

1 **FAM76B regulates NF-κB-mediated inflammatory pathway by influencing the translocation**
2 **of hnRNPA2B1**

3 Dongyang Wang^{1, 2†}, Xiaojing Zheng^{1†}, Lihong Chai¹, Junli Zhao¹, Jiuling Zhu¹, Yanqing Li¹, Peiyan
4 Yang¹, Qinwen Mao^{3*}, Haibin Xia^{1*}

5 **Affiliations:**

6 ¹Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal
7 University, Xi'an 710062, Shaanxi, P. R. China

8 ²Translational Medicine Center, Northwest Women's and Children's Hospital, Xi'an 710061, Shaanxi, P.
9 R. China.

10 ³Department of Pathology, University of Utah, Salt Lake City, UT 84112 USA

11 [†]Contributed equally to this article

12 Running title: FAM76B regulates the inflammation by NF-κB pathway

13 ***Corresponding authors:**

14 Qinwen Mao, MD, PhD
15 Professor of Pathology
16 University of Utah
17 2000 Circle of Hope Drive; 3121
18 Salt Lake City, UT 84112 USA
19 Tel: 801 213 4271
20 email: qinwen.mao@path.utah.edu

21
22 Haibin Xia, MD, PhD
23 Laboratory of Gene Therapy
24 Department of Biochemistry
25 College of Life Sciences
26 Shaanxi Normal University
27 199 South Chang'an Road, Xi'an 710062, P.R. China
28 Tel: +86 29 85310272
29 Fax: +86 29 85310272
30 email: hbxia2001@163.com

31
32
33

Abstract

34 FAM76B has been reported to be a nuclear speckle localized protein with unknown function. In this study,
35 FAM76B was first demonstrated to inhibit the NF- κ B-mediated inflammatory pathway by affecting the
36 translocation of hnRNPA2B1 *in vitro*. We further showed that FAM76B suppressed inflammation by
37 regulating the NF- κ B pathway *in vivo* using a traumatic brain injury (TBI) model in FAM76B knockout
38 mice. Lastly, FAM76B was shown to interact with hnRNPA2B1 in human tissues taken from patients with
39 acute, organizing, and chronic TBI, and with different neurodegenerative diseases. The results suggested
40 that FAM76B mediates neuroinflammation by influencing the translocation of hnRNPA2B1 *in vivo* during
41 TBI repair and neurodegenerative diseases. In summary, we for the first time demonstrated the role of
42 FAM76B in regulating inflammation and further showed that FAM76B could regulate the NF- κ B-mediated
43 inflammatory pathway by affecting hnRNPA2B1 translocation, which provides new information for
44 studying the mechanism of inflammation regulation.

45 **Key words:** FAM76B, hnRNPA2B1, NF- κ B pathway, inflammation, neuroinflammation

46

47 **1. Introduction**

48 Peripheral immune cells mediating inflammation have been reported to be closely associated with the
49 development of some diseases, such as cancer (Moore et al. 2010; Kay et al. 2019; Suarez-Carmona et al.
50 2017; Khansari et al. 2009; Khandia et al. 2020; Kolb et al. 2016), obesity (Kawai et al. 2021;
51 Khodabandehloo et al. 2016; Seong et al. 2019; Saltiel et al. 2017; Curley et al. 2021), and autoimmune
52 diseases (Kumar. 2019; Xie et al. 2019; Lochhead et al. 2021; Venkatesha et al. 2016; Abou-Raya et al.
53 2006), among others. Microglia, as the resident macrophages of the central nervous system (CNS), act as
54 the first line of defense in the brain (Muzio et al. 2021) and play a role in mediating neuroinflammation. It
55 has been demonstrated that neuroinflammation is an important characteristic of almost all neurological
56 disorders (Gilhus et al. 2019; Brambilla. 2019), which is the common thread that connects brain injuries to
57 neurodegenerative diseases, and researchers have provided evidence of this commonality using traumatic
58 brain injury (TBI) as an example. Inflammation is regulated by different signaling pathways (Kumar et al.
59 2003; Kim et al. 2004; Rawlings et al. 2004; Hawkins et al. 2015; Lawrence. 2009); however, the detailed
60 mechanisms regulating inflammation are still poorly understood.

61 Human FAM76B is a 39 kDa nuclear speckle-localized protein that consists of 339 amino acids. It
62 contains homopolymeric histidine tracts that are considered a targeting signal for nuclear speckles (Alvarez
63 et al. 2003; Herrmann et al. 2001; Salichs et al. 2009). Although the function of FAM76B is still unknown,
64 many poly (His)-containing proteins have been shown to be involved in DNA- and RNA-related functions
65 and are overrepresented during development of the nervous system (Salichs et al. 2009). In our previous
66 study, by using immunohistochemical staining with custom-made anti-hFAM76B monoclonal antibodies
67 (Zheng et al. 2016), we found strong immunolabeling of FAM76B in the human brain, lymph nodes, and
68 spleen. The results raised the question: does this protein play a role in regulating inflammation and
69 neuroinflammation? In this study, we for the first time demonstrate that FAM76B can inhibit inflammation
70 *in vitro* and *in vivo* by regulating the NF-κB pathway. Furthermore, we showed that FAM76B can regulate
71 the NF-κB pathway and mediate inflammation by affecting the translocation of hnRNPA2B1.

72

73 **2. Materials and Methods**

74 **Real-time PCR for gene expression in tissues and cell lines.** Total cellular RNA was isolated from cells
75 by TRIzol (Invitrogen, Carlsbad, CA, USA). The cDNA was synthesized using a PrimeScript™ RT reagent
76 Kit (Takara Bio, Beijing, China) according to the manufacturer's manual. Gene expression was performed
77 using a real-time PCR kit (Thermo, Rockford, IL, USA) and was normalized to GAPDH. The primers used
78 are listed in Table S1.

79 **Generation of FAM76B knockdown and knockout U937 cell lines by lentivirus-mediated**
80 **Cas9/sgRNA genome editing.** An efficient sgRNA (GCAGGGACTGTGGAACAG) targeting Exon 6
81 of the human FAM76B gene was screened using a T7E1 assay. The primers used for the experiment are
82 listed in Table S2. To generate U937 cell lines with FAM76B knockdown, an inducible lentiviral vector
83 was constructed. Briefly, the Bi-Tet-On inducible system, previously established by our lab (Chen et al.
84 2015), and a U6-sgRNA expression cassette were introduced into the lentiviral vector pCDH-CMV-MCS-
85 EF1-Puro to generate the inducible lentiviral vector pCDH-Tet-On cassette-U6 sgRNA cassette-EF1-puro.
86 Then, Cas9 and the corresponding sgRNAs were cloned into this lentiviral vector to generate the final
87 vector, pCDH-Tet-on-Cas9-U6-FAM76B sgRNA-EF1-puro. The lentivirus was produced in HEK293T
88 cells. U937 cells were infected by the above lentivirus, screened by puromycin, and then cultured with 2
89 µg/ml doxycycline for six days. The fresh medium containing doxycycline was changed every three days
90 to induce expression of Cas9. Then, FAM76B knockdown U937 cells were obtained and evaluated by T7E1
91 assay. Through several rounds of cell cloning by serial dilution of the FAM76B knockdown U937 cells, the
92 FAM76B knockout U937 cell line was obtained and confirmed by gene sequencing and Western blot. In
93 addition, U937 cells were infected by the lentivirus LV-Tet-on-Cas9-EF1-puro to obtain the control cell
94 line.

95 **Mice.** All animal studies were performed in accordance with institutional guidelines and with approval by
96 the Institutional Animal Care and Use Committee of Shaanxi Normal University. C57BL/6 mice were

97 obtained from the animal center of Shaanxi Normal University. The mice were maintained in a controlled
98 environment (12/12 h light/dark cycle, 23±1°C, 55±10% humidity) and given free access to food and water.

99 **Generation of FAM76B gene trap mutant mice and genotyping.** Homozygous FAM76B knockout
100 (*Fam76b*^{-/-}) mice were produced using a commercial service, Texas A&M Institute for Genomic Medicine
101 (College Station, TX, USA), by gene trap mutagenesis techniques. Two germline-competent male chimeras
102 were generated and bred with C57BL/6 female mice. To identify the embryos homozygous for the gene
103 trap insertion, PCR was performed on cDNA from mouse embryonic fibroblasts derived from embryonic
104 day 13.5 (E13.5) embryos, using mouse *Fam76b* primers (Table S2). The genotypes of the offspring were
105 determined using tail clip genomic DNA. To detect the wild-type (WT) *Fam76b* allele, PCR was performed
106 using *Fam76b* forward and reverse primers (Table S2). To detect the homozygotes, PCR was performed
107 using *Fam76b* forward and V76 reverse primers (Table S2). The expected size of the fragment from the
108 WT allele was 494 bp. The expected size of the product from intron 1 of the gene trap-containing *Fam76b*
109 gene was 354 bp.

110 **Isolation of bone marrow-derived macrophages (BMDMs).** BMDMs were isolated from *Fam76b*^{-/-} and
111 WT C57BL/6 mice by flushing the femur with Dulbecco's modified Eagle medium (DMEM) supplemented
112 with 3% fetal bovine serum (FBS). Cells were plated for 4 h to allow the non-monocytes to adhere to the
113 surface. Then, the monocytes in the culture supernatant were collected and centrifuged at 250 × g and then
114 seeded in DMEM supplemented with 10% FBS, 1% penicillin/streptomycin, 1% L-glutamate, and 10 ng/ml
115 macrophage colony-stimulating factor (Sino Biological Inc., Beijing, China). The fresh medium containing
116 10 ng/ml macrophage colony-stimulating factor was changed every two days to induce differentiation of
117 the cells into macrophages. After six days in culture, BMDMs were collected for the following experiments.

118 **Isolation of mouse embryonic fibroblasts.** Embryos from WT and *Fam76b*^{-/-} mice were isolated at about
119 E13.5. After the heads, tails, limbs, and most of the internal organs were removed, the embryos were minced
120 and digested in 0.1% (m/v) trypsin for 30 minutes at 37°C and then centrifuged at 250 × g to pellet mouse

121 embryonic fibroblasts. The mouse embryonic fibroblasts were cultured in DMEM supplemented with 10%
122 FBS, 1% penicillin/streptomycin, and 1% L-glutamate.

123 **Lipopolysaccharide (LPS) treatment of mice.** For brain injection, LPS (Sigma-Aldrich, St. Louis,
124 Missouri, USA) (2 μ g/ μ l, 1.5 μ l) was injected into the prefrontal cortex using a microsyringe at the
125 following stereotaxic coordinates: 2.60 mm caudal to bregma, 2 mm lateral to the midline, and 1.7 mm
126 ventral to the surface of the dura mater. Vehicle (0.5% methylene blue in phosphate-buffered saline [PBS]
127 or PBS only) was injected in a similar manner into the contralateral prefrontal cortex. For intraperitoneal
128 injection, mice were injected intraperitoneally with LPS (5 μ g/g body weight) or with PBS once a day for
129 two days before the spleens were harvested for pathologic evaluation.

130 **Rescue of FAM76B in FAM76B knockout U937 cells or BMDMs.** For FAM76B knockout U937 cells,
131 cells were infected by the lentivirus LV-CMV-hFAM76B-EF1-GFP or the control lentivirus LV-CMV-
132 MCS-EF1-GFP. Three days after infection, cells were prepared for LPS treatment. For BMDMs from
133 FAM76B knockout mice, cells were infected by the lentivirus LV-CMV-mFAM76B-EF1-GFP or the
134 control lentivirus LV-CMV-MCS-EF1-GFP. Six days after infection, cells were prepared for LPS treatment.
135 **LPS treatment of cells.** To evaluate the effects of FAM76B on the cytokine production of U937 cells or
136 BMDMs, different U937 cell lines or BMDMs from FAM76B knockout mice were treated with LPS.
137 Briefly, for the impact of FAM76B on cytokine production, FAM76B knockdown U937 cells were plated
138 in 6-well plates (5×10^5 cells/well) and treated with 10 ng/ml PMA (Sigma-Aldrich, St. Louis, Missouri,
139 USA) in association with 10 ng/ml LPS and 20 ng/ml hIFN γ (Sino Biological Inc., Beijing, China) for 48
140 h, while FAM76B $^{-/-}$ U937 cells were plated in 6-well plates (5×10^5 cells/well) and treated with 1ng/ml PMA
141 for 48 h, and then were treated with 10 ng/ml LPS and 20 ng/ml hIFN γ for 24 h. For rescuing FAM76B in
142 the FAM76B $^{-/-}$ U937 cell line, U937 cells were plated in 6-well plates (5×10^5 cells/well) and treated with
143 0.5 ng/mL PMA for 24 h and then stimulated with 1 ng/mL LPS and 20 ng/ml hIFN γ for 24 h. For rescuing
144 FAM76B in FAM76B $^{-/-}$ BMDMs, BMDMs were plated in 6-well plates (2×10^5 cells/well) and treated with

145 1 ng/mL LPS and 20 ng/mL mIFN γ (Sino Biological Inc., Beijing, China) for 24 h. After treatment, cells
146 were harvested in TRIzol for the detection of cytokine expression by real-time PCR.

147 **IL-6 promoter activity assay.** Human IL-6 promoter (1868 bp) was obtained by PCR using HEK293 cells
148 genomic DNA as PCR template. The IL-6 promoters were confirmed by gene sequencing and then were
149 inserted into pGL3 basic plasmid to obtain the human IL-6 promoter activity reporter vector pGL3-IL6-
150 Luc. Human P50 and P65 cDNA was obtained by PCR using the MegaMan Human Transcriptome Library
151 as the template. Human P65 and P50 were confirmed by gene sequencing and then were inserted into the
152 eukaryotic expression vector pAd5 E1-CMV-MCS to obtain the human P65 and P50 expression vectors
153 pAd5 E1-CMV-P65 and pAd5 E1-CMV-P50, respectively. WT HEK293 cells and FAM76B $^{-/-}$ HEK293
154 cells were plated into 24-well plates at a density of 2×10^5 cells per well. The next day, the promoter activity
155 reporter vector pGL3-IL6-Luc (200 ng) and the Renilla luciferase expression vector pRL-CMV (50 ng) as
156 the internal reference plasmid were co-transfected with the P65 and P50 expression vector pAd5 E1-CMV-
157 P65/P50 (each 300 ng) or the control vector pAd5 E1-CMV-MCS (600 ng) into the cells using X-
158 tremeGENE HP Reagent (Roche, Indianapolis, IN, USA) according to the manufacturer's protocol. 48 h
159 later, the cells were collected for a luciferase activity assay using a dual-luciferase assay kit (Promega,
160 Madison, WI, USA). The normalized luciferase activity was obtained by using the formula: Normalized
161 luciferase value = Fly luciferase value/Renilla luciferase value.

162 Meanwhile, the human IL-6 promoter was inserted into the upstream of luciferase in the lentivirus
163 vector pCDH-luciferase-EF1-Neomycin to obtain the vector pCDH-IL-6 promoter-luciferase-EF1-
164 Neomycin. Then, the WT or FAM76B $^{-/-}$ U937 cells were infected by the above lentivirus. After selected by
165 G418, WT and FAM76B $^{-/-}$ U937 cells were seeded into 24 wells (2×10^5 cells per well) and incubated with
166 different concentrations of LPS for 36 h. The cells were then collected for a luciferase activity assay.

167 Two kinds of human NF- κ B binding motif (motif 1: GGGAAATTCC, motif 2: GGGATTTC) were
168 also synthesized and inserted into the upstream of miniCMV promoter in the lentivirus vector pCDH-
169 miniCMV-luciferase-EF1-Neomycin to obtain the vector pCDH-NF- κ B binding motif 1(or 2)-miniCMV-

170 luciferase-EF1-Neomycin. Then, the WT or FAM76B^{-/-} U937 cells were infected by the above two kinds
171 of lentivirus. After selected by G418, WT and FAM76B^{-/-} U937 cells were seeded into 24 wells (2×10^5
172 cells per well) and incubated with different concentrations of LPS for 36 h. Then the cells were collected
173 for a luciferase activity assay.

174 **Flow cytometry.** Spleens from five-month-old WT and *Fam76b*^{-/-} mice were pressed through an 80 μ m
175 mesh with a syringe plunger to acquire single-cell suspensions. Red blood cells were removed from single-
176 cell suspensions using red blood cell lysis buffer (Shanghai Yeasen Biotechnology, Shanghai, China). The
177 cells were then washed twice and resuspended in 200 μ l of wash buffer for final flow cytometric analysis.
178 Fluorescent-labeled antibodies used for flow cytometry are listed in Table S3, and flow cytometry staining
179 was performed according to the manufacturer's instructions using propidium iodide solution (BioLegend,
180 San Diego, CA, USA) to exclude dead cells.

181 **Western blot.** Cells were lysed by RIPA buffer. Cell lysis was subjected to SDS-PAGE and subsequently
182 blotted onto methanol pretreated polyvinylidene difluoride (PVDF) membranes. The PVDF membranes
183 were incubated with the primary antibody overnight at 4°C. Membranes were washed and incubated with
184 corresponding Horseradish Peroxidase (HRP)-conjugated secondary antibody. The membranes were
185 visualized using enhanced chemiluminescence Western blot detection reagents (Thermo Fisher, Waltham,
186 MA, USA) in a chemical luminescence imaging apparatus according to the manufacturer's protocol.
187 Primary antibodies used for Western blot are listed in Table S3.

188 **Experimental TBI by controlled cortical impact (CCI).** Experimental TBI was performed using the CCI
189 model, as described (Zheng et al. 2022). Briefly, mice were anesthetized with 1.5% pentobarbital sodium
190 at a dose of 50 mg/kg. The mice were fixed in a stereotactic frame and subjected to a craniotomy (5 mm
191 diameter) in the right parietal region using a motorized drill. The brain was exposed to a pneumatic impactor
192 (Brain injury device TBI-68099, RWD, China), and TBI was produced using the following parameters:
193 diameter impactor tip, 3 mm diameter metal tip; velocity, 3.3 meters/second; duration, 0.1 second; depth of
194 penetration, 2 mm. After the wound was sutured, an electric heater was used to maintain the animals' body

195 temperature until they were completely awake and able to move freely, which occurred approximately 1–2
196 h after the injury. Buprenorphine was diluted in 0.9% NaCl to a concentration of 0.01 mg/ml, and a 0.1
197 mg/kg dose was administered subcutaneously, which provided 72 h of sustained post-operative analgesia.
198 Sham-operated WT and *Fam76b* knockout mice, used as controls, were treated the same as the CCI-treated
199 mice, except for the craniotomy and CCI.

200 **Cytokine expression of mouse brains by enzyme-linked immunosorbent assay (ELISA) and real-time**
201 **PCR.** The mice were perfused transcardially with ice-cold PBS, and prefrontal cortex tissues were carefully
202 removed on ice. The tissues were weighed quickly, and the total protein extracts of the prefrontal cortex
203 were obtained by homogenization in mammalian cell lysis reagent (Pioneer Biotechnology, Shanghai,
204 China) with a protease inhibitor mixture (Roche, Indianapolis, IN, USA). The levels of IL-6, prostaglandin-
205 endoperoxide synthase 2 (PTGS2), and tumor necrosis factor alpha (TNF- α) were quantified using a
206 QuantiCyto ELISA kit (NeoBioscience, Shenzhen, Guangdong, China). Real-time PCR was performed on
207 tissues from the prefrontal cortices of mice (see methods above).

208 **Immunoprecipitation coupled to mass spectrometry (IP-MS) and data analysis.** U937 cells were
209 infected by FAM76B-Strep tag II or control Strep tag II -expressing lentiviruses, followed by stable cell line
210 screening. The total protein was extracted, purified with Strep-Tactin beads (QIAGEN, Düsseldorf,
211 Germany), and sent to Shanghai Bioprofile Technology for mass spectrometry sequencing. After high-
212 performance liquid chromatography and mass spectrometry (LC-MS/MS) analysis, the MS data were
213 analyzed using MaxQuant software version 1.6.0.16. MS data were searched against the UniProtKB *Rattus*
214 *norvegicus* database (36,080 total entries, downloaded on 08/14/2018). Trypsin was selected as the
215 digestion enzyme. A maximum of two missed cleavage sites and mass tolerances of 4.5 ppm for precursor
216 ions and 20 ppm for fragment ions were defined for the database search. Carbamidomethylation of cysteines
217 was defined as a fixed modification, while acetylation of the protein N-terminal and oxidation of methionine
218 were set as variable modifications for database searching. The database search results were filtered and
219 exported with a <1% false discovery rate at the peptide-spectrum-matched level and the protein level.

220 **Co-immunoprecipitation.** Human cDNAs of full-length hnRNPA2B1 and different domains of
221 hnRNPA2B1, including RRM1, RRM2, and RGD, were constructed by PCR using pGEMT/hnRNPA2B1
222 (kept in the Xia lab) as the template and the primers listed in Table S1. HEK293 cells were co-transfected
223 with FAM76B-Streptag II and hnRNPA2B1-Flag-expressing vectors. At 48 h after transfection,
224 approximately 500 µg of protein extracts prepared from these cells were incubated with Strep-Tactin beads
225 at 4°C for 3 h. The bound protein was examined by Western blot with anti-Flag or anti-FAM76B antibodies.
226 Co-immunoprecipitation of hnRNPA2B1 and IκB-flag was performed similarly, except that protein A/G-
227 Sepharose beads (Thermo, Rockford, IL, USA) charged with anti-hnRNPA2B1 antibody or mouse normal
228 serum were used.

229 **Confocal microscopy.** HEK293 cells expressing the fusion proteins eGFP-FAM76B and mCherry-tagged
230 hnRNPA2B1 were visualized using a Leica TCS-SP8 confocal microscope (Leica Microsystems Inc.,
231 Shanghai, China).

232 **Human tissues.** Autopsy brain tissues from patients who had had either a TBI or dementia were collected
233 under an IRB-approved protocol at the University of Utah. Paraformaldehyde-fixed, paraffin-embedded
234 human brain samples from 23 dementia cases (Table S4) were acquired from the Neuropathology Core of
235 Northwestern University's Center for Cognitive Neurology and Alzheimer's disease. Demographic and
236 neuropathologic data for these cases are presented in Table S4. Pathologic characterization was made by
237 board-certified neuropathologists blinded to case identity and following consensus criteria (Mackenzie et
238 al. 2009; Cairns et al. 2007; Mackenzie et al. 2010; McKhann et al. 2001).

239 **Immunofluorescence and immunohistochemistry.** For immunofluorescence, unstained slides were
240 deparaffinized, followed by antigen retrieval using Diva Decloaker buffer (Biocare Medical, Pacheco, CA,
241 USA). The slides were then blocked with 1% bovine serum albumin and 0.1% Triton in PBS for 1 hour,
242 before applying primary antibody overnight. After overnight incubation, secondary antibody was applied
243 for 45 minutes, before being washed and coverslipped. The following primary antibodies were used: anti-
244 FAM76B (monoclonal, 1:1000, homemade (Zheng et al. 2016)), IBA-1 (goat polyclonal, 1:1000, Abcam,

245 Boston, MA, USA), or hnRNPA2B1 (rabbit polyclonal, 1:1000, Abcam, Boston, MA, USA) antibodies.
246 Secondary antibodies included donkey anti-rabbit, donkey anti-goat, and donkey anti-mouse antibodies
247 (1:500; Abcam, Boston, MA, USA). Cultured cells were stained in a similar manner except without being
248 deparaffinized and without the antigen retrieval step. For immunohistochemistry, unstained slides were
249 deparaffinized, followed by antigen retrieval using Diva Decloaker buffer. The slides were then quenched
250 with 10% H₂O₂ in methanol and blocked as described above. The primary antibodies, including monoclonal
251 anti-FAM76B (monoclonal, 1:1000, homemade (Zheng et al. 2016)) or IBA-1 (goat polyclonal, 1:1000,
252 Abcam, Boston, MA, USA) antibodies, were then applied overnight, followed by biotinylated secondary
253 antibody (1:500; Abcam, Boston, MA, USA). Signal detection was performed using a VECTASTAIN Elite
254 ABC kit and DAB (Vector Laboratories, Burlingame, CA, USA). The stains were reviewed using an
255 Olympus BX53 microscope (Tokyo, Japan). Representative images were taken with an Olympus DP74
256 camera, and cellSens Dimension software was used for brightness and contrast adjustment and image
257 cropping.

258 **Microglial quantification.** Microglia were counted using a 40 \times objective with a grid (250 \times 250 μm^2) in
259 a minimum of five microscopic grid fields in the area of interest per slide. Results are given as mean objects
260 per unit area (mm^2). Microglial cells that had stained cytoplasmic processes and contained a nucleus in the
261 plane of the section were counted.

262 **Statistics.** Group effects were evaluated using unpaired t-tests (Mann-Whitney), paired t-tests, and one-
263 way ANOVA followed by the Tukey honest significant difference (HSD) test. The difference in the ratio
264 of the microglia density was evaluated by Chi-square goodness-of-fit tests. All statistical analyses were
265 performed using GraphPad Prism software (version 4.01). Differences between the means were considered
266 significant at p<0.05.

267 **Study approval.** All animal studies were performed in accordance with institutional guidelines and with
268 approval by the Institutional Animal Care and Use Committee of Shaanxi Normal University (SNNU 2019-

269 0128). Ethical permit of the use of the samples of human brain autopsy specimens was granted by the ethics
270 committee of Shaanxi Normal University.

271

272

273 **3. Results**

274 **3.1 FAM76B plays an anti-inflammatory role in macrophages *in vitro***

275 FAM76B is a nuclear speckle localized protein with previously unknown function. We previously
276 found that FAM76B was highly expressed in U937 cells using a homemade FAM76B antibody (Zheng et
277 al. 2016). U937 is a human macrophage cell line that has been widely used to study inflammation *in vitro*.
278 Therefore, we hypothesized that FAM76B may involve inflammation in U937 cells. To test the hypothesis,
279 we first produced a FAM76B knockdown U937 cell line (*Fam76b* KD) by lentivirus-mediated Cas9/sgRNA
280 genome editing. The expression of FAM76B in U937 cells with *Fam76b* KD was confirmed by Western
281 blot (Fig. 1a). Following 24 h of treatment with PMA plus LPS, the cell line showed markedly increased
282 expressions of IL-6, PTGS2, TNF- α , and IL-10 (Fig. 1b). The increase in IL-6 expression in the *Fam76b*
283 KD cell line was more prominent than the increases in PTGS2 or in TNF- α expression. The results indicated
284 that FAM76B was involved in regulating inflammation in U937 cells. Furthermore, a FAM76B gene
285 knockout U937 cell line (*Fam76b*^{-/-}) was obtained using Cas9/sgRNA technology followed by drug
286 screening and dilution cloning, then was confirmed by Western blot and sequencing (Fig. 1c and Fig. S1).
287 Similarly, significantly increased IL-6 expression was observed in the PMA+LPS-treated *Fam76b*^{-/-} cell
288 line (Fig. 1d). Moreover, lentivirus-mediated overexpression of FAM76B rescued the function of FAM76B
289 and reduced cytokine mRNA levels in *Fam76b*^{-/-} cells (Fig. 1e and 1f). These results demonstrated that
290 FAM76B could inhibit inflammation in macrophages *in vitro*.

291 **3.2 FAM76B regulates the NF- κ B pathway by influencing the translocation hnRNPA2B1 proteins**

292 The data above showed that FAM76B has an anti-inflammatory effect by suppressing the expression
293 of proinflammatory cytokines, especially IL-6. IL-6 is one of the important mediators of the inflammatory
294 response, and it can be activated by NF- κ B. NF- κ B/IL-6 signaling has long been considered a major
295 proinflammatory signaling pathway in the peripheral tissues and brain. To explore the mechanisms of
296 FAM76B regulating inflammation in U937 cells, the luciferase reporter vector of the IL-6 promoter was
297 constructed. HEK293 cells transfected with this vector showed upregulated activity of the IL-6 promoter
298 by NF- κ B overexpression, confirming the activity of the reporter vector (Fig. 2a). Interestingly, FAM76B

299 knockout in HEK293 cells further increased the promoter activity of IL-6, compared to WT cells (Fig. 2a).
300 In WT U937 cells, the activity of the IL-6 promoter was increased after LPS treatment, and FAM76B
301 knockout in U937 cells made this change even more prominent (Fig. 2b). Next, to evaluate if FAM76B
302 regulates IL-6 promoter activity by influencing NF- κ B, we constructed luciferase reporters controlled by a
303 miniCMV promoter containing the NF- κ B binding motif 1 or 2 sequence from the IL-6 promoter region.
304 The results indicated that the luciferase activity from the vector in both WT and FAM76B knockout U937
305 cells was increased, especially in the latter, after treatment with 1 ng/ml LPS (Fig. 2c and 2d). These data
306 suggested that FAM76B inhibited the activity of the IL-6 promoter by affecting the NF- κ B pathway.

307 To further explore the mechanisms of FAM76B regulating inflammation via NF- κ B, the FAM76B-
308 interacting proteins were investigated using immunoprecipitation coupled to mass spectrometry (IP-MS) in
309 U937 cells. We identified 160 proteins that interact with FAM76B within U937 cells. Selective molecules
310 of these proteins are listed in Table S5, with their interaction scores and ranks. To validate the IP-MS results,
311 we performed co-immunoprecipitation on selected proteins. Among those FAM76B interacting proteins,
312 hnRNPs captured our attention because of their reported function in regulating the NF- κ B pathway (Zhao
313 et al. 2009; Ma et al. 2022). The hnRNPA2B1 was selected for further validation. The co-
314 immunoprecipitation results confirmed the interaction of FAM76B with hnRNPA2B1 (Fig. 3a). In addition,
315 confocal microscopy also revealed the co-localization of FAM76B and hnRNPA2B1 in the nucleus of
316 HEK293 cells overexpressing FAM76B-eGFP and hnRNPA2B1-mCherry (Fig. 3b). Based on the
317 validation of the interaction between hnRNPA2B1 and FAM76B, to identify the domain(s) of the hnRNPs
318 required for their interaction with FAM76B, we generated different truncates containing RRM1, RRM2, or
319 RGD domains of hnRNPs and demonstrated that the RGD domain of hnRNPs was responsible for its
320 binding to FAM76B (Fig. 3c and 3d). It has been reported that hnRNPA1 binds to I κ B α , which leads to
321 I κ B α degradation and consequently, to NF- κ B activation (Zhao et al. 2009). Using co-immunoprecipitation
322 with HEK293 cells transfected with plasmids expressing hnRNPA2B1 and I κ B α -flag (or I κ B ϵ -flag), we
323 also demonstrated that hnRNPA2B1 binds to I κ B α or I κ B ϵ (Fig. 3e). Based the results above, we speculated

324 that FAM76B, hnRNP A/B, and I κ Bs could form a protein complex by binding FAM76B to hnRNPs
325 through the RGD domain and binding hnRNPs to I κ Bs through the RRM2 domain (Fig. 3f). The results
326 above suggested that FAM76B could regulate inflammation by its interaction with hnRNPA2B1, which
327 then leads to I κ B α degradation by its interaction with I κ B α , followed by NF- κ B activation.

328 FAM76B and hnRNPA2/B1 are nuclear localized proteins; however, it has been reported that
329 hnRNPA2/B1 could translocate from the nucleus to the cytoplasm, which would lead to activation of the
330 NF- κ B pathway (Wang et al. 2019). Considering the interaction of FAM76B and hnRNPA2B1, we
331 speculated that FAM76B is the protein that mediates the cytoplasmic translocation of hnRNPA2B1, which
332 is then followed by NK- κ B pathway activation. To test that hypothesis, hnRNPA2B1 immunostaining was
333 performed on U937 cells with *FAM76B* knockout, which showed increased cytoplasmic translocation of
334 hnRNPA2B1 (Fig. 4a); this result was also confirmed by the levels of nuclear and cytoplasmic hnRNPA2B1
335 using Western blot and semiquantification based on the results of Western blot (Fig. 4b and 4c). Furthermore,
336 we found that *FAM76B* knockout in U937 cells resulted in increased phosphorylation of endogenous IKK α ,
337 IKK β , and the downstream molecule I κ B α upon LPS stimulus (Fig. 4d), which was also confirmed by
338 semiquantification (Fig. 4e). In addition, we observed a concurrent increase in the nuclear translocation of
339 p65, a hallmark of classical NF- κ B pathway activation, by Western blot and semiquantification in LPS-
340 stimulated U937 cells with *Fam76b* knockout (Fig. 4f and 4g). Interestingly, when U937 was induced into
341 the M1-like macrophage state with PMA followed by LPS+IFN γ stimulation, both FAM76B and
342 hnRNPA2B1 were found to be partially translocated into the cytoplasm from the nucleus (Fig. 4h). Together,
343 these results indicated that FAM76B could promote NF- κ B activation by affecting the translocation of
344 hnRNPA2B1.

345 **3.3 Inflammation mediated by macrophages and microglia are enhanced in *Fam76b* knockout
346 C57BL/6 mice**

347 Our previous study showed that FAM76B is widely expressed in different human organs, with the
348 highest expression levels found in the brain and spleen (Zheng et al. 2016). Similarly, here we found by
349 real-time PCR that the mouse brain and spleen also had high levels of FAM76B expression (Fig. S2), which

350 suggests that FAM76B may have important functions related to inflammation in these tissues. To
351 investigate whether FAM76B has anti-inflammatory activity *in vivo*, we produced *Fam76b* knockout
352 C57BL/6 mice (*Fam76b*^{-/-}) by gene-trap technology (Fig. 5a). FAM76B knockout was confirmed by
353 genotyping analysis and the expression of FAM76B at the mRNA and protein level (Fig. 5b–d). *Fam76b*^{-/-}
354 mice showed normal weight gain and lifespan (Fig. S3). *Fam76b*^{-/-} mice developed spleens that were visibly
355 enlarged and weighed more than those of WT mice (Fig. 6a and 6b). Hematoxylin and eosin (H&E)-stained
356 sections of the spleen showed normal red pulp and hypertrophy of white pulp (Fig. 6a). Flow cytometry
357 revealed an increase in the CD11b+ myeloid population and a slight decrease in CD19+ B cells in *Fam76b*^{-/-}
358 mice, while no changes were found in CD3+ T cells (Fig. 6c–g). To further elucidate the effect of FAM76B
359 on the function of macrophages in the *Fam76b*^{-/-} mice, we examined their spleens following intraperitoneal
360 LPS injection. There were no significant morphologic changes in the WT and knockout mice (Fig. 6h).
361 However, after LPS treatment, the knockout mice had many tingible body macrophages in the white pulp
362 of the spleens, while the WT mice had none (Fig. 6h). These data suggested that loss of FAM76B expression
363 might lead to a decreased ability of the white pulp macrophages to clear out the apoptotic cells produced
364 during the germinal center reaction. The results above indicated that FAM76B could be involved in
365 macrophage function.

366 Macrophages play an important role in inflammation, so to further investigate the effect of FAM76b on
367 the regulation of macrophage-mediated inflammation *in vivo*, BMDMs from *Fam76b*^{-/-} mice were isolated
368 and used to analyze IL-6 expression. The results indicated that macrophages from FAM76B knockout mice
369 could significantly increase IL-6 expression compared to WT murine macrophages (Fig. S4a). Moreover,
370 the increased expression of IL-6 could be downregulated when FAM76B was rescued in macrophages from
371 FAM76B knockout mice (Fig. S4b), which was consistent with the results obtained from FAM76B
372 knockout U937 cells *in vitro*. The results above indicated that FAM76B possesses anti-inflammation
373 activity *in vivo*.

374 Microglia play a crucial role in mediating neuroinflammation. Therefore, we tested whether deleting
375 FAM76B could enhance inflammation mediated by microglia in FAM76B knockout mice. First,

376 immunostaining with anti-IBA-1 antibody (Ito et al. 1998; Okere et al. 2000; Hirayama et al. 2001) was
377 used to reveal the total microglial population in the hippocampus and thalamus of Fam76b^{-/-} mice. IBA1-
378 positivity microglia were higher in 12-month-old Fam76b knockout mice than that in age-matched WT
379 mice, and displayed a highly reactive morphologies with abundant cytoplasm (Fig.7a). However, there are
380 no significant difference between 4-month-old Fam76b^{-/-} and WT mice (data not shown). An evaluation
381 of the densities of IBA-1-positive microglia (number/mm²) showed more IBA-1-positive microglial cells
382 in the CA1 region and thalamus of 12-month-old Fam76b^{-/-} mice than in those same brain areas of age-
383 matched WT mice. The densities of IBA-1-positive microglia were similar between 4-month-old Fam76b⁻
384 and WT mice (Fig. 7b). A CCI mouse model (Zheng et al. 2022) was then used to examine the effect of
385 FAM76B on microglia-mediated neuroinflammation. The densities of IBA-1-positive microglia were
386 higher in the hippocampus adjacent to the cortical contusion of Fam76b^{-/-} mice than in that of WT mice or
387 sham controls (Fig. 7c and 7d). Real-time PCR showed that the expression level of IL-6 in the ipsilateral
388 hippocampus was elevated in both Fam76b^{-/-} and WT mice 3 days after TBI, with more prominent changes
389 observed in Fam76b^{-/-} mice (Fig. 7e). We then stereotactically injected LPS into the left frontal lobes of
390 Fam76b^{-/-} and WT mice. Seven days post-treatment, histologic examination revealed abundant
391 macrophages at the injection site of Fam76b^{-/-} mice, but only a mild inflammatory response in WT mice
392 (Fig. S5a). Real-time PCR and ELISA showed that the expression level of IL-6 was elevated in both WT
393 and Fam76b^{-/-} mice 24 h post-LPS treatment, with more prominent changes evident in the knockout mice
394 (Fig. S3b and S3d). TNF- α expression was similarly altered as in the WT and Fam76b^{-/-} mice, but to a lesser
395 extent than IL-6 (Fig. S5c and S5e). These experiments indicate that FAM76B is also involved in
396 modulating neuroinflammation mediated by microglial cells *in vivo*.

397 **3.4 FAM76B plays a role in neuroinflammation in the context of TBI and neurodegeneration**

398 The results above indicated that FAM76B regulated neuroinflammation in a mouse model *in vivo*.
399 Neuroinflammation is known to be closely related the development of TBI and neurodegeneration. Our
400 previous study showed that FAM76B is widely expressed in different human organs, with the highest

401 expression levels found in the brain and spleen (Zheng et al. 2016). To assess whether FAM76B is involved
402 in the neuroinflammation associated with the human diseases named above, we compared the distribution
403 and expression of FAM76B in diseased brain tissues to those of normal brains. In the normal brain,
404 immunohistochemical stains revealed weak cytoplasmic staining of FAM76B in neurons and nuclear
405 staining in glial cells (Fig. S6a and 6b). In areas of organizing necrosis in brains with TBI, we found that
406 macrophages—which were labeled by the microglial/macrophage marker IBA-1 (Ito et al. 1998; Okere et
407 al. 2000; Hirayama et al. 2001)—were all strongly immunopositive for FAM76B (Fig. S6c). In the
408 hippocampal CA1 area of brains with acute ischemic injury, FAM76B immunostains highlighted many
409 reactive microglial cells (Fig. S6d). These findings strongly suggest that microglial FAM76B is upregulated
410 in injured brains and thus may have important functions in regulating neuroinflammation.

411 TBI elicits neuroinflammation, which is essential for proper tissue regeneration and recovery (Simon
412 et al. 2017). Thus, we next studied the role of FAM76B in TBI-induced neuroinflammation by examining
413 the expression and cytological distribution of FAM76B/hnRNPA2B1 in human brains with TBI. In normal
414 brain tissue, FAM76B is mainly localized in the nuclei of glial cells, including microglial (Fig. 8a) and
415 oligodendroglial (Fig. S5) cells. hnRNPA2B1 was found to be co-localized with FAM76B in the nuclei of
416 these cells (Fig. 8b). In acute and organizing TBI, in response to the contusion, there was increased
417 expression and cytoplasmic translocation of microglial FAM76B (Fig. 8a), which was co-localized with
418 hnRNPA2B1 (Fig. 8b). In chronic TBI, the residual macrophages/microglia in the previously injured area
419 showed a persistent cytoplasmic FAM76B/hnRNPA2B1 distribution; moreover, the FAM76B- and
420 hnRNPA2B1-positive microglia appeared dystrophic in morphology (Fig. 8a and 8b). These results were
421 consistent with those obtained in U937 cells, supporting the conclusion that FAM76B affects
422 hnRNPA2B1's translocation from the nucleus to the cytoplasm. These results also demonstrated the
423 activation, evolution, and persistence of FAM76B-positive microglia and the significant role of FAM76B-
424 NF- κ B in the organizing process of human TBI.

425 Neuroinflammation is an important contributor to neurodegeneration. Hence, we evaluated the role of
426 FAM76B in the common neurodegenerative diseases Alzheimer's disease (AD), frontotemporal lobar

427 degeneration with tau pathology (FTLD-tau), and frontotemporal lobar degeneration with TAR DNA-
428 binding protein 43 inclusions (FTLD-TDP). Similar to what we observed in chronic TBI, FAM76B and
429 hnRNPA2B1 were co-localized in the microglial cytoplasm of brain tissue from patients with
430 neurodegeneration, and the FAM76B- and hnRNPA2B1-positive microglia appeared dystrophic in
431 morphology (Fig. 9a). In addition, immunostains revealed that IBA-1- and FAM76B-positive microglia
432 were scattered in the frontal cortex of normal aging controls and were slightly more numerous in that of
433 AD, FTLD-tau, and FTLD-TDP patients (Fig. 9b). Moreover, the cellular densities of FAM76B-positive
434 and IBA-1-positive microglia were both higher in AD, FTLD-tau, and FTLD-TDP patients than in normal
435 aging controls. (IBA-1-positive microglia, **p<0.01; FAM76B-positive microglia, #p<0.01) (Fig. 9c). The
436 ratio of FAM76B-positive microglial density to IBA-1-positive total microglia density was the highest in
437 the cortex in FTLD-TDP patients (&&p<0.01) (Fig. 9c). These data suggest that the FAM76B-NF-κB
438 pathway is activated in AD, FTLD-tau, and FTLD-TDP brains, but is most prominent in FTLD-TDP.

439

440

441 **Discussion**

442 The key findings of this study are as follows. (a) We found that FAM76B is an inflammatory and
443 neuroinflammatory modulator that inhibits NF- κ B activity in macrophages/microglia. (b) An interacting
444 partner of FAM76B is hnRNPA2B1, and the cytoplasmic translocation of FAM76B and hnRNPA2B1 was
445 associated with NF- κ B pathway activation. (c) BMDMs from FAM76B knockout mice showed an
446 increased inflammatory response in the presence of LPS. FAM76B knockout mice showed dramatically
447 increased tingible body macrophages in the white pulp of the spleen after a local LPS challenge. The brains
448 of FAM76B knockout mice showed age-related neuroinflammation in their hippocampus and thalamus. A
449 local LPS challenge and TBI led to a significantly increased neuroinflammation. (d) Human brains with
450 TBI showed the activation, evolution, and persistence of FAM76B-NF- κ B-mediated neuroinflammation
451 during the TBI repair process. (e) There is chronic activation of the FAM76B-NF- κ B pathway in dementia,
452 particularly in FTLD-TDP.

453 This is the first report investigating the function of FAM76B in inflammation and neuroinflammation.
454 We speculate that when FAM76B is present in the nucleus, the hnRNPA2B1 protein is trapped in the nucleus
455 by its binding to FAM76B; however, when FAM76B was decreased or made absent (such as by FAM76B
456 knockdown or knockout, respectively) or was subjected to inflammatory stimulation (such as by LPS), the
457 hnRNPA2B1 protein translocated to the cytoplasm, which then led to increased NF- κ B-mediated
458 inflammation by degrading IKB α and causing p65 to enter the nucleus (Fig. 10).

459 FAM76B is one of the 86 proteins in the human genome that contains stretches of five or more
460 histidines (Salichs et al. 2009). Studies have suggested that His-repeats may act as nuclear speckle-targeting
461 signals (Alvarez et al. 2003; Herrmann et al. 2001; Salichs et al. 2009). In our previous study, we confirmed
462 the nuclear speckle localization of both human and mouse FAM76B (Zheng et al. 2016). Hence, FAM76B
463 may have functions related to nuclear speckles, such as splicing factor storage and modification (Salichs et
464 al. 2009; McGlinchy et al. 2010). We found in this study that FAM76B interacts with hnRNPA2B1, a
465 heterogeneous nuclear ribonucleoprotein related to mRNA binding and splicing (Peng et al. 2021; Moran-
466 Jones et al. 2005) that is associated with inflammation (Lin et al. 2020; Chen et al. 2020; Coppola et al.

467 2019; Hoffmann et al. 2011). By *in vitro* and *in vivo* experiments, we showed that FAM76B could regulate
468 NF- κ B mediated inflammation by influencing the translocation of hnRNPA2B1.

469 Neuroinflammation is the response of the CNS to injury and disease and is the common thread that connects
470 brain injuries to neurodegenerative diseases (Gilhus et al. 2019; Brambilla. 2019). In TBI,
471 neuroinflammation is one of the most prominent reactions. TBI leads to early resident microglial activation,
472 which is accompanied by local upregulations of TNF- α (Frugier et al. 2010; Csuka et al. 1999) and IL-6
473 (Frugier et al. 2010; Perez-Barcena et al. 2011; Helmy et al. 2011). Consistently, we also found increased
474 levels of IL-6 at the contusion site of mouse brains after TBI. In addition, the IL-6 level was further
475 increased by FAM76B knockout, indicating the role of the FAM76B-NF- κ B pathway in regulating
476 microglial function and driving acute post-traumatic neuroinflammation. TBI can cause persistent
477 neuroinflammation and microglial activation (Simon et al. 2017; Morganti-Kossmann et al. 2019). Studies
478 of TBI biomarkers in adults with severe TBI have shown that serum levels of IL-1 β , IL-6, and TNF- α are
479 chronically increased (Simon et al. 2017). TBI animal models have demonstrated persistently increased
480 numbers of microglia at the margins of the lesion and in the thalamus at one year post-injury (Simon et al.
481 2017). Consistent with these findings, we found that in human brain tissue of chronic TBI patients, there
482 was persistent FAM76B-NF- κ B pathway activation in microglia. Persistent microgliosis after TBI
483 correlates with chronic neurodegeneration and dementia development (Simon et al. 2017; Alberici et al.
484 2018), which suggests that chronic neuroinflammation may be the mechanism of the neurodegeneration
485 associated with TBI. Furthermore, TBI and neurodegeneration may share a similar neuroinflammatory
486 pathway. In this study, we observed that chronic activation of the FAM76B-NF- κ B pathway occurs in both
487 chronic TBI and neurodegenerative disorders, particularly FTLD-TDP, suggesting that the FAM76B-NF- κ B
488 pathway might be the common pathway that mediates the neuroinflammation in TBI and FTLD-TDP
489 and that FAM76B-mediated neuroinflammation might be the mechanism by which TBI is linked to
490 neurodegeneration.

491 In the peripheral tissues, FAM76B deficiency led to increased activation of the NF- κ B pathway. In
492 response to an acute proinflammatory stimulus, intraperitoneal LPS administration, FAM76B knockout

493 mice showed an interesting phenotype: significantly increased tingible body macrophages in the spleen's
494 white pulp. This finding suggests that FAM76B plays a unique role in regulating macrophage function. An
495 overlap between FTLD and autoimmune disease has been noted in the field of neurodegeneration (Alberici
496 et al. 2018). FTLD-associated genetic variants are also linked to autoimmune conditions (Bright et al. 2019;
497 Miller et al. 2013; Miller et al. 2016). Hence, FAM76B dysfunction might be involved in autoimmune
498 processes in FTLD. Though the function of FAM76B in the peripheral tissue is beyond the scope of this
499 paper, it is an area that deserves further study.

500 In summary, we elucidated, for the first time, a novel function for FAM76B: modulating inflammation
501 and neuroinflammation by influencing the translocation of hnRNPA2B1. We demonstrated the role of
502 FAM76B in the shared neuroinflammatory pathway of TBI and neurodegeneration, particularly in FTLD-
503 TDP. This study may offer important information for the future development of diagnostic biomarkers and
504 immunomodulatory therapeutics for TBI and neurodegeneration, including for FTLD-TDP.

505

506

507 **Acknowledgement**

508 This work was supported by research grants to H.X. from the National Natural Science Foundation
509 of China (No. 81773265), Key Research and Development Plan of Shaanxi Province (No. 2018SF-
510 106), and the Fundamental Research Funds for the Central Universities (No. GK202007023 and
511 GK202107018).

512 **Availability of data and materials**

513 The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium
514 (<http://proteomecentral.proteomexchange.org>) via the iProX partner repository [1] with the dataset
515 identifier PXD037539. ([1] Ma J, et al. (2019) iProX: an integrated proteome resource. Nucleic
516 Acids Res, 47, D1211-D1217). All other remaining data are available within the Article and
517 Supplementary Files, or available from the authors upon request.

518

519 **Competing interests**

520 The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the
521 research reported.

522

523 **Author contributions**

524 WDY and ZXJ designed this study, performed the experiments and drafted the manuscript. CLH
525 performed the experiments and revised the manuscript. ZJL (Junli Zhao), ZJL (Jiuling Zhu), YPY and
526 LYQ performed the experiments. MQW carried out the data analysis and revised the manuscript. XHB
527 supervised the design of the study and conceived the manuscript. All authors reviewed and approved the
528 final version of this paper. All authors read and approved the final manuscript.

529

530

531 **References**

532 Abou-Raya A, Abou-Raya S (2006) Inflammation: a pivotal link between autoimmune diseases and
533 atherosclerosis. *Autoimmun Rev* 5(5):331-337

534 Alberici A, Cristillo V, Gazzina S, Benussi A, Padovani A, Borroni B (2018) Autoimmunity and
535 Frontotemporal Dementia. *Curr Alzheimer Res* 15(7):602-609

536 Alvarez M, Estivill X, de la Luna S (2003) DYRK1A accumulates in splicing speckles through a novel
537 targeting signal and induces speckle disassembly. *J Cell Sci* 116(Pt 15):3099-3107

538 Brambilla R (2019) Neuroinflammation, the thread connecting neurological disease: Cluster:
539 "Neuroinflammatory mechanisms in neurodegenerative disorders". *Acta Neuropathol* 137(5):689-691

540 Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy
541 CT, Kassiou M et al (2019) Neuroinflammation in frontotemporal dementia. *Nat Rev Neurol*
542 15(9):540-555

543 Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA,
544 Grinberg LT, Halliday G et al (2007) Consortium for Frontotemporal Lobar Degeneration.
545 Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of
546 the Consortium for Frontotemporal Lobar Degeneration. *Acta Neuropathol* 114(1):5-22

547 Chen H, Wang D, Xia R, Mao Q, Xia H (2015) A novel adenoviral vector carrying an all-in-one Tet-On
548 system with an autoregulatory loop for tight, inducible transgene expression. *BMC Biotechnol* 15(1):4

549 Chen Y, Tang D, Zhu L, Yuan T, Jiao Y, Yan H, Yu W (2020) hnRNPA2/B1 Ameliorates LPS-Induced
550 Endothelial Injury through NF- κ B Pathway and VE-Cadherin/ β -Catenin Signaling Modulation In Vitro.
551 *Mediators Inflamm* 2020:6458791

552 Coppola A, Cancemi P, Tomasello L, Guarnotta V, Pitrone M, Failla V, Cillino S, Feo S, Pizzolanti G,
553 Giordano C (2019) Anti-Inflammatory Action of Heterogeneous Nuclear Ribonucleoprotein A2/B1 in
554 Patients with Autoimmune Endocrine Disorders. *J Clin Med* 9(1):9

555 Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T (1999) IL-10 levels in
556 cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-
557 alpha, TGF-beta1 and blood-brain barrier function. *J Neuroimmunol* 101(2):211-221

558 Curley S, Gall J, Byrne R, Yvan-Charvet L, McGillicuddy FC (2021). Metabolic Inflammation in Obesity-
559 At the Crossroads between Fatty Acid and Cholesterol Metabolism. *Mol Nutr Food Res*
560 65(1):e1900482

561 Frugier T, Morganti-Kossmann MC, O'Reilly D, McLean CA (2010) In situ detection of inflammatory
562 mediators in post mortem human brain tissue after traumatic injury. *J Neurotrauma* 27(3):497-507

563 Gilhus NE, Deuschl G (2019) Neuroinflammation - a common thread in neurological disorders. *Nat Rev
564 Neurol* 15(8):429-430

565 Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. *Biochim Biophys Acta* 1851(6):882-
566 897

567 Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ (2011) The cytokine response to human
568 traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. *J Cereb
569 Blood Flow Metab* 31(2):658-670

570 Herrmann CH, Mancini MA (2001) The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing
571 factor-rich nuclear speckle regions. *J Cell Sci* 114(Pt 8):1491-1503

572 Hirayama A, Okoshi Y, Hachiya Y, Ozawa Y, Ito M, Kida Y, Imai Y, Kohsaka S, Takashima S (2001)
573 Early immunohistochemical detection of axonal damage and glial activation in extremely immature
574 brains with periventricular leukomalacia. *Clin Neuropathol* 20(2):87-91

575 Hoffmann MH, Skriner K, Herman S, Baumann C, Steiner CW, Ospelt C, Meyer B, Gleiss A, Pfatschbacher J,
576 Niederreiter B et al (2011) Nucleic acid-stimulated antigen-presenting cells trigger T cells to induce disease
577 in a rat transfer model of inflammatory arthritis. *J Autoimmun* 36(3-4):288-300

578 Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localisation of a
579 novel calcium binding protein, Iba1. *Brain Res Mol Brain Res* 57(1):1-9

580 Kawai T, Autieri MV, Scalia R (2021) Adipose tissue inflammation and metabolic dysfunction in obesity.
581 *Am J Physiol Cell Physiol* 320(3):C375-C391

582 Kay J, Thadhani E, Samson L, Engelward B (2019) Inflammation-induced DNA damage, mutations and
583 cancer. *DNA Repair (Amst)* 83:102673

584 Khandia R, Munjal A (2020) Interplay between inflammation and cancer. *Adv Protein Chem Struct Biol*
585 119:199-245

586 Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause
587 of age-related diseases and cancer. *Recent Pat Inflamm Allergy Drug Discov* 3(1):73-80

588 Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular
589 mechanisms linking inflammation to insulin resistance and β -cell dysfunction. *Transl Res* 167(1):228-
590 256

591 Kim SH, Smith CJ, Van Eldik LJ (2004) Importance of MAPK pathways for microglial pro-inflammatory
592 cytokine IL-1 beta production. *Neurobiol Aging* 25(4):431-439

593 Kolb R, Sutterwala FS, Zhang W (2016) Obesity and cancer: inflammation bridges the two. *Curr Opin
594 Pharmacol* 29:77-89

595 Kumar H (2019) How does blood coagulation/neutrophils shape innate immunity and uncontrolled
596 inflammation to autoimmune disease?. *Int Rev Immunol* 38(1):1-2

597 Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for
598 inflammatory diseases. *Nat Rev Drug Discov* 2(9):717-726

599 Lawrence T (2009) The nuclear factor NF- κ B pathway in inflammation. *Cold Spring Harb Perspect Biol* 1(6):a001651

600

601 Lin H, Cao X (2020) Nuclear innate sensors for nucleic acids in immunity and inflammation. *Immunol Rev* 297(1):162-173

602

603 Lochhead RB, Strle K, Arvikar SL, Weis JJ, Steere AC (2021) Lyme arthritis: linking infection, 604 inflammation and autoimmunity. *Nat Rev Rheumatol* 17(8):449-461

605 Ma Z, Zhou Y, Wang Y, Xu Y, Liu Y, Liu Y, Jiang M, Zhang X, Cao X (2022) RNA-binding protein 606 hnRNP UL1 binds κ B sites to attenuate NF- κ B-mediated inflammation. *J Autoimmun* 129:102828

607 Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, 608 Holm IE et al (2009). Nomenclature for neuropathologic subtypes of frontotemporal lobar 609 degeneration: consensus recommendations. *Acta Neuropathol* 117(1):15-18

610 Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, Kovacs GG, Ghetti B, Halliday G, 611 Holm IE et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar 612 degeneration: an update. *Acta Neuropathol* 119(1):1-4

613 McGlincy NJ, Tan LY, Paul N, Zavolan M, Lilley KS, Smith CW (2010) Expression proteomics of UPF1 614 knockdown in HeLa cells reveals autoregulation of hnRNP A2/B1 mediated by alternative splicing 615 resulting in nonsense-mediated mRNA decay. *BMC Genomics* 11:565

616 McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ, Work Group on 617 Frontotemporal Dementia and Pick's Disease (2001). Clinical and pathological diagnosis of 618 frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. 619 *Arch Neurol* 58(11):1803-1809

620 Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM, Criswell LA, Jaeger PA, 621 Stan T, Heggeli KA et al (2013) TDP-43 frontotemporal lobar degeneration and autoimmune disease. 622 *J Neurol Neurosurg Psychiatry* 84(9):956-962

623 Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS, Grinberg LT, Boxer AL, Rosen HJ, Rankin 624 KP, Gorno-Tempini ML et al (2016) Increased prevalence of autoimmune disease within C9 and 625 FTD/MND cohorts: Completing the picture. *Neurol Neuroimmunol Neuroinflamm* 3(6):e301

626 Moore MM, Chua W, Charles KA, Clarke SJ (2010) Inflammation and cancer: causes and consequences. 627 *Clin Pharmacol Ther* 87(4):504-508

628 Moran-Jones K, Wayman L, Kennedy DD, Reddel RR, Sara S, Snee MJ, Smith R (2005) hnRNP A2, a 629 potential ssDNA/RNA molecular adapter at the telomere. *Nucleic Acids Res* 33(2):486-496

630 Morganti-Kossmann MC, Semple BD, Hellewell SC, Bye N, Ziebell JM (2019) The complexity of 631 neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments. 632 *Acta Neuropathol* 137(5):731-755

633 Muzio L, Viotti A, Martino G (2021) Microglia in Neuroinflammation and Neurodegeneration: From
634 Understanding to Therapy. *Front Neurosci* 15:742065

635 Okere CO, Kaba H (2000). Heterogenous immunohistochemical expression of microglia-specific ionized
636 calcium binding adaptor protein (Iba1) in the mouse olfactory bulb. *Brain Res* 877(1):85-90

637 Peng WZ, Zhao J, Liu X, Li CF, Si S, Ma R (2021) hnRNPA2B1 regulates the alternative splicing of BIRC5
638 to promote gastric cancer progression. *Cancer Cell Int* 21(1):281

639 Perez-Barcena J, Ibáñez J, Brell M, Crespí C, Frontera G, Llompart-Pou JA, Homar J, Abadal JM (2011)
640 Lack of correlation among intracerebral cytokines, intracranial pressure, and brain tissue oxygenation
641 in patients with traumatic brain injury and diffuse lesions. *Crit Care Med* 39(3):533-540

642 Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. *J Cell Sci* 117(Pt
643 8):1281-1283

644 Salichs E, Ledda A, Mularoni L, Albà MM, de la Luna S (2009) Genome-wide analysis of histidine repeats
645 reveals their role in the localization of human proteins to the nuclear speckles compartment. *PLoS
646 Genet* 5(3):e1000397

647 Saltiel AR, Olefsky JM (2017). Inflammatory mechanisms linking obesity and metabolic disease. *J Clin
648 Invest* 127(1):1-4

649 Seong J, Kang JY, Sun JS, Kim KW (2019) Hypothalamic inflammation and obesity: a mechanistic review.
650 *Arch Pharm Res* 42(5):383-392

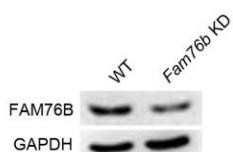
651 Simon DW, McGeachy MJ, Bayır H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of
652 neuroinflammation after traumatic brain injury. *Nat Rev Neurol* 13(3):171-191

653 Suarez-Carmona M, Lesage J, Cataldo D, Gilles C (2017) EMT and inflammation: inseparable actors of
654 cancer progression. *Mol Oncol* 11(7):805-823

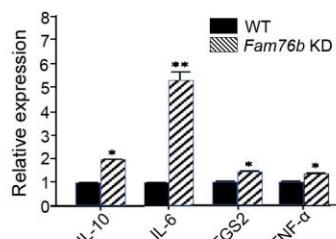
655 Venkatesha SH, Dudics S, Astry B, Moudgil KD (2016) Control of autoimmune inflammation by celastrol,
656 a natural triterpenoid. *Pathog Dis* 74(6):ftw059

657 Wang L, Wen M, Cao X (2019) Nuclear hnRNPA2B1 initiates and amplifies the innate immune response
658 to DNA viruses. *Science* 365(6454):eaav0758

659 Xie L, Huang Z, Li H, Liu X, Zheng S, Su W (2019) IL-38: A New Player in Inflammatory Autoimmune
660 Disorders. *Biomolecules* 9(8):345


661 Zhao TT, Graber TE, Jordan LE, Cloutier M, Lewis SM, Goulet I, Côté J, Holcik M (2009) hnRNP A1
662 regulates UV-induced NF-kappaB signalling through destabilization of cIAP1 mRNA. *Cell Death
663 Differ* 16(2):244-252

664 Zheng X, Li Y, Zhao J, Wang D, Xia H, Mao Q (2016) Production and Characterization of Monoclonal
665 Antibodies against Human Nuclear Protein FAM76B. *PLoS One* 11(3):e0152237

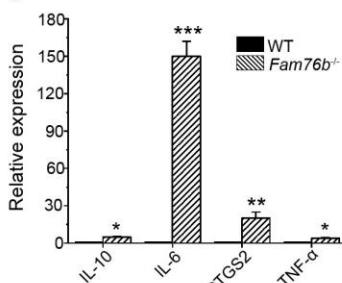

666 Zheng X, Mi T, Wang R, Zhang Z, Li W, Zhao J, Yang P, Xia H, Mao Q (2022) Programulin deficiency
667 promotes persistent neuroinflammation and causes regional pathology in the hippocampus following
668 traumatic brain injury. *Glia* 70(7):1317-1336
669
670
671
672
673

674

a

b

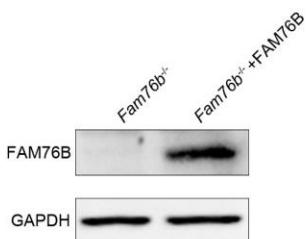
675


676

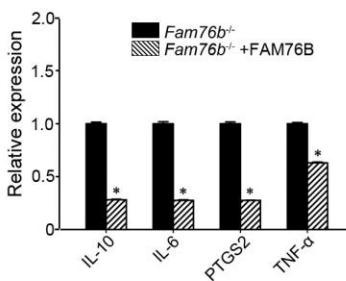
677

c

d


678

679


680

681

e

f

682

683

684

685

686

687

688

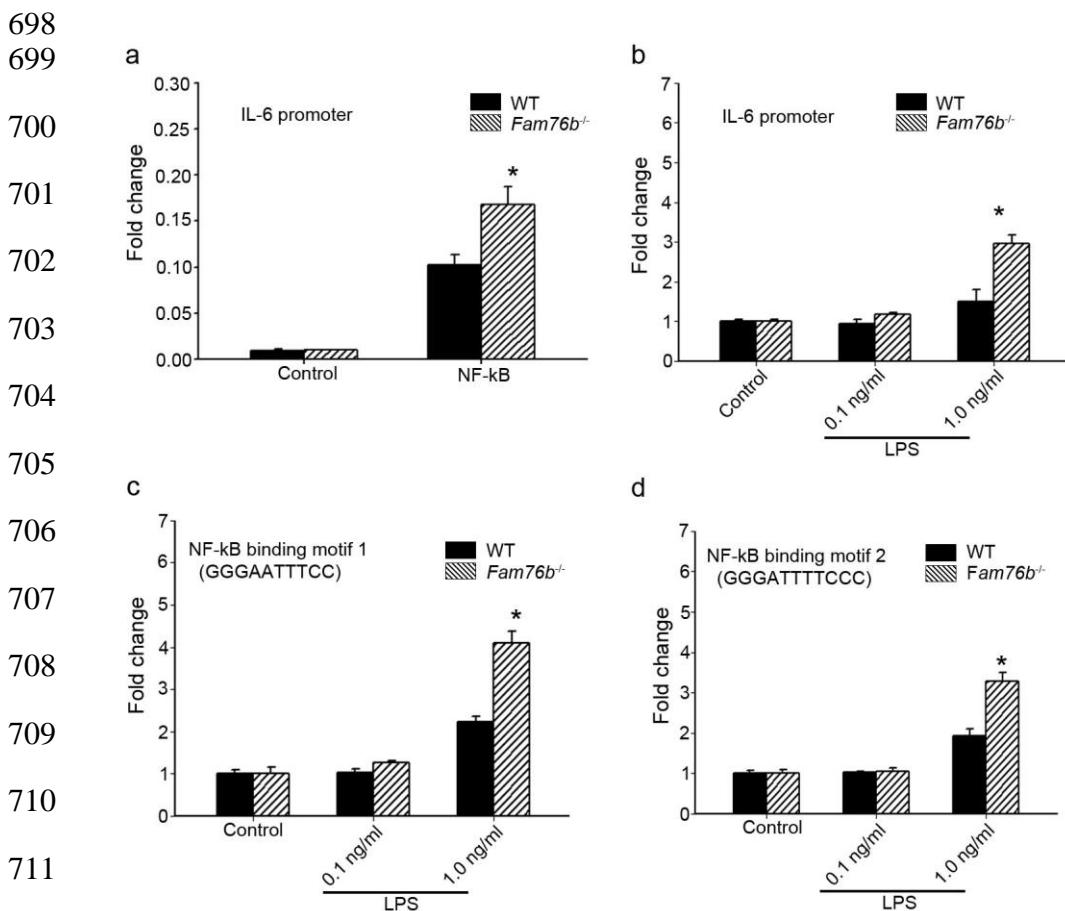
689

690

691

692

693


694

695

696

697

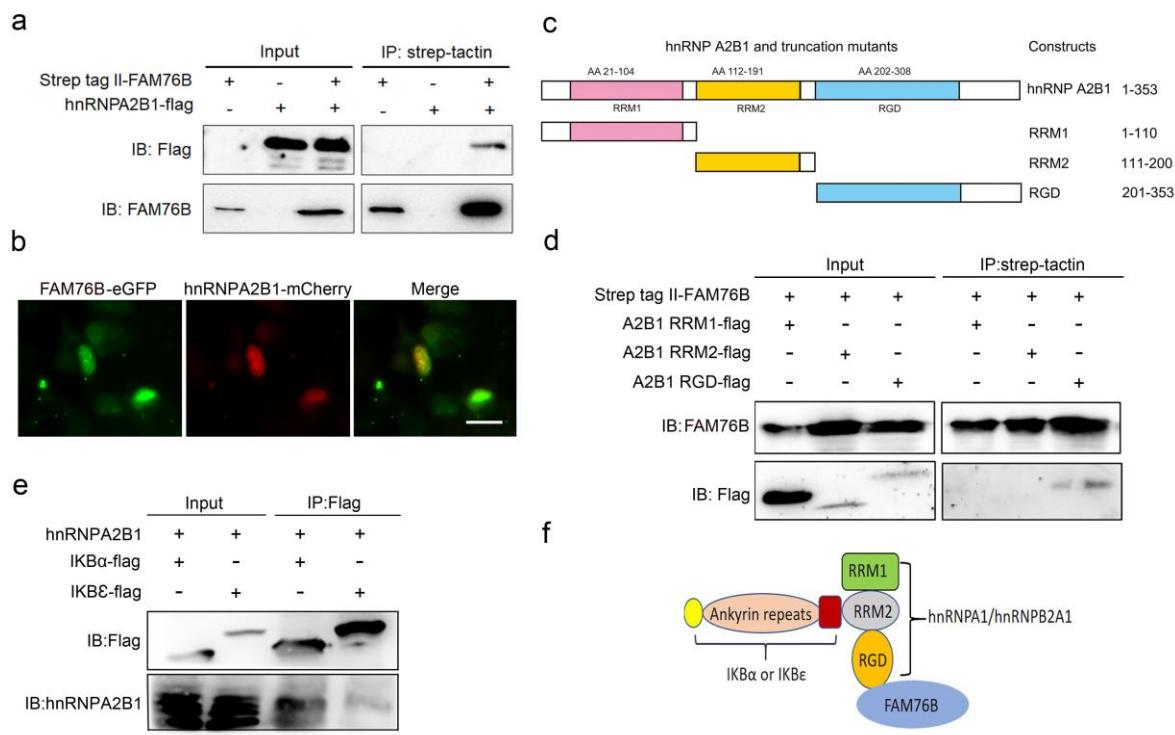
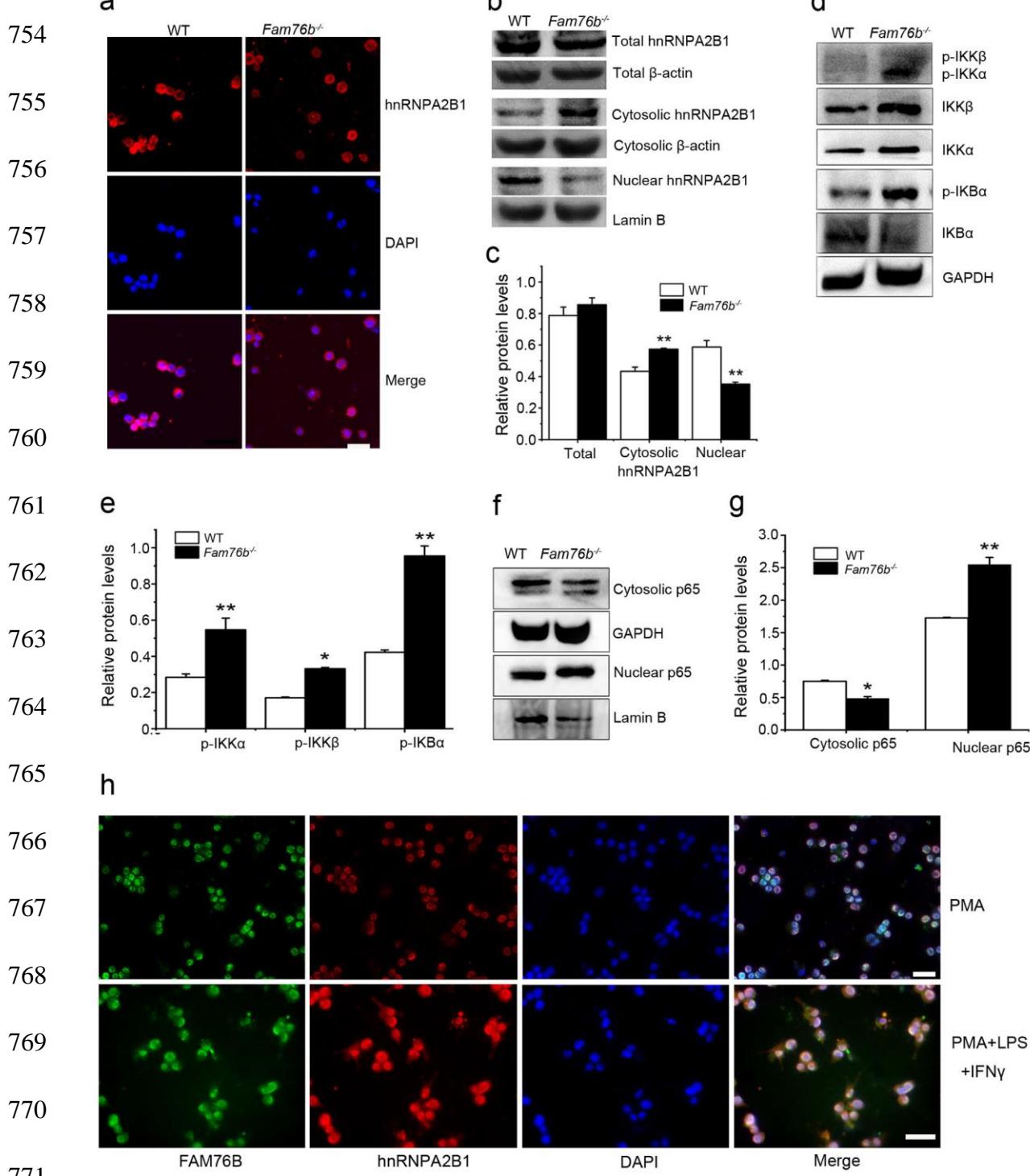

Figure 1 FAM76B regulates the expression of cytokines in U937 cells. (a) Western blot for the detection of FAM76B expression in U937 with FAM76B knockdown cells generated with the Cas9/sgRNA technique. (b) FAM76B knockdown in U937 increased the expression of IL-6, PTGS2, TNF- α , and IL-10, as determined by real-time PCR in the presence of PMA+LPS. (c) Western blot for the detection of FAM76B expression in U937 with FAM76B knockout cell line generated with the Cas9/sgRNA technique. (d) FAM76B knockout in U937 cells significantly enhanced the expression of IL-6, PTGS2, TNF- α , and IL-10, as determined by real-time PCR in the presence of PMA+LPS. (e) Western blot validated the rescued expression of FAM76B in the FAM76B knockout U937 cell line infected with the lentiviral vector expressing FAM76B. (f) The rescued expression of FAM76B in the U937 cell line with FAM76B knockout reduced the mRNA levels of cytokines in the presence of PMA+LPS. The experiments were performed at least three times. *p<0.05, **p<0.01, ***p<0.001, statistically significant.

Figure 2 FAM76B regulates IL-6 promoter activity by affecting the NF-κB pathway. (a) The luciferase reporter vector of the IL-6 promoter was tested in WT and FAM76B knockout (*Fam76b*^{-/-}) HEK293 cells. The luciferase activity was low in both WT and FAM76B knockout HEK293 cells and significantly increased after transfecting the NF-κB-expressing vector. The increased activity of the IL-6 promoter was more prominent in FAM76B knockout HEK293 cells than in WT cells. (b) The IL-6 promoter was increased in WT and FAM76B knockout U937 cells, but was more prominent in the latter, after LPS treatment. (c) and (d) Luciferase activity was increased in WT and FAM76B knockout U937 cells carrying NF-κB binding motifs 1 or 2 (and more prominently in the FAM76B knockout U937 cells), indicating that FAM76B inhibited NF-κB binding activity of IL-6 promoter. The experiments were repeated at least three times.

*p<0.05, statistically significant.

724

736 **Figure 3 Validation of the interactions among FAM76B, hnRNPA2B1, and IKBs.** (a) The interaction
 737 between FAM76B and hnRNPA2B1 was revealed by co-immunoprecipitation. FAM76B-Strep-tag II and
 738 hnRNPA2B1-Flag were overexpressed in HEK293 cells, followed by co-immunoprecipitation of FAM76B
 739 and hnRNPA2B1 using whole cell lysate and Western blot with anti-Flag or anti-FAM76B antibodies. (b)
 740 Confocal microscopy revealed the co-localization of FAM76B and hnRNPA2B1 in the nucleus of HEK293
 741 cells transfected with plasmids expressing FAM76B-eGFP and hnRNPA2B1-mCherry, respectively. Scale
 742 bar, 20 μ m. (c) An illustration of hnRNPA2B1 domains (RRM1, RRM2, and RGD) tagged with Flag
 743 generated for detecting the hnRNPA2B1 region(s) responsible for binding FAM76B. (d) Identification of
 744 the hnRNPA2B1 domains responsible for binding to FAM76B. Strep tag II -FAM76B and hnRNPA2/B1
 745 domain-flag were transfected into HEK293 cells, followed by co-immunoprecipitation and Western blot
 746 with anti-Flag or anti-FAM76B antibodies, which showed the interaction between the RGD domain of
 747 hnRNPA2B1 and FAM76B. (e) Similarly, the interaction between hnRNPA2B1 and IKB α -flag or IKB β -
 748 flag was detected by co-immunoprecipitation. (f) Schematic diagram of FAM76B, hnRNPA2B1, and IKBs'

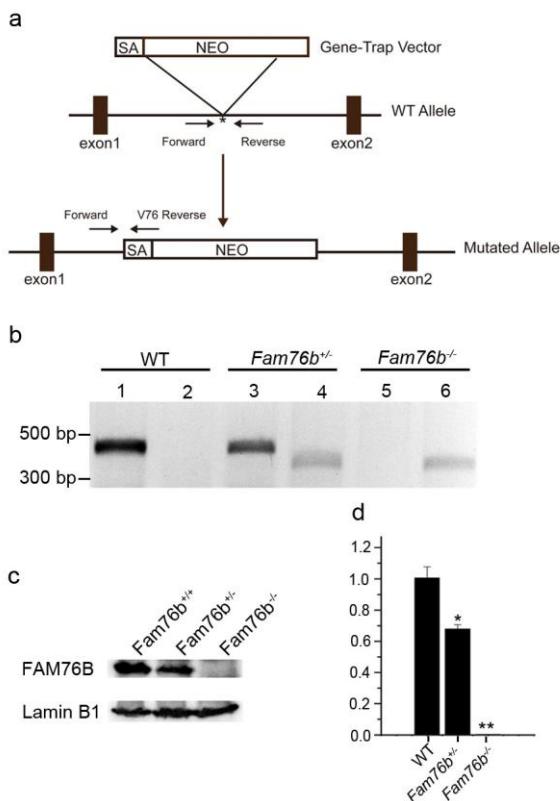

749 protein complex formation: hnRNPA2B1 binds FAM76B by its RGD domain and binds I κ Bs by its RRM2

750 domain.

751

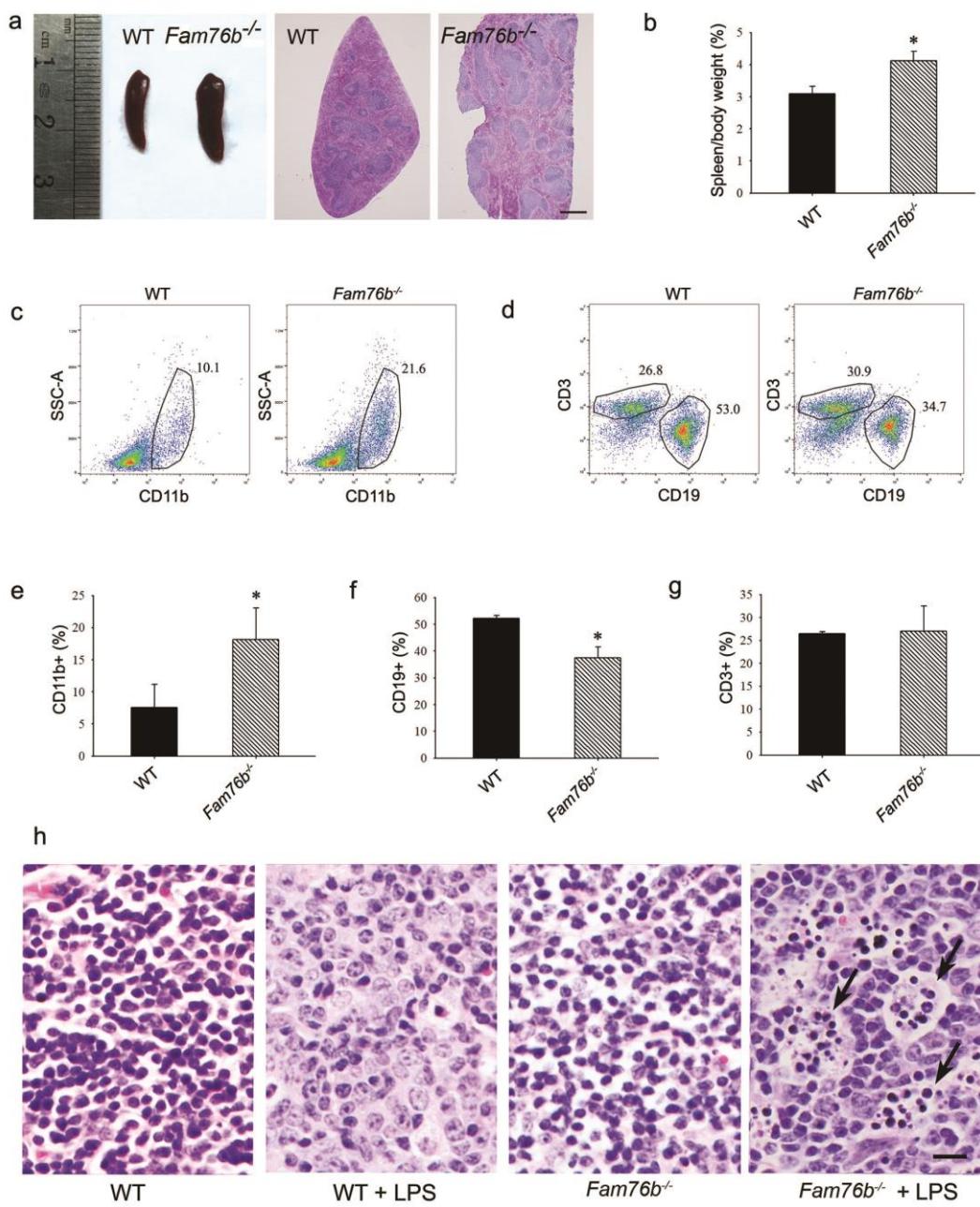
752

753


772 **Figure 4 FAM76B regulates the NF-κB pathway by influencing the translocation of hnRNPA2B1.** (a)

773 Immunofluorescence revealed increased cytoplasmic translocation of hnRNPA2B1 in U937 cells with

774 *FAM76B* knockout (*FAM76B*^{-/-} U937) stimulated with PMA for 48 h. Scale bar, 20 μ m. (b) Western blot
775 confirmed the cytoplasmic translocation of hnRNPA2B1 in U937 cells with *FAM76B* knockout (*FAM76B*^{-/-}
776 U937) stimulated with PMA for 48 h. (c) The semiquantification of the results of Western blot from Fig.
777 4b. (d–e) Western blot revealed the increased phosphorylation of endogenous IKK α , IKK β , and I κ B α in
778 *FAM76B*^{-/-} U937 cells stimulated with LPS. (f) The semiquantification of the Western blots result from Fig.
779 4d and 4e. (g) Western blot showed the increased nuclear translocation of p65 in *FAM76B*^{-/-} U937 cells
780 stimulated with PMA followed by incubation with LPS and hIFN γ . (h) The semiquantification of the
781 Western blot result from Fig. 4g. The experiments were performed at least three times. *p<0.05, **p<0.01,
782 statistically significant. (i) Stimulation with 1 ng/ml PMA followed by LPS and IFN γ treatment leads to the
783 cytoplasmic translocations of FAM76B and hnRNPA2B1 in U937 cells. Scale bar, 20 μ m.


784

785

Figure 5 Generation of *Fam76b* knockout (*Fam76b*^{−/−}) mice. (a) Schematic diagram of the homologous recombination construct for generating *Fam76b*^{−/−} mice, with arrows denoting primer locations. (b) Genotyping results for *Fam76b* WT, hemizygous (+/−), and homozygous (−/−) mice. Lanes 1, 3, and 5 are the amplified products of *Fam76b* forward and reverse primers (Table S2); lanes 2, 4, and 6 are the amplified products of *Fam76b* forward and V76 reverse primers (Table S2). (c) Western blot confirmed *FAM76B* protein levels in mouse embryonic fibroblasts from *Fam76b* WT, hemizygous (+/−), and homozygous (−/−) mice. (d) Real-time PCR of *Fam76b* mRNA levels in mouse embryonic fibroblasts from *Fam76b* WT, hemizygous (+/−), and homozygous (−/−) mice. *p<0.05, **p<0.01, statistically significant.

807
808
809
810
811

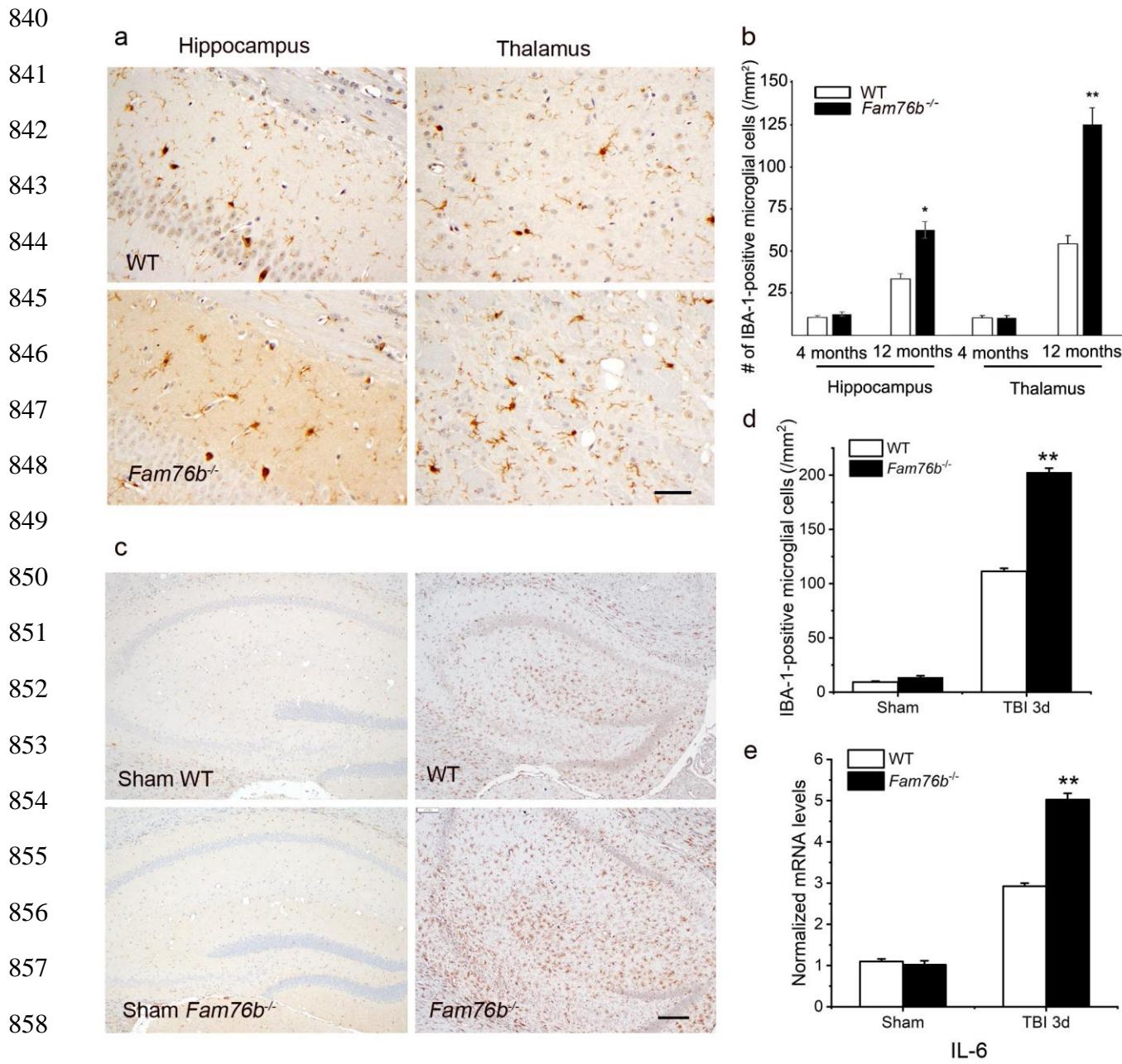
821
822
823
824
825
826

Figure 6 *Fam76b* knockout mice had enlarged spleens with altered cell populations and inflammation.

827 (a) Enlarged spleen with white pulp hypertrophy in *Fam76b* knockout mice (*Fam76b*^{-/-}) (5 months), as
828 compared with WT. Scale bar, 500 μ m. (b) The weight ratio of spleen to body in *Fam76b* knockout mice
829 (*Fam76b*^{-/-}) (5 months) revealed an enlarged spleen, as compared with WT. * $p<0.05$, statistically
830 significant. (c–g) Flow cytometry results of the cell population of spleens of *Fam76b*^{-/-} mice (5 months).
831 Dot plots (c and d) and bar graphs (e, f, and g) show increased populations of CD11b+ and decreased
832 populations of CD19+ and CD3+ in *Fam76b*^{-/-} mice. (h) Histological sections of spleens from WT, WT + LPS,
833 *Fam76b*^{-/-}, and *Fam76b*^{-/-} + LPS mice. White pulp hypertrophy is observed in *Fam76b*^{-/-} mice, indicated by
834 black arrows. Scale bar, 500 μ m.

833 populations of CD19+ B cells in *Fam76b*^{-/-} spleens (n=4; 5 months) (*p<0.05, one-way ANOVA). (h)

834 Photomicrographs of H&E-stained spleens from *Fam76b*^{-/-} mice intraperitoneally injected with LPS show


835 abundant tingible body macrophages (arrows) in the germinal center, whereas no tingible body

836 macrophages were seen in LPS-treated WT or in phosphate-buffered saline (PBS)-treated *Fam76b*^{-/-} and

837 WT mice. Scale bar, 25 μ m.

838

839

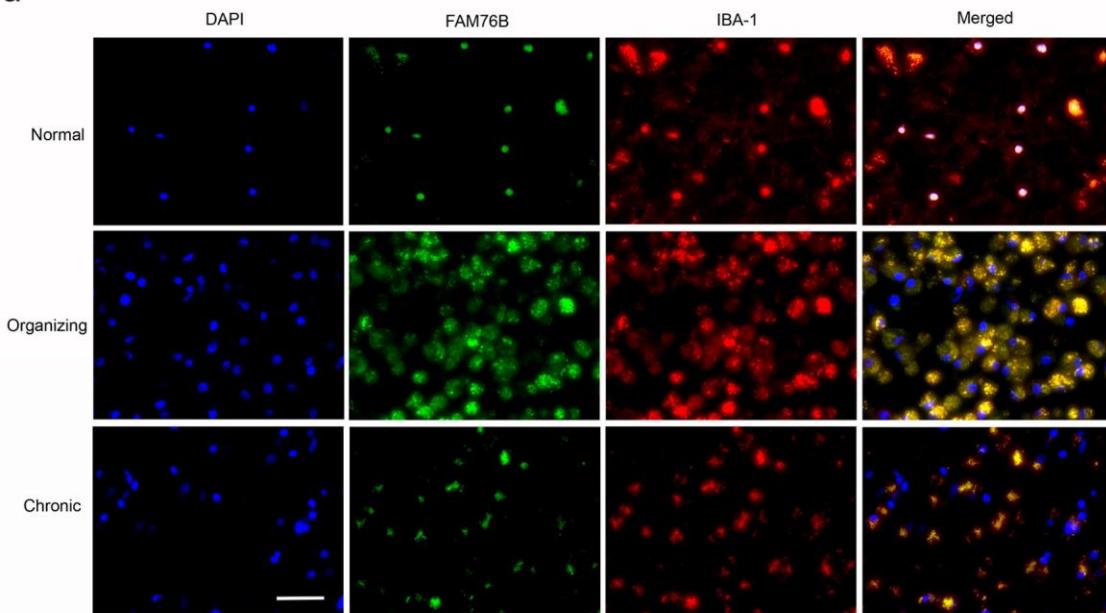
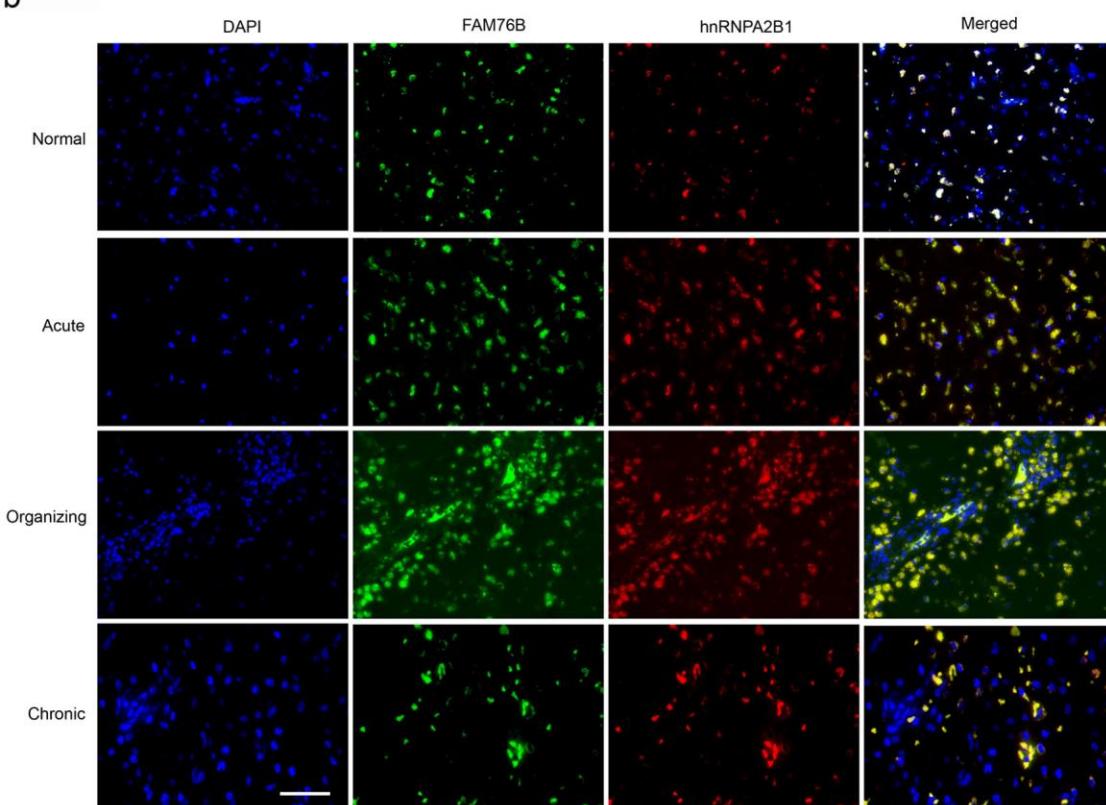


Figure 7 Neuroinflammation was enhanced in *Fam76b* knockout mice. (a) Increased IBA-1-positive microglial infiltration in the hippocampus (lower left panel) and thalamus (lower right panel) of 12-month-old *Fam76b* knockout mice (*Fam76b*^{-/-}), as compared with age-matched WT mice. Scale bar, 50 μm . (b) Density of IBA-1-positive microglia in hippocampal CA1 regions and the thalamus of 4- and 12-month-old *Fam76b*^{-/-} mice, as compared with age-matched WT mice. (c) Increased IBA-1-positive microglia in the hippocampus adjacent to the contusion site of *Fam76b* knockout mice (*Fam76b*^{-/-}), as compared with

866 WT mice and sham controls. Scale bar, 200 μ m. (d) Density of IBA-1-positive microglia in hippocampal
867 CA1 regions of *Fam76b*^{-/-} mice, as compared with WT mice and sham controls. Values are mean \pm SD. The
868 densities of IBA-1-positive microglia were compared to the control value by Student's t-test (**p<0.01).
869 (e) Increased IL-6 expression, as revealed by real-time PCR, in the ipsilateral hippocampus in both *Fam76b*
870 ^{-/-} and WT mice 3 days after TBI, with more prominent changes in *Fam76b*^{-/-} mice. *p<0.05, **p<0.01,
871 statistically significant.
872
873


874

a

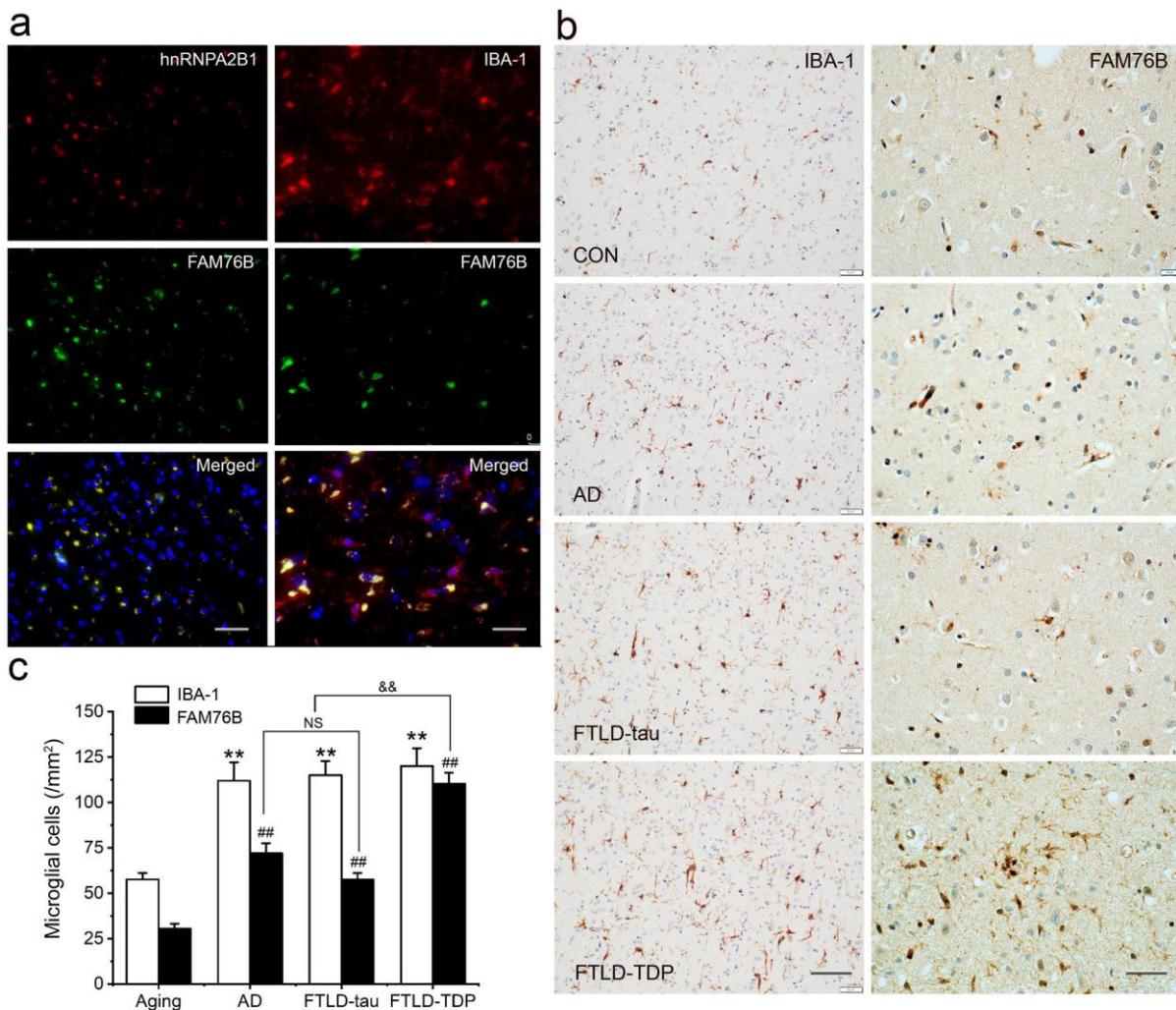
884

b

897

Figure 8 The expression and distribution of FAM76B/hnRNPA2B1 in human brains with TBI.

898

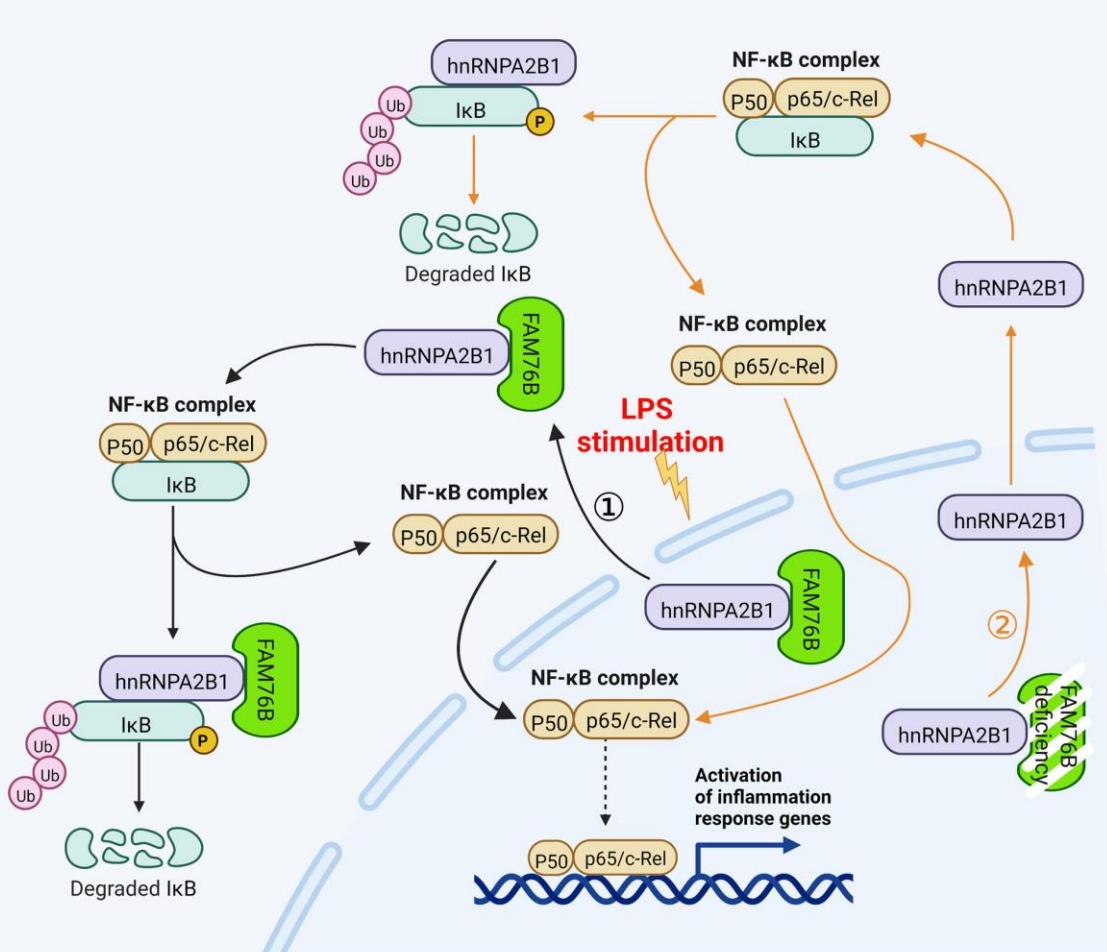

(a) Microglial localization of FAM76B in organizing and chronic TBI. Immunofluorescence revealed the nuclear localization of FAM76B in IBA-1-positive microglia in the normal human cortex. FAM76B was

900 upregulated and cytoplasmically translocated in microglia/macrophages in the human cortex with
901 organizing TBI. In chronic TBI, microglial FAM76B showed persistent cytoplasmic distribution. Scale bar,
902 100 μ m. (b) Upregulation and cytoplasmic translocation of FAM76B and hnRNPA2B1 in acute, organizing,
903 and chronic TBI. Immunofluorescence revealed the nuclear co-localization of FAM76B and hnRNPA2B1
904 in the normal human cortex. Both FAM76B and hnRNPA2B1 were upregulated and cytoplasmically
905 translocated in microglia/macrophages in the cortex of a patient with acute TBI. Both proteins were further
906 upregulated in the cytoplasm of the microglia/macrophages in the human cortex with organizing TBI. In
907 chronic TBI, microglial FAM76B and hnRNPA2B1 showed persistent cytoplasmic distribution and co-
908 localization. Scale bar, 100 μ m.

909

910

911
912
913
914
915
916
917
918
919
920


921 **Figure 9 Persistent microglial FAM76B expression in neurodegenerative diseases.** (a)
922 Immunofluorescent staining using the frontal cortex of a FTLD-TDP patient demonstrated that FAM76B
923 co-localizes with IBA-1, while FAM76B co-localizes with hnRNPA2B1, in the cytoplasm of microglia.
924 Scale bar, left panels, 100 μ m; right panels, 50 μ m. (b) Immunohistochemical stains revealed that the frontal
925 cortex of AD, FTLD-tau, and FTLD-TDP patients showed increased IBA-1- and FAM76B-positive
926 microglia as compared to the control (CON). This increase in microglial FAM76B expression was more
927 prominent in FTLD-TDP than in AD or FTLD-tau. Scale bar, left panels for IBA-1 stains, 100 μ m; right
928 panels for FAM76B stains, 50 μ m. (c) The density of IBA-1- and FAM76B-positive microglia in the frontal
929 cortex of normal aging controls, and AD, FTLD-tau, and FTLD-TDP patients. Values are mean \pm SD; n=5.
930 The densities of IBA-1-positive microglia were compared between different groups by one-way ANOVA
931

937 followed by the Tukey-HSD test (**p<0.01). Similarly, the density of FAM76B-microglia was compared
938 between groups (##p<0.01). The ratios of FAM76B- to IBA-1-microglia densities were compared between
939 different groups by Chi-square goodness-of-fit test (&&p<0.01). n.s., no significance.

940

941

942
943
944
945
946
947
948
949
950
951
952
953
954
955
956

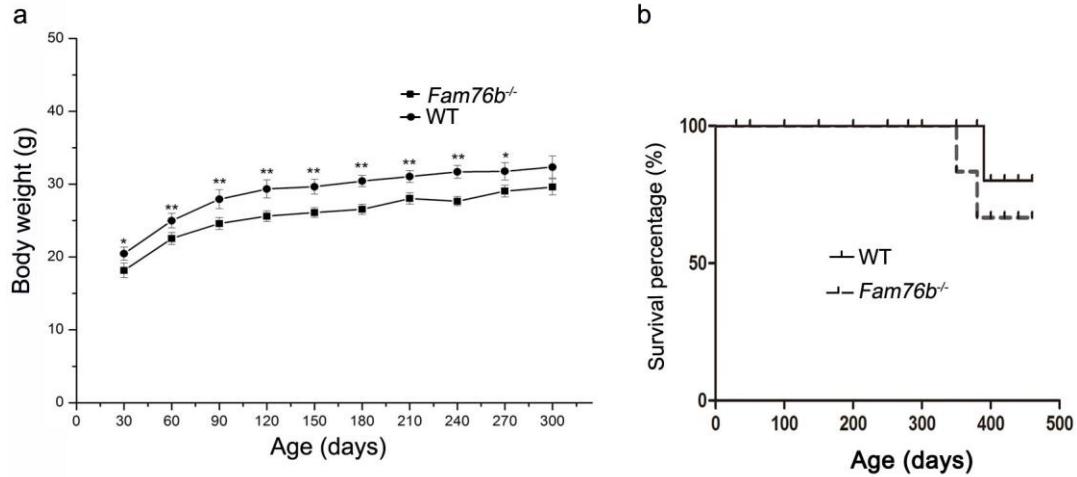
957 **Figure 10 Schematic diagram of FAM76B regulating the NF-κB-mediated inflammatory pathway by**
958 **affecting the hnRNPA2B1 translocation.** Under normal conditions, FAM76B can bind to hnRNPA2B1
959 and make hnRNPA2B1 stay in the nucleus. However, when FAM76B's location or expression level of was
960 changed, the localization of hnRNPA2B1 was also changed, which then regulates inflammation in immune
961 cells. ① Upon stimulation with LPS, the FAM76B located in the nucleus of immune cells (such as
962 macrophage or U937 induced macrophage like M1) moved into the cytoplasm, and hnRNPA2B1 was
963 accordingly translocated into the cytoplasm, resulting in enhanced NF-κB-mediated inflammation by the
964 degradation of IκB α and p65's entry into the nucleus. ② When FAM76B expression was decreased or
965 knocked out in the immune cells, hnRNPA2B1 translocated into the cytoplasm, which led to increased NF-
966 κB mediated inflammation by the degradation of IκB α and p65's entry into the nucleus.

995

996

997

998


999

1000

1001

1000

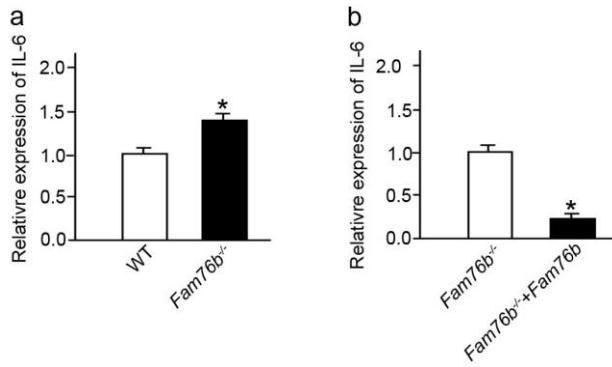
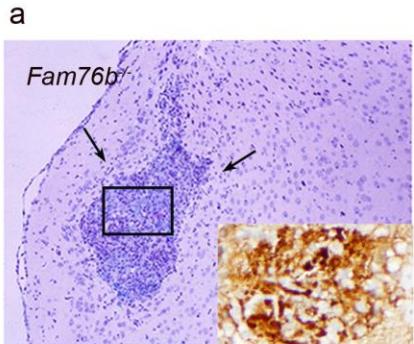

1002

Figure S3 Characterization of *Fam76b* knockout mice. (a) Body weight changes of male WT and

homozygous Fam76b mutant (Fam76b^{-/-}) mice over time. *p<0.05, **p<0.01, statistically significant. (b)

The survival curve of homozygous *Fam76b* mutant (*Fam76b*^{-/-}) mice did not differ from that of WT mice.

increased IL-6 expression. (a) IL-6 expression was revealed by real-time PCR in BMDMs from EAM76B


knockout mice in the presence of LPS. (b) IL-6 expression was decreased when the BMDMs from EAM76B

knockout mice were infected with EAM76B expressing lentivirus vector in the presence of LPS. The

experiments were repeated at least three times. * $p < 0.05$, statistically significant.

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

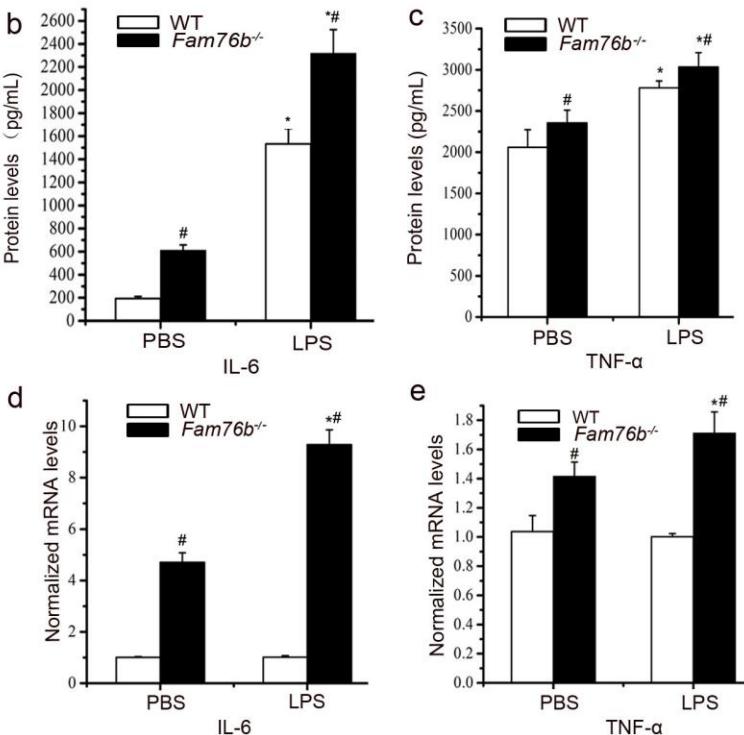
1032

1033

1034

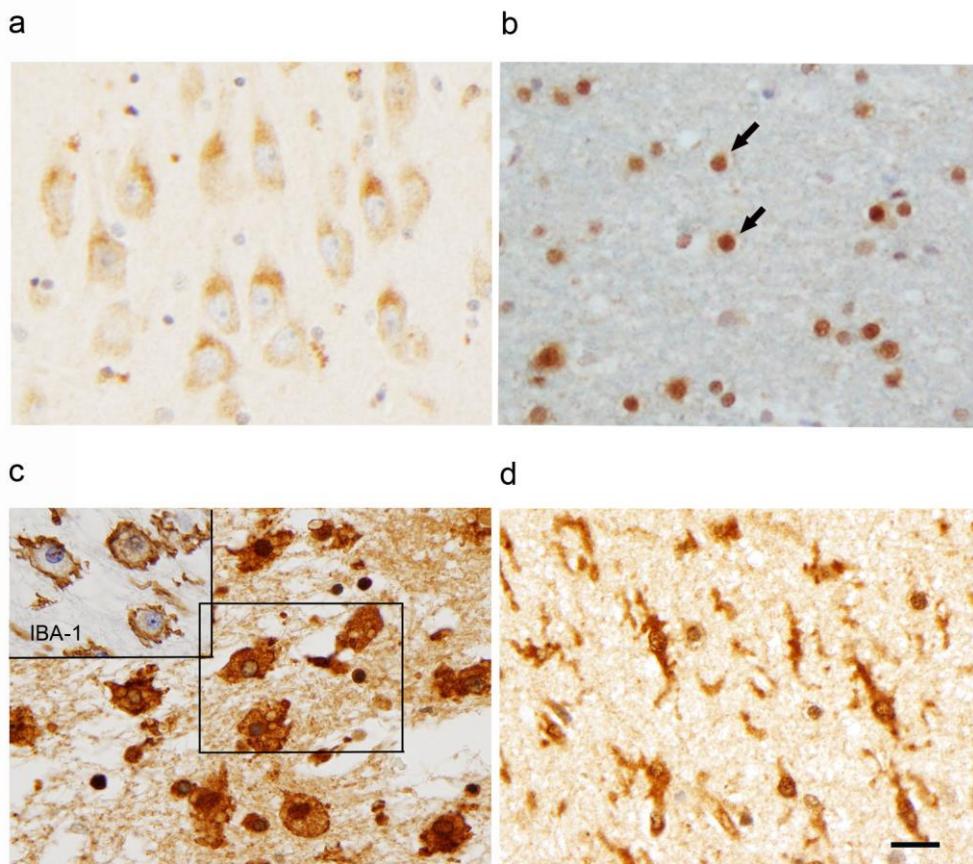
1035

1036


1037

1038

1039


1040

1041

Figure S5 Neuroinflammation in *Fam76b* knockout mice. (a) H&E staining of needle track sites (between the arrows) in LPS-injected mouse brains. A high number of macrophages was observed infiltrating the needle track areas in the LPS-injected brains of *Fam76b* knockout mice. Only a mild inflammatory response was observed at the injection site in WT mice. Scale bar, 100 μ m. Insets, the IBA-1-positive cells in needle track sites. Scale bar, 20 μ m. (b–e) IL-6 and TNF- α expression at the injection sites of *Fam76b*^{-/-} and WT mice post-LPS intracranial injection, by ELISA and real-time PCR. Brain tissues 1 mm in diameter around the needle track were dissected 24 h after the injection and homogenized, followed by ELISA and real-time PCR. The experiments were performed at least three times. * p <0.05, statistically significant, LPS vs. PBS; ** p <0.01, statistically significant, *Fam76b*^{-/-} vs. WT.

1042

Figure S6 Expression of FAM76B in normal and diseased tissues. The expression of FAM76B in different mouse tissues revealed by immunohistochemical staining demonstrated that FAM76B was localized in the cytoplasm of neurons (a; photo taken of the hippocampal CA1 region) and in the nuclei of glial cells (b; photo taken of white matter). Arrows, oligodendroglial cells of normal human brains. Significant upregulation and cytoplasmic translocation of FAM76B in macrophages in areas of organizing necrosis in the brain of a patient with TBI (c; inset, macrophages labeled by IBA-1 in the mirrored section). Reactive microglial cells in the hippocampus of a patient with acute ischemic injury are strongly immunopositive for FAM76B (d). Scale bar, 20 μ m for all photos.

1068 **Table S1 Primers used for real-time PCR**

Gene	Sequence	1069
		1070
Human GAPDH	Forward 5'-GCACCGTCAAGGCTGAGAAC-3' Reverse 5'-TGGTGAAGACGCCAGTGG-3'	1071 1072
Human IL-6	Forward 5'-GGATTCAATGAGGAGACTGCC-3' Reverse 5'-TGGCATTGTGGTGGTCA-3'	1073 1074 1075
Human PTGS2	Forward 5'-CAAATTGCTGGCAGGGTTGC-3' Reverse 5'-AGGGCTTCAGCATAAAGCGT-3'	1076 1077 1078
Human TNF- α	Forward 5'-TCCCCAGGGACCTCTCTCTA-3' Reverse 5'-GAGGGTTTGCTACAACATGGG-3'	1079 1080 1081
Human IL-10	Forward 5'-TACGGCGCTGTCATCGATT-3' Reverse 5'-AAGGTTTCTCAAGGGGCTGG-3'	1082 1083 1084
Human FAM76B	Forward 5'-AGCAGATACTGGGGAACAGACAA-3' Reverse 5'-TTTGGCCTGAAGTTGTTCCACAGT-3'	1085 1086 1087
Human hnRNPA2B1	Forward 5'-CAGTTCTCACTACAGCGCCA-3' Reverse 5'-GCTCTGGTGTCTCTGCCAT-3'	1088 1089 1090
Mouse GAPDH	Forward 5'-AAGGCCGGGGCCCAC TGAA-3' Reverse 5'-AGCAGTTGGTGGTGCAGGATGC-3'	1091 1092 1093
Mouse FAM76B	Forward 5'-ACTGTGGAACAACTCCAGGCCAA-3' Reverse 5'-CAGGGAGATGTTAGCACGCTTCCA-3'	1094 1095 1096
Mouse IL-6	Forward 5'-CCTTCCTACCCCAATTCCAAT-3' Reverse 5'-GCCACTCCTCTGTGACTCCAG-3'	1097 1098 1099
Mouse PTGS2	Forward 5'-AATGTGCACTATGGTTACAAAA-3' Reverse 5'-AAAAGTGATGGGTGAAGTGCTG-3'	1100 1101 1102
Mouse TNF- α	Forward 5'-GGCAGGTCTACTTGGAGTC-3' Reverse 5'-TCGAGGCTCCAGTGAATTG-3'	1103 1104 1105
Mouse IL-10	Forward 5'-GGTTGCCAAGCCTATCGGA-3' Reverse 5'-GGGGAGAAATCGATGACAGC-3'	1106 1107 1108
		1109

1110
1111
1112
1113
1114

1115 **Table S2. Other primers used in the study**

Gene	Sequence	
FAM76B sgRNA target genome region	Forward	5'-CTTGTGTAACCCACCCCTTGT-3'
	Reverse	5'-TTGTTGCAGAGGATTATGGCT-3'
IL-6 promoter	Forward	5'-AGGTACCTTCCTATTAAAAAACAC-3'
	Reverse	5'-TAAGCTTAGCTGGCTCCTGGAGGG-3'
Human P50	Forward	5'-CCCTCGAGATGGCAGAAGATGATCCATA-3'
	Reverse	5'-CCTCTAGAAACTTCCCAAAGAGGTTA-3'
Human P65	Forward	5'- CCCCCTCGAGATGGGACGAACCTGTTCCCCCT-3'
	Reverse	5'-CCTCTAGAGGGAGCTGATCTGACTCAGCA-3'
Mouse FAM76B genotyping	Forward	5'-GCAGAGATTGGGTGCAGACT-3'
	Reverse	5'-GAGACCCAATCTCACTCTTG-3'
	V76 Reverse	5'-CCAATAAACCCCTTGCAGTTGC-3'

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143
1144

Table S3. Antibodies used in the study

Antibody	Manufacturer	Catalogue number
FITC anti-mouse CD3	BioLegend	100203
FITC Rat IgG2b, κ Isotype Ctrl	BioLegend	400605
PerCP/Cy5.5 anti-mouse/human CD11b	BioLegend	101227
PerCP/Cy5.5 Rat IgG2b, κ Isotype Ctrl	BioLegend	400631
APC anti-mouse CD19	BioLegend	152409
APC Rat IgG2a, κ Isotype Ctrl Antibody	BioLegend	400511
TruStain fcX™ (anti-mouse CD16/32)	BioLegend	101319
FAM76B monoclonal antibody (mouse)	Homemade	
Rabbit anti-hnRNPA2B1 polyclonal antibody	Abcam	ab31645
Mouse anti-Flag monoclonal antibody	Cell signaling	14793
Goat anti-IBA1 polyclonal antibody	Abcam	ab5076
Mouse anti-GAPDH monoclonal antibody	Proteintech	60004-1-Ig

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

1161
1162
1163

Table S4. Patient demographics

Neuropathologic diagnosis	Number of cases	Sex M/F	Age at death (mean \pm SD)
CON	6	3/3	77.8 \pm 7.8
AD	5	2/3	77.3 \pm 8.4
FTLD-tau	6	2/4	72.3 \pm 3.2
FTLD-TDP	6	4/2	71.5 \pm 6.9

1164 CON, normal control; AD, Alzheimer's disease; FTLD-tau, frontotemporal lobar degeneration with tau
1165 pathology; FTLD-TDP, frontotemporal lobar degeneration with TAR DNA-binding protein 43 inclusions.

1166
1167
1168

1169
1170
1171

Table S5. Proteins that interact with FAM76B and their interacting scores and ranks

Protein IDs	Protein names	Gene names	Score	Rank
P22626	Heterogeneous nuclear ribonucleoproteins A2/B1	HNRNPA2B1	164.67	5
P07355	Annexin A2	ANXA2	60.366	11
P46776	60S ribosomal protein L27a	RPL27A	31.429	24
Q8WWM7	Ataxin-2-like protein. This gene encodes an ataxin type 2-related protein of unknown function.	ATXN2L	30.629	25
P09651; Q32P51	Heterogeneous nuclear ribonucleoprotein A1; Heterogeneous nuclear ribonucleoprotein A1-like 2	HNRNPA1; HNRNPA1L2	27.543	28
P51991	Heterogeneous nuclear ribonucleoprotein A3	HNRNPA3	27.536	29
P55072	Transitional endoplasmic reticulum ATPase	VCP	10.17	56
Q14315; P21333; Q75369	Filamin-B; Filamin-A; Filamin-C	FLNB; FLNA; FLNC	5.9136	99
P35637; Q92804	RNA-binding protein FUS	FUS; TAF15	5.866	101
P45974	Ubiquitin carboxyl-terminal hydrolase 5	USP5	5.6403	133

1172
1173