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Abstract

Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen

causing  bloodstream  infections  (BSI).  A  systematic  analysis  characterizing  the  genomic

determinants  of  extra-intestinal  pathogenic  vs.  commensal  isolates  in  human  populations,

which could inform mechanisms of pathogenesis, diagnostics, prevention and treatment is still

lacking. We used a collection of 1282 BSI and commensal E. coli isolates collected in France

over a 17-year period (2000-2017) and we compared their pangenomes, genetic backgrounds

(phylogroups,  STs,  O  groups),  presence  of  virulence-associated  genes  (VAGs)  and

antimicrobial  resistance  genes,  finding  significant  differences  in  all  comparisons  between

commensal  and BSI isolates.  A machine  learning linear  model  trained  on all  the  genetic

variants derived from the pangenome and controlling for population structure reveals similar

differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause

BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable

trait,  with  up  to  69%  of  the  variance  explained  by  bacterial  genetic  variants.  Lastly,

complementing our commensal collection with an older collection from 1980, we predict that

pathogenicity increased steadily from 23% in 1980 to 46% in 2010. Together our findings

imply that  E. coli exhibit substantial genetic variation contributing to the transition between

commensalism and pathogenicity and that this species evolved towards higher pathogenicity.
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Introduction

Escherichia coli bloodstream infections (BSI) are severe diseases with an incidence of around

5 × 10-4 to 1 × 10-3 per person-year in Europe and the United States  (1–5) and a mortality

ranging from 10 to  30%  (5),  and may account  for  a  few percents  of  all  deaths  in  these

countries  (4). The increase in incidence of BSI  (1, 2), the global emergence of multidrug

resistance clones such as ST131 (6–9), and the ageing population all make BSI an important

and growing public health problem. A better understanding of the bacterial genetic factors

determining  pathogenicity  (the  capacity  to  cause  infection)  and virulence  (the  severity  of

infection) (10) would improve our understanding of pathophysiology and potentially improve

stewardship and control policies.

The primary niche of E. coli is the gut of vertebrates, especially humans, where it behaves as

a  commensal  (11).  BSI  are  opportunistic  infections.  Two  main  routes  of  infection  are

described, digestive and urinary, corresponding to two distinct pathophysiologic entities. BSI

with a digestive  portal  of entry are  more severe.  Host  condition and comorbidities  affect

virulence (12–14). A few bacterial genetic factors affecting virulence have been reported. In a

genome-wide  association  study  (GWAS)  conducted  on  912  patients,  no  bacterial  genetic

factor was associated with outcome (death, septic shock, admission to ICU), possibly because

of insufficient power. Alternatively, in a murine model of BSI, a GWAS conducted on 370

Escherichia strains have shown that the Yersinia pestis High Pathogenicity Island (HPI), and

two  additional  groups  of  genes  involved  in  iron  uptake,  were  associated  with  a  higher

probability of mouse death (15). 

There is a rich tradition of comparing E. coli strains sampled from commensal carriage vs. in

infections to reveal the determinants of pathogenicity  (16, 17). These studies often do not

sequence full genomes, which prevents the control for bacterial population structure and the

discovery of new determinants of pathogenicity beyond already established lists of virulence

genes. Moreover, many studies compare  E. coli from stools vs. from infections in the same

individuals  (16). This design is interesting because it blocks hosts factors. But it may also

have limited  power  to  detect  variants  associated  with  infections  because  it  conditions  on

individuals with an infection, limiting the possibility of comparison to the diversity of strains
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present  in  stools.  So far,  no studies  investigated  the bacterial  genetic  determinants  of the

capacity to cause an infection by comparing large numbers of whole genome sequences of

bacteria  sampled  from  the  gut  (commensals)  vs.  sampled  from  infections.  This  may  be

explained in part by the small number of large commensal strain collections  (18). Another

difficulty is that host factors, such as age or co-morbidities, are important determinants of

infection (19), and must be adjusted for as much as possible when comparing strains sampled

in  the  two  contexts.  Lastly,  the  increased  availability  of  large  whole  genome  sequence

collections from BSI also established that a small number of sequence types, mainly ST131,

73, 95, 69, 10, are involved in the majority of BSI  (20). These STs are rich in virulence

associated genes (VAGs) encoding adhesins, iron acquisition systems, protectins and toxins

(16, 17), but pinpointing potentially causal individual genetic determinants can only be done

in a rigorous GWAS. So far, no systematic examination of the bacterial genetic determinants

of E. coli pathogenicity has been done by comparison with a large commensal collection.

In the present work, we took advantage of two recently published collections of BSI (1) and

commensal  (18) strains gathered between 2000 and 2017 in France and with their  genome

sequenced. We compared BSI and commensal strain genomes at three levels: phylogenomic

composition, virulence and resistance gene content, and lastly unitig content in a GWAS. Our

goal  was to  compare the diversity  of commensal  and BSI strains and to  identify specific

genomic  features  affecting  the  propensity  to  cause  BSI,  using  both  a  targeted  and  a

hypothesis-free approach.

Results

A dataset of 912 BSI and 370 commensal isolates

We  compared  the  genomes  of  912  strains  from  BSI  in  adults,  originating  from  two

prospective multicentric studies (Colibafi in 2005 and Septicoli in 2016-7 (19, 21)) performed

in the Paris area, to the genomes of 370 commensal strains gathered from stools of healthy

adult subjects in 2000, 2001, 2002, 2010 and 2017 in Brittany and the Paris area. In-hospital

death (or at Day 28) was 12.9 and 9.5% in the Colibafi and Septicoli studies, respectively.

Most  of  the  BSI  were  community  acquired  (79.6  and  54.3%  in  the  two  collections,

respectively). To avoid biases, all strains were isolated with similar protocols adapted to the
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sample origin (BSI and commensal) and sequenced in our laboratory using a similar approach

(Illumina  technology).   To reduce  the  influence  of  the  origin  of  the  different  studies  we

introduced the date  of the study as a  covariate,  encoding it  as a binary variable  with the

studies collected before and in or after 2010. To account for host factors, we additionally

included  sex  and  age  as  binary  variables.  For  age,  the  variable  was  recording  if  the

donor/patient was above 60 years old or not. Finally, we also focused on the reported portal of

entry of the BSI strains, which has previously been associated with some genetic variants

(Figure 1A)  (22). The two collections had similar distributions of these variables, with the

important  exception  of  the  proportion  of  isolates  corresponding  to  older  donors/patients,

which is higher (69.43%) in the BSI collection (Figure 1B).

Figure 1. Variables of the combined dataset. (A) Proportion of commensal isolates, distribution of covariates

(sex, age, collection date), and BSI isolates with the urinary tract and digestive tract as portal of entry within the

full dataset. (B) Scatter plot of the distributions of all covariates in the two collections, colors matching that of

panel A. PE: portal of entry.

Commensal strains are genetically more diverse than BSI strains and have a distinct 

phylogenetic composition

We  first  compared  the  global  phylogenomic  characteristics  of  the  two  collections.  The

pangenomes of the BSI (N = 912) and commensal (N = 370) collections were composed of

24,321  and  22,373  genes,  respectively.  For  a  comparable  number  of  strains,  commensal
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strains had a higher diversity in gene content than BSI strains (Figure 2A). Conversely, the

core genomes of both collections were similar (3133 and 2985 genes, respectively), and close

to the core genome of  E. coli  species  as a whole.  In terms of SNP diversity  of the core

genome, the commensal collection was more diverse (pairwise nucleotide diversity π = 2.10e-

2) than the BSI collection (π = 2.05e-2, p-value < 2.2e-16). 

Commensal strains belong almost equally to A and B2 phylogroups (25.41% and 32.43%)

whereas BSI strains belonged mainly to phylogroup B2 (51.21%) followed by D phylogroup

(15.79%) (Table S1).  The commensal collection was more diverse in its  ST composition,

with a higher number of rare STs and a lower number of frequent STs compared to the BSI

collection  (Figure  2B).  This  greater  phylogenetic  diversity  could  explain  both  the  larger

diversity in gene content (23) and larger nucleotidic sequence diversity of the pangenomes of

commensals.

As previously noted, the diversity of STs in commensal strains was very distinct to that in BSI

strains (Table S2). Notably, ST10 and ST59 are abundant in commensal strains (13.2% and

3.8%) but under-represented in BSI strains (3.7% and 0.6%); on the contrary, ST131, ST73,

ST69,  ST95  are  less  common  in  commensal  strains  than  they  are  in  BSI  strains.  This

comparison can be translated in an odds ratio for the risk of infection associated with gut

colonization by each ST, which can be seen as a quantitative measure of pathogenicity. The

sequence type ST131 is the most pathogenic and ST59 the least pathogenic (Figure 3 and

Table S2). When the portal of entry was considered for the ST distribution, a similar pattern

was observed for both portals of entry as for the whole collection, although the significance

level of the risk of infection might change (Figure 3 and Table S2). 

The distribution of the O-group diversity also differed between the commensal and the BSI

collections (Table S3). The four O-groups targeted by the recently developed bioconjugate

vaccine ExPEC4V (24, 25), O1, O2, O6 and O25 are the most abundant O-groups in the BSI

collection.  However,  unlike the O-groups O6 and O25, the O-groups O1 and O2 are not

particularly associated with BSI strains (Table S3). In other words, these two O-groups are

frequent in BSI because they are the two most frequent O-groups in commensalism, but are

not particularly pathogenic.
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Figure 2. (A) Pangenome sizes as a function of the number of genomes analyzed for the BSI (912 strains) and

commensal (370 strains) collections,  showing the greater pan genome size of the commensal collection.  (B)

Cumulative distribution of strain sequences within ST in commensal and BSI collections. To be able to compare

the BSI collection with the smaller commensal collection (N = 370), we extracted 200 random sub-samples of

370 sequences from the BSI collection (grey curves).
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Figure  3. Comparison  of  the  distribution  of  the  sequence  types  (STs)  of  the  E.  coli commensal  and  BSI

collections isolates (see table S2). We show the odds ratio (OR with 95% CI) for the risk of infection associated

with colonization by each ST (logistic model of infection status as a function of the ST). We selected the STs

present in at least 5 strains in at least one of the two collections. STs are ordered by decreasing associated odd

ratio for all strains.

BSI strains are enriched in VAGs and antibiotic resistance genes (ARGs) as compared 

to commensal strains

Using a targeted approach, we next focused on the frequency of VAGs and ARGs in both

collections. A global comparison in the number of VAGs classified in functional categories

showed  a  significantly  higher  presence  of  VAGs  coding  for  adhesins,  iron  acquisition

systems, protectins and toxins categories in BSI strains (Figure 4A and B, Figure S1, Table

S5). We found similar results when comparing against BSI strains with urinary portal of entry

to commensals (Figure 4C). However, only the  iron acquisition systems category remained
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significant when comparing against BSI strains with digestive portal of entry (Figure 4D).

More precisely for the full dataset, the highest significance was observed for the  pap genes

with the papGII allele, followed by the sit,  iuc and irp2/fyuA (HPI) genes, all with p-values

<< 10-10 (Table S5).  These analyses do not imply a causal role of these genes and alleles in

BSI, as they are not adjusted for the distinct phylogenomic composition of commensal and

BSI strains. However, it is possible to crudely adjust for this population structure by focusing

on the B2 phylogroup strains which are known to exhibit the highest prevalence of VAGs

within the E. coli species (17).

When only B2 phylogroup strains are compared, only VAGs coding for adhesins  category

remained significantly over-represented in BSI (Figure 4F). When comparing only B2 strains

with urinary portal of entry to B2 commensals, again only adhesins were over-represented,

and no differences were observed when comparing only against  B2 strains with digestive

portal of entry (Figure 4G-H). Regarding individual genes, interestingly, for two VAGs with

experimentally validated role in urinary tract infection, pap genes (26) and fim genes (27), we

found a higher level of significance in B2 strains with urinary portal of entry than in all B2

strains (pap) or in all strains (fimD-H) (Table S5).

BSI strains were predicted to be more resistant to all classes of antibiotics than commensal

strains  (Figure  5).  The  only  exception  was  for  carbapenems  (for  which  resistance  was

predicted to be very rare). This also holds true if specific portals of entry and/or phylogroup

B2 are taken into account (Figure S2). To verify that this over-representation of resistance in

BSI was not explained by the fact that BSI isolates are slightly more recent on average than

commensal isolates, we restricted our analysis to BSI Colibafi strains (sampled in 2005) and

found the same results when considering all phylogroups and portals of entry.

No difference in VAG numbers (t-test, all Benjamini-Hochberg corrected p value > 0.05), nor

in resistance prevalences (Fisher’s exact test,  all  Benjamini-Hochberg corrected p value >

0.05), was found when comparing nosocomial and community BSI strains, considering both

Septicoli (167 nosocomial and 296 community BSI strains) and Colibafi (75 nosocomial and

292 community BSI strains) collections together or individually.
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Figure 4. Difference in the number of VAGs per strain among the six main functional classes of virulence 

between the 912 BSI and 370 commensal strains (Benjamini-Hochberg corrected p value < 0.05). We tested 

whether the number of VAGs was larger in BSI than in commensal strains considering (A-B) all the strains (912 

BSI strains), (C) BSI strains with urinary portal of entry (PE) to commensals (498 BSI strains), (D) BSI strains 

with digestive portal of entry to commensals (310 BSI strains), (E-F) the B2 strains (467 BSI strains), (G) B2 

BSI strains with urinary portal of entry to commensals (304 BSI strains) and (H) B2 BSI strains with digestive 

portal of entry to commensals (124 BSI strains). The dashed line represents the significance threshold at the 0.05

level.
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Figure 5. Predicted antibioresistance phenotypes of the 1282 strains (Benjamini-Hochberg corrected p value <

0.05). The results are presented as percentages of resistant strains for nine antibiotics of clinical importance.

AMK, amikacin; AMP, ampicillin; CARB, carbapenem; CTX/ CAZ, cefotaxime/ceftazidime; FEP, cefepime;

FQ, fluoroquinolones; GEN, gentamicin; SXT, cotrimoxazole; TZP, piperacillin/tazobactam. 

Bacterial genetic factors explain a large fraction of the variation in the BSI phenotype

We computed the heritability, as the proportion of the variance of a phenotype explained by

variable genetic factors  (28), to estimate whether we could expect to find bacterial genetic

variants  associated  with  commensalism  or  BSI  in  our  dataset.  We  first  measured  the

heritability  using  the  ST  information  alone,  to  measure  the  influence  of  the  genetic

background on phenotypic variability. We then computed the heritability emerging from the

individual genetic variants (Figure 6). We found that STs could explain 24%, 28%, and 11%

of the phenotypic variance in the full collection, the subset with BSI isolates with urinary tract

as portal of entry and digestive tract as portal of entry, respectively. Genetic variants alone

could explain a larger fraction of the phenotypic variability: 65%, 69%, and 39% for the three
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subsets, respectively. This suggests that pathogenicity might not be solely determined by a

strains’ genetic background but also through specific genetic determinants.

Figure 6. Heritability estimates for the commensal phenotype. A) Heritability estimates for the full dataset.

B) Heritability estimates for the subsets with BSI isolates with portal of entry as urinary tract and C) digestive

tract.

A whole-genome machine learning model differentiates commensals from BSI strains

We next applied a machine learning model trained on both the core and accessory genome of

the  strains  to  differentiate  between  commensal  and BSI  strains  and highlight  the  genetic

variants that contribute the most to the discriminatory power of the model (wg-GWAS). We

performed the analysis on three different datasets: the full strain collection, and two subsets of

BSI isolates: one with urinary tract as portal of entry, and another one with digestive tract as

portal  of  entry.  We  used  all  the  genetic  variants  covering  the  pangenome  compactly

represented  by  unitigs  and  the  elastic  net  linear  model  implemented  in  pyseer  for  the

associations  (29). We looked for associations between genetic variants and whether a strain

was classified as a commensal as the phenotype, and used the following three binary variables

as covariates to account for host factors and collection biases: the sex of the donor/patient,

their age (older than 60 years old), and the date of each collection (before or after 2010). To

quantify model performance, we performed a cross validation by holding out one phylogroup

at  a  time,  and computed  the  precision  (proportion  of  true  BSI  among the  predicted  BSI

strains), recall (sensitivity) and F1-score (harmonic mean of precision and recall) (Figure 7

and S3). The model performance improved in all cases when the covariates were considered

for  the associations,  potentially  confirming that  host factors  also explain part  of  bacterial

pathogenicity. We also found a better model performance in the two subsets with BSI isolates

with a specific portal of entry, compared to the full collection, which could underscore the

presence of specific genetic variants associated with either portal of entry.
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Figure 7. wg-GWAS model performance. F1-score representation (a) For the full collection (b) the subset of

clinical isolates with urinary tract as portal of entry, and (c) the subset of clinical isolates with digestive tract as

portal of entry, for the naive analysis (blue dots), with covariates (yellow dots), and the one expected by chance

(grey dots). Numbers within parenthesis below each phylogroup indicates the sample size.

We found a number of unitigs to be associated with commensalism (i.e. with non-zero weight

in the elastic net model). Overall, 107 and 59 unitigs passed the threshold for the model built

naïvely and with covariates, respectively, which we then mapped back to 34 and 28 genes.

We found that  8  out  of the 28 genes obtained through the analysis  with covariates  were

clearly  related to virulence.  We found the  iucB gene,  encoding an aerobactin  siderophore

biosynthesis protein (30) and papG encoding the adhesin at the tip of the P pilus (31). Both

have already been associated with invasive uropathogenic E. coli (UPEC) isolates (22, 32). Of

note, these genes were identified using the targeted approach after  adjusting for population

structure by focusing on the B2 phylogroup strains (see above). We also found the following

genes: sopB which is an inositol phosphate phosphatase associated to virulence in Salmonella

(33);  mltB,  which  is  part  of  a  network  connecting  resistance,  membrane  homeostasis,

biogenesis of pili and fitness in Acinetobacter baumannii (34); fliL, encoding for the flagellar

protein  FliL  (35).  And  lastly,  two  unnamed  orthologous  groups  (group_5900  and

group_9261),  described  as  the  putative  bacterial  toxin  ydaT  (36).  We  found  more  genes

associated to the phenotype when dividing the BSI strains according to their portal of entry.

We found a total of 152 and 96 associated unitigs for the urinary and digestive tract subsets,

respectively, which we then mapped back to 101 and 45 genes, some of which are known to

be  involved  in  pathogenicity  and antimicrobial  resistance  (Table  1  and S6).  Taken  as  a

whole, we found the associated genes to be enriched in the L COG category (replication,
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recombination and repair) for the three subsets, and in the K COG category (transcription) for

the full dataset only. We also performed a Gene Ontology (GO) term enrichment analysis and

found that for the subset with BSI isolates with urinary tract as portal of entry, the relevant

(depth > 1) enriched GO terms include different categories related to metabolic processes, ion

binding and intracellular anatomical structure (Table S7). Similarly, to the targeted analysis

described above, we found that the genes resulting from the three associations were enriched

for VAGs and ARGs (Figure 8); when considering all VAGs and ARGs together we found a

significant (pvalue < 0.05) enrichment for the full dataset and the urinary tract subset. We

found VAGs related to iron acquisition to be enriched in all three datasets, while adhesins

were enriched in the full dataset only. For the ARGs, only the resistance to cotrimoxazole

(dfrA for SXT resistance) was enriched in the urinary tract subset. 

The model can be used to predict the potential pathogenicity of other isolates based on the

presence of the unitigs for which the model’s weight is different than zero. We predicted the

pathogenicity of commensal strains collected at three time periods: 1980 (37), 2000-2002 and

2010.  Interestingly,  the  model  predicts  a  marked  increase  in  pathogenicity  of  these

commensal isolates, with the proportion doubling between the 1980s and the 2010s (23% vs.

46%,  Figure S4).  This  suggests  that  the commensal  strains  inhabiting  the  gut  of  healthy

humans may have evolved towards higher pathogenicity in the past decades.

Through an unbiased approach based on the whole pangenome, we have drawn similar results

as  a  more  targeted  approach,  namely  that  VAGs  are  to  some  extent  able  to  distinguish

commensals from pathogenic isolates.

Table 1 Genes with functions related to pathogenicity and antimicrobial resistance with 

unitigs associated with the phenotype mapped to them for the two subsets.

Portal of entry: urinary tract

Gene Relevance Reference

papG Adhesin. Belongs to the pap operon encoding for a type P pilus. (22, 31)

papH
Adhesin VAG. Belongs to the pap operon encoding for a type P 

pilus. 
(32)

iucB/C
Iron acquisition VAG.  Aerobactin siderophore biosynthesis 

protein
(30)

sopB inositol phosphate phosphatase associated to virulence in (33)
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Salmonella

mltC
Involved in release of peptidoglycan-derived pathogen-

associated molecular patterns as a virulence mechanism

(38)

ompX Might be involved in biofilm formation and curli production (39)

dhfrI Trimethoprim resistance gene (40)

fliD Relevance in adhesion. Flagellar hook-associated protein. (41)

dgcE
Involved in regulation of the switch from flagellar motility to 

sessile behavior and curli expression
(42) 

Groups 10969 and 4151Type II/IV secretion system protein (T2SSE) Table S8

Group 9261 Putative bacterial toxin Table S8

epsM
Involved in type II secretion systems (T2SS) Table S8

aceF Involved in the virulence and oxidative response of P.aeruginosa.
(43)

klcA
Present in the kilC operon found in IncP plasmids, which usually

carry multiple AMR determinants.
(44)

Portal of entry: digestive tract

Gene Relevance Ref

iucC
Iron acquisition VAG. Aerobactin siderophore biosynthesis 

protein
(30)

Group 3130
Tfp pilus assembly protein FimV Table S8

fliD Relevance in adhesion. Flagellar hook-associated protein. (41)

sopB
inositol phosphate phosphatase associated to virulence in 

Salmonella
(33)

epsE/F Type II/IV secretion system protein
Table S8

yehB
Relevance in adhesion. Encodes a type of putative fimbrial 

complex belonging to the chaperone-usher assembly pathway. 

(45)
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Figure 8.  A) Virulence  associated genes enrichment  analysis for  the full  set  of  genes and B) the different

functional categories. The significance threshold is represented over the dotted line (Fisher’s exact test, p<0.05).

PE: portal of entry.

Discussion

It is known since the 1940s (46) that within the E. coli species, some strains with a specific

genetic  background  have  higher  capacity  to  cause  extra-intestinal  diseases.  Later  on,

pathogenicity has been associated with specific serotypes, STs, and the phylogroup B2, which

are enriched in some VAGs (47, 48).  However, disentangling the respective roles of causal

genetic variants from the genetic background in a mostly clonal species is a difficult task (49).

To do so, we systematically investigated the genomic differences between 912 E. coli strains

from bloodstream infections and 370 strains sampled from the stools of healthy volunteers.

We revealed differences at three levels. First, at the phylogenetic level, strains from BSI are

less diverse, dominated by a small number of highly pathogenic STs, and have consequently

smaller pangenomes and lower genetic diversity than commensal strains. Second, strains from

infections are enriched in VAGs, and are predicted to be more antibiotic resistant. Third, in a

machine  learning assisted  GWAS, we found 101 and 45 genes  associated  with BSI with

urinary and digestive portal of entry, respectively, independently of the clonal background.

Some of these are involved in adhesion and in iron acquisition, as well as other functions.

Generally, genes with a significant association are enriched in iron acquisition system, the L
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COG  category  (replication,  recombination  and  repair)  and  GO  terms  including  different

categories related to metabolic processes, ion binding and intracellular anatomical structure.

The heritability of pathogenicity is estimated at 69% (urinary PE) and 39% (digestive PE), in

agreement with the higher role of the host factors in BSI with digestive PE (19, 21). Thus, a

large fraction of pathogenicity is explained by bacterial genetic factors. This is roughly double

of the heritability when considering STs alone, suggesting that specific genetic variants at a

finer phylogenetic scale than ST are determining pathogenicity. For comparison, age, a host

factor strongly associated with BSI, explains 17.6% of the variance. Thus, we conclude that

bacterial genetics has a significant role in  determining  pathogenicity, even after basic host

factors (age and sex) have been accounted for. An important limitation of our study is that we

did not use available information on host co-morbidities in BSI patients for the comparison

with  commensal  strains.  In  fact,  the  most  frequent  co-morbidity  in  the  BSI  collection  is

immunosuppression,  which  was  an  exclusion  criterion  for  the  commensal  collection.  Co-

morbidities are associated with BSI  (5, 18, 22). It  is possible that co-morbidities  act as a

confounder in our study, if they both increase the probability of BSI and influence the E. coli

strains carried by individuals. If this is the case, the variants we identify may not be directly

causal for infections.  Rather,  they may be bacterial  variants that favor the colonization of

individuals with co-morbidities. Age is also associated with BSI (5, 14, 50). In this work, we

do control for age, albeit in a crude way, with the covariate “above or below 60 years old”. If

some of  the  variation  associated  with age  is  not  captured  by this  covariate,  some of  the

variants  we  identify  could  favor  the  colonization  of  older  or  younger  individuals.  For

example, there is evidence of age-associated variants in  Streptococcus pneumoniae (51). To

attenuate these concerns on confounding, we remind that several of the significant variants

have an experimentally validated role in infection and virulence (Table 1).

We found that strains from infections are more likely to be resistant to antimicrobials. What is

the  mechanism behind this  association,  also  found in  similar  GWAS conducted  on  other

pathogens  (52, 53)? Confounding is a first possibility:  hosts with co-morbidities are more

likely to develop a BSI and to use antibiotics frequently. Individuals may even be already

treated by antibiotics at the time of infection, in which case only resistant strains would be

able to cause this infection. If this mechanism operates, we could expect resistance to be more

frequent in hospital-associated than in community-associated BSI, if hosts in hospitals are
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more likely to use antibiotics at the time of infection. However, we did not find any difference

between  resistance  in  hospital-associated  and  community-associated  BSI.  Second,

antimicrobial resistance genes may have a causal role in infection. This seems unlikely given

their  very  specific  function.  Third,  there  might  be  a  genetic  association  (linkage

disequilibrium) between resistance genes and genetic determinants of infection  (52, 54). In

the  third  case,  we  expect  the  association  to  disappear  when  controlling  for  population

structure. With this control, we find that indeed, only one out of nine categories of resistance

is  significantly  enriched  in  BSI  compared  to  commensals.  This  suggests  that  antibiotic

resistance  genes  are  genetically  linked  with  pathogenicity  determinants,  and  opens  the

interesting  possibility  that  antibiotic  resistance  coevolves  with  pathogenicity determinants

associated with the clonal background of E. coli.

The present study compares E. coli whole genomes in colonization and in infection, as done

before for Klebsellia pneumoniae (52), S. pneumoniae (55), Staphylococcus aureus (53, 56) ,

Neisseria meningitidis  (57).  These GWAS studies  presented  a  range of  results,  from low

heritability  (2.6%  for  S.  aureus carriage  vs.  BSI  (53)),  to  intermediate  (36.5%  for  N.

meningitidis carriage  vs.  invasive  meningococcal  disease),  and  an  analogously  large

heritability of 70% for S. pneumoniae invasive disease vs. carriage, along with a handful of

significant SNPs  (55). We find a large heritability for  E. coli BSI vs. colonization,  which

suggests that a vaccine targeted at virulence determinants could reduce (at least temporarily)

the burden of infection (24).

The large heritability of  E. coli capacity to cause infection also implies that this trait  can

readily  evolve.  Evolution  of  E.  coli pathogenicity  would  have  important  public  health

implications,  given that  E. coli BSI are a major cause of morbidity and death in Western

countries.  To investigate temporal  trends in pathogenicity,  we computed the pathogenicity

score with the machine  learning model  (used to  predict  the commensal  vs.  BSI status of

strains), in a dataset of commensals from 1980 to 2010 in France  (18). We found that the

proportion of commensal E. coli isolates predicted to be pathogenic isolates with our trained

model increased over time, from 23% in the collection from 1980 to 46% in the collection

from 2010 (Figure S4). Applying this predictive model to the large collection of available E.

coli genome sequences, which currently numbers to more than 200,000 genomes (58), could

unravel the dynamics of pathogenicity across time and space. This effort would however need
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to be properly controlled for the biases in the isolates sampled and sequenced (most of them

coming from infections), and the phylogroup-specific performance of the model.

What  selective  pressures  might  act  on pathogenicity  determinants?  The capacity  to  cause

infection may not be selected per se, as infections are a relatively rare occurrence in the life

cycle  of  E.  coli  and  do  not  obviously  confer  a  transmission  advantage.  Pathogenicity

determinants have diverse functions and may therefore be selected for a variety of reasons.

They may for example improve the ability to colonize the human gut, improve the ability to

compete  and  replace  existing  strains,  or  allow  longer  persistence  in  the  gut  (59–62).

Elucidating  the  selective  pressures  acting  on  these  determinants  is  an  important  research

question that would improve our understanding of E. coli pathogenicity.

This work opens perspectives to improve studies of the determinants of E. coli pathogenicity.

It remains difficult to pinpoint individual variants because of the clonal structure of  E. coli,

and confounding by host factors is a concern. One idea to alleviate clonal structure is to focus

on specific STs. This would limit the dominant effect of STs belonging to phylogroup B2 and

carrying many virulence genes. However, the genetic diversity within a single ST might also

be limited. This makes it difficult to anticipate the results of such ST-focused studies. Another

idea is to extend to whole genomes the line of work comparing strains from infections vs.

colonization in the same individuals. This design would block host effects but, as stated in the

introduction, implies that power is contingent on the within-host diversity of strains present in

colonization.  Further help will also likely come from linking pathogen diversity to clinical

and  epidemiological  phenotypes  and  including  the  genetic  variation  of  the  host  into  the

association such as in a previous study of S. pneumoniae (55). Lastly, similar studies should

be conducted in low and middle income countries, where a potentially very distinct diversity

of E. coli circulates (11) and where the public health problem posed by BSI will escalate with

the ageing population in the years to come.

In conclusion, we elucidated the bacterial genetic determinants of pathogenicity of the major

human pathogen E. coli. The capacity to cause BSI, particularly with urinary PE, is strongly

determined by sequence types, additional genetic factors, and tens of specific variants. This

implies that E. coli pathogenicity may evolve, informs future studies of E. coli mechanisms of
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pathogenicity, and opens the possibility to reduce the burden of E. coli with a vaccine targeted

at these variants.
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Material and methods

Strain collections

We  studied  the  whole  genomes  of  1282  E.  coli  strains  divided  in  two  datasets,  370

commensals strains and 912 BSI strains. Commensal strains were gathered from stools of 370

healthy adults  living in the Paris area or Brittany (both locations  in the North of France)

between 2000 to 2017. These strains come from five previously published collections: ROAR

in 2000 (n=50)(63) (Britanny), LBC in 2001 (n=27)(64) (Britanny), PAR in 2002 (n=27)(64)

(Paris  area),  Coliville  in  2010 (n=246)(65) (Paris  area)  and CEREMI in 2017 (n=20)(66)

(Paris area) (Table S5). In addition, a collection of 53 commensal strains from 53 healthy

subjects in Paris  (37) was used to assess the temporal trend of pathogenicity. BSI isolates

(Colibafi (n=367) and Septicoli (n=545) collections) were collected at years 2005 and 2016-

2017, respectively (67). In all studies, one single E. coli colony randomly picked was retained

per individual after plating the blood cultures or the stools. 

All  multicenter  clinical  trials  were  approved  by  the  appropriate  ethic  committees.  The

Colibafi study was approved by the French Comité de Protection des Personnes of Hôpital

Saint-Louis, Paris, France (approval #2004-06, June 2004). The Septicoli study was approved

by the French Comité de Protection des Personnes Ile de France n°IV (IRB 00003835, March

2016).  Because of their  non-interventional  nature,  only an oral consent from patients was

requested under French Law. The study on the commensal strains was approved by the ethics

evaluation committee of Institut National de la Santé et de la Recherche Médicale (INSERM)

(CCTIRS no. 09.243, CNIL no. 909277, and CQI no. 01-014).

All  the sequences were available  (Bioproject  PRJEB38489 (ROAR), PRJEB44819 (LBC),

PRJEB44872  (PAR),  PRJEB39252  (Coliville),  PRJEB39260  (Colibafi)  and  PRJEB35745

(Septicoli))  except  the  20  samples  of  the  CEREMI  collection  that  were  whole-genome

sequenced  in  the  present  work,  following  the  protocol  detailed  in  (21) (Bioproject

PRJEB55584).
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Genomic diversity of the core genome

The 1282 assemblies  were annotated  with  Prokka v1.14.6  (68).  We then performed  pan-

genome analysis from annotated assemblies with Panaroo v1.3.0 with strict clean mode and

the removal of invalid genes (69). We generated a core genome alignment spanning the whole

set of core genes as determined by Panaroo, and a phylogenetic tree was computed using

FastTree v2.1.11 (70).

Comparison of commensal and BSI E. coli collection

Multilocus  sequence typing (MLST) was performed using an in-house  script  Petanc,  that

integrates several existing bacterial genomic tools (71). We determined STs (Warwick MLST

scheme) (72) and O types (73).

We evaluated  the  risk  of  infection  associated  to  colonization  by  a  specific  ST and  by a

specific O-group. We compared the ST and O-group diversity from the collection of 912 BSI

isolates with the 370 commensal isolates, for all STs with at least 5 strains in at least one of

the two collections  and for all  O-groups with at  least 5 strains in at  least  one of the two

collections.

The odds ratios for the infection risk were computed by fitting a logistic model of infection

status  (commensal  or  BSI)  as  a  function  of  the  ST or  the  O-group (here  and thereafter,

“significant” refers to significance at the 0.05 level).

Next, we compared the phylogenetic distribution of the commensal collection with the BSI

collection. For all strains, we calculated the cumulative frequency distribution of STs in the

commensal  collection,  and  we  compared  it  to  the  same distribution  in  200  random sub-

samples of 370 sequences from the BSI collection.

We plotted the pangenome variation with the number of genomes analyzed (Panaroo output).

We evaluated the pangenome variation between commensal and BSI isolates with Panstripe

(74) using  the  output  of  FastTree  (phylogeny  of  all  strains)  and Panaroo  (gene  presence

absence matrix).  We randomly subsampled 100 trees of 370 tips from the BSI phylogeny

(n=912) and compared the rate of gene gain and loss between those trees and the commensal

tree (n=370). To quantify the genetic diversity, we computed the pairwise nucleotide diversity

(π)(75) in R (package ape)(76). 
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We also compared the number of virulence factors and the proportion of resistance strains

between commensal and BSI isolates.  We performed t-tests to compare the distribution of

VAGs  for  each  of  the  six  main  functional  classes  (adhesin,  invasin,  iron  acquisition,

miscellaneous,  protectin  and  toxin)  and  reported  effect  sizes  using  Cohen’s  d.  Next,  we

performed Fisher’s exact tests to compare the proportions of strains carrying each VAG of a

given functional class between commensal and BSI isolates. All p-values were corrected for

multiple  comparisons  with the  Benjamini-Hochberg method,  with a 5% family-wise error

rate.

We  predicted  phenotypic  resistance  as  described  in  (67) for  nine  antibiotics  of  clinical

importance  (amikacin,  ampicillin,  carbapenem,  cefotaxime/ceftazidime,  cefepime,

fluoroquinolones, gentamicin, cotrimoxazole and piperacillin/tazobactam). We compared the

distribution of strains predicted to be resistant on each of the nine antibiotics using Fisher’s

exact tests. We again corrected the p-values for multiple tests with the Benjamini-Hochberg

method.

Heritability estimates

We estimated narrow-sense heritability for the target variable using 2 different covariance

matrices: one built from the phylogroup using a kinship matrix, and another one with the age.

Limix v3.04 (77) was used, assuming normal errors for the point estimate. 

Association analysis

We derived unitigs using unitig-counter v1.1.0  (78). We tested locus effects  using the wg

(whole genome) model of pyseer v1.3.6 (29, 79), which trains a linear model with elastic net

regularization using the presence/absence patterns of all unitigs. We used an alpha with value

of 1 for the elastic net, which is equivalent to a lasso model. Cross-validation was performed

by  holding  out  each  phylogroup  sequentially.  The  model  performance  was  assessed  by

computing three metrics using each phylogroup. The precision, as the measure of how many

positive predictions made are correct; the recall, as the measure of how many positive cases

the classifier predicted correctly over all the positive cases; and the F1-score, as the harmonic

mean of the two metrics. The F1-score expected by chance was computed overall, for each

phylogroup and for the different subsets, by randomly assigning the phenotype to the test

samples  and running 1000 randomizations.  The unitigs  with a  non-zero model  coefficient
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were  mapped  back  to  all  input  genomes,  and  gene  families  were  annotated  by  taking  a

representative protein sequence from all genomes encoding each gene, which was then used

as  the  input  for  eggnog-mapper  v2.1.3 using  the  panaroo output  to  collapse  gene  hits  to

individual groups of orthologs. GO terms enrichment was determined using goatools v1.2.3

(80). An in-house list of E. coli virulence genes and antibiotic resistance genes was used to

annotate the virulence and antibiotic resistant genes within the collection, and a Fisher’s exact

test was used to determine the enriched genes, with a multiple testing correction based on the

Benjamini-Hochberg method, with a 5% family-wise error rate. For the COG and virulence

genes enrichment analysis a random ST131 genome from the full dataset was picked up as

background.

Prediction analysis

We used unitig-caller v1.3.0 (81) to make variant calls in the test population, and the elastic

net regularization, previously trained, model using pyseer v1.3.6 (79) to predict the phenotype

in new commensal samples from different time periods, divided in decades. 

Code availability

Apart from the software packages mentioned in the previous sections,  the following were

used to run the analysis and generate the visualizations presented in this work: pandas v1.3.4

(82),  numpy v1.20.3  (82), scipy v1.7.1  (83),  matplotlib  v3.4.3  (84), seaborn v0.11.2  (85),

biopython v1.80  (86) jupyterlab  v3.2.1  (87).  Most of  the analysis  were incorporated  in a

reproducible  pipeline  using  snakemake  v7.18.1  (88) and  conda  v4.10.3  (89),  which  is

available  as  a  code  repository  on  GitHub

(https://github.com/jburgaya/2022_ecoli_commensal) under a permissive licence (MIT).
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Supplementary figures

Figure S1. Distribution of the number of virulence factors per strain among the six main functional classes of 

virulence (Benjamini-Hochberg corrected p value < 0.05) for (A) all the strains with a urinary portal of entry and

for (B) all the strains with a digestive portal of entry. Significant differences are indicated by asterisks (p value < 

0.05: *; p value < 0.01: **; p value < 0.001: ***; p value < 0.0001: ****; ns: non-significant).
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Figure S2. Predicted antibioresistance phenotypes of A) all the strains with a urinary portal of entry, (B) all the 

strains with a digestive portal of entry, C) B2 strains, D) B2 strains with a urinary portal of entry and (E) B2 

strains with a digestive portal of entry (Benjamini-Hochberg corrected p value < 0.05). The results are presented 

as percentages of resistant strains for nine antibiotics of clinical importance. AMK, amikacin; AMP, ampicillin; 

CARB, carbapenem; CTX/ CAZ, cefotaxime/ceftazidime; FEP, cefepime; FQ, fluoroquinolones; GEN, 

gentamicin; SXT, cotrimoxazole; TZP, piperacillin/tazobactam. Significant differences are indicated by asterisks

(p value < 0.0001: ****; ns: non-significant).
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Figure S3. wg-GWAS model performance. F1-score representation (blue dots), precision (yellow dots), and

recall (red dots). A) For the full collection B) the subset of clinical isolates with urinary tract as portal of entry,

and C) the subset of clinical isolates with digestive tract as portal of entry. The naive and the analysis with

covariates are represented. PE: portal of entry.
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Figure S4. Proportion of BSI predicted isolates over time. 423 isolates from commensal collections were fitted 
to the trained ML model. The proportion of BSI isolates for the 3 different periods of time is colored in red and 
the percentage indicated above each bar. The total number of isolates per year is given in brackets.

876
877
878

41

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2022.12.31.522367doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.31.522367
http://creativecommons.org/licenses/by-nd/4.0/

	Abstract
	Introduction
	Results
	A dataset of 912 BSI and 370 commensal isolates
	Commensal strains are genetically more diverse than BSI strains and have a distinct phylogenetic composition
	BSI strains are enriched in VAGs and antibiotic resistance genes (ARGs) as compared to commensal strains
	Bacterial genetic factors explain a large fraction of the variation in the BSI phenotype
	A whole-genome machine learning model differentiates commensals from BSI strains

	Discussion
	Material and methods
	Strain collections
	Genomic diversity of the core genome
	Comparison of commensal and BSI E. coli collection
	Association analysis

	Bibliography
	Supplementary figures

