

1 **Interplay between acetylation and ubiquitination of imitation switch chromatin**
2 **remodeler Isw1 confers multidrug resistance in *Cryptococcus neoformans***

3

4 **Short title: Isw1 is critical for multidrug resistance**

5

6

7 Yang Meng¹, Zhuoran Li¹, Tianhang Jiang¹, Tianshu Sun^{2,3}, Yanjian Li¹, Xindi Gao¹, Hailong
8 Li⁴, Chenhao Suo¹, Chao Li¹, Sheng Yang¹, Tian Lan¹, Guojian Liao⁵, Tong-Bao Liu^{6,7}, Ping
9 Wang⁸, Chen Ding^{1*}

10

11 ¹College of Life and Health Sciences, Northeastern University, Shenyang, China.

12 ²Department of Scientific Research, Central Laboratory, Peking Union Medical College Hospital,
13 Chinese Academy of Medical Science, Beijing, China.

14 ³Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal
15 Diseases, Beijing, China.

16 ⁴NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical
17 Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical
18 University, Shenyang, China.

19 ⁵College of Pharmaceutical Sciences, Southwest University, Chongqing, China.

20 ⁶Medical Research Institute, Southwest University, Chongqing, China.

21 ⁷Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University,
22 Chongqing, China.

23 ⁸Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health
24 Sciences Center, New Orleans, Louisiana, 70112, USA

25

26 Correspondence: dingchen@mail.neu.edu.cn

27

28

29

30

31

32 **Abstract**

33 *Cryptococcus neoformans* poses a threat to human health, but anticryptococcal therapy is
34 hampered by the emergence of drug resistance, whose underlying mechanisms remain poorly
35 understood. Herein, we discovered that Isw1, an imitation switch chromatin remodeling ATPase,
36 functions as a master modulator of genes responsible for multidrug resistance in *C. neoformans*.
37 Cells with the disrupted *ISWI* gene exhibited profound resistance to multiple antifungal drugs.
38 Mass spectrometry analysis revealed that Isw1 is both acetylated and ubiquitinated, suggesting
39 that an interplay between these two modification events exists to govern Isw1 function.
40 Mutagenesis studies of acetylation and ubiquitination sites revealed that the acetylation status of
41 Isw1^{K97} coordinates with its ubiquitination processes at Isw1^{K113} and Isw1^{K441} through
42 modulating the interaction between Isw1 and Cdc4, an E3 ligase. Additionally, clinical isolates
43 of *C. neoformans* overexpressing the degradation-resistant *ISWI*^{K97Q} allele showed impaired
44 drug-resistant phenotypes. Collectively, our studies revealed a sophisticated acetylation-Isw1-
45 ubiquitination regulation axis that controls multidrug resistance in *C. neoformans*.

46

47 **Key words:** acetylation-ubiquitination crosstalk, antifungal drug resistance, *Cryptococcus*
48 *neoformans*

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64 **Introduction**

65 Emerging and re-emerging fungal pathogens are one of the primary causes of infectious
66 diseases resulting in mortalities in humans and animals (Brown et al., 2012; Denning and
67 Bromley, 2015; Fisher et al., 2012; Vos et al., 2012). It is estimated that approximately 300
68 million world's population is infected with fungal pathogens, subsequently leading to 1.6 million
69 deaths annually (2017). Additionally, fungal infection leads to substantial population declines in
70 animals and amphibians, even threatening their extinction (de Bekker et al., 2015; Fites et al.,
71 2013; Martel et al., 2014; Voyles et al., 2009). Intriguingly, certain pathogenic fungi are linked
72 with cancer development (Dohlman et al., 2022; Narunsky-Haziza et al., 2022). The World
73 Health Organization has recently published the first-ever list of fungi posing threats to human
74 health that lists *Cryptococcus neoformans* as one of four high-priority infection agents (2022).
75 *Cryptococcus* species, which cause meningoencephalitis and acute pulmonary infections, are
76 responsible for 15% of the global HIV/AIDS-related fatalities (Erwig and Gow, 2016; Kronstad
77 et al., 2012), totalling an estimated 220,000 deaths per year (Erwig and Gow, 2016; Idnurm et al.,
78 2005; Kronstad et al., 2012; Rajasingham et al., 2017). Recently, it has been reported that
79 *Cryptococcus* is also involved in secondary infections in people with COVID-19 (Khatib et al.,
80 2021; Woldie et al., 2020).

81 Cryptococcosis has a 100% death rate if patients are left untreated, but treatment remains
82 challenging because the number of available antifungal medications is limited. Azoles and
83 amphotericin B (Amp B) constitute the primary treatment options, with Amp B often in
84 combination of 5-fluorocytosine (5-FC) (Molloy et al., 2018). In light of the treatment limitation
85 and risks, as well as the high costs associated with developing new antifungal treatments, the US
86 FDA has categorized anti-cryptococcus therapies as "orphan drugs," granting regulatory support
87 by reducing the requirements for clinical studies (Denning and Bromley, 2015). Nevertheless,
88 resistance to anticryptococcal drugs occurs rapidly, outpacing the development of new
89 therapeutic options.

90 The mechanisms by which antifungal resistance occurs can be classified as either mutation
91 in drug targets or epigenetic phenomena (Billmyre et al., 2020; Li et al., 2020; van der Linden et
92 al., 2011). Point mutations in binding domains or regions of the drug target proteins often hinder
93 their interactions with drugs (Billmyre et al., 2020; Kwon-Chung and Chang, 2012; Li et al.,

94 2020; Priest et al., 2022; van der Linden et al., 2011) resulting in resistance, such as in the case
95 of lanosterol demethylase, encoded by the *ERG11* gene, in *Candida* and *Cryptococcus* species
96 (Bosco-Borgeat et al., 2016; Sionov et al., 2012; Spruijtenburg et al., 2022). Additionally,
97 pathogenic fungi display a disparate set of mutations that counteract various antifungal drugs.
98 Defects in DNA mismatch repairs resulting in high gene mutation rates and, thereby, 5-FC
99 resistance was identified in *C. deuterogattii*, a species distinct but close to *C. neoformans*
100 (Billmyre et al., 2020). Mutations in genes encoding the cytosine permease (Fcy2), uracil
101 phosphoribosyl transferase (Fur1), and UDP-glucuronic acid decarboxylase (Uxs1) conferring 5-
102 FC resistance were also identified in multiple clinical cryptococcal isolates (Chang et al., 2021;
103 Florent et al., 2009).

104 In comparison, nondrug target-induced resistance often refers to the association between
105 mutations and altered gene expressions in regulatable components of sterol biosynthesis and
106 efflux drug pumps (Coste et al., 2004; Dunkel et al., 2008; Morschhauser et al., 2007; Silver et
107 al., 2004). Studies of *C. albicans* transcription factor Tac1 illustrate that gain-of-function
108 mutations or alterations in gene copy numbers regulate efflux pump genes (Coste et al., 2004).
109 Gain-of-function mutations were also identified in *C. albicans* transcription factors Upc2 and
110 Mrr1, which activate *ERG11* gene expression and drug pumps, respectively (Dunkel et al., 2008;
111 Silver et al., 2004). A cryptococcal Upc2 homolog was identified in *C. neoformans* to be
112 involved in regulating steroid biosynthesis, but its role in drug resistance was not clear (Kim et
113 al., 2010). Other proteins capable of modulating efflux pump gene transcription in *Cryptococcus*
114 remain unknown.

115 Recent evidence indicates that epiregulation by protein posttranslational modification
116 (PPTM) mediates drug resistance in pathogenic fungi (Calo et al., 2014; Robbins et al., 2012).
117 The acetylation of the heat-shock protein Hsp90 mediates antifungal drug response in
118 *Saccharomyces cerevisiae* and *C. albicans* by blocking the interaction between Hsp90 and
119 calcineurin (Robbins et al., 2012). Despite this observation, the functions of substantially
120 acetylated proteins in antifungal drug resistance remain unknown (Li et al., 2019). Other
121 important PPTMs, such as ubiquitination, remain uninvestigated in human fungal pathogens.

122 In this study, we identified a conserved chromatin remodeler, Isw1, from *C. neoformans*,
123 and we demonstrated its critical function in modulating gene expression responsible for
124 multidrug resistance, as the *isw1* null mutant is resistant to azoles, 5-FC, and 5-fluorouracil (5-

125 FU). We further demonstrated that Isw1 typifies a PPTM interplay between acetylation and
126 ubiquitination in regulating an Isw1 ubiquitin-mediated proteasome axis in response to
127 antifungal exposure. Dissection of PPTM sites on Isw1 revealed an essential reciprocal function
128 of Isw1^{K97} acetylation in modulating Isw1's binding to Cdc4, which initiates a ubiquitination-
129 proteasome degradation process. Finally, we showed that the PPTM interplay mechanism occurs
130 horizontally in clinical strains of *C. neoformans*.

131

132 **Results**

133 **Cryptococcal Isw1 plays an indispensable role in modulating drug-resistance genes**

134 We have found that a homolog of imitation switch (ISWI)-class ATPase subunit, Isw1, is a
135 critical modulator of multidrug resistance in *C. neoformans*. We have generated the *isw1Δ*
136 mutant and complemented the mutant with the wild-type *ISW1* allele (**Figure 1-figure**
137 **supplement 1a-1c**). The *isw1Δ* mutant exhibited normal phenotypes, similar to the wild-type
138 strain, and was dispensable in the virulence of a murine infection model (**Figure 1-figure**
139 **supplement 1d**); however, it exhibited profound resistance to azole compounds, including
140 fluconazole (FLC), ketoconazole (KTC), 5-FC, and 5-FU, but not to the polyene compound Amp
141 B (**Figure 1a**).

142 Since the conserved ISWI complex often consists of two protein components, Isw1 and Itc1
143 (Sugiyama and Nikawa, 2001), we identified an Itc1 homolog from *C. neoformans* and generated
144 the corresponding *itc1Δ* mutant (**Figure 1-figure supplement 2a and 2b**). We found that the
145 *itc1Δ* strain displayed a drug-resistant phenotype, similar to the *isw1Δ* strain, suggesting that
146 Isw1 and Itc1 function together to modulate drug resistance (**Figure 1-figure supplement 2b**).
147 Both minimum inhibitory concentration (MIC) and agar spotting assays were consistent in
148 showing the elevated MICs to all four antifungal compounds in the *isw1Δ* mutant strain (**Figure**
149 **1b**). To examine whether Isw1-regulated multidrug resistance occurs at the transcription level,
150 transcriptome analysis of the wild-type and *isw1Δ* mutant strains treated with FLC was
151 performed (**Table S1**). The expression of genes important in drug resistance (Denning and
152 Bromley, 2015), including seven genes encoding ATP-binding cassette (ABC) transporters, two
153 genes encoding efflux proteins, and three genes encoding major facilitator superfamily (MFS)
154 transporters, were significantly increased in the *isw1Δ* mutant (**Figure 1c**). To test if this increase
155 affects drug uptake, we quantified intracellular FLC levels using high-performance liquid

156 chromatography that showed a significant reduction in FLC in the *isw1Δ* mutant, in contrast to
157 the wild-type strain (**Figure 1d**).

158 To further decipher the 5-FC-resistance mechanisms of *isw1Δ*, we examined 5-FC resistance
159 pathways. As previously elucidated, *C. neoformans* employs two molecular processes for
160 resistance to 5-FC and 5-FU (Billmyre et al., 2020; Loyse et al., 2013). In one, the purine-
161 cytosine permease Fcy2 imports the prodrug 5-FC, which is then converted to toxic 5-FU by the
162 purine-cytosine permease Fcy1 (**Figure 1e**). On the other, the UDP-glucose dehydrogenase
163 Ugd1 and the UDP-glucuronate decarboxylase Uxs1 participate in UDP-glucose metabolism,
164 providing important functions in detoxifying 5-FU (**Figure 1e**). Therefore, gene expression
165 alterations in *FCY1*, *FCY2*, *FURI*, *UGD1*, and *UXS1* were assayed using the qRT-PCR method
166 (**Figure 1f**). The data showed that the expression of four genes, including *FCY1*, *FCY2*, *UGD1*,
167 and *UXS1*, was significantly reduced in *isw1Δ* when treated with 5-FC, suggesting a reduction in
168 5-FC uptake and conversion to toxic 5-FU (**Figure 1f**). These data suggested that Isw1 is a
169 master transcriptional regulator of drug-resistance genes in *C. neoformans*.
170

171 **Isw1 undergoes protein degradation in the presence of azoles and 5-FC**

172 Because Isw1 governs the expression of multiple genes required for drug resistance and
173 *ISWI* gene expression was not reduced in the presence of antifungal drugs (**Figure 1-figure**
174 **supplement 2c**), we examined changes in protein stability as a response to antifungal agents.
175 Using cycloheximide to inhibit protein synthesis, Isw1-Flag fusion protein stability was found to
176 decrease gradually in concentration- and time-dependent manners upon exposure to FLC
177 (**Figures 2a and 2b**). Specifically, a reduction of 50% was observed 30 minutes after FLC
178 exposure. Similarly, 5-FC exposure also reduces Isw1-Flag levels (**Figures 2c and 2d**).
179 Collectively, these results demonstrated that *C. neoformans* actively reduces Isw1 protein levels
180 through protein degradation than transcription to manage toxicity overloads from antifungals.

181 We then hypothesized that Isw1 degradation might be via a ubiquitin-proteasome pathway
182 in response to antifungal drugs. To test this, the Isw1-Flag protein was immunoprecipitated and
183 then analyzed using mass spectrometry to identify putative ubiquitination PPTM sites. Consistent
184 with our hypothesis, Isw1 is ubiquitinated (**Figure 2e**) at fifteen sites (**Figure 2f**). These results
185 indicated that the ubiquitination machinery of Isw1 is actively initiated during drug exposure,
186 and this, in turn, decreases Isw1 protein levels and hinders Isw1 transcription repression of genes

187 for drug resistance. The finding of Isw1 subject to ubiquitination and acetylation regulation (Li et
188 al., 2019) also suggests that there exists an interplay network simultaneously controlling Isw1
189 stability in response to antifungal drugs. We then set forth to address the following two questions:
190 1) whether there is a PPTM interplay between acetylation and ubiquitination in Isw1; and 2) how
191 Isw1 utilizes this interplay regulates responses to antifungals.

192

193 **Acetylation of Isw1^{K97} (Isw1^{K97ac}) is essential for protein stability**

194 To dissect the interplay between acetylation and ubiquitination in Isw1, we examined the
195 role of acetylation in modulating Isw1 function by determining acetylation levels responding to
196 antifungal drugs. The presence of antifungal agents strongly repressed acetylation levels, in
197 contrast to deacetylation inhibitors trichostatin A (TSA) and nicotinamide (NAM), which
198 increase acetylation levels (**Figures 3a and 3b**). These data suggested a positively regulated
199 deacetylation process in Isw1 in response to antifungal drugs. To more closely decipher this
200 regulation mechanism, three acetylation sites, K89, K97, and K113, located to the DNA binding
201 domain were mutated to arginine (R) to mimic a deacetylated status or to glutamine (Q) to mimic
202 a fully acetylated Isw1 (**Figure 2f**). Gene copy numbers and transcription levels were confirmed
203 to be equivalent to those of the wild-type strain (**Figure 3-figure supplement 1a and 1b**).
204 Triple-, double-, and single-mutated strains were generated, and their drug resistance phenotypes
205 were compared. Of the triple-mutated strains, cells with three R mutations demonstrated drug-
206 resistant growth phenotypes that were similar to those of the *isw1Δ* strain, whereas those with
207 three Q mutations showed wild-type growth in the presence of antifungal drugs (**Figure 3c**). Of
208 the double-mutated strains, *ISWI*^{K89R, K97R}, and *ISWI*^{K97R, K113R} strains showed resistance to
209 antifungal drugs, with *ISWI*^{K97R, K113R} less so than *ISWI*^{K89R, K97R} or the *isw1Δ* strain (**Figure 3-**
210 **figure supplement 1c**). These data suggested that the acetylation status of Isw1^{K97} is important
211 in conferring drug resistance. Of the strains that have single-R mutation, the *ISWI*^{K97R} strain
212 showed robust resistance to antifungal drugs, mimicking the *isw1Δ* strain (**Figure 3d**).
213 Interestingly, the *ISWI*^{K97Q} strain showed no drug resistance (**Figure 3-figure supplement 1d**).
214 Collectively, these data strongly demonstrated that the acetylation status of Isw1^{K97} plays a
215 critical role in regulating Isw1 protein stability and function in response to antifungal drugs.

216 To further investigate how Isw1 degradation correlates with drug-resistance of *C.*
217 *neoformans*, we tested how Isw1^{K97} acetylation affects its degradation using the immunoblotting

218 method, and the results showed that triple-R mutation results in a significant reduction in levels
219 of Isw1-Flag. Meanwhile, triple-Q mutation resulted in Isw1-Flag levels comparable to those of
220 the wild-type strains (**Figure 3e**). Similarly, the single-mutated *ISWI*^{K97R} strain showed an
221 impairment level of Isw1-Flag (**Figure 3f**). In contrast, no changes were observed for Isw1^{K97Q}
222 (**Figure 3-figure supplement 1e**). Moreover, protein levels of wild-type Isw1 and mutated
223 Isw1^{K97R} gradually diminished over time. While those of Isw1^{K97Q} remained constant (**Figures**
224 **3g, 3h, and 3i**), a faster degradation was observed for Isw1^{K97R} (**Figure 3j**). Therefore, Isw1^{K97} is
225 an essential regulation site responsible for Isw1 stability; that is, acetylation at K97 blocks the
226 degradation of Isw1, and deacetylation at K97 facilitates and accelerates the degradation of Isw1.
227 Finally, analysis of Isw1 target gene expression in Isw1^{K97} mutation strains demonstrated
228 significantly increased expression of transporter genes and decreased expression of 5-FC
229 resistance genes (**Figure 3k**). These findings were consistent with the results of transcriptome
230 and qRT-PCR analyses in the *isw1Δ* strain (**Figures 1c and 1f**).

231

232 **The interplay between acetylation and ubiquitination governs Isw1 degradation**

233 As proteins undergo degradation via autophagy and proteasomal pathways, we employed
234 autophagy inhibitor rapamycin and proteasome inhibitor MG132 to investigate Isw1 degradation.
235 Immunoblotting results showed that both rapamycin and MG132 induce Isw1-Flag levels, with
236 the effect of MG132 being stronger than rapamycin (**Figure 4a**). These findings suggested that
237 both degradation pathways are utilized in Isw1-Flag degradation, but the ubiquitin-mediated
238 proteasomal process has a more predominant role. Additionally, we tested whether antifungal
239 agents could induce protein degradation when the proteasome is blocked. Cells treated with
240 MG132 and FLC or 5-FC yielded slightly different results. Isw1-Flag protein levels were
241 unaffected in cells treated with FLC, but the levels were reduced with 5-FC (**Figures 4b and 4c**).

242 Given that K97 deacetylation could trigger hyper-ubiquitination of Isw1, we analyzed Isw1
243 ubiquitination sites and their regulation mechanisms by K97 acetylation levels and found that
244 MG132 treatment results in a more robust increase in Isw1^{K97R}-Flag levels (**Figure 4d**). We
245 further performed ubiquitination site mutations in the genetic background of *ISWI*^{K97R} and found
246 that, of the six ubiquitination sites (**Figure 4-figure supplement 1a and 1b**), five failed to affect
247 drug-resistant growth phenotypes of the *ISWI*^{K97R} mutant (**Figure 4-figure supplement 1c**).
248 Only *ISWI*^{K113R} and *ISWI*^{K441R} mutations exhibited reduced drug-resistant growth (**Figure 4e**),

249 indicating that they affect drug resistance by modulating Isw1 protein stability. The
250 immunoblotting analysis further showed that, while all ubiquitination mutants exhibiting
251 increased Isw1-Flag levels (**Figures 4f and 4g**), the elevation was most pronounced in Isw1^{K97R},
252 K113R (5.6-fold) and Isw1^{K97R, K441R} (14.5-fold) (**Figures 4f and 4g**). Interestingly, the K113 site
253 may undergo acetylation or ubiquitination modifications, whereas the K441 site undergoes only
254 ubiquitination. Collectively, these results showed that Isw1^{K113} and Isw1^{K441} provide a
255 predominant role in regulating the ubiquitin-proteasome process of Isw1 and that acetylation at
256 Isw1^{K97} has a broad role in controlling the ubiquitination process at those sites.

257

258 **The acetylation status of Isw1^{K97} modulates the binding of an E3 ligase to Isw1**

259 To analyze the molecular mechanism by which Isw1^{K97} regulates the ubiquitin-proteasome
260 process, we generated nine knockout mutants of E3 ligase encoding genes in the genetic
261 background of *ISWI*^{K97R} and identified that Cdc4 is an E3 ligase for Isw1 (**Figure 5-figure**
262 **supplement 1 and Figure 5a**). We found that the *ISWI*^{K97R}/*cdc4Δ* strain becomes sensitive to
263 antifungal agents (**Figure 5a**). Immunoblotting showed a strong elevation in Isw1^{K97R}-Flag
264 levels in the *ISWI*^{K97R}/*cdc4Δ* strain (**Figure 5b**), in contrast to the *ISWI*^{K97R}/*fwd1Δ* strain (**Figure**
265 **5c**), suggesting a potential interaction between Cdc4 and Isw1. We then performed a co-
266 immunoprecipitation (co-IP) assay and found that Cdc4-HA co-precipitates with Isw1-Flag
267 (**Figure 5d**).

268 We also carried out co-IP to examine interactions between Cdc4-HA and Isw1^{K97R} and
269 Cdc4-HA and Isw1^{K97Q}, and the results showed an interaction between Cdc4 and Isw1^{K97R} but
270 not between Cdc4 and Isw1^{K97Q}, indicating the acetylation of Isw1^{K97} fully hinders its binding of
271 the Cdc4 E3 ligase (**Figure 5e**). These data provided convincing evidence that K97 acetylation is
272 a key player in modulating ubiquitin-proteasome degradation of Isw1.

273 **The Isw1-proteasome regulation axis promotes drug resistance in clinical isolates**

274 We have provided evidence demonstrating the critical role of Isw1 and Isw1 acetylation-
275 ubiquitin-proteasome regulation axis in regulating *C. neoformans* drug resistance. To examine
276 whether such a regulatory role has a broad application, we tested various clinical isolates of *C.*
277 *neoformans*. While the majority was resistant to antifungal drug exposure, the CDLC120 isolate
278 showed moderate sensitivity to all tested antifungal drugs (**Figure 6a**). An integrative Flag-tag

279 construct was then transformed into several clinical strains, allowing the expression of Isw1-Flag
280 from the *ISWI* endogenous promoter. Expression analysis showed that transformants exhibiting
281 multidrug resistance phenotypes have significantly reduced levels of Isw1-Flag (**Figure 6b**).
282 Importantly, the reduction was not at the transcription level (**Figure 6c**). In contrast, the
283 CDLC120 isolate showed increased Isw1-Flag levels. Similar to the PPTMs of Isw1 from the
284 wild-type strain, samples of Isw1 from clinical isolates showed elevated acetylation levels in
285 response to TSA and NAM (**Figure 6d**). Moreover, clinical isolates treated with MG132 showed
286 improved Isw1 stability (**Figure 6e**). The clinical isolates were then examined to determine
287 whether drug resistance results from changes in Isw1 protein levels following transformation
288 with an integrative plasmid overexpressing *ISWI*^{K97Q}. The results revealed decreased MICs for
289 antifungal agents in these strains (**Figure 6f**). Therefore, Isw1 acetylation-ubiquitin-proteasome
290 regulation axis is a naturally occurring strategy for modulating multidrug resistance in clinical
291 strains of *C. neoformans*.

292

293 **Discussion**

294 Fungi have developed sophisticated machinery to combat various stress inducers, and the
295 rapid emergence of resistance to antifungal agents is one of the major factors in the failure of
296 clinical therapies for fungal infections (Denning and Bromley, 2015). A typical tactic used by
297 fungi to overcome antifungal toxicity is to utilize polymorphisms or mutations in drug targets or
298 their regulatory components. Clinical polymorphisms were widely shown in drug targets, such as
299 ergosterol biosynthesis and its transcription regulatory process (Billmyre et al., 2020; Denning
300 and Bromley, 2015). However, unlike immediate intracellular responses, the accumulation of
301 mutations or polymorphisms in drug resistance is a somewhat delayed process that frequently
302 develops over a series of cell divisions. Acetylation and ubiquitination are critical modulators of
303 protein activities or stabilities in fungi that enable rapid intracellular adaptations to
304 environmental or chemical stressors (Li et al., 2019; Wu et al., 2021), but the underlying
305 mechanisms are not clear. Recently, a study showed that the deactivation of a heat-shock Hsp90
306 client protein and its stability as a result of changes in protein acetylation impacts drug resistance
307 in *C. albicans* (Robbins et al., 2012). Additional studies have demonstrated that deacetylation
308 enzymes, notably Gcn5, control biofilm formation, morphology, and susceptibility to antifungal
309 drugs in several fungi (O'Meara et al., 2010; Rashid et al., 2022; Yu et al., 2022). Despite this,

310 knowledge of the molecular machinery of posttranslational modifications in modulating drug
311 resistance remains not clear.

312 We demonstrated that the chromatin remodeler Isw1 is a master regulator of drug resistance
313 in *C. neoformans*, and the acetylation-Isw1-ubiquitination axis is crucial in modulating the
314 expression of multiple drug resistance genes. In *S. cerevisiae*, Isw1 is a key component of the
315 ISWI complex capable of forming complexes with loc3, loc4, Itc1, and other proteins to
316 modulate transcription initiation and elongation (Sugiyama and Nikawa, 2001; Tsukiyama et al.,
317 1999). In *C. neoformans*, transcriptome analysis revealed 1275 genes, approximately 18.3% of
318 the genome, that were significantly differentially expressed in the *isw1Δ* mutant treated with
319 FLC. These alterations in gene expression activate the transcription of twelve drug pump genes,
320 including ABC and MFS transporter genes, followed by a drastic reduction in intracellular FLC
321 levels. The robust drug resistance phenotype (3-fold compared to the wild-type) of *isw1Δ* is the
322 result of the simultaneous activation of various drug pumps, which then actively eliminate
323 intracellular drug molecules. The expressions of genes required for resisting 5-FC and 5-FU were
324 reduced when cells were treated with 5-FC. While Isw1 is a transcription activator for genes
325 responsible for resistance to FLC, it also functions as a repressor in the presence of 5-FC,
326 implying that transcriptional remodeling of Isw1 is necessary as the cell responds to disparate
327 chemical stresses and that Isw1 engages distinct regulatory venues to overcome drug toxicity.

328 We also showed that the Isw1 protein and its acetylation level act reciprocally to govern
329 fungal drug resistance (**Figure 7**). This was confirmed by uncovering the interplay mechanism
330 between acetylation and ubiquitination. The total acetylation levels of Isw1 were reduced when
331 cells were treated with FLC or 5-FC, leading to the activation of Isw1 ubiquitination machinery.
332 We identified that the K97 acetylation site functions as the essential regulating component of this
333 interplay. We also found that K97 acetylation acts as a switch for ubiquitin conjugation
334 proceeding proteasome-mediated degradation. When deacetylated, K97 triggers the activation of
335 Isw1 degradation via the ubiquitin-proteasome process (acetylated K97 blocks the physical
336 interaction with Cdc4). Compared to the *ISWI*^{K97R} strain, *ISWI*^{K97R}/*cdc4Δ* was sensitive to
337 antifungal agents; however, it showed moderately resistant growth in comparison to the wild-
338 type strain. This data suggested that Isw1 could also be modulated by other proteins, such as
339 another uncharacterized E3 ligase. Such hypothesis is supported by evidence from the
340 comparison of Isw1 ubiquitination mutants with those of the *ISWI*^{K97R}/*cdc4Δ* strain, and from

341 that, the $\text{Isw1}^{\text{K441R}}$ mutant had a 14.5-fold increase of Isw1 and a 2-fold increase in the
342 $\text{ISWI}^{\text{K97R}}/\text{cdc4}\Delta$ strain.

343 The identified ubiquitination sites were classified into three groups based on the domination
344 of Isw1 stability regulation: predominant, moderate, and minor. While $\text{Isw1}^{\text{K441}}$ was a
345 predominant regulating site of ubiquitination that extensively modulates Isw1 protein
346 degradation and drug resistance, $\text{Isw1}^{\text{K147}}$, $\text{Isw1}^{\text{K183}}$, $\text{Isw1}^{\text{K347}}$, and $\text{Isw1}^{\text{K415}}$ played a minor role
347 in Isw1 degradation and no roles in drug resistance. Interestingly, $\text{Isw1}^{\text{K113}}$ played a moderate
348 role in ubiquitination-mediated Isw1 degradation and was identified to have both an acetylation
349 site and a ubiquitination site. A single mutation at $\text{Isw1}^{\text{K113}}$ had no effect on Isw1 protein levels:
350 K97 acetylation that prevented Cdc4 binding remains intact. The double-mutated $\text{Isw1}^{\text{K97R}, \text{K113R}}$
351 was protected from degradation, and its protein levels had an increase of 5.6-fold, allowing the
352 $\text{ISWI}^{\text{K97R}, \text{K113R}}$ strain to be drug resistant. Although it is a challenge to dissect the function of
353 acetylation and ubiquitination at $\text{Isw1}^{\text{K113}}$, drug treatment represents a deacetylation process for
354 Isw1 , and deacetylated $\text{Isw1}^{\text{K113}}$ is most likely ubiquitinated.

355 The analysis of clinical isolates revealed a broad regulation phenomenon of Isw1 in drug
356 resistance. Clinical isolates that were more strongly resistant to antifungals produced lower
357 levels of Isw1 . In addition, both modifications were identified in tested clinical isolates,
358 demonstrating that Isw1 undergoes acetylation and is subject to the ubiquitin-proteasome
359 pathway. Importantly, overexpressing Isw1 dampened drug resistance in clinical isolates. These
360 discoveries suggested that drug resistance in clinical isolates is modulated by the regulation of
361 Isw1 protein levels.

362 Taken together, our evidence demonstrates the critical function of Isw1 as a master regulator
363 of multidrug responses in both laboratory and clinical strains. It allows us to decipher the
364 molecular mechanism of the acetylation- Isw1 -ubiquitination axis that modulates the expression
365 of drug-resistant genes. These findings underscore the importance of performing thorough
366 evaluations of PPTMs in drug resistance mechanism studies, highlighting a potential strategy for
367 overcoming fungal drug resistance.

368

369 Acknowledgment

370 We thank Profs. Yongqiang Fan and Ren Sheng for their critical review of the manuscript.
371 This work was supported by the National Key Research and Development Program of China

372 (2022YFC2303000). Funds for this program were also provided by the National Natural Science
373 Foundation of China (31870140 to C.D.) and Liaoning Revitalization Talents Program
374 (XLYC1807001 to C.D.). Research in PW lab was supported by the National Institutes of Health
375 (US) awards AI156254 and AI168867.

376

377

378 **Author contributions**

379 Y.M., T.S., Y.L. and C.D. designed the project. Y.M., Z.L., T.J. and X.G. conducted the
380 experiments. H.L. carried out bioinformatic analyses. C.S., C.L. and S.Y. assisted with molecular
381 biology. G.L. and TB.L. contributed to strain generation. C.D., Y.M. and X.G. participated in
382 data analysis. C.D., P.W. and Y.M. composed the manuscript. All authors reviewed and edited
383 the manuscript.

384

385 **Declaration of interests**

386 The authors declare no competing interests.

387

388 **Material and Methods**

389 **Ethical statement**

390 All animal experiments were reviewed and ethically approved by the Research Ethics
391 Committees of the National Clinical Research Center for Laboratory Medicine of the First
392 Affiliated Hospital of China Medical University (KT2022284) and were carried out in
393 accordance with the regulations in the Guide for the Care and Use of Laboratory Animals issued
394 by the Ministry of Science and Technology of the People's Republic of China. Infections with *C.*
395 *neoformans* were performed via the intranasal route. Four- to six-week-old female Balb/c mice
396 were purchased from Changsheng Biotech (Liaoning, China) and used for survival and fungal
397 burden analyses.

398

399 **Strains and growth conditions**

400 Fungal cells (**Table S2**) were routinely grown in YPD medium (1% yeast extract, 2%
401 peptone, 2% dextrose). Biolistic transformation was performed using YPD medium
402 supplemented with 100 µg/ml nourseothricin (WERNER BioAgents), 200 µg/ml neomycin

403 (Inalco) and 200 U/ml hygromycin B (Calbiochem) followed by colony selection. Deacetylases
404 were blocked using 3 μ M TSA (MedChemExpress) and 20 mM NAM (Sigma). Drug resistance
405 tests were performed using 16 μ g/ml or 20 μ g/ml FLC (MedChemExpress), 0.2 μ g/ml or 0.3
406 μ g/ml ketoconazole (MedChemExpress), 100 μ g/ml or 200 μ g/ml 5-FC (MedChemExpress), 0.5
407 μ g/ml or 1.0 μ g/ml Amp B (MedChemExpress) or 50 μ g/ml or 100 μ g/ml 5-FU
408 (MedChemExpress).

409

410 **Determination of MIC**

411 Overnight cultures were purified from liquid YPD by washing three times with PBS, then
412 adjusting until OD_{600} was 0.02, then 100 μ l of cell suspension was added to each well of a 96-
413 well plate (10,000 cells per well). The well plate was incubated at 30°C for 24 hours, and OD_{600}
414 readings were taken using a Synergy H4 microplate reader (BioTek). The MICs was calculated
415 using XY analyses in GraphPad 6.0.

416

417 **Mass spectrometry**

418 Mass spectrometry was performed to analyze Isw1 ubiquitination. The *ISWI-FLAG*
419 complementation strains were subcultured at 30°C with 200 μ M MG132 (MedChemExpress) in
420 50 ml YPD media at 30°C, and cells in the mid-log phase were used. Cell proteins were
421 extracted using lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% NP-40; pH 7.5) with 1x
422 protease inhibitor cocktail (CWBIO) and 40 mM PMSF. All lysed protein samples were
423 incubated with anti-Flag magnetic beads (Sigma) at 4°C overnight. The beads were washed with
424 TBS buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Triton X-100; pH 7.4) three times, and the
425 bound proteins were extracted into protein loading buffer (125 mM Tris-HCl, 4% SDS, 20%
426 glycerol; pH 7.5) at 95°C for 5 minutes. All protein samples were separated using 8% SDS-
427 PAGE electrophoresis, and the protein gel was stained with Coomassie Brilliant Blue R-250
428 (BBI Life Sciences) followed by clipping the gel strip.

429 In-gel tryptic digestion was performed by destaining the gel strips in 50 mM NH_4HCO_3 in 50%
430 acetonitrile (v/v) until clear. The gel strips were dehydrated using 100 μ l 100% acetonitrile for 5
431 minutes, rid of liquid, rehydrated in 10 mM dithiothreitol, then incubated at 56°C for 60 minutes.
432 They were again dehydrated in 100% acetonitrile and rid of liquid, then rehydrated with 55 mM
433 iodoacetamide followed by incubation at room temperature in the dark for 45 minutes. Next, they

434 were washed with 50 mM NH₄HCO₃, dehydrated with 100% acetonitrile, then rehydrated with
435 10 ng/μl trypsin and resuspended in 50 mM NH₄HCO₃ on ice for 1 hour. After removing excess
436 liquid, they were digested in trypsin at 37°C overnight, then peptides were extracted using 50%
437 acetonitrile/ 5% formic acid followed by 100% acetonitrile.

438 The peptides were dried completely then resuspended in 2% acetonitrile/ 0.1% formic acid.
439 The tryptic peptides were dissolved in 0.1% formic acid (solvent A) then loaded directly onto a
440 homemade reversed-phase analytical column (15 cm x 75 μm) on an EASY-nLC 1000 UPLC
441 system. They were eluted at 400 nl/min using a gradient mobile phase that increased in solvent B
442 (0.1% formic acid in 98% acetonitrile) from 6% to 23% over 16 minutes, from 23% to 35% over
443 8 minutes and from 35% to 80% over 3 minutes. Elution continued at 80% for an additional 3
444 minutes.

445 The peptides were subjected to an NSI source followed by tandem mass spectrometry
446 (MS/MS) using a Q Exactive™ Plus (Thermo) mass spectrometer coupled to the UPLC. The
447 electrospray voltage applied was 2.0 kV, the m/z scan range was 350 to 1800 for a full scan and
448 intact peptides were detected using an Orbitrap at a resolution of 70,000. Peptides were then
449 selected for MS/MS using an NCE of 28, and the fragments were detected in the Orbitrap at a
450 resolution of 17,500. The data-dependent procedure alternated between one MS scan and 20
451 MS/MS scans with a 15.0-second dynamic exclusion. The automatic gain control was set at 5E4.

452 The resulting MS/MS data were processed using Proteome Discoverer 1.3. Spectra were
453 compared against acetylation, ubiquitination or sumoylation databases. Trypsin/P (or other
454 enzymes, if any) was specified as a cleavage enzyme, allowing up to 4 missing cleavages. Mass
455 error was set to 10 ppm for precursor ions and 0.02 Da for fragment ions. Fixed modification
456 was set to cysteine alkylation; variable modifications were set to lysine acetylation,
457 ubiquitination or sumoylation (QEQQTGG and QQQTGG), methionine oxidation and protein N-
458 terminal acetylation. Peptide confidence was set to ‘high,’ and peptide ion score was set to ‘> 20.’
459

460 **Strain generation**

461 *C. neoformans* mutants were generated using the H99 strain and biolistic transformation
462 (Toffaletti et al., 1993). The neomycin or nourseothricin resistance marker was amplified using
463 primers M13F and M13R (**Table S3**). The upstream and downstream DNA sequences of the
464 target gene and the selective marker sequence were joined using overlapping PCR. The resulting

465 PCR fragments were purified, concentrated and transformed into the H99 strain using biolistic
466 transformation. Transformants were selected on YPD agar supplemented with either neomycin or
467 nourseothricin. Correct integration and the loss of target DNA sequences were confirmed using
468 diagnostic PCR.

469 The *ISWI* gene (*CNAG_05552*) was disrupted by the homologous replacement of its open
470 reading frame (ORF) with a piece of DNA containing a dominant drug resistance gene marker as
471 described henceforth. In the first round of PCR, the primer pairs 3534/3535 and 3536/3537 were
472 used to amplify the 5' and 3' flanking regions, respectively, of the *ISWI* gene. The gel-extracted
473 DNA fragments from the first round of PCR were used as templates, and the *iswi* Δ ::*NEO*
474 construct was amplified using the 3534/3537 primer pair. The H99 strain of *C. neoformans* was
475 biolistically transformed with the deletion allele. To identify the desired *iswi* Δ mutant,
476 diagnostic PCR was performed using the 3534/3537 primer pair, and real-time PCR followed,
477 using primers 3557/3558. The same method was used to construct knockout strains of the E3
478 ligase-related genes in the *ISWI*^{K97R} strain. Briefly, the upstream or downstream genomic DNA
479 sequences of the target genes were amplified using the primers listed in the Supplementary Data
480 primer table.

481 The *ISWI-FLAG* complementation strains were generated as described henceforth. The
482 downstream genomic DNA sequence of *ISWI* was amplified using primers 3735/3736 and
483 cloned between the restriction sites *SacII* and *SacI* into the pFlag-NAT plasmid (a plasmid
484 containing the nourseothricin resistance marker and the Flag tag). The complete ORF of the
485 target gene (including the promoter sequence) was amplified using primers 3733/3734 and
486 cloned between the restriction sites *HindIII* and *EcoRI* into pFlag-NAT-dw. The cassette
487 amplified from the final pFlag-NAT by primer 3898-MY/3899-MY was biolistically transformed
488 into the *iswi* Δ ::*NEO* strain. Diagnostic PCR was performed using the 3733/3734 primer pair.
489 Real-time PCR analysis was performed using a gene-specific probe amplified using the
490 3557/4421-MY primer pair. Western blot analysis of Isw1 was performed using anti-Flag mouse
491 monoclonal antibodies.

492 The R mutation was formed using site-directed mutagenesis approaches. The K89 codon was
493 first mutated using primers 3733/3866-MY and 3891/3734, then the K89R construct was
494 amplified using the 3733/3734 primer pair and cloned between the restriction sites *HindIII* and
495 *EcoRI* into pFlag-NAT-dw. The K97 codon was mutated using primers 3733/3787 and 3862-

496 MY/3734, whereas the K113 codon was mutated using primers 3733/3836 and 3864-MY/3734.
497 The resulting plasmids contained single-point mutants (K89R, K97R or K113R), double-site
498 mutants (K89R, K97R; K89R, K113R or K97R, K113R) and triple-site mutant (K89R, K97R,
499 K113R). The Q mutation was formed using the same procedures except that the K89Q construct
500 was formed using the primer pair 3733/3866-MY and 3892/3734, K97Q was formed using the
501 primer pair 3733/3787 and 3863-MY/3734 and K113Q was formed using the primer pair
502 3733/3836 and 3865-MY/3734. The resulting plasmid contained single-point mutants (K89Q,
503 K97Q or K113Q), double-site mutants (K89Q, K97Q; K89Q, K113Q or K97Q, K113Q) and
504 triple-site mutant (K89Q, K97Q, K113Q). All mutant plasmids were further confirmed using
505 DNA sequencing. The cassette amplified from the final pFlag-NAT by primer 3898-MY/3899-
506 MY was biolistically transformed into the *isw1Δ::NEO* strain. Mutant strains were confirmed
507 using DNA sequencing, diagnostic PCR, qRT-PCR and immunoblotting.

508 Ubiquitination mutants were also formed. The mutant K147R was formed using primer pair
509 3733/4445-MY and 4444-MY/3734, whereas K183R was amplified using the primer pair
510 3733/4447-MY and 4446-MY/3734 and K297R was mutated using primers 4448-MY/4449-MY.
511 Similarly, K347R was mutated using primers 4450-MY/4451-MY, K415R was mutated using
512 primers 3807-MY/3809-MY and K441R was mutated using primers 4452-MY/4453-MY. The
513 resulting plasmids were used to generate the R mutant plasmid using the TaKaRaMutantBEST
514 Kit (Takara). All strains were validated using the methods described earlier.

515 To demonstrate the direct protein interaction between Isw1 and Cdc4, the downstream
516 genomic DNA sequence of *CDC4* was amplified using primers ZR34/ZR51 and cloned between
517 the restriction sites *SpeI* and *SacI* into the pHA-HYG plasmid (a plasmid containing the
518 hygromycin B resistance marker and the HA tag). Then, the last 1000 bp of the *CDC4* ORF was
519 amplified using primers ZR48 and ZR33, and the resulting fragment was cloned into the above
520 plasmid between *Clal* and *SmaI*. The cassette amplified from the final plasmid by primers ZR48
521 and ZR51 was biolistically transformed into H99, the *ISWI*^{WT}, *ISWI*^{K97Q} and *ISWI*^{K97R} strains.
522 Diagnostic PCR was performed using the ZR48/ZR51 primer pair. Immunoblotting analysis of
523 Cdc4 was performed using anti-HA (C29F4) rabbit mAb.

524 To detect the protein expression levels of Isw1 in clinical strains, the wild-type plasmid with
525 pFlag-NAT was used as a template in PCR using primers 3557 and 3537. The resulting PCR
526 products were transformed into seven clinical strains. The *ISWI*^{K97Q} overexpression strains were

527 generated as described henceforth. A safe-haven site was applied to perform plasmid integration
528 (Arras et al., 2015). The 3' flanking region of the safe haven was amplified using 4470-
529 MY/4471-MY, then cloned into pFlag-NAT between the *SacII* and *SacI* sites. The 5' flanking
530 region of the safe haven was amplified using primer 4800-MY/4467-MY, the *TEF1* promoter
531 was amplified using primer 4468-MY/2342 and the *ISWI*^{K97Q} coding sequence was amplified
532 using 4807-MY and 3736. The *ISWI*^{K97Q} construct was amplified using the 4800-MY/3736
533 primer pair, and the three gel-extracted DNA fragments from the first and second rounds of PCR
534 were used as templates, then cloned into pFlag-NAT-dw between the *HindIII* and *EcoRI* sites.
535 The *ISWI*^{K97Q} overexpression cassette was amplified using the 4800-MY/4471-MY primer pair,
536 and the product was transformed into clinical strains.

537

538 **Animal infection**

539 Mice were anaesthetized and inoculated intranasally with 10⁵ yeast cells suspended in 50
540 µl PBS buffer. Infected mice were weighed 12 days after infection and then monitored twice
541 daily for morbidity. Mice were sacrificed at the endpoint of the experiment. All animal
542 experimentation was carried out under the approved protocol (please see Ethical statement).

543

544 **Transcriptome and qRT-PCR analyses**

545 To analyze drug resistance, the wild-type H99 and *iswi*^A mutant strains were either untreated
546 or were treated with 10 µg/ml FLC (Sigma) in 50 ml YPD media at 30°C until cell densities
547 reached the exponential phase (approximately 6 to 7 hours). Cells were then washed three times
548 with ice-cold PBS and placed in a tank of liquid nitrogen. Total RNA was isolated using TRIzol
549 reagent (Thermo Fisher Scientific), and 3 µg of the product was processed using the TruSeq
550 RNA Sample Preparation Kit (Illumina). Purification of mRNA was performed using polyT
551 oligo-attached magnetic beads. Fragmentation of mRNA was performed using an Illumina
552 proprietary fragmentation buffer. First-strand cDNA was synthesized using random hexamer
553 primers and SuperScript II. Subsequently, second-strand cDNA was synthesized using RNase H
554 and DNA polymerase I. The 3' end of the cDNA sequence was adenylated, then cDNA
555 sequences of 200 bp were purified using the AMPure XP system (Beckman Coulter) and
556 enriched using an Illumina PCR Primer Cocktail in a 15-cycle PCR. The resulting PCR products
557 were then purified, and integrity was confirmed using an Agilent High Sensitivity DNA assay on

558 a Bioanalyzer 2100 (Agilent). The sequencing library was then sequenced using a Hiseq platform
559 (Illumina) by Shanghai Personal Biotechnology Cp. Ltd. Alignments were checked against the
560 *Cryptococcus_neoformans_var._grubii_H99* reference genome and gene annotation set retrieved
561 from Ensemble. Differentially expressed genes were detected using the Bioconductor package
562 DESeq2 version 1.22.2. Genes with adjusted *p* values <0.05 and changes greater or less than 1.5-
563 fold those of the control strain were considered to be significantly induced or repressed,
564 respectively.

565 To verify the gene changes screened by transcriptomics, H99 and *isw1Δ* mutant strains were
566 either untreated or were treated with 40 µg/ml FLC (MedChemExpress) in 10 ml YPD media at
567 30°C, and cell densities were monitored until OD₆₀₀ reached 1.0. Both the H99 and *isw1Δ* mutant
568 strains were either untreated or treated with 400 µg/ml 5-FC (MedChemExpress) in 10 ml YPD
569 media at 30°C for 1 hour. Cells were harvested at 3000 *rpm* for 3 minutes at 4°C, then washed
570 twice with ice-cold PBS. Total RNA was isolated using a total RNA kit I (Omega), and cDNA
571 was synthesized using a reverse transcript all-in-one mix (Mona). Primers for amplifying target
572 genes can be found in the primer table. Data were acquired using a CFX96 real-time system
573 (Bio-Rad) using actin expression as a normalization control. The $\Delta\Delta Ct$ method was used to
574 calculate differences in expression.

575

576 **Co-immunoprecipitation and immunoblotting assays**

577 Overnight cultures of *C. neoformans* strains were diluted in fresh YPD media and incubated
578 at the indicated temperature to the mid-log phase (OD₆₀₀=0.8). Protein immunoprecipitation or
579 co-immunoprecipitation was performed as described elsewhere (Li YJ et al., 2017). Briefly, cell
580 proteins were extracted using lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% NP-40; pH 7.5)
581 with 1X protease inhibitor cocktail (CWBIO) and 40 mM PMSF. Aliquots of protein extracts
582 were retained as input samples. Samples of the lysed protein were incubated with anti-Flag
583 magnetic beads (MedChemExpress) at 4°C overnight, then the beads were washed three times
584 using TBS buffer, and the bound proteins were extracted into protein loading buffer at 95°C for 5
585 minutes. Protein samples were separated using 8% SDS-PAGE electrophoresis, transferred onto
586 nitrocellulose membranes, and blocked using 5% milk. Immunoblotting or co-
587 immunoprecipitation assays were performed using anti-Flag mouse monoclonal antibodies
588 (1:5000 dilution; Transgene), anti-HA (C29F4) rabbit mAb (1:5000 dilution; Cell Signaling

589 Technology), anti-Histone H3 (D1H2) XP® Rabbit mAb (1:5000 dilution; Cell Signaling
590 Technology), goat anti-mouse IgG (H+L) HRP secondary antibodies, and goat anti-rabbit IgG
591 (H+L) HRP secondary antibodies (1:5000 dilution; Thermo Fisher Scientific), and monoclonal
592 and polyclonal Kac (1:2500; PTM Bio). The signal was captured using a ChemiDoc XRS+ (Bio-
593 Rad).

594

595 **Statistical analysis**

596 All statistical analyses were performed using GraphPad Prism software (GraphPad 6.0).
597 Two-tailed unpaired *t* tests were used in two-sample comparisons. Statistical analyses for two or
598 more groups were performed using one-way or two-way ANOVA. Significant changes were
599 recognized when *p* < 0.05. All experiments were performed using at least three biological
600 replicates to ensure reproducibility.

601

602 **Materials and Data availability**

603 The raw Isw1 proteome modification mass spectrometric data have been deposited to the
604 Proteome Xchange (<https://www.ebi.ac.uk/pride>) with identifier PXD037150 (username:
605 reviewer_pxd037150@ebi.ac.uk, password: fIU9d0tA). The transcriptome (RNA-seq) is
606 deposited in NCBI's Gene Expression Omnibus (GEO) (<https://www.ncbi.nlm.nih.gov/geo/>) and
607 can be accessed through GEO Series accession ID GEO:GSE217187. Any other data necessary
608 to support the conclusions of this study are available in the supplementary data files and source
609 data or are available from the authors upon request.

610

611 **Detection of drug content**

612 To analyze drug resistance, the wild-type H99 and *isw1Δ* mutant strains were treated with 40
613 µg/ml FLC in 50 ml YPD media at 30°C until the cell densities reached the exponential phase
614 (approximately 5 hours), then the cells were washed once with PBS. An appropriate amount of
615 uniform sample was weighed, 0.2 ml 50% acetic acid solution was added, ultrasonic extraction
616 was carried out, and the resultant was passed through a 0.22 µm microporous filter membrane.
617 High-performance liquid chromatography was performed using an injection volume of 10 µl
618 and a constant mobile phase flow rate of 1.0 ml/min. An Agilent C18 (4.6 mm x 250 mm x 5 µm)
619 column was used, held at 35°C, on a Thermo U3000 HPLC; the detector was a DAD. When the

620 drug was FLC, the mobile phase was acetonitrile:water:acetic acid (25:75:0.2), the detector
621 wavelength was 261 nm, the run time was 15 minutes, and the standard curve was $Y=0.0147X-0.0109$ ($r^2=0.9999$).
622

623 The drug content was determined as:

$$W = \frac{(C - C_0) * V * N}{m}$$

624 W —Drug content, mg/kg

625 C —Concentration of the drug in the cell, mg/L

626 C_0 —Concentration of the drug in the blank control, mg/L

627 V —Volume, ml

628 N —Diluted

629 m —cell mass, g

630

631 **Reference**

632 (2017). Stop neglecting fungi. *Nature Microbiology* 2, 17120.
633 (2022). WHO fungal priority pathogens list to guide research, development and public health
634 action. World Health Organization, 1-48.
635 Billmyre, R.B., Applen Clancey, S., Li, L.X., Doering, T.L., and Heitman, J. (2020). 5-fluorocytosine
636 resistance is associated with hypermutation and alterations in capsule biosynthesis in
637 *Cryptococcus*. *Nat Commun* 11, 127.
638 Bosco-Borgeat, M.E., Mazza, M., Taverna, C.G., Cordoba, S., Murisengo, O.A., Vivot, W., and
639 Davel, G. (2016). Amino acid substitution in *Cryptococcus neoformans* lanosterol 14-alpha-
640 demethylase involved in fluconazole resistance in clinical isolates. *Rev Argent Microbiol* 48,
641 137-142.
642 Brown, G.D., Denning, D.W., Gow, N.A., Levitz, S.M., Netea, M.G., and White, T.C. (2012).
643 Hidden killers: human fungal infections. *Sci Transl Med* 4, 165rv113.
644 Calo, S., Shertz-Wall, C., Lee, S.C., Bastidas, R.J., Nicolas, F.E., Granek, J.A., Mieczkowski, P.,
645 Torres-Martinez, S., Ruiz-Vazquez, R.M., Cardenas, M.E., *et al.* (2014). Antifungal drug
646 resistance evoked via RNAi-dependent epimutations. *Nature* 513, 555-558.
647 Chang, Y.C., Lamichhane, A.K., Cai, H., Walter, P.J., Bennett, J.E., and Kwon-Chung, K.J. (2021).
648 Moderate levels of 5-fluorocytosine cause the emergence of high frequency resistance in
649 *cryptococci*. *Nat Commun* 12, 3418.
650 Coste, A.T., Karababa, M., Ischer, F., Bille, J., and Sanglard, D. (2004). TAC1, transcriptional
651 activator of CDR genes, is a new transcription factor involved in the regulation of *Candida*
652 *albicans* ABC transporters CDR1 and CDR2. *Eukaryot Cell* 3, 1639-1652.
653 de Bekker, C., Ohm, R.A., Loreto, R.G., Sebastian, A., Albert, I., Merrow, M., Brachmann, A., and
654 Hughes, D.P. (2015). Gene expression during zombie ant biting behavior reflects the complexity
655 underlying fungal parasitic behavioral manipulation. *BMC Genomics* 16, 620.

656 Denning, D.W., and Bromley, M.J. (2015). Infectious Disease. How to bolster the antifungal
657 pipeline. *Science* 347, 1414-1416.

658 Dohlman, A.B., Klug, J., Mesko, M., Gao, I.H., Lipkin, S.M., Shen, X., and Iliev, I.D. (2022). A pan-
659 cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. *Cell*
660 185, 3807-3822 e3812.

661 Dunkel, N., Blass, J., Rogers, P.D., and Morschhauser, J. (2008). Mutations in the multi-drug
662 resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1
663 overexpression in fluconazole-resistant *Candida albicans* strains. *Mol Microbiol* 69, 827-840.

664 Erwig, L.P., and Gow, N.A. (2016). Interactions of fungal pathogens with phagocytes. *Nat Rev
665 Microbiol* 14, 163-176.

666 Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., and Gurr, S.J.
667 (2012). Emerging fungal threats to animal, plant and ecosystem health. *Nature* 484, 186-194.

668 Fites, J.S., Ramsey, J.P., Holden, W.M., Collier, S.P., Sutherland, D.M., Reinert, L.K., Gayek, A.S.,
669 Dermody, T.S., Aune, T.M., Oswald-Richter, K., *et al.* (2013). The invasive chytrid fungus of
670 amphibians paralyzes lymphocyte responses. *Science* 342, 366-369.

671 Florent, M., Noel, T., Ruprich-Robert, G., Da Silva, B., Fitton-Ouhabi, V., Chastin, C., Papon, N.,
672 and Chapeland-Leclerc, F. (2009). Nonsense and missense mutations in FCY2 and FCY1 genes
673 are responsible for flucytosine resistance and flucytosine-fluconazole cross-resistance in clinical
674 isolates of *Candida lusitaniae*. *Antimicrob Agents Chemother* 53, 2982-2990.

675 Idnurm, A., Bahn, Y.S., Nielsen, K., Lin, X., Fraser, J.A., and Heitman, J. (2005). Deciphering the
676 model pathogenic fungus *Cryptococcus neoformans*. *Nat Rev Microbiol* 3, 753-764.

677 Khatib, M.Y., Ahmed, A.A., Shaat, S.B., Mohamed, A.S., and Nashwan, A.J. (2021).
678 Cryptococcmemia in a patient with COVID-19: A case report. *Clin Case Rep* 9, 853-855.

679 Kim, N.K., Han, K., and Jung, W.H. (2010). Identification and Functional Characterization of a
680 *Cryptococcus neoformans* UPC2 Homolog. *Mycobiology* 38, 215-218.

681 Kronstad, J., Saikia, S., Nielson, E.D., Kretschmer, M., Jung, W., Hu, G., Geddes, J.M., Griffiths,
682 E.J., Choi, J., Cadieux, B., *et al.* (2012). Adaptation of *Cryptococcus neoformans* to mammalian
683 hosts: integrated regulation of metabolism and virulence. *Eukaryot Cell* 11, 109-118.

684 Kwon-Chung, K.J., and Chang, Y.C. (2012). Aneuploidy and drug resistance in pathogenic fungi.
685 *PLoS Pathog* 8, e1003022.

686 Li, Y., Li, H., Sui, M., Li, M., Wang, J., Meng, Y., Sun, T., Liang, Q., Suo, C., Gao, X., *et al.* (2019).
687 Fungal acetylome comparative analysis identifies an essential role of acetylation in human
688 fungal pathogen virulence. *Commun Biol* 2, 154.

689 Li, Y., Zhang, Y., Zhang, C., Wang, H., Wei, X., Chen, P., and Lu, L. (2020). Mitochondrial
690 dysfunctions trigger the calcium signaling-dependent fungal multidrug resistance. *Proc Natl
691 Acad Sci U S A* 117, 1711-1721.

692 Loyse, A., Dromer, F., Day, J., Lortholary, O., and Harrison, T.S. (2013). Flucytosine and
693 cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal.
694 *J Antimicrob Chemother* 68, 2435-2444.

695 Martel, A., Blooi, M., Adriaensen, C., Van Rooij, P., Beukema, W., Fisher, M.C., Farrer, R.A.,
696 Schmidt, B.R., Tobler, U., Goka, K., *et al.* (2014). Wildlife disease. Recent introduction of a
697 chytrid fungus endangers Western Palearctic salamanders. *Science* 346, 630-631.

698 Molloy, S.F., Kanyama, C., Heyderman, R.S., Loyse, A., Kouanfack, C., Chanda, D., Mfinanga, S.,
699 Temfack, E., Lakhi, S., Lesikari, S., *et al.* (2018). Antifungal Combinations for Treatment of
700 Cryptococcal Meningitis in Africa. *N Engl J Med* **378**, 1004-1017.

701 Morschhauser, J., Barker, K.S., Liu, T.T., Bla, B.W.J., Homayouni, R., and Rogers, P.D. (2007). The
702 transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates
703 multidrug resistance in *Candida albicans*. *PLoS Pathog* **3**, e164.

704 Narunsky-Haziza, L., Sepich-Poore, G.D., Livyatan, I., Asraf, O., Martino, C., Nejman, D., Gavert,
705 N., Stajich, J.E., Amit, G., Gonzalez, A., *et al.* (2022). Pan-cancer analyses reveal cancer-type-
706 specific fungal ecologies and bacteriome interactions. *Cell* **185**, 3789-3806 e3717.

707 O'Meara, T.R., Hay, C., Price, M.S., Giles, S., and Alspaugh, J.A. (2010). *Cryptococcus*
708 *neoformans* histone acetyltransferase Gcn5 regulates fungal adaptation to the host. *Eukaryot
709 Cell* **9**, 1193-1202.

710 Priest, S.J., Yadav, V., Roth, C., Dahlmann, T.A., Kuck, U., Magwene, P.M., and Heitman, J. (2022).
711 Uncontrolled transposition following RNAi loss causes hypermutation and antifungal drug
712 resistance in clinical isolates of *Cryptococcus neoformans*. *Nat Microbiol* **7**, 1239-1251.

713 Rajasingham, R., Smith, R.M., Park, B.J., Jarvis, J.N., Govender, N.P., Chiller, T.M., Denning, D.W.,
714 Loyse, A., and Boulware, D.R. (2017). Global burden of disease of HIV-associated cryptococcal
715 meningitis: an updated analysis. *Lancet Infect Dis* **17**, 873-881.

716 Rashid, S., Correia-Mesquita, T.O., Godoy, P., Omran, R.P., and Whiteway, M. (2022). SAGA
717 Complex Subunits in *Candida albicans* Differentially Regulate Filamentation, Invasiveness, and
718 Biofilm Formation. *Front Cell Infect Microbiol* **12**, 764711.

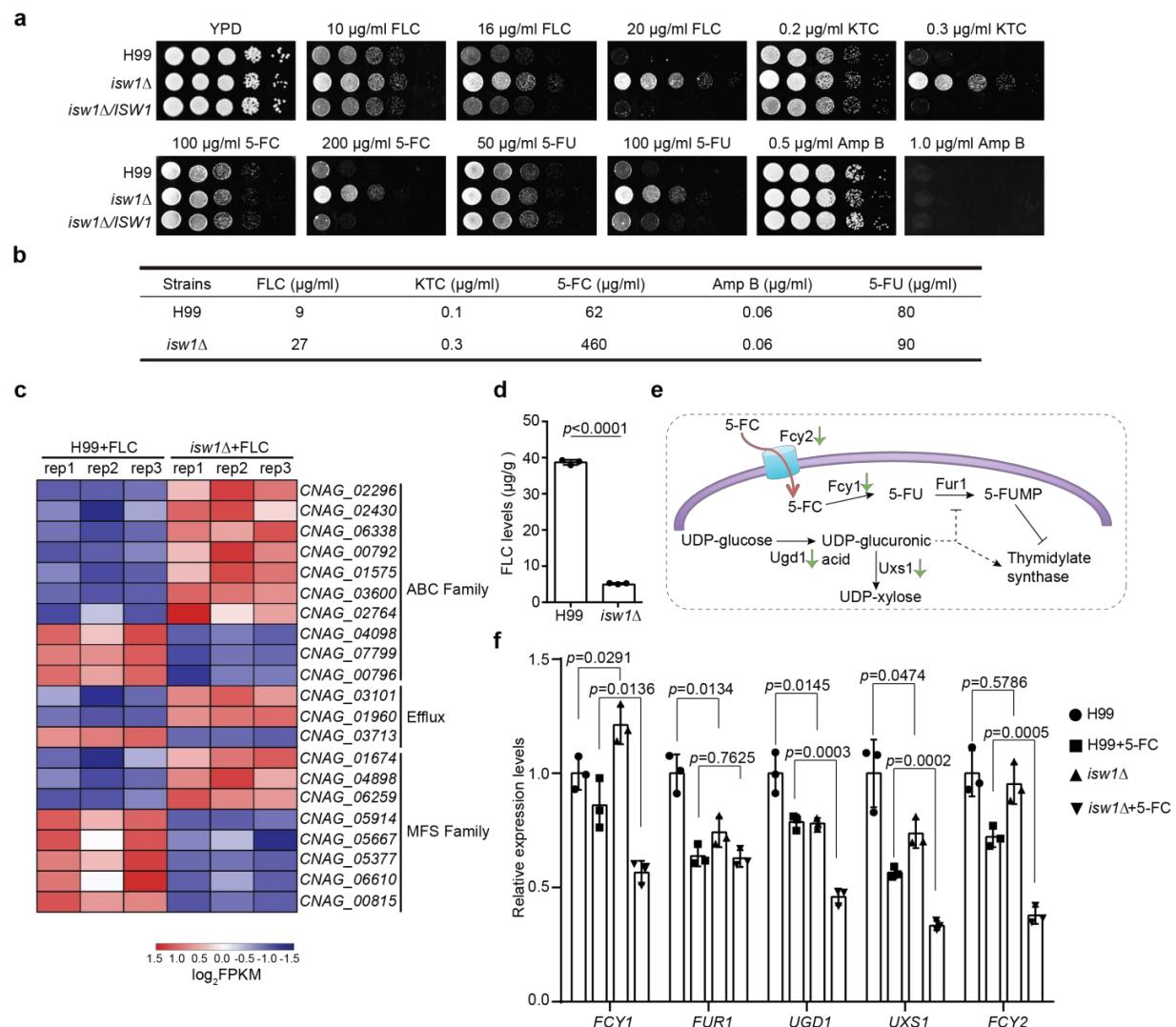
719 Robbins, N., Leach, M.D., and Cowen, L.E. (2012). Lysine deacetylases Hda1 and Rpd3 regulate
720 Hsp90 function thereby governing fungal drug resistance. *Cell Rep* **2**, 878-888.

721 Silver, P.M., Oliver, B.G., and White, T.C. (2004). Role of *Candida albicans* transcription factor
722 Upc2p in drug resistance and sterol metabolism. *Eukaryot Cell* **3**, 1391-1397.

723 Sionov, E., Chang, Y.C., Garraffo, H.M., Dolan, M.A., Ghannoum, M.A., and Kwon-Chung, K.J.
724 (2012). Identification of a *Cryptococcus neoformans* cytochrome P450 lanosterol 14alpha-
725 demethylase (Erg11) residue critical for differential susceptibility between
726 fluconazole/voriconazole and itraconazole/posaconazole. *Antimicrob Agents Chemother* **56**,
727 1162-1169.

728 Spruijtenburg, B., Badali, H., Abastabar, M., Mirhendi, H., Khodavaisy, S., Sharifsooraki, J.,
729 Taghizadeh Armaki, M., de Groot, T., and Meis, J.F. (2022). Confirmation of fifth *Candida auris*
730 clade by whole genome sequencing. *Emerg Microbes Infect* **11**, 2405-2411.

731 Sugiyama, M., and Nikawa, J. (2001). The *Saccharomyces cerevisiae* Isw2p-Itc1p complex
732 represses INO1 expression and maintains cell morphology. *J Bacteriol* **183**, 4985-4993.


733 Toffaletti, D.L., Rude, T.H., Johnston, S.A., Durack, D.T., and Perfect, J.R. (1993). Gene transfer in
734 *Cryptococcus neoformans* by use of biolistic delivery of DNA. *J Bacteriol* **175**, 1405-1411.

735 Tsukiyama, T., Palmer, J., Landel, C.C., Shiloach, J., and Wu, C. (1999). Characterization of the
736 imitation switch subfamily of ATP-dependent chromatin-remodeling factors in *Saccharomyces*
737 *cerevisiae*. *Genes Dev* **13**, 686-697.

738 van der Linden, J.W., Snelders, E., Kampinga, G.A., Rijnders, B.J., Mattsson, E., Debets-
739 Ossenkopp, Y.J., Kuijper, E.J., Van Tiel, F.H., Melchers, W.J., and Verweij, P.E. (2011). Clinical
740 implications of azole resistance in *Aspergillus fumigatus*, The Netherlands, 2007-2009. *Emerg
741 Infect Dis* **17**, 1846-1854.

742 Vos, T., Flaxman, A.D., Naghavi, M., Lozano, R., Michaud, C., Ezzati, M., Shibuya, K., Salomon,
743 J.A., Abdalla, S., Aboyans, V., *et al.* (2012). Years lived with disability (YLDs) for 1160 sequelae of
744 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease
745 Study 2010. *Lancet* *380*, 2163-2196.
746 Voyles, J., Young, S., Berger, L., Campbell, C., Voyles, W.F., Dinudom, A., Cook, D., Webb, R.,
747 Alford, R.A., Skerratt, L.F., *et al.* (2009). Pathogenesis of chytridiomycosis, a cause of
748 catastrophic amphibian declines. *Science* *326*, 582-585.
749 Woldie, I.L., Brown, I.G., Nwadiaro, N.F., Patel, A., Jarrar, M., Quint, E., Khokhotva, V., Hugel, N.,
750 Winger, M., and Briskin, A. (2020). Autoimmune Hemolytic Anemia in a 24-Year-Old Patient
751 With COVID-19 Complicated by Secondary Cryptococcemia and Acute Necrotizing Encephalitis:
752 A Case Report and Review of Literature. *J Med Cases* *11*, 362-365.
753 Wu, T., Fan, C.L., Han, L.T., Guo, Y.B., and Liu, T.B. (2021). Role of F-box Protein Cdc4 in Fungal
754 Virulence and Sexual Reproduction of *Cryptococcus neoformans*. *Front Cell Infect Microbiol* *11*,
755 806465.
756 Yu, S., Paderu, P., Lee, A., Eirekat, S., Healey, K., Chen, L., Perlin, D.S., and Zhao, Y. (2022).
757 Histone Acetylation Regulator Gcn5 Mediates Drug Resistance and Virulence of *Candida*
758 *glabrata*. *Microbiol Spectr* *10*, e0096322.
759
760
761
762
763
764
765
766
767
768
769

770 **Figures and legends**

771

772 **Figure 1. *Isw1* represses the expression of drug-resistance genes.**

773 a. Spotting assays of *ISW1* mutant strains. Wild-type H99, *isw1Δ*, and *ISW1* complementation strains were spotted onto YPD agar supplemented with indicated
774 concentrations of antifungal agents. Plates were incubated at 30°C for 3 days.
775

776 b. Minimum inhibitory concentration (MIC) tests. The H99 and *isw1Δ* ($n=3$ each) strains
777 were tested to determine the MICs of several antifungal agents.
778

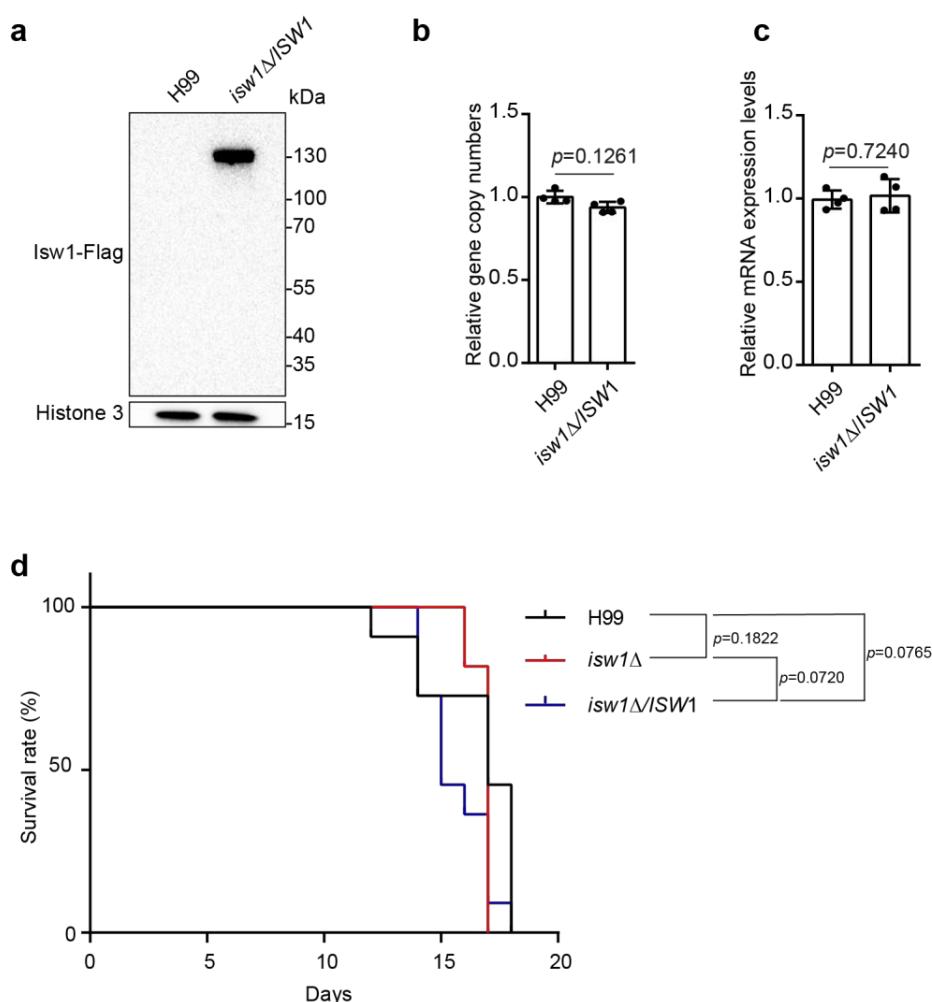
779 c. Transcriptome analysis of *isw1Δ*. Samples of RNA were isolated from H99 and *isw1Δ*
780 cells ($n=3$ each) supplemented with 10 μg/ml fluconazole (FLC). Transcriptome analysis
was performed, and a heatmap of the expressions of drug-resistance genes was generated.

781 d. Intracellular concentration of FLC. H99 and *isw1Δ* cells ($n=3$ each) were incubated in the
782 presence of 40 μ g/ml FLC at 30°C for 5 hours. Cells were then washed and weighed, and
783 the intracellular FLC was quantified using high-performance liquid chromatography. A
784 two-tailed unpaired *t*-test was used. Data are expressed as mean \pm SD.

785 e. Scheme of the mechanism for 5-fluorocytosine (5-FC) and 5-fluorouracil (5-FU)
786 resistance. The red arrow indicates the entry of 5-FC via Fcy2. Green arrows indicate the
787 downregulation of gene expression in response to 5-FC in the *isw1Δ* strain.

788 f. Analyses of 5-FC resistance genes using qRT-PCR. Indicated strains ($n=3$ each) were
789 grown with or without 400 μ g/ml 5-FC, then qRT-PCR was performed to determine gene
790 expressions of *FCY1*, *FUR1*, *UGD1*, *UXS1*, and *FCY2*. Two-tailed unpaired *t* tests were
791 used. Data are expressed as mean \pm SD.

792


793 **Figure 1-figure supplement 1. *ISW1* is not required for fungal virulence.**

794 **Figure 1-figure supplement 2. *itc1Δ* is resistant to azoles and 5-fluorocytosine.**

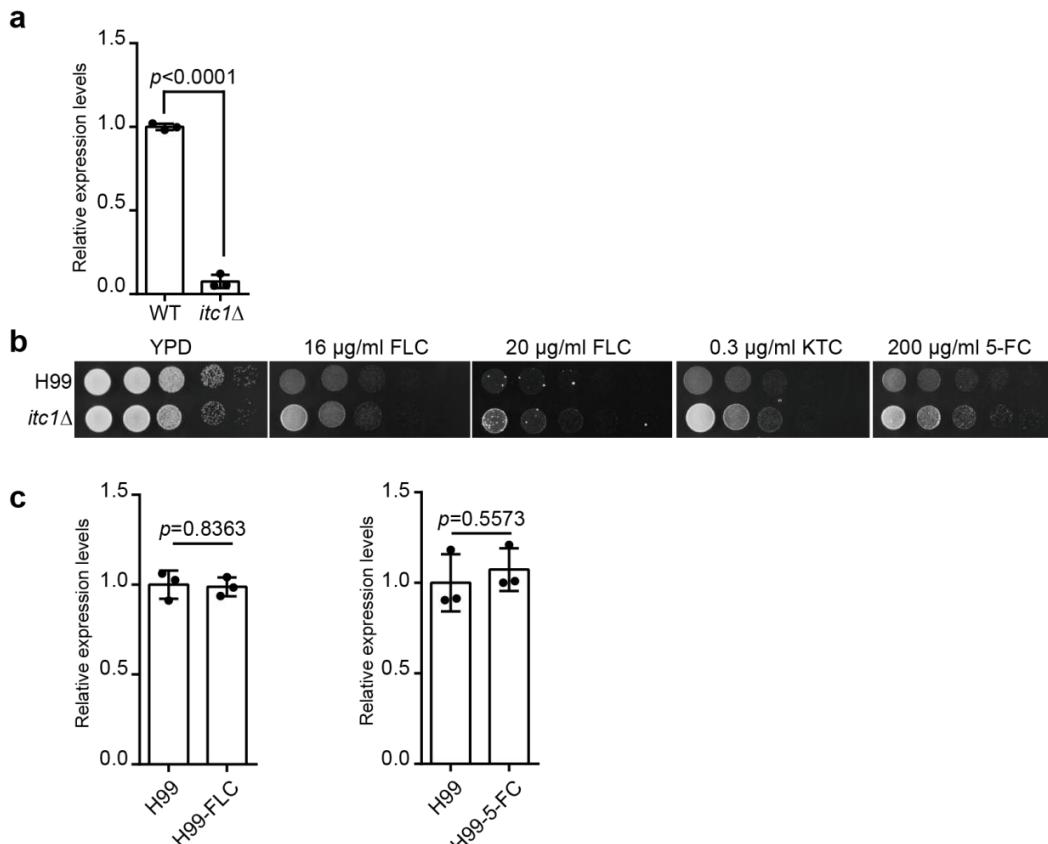
795 **Figure 1-source data 1**

796 **Figure 1-figure supplement 1-source data 1**

797 **Figure 1-figure supplement 2-source data 1**

798

799 **Figure 1-figure supplement 1. ISWI is not required for fungal virulence.**


800 a. Immunoblotting analysis of the *ISWI* complementation strain. The complementation
801 strain was constructed, and an immunoblotting assay was performed to confirm the
802 expression of the Isw1-Flag protein.

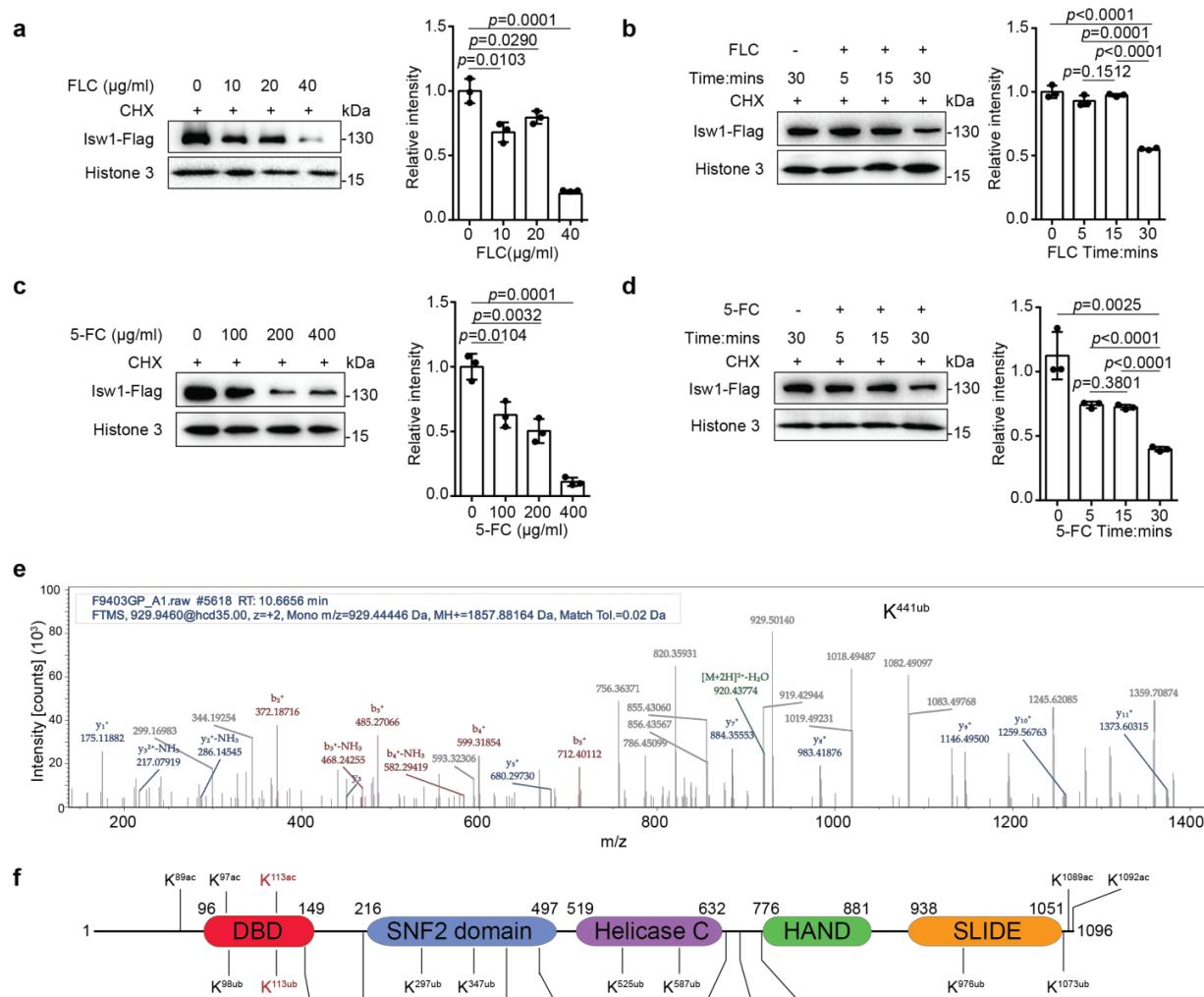
803 b. Genomic copy number assays. Genomic DNA was isolated from the wild-type and
804 complementation strains, then qRT-PCR was performed on each to confirm the gene
805 copy number of *ISWI*. Oligos of actin were used as a control. Four independent assays
806 were performed and quantified. Two-tailed unpaired *t*-tests were used. Data are expressed
807 as mean \pm SD.

808 c. Analyses of the *ISWI* complementation strain using qRT-PCR. Samples of RNA were
809 isolated from the wild-type and complementation strains, then qRT-PCR was performed
810 on each to confirm the gene expression of *ISWI*. Oligos of actin were used as a control.

811 Four independent assays were performed and quantified. Two-tailed unpaired *t*-tests were
812 used. Data are expressed as mean \pm SD.

813 d. Animal survival analysis and the Kaplan-Meier survival curves of wild-type and *isw1Δ*.
814 Significance was determined using a log-rank (Mantel-Cox) test.

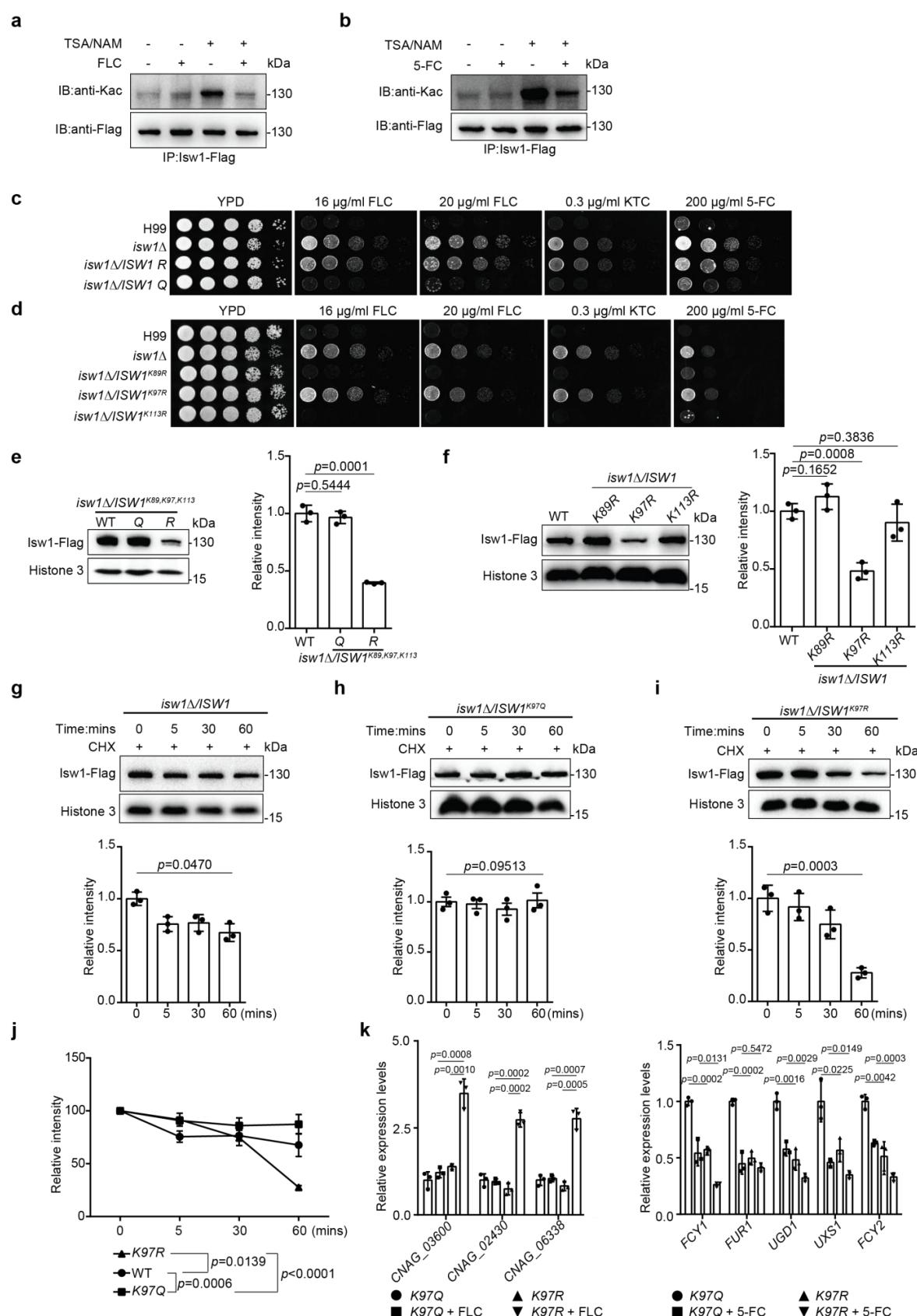
815


816 **Figure 1-figure supplement 2. *itc1Δ* is resistant to azoles and 5-fluorocytosine.**

817 a. Analyses of *ITC1* in the *itc1Δ* strain using qRT-PCR. Samples of RNA were isolated
818 from the wild-type and *itc1Δ* strains, then qRT-PCR was performed on each. Two-tailed
819 unpaired *t*-tests were used. Data are expressed as mean \pm SD.

820 b. Spotting assays of *itc1Δ*. The wild-type and *itc1Δ* strains were separately spotted onto
821 YPD agar either supplemented with an antifungal agent or left blank.

822 c. Analyses of *ISWI1* gene expression in response to FLC and 5-FC. Samples of RNA were
823 isolated from the wild-type strain, then qRT-PCR was performed on each. Two-tailed
824 unpaired *t*-tests were used. Data are expressed as mean \pm SD.


825

837 and results were used for quantification. Two-tailed unpaired *t* tests were used. Data are
838 expressed as mean \pm SD.

839 c. Immunoblotting analysis. Testing and data treatment were exactly as described for Figure
840 2a with the exception that 5-fluorocytosine (5-FC) was used as the antifungal agent.
841 d. Immunoblotting analysis. Testing and data treatment were exactly as described in Figure
842 2b, except that 5-FC was used as the antifungal agent.
843 e. Ubiquitin analysis of Isw1 via mass spectrometry. The Isw1-Flag proteins were pulled
844 down and analyzed for ubiquitination. Results for Isw1^{K441Ub} are shown.
845 f. Schematic of Isw1 showing acetylation (Li et al., 2019) and ubiquitination sites.

846 **Figure 2-source data 1**

848 **Figure 3. The acetylation status of Isw1^{K97} (Isw1^{K97ac}) is essential in Isw1 protein stability.**

849 a. Acetylation analysis of Isw1. Cells were treated with 3 μ M trichostatin A (TSA), 20 mM
850 nicotinamide (NAM), and fluconazole (FLC). The Isw1-Flag proteins were pulled down,
851 and immunoblotting assays were performed using anti-Kac and anti-Flag antibodies.

852 b. Acetylation analysis of Isw1. Cells were treated with TSA, NAM, and 5-fluorocytosine
853 (5-FC). The Isw1-Flag proteins were pulled down, and immunoblotting assays were
854 performed using anti-Kac and anti-Flag antibodies.

855 c. Spotting assays of *ISWI* mutants. The *ISWI*^{K89R, K97R, K113R} and *ISWI*^{K89Q, K97Q, K113Q} strains
856 were tested for drug resistance.

857 d. Spotting assays of *ISWI* mutants. The *ISWI*^{K89R}, *ISWI*^{K97R}, and *ISWI*^{K113R} strains were
858 tested for drug resistance.

859 e. Immunoblotting assays of *ISWI* mutants. The wild-type, *ISWI*^{K89R, K97R, K113R}, and
860 *ISWI*^{K89Q, K97Q, K113Q} strains were tested for Isw1 levels. Three biological replicates were
861 performed, and results were used for quantification. Two-tailed unpaired *t*-tests were
862 used. Data are expressed as mean \pm SD.

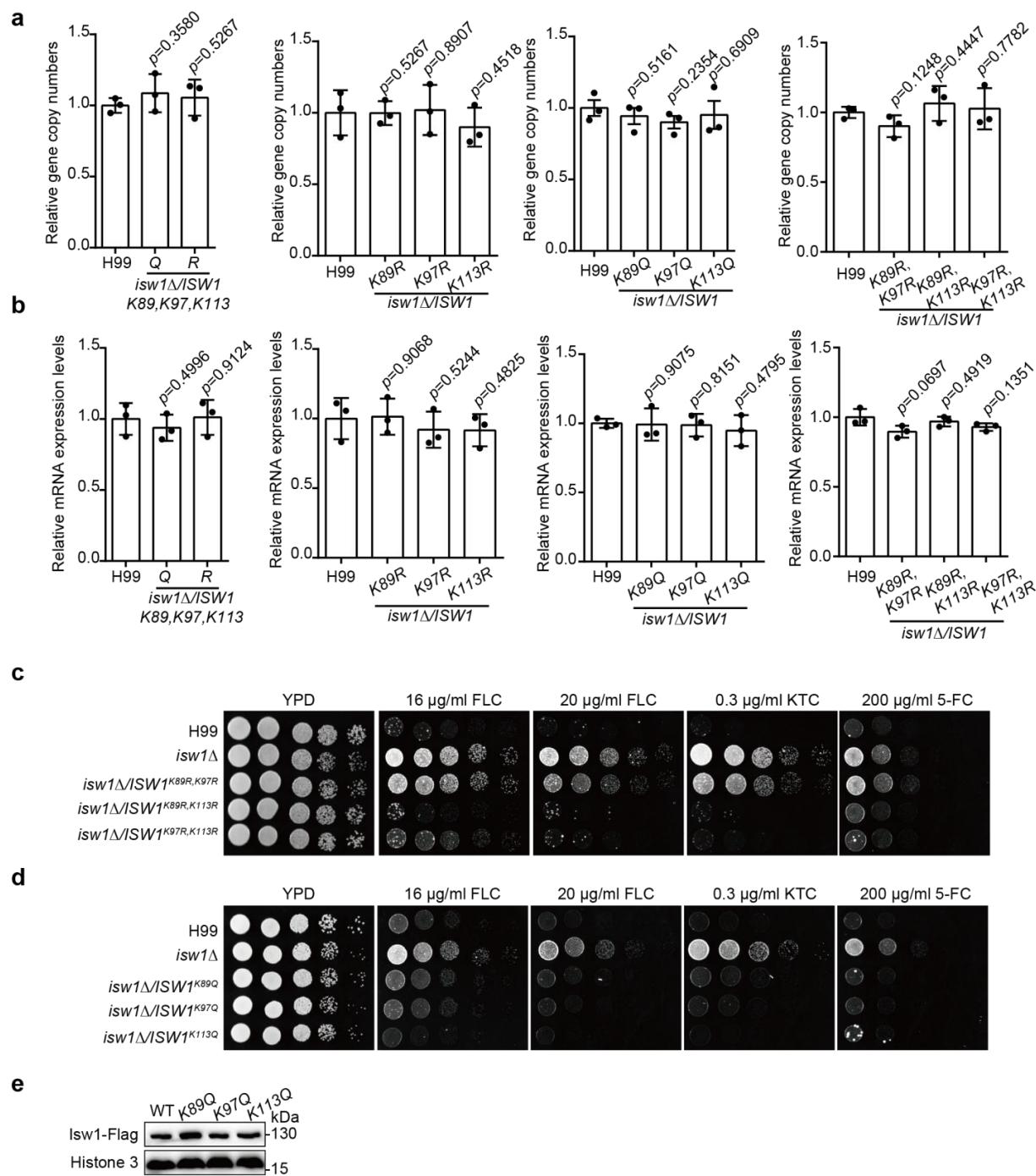
863 f. Immunoblotting assays of *ISWI* mutants. The wild-type, *ISWI*^{K89R}, *ISWI*^{K97R}, and
864 *ISWI*^{K113R} strains were tested for Isw1 levels. Three biological replicates were performed,
865 and results were used for quantification. Two-tailed unpaired *t*-tests were used. Data are
866 expressed as mean \pm SD.

867 g. Immunoblotting assay of Isw1. The wild-type strain was preincubated with 200 μ M
868 cycloheximide for 1 hour. Proteins were isolated at indicated time points. Three
869 biological replicates of immunoblotting were performed, and results were used for
870 quantification. One-way ANOVA was used.

871 h. Immunoblotting assay of Isw1^{K97Q}. The analysis was performed as described in Figure 3g.

872 i. Immunoblotting assay of Isw1^{K97R}. The analysis was performed as described in Figure 3g.

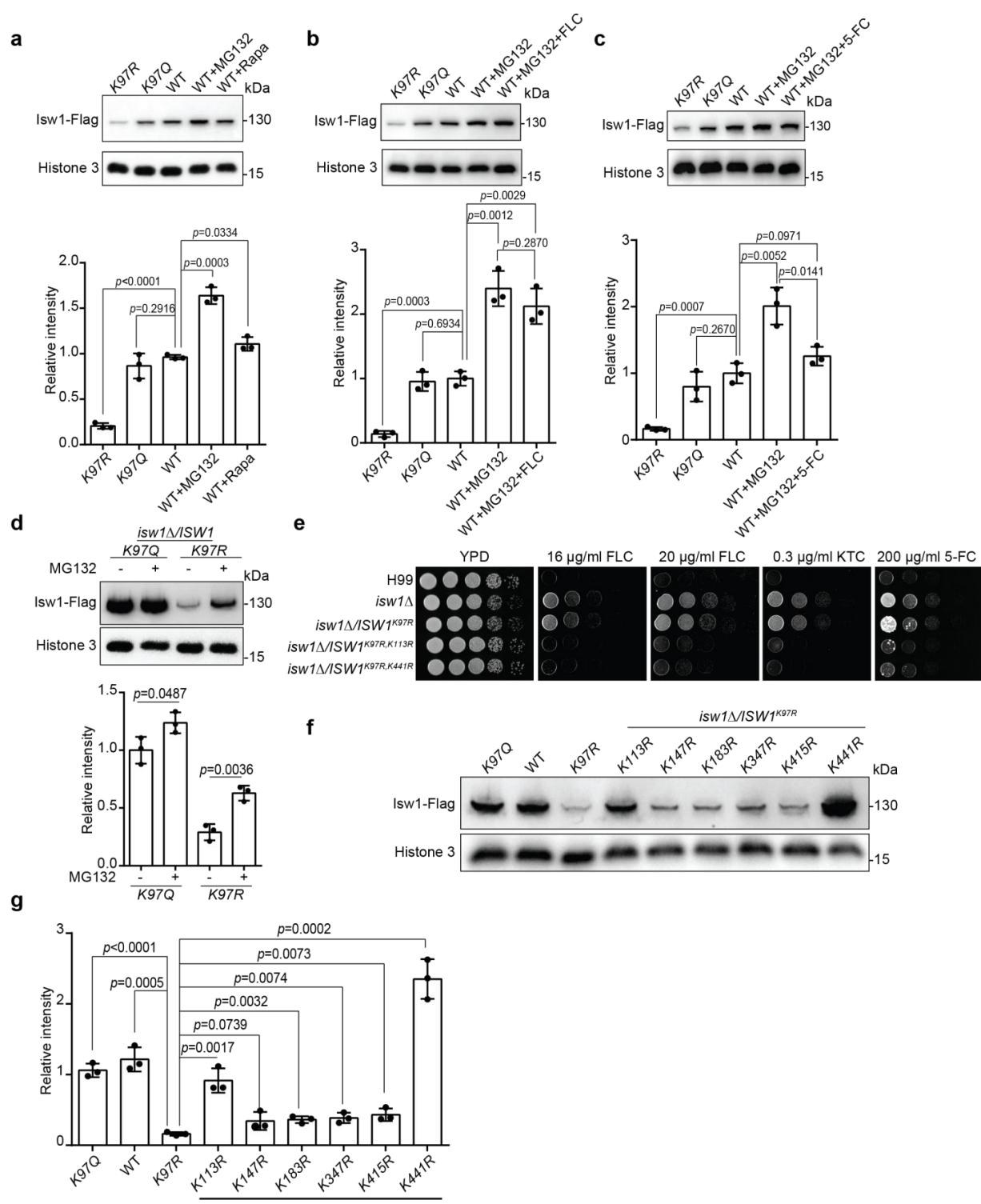
873 j. Comparisons of assay results to determine Isw1 stability. The relative intensities from the
874 results shown in Figures 3g, 3h, and 3i were plotted. Two-way ANOVA was used. Data
875 are expressed as mean \pm SD.


876 k. Analyses of drug resistance genes using qRT-PCR. Samples of RNA ($n=3$) were isolated
877 from *ISWI*^{K97Q} and *ISWI*^{K97R} treated with FLC or 5-FC. Representative drug resistance

878 genes were quantified using qRT-PCR. Two-tailed unpaired *t*-tests were used. Data are
 879 expressed as mean \pm SD.

880 **Figure 3-figure supplement 1. Screening important acetylation sites of Isw1.**

881 **Figure 3-source data 1.**


882 **Figure 3-figure supplement 1-source data 1.**

883

884 **Figure 3-figure supplement 1. Screening important acetylation sites of Isw1.**

885 a. Genomic copy number assays. Genomic DNA was isolated from the indicated *ISW1*
886 mutants, then qRT-PCR was performed on each to confirm the gene copy number of
887 *ISW1*. Oligos of actin were used as a control. Three independent assays were performed
888 and quantified. Two-tailed unpaired *t*-tests were used. Data are expressed as mean \pm SD.
889 b. Analyses of *ISW1* mutants using qRT-PCR. Samples of RNA were isolated from the
890 wild-type and indicated mutants, then qRT-PCR was performed on each to confirm the
891 gene expressions of wild-type and mutated *ISW1*. Oligos of actin were used as a control.
892 Three independent assays were performed and quantified. Two-tailed unpaired *t*-tests
893 were used. Data are expressed as mean \pm SD.
894 c. Spotting assays of *ISW1* double-R mutants. The wild-type and indicated *ISW1* mutants
895 were spotted onto YPD agar either supplemented with an antifungal agent or left blank.
896 d. Spotting assays of *ISW1* single-Q mutants. The wild-type and indicated *ISW1* mutants
897 were spotted onto YPD agar either supplemented with an antifungal agent or left blank.
898 e. Immunoblotting analyses of *ISW1* single-Q mutants. Protein samples were isolated from
899 the indicated strains, and immunoblotting assays were performed.

900

901 **Figure 4. Isw1^{K97ac} is critical for Isw1 ubiquitin-proteasome degradation.**

902 a. Immunoblotting assays of Isw1-Flag. Proteins Isw1^{K97Q}, Isw1^{K97R}, and Isw1 were tested,
903 where the wild-type stain was incubated with 200 μ M MG132 and 5 nM rapamycin for

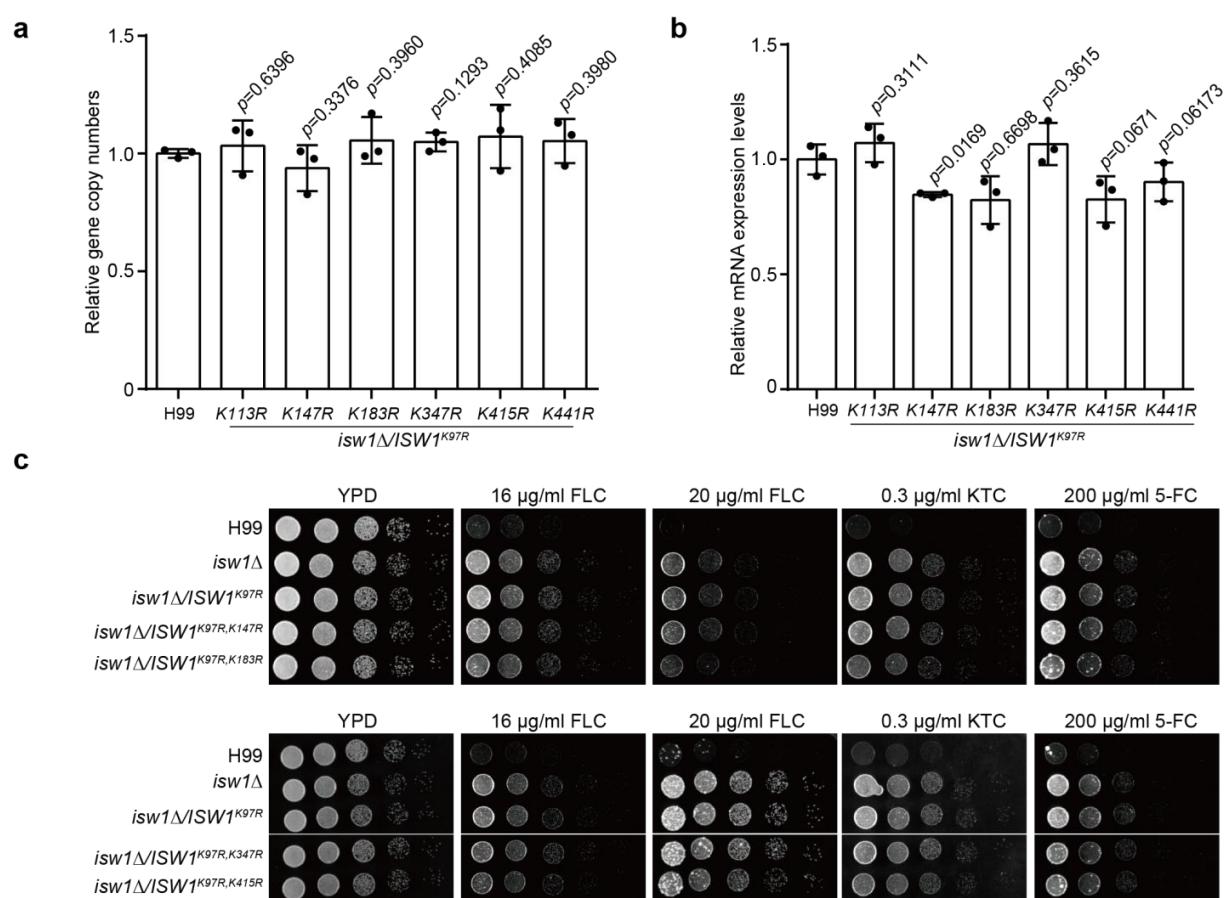
904 10 hours. Three biological replicates of the assays were performed, and results were used
905 for quantification. Two-tailed unpaired *t* tests were used. Data are expressed as mean ±
906 SD.

907 b. Immunoblotting assays of Isw1-Flag. Testing and data treatment were exactly as
908 described in Figure 4a, except that the wild-type sample was treated with 200 μ M of
909 MG132 and 40 μ g/ml fluconazole (FLC).

910 c. Immunoblotting assays of Isw1-Flag. Testing and data treatment were exactly as
911 described in Figure 4a, except that the wild-type sample was treated with 200 μ M
912 MG132 and 400 μ g/ml 5-fluorocytosine (5-FC).

913 d. Immunoblotting assays of Isw1^{K97Q} and Isw1^{K97R}. Proteins were either treated with
914 MG132 or not before testing. Three biological replicates of the assays were performed,
915 and results were used for quantification. Two-tailed unpaired *t*-tests were used. Data are
916 expressed as mean ± SD.

917 e. Spotting assays of *ISW1* acetylation and ubiquitination mutants. Indicated strains were
918 spotted onto YPD agar either supplemented with an antifungal agent or left blank.

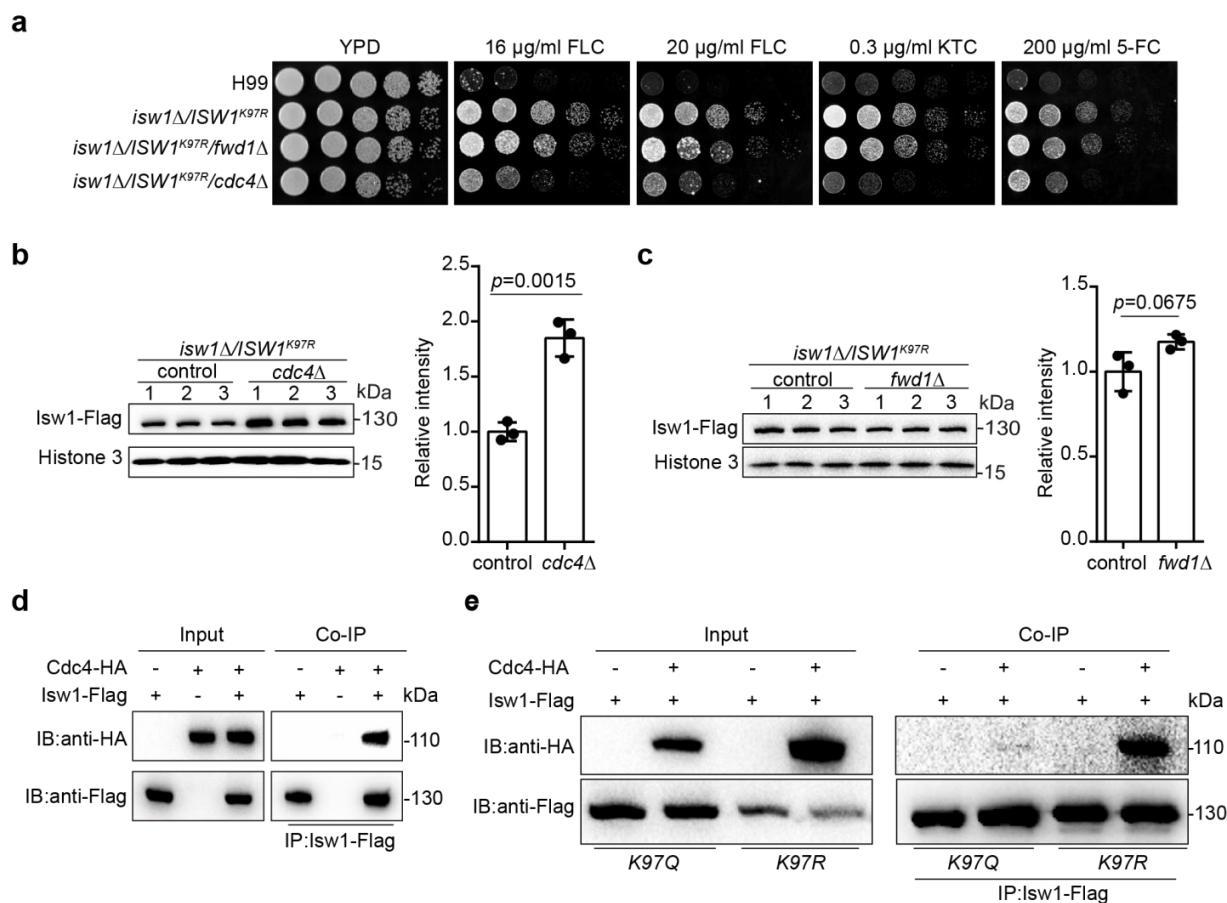

919 f. Immunoblotting assays of *ISW1* acetylation and ubiquitination mutants. Protein samples
920 were isolated from the indicated *ISW1* mutants. Immunoblotting assays were performed.

921 g. Quantification of immunoblotting results. The immunoblotting assays described for
922 Figure 3f were performed using three independent samples, and the results were used for
923 quantification. Two-tailed unpaired *t*-tests were used. Data are expressed as mean ± SD.

924 **Figure 4-figure supplement 1. Screening important ubiquitination sites of Isw1.**

925 **Figure 4-source data 1.**

926 **Figure 4-figure supplement 1-source data 1.**


927

928 **Figure 4-figure supplement 1. Screening important ubiquitination sites of Isw1.**

929 a. Genomic copy number assays. Genomic DNA was isolated from indicated *ISWI* mutants,
 930 then qRT-PCR was performed on each to confirm the gene copy number of *ISWI*. Oligos
 931 of actin were used as a control. Three independent assays were performed and quantified.
 932 Two-tailed unpaired *t*-tests were used. Data are expressed as mean \pm SD.

933 b. Analyses of *ISWI* ubiquitination mutants using qRT-PCR. Samples of RNA were isolated
 934 from wild-type and indicated mutants, and qRT-PCR was performed on each to confirm
 935 the expressions of wild-type and mutated *ISWI* genes. Oligos of actin were used as a
 936 control. Three independent assays were performed and quantified. Two-tailed unpaired *t*-
 937 tests were used. Data are expressed as mean \pm SD.

938 c. Spotting assays of *ISWI* ubiquitination site mutants. The wild-type and indicated *ISWI*
 939 mutants were spotted onto YPD agar either supplemented with an antifungal agent or left
 940 blank. Plates were incubated at 30°C for 3 days.

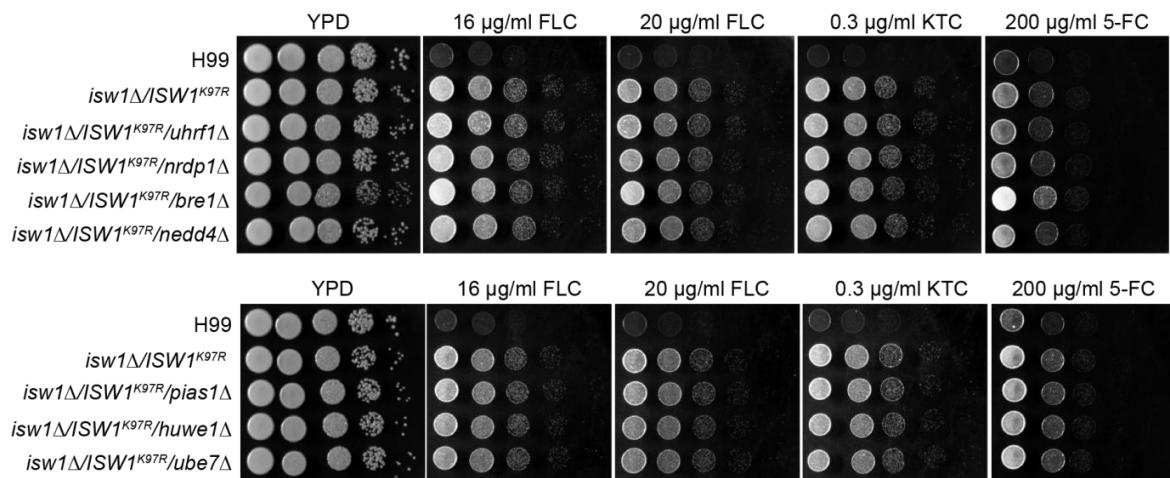
941

942

943 **Figure 5. *Isw*^{K97ac} blocks the binding of Isw1 to the E3 ligase Cdc4.**

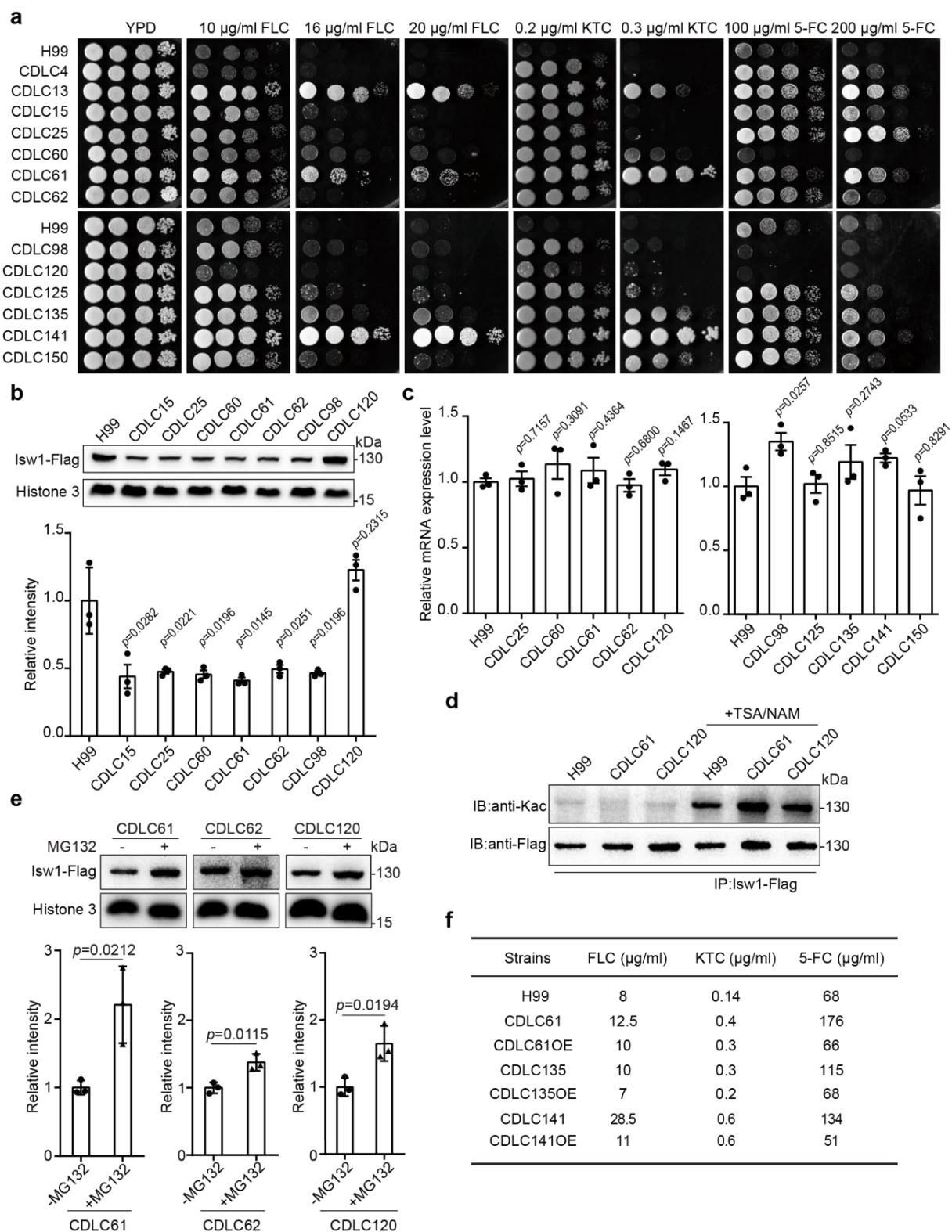
944 a. Spotting assays of E3 ligase mutants. Indicated strains were spotted onto YPD agar either
 945 supplemented with an antifungal agent or left blank.

946 b. Immunoblotting assays of *cdc4Δ*. Protein samples were isolated from
 947 *isw1Δ/ISW1^{K97R}/cdc4Δ* and its relevant control strains. Three independent samples were
 948 tested and quantified. Two-tailed unpaired *t*-tests were used. Data are expressed as mean
 949 \pm SD.


950 c. Immunoblotting assays of *fwd1Δ*. Protein samples were isolated from
 951 *isw1Δ/ISW1^{K97R}/fwd1Δ* and its relevant control strains. Three independent samples were
 952 tested and quantified. Two-tailed unpaired *t*-tests were used. Data are expressed as mean
 953 \pm SD.

954 d. Protein co-immunoprecipitation (co-IP) of Cdc4 and Isw1. Protein samples were isolated
 955 from the strain expressing Cdc4-HA and Isw1-Flag, and co-IP was performed.

956 e. Protein co-IP of Cdc4 and Isw1 K97 mutant proteins. Protein samples were isolated from
957 the strain co-expressing Cdc4-HA and Isw1^{K97R}-Flag and the strain co-expressing Cdc4-
958 HA and Isw1^{K97Q}-Flag. Co-IP was performed for each.


959 **Figure 5-figure supplement 1. Identification of the E3 ligase for Isw1.**

960 **Figure 5-source data 1.**

961 **Figure 5-figure supplement 1. Identification of the E3 ligase for Isw1.**

962 Spotting assays of E3 ligase knockout strains. Wild-type and indicated E3 ligase
963 knockout strains were spotted onto YPD agar either supplemented with an antifungal
964 agent or left blank. Plates were incubated at 30°C for 3 days.

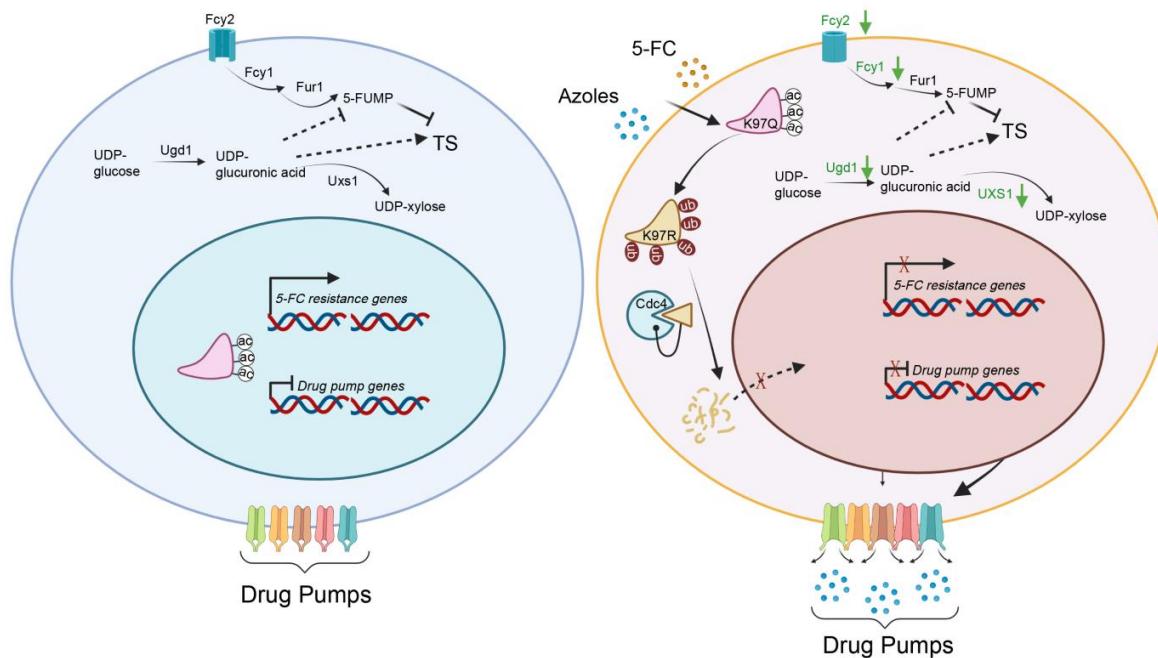
966

967 **Figure 6. Clinical *C. neoformans* isolates show Isw1-mediated drug resistance phenotypes.**

968 a. Spotting assays of *C. neoformans* clinical strains. Clinical strains were spotted onto YPD
969 agar either supplemented with an antifungal agent or left blank. Results after 3 days of
970 incubation at 30°C are shown.

971 b. Immunoblotting assays of Isw1-Flag from clinical isolates. Protein samples were isolated
972 from H99 and clinical isolates expressing Isw1-Flag. Immunoblotting analyses were
973 performed. Three independent repetitions were performed, and results were used for
974 quantification. Two-tailed unpaired *t*-tests were used. Data are expressed as mean ± SD.

975 c. Analyses of *ISWI* in clinical isolates using qRT-PCR. Samples of RNA were isolated
976 from H99 and clinical strains, then qRT-PCR performed on each followed by
977 quantification of *ISWI*. Three biological replicates were performed. Two-tailed unpaired
978 *t*-tests were used. Data are expressed as mean ± SD.


979 d. Immunoblotting analyses of Isw1 acetylation in clinical strains. Cells were treated with
980 trichostatin A and nicotinamide, then Isw1-Flag was immunoprecipitated. Acetylation
981 levels were examined using anti-Kac antibodies.

982 e. Immunoblotting analyses of Isw1 levels under MG132 treatment. Cells were treated with
983 MG132, then immunoblotting assays were performed on Isw1-Flag using anti-Flag
984 antibodies. Three independent repetitions were performed, and results were used for
985 quantification. Two-tailed unpaired *t*-tests were used. Data are expressed as mean ± SD.

986 f. Minimum inhibitor concentration (MIC) analyses of Isw1-overexpressing clinical strains.
987 Clinical strains harboring integrative overexpressing plasmid of *ISWI*^{K97Q} were tested for
988 drug resistance, and MICs were determined. OE indicates strains with overexpressed
989 *ISWI*^{K97Q}.

990 **Figure 6-source data 1.**

991

992

993 **Figure 7. A model of the mechanism of Isw1 PPTM interaction in *C. neoformans* drug**
994 **resistance.**

995 In a drug-free environment, acetylated Isw1 regulates 5-FC resistance gene expression and
996 represses drug pump gene expression. Azoles and 5-FC trigger the deacetylation process at the
997 K97 residue of Isw1, initiating the ubiquitin-mediated proteasomal degradation of Isw1 through
998 the E3 ligase Cdc4. The decrease in Isw1 protein level results in the stimulation of drug pump
999 gene expression and the inhibition of 5-FC resistance genes.

1000

1001

1002

1003

1004 **Table S1. DEGs (differentially expressed genes) in *isw1Δ* cells treated with FLC.**

1005

1006 **Table S2. Strains used in this study.**

1007

1008 **Table S3. Primers used in this study.**