

1 **Genetic and phosphoproteomic basis of LysM-mediated immune signaling in *Marchantia***
2 ***polymorpha* highlights conserved elements and new aspect of pattern-triggered immunity**
3 **in land plants**

4

5 Izumi Yotsui^{1,2}, Hidenori Matsui^{1,3}, Shingo Miyauchi^{4,5}, Hidekazu Iwakawa^{4,6}, Katharina
6 Melkonian⁴, Titus Schlüter⁴, Selena Gimenez Ibanez⁷, Takehiko Kanazawa^{8,9}, Yuko Nomura¹,
7 Sara Christina Stolze⁴, Hyung-Woo Jeon⁴, Shigeo Sugano¹⁰, Makoto Shirakawa^{10,11}, Ryuichi
8 Nishihama^{10,12}, Yasunori Ichihashi^{1,13}, Ken Shirasu¹, Takashi Ueda^{8,9}, Takayuki Kohchi¹⁰,
9 Hirofumi Nakagami^{1,4}

10

11 ¹RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan

12 ²Department of BioScience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502 Japan

13 ³Graduate School of Environmental and Life Sciences, Okayama University, Okayama, 700-
14 8530 Japan

15 ⁴Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany

16 ⁵Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495
17 Japan.

18 ⁶School of Biological Science and Technology, College of Science and Engineering, Kanazawa
19 University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192 Japan

20 ⁷Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior
21 de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain

22 ⁸Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji,
23 Okazaki, Aichi, 444-8585 Japan

24 ⁹The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced
25 Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585 Japan

26 ¹⁰Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan

27 ¹¹Division of Biological Science, Graduate School of Science and Technology, Nara Institute of
28 Science and Technology (NAIST), Ikoma, Nara, 630-0192 Japan

29 ¹²Department of Applied Biological Science, Faculty of Science and Technology, Tokyo
30 University of Science, Noda, Chiba, 278-8510, Japan

31 ¹³RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074 Japan

32

33 Corresponding author: Hirofumi Nakagami

34 e-mail: nakagami@mpipz.mpg.de

35 Telephone: +49-221-5062-224

36 Fax: +49-221-5062-353

37

38 ORCID:

39 Izumi Yotsui: 0000-0003-1587-7959

40 Hidenori Matsui: 0000-0003-3386-7180

41 Shingo Miyauchi: 0000-0002-0620-5547

42 Hidekazu Iwakawa: 0000-0002-3362-9978

43 Katharina Melkonian: 0000-0001-7627-0953

44 Titus Schlüter: 0000-0001-8281-0565

45 Selena Gimenez Ibanez: 0000-0002-5453-8565

46 Takehiko Kanazawa: 0000-0003-0472-2273

47 Yuko Nomura: 0000-0001-9553-693X

48 Sara Christina Stolze: 0000-0002-1421-9703

49 Hyung-Woo Jeon: 0000-0001-7587-6689

50 Shigeo Sugano: 0000-0001-9986-2839

51 Makoto Shirakawa: 0000-0003-3719-7081

52 Ryuichi Nishihama: 0000-0002-7032-732X

53 Roberto Solano: 0000-0001-5459-2417
54 Yasunori Ichihashi: 0000-0003-1935-4397
55 Ken Shirasu: 0000-0002-0349-3870
56 Takashi Ueda: 0000-0002-5190-892X
57 Takayuki Kohchi: 0000-0002-9712-4872
58 Hirofumi Nakagami: 0000-0003-2569-7062
59
60

61 **Abstract**

62 Pattern-recognition receptor (PRR)-triggered immunity (PTI) wards off a wide range of
63 pathogenic microbes, playing a pivotal role in plant immunity. The model liverwort *Marchantia*
64 *polymorpha* is emerging as a popular model for investigating the evolution of plant-microbe
65 interactions. *M. polymorpha* triggers defense-related gene expression upon sensing components
66 of bacterial and fungal extracts, suggesting the existence of PTI in this plant model. However,
67 the molecular components of the putative PTI in *M. polymorpha* have not yet been described.
68 We show that, in *M. polymorpha*, which has four LysM receptor homologs, lysin motif (LysM)
69 receptor-like kinase (LYK) MpLYK1 and LYK-related (LYR) MpLYR are required for sensing
70 chitin and peptidoglycan fragments, triggering a series of characteristic immune responses.
71 Comprehensive phosphoproteomic analysis of *M. polymorpha* in response to chitin treatment
72 identified regulatory proteins that potentially shape LysM-mediated PTI. The identified proteins
73 included homologs of well-described PTI components in angiosperms as well as proteins whose
74 roles in PTI are not yet determined, including the blue-light receptor phototropin MpPHOT. We
75 revealed that MpPHOT is required for a negative feedback of defense-related gene expression
76 during PTI. Taken together, this study outlines the basic framework of LysM-mediated PTI in
77 *M. polymorpha* and demonstrates the utility of *M. polymorpha* as a plant model for discovering
78 novel or fundamental molecular mechanisms underlying PRR-triggered immune signaling in
79 plants.

80

81 **Introduction**

82 In angiosperms, cell-surface localized pattern-recognition receptors (PRRs)
83 recognizing microbe-derived or plant-endogenous molecules play central roles in various plant-
84 microbe interactions, which can be beneficial, neutral, or detrimental (Zipfel and Oldroyd,
85 2017). PRRs recognize slowly evolving microbe-associated molecular patterns (MAMPs) or
86 symbiotic signals such as rhizobial nodulation (Nod) factors and mycorrhizal (Myc) factors.

87 PRRs are transmembrane kinases or membrane-associated proteins that function together with
88 kinases, triggering phosphorylation and/or interaction-dependent signaling to activate pattern-
89 triggered immunity (PTI) or to initiate symbiosis (Zipfel and Oldroyd, 2017). Activation of
90 PRRs typically induces a series of characteristic responses, including reactive oxygen species
91 (ROS) production, MAP kinase (MAPK) activation, calcium influx, callose deposition, defense-
92 related gene expression, and growth inhibition (Boller and Felix, 2009).

93 Well-studied bacterial MAMP receptors such as *Arabidopsis thaliana* AtFLS2 and
94 AtEFR belong to the subfamily XII of leucine-rich repeat receptor-like kinases (LRR-RLKs).
95 AtFLS2 and AtEFR recognize peptide fragments derived from bacterial flagellin and elongation
96 factor Tu (EF-Tu), respectively (Chinchilla et al., 2006; Zipfel et al., 2006). These LRR-RLK
97 subfamily XII MAMP receptors typically require SERK co-receptors belonging to the
98 subfamily II of LRR-RLKs, for downstream signaling (Chinchilla et al., 2007; Roux et al.,
99 2011). In *A. thaliana*, AtBAK1/AtSERK3 functions as a co-receptor for AtFLS2 and AtEFR as
100 well as the brassinosteroid receptor AtBRI1, and thereby regulates not only PTI but also plant
101 growth and development (Li et al., 2002).

102 N-acetylglucosamine (GlcNAc) derivatives from bacteria, fungi, and oomycetes,
103 which can be either MAMPs or symbiotic signals, are perceived by lysin motif (LysM)-domain-
104 containing receptors (Zipfel et al., 2017). As major cell wall components, bacterial
105 peptidoglycans (PGN) and fungal chitin oligosaccharides are recognized as MAMPs by LysM
106 receptor-like kinase (LYK), LYK-related (LYR), or LysM receptor-like protein (LYP) to activate
107 PTI (Gust et al., 2012). In *A. thaliana*, chitin is perceived by LYR AtLYK5 and LYK AtCERK1,
108 and PGN is perceived by LYP AtLYM1/3 and LYK AtCERK1 (Cao et al., 2014; Miya et al.,
109 2007; Willmann et al., 2011). In rice, different combinations of LysM receptors perceive chitin
110 and PGN (Kaku et al., 2006; Liu et al., 2012; Shimizu et al., 2010). In either case, LYK CERK1
111 most likely functions as a co-receptor as do the subfamily II LRR-RLK SERKs for the
112 subfamily XII LRR-RLKs. Importantly, Nod and Myc factors are also perceived by LysM

113 proteins to ensure beneficial symbiotic interactions. In *Lotus japonicus* and *Medicago*
114 *truncatula*, different CERK1 homologs, most likely originating from gene duplications, function
115 independently for PTI and symbiosis (Bozsoki et al., 2017). Intriguingly, however, rice LYK
116 OsCERK1 is involved in both PTI and arbuscular mycorrhizal (AM) symbiosis (Carotenuto et
117 al., 2017; Miyata et al., 2014; Zhang et al., 2015).

118 Considering the importance of PRRs in angiosperms for communication with various
119 microbes, it is possible that acquisition and diversification of PRRs and their downstream
120 signaling networks played a key role during plant terrestrialization and evolution. Homologs of
121 characterized PRRs can be found in genomes of bryophytes and the charophyte alga *Chara*
122 *braunii* (Bowman et al., 2017; Li et al., 2020; Nishiyama et al., 2018; Rensing et al., 2008;
123 Zhang et al., 2020). The moss *Physcomitrium patens* has been shown to sense chitin and PGN
124 fragments in a LYK PpCERK1-dependent manner (Bressendorff et al., 2016). The liverwort *M.*
125 *polymorpha* is able to sense bacterial and fungal extracts, although the molecular components
126 and mechanisms of this sensing are not yet described (Gimenez-Ibanez et al., 2019; Redkar et
127 al., 2022). Here, we identify LysM receptors responsible for chitin- and PGN-induced responses
128 in *M. polymorpha*, and provide evidence that the LysM receptor contributes to resistance against
129 bacterial pathogens in *M. polymorpha*. Furthermore, we characterize the LysM-mediated
130 signaling pathway in *M. polymorpha* by phosphoproteomics.

131

132 **Results**

133 ***Marchantia polymorpha* recognizes chitin and PGN to induce immune responses**

134 A rapid and transient burst of reactive oxygen species (ROS) is a hallmark of PRR
135 activation upon MAMP perception in angiosperms. To investigate the conservation of MAMP
136 recognition, we treated the wild-type *M. polymorpha* strains Tak-1 (male) and Tak-2 (female)
137 with the known MAMPs, flg22, elf18, chitin, PGN, and lipopolysaccharide (LPS), which trigger
138 ROS burst in *A. thaliana*. Chitin and PGN fragments, but not the other MAMPs, induced ROS

139 burst in *M. polymorpha* (Figure 1a and 1b). In angiosperms and moss, LysM receptors are
140 indispensable for sensing chitin and PGN. As in the case of angiosperms, long-chain chitin
141 oligosaccharides induced stronger ROS burst (Figure 1c). Chitin treatment further induced MAP
142 kinase (MAPK) activation, which was monitored by the use of an anti-p44/42-ERK antibody (a-
143 pTEpY), as well as *WRKY* gene expression (Figure 1d and Supplementary Figure S3). These
144 observations imply that LysM receptor-mediated MAMP perception and signaling mechanisms
145 are conserved in *M. polymorpha*. We then investigated the chitin-induced transcriptional
146 response in *M. polymorpha* Tak-2. Significant transcriptional reprogramming was observed 1
147 and 3 hours after chitin treatment (Figure 1e), and the transient nature of this response was
148 similar to the chitin response in *A. thaliana* (Supplementary Figure S2a). Gene Ontology (GO)
149 analysis of differentially expressed genes (DEGs, $|\text{Log}_2\text{FC}| > 2$, adjusted $p < 0.05$) revealed that
150 chitin treatment significantly and primarily induces expression of defense-related genes in *M.*
151 *polymorpha* (Figure 1f) as in *A. thaliana* (Supplementary Figure S2b). Collectively, these results
152 suggest the existence of a LysM-mediated immune signaling pathway in *M. polymorpha*.

153

154 **MpLYK1 and MpLYR are responsible for chitin and PGN responses in *M. polymorpha***

155 LysM receptors can be roughly classified into LYK (LysM-RLK, LysM receptor-like
156 kinase), LYR (LYK-related, LysM-RLK without classically conserved kinase domain), and LYP
157 (LysM receptor-like protein, membrane-anchored LysM protein) (Gust et al., 2012; Tanaka et
158 al., 2013). BLAST search identified four LysM receptor homologs, two LYKs, one LYR, and
159 one LYP, in the genome of *M. polymorpha*. Phylogenetic analysis of the LysM domains of
160 LysM receptor homologs in selected plant species, covering hornworts, liverwort, mosses,
161 lycophyte, angiosperms, and streptophyte algae (Supplementary Table S1 and S2), revealed that
162 the LysM domains of embryophytes form four major clades, LYKa, LYKb, LYR, and LYP
163 (Figure 2a and Supplementary Figure S4). We found single *M. polymorpha* genes in each of the
164 four clades, MpLYK1 (LYKa), MpLYK2 (LYKb), MpLYR, and MpLYP, which is in clear

165 contrast to the moss *P. patens* that lacks *LYP* and *LYKb* but has instead evolved to harbor
166 additional copies of *LYKa* and *LYR* (Figure 2a, Supplementary Table S1 and Figure S1). This
167 suggests that *M. polymorpha* is a useful bryophyte model for comprehensive study of the
168 function and molecular evolution of LysM receptors. MpLYK1 is orthologous to AtCERK1,
169 MpLYK2 is orthologous to AtLYK3, and MpLYR is orthologous to AtLYK4 and AtLYK5
170 (Figure 2a). LysM domains from Charophyceae, *Chara braunii* and *Nitella mirabilis*, formed
171 another independent clade (Figure 2a and Supplementary Table S1). It is possible that
172 embryophyte LysM receptors were derived from a LysM receptor in the algal ancestor of
173 embryophytes.

174 To investigate the contribution of LysM receptor homologs to chitin and PGN
175 responses in *M. polymorpha*, we established disruptant mutants by homologous recombination
176 or CRISPR/Cas9-based genome editing (Supplementary Figure S5). Obvious developmental
177 defects were not observed for the disruptant mutants under our standard growth conditions.
178 Both chitin- and PGN-induced ROS burst were abolished in *Mplyk1^{ko}* and *Mplyr^{ge}* mutants but
179 not in *Mplyk2^{ko}* and *Mplyp^{ko}* mutants (Figure 3a, 3b, and Supplementary Figure S7), which
180 could be restored by expression of MpLYK1 and MpLYR under their own promoters in the
181 respective mutants (Figure 3a, 3b, Supplementary Figure S6 and S7). Likewise, in the *Mplyk1^{ko}*
182 and *Mplyr^{ge}* mutants, chitin-induced expression of defense-related genes, selected from the
183 transcriptome data, was abolished (Figure 3c). Subcellular localization of fluorescent protein-
184 tagged MpLYK1 and MpLYR indicated roles at the cell surface (Figure 2c). These results
185 suggest that MpLYK1 and MpLYR function together to sense chitin and PGN and to activate
186 intercellular signaling leading to defense-related gene expression.

187 Air chambers have been shown to support colonization by invading microbes in *M.*
188 *polymorpha* (Carella et al., 2018; Iwakawa et al., 2021). In particular, assimilatory filaments,
189 which are specialized cell types located in air chambers for photosynthesis with less pronounced
190 cuticle coverage, can be primarily targeted by pathogenic bacteria (Ishizaki et al., 2015). GUS

191 reporter-based promoter analysis indicated that *MpLYK1* and *MpLYR* are primarily expressed in
192 assimilatory filaments and upper epidermis (Figure 2b), consistent with their potential roles in
193 PTI in *M. polymorpha*. Indeed, the *Mplyk1^{ko}* mutant displayed hyper-susceptibility to the
194 pathogenic bacterium *Pseudomonas syringae* pv. *tomato* DC3000 (*Pto* DC3000) (Figure 3d and
195 3e). In this connection, *Atcerk1* mutants are known to be hyper-susceptible towards *Pto*
196 DC3000 (Ishizaki et al., 2013). Taken together, our results demonstrate that LysM-mediated PTI
197 is well-conserved in the liverwort.

198

199 **Phosphoproteomic analysis of LysM-mediated signaling pathway in *M. polymorpha***

200 To explore downstream signaling components of LysM receptors in *M. polymorpha*,
201 we performed differential phosphoproteomics upon chitin treatment. In total, we identified 218
202 proteins that were phospho-regulated 10 minutes after chitin treatment (Supplementary Table
203 S5), a time point at which the maximum level of MAPK dual phosphorylation was observed
204 (Figure 1d). As a proof of concept, upon chitin treatment, we observed phospho-regulation of
205 *MpLYK1* and *MpLYR* and the dual phosphorylation of *MpMPK1*, which is the only MAPK
206 orthologous to *AtMPK3*, *AtMPK4*, and *AtMPK6* (Figure 4a, 4b, 4c, and Supplementary Table
207 S5) (Ishizaki et al., 2008). Strikingly, homologs of PTI-related components described in
208 angiosperms are rather comprehensively identified as chitin-induced phospho-regulated proteins
209 (Figure 4a, 4b, and Supplementary Table S5), which includes homologs of RLCKs (receptor-
210 like cytoplasmic kinases), RBOH (respiratory burst oxidase homolog), OSCA (reduced
211 hyperosmolality-induced $[Ca^{2+}]$ increase), MAPKKK (MAPKK kinase), MAPKK (MAPK
212 kinase), MKP (MPK phosphatase), PP2C (protein phosphatase type 2C), WRKY, and CAMTA
213 (calmodulin-binding transcription activator). Secretion- and autophagy-related components
214 were also identified. This finding suggests that the intracellular signaling mechanisms leading to
215 defense responses are also conserved in the liverwort.

216

217 **Phototropin is required for repressing the induced defense-related genes in *M. polymorpha***

218 Our phosphoproteome profiling identified various components for which roles in PTI
219 have not yet been described, including the blue-light receptor phototropin MpPHOT (Figure 4a
220 and Supplementary Table S5). Phototropins from various plant species including MpPHOT are
221 known to be activated by blue-light irradiation through induction of auto-phosphorylation,
222 which can be visualized by a phosphorylation-dependent mobility shift on SDS-PAGE (Sugano
223 et al., 2018). Blue-light irradiation but not chitin treatment induced a mobility shift of MpPHOT
224 (Figure 5a), indicating that these two stimuli induce phosphorylation at different sites on
225 MpPHOT. Indeed, differential phosphoproteomics upon blue-light irradiation revealed that
226 different sites are phosphorylated upon chitin treatment and upon blue-light irradiation (Figure
227 5b and Supplementary Table S6). To investigate a potential role of MpPHOT in PTI, we
228 compared the chitin-induced transcriptional response of the *Mpphot^{ko}* mutant (female) and wild-
229 type Tak-2 (female). K-mean clustering of DEGs identified a gene group, Cluster 6, that is
230 uniquely up-regulated in the *Mpphot^{ko}* mutant 24 hours after chitin treatment (Figure 5c). GO
231 analysis of genes in cluster 6 revealed that defense-related genes are upregulated in the
232 *Mpphot^{ko}* mutant (Figure 5d). Expression kinetics of the cluster 6 genes indicated that MpPHOT
233 is required for switching off gene expression during recovery from immune activation (Figure
234 5e). Besides, chitin-induced ROS burst was slightly upregulated in the *Mpphot^{ko}* mutant (Figure
235 5f). Correspondingly, the *Mpphot^{ko}* mutant displayed enhanced resistance to *Pto* DC3000
236 (Figure 5g). These results suggest a potential role of phototropin in optimal recovery of plants
237 from unwanted long-term immune activation. The *M. polymorpha* system established here and
238 the reported transcriptome and phosphoproteome datasets could contribute to further dissection
239 of molecular mechanisms of PTI in plants.

240

241 **Discussion**

242 PTI plays a vital role in angiosperms, but its significance in bryophytes remains

243 elusive. In the moss *P. patens*, chitin treatment induces MAPK activation, defense-related gene
244 expression, and cell wall modification in a *PpCERK1*-dependent manner (Sugano et al., 2018).
245 *PpCERK* is a LYKa-type LysM receptor homolog, which presumably functions as a chitin and
246 PGN receptor or as a co-receptor for signal transduction. However, a contribution of *PpCERK1*
247 to resistance against pathogenic microbes has not yet been demonstrated. Growth of the
248 liverwort *M. polymorpha* is inhibited by crude extracts from the bacterial and fungal pathogens,
249 *Pto* DC3000, *Plectosphaerella cucumerina*, and *Fusarium oxysporum* (Ishizaki et al., 2013).
250 Crude extracts and chitohexaose treatment can also induce defense-related gene expression in
251 *M. polymorpha* (Redkar et al., 2022). Note that the analyzed defense-related genes have not
252 been confirmed to be PTI-specific marker genes, and, significantly, genetic evidence for the
253 existence of PRRs that sense potential MAMPs is missing in *M. polymorpha*. ROS burst plays
254 an important role during PTI in angiosperms, which can be a good readout for investigating
255 PTI-related components. However, MAMP-induced ROS burst in bryophytes has not yet been
256 reported. Our establishment of a robust ROS burst monitoring method, which utilizes clonal
257 gemmae, and the identification of chitin and PGN fragments as ROS burst-triggering MAMPs
258 will be instrumental in unraveling PTI pathways in the liverwort model *M. polymorpha*. Indeed,
259 using this system we were able to identify *MpLYK1* and *MpLYR* as potential PRRs that are
260 required for sensing chitin and PGN in *M. polymorpha* (Figure 3a and Supplementary Figure
261 S8). In order to define whether *MpLYK1* and/or *MpLYR* function as bona fide MAMP
262 receptors, further biochemical study is required. By characterizing the chitin-induced
263 transcriptional response and through the use of *Mplyk1^{ko}* and *Mplyr^{ge}* mutants, we were able to
264 identify PTI-specific marker genes. Our finding that *MpLYK1* is required for resistance against
265 infection by the bacterial pathogen *Pto* DC3000 could be the first evidence demonstrating the
266 significance of PTI in bryophytes (Figure 3d and 3e). As the *Mplyr^{ge}* mutant did not display
267 hyper-susceptibility to *Pto* DC3000 (Figure 3d), there might be other PRRs that can detect
268 bacterial MAMPs and function together with *MpLYK1*.

269 Well-studied PRRs such as *A. thaliana* FLS2 and EFR, which recognize flg22 and
270 elf18, respectively, are LRR-RLKs from subfamily XII (LRR-RLK-XIIs). Genome analysis of
271 *M. polymorpha* and a recent study on the expansion of immune receptor gene repertoires in
272 plants revealed that LRR-RLK-XII genes have undergone expansion within each plant species,
273 but with no apparent FLS2 and EFR homologs in many species including *M. polymorpha* (Ngou
274 et al., 2022). Therefore, it is not surprising that flg22 and elf18 did not induce ROS burst in *M.*
275 *polymorpha* (Figure 1a). It would be interesting to investigate whether LRR-RLK-XIIs in *M.*
276 *polymorpha* also function as PRRs by sensing unidentified MAMPs.

277 In contrast to LRR-RLK-XIIs, LysM receptors are found to be rather well-conserved
278 across entire land plant lineages. Our phylogenetic analysis based on ectodomain of LysM
279 receptor homologs indicated that LysM receptors of land plants can be classified into four
280 subgroups (Figure 2a and Supplementary Figure S4). The liverwort *M. polymorpha* and the
281 hornworts, *Anthoceros agrestis* and *Anthoceros punctatus*, have a single gene in each subgroup.
282 LysM receptor homologs of Charophyceae, *Chara braunii* and *Nitella mirabilis*, form an
283 independent subgroup (Figure 2a and Supplementary Figure S4). This implies that the last
284 common ancestor of land plants was equipped with a LysM receptor, which might have
285 originated from a streptophyte algae LysM receptor, and suggest that the ancestral LysM
286 receptor was duplicated and sub-functionalized early after terrestrialization and before the
287 emergence of the diversified land plant lineages. Based on studies in angiosperms and
288 considering that LYR-type receptors presumably lack kinase activity, LYRs, including MpLYR,
289 may generally contribute to ligand perception. Concomitantly, LYKa may generally function as
290 a co-receptor for intracellular signal transduction. In *A. thaliana* and rice, several LYPs function
291 as PGN receptors (Liu et al., 2012; Willmann et al., 2011), whereas, in *M. polymorpha*, we
292 found that MpLYP is not required for PGN-induced ROS burst (Figure 3a and Supplementary
293 Figure S8). Along the same lines, *P. patens* has lost LYP but is able to sense PGN. In different
294 plant lineages, LYPs have sub-functionalized to gain or lose PGN-binding ability. Other LYPs,

295 i.e., OsCEBiP and AtLYM2, function as chitin receptors (Faulkner et al., 2013; Kaku et al.,
296 2006). AtLYM2 does not play a role in conventional PTI responses but regulates chitin-induced
297 plasmodesmata (PD) closure (Faulkner et al., 2013). Expression of MpLYP in storage cells may
298 suggest that MpLYP plays a distinct role compared to MpLYKs and MpLYR. It would be
299 interesting to investigate whether MpLYP plays a role in PD regulation as AtLYM2. LYKb-type
300 receptors seem to have undergone less expansion but have been retained in most plant species
301 with the exception of mosses. Except for a few studies that have described roles of AtLYK3 in
302 the crosstalk between immunity and responses induced by Nod factors or abscisic acid, the
303 molecular functions of LYKb are less understood (Liang et al., 2013; Paparella et al., 2014).
304 Further characterization of MpLYK2 may help to uncover the fundamental role of LYKb in
305 plants.

306 LysM receptors also play a key role in symbiosis establishment. It is thought that the
307 last common ancestor of land plants could establish mutualism with arbuscular mycorrhizal
308 (AM) fungi (Rich et al., 2021). Although *M. polymorpha* is a non-mycorrhizal plant, liverworts
309 in Marchantiales including *Marchantia paleacea* can accommodate AM fungi (Humphreys et
310 al., 2010). Smooth rhizoids of liverworts were shown to be an entry point of AM fungi (Russell
311 and Bulman, 2005). We found that MpLYK genes are also expressed in the smooth rhizoids and
312 rhizoid precursor cells (Supplementary Figure S8). This observation suggests a potential role of
313 LysM receptors in AM symbiosis in Marchantiales. Analysis of LysM receptor homologs in
314 *Marchantia paleacea* would resolve this possibility.

315 Our phosphoproteome analysis identified several proteins that putatively function
316 downstream of MpLYK1 (Figure 4). We found that the juxtamembrane (JM) domains of
317 MpLYK1 and MpLYR are phospho-regulated upon chitin treatment. The JM domain of
318 AtCERK1 plays a significant role in chitin signal transduction and was shown to be
319 phosphorylated, although the JM domain is generally less conserved at the amino acid sequence
320 level (Suzuki et al., 2019; Zhou et al., 2020). The phospho-regulation of LysM receptor JM

321 domain could be widely conserved regardless of the low sequence conservation. The RBOH is
322 responsible for ROS burst during PTI in plants. In *A. thaliana*, flg22 and elf18 treatment
323 activates AtBIK1, which is a subfamily VIIa RLCK (Supplementary Figure S10), to
324 phosphorylate the N-terminal region of AtRBOHD, whose phosphorylation is required for
325 MAMP-induced ROS burst (Kadota et al., 2014). AtBIK1 preferentially phosphorylates the
326 [S/T]xxL motif (Kadota et al., 2014). We identified two serine residues in the N-terminal region
327 of MpRBOH2 that were phosphorylated in the chitin-treated condition (Figure 4c). We found
328 that these two phospho-sites correspond to the phospho-sites in AtRBOHD targeted by AtBIK1.
329 These results suggest that MpRBOH2 is responsible for chitin-induced ROS burst and that the
330 AtBIK1 homolog functions downstream of MpLYK1 to activate MpRBOH2. Consistently, we
331 found that the only subfamily VIIa RLCK in *M. polymorpha*, MpRLCKVIIa, to be phospho-
332 regulated upon chitin treatment. In *A. thaliana*, RLCKs that belong to the subfamily VIIb and
333 VIIc, but not VIIa, function downstream of AtCERK1 (Bi et al., 2018; Yamada et al., 2016).
334 However, phospho-regulation of the two remaining RLCK VII in *M. polymorpha* was not
335 detected in our analysis. These results suggest that MpRLCKVIIa is responsible for MpLYK1-
336 dependent signaling, although further genetic analysis is needed to confirm this idea. We find it
337 intriguing that RLCK VIIa, group A1 MAPKKK, and group A MAPKK, which function
338 downstream of LRR-RLK-type PRRs in *A. thaliana*, presumably function downstream of
339 LysM-type PRRs in *M. polymorpha* (Figure 4d). Given that the subfamily XII LRR-RLK
340 receptors, which may not function as PRRs in bryophytes, are less conserved in plants, it is
341 possible that LRR-RLK-type PRRs were a tracheophyte innovation and utilized existing PTI
342 signaling components. Considerable expansion of PRR repertoires and downstream kinases and
343 the establishment of complex body plans may have led LysM-type PRRs to utilize other
344 signaling components. It is also possible that *M. polymorpha* has lost signaling components and
345 has uniquely evolved to have a very simple PTI pathway.

346 Phototropins function as blue-light receptors in tracheophytes as well as in bryophytes

347 and regulate a wide range of blue-light responses (Christie, 2007; Kasahara et al., 2004;
348 Komatsu et al., 2014). Recently, potato phototropins, StPHOT1 and StPHOT2, were shown to
349 promote *Phytophthora infestans* infection in *Nicotiana benthamiana* (Naqvi et al., 2022).
350 Conversely, virus-induced silencing of *N. benthamiana* phototropin genes reduced *P. infestans*
351 colonization in *N. benthamiana* (Naqvi et al., 2022). This suggests that phototropin negatively
352 regulates defense against oomycete pathogens in Solanaceae. Similarly, in this study, we found
353 that the only phototropin in *M. polymorpha*, MpPHOT, negatively regulates defense against the
354 bacterial pathogen *Pto* DC3000 (Figure 5g). Chitin-induced transcriptional reprogramming was
355 found to be transient both in *M. polymorpha* and *A. thaliana* (Figure 1e and Supplementary
356 Figure S2a), which is not surprising because a constitutive immune activation is thought to be
357 costly for plants. However, little is still known about the molecular mechanisms of how plants
358 recover from immune activation. We found that chitin-induced early responses were not
359 markedly affected in *Mpphot*^{ko} (Figure 5e and 5f), indicating that *Mpphot*^{ko} is not an
360 autoimmune mutant exhibiting enhanced PTI responses. Instead, we revealed that *Mpphot*^{ko} has
361 a defect in properly switching off defense-related gene expression or eliminating induced
362 defense-related genes at a later time points (Figure 5e). Further study is needed to unravel the
363 molecular mechanisms underlying this intriguing phenomenon and the significance of chitin-
364 induced phosphorylation of MpPHOT. It is also important to investigate whether phototropin-
365 dependent regulation of defense gene expression is generally conserved in other plant species.

366 In summary, this study demonstrates that LysM-type PRR-dependent PTI is highly
367 conserved in *M. polymorpha* and that *M. polymorpha* is an attractive plant model for
368 investigating PTI in plants. It is our hope that the methods and genetic resources reported here
369 as well as the transcriptome and phosphoproteome data will facilitate further dissection of PTI
370 and its evolution.

371

372 **Materials and Methods**

373 ***Plant materials and growth condition***

374 Male and female accessions of *M. polymorpha*, Takaragaike-1 (Tak-1) and Takaragaike-2 (Tak-
375 2), respectively were used as wild-type. Plants were grown on 1/2 Gamborg's B5 medium
376 containing 1% agar at 22 °C under 50–60 $\mu\text{mol photons m}^{-2}\text{s}^{-1}$ continuous white fluorescent
377 light. Six-day-old gemmalings (cultured mature gemmae) in liquid 1/2 Gamborg's B5 medium
378 containing 0.1% sucrose with shaking at 130 rpm were used for the ROS assay, MAP kinase
379 assay, RT-PCR, and quantitative RT-PCR (qRT-PCR).

380

381 ***ROS assay***

382 Four 6-day-old gemmalings were incubated in water containing 100 μM 8-amino-5-chloro-7-
383 phenylpyrido [3,4-d] pyridazine-1,4-(2H,3H) (L-012) (Wako, Japan) for 2 hours at 22 °C under
384 darkness, followed by transfer to water containing different elicitors. ROS production was
385 determined by counting photons derived from L-012-mediated chemiluminescence using
386 NightSHADE LB985 (Berthold Technologies, Germany) or SpectraMax i3 (Molecular Devices,
387 USA).

388

389 ***MAP kinase assay***

390 Four 6-day-old gemmalings were treated with 1 $\mu\text{g/ml}$ N-acetylchitooctaose (GN8) or mock,
391 then proteins were extracted using extraction buffer (50 mM Tris-HCl (pH 7.5), 10 mM MgCl₂,
392 15 mM EGTA, 100 mM NaCl, 2 mM DTT, 1 mM sodium fluoride, 0.5 mM Na₃VO₄, 30 mM β -
393 glycerophosphate, 0.1% (v/v) NP-40, and cOmplete protease inhibitor cocktail EDTA-free
394 tablet (Roche, Germany)). Phosphorylated MAPK proteins were detected by immunoblot
395 analysis with antiphospho-p44/42 MAPK (Erk1/2)(Thr202/Tyr204) (D13.14.4E) rabbit mAb
396 (Cell Signaling Technology, USA). The blotted membrane was stained with Coomassie Brilliant
397 blue (CBB) to verify equal loading.

398

399 ***RNA-seq analysis***

400 Twenty to thirty 9-day-old Tak-2 and *Mpphot^{ko}* plants were transferred to petri dishes with water
401 and incubated for one day and then harvested without treatment or treated with 1 μ M N-
402 acetylchitoheptaose (GN7) for 1, 3, 24 hours or with mock for 1, 3, 24 hours. Thirty-five 8-day-
403 old *A. thaliana* Col-8 seedlings, which were cultured in 1/2 MS liquid medium containing 0.1%
404 sucrose at 22 $^{\circ}$ C under 50–60 μ mol photons $m^{-2}s^{-1}$ long day condition, were transferred to petri
405 dishes with water and incubated for one day and then harvested without treatment or treated
406 with 100 μ M N-acetylchitoheptaose (GN7) for 1, 3, 24 hours or with mock for 1, 3, 24 hours.
407 RNA-Seq library preparation was carried out using a high-throughput RNA-Seq method
408 (Kumar et al., 2012). The 100-bp paired-end reads were sequenced on an Illumina Hiseq 4000
409 platform by BGI (www.genomics.cn). The *M. polymorpha* genome files were obtained from
410 MarpolBase (*MpTak1v5.1*; <https://marchantia.info/download/tak1v5.1/>). We combined
411 functional annotations from JGI Phytozome (<https://genome.jgi.doe.gov/portal/>) and Ghost
412 Koala KEGG (Kanehisa et al., 2016). The genome files of *A. thaliana* were obtained from JGI
413 Phytozome. The following functional annotation sets were combined for the analyses,
414 Carbohydrate Active Enzyme database (CAZy; (Lombard et al., 2014)), the Gene Ontology
415 (GO; (The Gene Ontology Consortium, 2015)), Kyoto Encyclopedia of Genes and Genomes
416 (KEGG; (Ogata et al., 1999)), and EuKaryotic Orthologous Groups (KOG; (Tatusov et al.,
417 2003)), PFAM (Finn et al., 2016), Panther (Thomas et al., 2003), and MEROPS (Rawlings et
418 al., 2018). MEROPS and GO terms were obtained based on KEGG, GO, PFAM, IDs using R
419 packages KEGG.db (Carlson, 2016), GO.db (Carlson, 2019), and PFAM.db (Carlson et al.,
420 2018). The raw reads were quality-trimmed using Fastp with default parameters (Chen et al.,
421 2018). We performed mapping reads and counting transcripts per gene with the *A. thaliana* and
422 *M. polymorpha* genomes using STAR (Dobin et al., 2013). The log2 fold difference of the gene
423 expression between conditions was calculated with R package DESeq2 (Love et al., 2014). The

424 genes with very low count were excluded (less than 10 reads summed from all conditions) for
425 the analyses. Genes with statistical significance were selected (FDR adjusted $p < 0.05$).
426 Normalized read counts of the genes were also produced with DESeq2, which were
427 subsequently log2 transformed. Differentially expressed genes were grouped using K-means
428 clustering with R package, pheatmap (Kolde, 2019). All procedures were orchestrated with the
429 visual pipeline SHIN+GO (Miyauchi et al., 2016; 2017; 2018; 2020). R was used for operating
430 the pipeline (R Core Team, 2013). The RNA-seq data used for the study are available (#####
431 accession number here - data deposition in progress). The gene ontology (GO) enrichment
432 analysis for DEGs was performed by Metascape (<https://metascape.org>) (Zhou et al., 2019) or
433 agriGO v2.0 (<http://systemsbiology.cpolarr.cn/agriGOv2/>) (Tian et al., 2017). For GO analysis of
434 DEGs in *M. polymorpha*, the best BLASTP hit genes in *A. thaliana* was used
435 (Best.hit.arabi.name_v3.1 in Supplementary Table S7 and S11).

436

437 ***Database search***

438 Amino acid sequences of LysM receptor homologs were obtained from the following databases:
439 <https://www.arabidopsis.org> for *Arabidopsis thaliana*, <https://lotus.au.dk> for *Lotus japonicus*,
440 https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Mtruncatula for *Medicago truncatula*, http://groups.english.kib.cas.cn/epb/dgd/Download/201711/t20171101_386248.html
441 for *Cuscuta australis*, https://www.plabipd.de/project_cuscuta2/start.ep for *Cuscuta campestris*,
442 https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Smoellendorffii for *Selaginella moellendorffii*, https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Sfallax for
443 *Sphagnum fallax*, https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Ppatens for
444 *Physcomitrium patens*, <https://marchantia.info> for *Marchantia polymorpha*, and
445 <https://bioinformatics.psb.ugent.be/orcae/overview/Chbra> for *Chara braunii*. *LysM* genes in
446 *Oryza sativa* were previously described in (Liu et al., 2012; Shimizu et al., 2010). The *LysM*
447 gene in *Nitella mirabilis* was previously described in (Delaux et al., 2015).

450

451 ***Phylogenetic analysis of LysM receptor homologs***

452 Alignment of full-length proteins was constructed using MUSCLE alignment implemented in
453 the Geneious 9.1.2 software package (Biomatters; <http://www.geneious.com>) at the default
454 parameters, and then LysM1, LysM2, and LysM3 domains, which were previously defined in
455 (Madsen et al., 2003), were extracted from the full-length protein alignment. An unrooted or
456 rooted maximum-likelihood phylogenetic tree was constructed using PhyML program ver. 2.2.0
457 (Guindon and Gascuel, 2003) implemented in the Geneious software, using the LG as
458 substitution model.

459

460 ***Genomic DNA extraction***

461 Total DNA was extracted from approximately 1 g of fresh weight of 6-day-old gemmalings
462 using the Cetyl trimethyl ammonium bromide (CTAB) method as previously described in
463 (Kubota et al., 2014) or using ISOPLANT II (Nippon gene).

464

465 ***RNA extraction and cDNA synthesis***

466 Total RNA was extracted from 6-day-old gemmalings using the RNeasy Plant Mini Kit
467 (QIAGEN) or NucleoSpin RNA Plant (Macherey-Nagel). First-strand complementary DNA was
468 synthesized from 0.5 µg total RNA using a ReverTra Ace qPCR RT Master Mix with gDNA
469 Remover (TOYOBO).

470

471 ***Plasmid constructions and transformation***

472 The 5 kbp putative promoter fragment upstream of the translation initiation codon of each gene
473 was cloned into pENTR4 dual-selection vector (Thermo Fisher SCIENTIFIC, USA) using an
474 In-Fusion HD cloning kit, and then they were subcloned into binary vector pMpGWB104
475 (Ishizaki et al., 2015) for constructing *proMpLYK1:GUS*, *proMpLYK2:GUS*, *proMpLYR:GUS*, and

476 *proMpLYP:GUS* using LR clonase II enzyme mix. To generate the targeting vectors for *Mplyk1*-
477 *I^{ko}*, *Mplyk1-2^{ko}*, *Mplyk2^{ko}*, and *Mplyp^{ko}*, homologous arms were amplified from Tak-1 genomic
478 DNA using KOD Plus Neo (Toyobo, Japan). The PCR-amplified fragments of the 5' end and 3'
479 end were cloned into the *PacI* site and *Ascl* site of pJHY-TMp1 (Ishizaki et al., 2013),
480 respectively, using an In-Fusion HD cloning kit (Clontech Laboratories, USA). Targeting
481 vectors were introduced into F1 sporelings of *M. polymorpha* derived from crosses between
482 Tak-1 and Tak-2, as described previously (Ishizaki et al., 2008). To generate the targeting
483 vectors for *Mplyr-1^{ge}*, *Mplyr-2^{ge}*, and *Mplyr-3^{ge}*, annealed oligos for an *MpLYR*-targeting
484 gRNA1 and an *MpLYR*-targeting gRNA2 were ligated into *BsaI*-digested pMpGE_En03
485 (Sugano et al., 2018) using an T4 DNA ligase (NEB, UK). *Mplyr-1^{ge}* was generated using
486 *MpLYR*-targeting gRNA1. *Mplyr-2^{ge}* was generated using both *MpLYR*-targeting gRNA1 and
487 gRNA2. *Mplyr-3^{ge}* was generated using *MpLYR*-targeting gRNA2. *MpLYR*-targeting gRNAs
488 were subcloned into binary vector pMpGE010 (Sugano et al., 2018) using LR clonase II
489 enzyme mix (Thermo Fisher SCIENTIFIC, USA). Screening for homologous recombination-
490 mediated gene-targeted lines was performed by genomic PCR as described previously (Ishizaki
491 et al., 2013). Screening for CRISPR/Cas9-mediated targeted mutagenesis lines was performed
492 by genomic PCR as described previously (Sugano et al., 2014). The open reading frame (ORF)
493 fragment of *MpLYK1* and *MpLYK2* was cloned into corresponding pENTR4-promoter, and then
494 they were subcloned into binary vector pMpGWB301 (Ishizaki et al., 2015) for constructing
495 *proMpLYK1:MpLYK1* and *proMpLYK2:MpLYK2*. The ORF fragment of *MpLYP* was cloned into
496 pENTR4. The ORF fragment of *MpLYR* was cloned into pENTR4, then the PAM sequence of
497 *MpLYR* in pENTR4-*MpLYR* was mutated, as shown in Supplementary Figure S5d, using
498 PrimeSTAR® Mutagenesis Basal Kit (TaKaRa, Japan) so as not to be targeted by
499 CRISPR/Cas9. pENTR4-*proMpLYP* and pENTR4-*proMpLYP* were subcloned into binary vector
500 pMpGWB301, and then the ORF fragment of *MpLYP* and mMpLYR was cloned into the
501 corresponding pMpGWB301-promoter for constructing *proMpLYP:MpLYP* and

502 *proMpLYR:mMpLYR*. The resultant plasmids were introduced into corresponding knockout
503 mutants, as described previously (Ishizaki et al., 2013). The primers used are listed in
504 Supplementary Table S3 (No. 1–46).

505

506 ***Assays for GUS activity and sectioning***

507 Histochemical GUS assays were performed according to the method described by (Jefferson et
508 al., 1987) with some modifications, as previously described (Ishizaki et al., 2012). For
509 sectioning, GUS-stained samples were embedded into Technovit 7100 resin according to the
510 manufacturer's instructions (Heraeus Kulzer). Embedded samples were then sectioned into 10
511 μm -thick sections using RM2125 RTS microtome (Leica, Germany) with TC-65 tungsten blade.

512

513 ***Confocal laser scanning microscopy***

514 Five-day-old gemmalings grown on 1/2 \times Gamborg's B5 medium containing 1.0% (w/v) sucrose
515 and 1.0% (w/v) agar at 22 °C under continuous white light were used for observation. The
516 samples were mounted in a 1/2 \times Gamborg's B5 liquid medium and observed using an LSM780
517 confocal microscope (Carl Zeiss) equipped with an oil immersion lens (63 \times , numerical aperture
518 = 1.4). The plant expressing MpLYK1-mCitrine was excited at 488 nm (Argon) and 561 nm
519 (DPSS 561-10), and emissions between 482–659 nm were collected. The plant expressing
520 MpLYR-mTurquoise2 was excited at 405 nm (Diode 405-30)), and emissions between 428–659
521 nm were collected. Spectral unmixing of the obtained images was conducted using ZEN2012
522 software (Carl Zeiss).

523

524 ***Quantitative RT-PCR or semi quantitative RT-PCR***

525 Quantitative RT-PCR was performed using a LightCycler 96 (Roche, Basel, Switzerland).
526 Thunderbird SYBR qPCR Mix (Toyobo) was used for amplification. Mp $EF1\alpha$ was used as an
527 internal standard. Semi quantitative RT-PCR was performed using a thermal cycler. Mp $ACT1$

528 was used as an internal standard. Primers used for qRT-PCR and semi qRT-PCR are listed in
529 Supplementary Table S3 (No. 47–90).

530

531 ***Bioluminescence-based bacteria quantification***

532 Bacterial quantification in infected thalli was carried out as described before (Matsumoto et al.,
533 2022). Briefly, *M. polymorpha* were grown on autoclaved cellophane disc on half-strength GB5
534 medium for two weeks. In the meantime, *Pto-lux* was cultivated in King's B medium containing
535 30 µg/mL rifampicin to achieve an OD₆₀₀ of 1.0. The saturated bacterial culture was
536 subsequently washed and resuspended in Milli-Q water to prepare a bacterial suspension with of
537 an OD₆₀₀ of 1.0. Next, 2-week-old thalli were submerged in the bacterial suspension followed
538 by vacuum for 5 min and incubation for 0 to 3 days on pre-wetted filter papers. After
539 incubation, thallus discs (5 mm diameter) were punched from the basal region using a sterile
540 biopsy punch (pfm medical) and transferred to a 96-well plate (VWR). Bioluminescence was
541 measured in a FLUOstar Omega plate reader (BMG Labtech).

542

543 ***Phosphoproteome analysis***

544 Ten 10-day-old Tak-2 gemmalings, which were cultured in 1/2 B5 liquid medium containing
545 0.1% sucrose, were transferred to petri dishes with water and incubated in the dark at 22 °C for 3
546 days. Then gemmalings were treated with 1 µg/ml N-acetylchitooligosaccharide (GN8) or mock for 10
547 min in dark condition or irradiated with blue-light (90 µmol m⁻²s⁻¹) (MIL-B18, SANYO
548 Electric, Japan) for 10 min at room temperature and then immediately frozen with liquid
549 nitrogen. Sample preparation and liquid chromatography-tandem mass spectrometry (LC–
550 MS/MS) analysis was performed as described previously with minor modifications (Koide et
551 al., 2020). Raw data were processed using MaxQuant software (version 1.6.3.4,
552 <http://www.maxquant.org/>) (Cox and Mann, 2008) with label-free quantification (LFQ) and
553 iBAQ enabled (Tyanova et al., 2016). MS/MS spectra were scanned by the Andromeda search

554 engine against a combined database containing the sequences from *M. polymorpha*
555 (MpTak1v5.1_r1.protein.fasta, <https://marchantia.info/download/tak1v5.1/>), sequences of 248
556 common contaminant proteins, and decoy sequences. Trypsin specificity was required and a
557 maximum of two missed cleavages allowed. Minimal peptide length was set to seven amino
558 acids. Carbamidomethylation of cysteine residues was set as fixed, phosphorylation of serine,
559 threonine and tyrosine, oxidation of methionine and protein N-terminal acetylation as variable
560 modifications. The match between runs option was enabled. Peptide-spectrum-matches and
561 proteins were retained if they were below a false discovery rate of 1% in both cases. Statistical
562 analysis of the intensity values obtained for the phospho-modified peptides
563 (“modificationSpecificPeptides.txt” output file) was carried out using Perseus (version 1.5.8.5,
564 <http://www.maxquant.org/>). Intensities were filtered for reverse and contaminant hits and the
565 data was filtered to retain only phospho-modified peptides. Next, intensity values were log2
566 transformed. After grouping samples by condition only those sites were retained for the
567 subsequent analysis that had four valid values in one of the conditions in case of GN8 vs mock
568 analysis and two valid values in one of the conditions in case of GN8, blue-light, mock analysis.
569 Two-sample t-tests were performed using a permutation-based FDR of 0.05. Alternatively, the
570 valid value-filtered data was median-normalized and missing values were imputed from a
571 normal distribution, using the default settings in Perseus (1.8 downshift, separately for each
572 column). The Perseus output was exported and further processed using Excel and RStudio. The
573 MS proteomics data have been deposited in the ProteomeXchange Consortium via the PRIDE
574 partner repository with the dataset identifiers PXD038903 and PXD038907.

575

576 **Key resources table**

Reagent or Resources	Source	Identifier
Bacterial and virus strains		

<i>Escherichia coli</i> DH5a	Widely distributed	N/A
<i>Agrobacterium tumefaciens</i> GV2260	Widely distributed	N/A
bioluminescent <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 (<i>Pto</i> -lux)	(Matsumoto et al., 2022)	N/A
Chemicals, peptides, and recombinant proteins		
L-012	TaKaRa	Cat#120-04891
flg22	eurofins	N/A
elf18	eurofins	N/A
Lipopolysaccharides from <i>Pseudomonas aeruginosa</i> serotype 10	SIGMA	L9143
GN6 (N-acetylchitohexaose)	SEIKAGAKU BIOBUSINESS CORPORATION	Cat#400427
GN7 (N-acetylchitoheptaose)	ELICITYL	GLU437
GN8 (N-acetylchitooctaose)	Naoto Shibuya, Meiji University	N/A
Peptidoglycan from <i>Bacillus subtilis</i>	SIGMA	Cat#69554
Peroxidase from horseradish	SIGMA	P8125
Phospho-p44/42 MAPK (Erk1/2)(Thr202/Thr204)(D13.14.4E)XP Rabbit mAb	Cell Signaling	Cat#4370
goat anti-rabbit IgG-HRP	SANTA CRUZ BIOTECHNOLOGY, INC.	sc-2004
ISOPLANT II	NIPPON GENE	Cat#310-04151
RNeasy Plant Mini Kit	QIAGEN	Cat#74904
NucleoSpin RNA Plant	Clontech	Cat#740949.50
ReverTra Ace qPCR RT Master Mix with gDNA Remover	TOYOBO	FSQ-301
KOD-Plus-Neo	TOYOBO	KOD-401
KOD FX Neo	TOYOBO	KFX-201
Quick Taq HS DyeMix	TOYOBO	DTM-101

PrimeSTAR Mutagenesis Basal Kit	TaKaRa	R046A
In-Fusion HD cloning kit	Clontech	Cat#639649
Gateway LR Clonase II Enzyme Mix	ThermoFisher	Cat#11791020
THUNDERBIRD SYBR qPCR Mix	TOYOBO	QPS-201
5-Bromo-4chloro-3-indolyl β -D-glucuronide cyclohexylamine salt (X-gluc)	Rose Scientific Ltd.	ES-1007-001
α -MpPHOT	(Komatsu et al., 2014)	N/A
Experimental models: Organisms/strain		
<i>Marchantia polymorpha</i> : Tak-1	Takayuki Kohchi, Kyoto University	N/A
<i>Marchantia polymorpha</i> : Tak-2	Takayuki Kohchi, Kyoto University	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK1:GUS</i> /Tak-1	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK2:GUS</i> /Tak-1	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYR:GUS</i> /Tak-1	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYP:GUS</i> /Tak-1	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyk1-I^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyk1-2^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyk2^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyr-1^{ge}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyr-2^{ge}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyr-3^{ge}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mplyp^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK1:MpLYK1^{#1}/Mplyk1-I^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK1:MpLYK1^{#2}/Mplyk1-I^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK2:MpLYK2^{#1}/Mplyk2^{ko}</i>	This study	N/A

<i>Marchantia polymorpha</i> : <i>proMpLYK2: MpLYK2^{#2}/MpLyk2^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYR: MpLYR^{#1}/MpLyR-<i>I^{ge}</i></i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYR: MpLYR^{#2}/MpLyR-<i>I^{ge}</i></i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYP: MpLYP^{#1}/MpLyP^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYP: MpLYP^{#2}/MpLyP^{ko}</i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYK1: MpLYK1-mCitrine/MpLyk1-<i>I^{ko}</i></i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>proMpLYR: MpLYR-mTurquoise2/MpLyR-<i>I^{ge}</i></i>	This study	N/A
<i>Marchantia polymorpha</i> : <i>Mpphot^{ko}</i>	(Komatsu et al., 2014)	N/A
<i>Arabidopsis thaliana</i> : <i>Col-8</i>	Widely distributed	N/A
Oligonucleotides		
Oligonucleotides used in this study are in Supplementary Table S3	This study	N/A
Recombinant DNA		
<i>pJHY-TMp1</i>	(Ishizaki et al., 2013)	N/A
<i>pJHY-TMp1-MpLYK1_HR2k</i>	This study	N/A
<i>pJHY-TMp1-MpLYK1_HR4k</i>	This study	N/A
<i>pJHY-TMp1-MpLYK2</i>	This study	N/A
<i>pJHY-TMp1-MpLYP</i>	This study	N/A
<i>pMpGE_En03</i>	(Sugano et al., 2018)	N/A
<i>pMpGE_En03-MpLYR oligo1</i>	This study	N/A
<i>pMpGE010</i>	(Sugano et al., 2018)	N/A
<i>pMpGE010-MpLYR</i>	This study	N/A
<i>pENTR4</i>	ThermoFisher	Cat#A10465
<i>pENTR4-<i>proMpLYK1</i></i>	This study	N/A
<i>pENTR4-<i>proMpLYK1: MpLYK1</i></i>	This study	N/A

<i>pENTR4-_{pro}MpLYK2</i>	This study	N/A
<i>pENTR4-_{pro}MpLYK2:MpLYK2</i>	This study	N/A
<i>pENTR4-_{pro}MpLYR</i>	This study	N/A
<i>pENTR4-MpLYR</i>	This study	N/A
<i>pENTR4-mMpLYR</i>	This study	N/A
<i>pENTR4-_{pro}MpLYP</i>	This study	N/A
<i>pENTR4-MpLYP</i>	This study	N/A
<i>pMpGWB104</i>	(Ishizaki et al., 2015)	N/A
<i>pMpGWB104-_{pro}MpLYK1:GUS</i>	This study	N/A
<i>pMpGWB104-_{pro}MpLYK2:GUS</i>	This study	N/A
<i>pMpGWB104-_{pro}MpLYR:GUS</i>	This study	N/A
<i>pMpGWB104-_{pro}MpLYP:GUS</i>	This study	N/A
<i>pMpGWB301</i>	(Ishizaki et al., 2015)	N/A
<i>pMpGWB301-_{pro}MpLYK1:MpLYK1</i>	This study	N/A
<i>pMpGWB301-_{pro}MpLYK2:MpLYK2</i>	This study	N/A
<i>pMpGWB301-_{pro}MpLYR:mMpLYR</i>	This study	N/A
<i>pMpGWB301-_{pro}MpLYP:MpLYP</i>	This study	N/A
<i>pMpGWB338</i>	Takayuki Kohchi, Kyoto University	N/A
<i>pMpGWB338-_{pro}MpLYK1:MpLYK1-mCitrine</i>	This study	N/A
<i>pMpGWB340</i>	Takayuki Kohchi, Kyoto University	N/A
<i>pMpGWB340-_{pro}MpLYR:mTurquoise2</i>	This study	N/A
<i>pMpGWB340-_{pro}MpLYP:mTurquoise2</i>	This study	N/A
<i>pMpGWB340-_{pro}MpLYR:mMpLYR-mTurquoise2</i>	This study	N/A

578 **Acknowledgments**

579 We thank Naoto Shibuya (Meiji University, Japan) for providing N-acetylchitooctaose. We
580 thank Neysan Donnelly (MPIPZ, Germany) for editing the manuscript.

581

582 **Funding**

583 This project was supported by the Max Planck Society and was conducted in the framework of
584 MAdLand (<http://madland.science>, Deutsche Forschungsgemeinschaft (DFG) priority
585 programme 2237). HN is grateful for funding by the DFG (NA 946/1-1). This work was
586 supported by JSPS KAKENHI Grant Numbers, 24688007 and 15H01247 to HN, 22H00364 to
587 KS, 22H04723 to MS, 19H05675, 19H05670, and 21H02515 to T.U., and by Japan Science and
588 Technology Agency ‘Preliminary Research for Embryonic Science and Technology’
589 (JPMJPR22D3), the Takeda Science Foundation, and the Kato Memorial Bioscience Foundation
590 to MS.

591

592 **Author contributions**

593 I.Y. and H.N. designed the research. I.Y., S.S., H.I., K.M., R.N., and T.Ko. generated plant
594 materials. T.Ka., K.M., H.J., and T.U. performed microscopic analysis. T.S., S.G.I., K.M., and
595 R.S. performed *Pto* DC3000 infection assay. I.Y., Y.I., M.S., K.S., and S.M. performed
596 transcriptomic analysis. I.Y., Y.N., H.M., S.C.S., and H.N. performed phosphoproteomic
597 analysis. I.Y. performed all other experiments. I.Y., H.M., and H.N. wrote the manuscript. All
598 authors corrected the manuscript.

599

600 **Competing interests**

601 The authors declare no competing interests.

602

603 **Figure Legends**

604 **Figure 1. MAMP responses in *M. polymorpha*.** (a-c) MAMP-induced reactive oxygen species
605 (ROS) production in Tak-1 (male wild-type) and Tak-2 (female wild-type). ROS production
606 after MAMP treatment was measured by chemiluminescence mediated by L-012 in 6-day-old
607 gemmalings. (a) Wild-type gemmalings were treated with 1 μ M flg22, 1 μ M elf18, 100 μ g/ml
608 lipopolysaccharide (LPS) derived from *Pseudomonas aeruginosa*, or 1 μ g/ml N-
609 acetylchitooctaose (GN8) with HRP (horseradish peroxidase). (b) Wild-type gemmalings were
610 treated with 1 μ M N-acetylchitohexaose (GN6) or 500 μ g/ml peptidoglycan (PGN) derived
611 from *Bacillus subtilis*. (c) Wild-type gemmalings were treated with 1 μ M N-acetylchitohexaose
612 (GN6), GN7, or GN8. The values represent the average and standard errors of four replicates.
613 (d) GN8-induced MAPK activation in Tak-1. Tak-1 gemmalings were treated with 1 μ g/ml GN8
614 for the indicated times. Activated MAPKs were detected by immunoblotting using anti-p44/42
615 MAPK antibody. (e) Clusters of *M. polymorpha* DEGs. Significantly differentially expressed
616 genes with over ± 2 log2 fold changes (FDR adjusted $p < 0.05$) were grouped based on K-means
617 clustering. K-means cluster ID is shown on the left bar. Log2 read count of genes was
618 normalized into the range of ± 2 . See Supplementary Table S7. (f) Enriched GO terms in the *M.*
619 *polymorpha* DEGs (Fig. 1e). See Supplementary Table S8.

620

621 **Figure 2. LysM receptor homologs in *M. polymorpha*.** (a) Unrooted phylogenetic tree of
622 LysM proteins in plants. Amino acid sequences of ectodomain including LysM1, LysM2, and
623 LysM3 domain were used for drawing the tree. A graphical view of the tree has been generated
624 using iTOL. Width of branches denote bootstrap support based on 1000 repetitions. Major
625 subgroups were designated as LYKa, LYKb, LYR, LYP, and Charophyceae type. The proteins
626 containing the basic P-Loop (GxGxF/YG) or no P-Loop are shown by red circles or red flames,
627 respectively. The proteins containing modified P-Loops (See Supplementary Table S2) or no
628 full-length sequences in the databases are shown by black circles or black flames, respectively.

629 The membrane anchored-type proteins are shown by blue circles. *M. polymorpha* proteins are
630 highlighted in red letters. Abbreviations: At, *Arabidopsis thaliana*; Mt, *Medicago truncatula*; Lj,
631 *Lotus japonicus*; Os, *Oryza sativa*; Ca, *Cuscuta australis*; Cc, *Cuscuta campestris*; Sm,
632 *Selaginella moellendorffii*; Sf, *Sphagnum fallax*; Pp, *Physcomitrium patens*; AaO, *Anthoceros*
633 *agrestis* [Oxford]; Ap, *Anthoceros punctatus*; Mp, *Marchantia polymorpha*; Nm, *Nitella*
634 *mirabilis*; Cb, *Chara braunii*; Sp, *Spirogyra pratensis*. (b) GUS-staining images of 10-day-old
635 thalli harboring *proMpLYK1:GUS*, *proMpLYK2:GUS*, *proMpLYR:GUS*, and *proMpLYP:GUS*,
636 respectively. The section is between the dorsal side and the ventral side containing the air
637 chamber. (c) Plasma-membrane localization of MpLYK1-mCitrine and MpLYR-mTurquoise2.
638 Magnified images of the boxed regions are also shown. Single confocal images of *M.*
639 *polymorpha* thallus cells expressing MpLYK1-mCitrine or MpLYR-mTurquoise2. Green, cyan,
640 and blue pseudo-colors indicate the fluorescence from mCitrine, mTurquoise2, and chlorophyll,
641 respectively. Bars = 50 μ m in wide images and 10 μ m in magnified images. Note that the cell
642 wall of air pore cells emitted autofluorescence, which is difficult to distinguish from the
643 fluorescence of mTurquoise2 in our experimental condition.

644

645 **Figure 3. MpLYK1 and MpLYR are required for chitin- or PGN-induced responses (a, b)**
646 Chitin or PGN-induced ROS burst in LysM receptor homolog disruptants. Six-day-old
647 gemmalings of wild-type plants, disruptants, and complementation lines were treated with 1 μ M
648 GN7 (a) or 500 μ g/ml PGN from *Bacillus subtilis* (b). The boxplot indicates total value of RLU
649 measured by a luminometer for 30 min after GN7 treatment (a) or for 120 min after PGN
650 treatment. Boxes show upper and lower quartiles of the value, and black lines represent the
651 medians. Statistical groups were determined using Tukey HSD test for four replicates.
652 Statistically significant differences are indicated by different letters (p < 0.05) (c) Chitin-
653 induced marker gene expression in wild-type plants and disruptants. Six-day-old gemmalings
654 were treated with 1 μ M GN7 or mock for 1 hour. *MpLRR-RLK*: Mp2g23700.1, *MpRBOH2*:

655 Mp3g20340.1, MpWRKY3: Mp5g05560.1, MpPAL1: Mp7g14880.1, Mpchitinase:
656 Mp4g20440.1. Data are shown as the mean \pm SE. Statistical groups were determined using the
657 Tukey HSD test for four replicates. Statistically significant differences are indicated by different
658 letters ($p < 0.05$). (d, e) Quantification of bacterial growth in the basal region of thalli,
659 inoculated with the bioluminescent *Pto-lux* ($n = 8$). dpi, days post-inoculation. Statistical
660 analysis was performed using Student t-test with p-values adjusted by the Benjamini and
661 Hochberg (BH) method. Statistically significant differences are indicated by different letters (p
662 < 0.05).

663

664 **Figure 4. Chitin-induced phosphoproteome changes in *M. polymorpha*.** (a) Volcano plots
665 showing differential abundance of phosphopeptides between *M. polymorpha* gemmalings
666 treated with 1 μ g/ml GN8 or mock. Each dot represents a single unique phosphopeptide.
667 Significantly increased and decreased phosphopeptides are colored red and blue, respectively
668 ($|\text{Log}_2\text{FC}| > 0.58$, $p < 0.01$). (b) Predicted chitin signaling pathway in *M. polymorpha* based on
669 the identified phospho-regulated proteins. (c) Conservation and diversification of the identified
670 phospho-sites. Identified phosphopeptides are marked with red box. Predicted phospho-sites are
671 colored red. Confidently localized phospho-sites are further underlined. Phospho-site
672 information on AtCERK1 is based on (Suzuki et al., 2019). Serine residues colored green in
673 AtRBOHD are targets of AtBIK1 reported in (Kadota et al., 2014). Abbreviations: At,
674 *Arabidopsis thaliana*; Sm, *Selaginella moellendorffii*; AaO, *Anthoceros agrestis* [Oxford]; Mp,
675 *Marchantia polymorpha*. (d) Schematic representation of PRR signaling pathways in *M.*
676 *polymorpha* and *A. thaliana*.

677

678 **Figure 5. MpPHOT plays a role in PTI in *M. polymorpha*.** (a) Western blot analysis of
679 MpPHOT upon 1 μ g/ml GN8 treatment or blue-light (BL) irradiation under the light or dark
680 condition. (b) Phosphopeptides from MpPHOT induced upon GN8 treatment or blue-light

681 irradiation identified by phosphoproteomics. Phosphopeptides induced by GN8 treatment and
682 blue-light irradiation are colored red and blue, respectively. See Supplementary Table S5 and
683 S6. (c) Clusters of *M. polymorpha* DEGs. Significantly differentially expressed genes showing
684 over ± 1 log2 fold change were grouped based on K-means clustering. Cluster IDs are shown on
685 the left bar. The read count of genes was normalized into the range of ± 2 . See Supplementary
686 Table S11. (d) Enriched GO terms in the K-means cluster 6 (Fig. 5c). (e) The transcription
687 dynamics of the genes from the K-means cluster 6 (Fig. 5c) showing higher expression trends in
688 GN7-treated condition. Yellow lines indicate mean values. (f) Chitin-induced ROS burst in
689 *Mpphot^{ko}*. Six-day-old gemmalings were treated with 1 μ M N-acetylchitoheptaose (GN7). The
690 boxplot indicates total value of RLU measured by luminometer for 30 min after GN7 treatment.
691 Boxes show upper and lower quartiles of the value, and black lines represent the medians.
692 Statistical groups were determined using Tukey HSD test for four replicates. Statistically
693 significant differences are indicated by different letters ($p < 0.05$). (g) Quantification of bacterial
694 growth in the basal region of thallus, inoculated with the bioluminescent *Pto*-lux ($n = 8$). dpi,
695 days post-inoculation. Statistical analysis was performed using Student t-test with p-values
696 adjusted by the Benjamini and Hochberg (BH) method. Statistically significant differences are
697 indicated by different letters ($p < 0.05$).
698

699 **Supplemental information**

700 **Figure S1. Alignment of LYKs and LYRs in *M. polymorpha* and *A. thaliana*.**

701

702 **Figure S2. Chitin-induced transcriptional reprogramming in *A. thaliana* seedlings.** (a)
703 Clusters of *A. thaliana* DEGs. Significantly differentially expressed genes with over ± 2 log2
704 fold changes (FDR adjusted $p < 0.05$) were grouped based on K-means clustering. K-means
705 cluster ID is shown on the left bar. Log2 read count of genes was normalized into the range of
706 ± 2 . See Supplementary Table S9. (b) Enriched GO terms in the *M. polymorpha* DEGs

707 (Supplementary Figure S2a). See Supplementary Table S10.

708

709 **Figure S3. MpWRKY gene expression upon chitin treatment in *M. polymorpha* Tak-1.** Six-
710 day-old gemmalings were treated with 1 μ g/ml N-acetylchitohexaose (GN6) or N-
711 acetylchitooctaose (GN8) for the indicated times. MpACT1 was used as an internal control.

712

713 **Figure S4. Circular phylogenetic tree of LysM proteins in plants.** Circular version of the
714 phylogenetic tree in Figure 2a.

715

716 **Figure S5. MpLysM disruptants generated and used in this study.** (a) Schematic
717 representation of the targeted disruption of the MpLYK1, MpLYK2, and MpLYP locus by
718 homologous recombination and disruption of the MpLYR locus by genome editing. All
719 disruptants were generated using F1 sporelings of *M. polymorpha* derived from crosses between
720 Tak-1 and Tak-2. Mp $lyk1$ - 1^{ko} , Mp $lyk2$ ko , Mp lyp ko , Mp lyr - 2^{ge} , and Mp lyr - 3^{ge} are male. Mp $lyk1$ - 2^{ko}
721 and Mp lyr - 1^{ge} are female. 416 bp or 43 bp were deleted as indicated in Mp lyr - 1^{ge} or Mp lyr - 2^{ge} ,
722 respectively. 55 bp was inserted as indicated in Mp lyr - 3^{ge} . Blue boxes and yellow boxes indicate
723 LysM and kinase domains, respectively. Red arrows indicate primer set for amplifying the
724 genomic region used for replacing the *hygromycin phosphotransferase (hptII)* cassette in
725 MpLYK1, MpLYK2, and MpLYP locus or the edited region in the MpLYR locus. (b) The
726 transcribed region of the LysM genes. Blue boxes and yellow boxes indicate LysM and kinase
727 domains, respectively. Grey boxes indicate untranslated region. Red arrows indicate primer set
728 for amplifying the full-length coding sequences of LysM genes in *M. polymorpha*. (c) The
729 amplification of the genome region or full-length cDNA of LysM genes in WT (Tak-1 and Tak-
730 2) and disruptants using the primer sets shown in (a) and (b). (d) The mutation which did not
731 result in an amino acid substitution so as not to be targeted by the construct directed at MpLYR
732 was inserted for MpLYR complementation to Mp lyr - 1^{ge} .

733

734 **Figure S6. MpLysM gene expression in wild-type and the transgenic plants.** MpLYK1 (a),
735 MpLYK2 (b), MpLYR (c), and MpLYP (d) expression in 6-day-old gemmalings grown in $\frac{1}{2}$ B5
736 liquid medium containing 0.1% sucrose examined by qRT-PCR. The values represent the
737 average and standard errors of three replicate experiments.

738

739 **Figure S7. Chitin or PGN-induced ROS burst in LysM receptor homolog disruptants.** (a-f)
740 Six-day-old gemmalings of wild-type plants, disruptants, and complementation lines were
741 treated with $1\mu\text{M}$ GN7 (a, c) or 500 $\mu\text{g}/\text{ml}$ PGN from *Bacillus subtilis* (b, d). The boxplot
742 indicates total value of RLU measured by luminometer for 30 minutes after GN7 treatment (e)
743 or for 2 hours after PGN treatment (f). (g-o) Six-day-old gemmalings of independent disruptants
744 or complementation lines were treated with GN7 (g, i, k) or PGN (h, j, l). The boxplot (m-o)
745 indicates total value of RLU measured by luminometer for 30 minutes after GN7 treatment or
746 for 2 hours after PGN treatment. Boxes show upper and lower quartiles of the value, and black
747 lines represent the medians. Statistical groups were determined using the Tukey HSD test.
748 Statistically significant differences are indicated by different letters ($p < 0.05$).

749

750 **Figure S8. Expression profiles of MpLysM genes.** GUS-staining images of plants harboring
751 *proMpLYK1:GUS*, *proMpLYK2:GUS*, *proMpLYR:GUS*, and *proMpLYP:GUS*. (a-d) One-day-old
752 gemmalings. (e-h) Two-day-old gemmalings. (i-l) Seven-day-old gemmalings. (m-p) Ten-day-
753 old thallus, dorsal side. (q-t) 12-day-old thallus with rhizoids. Bars = 200 μm in (a-h), 500 μm in
754 (i-l), and 2 mm in (m-t).

755

756 **Figure S9. Unrooted phylogenetic tree of the subfamily VII RLCK in plants.** The full-
757 length amino acid sequences (Supplementary Table S4) were used for MUSCLE alignment
758 analysis and PhyML tree analysis. A graphical view of the tree has been generated using iTOL.

759 Width of branches denote bootstrap support based on 100 repetitions. The four major
760 subfamilies were designated as VIIa, VIIb, VIIc, and VIId based on the classification by (Shiu
761 et al., 2004).

762

763 **Table S1. Amino acid sequences used for drawing phylogenetic tree of LysM proteins**

764

765 **Table S2. LysM proteins containing modified P-Loops**

766

767 **Table S3. Oligonucleotides used in this study**

768

769 **Table S4. Amino acid sequences used for drawing phylogenetic tree of the subfamily VII**

770 **RLCK**

771

772 **Table S5. Phosphoproteome data upon chitin treatment**

773

774 **Table S6. Phosphoproteome data upon chitin or blue-light treatment**

775

776 **Table S7. RNA-seq data used for Figure 1e**

777

778 **Table S8. GO analysis used for Figure 1f**

779

780 **Table S9. RNA-seq data used for Supplementary Figure S2a**

781

782 **Table S10. GO analysis result used for Supplementary Figure S2b**

783

784 **Table S11 RNA-seq data used for Figure 5c**

786 **References**

787 Bi, G., Zhou, Z., Wang, W., Li, L., Rao, S., Wu, Y., et al. (2018). Receptor-Like Cytoplasmic
788 Kinases Directly Link Diverse Pattern Recognition Receptors to the Activation of Mitogen-
789 Activated Protein Kinase Cascades in Arabidopsis. *Plant Cell* 30, 1543–1561.
790 doi:10.1105/tpc.17.00981.

791 Boller, T., and Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated
792 molecular patterns and danger signals by pattern-recognition receptors. *Annu. Rev. Plant
793 Biol.* 60, 379–406. doi:10.1146/annurev.arplant.57.032905.105346.

794 Bowman, J. L., Kohchi, T., Yamato, K. T., Jenkins, J., Shu, S., Ishizaki, K., et al. (2017).
795 Insights into Land Plant Evolution Garnered from the *Marchantia polymorpha* Genome.
796 *Cell* 171, 287–299.e15. doi:10.1016/j.cell.2017.09.030.

797 Bressendorff, S., Azevedo, R., Kenchappa, C. S., Ponce de León, I., Olsen, J. V., Rasmussen, M.
798 W., et al. (2016). An innate immunity pathway in the moss *Physcomitrella patens*. *Plant
799 Cell* 28, 1328–1342. doi:10.1105/tpc.15.00774.

800 Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., et al. (2014).
801 The kinase LYK5 is a major chitin receptor in *Arabidopsis* and forms a chitin-induced
802 complex with related kinase CERK1. *eLife* 3, 1504–19. doi:10.7554/eLife.03766.

803 Carella, P., Gogleva, A., Tomaselli, M., Alfs, C., and Schornack, S. (2018). *Phytophthora
804 palmivora* establishes tissue-specific intracellular infection structures in the earliest
805 divergent land plant lineage. *PNAS* 115, E3846–E3855. doi:10.1073/pnas.1717900115.

806 Carlson, M. (2016). KEGG.db: A set of annotation maps for KEGG. R package version 3.2.3.
807 doi:10.18129/B9.bioc.KEGG.db.

808 Carlson, M. (2019). GO.db: A set of annotation maps describing the entire Gene Ontology. R
809 package version 3.8.2. doi:10.18129/B9.bioc.GO.db.

810 Carlson, M., Liu, T., Lin, C., Falcon, S., Zhang, J., and MacDonald, J. (2018). PFAM.db: A set
811 of protein ID mappings for PFAM. R package version 3.6.0.

812 Carotenuto, G., Chabaud, M., Miyata, K., Capozzi, M., Takeda, N., Kaku, H., et al. (2017). The
813 rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain
814 chitin oligomers in arbuscular mycorrhizal signaling. *New Phytol.* 214, 1440–1446.
815 doi:10.1111/nph.14539.

816 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
817 preprocessor. *Bioinformatics* 34, i884–i890. doi:10.1093/bioinformatics/bty560.

818 Chinchilla, D., Bauer, Z., Regenass, M., Boller, T., and Felix, G. (2006). The *Arabidopsis*
819 Receptor Kinase FLS2 Binds flg22 and Determines the Specificity of Flagellin Perception.
820 *Plant Cell* 18, 465–476. doi:10.1105/tpc.105.036574.

821 Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberg, T., Jones, J. D. G., et al.
822 (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.
823 *Nature* 448, 497–501. doi:10.1038/nature05999.

824 Christie, J. M. (2007). Phototropin Blue-Light Receptors. *Annu. Rev. Plant Biol.*, 21–45.
825 doi:10.1146/annurev.arplant.58.032806.103951.

826 Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates,
827 individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. *Nat.*
828 *Biotechnol.* 26, 1367–1372. doi:10.1038/nbt.1511.

829 Delaux, P.-M., Radhakrishnan, G. V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening, J.
830 D., et al. (2015). Algal ancestor of land plants was preadapted for symbiosis. *PNAS* 112,
831 13390–13395. doi:10.1073/pnas.1515426112.

832 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., et al. (2013). STAR:
833 ultrafast universal RNA-seq aligner. *Bioinformatics* 29, 15–21.
834 doi:10.1093/bioinformatics/bts635.

835 Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., et al.
836 (2013). LYM2-dependent chitin perception limits molecular flux via plasmodesmata. *PNAS*
837 110, 9166–9170. doi:10.1073/pnas.1203458110/-DCSupplemental.

838 Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et al. (2016).
839 The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.*
840 44, D279–D285. doi:10.1093/nar/gkv1344.

841 Gimenez-Ibanez, S., Zamarreño, A. M., García-Mina, J. M., and Solano, R. (2019). An
842 Evolutionarily Ancient Immune System Governs the Interactions between *Pseudomonas*
843 *syringae* and an Early-Diverging Land Plant Lineage. *Current Biology* 29, 2270–2281.e4.
844 doi:10.1016/j.cub.2019.05.079.

845 Guindon, S., and Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate
846 Large Phylogenies by Maximum Likelihood. *Systematic Biology* 52, 696–704.
847 doi:10.1080/10635150390235520.

848 Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M., and Nürnberg, T. (2012). Plant LysM
849 proteins: modules mediating symbiosis and immunity. *Trends Plant Sci.* 17, 495–502.
850 doi:10.1016/j.tplants.2012.04.003.

851 Humphreys, C. P., Franks, P. J., Rees, M., Bidartondo, M. I., Leake, J. R., and Beerling, D. J.
852 (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. *Nat.*
853 *Commun.* 1, 1–7. doi:10.1038/ncomms1105.

854 Ishizaki, K., Chiyoda, S., Yamato, K. T., and Kohchi, T. (2008). *Agrobacterium*-Mediated
855 Transformation of the Haploid Liverwort *Marchantia polymorpha* L., an Emerging Model
856 for Plant Biology. *Plant Cell Physiol.* 49, 1084–1091. doi:10.1093/pcp/pcn085.

857 Ishizaki, K., Johzuka-Hisatomi, Y., Ishida, S., Iida, S., and Kohchi, T. (2013). Homologous
858 recombination-mediated gene targeting in the liverwort *Marchantia polymorpha* L. *Sci Rep*
859 3, 1888–6. doi:10.1038/srep01532.

860 Ishizaki, K., Nishihama, R., Ueda, M., Inoue, K., Ishida, S., Nishimura, Y., et al. (2015).
861 Development of Gateway Binary Vector Series with Four Different Selection Markers for
862 the Liverwort *Marchantia polymorpha*. *PLoS ONE* 10, e0138876–13.
863 doi:10.1371/journal.pone.0138876.

864 Ishizaki, K., Nonomura, M., Kato, H., Yamato, K. T., and Kohchi, T. (2012). Visualization of
865 auxin-mediated transcriptional activation using a common auxin-responsive reporter
866 system in the liverwort *Marchantia polymorpha*. *J Plant Res* 125, 643–651.
867 doi:10.1007/s10265-012-0477-7.

868 Iwakawa, H., Melkonian, K., Schlüter, T., Jeon, H.-W., Nishihama, R., Motose, H., et al. (2021).
869 *Agrobacterium*-Mediated Transient Transformation of *Marchantia* Liverworts. *Plant Cell*
870 *Physiol.* 62, 1718–1727. doi:10.1093/pcp/pcab126.

871 Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987). GUSfusions: β -glucuronidase as a
872 sensitive and versatile gene fusion marker in higher plants. *EMBO J.* 6, 3901–3907.

873 Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., et al. (2014).
874 Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1
875 during Plant Immunity. *Molecular Cell* 54, 43–55. doi:10.1016/j.molcel.2014.02.021.

876 Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., et
877 al. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma
878 membrane receptor. *PNAS* 103, 11086–11091.

879 Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG
880 Tools for Functional Characterization of Genome and Metagenome Sequences. *Journal of*
881 *Molecular Biology* 428, 726–731. doi:10.1016/j.jmb.2015.11.006.

882 Kasahara, M., Kagawa, T., Sato, Y., Kiyosue, T., and Wada, M. (2004). Phototropins Mediate
883 Blue and Red Light-Induced Chloroplast Movements in *Physcomitrella patens*. *Plant*
884 *Physiol.* 135, 1388–1397. doi:10.1104/pp.104.042705.

885 Koide, E., Suetsugu, N., Iwano, M., Gotoh, E., Nomura, Y., Stolze, S. C., et al. (2020).
886 Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the
887 Liverwort *Marchantia polymorpha*. *Plant Cell Physiol.* 61, 631–643.
888 doi:10.1093/pcp/pcz232.

889 Kolde, R. (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12. Available at:

890 https://CRAN.R-project.org/package=pheatmap.

891 Komatsu, A., Terai, M., Ishizaki, K., Suetsugu, N., Tsuboi, H., Nishihama, R., et al. (2014).
892 Phototropin Encoded by a Single-Copy Gene Mediates Chloroplast Photorelocation
893 Movements in the Liverwort *Marchantia polymorpha*. *Plant Physiol.*, 411–427.
894 doi:10.1104/pp.114.245100.

895 Kubota, A., Ishizaki, K., Hosaka, M., and Kohchi, T. (2014). Agrobacterium-Mediated
896 Transformation of the Liverwort *Marchantia polymorpha* Using Regenerating Thalli.
897 *Biosci. Biotechnol. Biochem.* 77, 167–172. doi:10.1271/bbb.120700.

898 Kumar, R., Ichihashi, Y., Kimura, S., Chitwood, D. H., Headland, L. R., Peng, J., et al. (2012).
899 A high-throughput method for Illumina RNA-Seq library preparation. *Front. Plant Sci.* 3,
900 1–10. doi:10.3389/fpls.2012.00202/abstract.

901 Li, F.-W., Nishiyama, T., Waller, M., Frangedakis, E., Keller, J., Li, Z., et al. (2020).
902 *Anthoceros* genomes illuminate the origin of land plants and the unique biology of
903 hornworts. *Nat. Plants* 6, 259–272. doi:10.1038/s41477-020-0618-2.

904 Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E., and Walker, J. C. (2002). BAK1, an
905 *Arabidopsis* LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates
906 Brassinosteroid Signaling. *Cell* 110, 213–222. doi:10.1016/S0092-8674(02)00812-7.

907 Liang, Y., Cao, Y., Tanaka, K., Thibivilliers, S., Wan, J., Choi, J., et al. (2013). Nonlegumes
908 Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response. *Science*
909 341, 1384–1387. doi:10.1126/science.1242032.

910 Liu, B., Li, J.-F., Ao, Y., Qu, J., Li, Z., Su, J., et al. (2012). Lysin Motif-Containing Proteins
911 LYP4 and LYP6 Play Dual Roles in Peptidoglycan and Chitin Perception in Rice Innate
912 Immunity. *Plant Cell* 24, 3406–3419. doi:10.1105/tpc.112.102475.

913 Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M., and Henrissat, B. (2014). The
914 carbohydrate-active enzymes database (CAZy) in 2013. *Nucleic Acids Res.* 42, D490–D495.
915 doi:10.1093/nar/gkt1178.

916 Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
917 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15, 1–21. doi:10.1186/s13059-
918 014-0550-8.

919 Madsen, E. B., Madsen, L. H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., et al.
920 (2003). A receptor kinase gene of the LysM type is involved in legume perception of
921 rhizobial signals. *Nature* 425, 637–640.

922 Matsumoto, A., Schlueter, T., Melkonian, K., Takeda, A., Nakagami, H., and Mine, A. (2022). A
923 versatile Tn7 transposon-based bioluminescence tagging tool for quantitative and spatial
924 detection of bacteria in plants. *Plant Commun.* 3, 100227. doi:10.1016/j.xplc.2021.100227.

925 Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., et al. (2007). CERK1, a
926 LysM receptor kinase, is essential for chitin elicitor signaling in *Arabidopsis*. *PNAS* 104,
927 19613–19618.

928 Miyata, K., Kozaki, T., Kouzai, Y., Ozawa, K., Ishii, K., Asamizu, E., et al. (2014). The
929 Bifunctional Plant Receptor, OsCERK1, Regulates Both Chitin-Triggered Immunity and
930 Arbuscular Mycorrhizal Symbiosis in Rice. *Plant Cell Physiol.* 55, 1864–1872.
931 doi:10.1093/pcp/pcu129.

932 Miyauchi, S., Hage, H., Drula, E., Lesage-Meessen, L., Berrin, J.-G., Navarro, D., et al. (2020).
933 Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus
934 *Pycnoporus*. *DNA Res.* 27, 1–14. doi:10.1093/dnares/dsaa011.

935 Miyauchi, S., Navarro, D., Grigoriev, I. V., Lipzen, A., Riley, R., Chevret, D., et al. (2016).
936 Visual Comparative Omics of Fungi for Plant Biomass Deconstruction. *Front. Microbiol.* 7,
937 1335. doi:10.3389/fmicb.2016.01335.

938 Miyauchi, S., Navarro, D., Grisel, S., Chevret, D., Berrin, J.-G., and Rosso, M.-N. (2017). The
939 integrative omics of white-rot fungus *Pycnoporus coccineus* reveals co-regulated CAZymes
940 for orchestrated lignocellulose breakdown. *PLoS ONE* 12, e0175528.
941 doi:10.1371/journal.pone.0175528.

942 Miyauchi, S., Rancon, A., Drula, E., Hage, H., Chaduli, D., Favel, A., et al. (2018). Integrative
943 visual omics of the white-rot fungus *Polyporus brumalis* exposes the biotechnological
944 potential of its oxidative enzymes for delignifying raw plant biomass. *Biotechnol. Biofuels*
945 11, 1–14. doi:10.1186/s13068-018-1198-5.

946 Naqvi, S., He, Q., Trusch, F., Qiu, H., Pham, J., Sun, Q., et al. (2022). Blue-light receptor
947 phototropin 1 suppresses immunity to promote *Phytophthora infestans* infection. *New*
948 *Phytol.* 233, 2282–2293. doi:10.1111/nph.17929.

949 Ngou, B. P. M., Heal, R., Wyler, M., Schmid, M. W., and Jones, J. D. G. (2022). Concerted
950 expansion and contraction of immune receptor gene repertoires in plant genomes. *Nat.*
951 *Plants* 8, 1146–1152. doi:10.1038/s41477-022-01260-5.

952 Nishiyama, T., Sakayama, H., de Vries, J., Buschmann, H., Saint-Marcoux, D., Ullrich, K. K.,
953 et al. (2018). The Chara Genome: Secondary Complexity and Implications for Plant
954 Terrestrialization. *Cell* 174, 448–464. doi:10.1016/j.cell.2018.06.033.

955 Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., and Kanehisa, M. (1999). KEGG: Kyoto
956 Encyclopedia of Genes and Genomes. *Nucleic Acids Res.* 27, 29–34.

957 Paparella, C., Savatin, D. V., Marti, L., De Lorenzo, G., and Ferrari, S. (2014). The Arabidopsis
958 LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk
959 between Immunity and Abscisic Acid Responses. *Plant Physiol.* 165, 262–276.
960 doi:10.1104/pp.113.233759.

961 R Core Team (2013). A Language and Environment for Statistical Computing. R Foundation
962 for Statistical Computing.

963 Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A., and Finn, R. D. (2018).
964 The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and
965 a comparison with peptidases in the PANTHER database. *Nucleic Acids Res.* 46, D624–
966 D632. doi:10.1093/nar/gkx1134.

967 Redkar, A., Ibanez, S. G., Sabale, M., Zechmann, B., Solano, R., and Di Pietro, A. (2022).

968 *Marchantia polymorpha* model reveals conserved infection mechanisms in the vascular
969 wilt fungal pathogen *Fusarium oxysporum*. *New Phytol.* 234, 227–241.
970 doi:10.1111/nph.17909.

971 Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., et al. (2008). The
972 Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants.
973 *Science* 319, 64–69.

974 Rich, M. K., Vigneron, N., Libourel, C., Keller, J., Xue, L., Hajheidari, M., et al. (2021). Lipid
975 exchanges drove the evolution of mutualism during plant terrestrialization. *Science* 372,
976 864–868. doi:10.1126/science.abg0929.

977 Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., et al. (2011).
978 The *Arabidopsis* Leucine-Rich Repeat Receptor-Like Kinases BAK1/SERK3 and
979 BKK1/SERK4 Are Required for Innate Immunity to Hemibiotrophic and Biotrophic
980 Pathogens. 23, 2440–2455. doi:10.1105/tpc.111.084301.

981 Russell, J., and Bulman, S. (2005). The liverwort *Marchantia foliacea* forms a specialized
982 symbiosis with arbuscular mycorrhizal fungi in the genus *Glomus*. *New Phytol.* 165, 567–
983 579. doi:10.1111/j.1469-8137.2004.01251.x.

984 Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., et al.
985 (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate
986 chitin elicitor signaling in rice. *Plant J.* 64, 204–214. doi:10.1111/j.1365-
987 313X.2010.04324.x.

988 Shiu, S.-H., Karlowski, W. M., Pan, R., Tzeng, Y.-H., Mayer, K. F. X., and Li, W.-H. (2004).
989 Comparative Analysis of the Receptor-Like Kinase Family in *Arabidopsis* and Rice. *Plant
990 Cell* 16, 1220–1234. doi:10.1105/tpc.020834.

991 Sugano, S. S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S., et al. (2018).
992 Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic
993 analysis in *Marchantia polymorpha*. *PLoS ONE* 13, e0205117–22.

994 doi:10.1371/journal.pone.0205117.

995 Sugano, S. S., Shirakawa, M., Takagi, J., Matsuda, Y., Shimada, T., Hara-Nishimura, I., et al.

996 (2014). CRISPR/Cas9-Mediated Targeted Mutagenesis in the Liverwort *Marchantia*

997 *polymorpha* L. *Plant Cell Physiol.* 55, 475–481. doi:10.1093/pcp/pcu014.

998 Suzuki, M., Yoshida, I., Suto, K., Desaki, Y., Shibuya, N., and Kaku, H. (2019). AtCERK1

999 Phosphorylation Site S493 Contributes to the Transphosphorylation of Downstream

1000 Components for Chitin-Induced Immune Signaling. *Plant Cell Physiol.* 60, 1804–1810.

1001 doi:10.1093/pcp/pcz096.

1002 Tanaka, K., Nguyen, C. T., Liang, Y., Cao, Y., and Stacey, G. (2013). Role of LysM receptors

1003 in chitin-triggered plant innate immunity. *Plant Signal. Behav.* 8, e22598 147–153.

1004 doi:10.4161/psb.22598.

1005 Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., et al.

1006 (2003). The COG database: an updated version includes eukaryotes. *BMC Bioinform.* 4, 1–

1007 14. doi:10.1186/1471-2105-4-41.

1008 The Gene Ontology Consortium (2015). Gene Ontology Consortium: going forward. *Nucleic*

1009 *Acids Res.* 43, D1049–D1056. doi:10.1093/nar/gku1179.

1010 Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., et al. (2003).

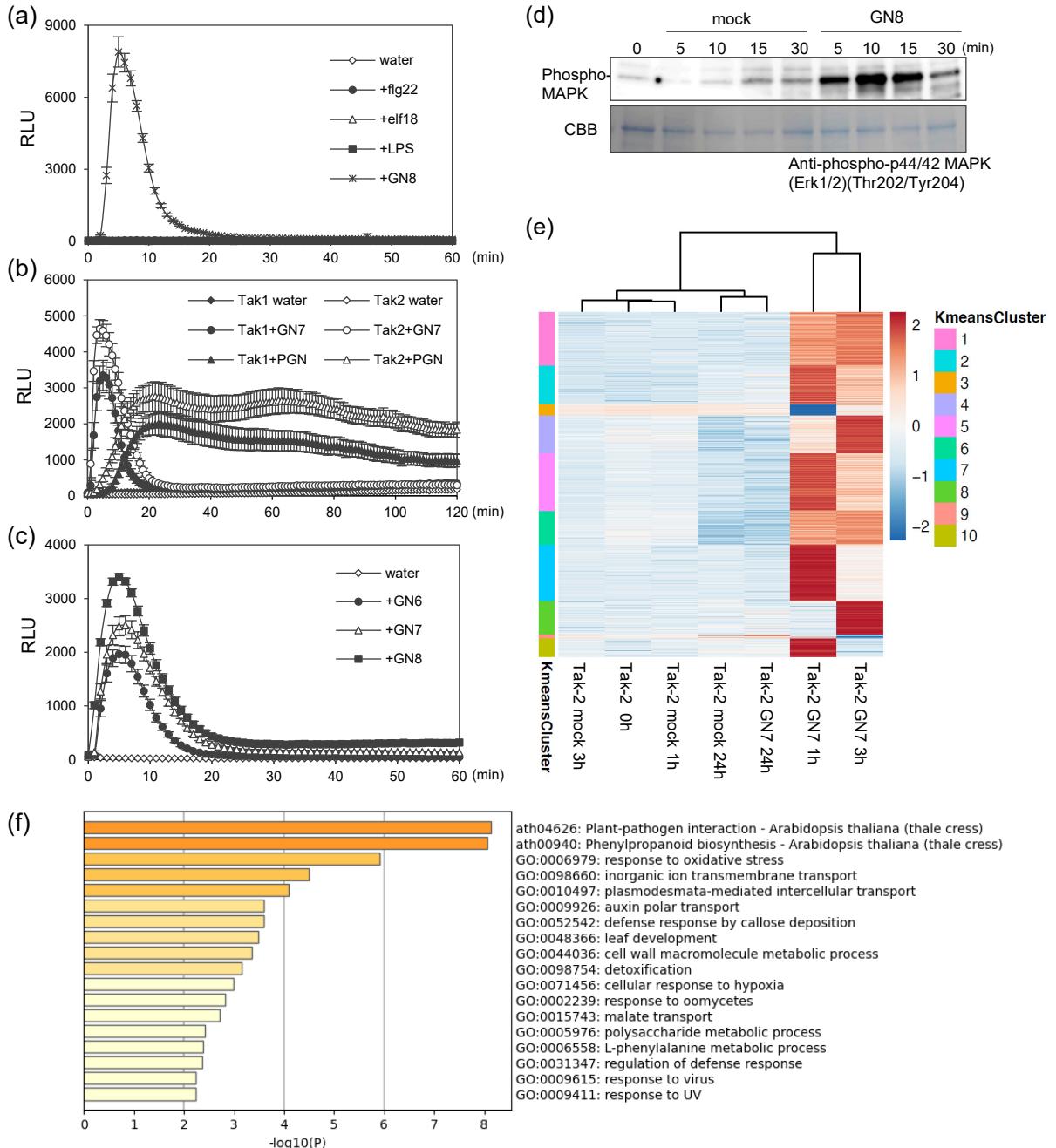
1011 PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. *Genome*

1012 *Research* 13, 2129–2141.

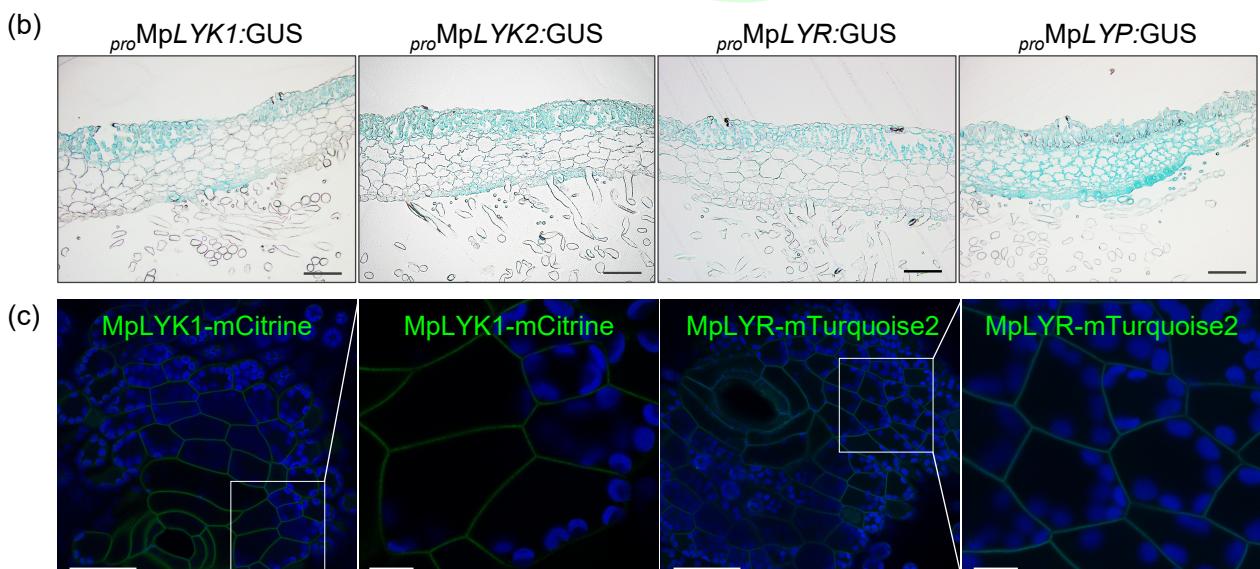
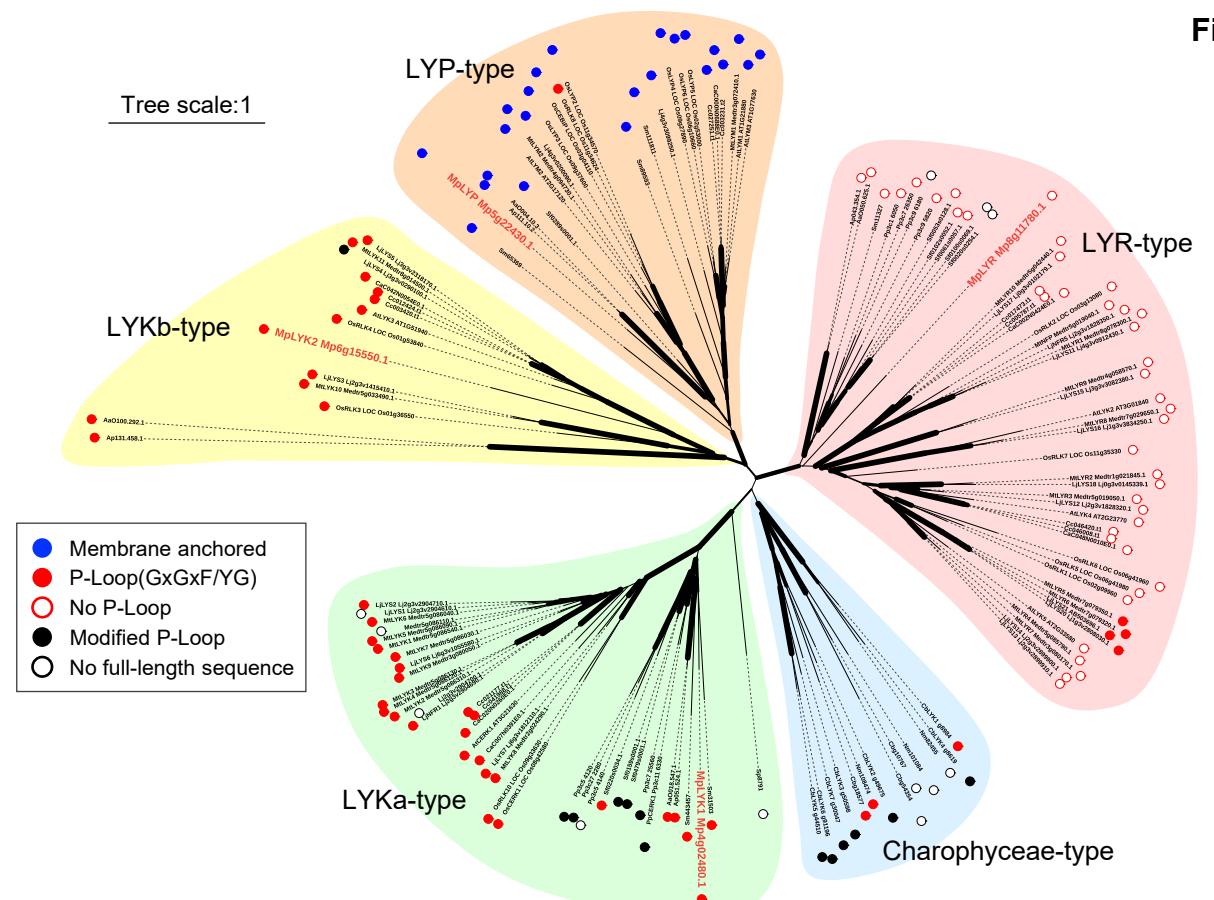
1013 Tian, T., Liu, Y., Yan, H., You, Q., Yi, X., Du, Z., et al. (2017). agriGO v2.0: a GO analysis

1014 toolkit for the agricultural community, 2017 update. *Nucleic Acids Res.* 45, W122–W129.

1015 doi:10.1093/nar/gkx382.


1016 Tyanova, S., Temu, T., and Cox, J. (2016). The MaxQuant computational platform for mass

1017 spectrometry–based shotgun proteomics. *Nature Protocols* 11, 2301–2319.



1018 doi:10.1038/nprot.2016.136.

1019 Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., et al. (2011).

1020 Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan
1021 sensing and immunity to bacterial infection. *PNAS* 108, 19824–19829.
1022 doi:10.1073/pnas.1112862108/-/DCSupplemental.
1023 Yamada, K., Yamaguchi, K., Shirakawa, T., Nakagami, H., Mine, A., Ishikawa, K., et al. (2016).
1024 The *Arabidopsis* CERK1-associated kinase PBL27 connects chitin perception to MAPK
1025 activation. *EMBO J.* 35, 2468–2483. doi:10.15252/embj.201694248.
1026 Zhang, J., Fu, X.-X., Li, R.-Q., Zhao, X., Liu, Y., Li, M.-H., et al. (2020). The hornwort genome
1027 and early land plant evolution. *Nat. Plants* 6, 107–118. doi:10.1038/s41477-019-0588-4.
1028 Zhang, X., Dong, W., Sun, J., Feng, F., Deng, Y., He, Z., et al. (2015). The receptor kinase
1029 *CERK1* has dual functions in symbiosis and immunity signalling. *Plant J.* 81, 258–267.
1030 doi:10.1111/tpj.12723.
1031 Zhou, Q., Liu, J., Wang, J., Chen, S., Chen, L., Wang, J., et al. (2020). The juxtamembrane
1032 domains of *Arabidopsis* CERK1, BAK1, and FLS2 play a conserved role in chitin-induced
1033 signaling. *J. Integr. Plant Biol.* 62, 556–562. doi:10.1111/jipb.12847.
1034 Zhou, Y., Bin Zhou, Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., et al. (2019).
1035 Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
1036 *Nat. Commun.* 10, 1–10. doi:10.1038/s41467-019-09234-6.
1037 Zipfel, C., and Oldroyd, G. E. D. (2017). Plant signalling in symbiosis and immunity. *Nature*
1038 543, 328–336. doi:10.1038/nature22009.
1039 Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T., et al. (2006).
1040 Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts *Agrobacterium*-
1041 mediated transformation. *Cell* 125, 749–760. doi:10.1016/j.cell.2006.03.037.
1042

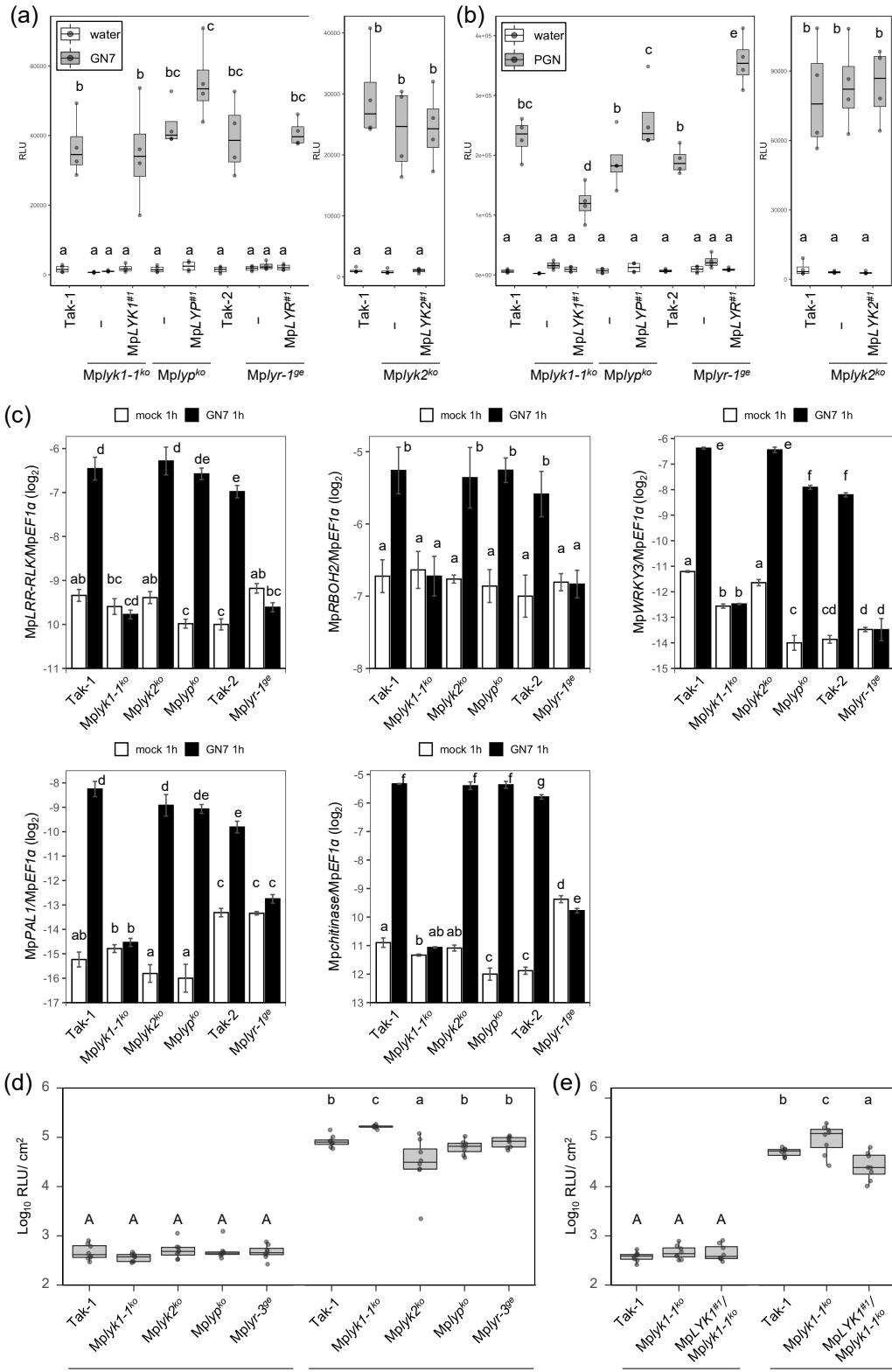


Figure 1. MAMP responses in *M. polymorpha*. (a-c) MAMP-induced reactive oxygen species (ROS) production in Tak-1 (male wild-type) and Tak-2 (female wild-type). ROS production after MAMP treatment was measured by chemiluminescence mediated by L-012 in 6-day-old gemmalings. (a) Wild-type gemmalings were treated with 1 μ M flg22, 1 μ M elf18, 100 μ g/ml lipopolysaccharide (LPS) derived from *Pseudomonas aeruginosa*, or 1 μ g/ml N-acetylchitooligosaccharide (GN8) with HRP (horseradish peroxidase). (b) Wild-type gemmalings were treated with 1 μ M N-acetylchitooligosaccharide (GN7) or 500 μ g/ml peptidoglycan (PGN) derived from *Bacillus subtilis*. (c) Wild-type gemmalings were treated with 1 μ M N-acetylchitooligosaccharide (GN6), GN7, or GN8. The values represent the average and standard errors of four replicates. (d) GN8-induced MAPK activation in Tak-1. Tak-1 gemmalings were treated with 1 μ g/ml GN8 for the indicated times. Activated MAPKs were detected by immunoblotting using anti-p44/42 MAPK antibody. (e) Clusters of *M. polymorpha* DEGs. Significantly differentially expressed genes with over ± 2 log2 fold changes (FDR adjusted $p < 0.05$) were grouped based on K-means clustering. K-means cluster ID is shown on the left bar. Log2 read count of genes was normalized into the range of ± 2 . See Supplementary Table S7. (f) Enriched GO terms in the *M. polymorpha* DEGs (Fig. 1e). See Supplementary Table S8.

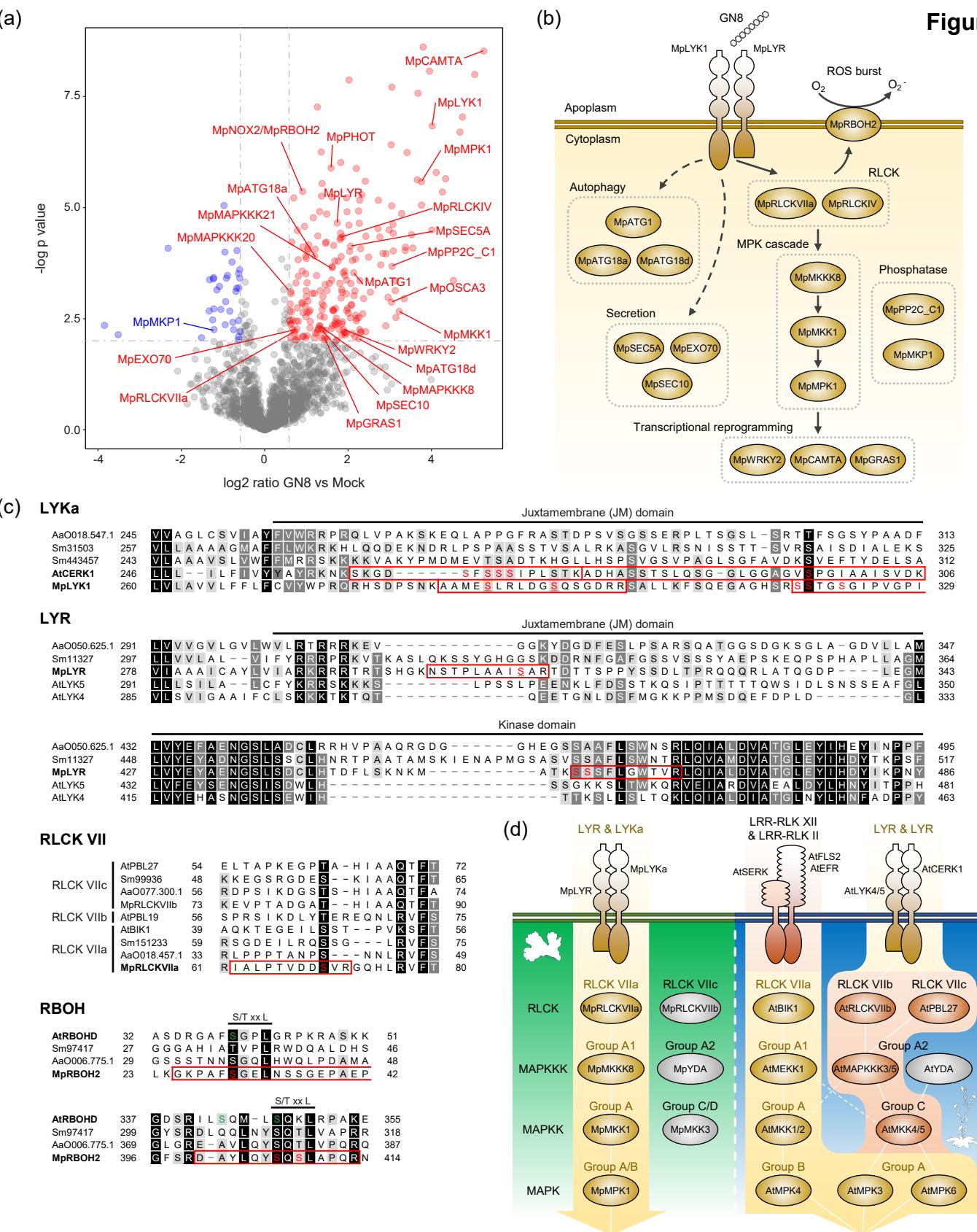
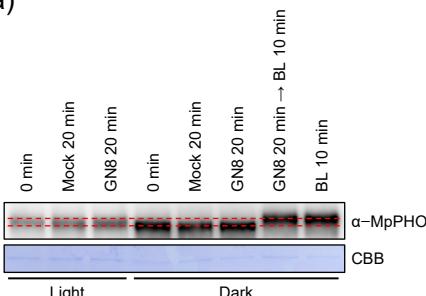

Figure 2. LysM receptor homologs in *M. polymorpha*. (a) Unrooted phylogenetic tree of LysM proteins in plants. Amino acid sequences of ectodomain including LysM1, LysM2, and LysM3 domain were used for drawing the tree. A graphical view of the tree has been generated using iTOL. Width of branches denote bootstrap support based on 1000 repetitions. Major subgroups were designated as LYKa, LYKb, LYR, LYP, and Charophyceae type. The proteins containing the basic P-Loop (GxGxF/YG) or no P-Loop are shown by red circles or red flames, respectively. The proteins containing modified P-Loops (See Supplementary Table S2) or no full-length sequences in the databases are shown by black circles or black flames, respectively. The membrane anchored-type proteins are shown by blue circles. *M. polymorpha* proteins are highlighted in red letters. Abbreviations: At, *Arabidopsis thaliana*; Mt, *Medicago truncatula*; Lj, *Lotus japonicus*; Os, *Oryza sativa*; Ca, *Cuscuta australis*; Cc, *Cuscuta campestris*; Sm, *Selaginella moellendorffii*; Sf, *Sphagnum fallax*; Pp, *Physcomitrium patens*; AaO, *Anthoceros agrestis* [Oxford]; Ap, *Anthoceros punctatus*; Mp, *Marchantia polymorpha*; Nm, *Nitella mirabilis*; Cb, *Chara braunii*; Sp, *Spirogyra pratensis*. (b) GUS-staining images of 10-day-old thalli harboring *pro*MpLYK1:GUS, *pro*MpLYK2:GUS, *pro*MpLYR:GUS, and *pro*MpLYP:GUS, respectively. The section is between the dorsal side and the ventral side containing the air chamber. (c) Plasma-membrane localization of MpLYK1-mCitrine and MpLYR-mTurquoise2. Magnified images of the boxed regions are also shown. Single confocal images of *M. polymorpha* thallus cells expressing MpLYK1-mCitrine or MpLYR-mTuquoise2. Green, cyan, and blue pseudo-colors indicate the fluorescence from mCitrine, mTurquoise2, and chlorophyll, respectively. Bars = 50 µm in wide images and 10 µm in magnified images. Note that the cell wall of air pore cells emitted autofluorescence, which is difficult to distinguish from the fluorescence of mTurquoise2 in our experimental condition.

Figure 3

Figure 3. MpLYK1 and MpLYR are required for chitin- or PGN-induced responses (a, b) Chitin or PGN-induced ROS burst in LysM receptor homolog disruptants. Six-day-old gemmalings of wild-type plants, disruptants, and complementation lines were treated with 1 μ M GN7 (a) or 500 μ g/ml PGN from *Bacillus subtilis* (b). The boxplot indicates total value of RLU measured by a luminometer for 30 min after GN7 treatment (a) or for 120 min after PGN treatment. Boxes show upper and lower quartiles of the value, and black lines represent the medians. Statistical groups were determined using Tukey HSD test for four replicates. Statistically significant differences are indicated by different letters ($p < 0.05$) (c) Chitin-induced marker gene expression in wild-type plants and disruptants. Six-day-old gemmalings were treated with 1 μ M GN7 or mock for 1 hour. MpLRR-RLK: Mp2g23700.1, MpRBOH2: Mp3g20340.1, MpWRKY3: Mp5g05560.1, MpPAL1: Mp7g14880.1, Mpchitinase: Mp4g20440.1. Data are shown as the mean \pm SE. Statistical groups were determined using the Tukey HSD test for four replicates. Statistically significant differences are indicated by different letters ($p < 0.05$). (d, e) Quantification of bacterial growth in the basal region of thalli, inoculated with the bioluminescent *Pto*-lux ($n = 8$) dpi, days post-inoculation. Statistical analysis was performed using Student t-test with p-values adjusted by the Benjamini and Hochberg (BH) method. Statistically significant differences are indicated by different letters ($p < 0.05$).


Figure 4

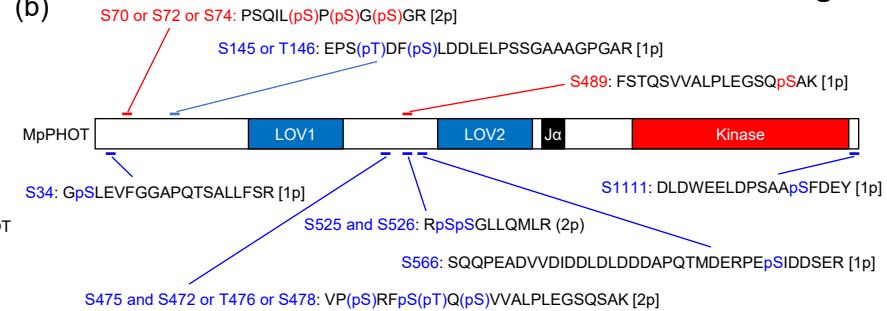
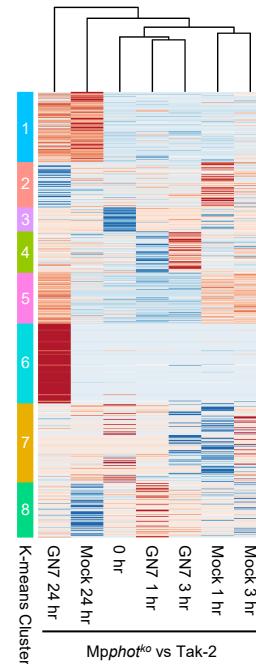
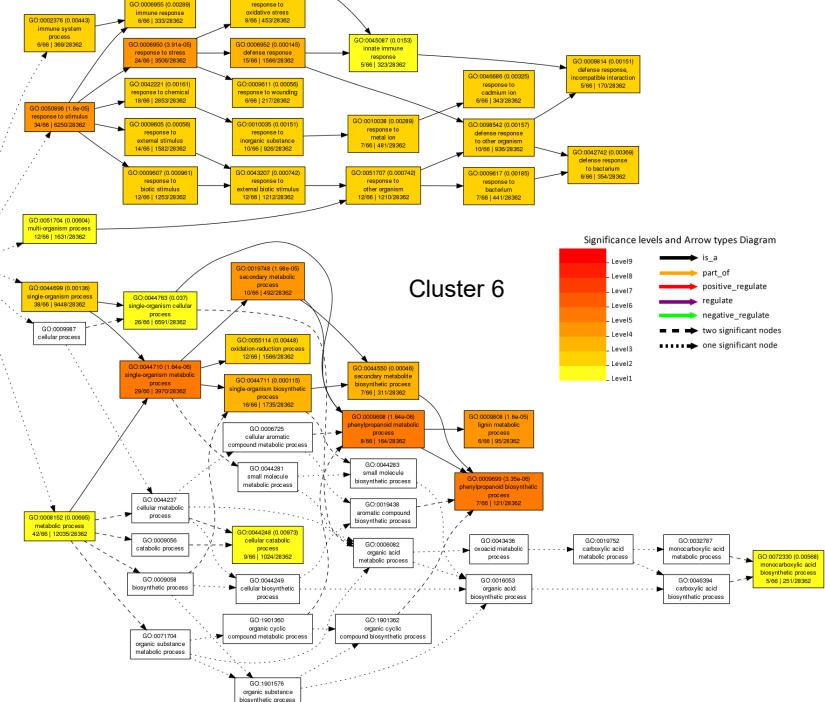
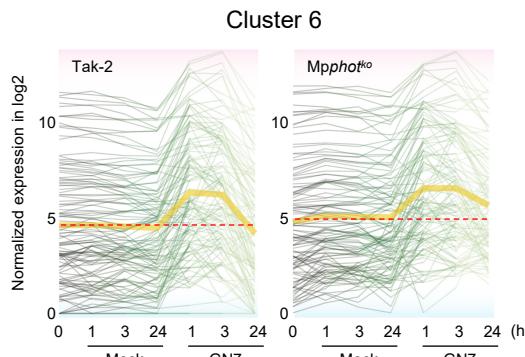
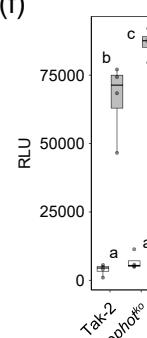

Figure 4. Chitin-induced phosphoproteome changes in *M. polymorpha*. (a) Volcano plots showing differential abundance of phosphopeptides between *M. polymorpha* gemmalings treated with 1 μg/ml GN8 or mock. Each dot represents a single unique phosphopeptide. Significantly increased and decreased phosphopeptides are colored red and blue, respectively ($|\log_2\text{FC}| > 0.58$, $p < 0.01$). (b) Predicted chitin signaling pathway in *M. polymorpha* based on the identified phospho-regulated proteins. (c) Conservation and diversification of the identified phospho-sites. Identified phosphopeptides are marked with red box. Predicted phospho-sites are colored red. Confidently localized phospho-sites are further underlined. Phospho-site information on AtCERK1 is based on (Suzuki et al., 2019). Serine residues colored green in AtRBOHD are targets of AtBIK1 reported in (Kadota et al., 2014). Abbreviations: At, *Arabidopsis thaliana*; Sm, *Selaginella moellendorffii*; AaO, *Anthoceros agrestis* [Oxford]; Mp, *Marchantia polymorpha*. (d) Schematic representation of PRR signaling pathways in *M. polymorpha* and *A. thaliana*.

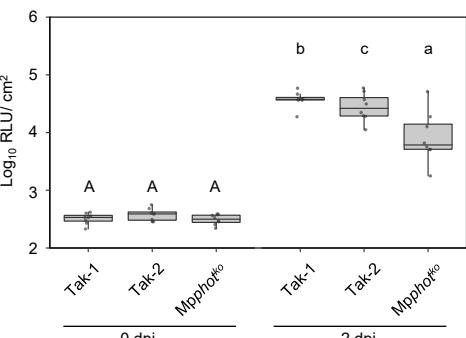
Figure 5


(a)


(b)


(c)


(d)

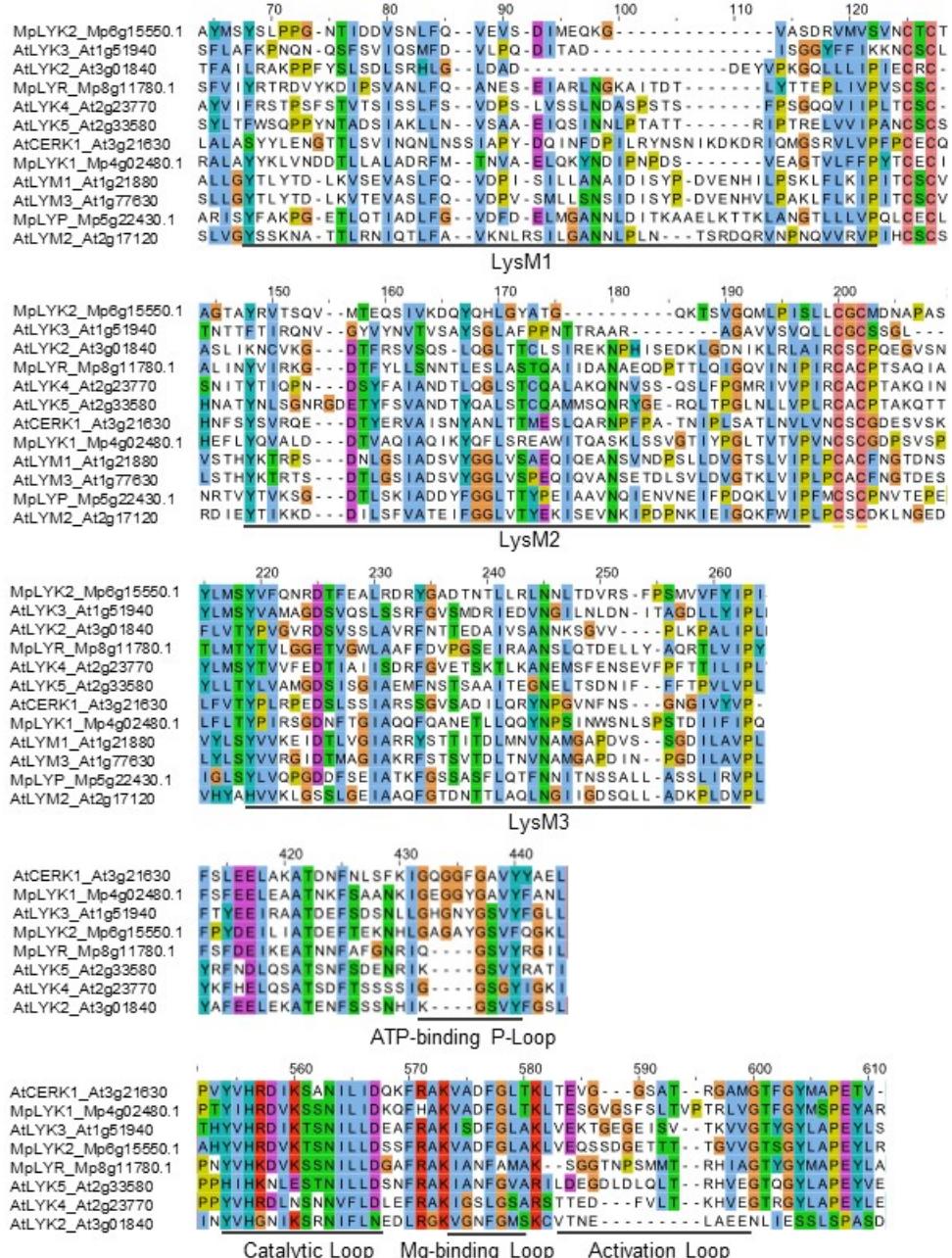
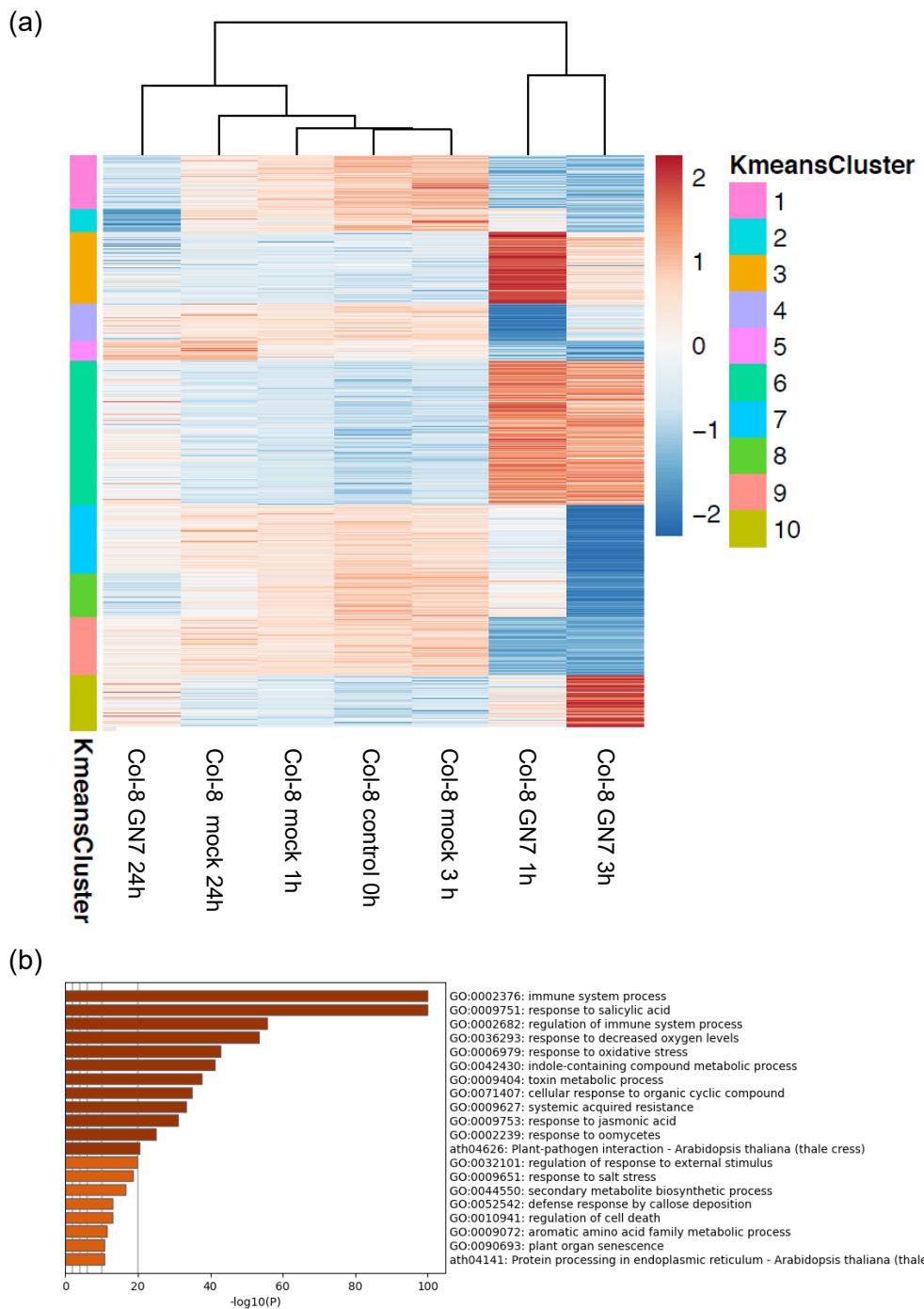

(e)

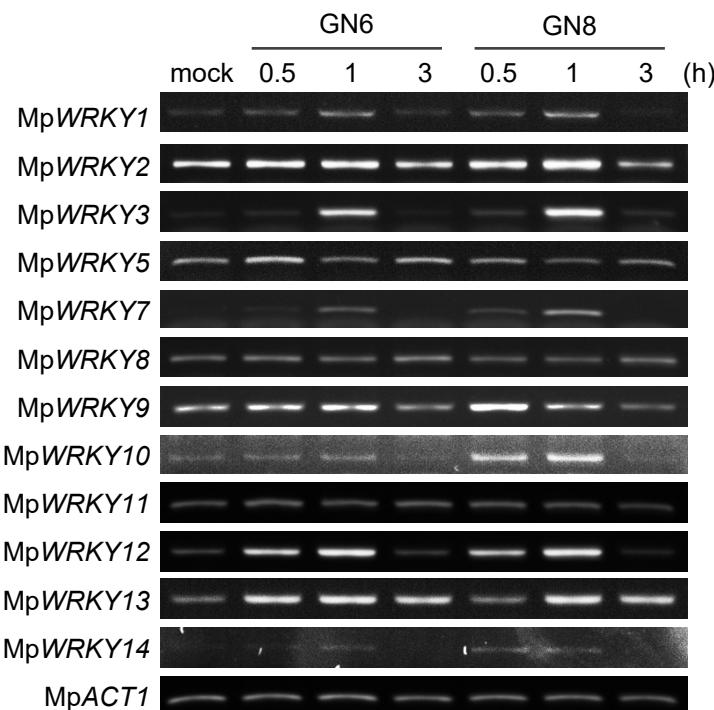
(f)

(g)

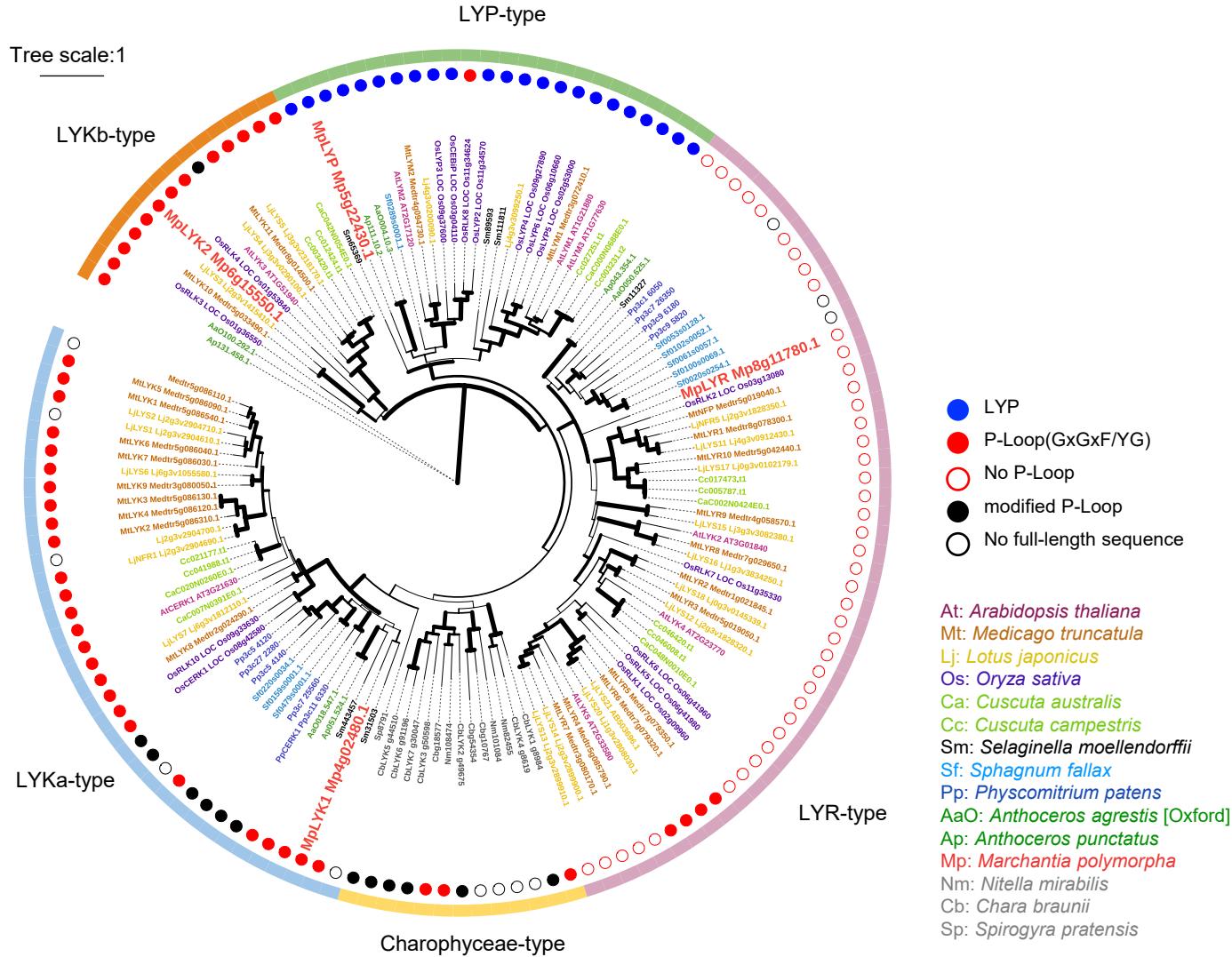
Figure 5. MpPHOT plays a role in PTI in *M. polymorpha*. (a) Western blot analysis of MpPHOT upon 1 μ g/ml GN8 treatment or blue-light (BL) irradiation under the light or dark condition. (b) Phosphopeptides from MpPHOT induced upon GN8 treatment and blue-light irradiation identified by phosphoproteomics. Phosphopeptides induced by GN8 treatment and blue-light irradiation are colored red and blue, respectively. See Supplementary Table S5 and S6. (c) Clusters of *M. polymorpha* DEGs. Significantly differentially expressed genes showing over ± 1 log2 fold change were grouped based on K-means clustering. Cluster IDs are shown on the left bar. The read count of genes was normalized into the range of ± 2 . See Supplementary Table S11. (d) Enriched GO terms in the K-means cluster 6 (Fig. 5c) showing higher expression trends in GN7-treated condition. Yellow lines indicate mean values. (e) The transcription dynamics of the genes from the K-means cluster 6 (Fig. 5c) showing higher expression trends in GN7-treated condition. (f) Chitin-induced ROS burst in *Mpphot^{ko}*. Six-day-old gemmalings were treated with 1 μ M N-acetylchitoheptaose (GN7). The boxplot indicates total value of RLU measured by luminometer for 30 min after GN7 treatment. Boxes show upper and lower quartiles of the value, and black lines represent the medians. Statistical groups were determined using Tukey HSD test for four replicates. Statistically significant differences are indicated by different letters ($p < 0.05$). (g) Quantification of bacterial growth in the basal region of thallus, inoculated with the bioluminescent *Pto*-lux ($n = 8$). dpi, days post-inoculation. Statistical analysis was performed using Student t-test with p -values adjusted by the Benjamini and Hochberg (BH) method. Statistically significant differences are indicated by different letters ($p < 0.05$).

Supplementary Figure S1


Figure S1 . Alignment of LYKs and LYRs in *M. polymorpha* and *A. thaliana*.

Supplementary Figure S2


Figure S2. Chitin-induced transcriptional reprogramming in *A. thaliana* seedlings.
 (a) Clusters of *A. thaliana* DEGs. Significantly differentially expressed genes with over ± 2 log2 fold changes (FDR adjusted $p < 0.05$) were grouped based on K-means clustering. K-means cluster ID is shown on the left bar. Log2 read count of genes was normalized into the range of ± 2 . See Supplementary Table S9. (b) Enriched GO terms in the *A. thaliana* DEGs (Supplementary Figure S2a). See Supplementary Table S10.

Supplementary Figure S3

Figure S3. *MpWRKY* gene expression upon chitin treatment in *M. polymorpha* Tak-1.
Six-day-old gemmalings were treated with 1 μ g/ml N-acetylchitohexaose (GN6) or N-acetylchitooctaose (GN8) for the indicated times. *MpACT1* was used as an internal control.

Supplementary Figure S4

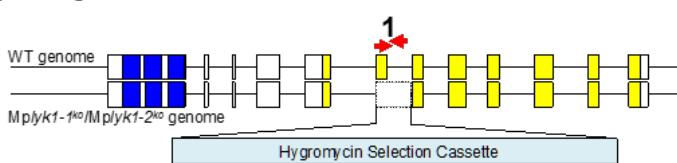
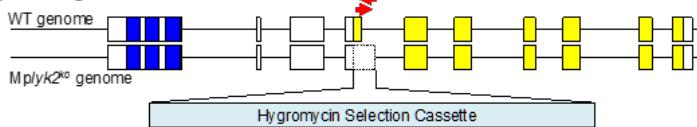
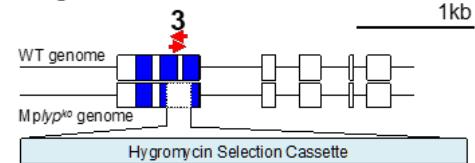


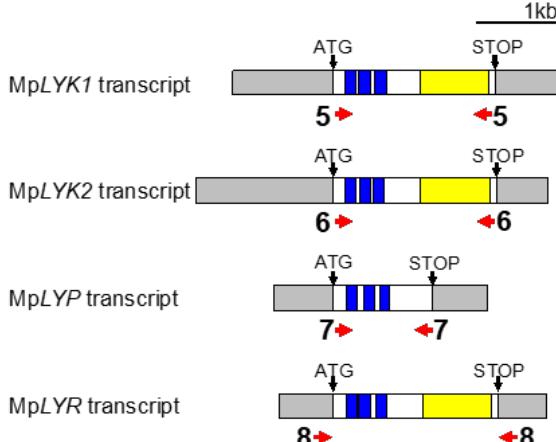
Figure S4. Circular phylogenetic tree of LysM proteins in plants. Circular version of the phylogenetic tree in Figure 2a.


Supplementary Figure S5

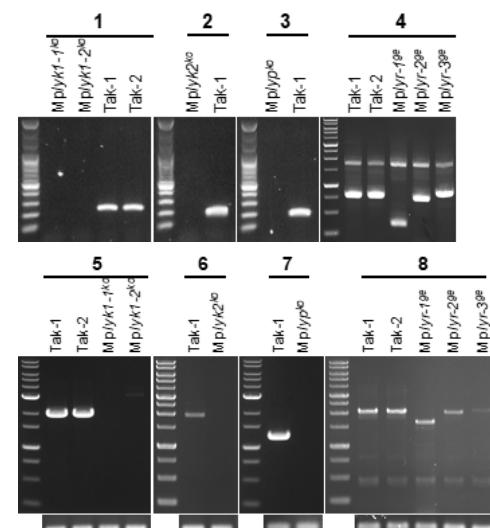
(a)


MpLYK1 gene locus

MpLYK2 gene locus



MpLYP gene locus

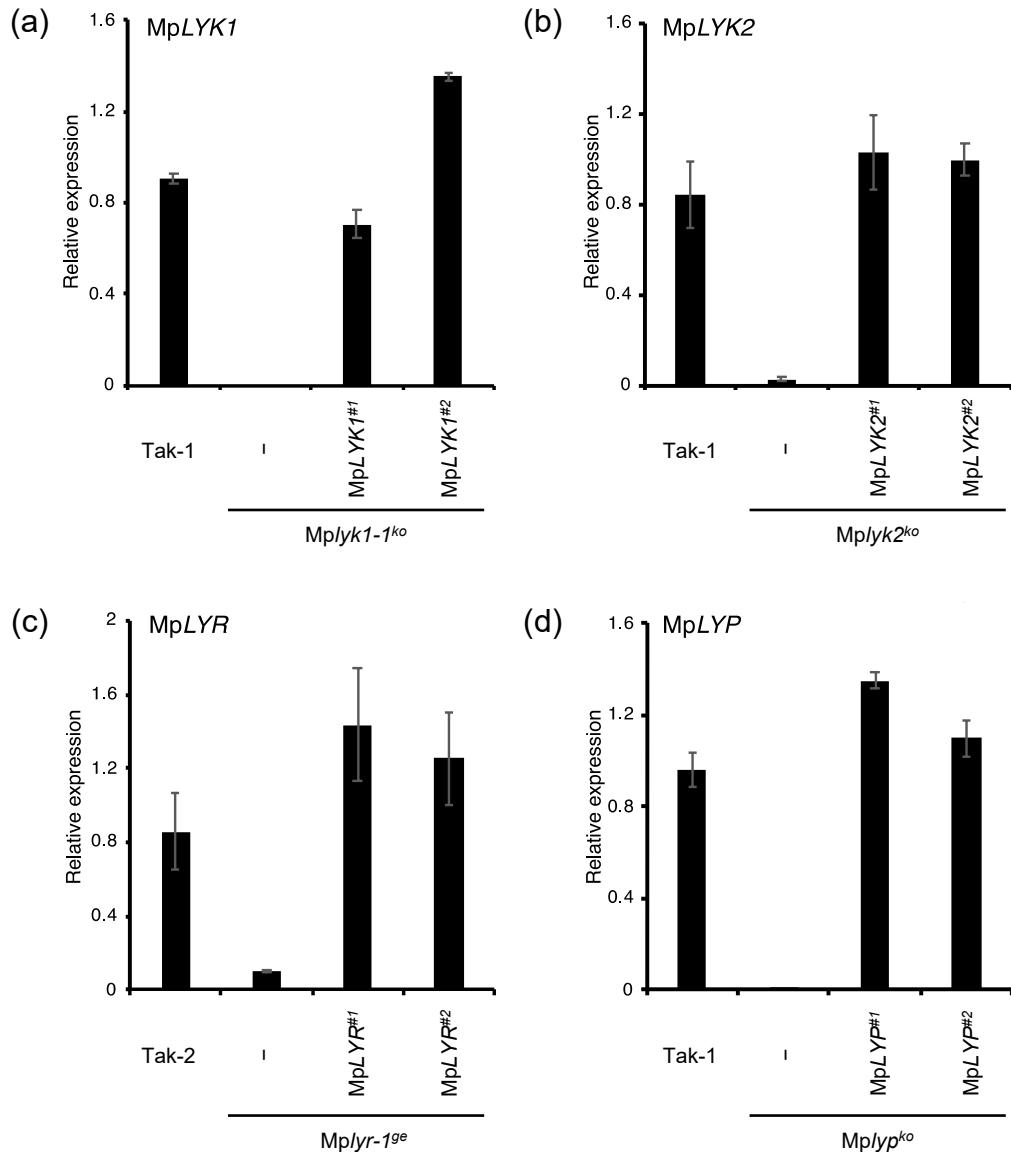


	target site1	PAM	target site2	PAM
Tak-2 (WT)	ATCGTGCACTCGTCTCGTGA	TTACA	CTCATGACCTACACTGTGCTGGGAGGTGAAACCGTGGGCTGGCTCGCAGCCCTTCGATGTGCTGGGAGCGAAATTGAGCTGCC	- 3'
Mplyr-1 ^g	ATCGTGCACTCGTCTCGTGA	TTA	(416 bp deletion)	CCTGGGAGCGAAATTGAGCTGCC - 3'
Mplyr-2 ^g	ATCGTGCACTCGTCTCGTGA	TTACA	(43 bp deletion)	CCTGGGAGCGAAATTGAGCTGCC - 3'
Mplyr-3 ^g	ATCGTGCACTCGTCTCGTGA	TTACA	CTCATGACCTACACTGTGCTGGGAGGTGAAACCGTGGGCTGGCTCGCAGCCCTTCGATGTGCTGGGAGCGAAATTGAGCTGCC	- 3'

(b)

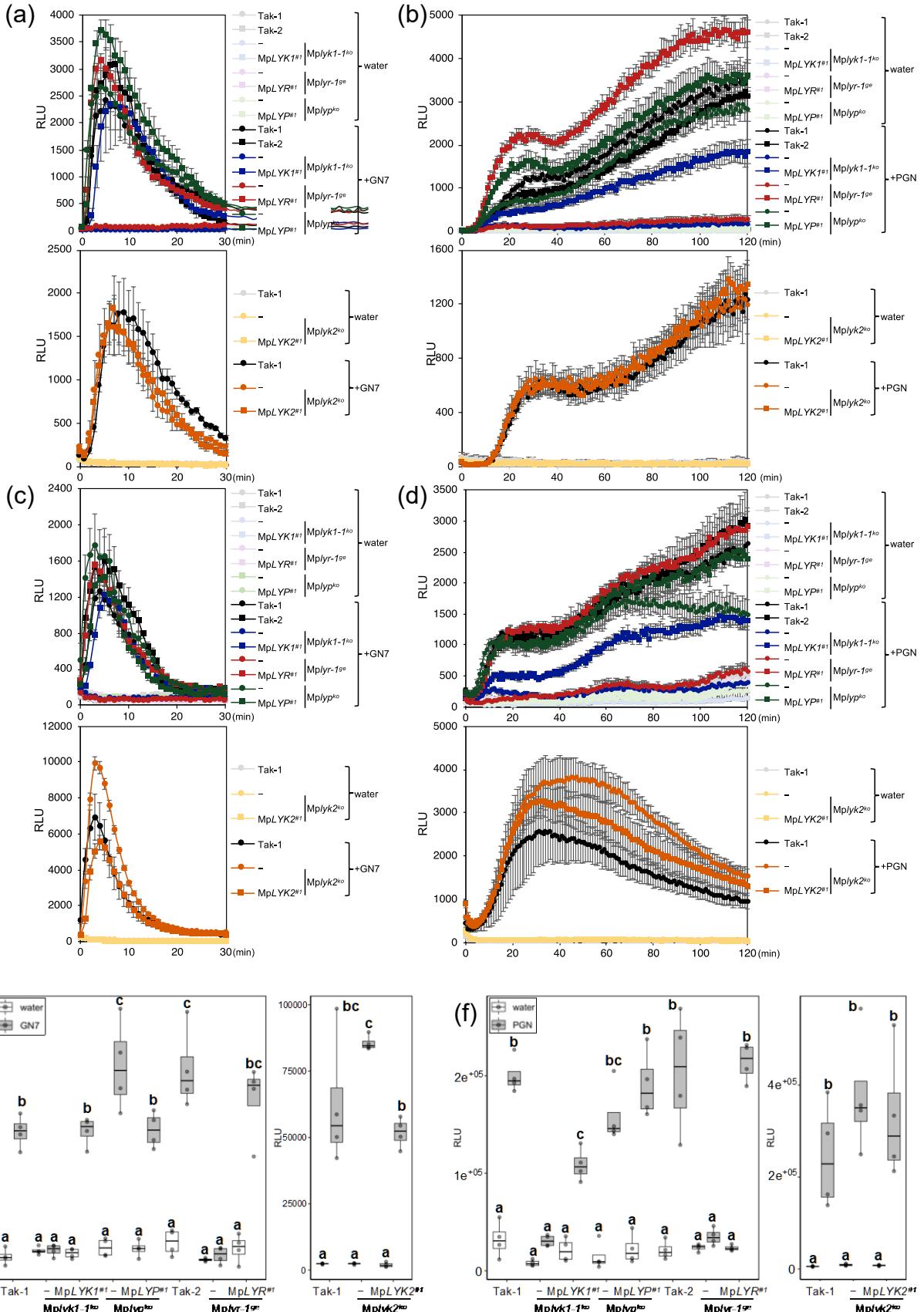
(c)

(d)


1 vsM3

MpLYR 5'	- Y T V L G G E T V G W L A A F F D V P G S E I R A N S L Q T D E L L Y A Q R T L V I P -	3'
mMpLYR 5'	- TACACTGTCGCGGGAGGTGAAACCGCTGGGCTGGCTCGACGCCCTTCGATGTCGAGCCTGGAAATTCTGAGCTGCCAATAGTTGTCAGACGCCAGAGTTGTCAGCTCAGCGCCTCTCGTTATTCTCCT - 3'	
	- TACACTGTCGCGGGAGGTGAAACCGCTGGGCTGGCTCGACGCCCTTCGATGTCGAGCCTGGAAATTCTGAGCTGCCAATAGTTGTCAGACGCCAGAGTTGTCAGCTCAGCGCCTCTCGTTATTCTCCT - 3'	
	Y T V L G G E T V G W L A A F F D V P G S E I R A A N S L Q T D E L L Y A Q R T L V I P	

mutation


Figure S5 . MpLysM disruptants generated and used in this study. (a) Schematic representation of the targeted disruption of the MpLYK1, MpLYK2, and MpLYP locus by homologous recombination and disruption of the MpLYR locus by genome editing. All disruptants were generated using F1 sporelings of *M. polymorpha* derived from crosses between Tak-1 and Tak-2. Mp^{lyk1-1^{ko}}, Mp^{lyk2^{ko}}, Mp^{lyp^{ko}}, Mp^{lyr-2^{ge}}, and Mp^{lyr-3^{ge}} are male. Mp^{lyk1-2^{ko}} and Mp^{lyr-1^{ge}} are female. 416 bp or 43 bp were deleted as indicated in Mp^{lyr-1^{ge}} or Mp^{lyr-2^{ge}}, respectively. 55 bp was inserted as indicated in Mp^{lyr-3^{ge}}. Blue boxes and yellow boxes indicate LysM and kinase domains, respectively. Red arrows indicate the primer set to amplify the genomic region used for replacement with a *hygromycin phosphotransferase (hptII)* cassette in MpLYK1, MpLYK2, and MpLYP locus or the edited region in MpLYR locus. (b) The transcribed region of *LysM* genes. Blue boxes and yellow boxes indicate LysM and kinase domains, respectively. Grey boxes indicated untranslated region. Red arrows indicate the primer set to amplify the full-length of coding sequence of *LysM* genes in *M. polymorpha*. (c) The amplification of the genome region or full-length cDNA of *LysM* genes in WT (Tak-1 and Tak-2) and disruptants using the primer sets shown (a) and (b). (d) The sequence of mutated MpLYR, mMpLYR, used for complementing Mp^{lyr-1^{ge}}.

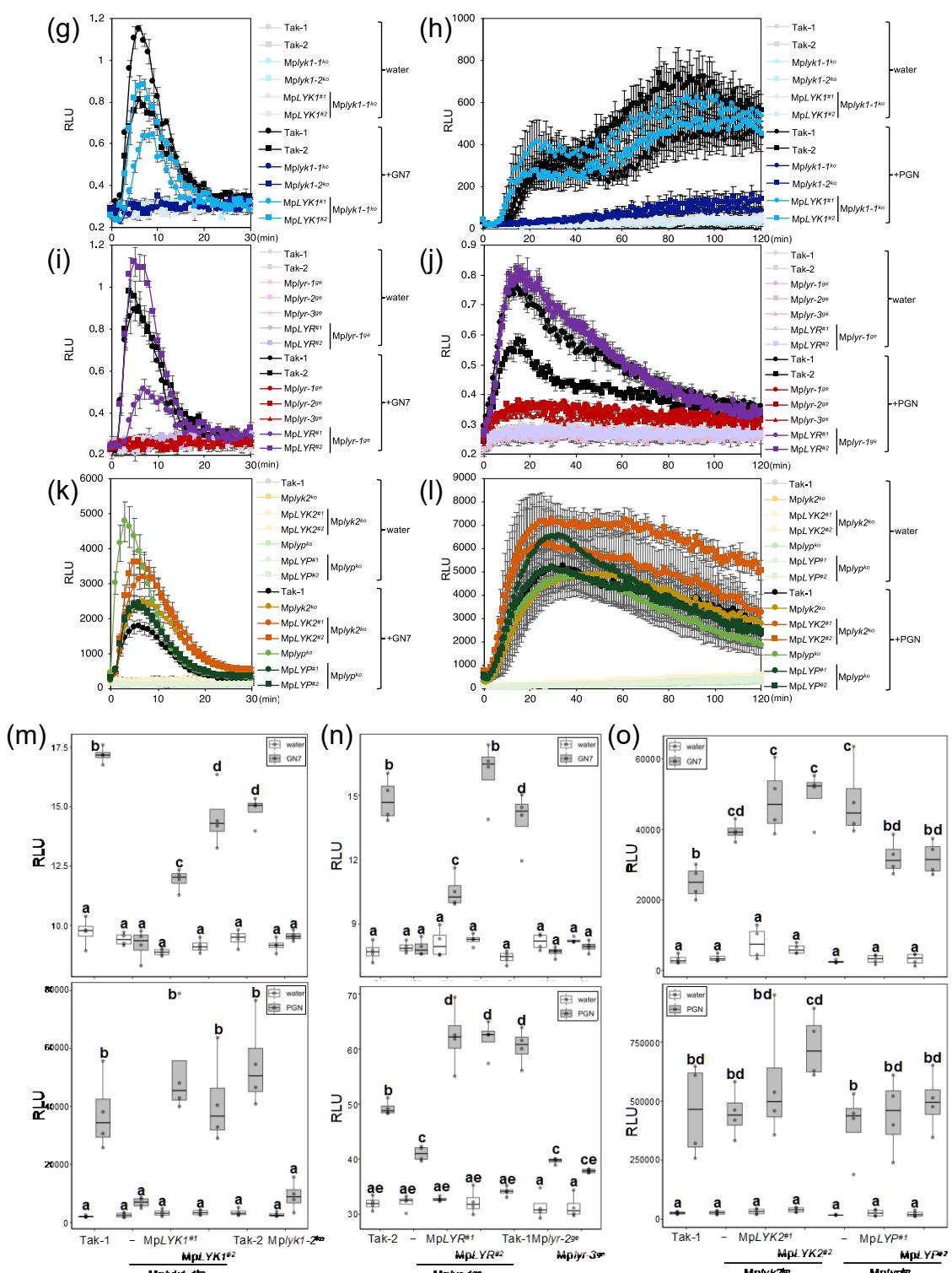
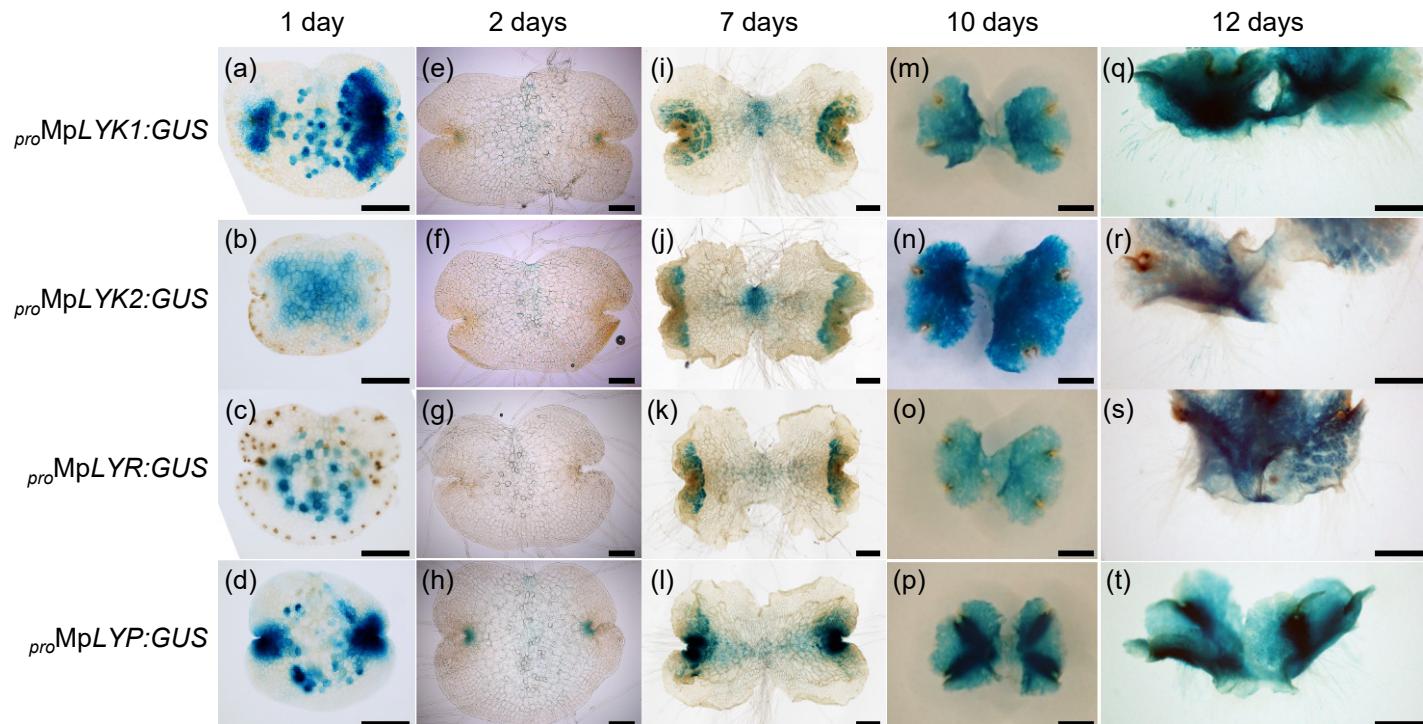
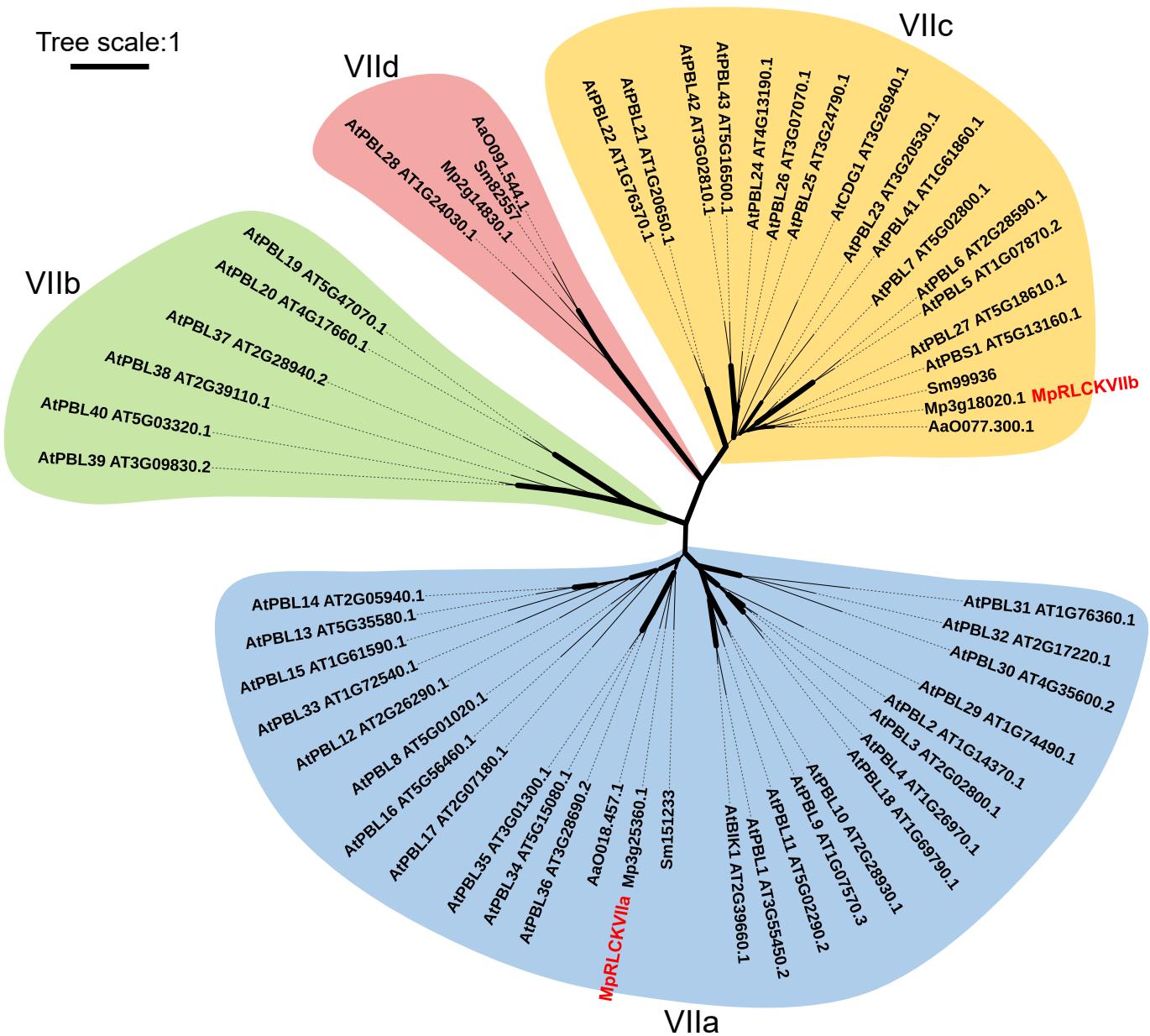

Supplementary Figure S6

Figure S6. *MpLysM* gene expression in wild-type and the transgenic plants. *MpLYK1* (a), *MpLYK2* (b), *MpLYR* (c), and *MpLYP* (d) expression in 6-day-old gemmalings grown in $\frac{1}{2}$ B5 liquid medium containing 0.1% sucrose examined by qRT-PCR. The values represent the average and standard errors of three replicate experiments.


Supplementary Figure S7


Figure S7. Chitin or PGN-induced ROS burst in LysM receptor homolog disruptants. (a-f) Six-day-old gemmalings of wild-type plants, disruptants, and complementation lines were treated with 1 μ M GN7 (a, c) or 500 μ g/ml PGN from *Bacillus subtilis* (b, d). The boxplot indicates total value of RLU measured by luminometer for 30 minutes after GN7 treatment (e) or for 2 hours after PGN treatment (f). (g-o) Six-day-old gemmalings of independent disruptants or complementation lines were treated with GN7 (g, i, k) or PGN (h, j, l). The boxplot (m-o) indicates total value of RLU measured by luminometer for 30 minutes after GN7 treatment or for 2 hours after PGN treatment. Boxes show upper and lower quartiles of the value, and black lines represent the medians. Statistical groups were determined using Tukey HSD test. Statistically significant differences are indicated by different letters ($p < 0.05$).

Supplementary Figure S8

Figure S8. Expression profiles of *MpLysM* genes. GUS-staining images of plants harboring *proMpLYK1:GUS*, *proMpLYK2:GUS*, *proMpLYR:GUS*, and *proMpLYP:GUS*. (a-d) One-day-old gemmalings. (e-h) Two-day-old gemmalings. (i-l) Seven-day-old gemmalings. (m-p) Ten-day-old thallus, dorsal side. (q-t) 12-day-old thallus with rhizoids. Bars = 200 μ m in (a-h), 500 μ m in (i-l), and 2 mm in (m-t).

Supplementary Figure S9

Figure S9. Unrooted phylogenetic tree of the subfamily VII RLCK in plants. The full-length amino acid sequences (Supplementary Table S4) were used for MUSCLE alignment analysis and PhyML tree analysis. A graphical view of the tree has been generated using iTOL. Width of branches denote bootstrap support based on 100 repetitions. The four major subfamilies were designated as VIIa, VIIb, VIIc, and VIId based on the classification by (Shiu *et al.*, 2004).