTM predictions. We 
maximized the prediction performance of the transformer algorithm to predict long-distance 
interactions by employing pre-conditions such as the length of the token and input 
sequences. Those are determined by the threshold of the maximum training duration, 24 
hours because the accuracy and loss of the training processes we tested showed saturated 
results within the cut-off time. With our current set-up (e.g., accessible facility, GPU specs, 
and programming codes), training a generalized model for all chromosomes will take 24 
times longer (i.e., equivalent to more than 24 days for a single dataset). Therefore, it is 
desired to develop an alternative way (e.g., parallel learning, reducing the volume of training 
datasets, and developing an efficient algorithm to improve computational speed) to reduce 
the training models.   
 

Thirdly, we discuss the benefits of pattern analysis of neighbouring target regions 
(i.e., horizontal search) by applying a random forest (RF) algorithm54. Our approach is 
adapted from a sequence-based approach; hence, the results of our vertical search 
approach cannot specify whether the regions having predicted/not-predicted are associated 
with genomic contexts. We complement this shortcoming by developing the horizontal 
search method for identifying the genomic contexts such as the enhancer-promoter 
interactions and CTCF-enriched regions. We reasoned that our transformer-basis prediction 
takes an account of each unit (i.e., 5,000bp-length region) as an independent factor, thus, 
can handle the bulk information of the neighbouring predictions as new independent 
information. As a result, we successfully demonstrated that the prediction rates are improved 
to identify the enhancer-promoter interactions and CTCF-enriched regions at high efficiency. 
Indeed, our RF models provided a score above 0.8 in F1 scores on validation datasets, 
indicating that the models are sufficiently good and can recapture the promoter-enhancer 
interactions in the PCHi-C assay. Those results showed that the horizontal search with the 
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vertical search effectively works to extract the genomic context even by employing the 
sequence-based approach. 

   
Fourthly, we discuss whether our horizontal search can distinguish the following 

possibilities: detecting the interactions of genomic loci, the active regulatory regions or both. 
The regions with long-range interactions correlated with the active/open genomic regions; 
however, not all active regions associate with long-distance interactions. In our analysis, 
indeed, our results contain false-positives interactions (i.e., the regions having our predicted 
interactions but not having captured interactions in the PCHi-C assay). This result may 
indicate that our horizontal search in the PCHi-C data predicts the active/open regions rather 
than the enhancer-promoter interactions. Those are speculated under the current models, 
and it is impossible to distinguish these possibilities. To answer this question, we may 
conduct experimental verifications with PCHi-C and ATAC-seq. 
 

Lastly, we emphasize the advantages of our digital assay. Due to human and 
experimental errors, the results of high-throughput assays are often hardly standardized at a 
high level, resulting in uneven quality across experimental results (e.g., batch effect, rich 
interactions captured in a dataset but not others). Accuracy and loss scores in our training 
process could be utilized as quality control; thus, our prediction overcame the quality of the 
experimental results and maintained high-level prediction rates in true-positive interactions. 
Additionally, due to financial reasons, researchers tend to have less-duplicated and less-
redundant experimental data to collect per condition, which might lose the chance to identify 
genuine interactions at the end. We demonstrated that our assay could detect more 
interactions efficiently from a single Hi-C data (figure 3). This result also indicated that our 
approach could apply a single trained model to other datasets for predicting interactions and 
have broader applications. We confirmed that these performance stats remained at high 
levels on other chromosomes (i.e., on chromosomes 5, 10 and 16, in figure 3, supplemental 
figure 2). Hence, our assay has a general versatility and can cover wider conditions to 
predict long-distance interactions.  
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Figure legend: 
 
Figure 1: Schematic illustration of a horizontal search for digital Hi-C assay:  
 
(a) Schematic illustration of a horizontal search for digital Hi-C assay: process 0: Digital Hi-C 
assay only requires paired sequence such as chromosome conformation capture basis 
assay (e.g., Hi-C, ChIA-PET). Inter- and intra-chromosome contacts would be treated 
separately. Process 1: The sequence mapped to the genome, the mapped location bin in 
5,000bp regions and a single 300bp-length representative sequence is selected from the 
5,000bp region. The token length is set as eight. Process 2: Apply custom one-chromosome-
leave-out rule (i.e., chromosome 10 in this case) to create two datasets; the test dataset 
contains the paired sequences of inter-interactions with chromosome 10 while the validation 
dataset contains the paired sequences of intra-interactions on chromosome 10. Process 3: 
Apply the transformer algorithm to train a model by using the training dataset. Process 4: 
Predict target sequences (e.g., interacting sequence to the input sequence) by using input 
sequences (i.e., validation dataset or the sequences of user’s interest) with the trained 
model in process 3. Process 5: Map target sequences on the genome and confirm the 
genomic distance between input and target sequences. If the target sequence is mapped 
onto the genome and its location is less than 1,000,000bp from that of the input sequence, 
then the target sequences would intersect with the input sequence. (Default: max close 
distance = 1,000,000bp in human genome) 
 
(b, c) The transitions of (b) accuracy and (c) loss up to the 50 epochs in the training process. 
Two factors were examined: the length of the token (six or eight nucleotides) and 
representative sequences (300 or 600 base pairs). Create 10 test-training datasets, each of 
which contains 1,000,000 interactions selected randomly from the original training dataset 
(see material and methods) and plot the average scores of accuracy and loss on the test-
training datasets in the training process. A cut-off threshold to terminate the training process 
is 0.99 in accuracy.  
 
(d) Training time length for each epoch. Y-axis shows the time in seconds (s) to complete a 
training model for each epoch. Two factors were examined: the length of Token (six or eight 
nucleotides) and representative sequences (300 or 600 base pairs).  
 

Figure 2: Visual comparison between predicting and reference interactions of 
genomic loci. 
(a) Illustration of visualizing long-distance interaction of genomic loci. When the locus has 
interactions with the input sequence (the centre position of each bar figure), the locus has a 
bar (black-colour bar for predicted interactions on the top part whereas blue-colour bar for 
reference interactions on the bottom part). The heights of predicted interactions indicate the 
number of experimental assays having the interactions (max: 10). The height of reference 
interactions indicates the Knight-Ruiz (KR)-normalized score49 of the interactions between 
input and target loci. 
 

(b) A representative result of predicted interactions over 10 different reference datasets 

(HIC001 - HIC010 from Rao et al., 2014
20

) in the range of 2,430,000bp to 4,430,000bp on 

chromosome 5. The model trained on the training dataset of HIC001 is used for prediction 

on each of the listed HIC datasets. The input sequence locates in 3,430,000bp on 

chromosome 5. Each row figure contains the comparative results between predicted and 

reference interactions. The name of reference data (e.g., HIC001) is shown in the left 
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position of each bar figure. The “total” (or orange-colour bar) in the last column indicates 

the sum of 10 reference scores above (HIC001 - HIC010). 
 
(c) Two zoom-in areas (white-blue areas) in the representative result (b). The order of rows 
should be identical to those in (b). 
 
(d) The zoom-out version of ‘total’’ result in (b).   
   
 
Figure 3: Performance statistics of prediction on chromosome 5 
(a) A representative stats performance results of predicted interactions with 4 different 
reference datasets only (HIC001 - HIC004 from Rao et al., 201420) in the range of 
2,430,000bp to 4,430,000bp on chromosome 5. The “total” (or orange-colour bar) in the last 
column still indicates the sum of 10 reference scores above (HIC001 - HIC010). 
 
(b) Prediction performance stats between predicted (positive/negative) and reference 
(true/false) interactions for each dataset. The input sequence locates in 3,430,000bp on 
chromosome 5. The performance stats are measured following five factors; accuracy, 
precision, recall, sensitivity, and F-1 score. Each row result corresponds to the reference 
dataset in the same row in (a) 
 
(c) Venn diagram of the predicted and reference interactions for the target input sequence at 
3,430,000bp. Predicted and reference interactions whose locations are less than 1Mb from 
that of the input sequence are considered. In (b), reference data of HIC001 is considered. In 
(c), reference data of ten (HIC001 - HIC010) are considered.  
 
(d) Venn diagram of the predicted and reference interactions at the 200 loci. The 200 loci 
are randomly selected on the target chromosome. Reference data of ten (HIC001 - HIC010) 
are considered.  
 
(e) Overall prediction performance stats between predicted (positive/negative) and reference 
(true/false) interactions at the 200 loci. 

 
   

Figure 4: Efficiently predicting the interactions of genomic loci in datasets by using 
trained models in different datasets (on different chromosomes 5 and 16 with HIC65).  
(a-d). A representative stats performance results of predicted interactions with four different 
reference datasets only (a-b: HIC065 - HIC068 from Rao et al., 201420) in the range of 
41,560,000bp to 43,560,000bp on chromosome 5. The input sequence locates in 
42,560,000bp on the chromosome. (c-d: HIC065 - HIC068) in the range of 7,435,000 bp to 
9,435,000 bp on chromosome 16. Prediction performance stats between predicted 
(positive/negative) and reference (true/false) interactions for each dataset. The performance 
stats are measured following five factors; accuracy, precision, recall, sensitivity, and F-1 
score.  
 
(e, f) Venn diagram of the predicted and reference interactions at the 200 loci on 
chromosomes (e) 5 and (f) 16. The 200 loci are randomly selected on the target 
chromosome. The model is trained on HIC001. The trained model is used to verify the 
prediction performance on four reference data (HIC065 - HIC068).  
 
(g, h) Overall prediction performance stats between predicted (positive/negative) and 
reference (true/false) interactions at the 200 loci. The performance stats are measured 
following five factors; accuracy, precision, recall, sensitivity, and F-1 score.  
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522397doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522397
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5: Predicting enhancer-promoter interactions (EPIs) by horizontal search 
approach 
(a) Schematic illustration of a horizontal search for predicting enhancer-promoter 
interactions. Predicted interactions around a target locus are considered ten input data 
(N=10). Normalized GC % in the target locus (total 10 data points) and the information on 
whether the locus is in a gene body or not. A total of 21 data points is used to create a model 
with a random forest algorithm and predict whether the target locus is categorized as 
genomic context (e.g. promoter, enhancer). the datasets of promoter-captured Hi-C (PCHi-
C) [Jung et al., 2019] are used as reference datasets. 
 
(b) Plots for prediction performance statistics for EPIs in PCHi-C. The performance stats on 
three datasets; ‘ALL’, ‘AO’, and ‘BL’, are shown as represented results. ‘ALL’ contained all 
interactions across 27 tissues in PCHi-C datasets. 90% of the data are used for training and 
the random-forest model is tested on the remained 10% of the data. Shuffle the data and 
repeat the performance validation process 100 times to compute performance stats of five 
factors; accuracy, precision, recall, sensitivity, and F-1 score.  
 
(c) Illustration of visualising the predicted and reference of enhancer-promoter interactions. 
An input sequence is marked orange-colour bar. If the locus interacts with the input 
interactions, then the locus would have a coloured bar (black colour for predicted interaction 
and blue colour for reference interaction.) Only loci within 1,000,000bp from input sequences 
are shown. 
 
(d) Representative result of enhancer-promoter interactions in the range of 14,490,000bp to 
16,490,000bp on chromosome 10. The location of the input sequence is 15,490,000bp on 
the chromosome. The model was trained on 90% of the AO data and validated the prediction 
performance of the model on the remained 10% of the AO data. 
 
(e) Representative result of enhancer-promoter interactions in the range of 1,530,000bp to 
3,530,000bp on chromosome 10. The location of the input sequence is 2,530,000bp on the 
chromosome. The model was trained on 100% of the AO data and validated the prediction 
performance of the model on the remained BL data.  
 
(f) Venn diagram for the overlap of predicted and reference data at the 200 loci on 
chromosome 10. The 200 loci are randomly selected on the target chromosome. The model 
was created on the AO data above. The created model was used to verify the prediction 
performance on the BL data.  
 
(g) Overall prediction performance stats between AO-model prediction (positive/negative) 
and BL-reference (true/false) interactions at the 200 loci.  
 

Figure 6: Predicting CTCF-enriched regions by horizontal search approach  
(a) Schematic illustration of a horizontal search for predicting CTCF-enriched regions. 
Predicted interactions around a target locus are considered ten input data (N=10). 
Normalized GC % in the target locus and the information on whether the locus is in a gene 
body or not. A total of 12 data points is used to create a model with a random forest 
algorithm. Use the trained model to predict whether the target locus is categorized as 
genomic context (e.g., CTCF-enriched regions). The ChIP-seq datasets for CTCF47 are used 
as reference datasets.  
 
(b) Plots for prediction performance statistics for CTCF-enriched regions from the ChIP-seq 
datasets. The performance stats on IMR90 are shown as represented results. 200 loci are 
selected randomly from the target chromosome. 90% of the data on the chromosome are 
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used for training and the random-forest model is tested on the remained 10% of the data. 
Shuffle the data and repeat the performance validation process 100 times to compute 
performance stats of five factors; accuracy, precision, recall, sensitivity, and F-1 score.  
 
(c) Illustration of visualising the predicted and reference of CTCF-enriched regions. An input 
sequence used for predicting long-distance interactions of genomic loci is marked orange-
colour bar. If the locus is categorized as CTCF-enriched regions, then the locus would have 
a coloured bar (black colour for predicted interaction and blue colour for reference 
interaction.) Only loci within 1Mb from the input sequences are shown. 
 
(d) Representative result of enhancer-promoter interactions in the range of 35,345,000 bp to 
37,345,000 bp on chromosome 10. The location of the input sequence is 36,345,000 bp on 
the chromosome. The model was trained on 90% of the IMR90 data and validated the 
prediction performance of the model on the remained 10% of the IMR90 data. 
 
(e, f) Venn diagram for the overlap of predicted and reference data at the 200 loci on 
chromosome 10. The 200 loci are randomly selected on the target chromosome. The model 
was created on the training data and validated their performance on validation datasets with 
the following combinations: (e) the training data are LNCaP cell data, and the validation data 
are IMR90 cell data while (f) the training data are IMR90 cell data and the validation data are 
LNCaP cell data. 
 
(g, h) Overall prediction performance stats at the 200 loci. (g) has the training data are 
LNCaP cell data and the validation data are IMR90 cell data while (h) has the training data 
are IMR90 cell data and the validation data are LNCaP cell data 
 

Figure 7: Predicting TAD-boundary regions by horizontal search approach 
(a) Schematic illustration of a horizontal search for predicting TAD-boundary regions. 
Predicted interactions around a target locus are considered ten input data (N=10). 
Normalized GC % in the target locus is additionally considered. A total of 11 data points is 
used to create a model with a random forest algorithm. Use the trained model to predict 
whether the target locus is categorized as genomic context (e.g., TAD-boundary regions). 
The TAD boundary information as reference data is collected from the 3D Genome Browser 
at Northwestern University. 
 
(b) The location of predicted regions in the range of 2,980,000bp (the location of input 
sequence) to 3,980,000bp on chromosome 10. In the top image (triangle-shaped image), 
reference data of TAD and its boundary regions are visualized by using the 3D Genome 
Browser. The ochre-/blue-colour indicates the defined TAD regions in the original Rao et al., 
2014. The ‘white-colour’ gap region between ocher- and blue-colour boxes around 
3,000,000bp is defined as the TAD-boundary region in this study. On the bottom, the 
predicted TAD boundary regions indicate the black-colour bars while reference TAD 
boundary regions indicate the red-colour bar.  
 
(c) Plots for the prediction performance statistics for TAD-boundary regions from the 
GM19878 in Rao’s datasets. The performance stats on the dataset are shown as 
represented results. 90% of the data on the target chromosome are used for training and the 
random-forest model is tested on the remained 10% of the data. Randomly 200 loci are 
selected from the target chromosome. Shuffle the data of TAD boundary regions and repeat 
the performance validation process 100 times to compute performance stats of five factors; 
accuracy, precision, recall, sensitivity, and F-1 score. Each dot represented the individual 
score of a single model (i.e., single trial).  
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(d) Motif search in TAD boundary regions on chromosome 10. Plot transcription factor 
binding sites (TFBSs) based on their z-scores. Z-score was computed based on the 
frequency of TFBS occurrence detected by the energy method. The z-scores were sorted in 
ascending order. The TFBSs; CTCF, YY1, and ZNF274, which were previously reported as 
enrichments in TAD regions are plotted in warm colours. The other TFBSs are plotted in 
grey colour.  
 
(e) The top 10 motifs with the highest z-score on chromosome 10 are listed.    
 

Figure 8: An application of digital Hi-C assay: sub-categorize TAD boundary regions 
and search the enrichments of motifs in the sub-groups  
(a) K-means classification of TAD boundary regions. K = 4 for the K-means algorithm is 
determined by the Elbow algorithm with custom TAD scores and normalized GC %.  
 
(b) Four-way Venn diagram of enriched transcription factor binding sites in TAD boundary 
regions.  
 
(c) Motif search in TAD boundary regions on chromosome 10. Plot transcription factor 
binding sites (TFBSs) based on their z-scores for individual groups. Z-score was computed 
based on the frequency of TFBS occurrence detected by the energy method. The z-scores 
were sorted in ascending order. The TFBSs; CTCF, YY1, and ZNF274, which are previously 
reported as enrichments in TAD regions are plotted in warm colours. The other TFBSs are 
plotted in grey colour.  
 
(d) The top five motifs with the highest z-score on chromosome 10 are listed per sub-
group.    
 

Supplemental figures: 
 
Supplemental figure 1: Optimization of two factors; the length of the token (six or 
eight nucleotides) and representative sequences (300 or 600 base pairs) 
Create 10 test-training datasets, each of which contains 1,000,000 interactions selected 
randomly from the original training dataset (see material and methods) and plot the average 
scores of accuracy and loss on the test-training datasets in the training process. A cut-off 
threshold to terminate the training process is 0.99 in accuracy.  
 
(a-f) The transition of (a,d) accuracy, (b,e) loss, and (c, f) time consumption for a single 
epoch on chromosome 10 up to 50 epochs in the training process. Two factors were tested: 
the length of the token (six or eight nucleotides) and representative sequences (100, 200, 
300 or 600 base pairs). 
 
(g-l) The transition of (g,j) accuracy, (h,k) loss, and (i, l) time consumption for a single epoch 
on chromosome 20 up to 50 epochs in the training process. Two factors were tested: the 
length of the token (six or eight nucleotides) and representative sequences (100, 200, 300 or 
600 base pairs). 
 
(m-o) The transition of (m) accuracy, (n) loss, and (o) time consumption for a single epoch 
on chromosome 10 up to 50 epochs in the training process when the length of 
representative sequences is fixed at 300bp. The variable factor is the length of the token in 
four (blue), six (orange), and eight (green) nucleotides. The target chromosome is 10. 
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(p-r) The transition of (p) accuracy, (q) loss, and (r) time consumption for a single epoch on 
chromosome 10 up to 50 epochs in the training process when the length of representative 
sequences is fixed at 300bp. The variable factor is the length of the token in four (blue), six 
(orange), and eight (green) nucleotides. The target chromosome is 20. 
 

Supplemental figure 2: Visual comparison between predicting and reference 
interactions of genomic loci and prediction performance statistics  
Describe the other cases to predict long-distance interactions of genomic loci. On different 
chromosomes 
 
(a) A representative stats performance results of predicted interactions with four different 
reference datasets only (HIC001 - HIC004 from Rao et al., (2014)20 in the range of 
2,285,000bp to 4,285,000bp on chromosome 10. The location of the input sequence is 
3,285,000bp on the chromosome. The “total” (or orange-colour bar) in the last column still 
indicates the sum of 10 reference scores (HIC001 - HIC010). Prediction performance stats 
between predicted (positive/negative) and reference (true/false) interactions for each 
dataset. The performance stats are measured following five factors; accuracy, precision, 
recall, sensitivity, and F-1 score.  
 
(b) Venn diagram of the predicted and reference interactions at the 200 loci on chromosome 
10. The 200 loci are randomly selected on the target chromosome. The model is trained on 
HIC001. The trained model is used to verify the prediction performance on 10 reference 
scores (HIC001 - HIC010).  
 
(c) Overall prediction performance stats between predicted (positive/negative) and reference 
(true/false) interactions at the 200 loci on chromosome 10. 
 
(d) A representative stats performance results of predicted interactions with 4 different 
reference datasets only (HIC001 - HIC004 from Rao et al., 201420) in the range of 
22,505,000 bp to 24,505,000 bp on chromosome 16. The location of the input sequence is 
23,505,000 bp on the chromosome. The “total” (or orange-colour bar) in the last column still 
indicates the sum of 10 reference scores above (HIC001 - HIC010). Prediction performance 
stats between predicted (positive/negative) and reference (true/false) interactions for each 
dataset. The performance stats are measured following five factors; accuracy, precision, 
recall, sensitivity, and F-1 score.  
 
(e) Venn diagram of the predicted and reference interactions at the 200 loci on chromosome 
16. The 200 loci are randomly selected on the target chromosome. The model is trained on 
HIC001. The trained model is used to verify the prediction performance on 10 reference 
scores (HIC001 - HIC010).  
 
(f) Overall prediction performance stats between predicted (positive/negative) and reference 
(true/false) interactions at the 200 loci on chromosome 16. 
 

Supplemental figure 3: Efficiently predicting the interactions of genomic loci in 
datasets by using trained models in different datasets.  
(a) Venn diagram of the predicted and reference interactions at the 200 loci on chromosome 
10. The 200 loci are randomly selected on the target chromosome. The model is trained on 
HIC001. The trained model is used to verify the prediction performance on four reference 
data (HIC065 - HIC068).  
 
(b) Overall prediction performance stats between predicted (positive/negative) and reference 
(true/false) interactions at the 200 loci. 
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(c) A representative stats performance results of predicted interactions with 4 different 
reference datasets only (HIC065 - HIC068 from Rao et al., 2014) in the range of 
32,295,000bp to 34,295,000bp on chromosome 10. The input sequence locates in 
33,295,000bp on chromosome 10. The “total” (or orange-colour bar) in the last column still 
indicates the sum of the four reference scores above (HIC065 - HIC068). Prediction 
performance stats between predicted (positive/negative) and reference (true/false) 
interactions for each dataset. The performance stats are measured following five factors; 
accuracy, precision, recall, sensitivity, and F-1 score.  
 

Supplemental figure 4: Visual comparison between predicting and reference 
interactions of smaller-number (N=4) genomic loci and prediction performance 
statistics  
(a, b) Venn diagram of the predicted and smaller-number (N=4) reference interactions at the 
200 loci on chromosome 10. The 200 loci are randomly selected on the target chromosome. 
The model is trained on HIC001. The trained model is used to verify the prediction 
performance on two sets of smaller-number reference scores ((a) HIC002 - HIC005, and (b) 
HIC006 - HIC009).  
 
(c, d) Overall prediction performance stats between predicted (positive/negative) and 
smaller-number reference (true/false) interactions at the 200 loci on chromosome 10. ((c) 
HIC002 - HIC005, and (d) HIC006 - HIC009) 
 
(e) A representative stats performance results of predicted interactions with two sets of four 
different reference datasets only (top: HIC002 - HIC005, bottom: HIC006 - HIC009 from Rao 
et al., 2014) in the range of 10,000 bp to 2,010,000 bp on chromosome 10. The location of 
the input sequence is 1,010,000 bp on the chromosome. The orange-colour bar represents 
the sum of the corresponding four reference scores (i.e., HIC002 - HIC005). Prediction 
performance stats between predicted (positive/negative) and reference (true/false) 
interactions for each dataset. The performance stats are measured following five factors; 
accuracy, precision, recall, sensitivity, and F-1 score. The result in the top row uses HIC002 
- HIC005 as reference data while the result in the bottom row uses HIC006 - HIC009. 
 

Supplemental figure 5: Efficiently predicting the interactions of genomic loci in 
datasets by using trained models in different datasets (on HIC50, HIC59, and HIC80 on 
chromosome 10).  
(a-d) Venn diagram of the predicted and reference interactions at the 200 loci on 
chromosome 10. The 200 loci are randomly selected on the target chromosome. The model 
is trained on HIC001. The trained model is used to verify the prediction performance on 
following reference data (a, HIC050 - HIC058, except HIC051; b, HIC059 - HIC065; c, 
HIC065 - HIC068; d, HIC080 - HIC083 from Rao et al., 201420).  
 
(e-h) Overall prediction performance stats between predicted (positive/negative) and 
reference (true/false) interactions at the 200 loci on the chromosome. (e, HIC050 - HIC058, 
except HIC051; f, HIC059 - HIC065; g, HIC065 - HIC068; h, HIC080 - HIC083 from Rao et 
al., 201420). The performance stats are measured following five factors; accuracy, precision, 
recall, sensitivity, and F-1 score.  
 
(i-l) A representative stats performance results of predicted interactions with seven different 
reference datasets (i) HIC050 - HIC058 from Rao et al., 2014 in the range of 18,865,000bp 
to 20,865,000bp. (j) HIC059 - HIC065 in the range of 33,145,000bp to 35,145,000bp. (k) 
HIC065 - HIC068 in the range of 32,295,000bp to 34,295,000bp. (l) HIC080 - HIC083 in the 
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range of 32,295,000bp to 34,295,000bp. The input sequence locates in the mid-position in 
each target region. The performance stats are measured following five factors; accuracy, 
precision, recall, sensitivity, and F-1 score.  
 
Supplemental figure 6: Prediction performance statistics on other tissue types for 
promoter-capture Hi-C.  
(a-aa) Venn diagrams for the overlap of predicted and various kinds of reference data and 
Overall prediction performance stats between AO-model prediction (positive/negative) and 
various kinds of reference (true/false) interactions at the 200 loci on chromosome 10. The 
200 loci are randomly selected on the target chromosome. The model was created on the 
AO data as a model case. The developed model was used to verify the prediction 
performance on the following reference data; (a) AD, (b) CM, (c) DLPFC, (d) EG, (e) FT, (f) 
GA, (g) GM, (h) H1, (i) HC, (j) IMR90, (k) LG, (l) LI, (m) LV, (n) ME, (o) MSC, (p) NPC, (q) 
OV, (r) PA, (s) PO, (t) RA, (u) RV, (v) SB, (w) SG, (x) SX, (y) TB, (z) TH, and (aa) ALL. ‘ALL’ 
contained all interactions across 27 tissues in PCHi-C datasets.   
 

Supplemental figure 7: Predictions of CTCF-enriched regions 
(a, b, e, f) Venn diagram for the overlap of predicted and reference data at the 200 loci on (a, 
b) chromosome 5 and on (e, f) chromosome 16. The 200 loci are randomly selected on each 
target chromosome. The model was created on the training data and validated their 
performance on validation datasets with the following combinations: (a, e) the training data 
are LNCaP cell data, and the validation data are IMR90 cell data while (b, f) the training data 
are IMR90 cell data and the validation data are LNCaP cell data. 
 
(c, d, g, h) Overall prediction performance stats at the 200 loci on (c, d) chromosome 5 and 
on (g, h) chromosome 16. (c, g) has the training data are LNCaP cell data and the validation 
data are IMR90 cell data while (d, h) has the training data are IMR90 cell data and the 
validation data are LNCaP cell data 
 

Supplemental figure 8: Predictions of TAD-boundary regions: 
(a) Comparison of prediction performance stats across different tissues on chromosome 10. 
The target chromosome is chromosome 10. Each dataset splits into training (90%) and 
validation (10%) datasets with shuffling. Each time, performance stats are computed for the 
following five factors; accuracy, precision, recall, sensitivity, and F-1 score. Repeat this 
process 100 times.   
 
(b) Cross-validation of prediction performance stats across different tissues on chromosome 
10. Each model was trained on the IMR90 dataset and validated its prediction performance 
on other six datasets (GM12878, HMEC, HUVEC, K562, KBM7, NHEK). Each time, 
performance stats are computed for the following five factors; accuracy, precision, recall, 
sensitivity, and F-1 score. Repeat this process 100 times.   
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