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Abstract 

 

Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a common, life-threatening 
infection that imposes up to 30% mortality even when appropriate therapy is used. Despite in vitro 
efficacy, antibiotics often fail to resolve the infection in vivo, resulting in persistent MRSA 
bacteremia. Recently, several genetic, epigenetic, and proteomic correlates of persistent outcomes 
have been identified. However, the extent to which single variables or composite patterns operate 
as independent predictors of outcome or reflect shared underlying mechanisms of persistence is 
unknown. To explore this question, we employed a tensor-based integration of host transcriptional 
and proteomic data across a well-characterized cohort of patients with persistent and resolving 
MRSA bacteremia outcomes. Tensor-based data integration yielded high correlative accuracy with 
persistence and revealed immunologic signatures shared across both the transcriptomic and 
proteomic datasets. We find that elevated proliferation of mature granulocytes associates with 
resolving bacteremia outcomes.  In contrast, patients with persistent bacteremia heterogeneously 
exhibit correlates of granulocyte dysfunction or immature granulocyte proliferation. Collectively, 
these results suggest that transcriptional and proteomic correlates of persistent versus resolving 
bacteremia outcomes are complex and may not be disclosed by conventional modeling. However, 
a tensor-based integration approach can help to reveal consensus molecular mechanisms in an 
interpretable manner. 
 
Significance Statement 

 
While antibacterial therapies effectively resolve MRSA in vitro, these treatments often fail to clear 
MRSA bacteremia in vivo, suggesting that host-pathogen interactions are essential to persistent 
MRSA bacteremia. Recent studies have identified genetic, transcriptomic, and proteomic 
determinants of MRSA persistence.  These determinants independently, however, provide 
insufficient mechanistic insight and it is unclear if they indicate unique or overlapping persistence 
mechanisms. Here, we use tensor-based decomposition to jointly analyze cytokine and 
transcriptomic measurements from patients with MRSA bacteremia. Results indicate that 
persistence mechanisms integrated across biological modalities reflect diverging mechanisms of 
persistent bacteremia. Ultimately, these results may help to identify future therapeutic targets for 
treating persistent MRSA bacteremia. 
 
Main Text 

 

Introduction 

 

Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is a common, life-threatening 
infection, arising through both community-acquired and healthcare-associated settings (1, 2). 
These infections are associated with poor outcomes, and up to 30% of appropriate antibiotic 
regimens fail to resolve bacteremia in vivo despite efficacy in vitro (3).  MRSA bacteremia that 
resolves upon appropriate antibiotic treatment is termed resolving bacteremia (RB) whereas cases 
that do not resolve after 5–7 days of therapy are termed persistent bacteremia (PB) (4). The limited 
predictive value of in vitro susceptibility for MRSA bloodstream clearance clinically indicates a need 
to better understand the determinants of antibiotic therapy outcomes in vivo. 
 
Recent progress has been made in identifying determinants of PB vs. RB outcomes in MRSA 
bacteremia (4–6). Host factors appear to play an important role in MRSA persistence, as patient 
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outcome can be independent of strain susceptibility to vancomycin or daptomycin susceptibility in 
vitro (3).  Persistence factors are distinct from those associated with MRSA antibiotic resistance, 
where the organism is refractory to the antibiotic both in vitro and in vivo (7).  Thus, advances are 
necessary to better discern and predict persistence outcomes in vivo. We hypothesize that 
outcomes are determined by the confluence of immunological responses in an individual host, the 
infecting MRSA strain, and the specific antibiotic and its use practice. 
 
To this end, we have previously undertaken broad molecular profiling to measure the molecular 
differences of MRSA bacteremia response (4–6). These systems-level analyses have identified 
genetic (5), transcriptional, and cytokine (6, 8) correlates of MRSA bacteremia persistence 
outcomes. However, the extent to which these signatures operate as distinct molecular 
mechanisms of phenotypic immune response or reflect a shared underlying immune program is yet 
unclear. Therefore, we approached this problem based on the premise that shared patterns of 
molecular and cellular responses might improve understanding of clinical correlates of outcome if 
they each reflect integrated molecular mechanisms. 
 
Matrix and tensor factorization techniques are powerful tools for reducing the dimensionality of 
complex data. Most generally, these methods reduce multi-modal datasets (data that can be 
arranged into several dimensions, such as measurements, patients, and time) into mode-specific 
matrices that individually capture patterns across each dimension. These factor matrices 
individually reveal unforeseen relationships among the diverse datasets and, when recombined, 
approximate the original measurements. These methods, when appropriately matched to the 
structure of the data, help to visualize its variation, reduce noise, impute missing values, and reduce 
dimensionality (9). For data in matrix form, principal components analysis (PCA) and non-negative 
matrix factorization are two examples widely applied (10). When integrating data of higher 
dimensions, higher-order generalizations of these methods, tensor factorizations, can be applied 
(9). 
 
A particularly important benefit of factorizing data into mode-specific matrices is that it is naturally 
suited to combining different sources of data which often derive from diverse biological 
measurements. Variation along each mode of the data in tensor form is effectively separated by 
these techniques (11, 12). When integrating two sources of data each in a matrix or tensor format, 
coupled matrix-tensor factorization allows one to detect shared patterns between datasets of 
differing dimensionality (11–13). Recognizing coupling across datasets provides two distinct 
benefits: (1) the extent of data reduction is increased by using a common set of patterns across 
both datasets; and (2) patterns distinguished in the shared mode reflect the trends presented in 
both datasets, thus their definition is better shaped. Consequently, retrospective associations or 
prospective predictions based on these factorized patterns may be improved through more 
accurate derivation, and interpretation of the resulting patterns may be improved by a broader, 
holistic view of the measurements tied to those patterns (11, 14). 
 
In the present study, we applied coupled matrix-tensor factorization to integrate the transcriptional 
and cytokine responses relative to persistent vs. resolving clinical outcomes in MRSA bacteremia. 
Data integration enabled the identification of consistent patterns of immunologic response across 
both data sources and revealed patterns distinguishing PB from RB outcomes. The combined 
immunologic patterns explain outcome better than either data type on its own, with correlative 
accuracy verified in an independent cohort. These associations are shaped by two granulocyte 
formation and activation patterns that retain their correlational accuracy when used alone. Overall, 
the current results demonstrate that robust correlative relationships detected by tensor-based 
modeling reveal integrative immunological signatures of persistent vs. resolving outcomes in 
human MRSA bacteremia. 
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Results 

 

A tensor-based strategy for integrating heterogeneous clinical measurements 

To identify common patterns across cytokine and RNA-seq measurements, we first sought to 
optimally organize the multiple datasets. Measurements were of three types—plasma cytokines, 
serum cytokines, and RNA-seq from whole blood samples (Figure 1A). Known differences exist in 
cytokine measurements between plasma and serum; however, certain shared variation across 
patients is expected and thus cytokine measurements across serum and plasma sources could be 
aligned. Therefore, while not every patient had every type of measurement, the study contained 
two types of measurements that could be aligned across cytokines and patients, and RNA-seq 
measurements that only share the patient dimension. 
 
In situations where measurements can be aligned along two or more dimensions, measurements 
can be structured into tensor form. A generalization of a matrix, which is a two-mode tensor, tensors 
most often refer to organized arrays with three or more dimensions (modes); in the three-mode 
form, tensors are structured as a cube of measurements. We started by structuring the cytokine 
data into a 3-mode tensor, with patient, cytokine, and cytokine source (serum or plasma) axes 
(Figure 1B). This tensor was paired with the RNA-seq measurements in a matrix (2-mode tensor) 
containing the shared patient axis and a separated gene axis. We additionally summarized the 
RNA-seq measurements into co-expressed gene modules to reduce model complexity (15). To 
integrate both data types, we used coupled matrix-tensor factorization (CMTF). This method solves 
an optimal low-rank approximation of both datasets while keeping the coupled dimension (in this 
case, patients) shared during the process using an alternating least squares strategy (Figure 1C). 
As CMTF maximizes the variance explained across both datasets, it is better suited here than other 
approaches that maximize explanation of other subsets of variance, including canonical polyadic 
(CP) decomposition for just the cytokine tensor, principal components analysis (PCA) for just the 
RNA-seq matrix, or partial least squares regression in tensor form (tPLS) to specifically examine 
the shared variance (Figure 1D). 
 

Tuning dimensionality reduction for accurate correlations in MRSA bacteremia outcomes 
Dimensionality reduction via CMTF introduces two method parameters that influence the resulting 
decomposition. First, decomposition can be performed using a varying number of components. We 
observed that a small number of components could effectively explain the data variation, with 8 
components capturing >70% of the total variance while reducing the data to 16% of its original size 
(2192 factor values versus 14132 non-missing measurements; Figure 2A). Second, as CMTF aims 
to maximize the total variance of both datasets explained, the relative numerical scale between 
cytokine and RNA-seq measurements affects the goodness of fit for each individual dataset as 
CMTF will prioritize explaining patterns in the dataset with the larger scale. To explore the effect of 
this scaling, we tested a variety of scales; the resulting factors were responsive to the relative scale 
of each data type and increasing the emphasis of cytokine measurements improved the overall 
variance explained (Figure 2B). 
 
We chose to identify reduced patterns that were optimally able to correctly assign PB vs. RB 
outcomes. To do so, we used clinical variables to correlate outcomes by logistic regression. 
Assignment accuracy was quantified using 10-fold cross-validation. Briefly, 10% of the patients 
were left out from the logistic regression model, and the remaining 90% were used to learn the 
relationship between each component and outcome. Next, the logistic regression model was used 
to assign outcomes for patients held out of the model training. This process is repeated until every 
patient was categorized with respect to PB vs. RB based on cytokine and transcriptome profiles. 
Accuracies reported are the balanced accuracy scores observed over this cross-validation process. 
Using this process while varying settings within CMTF, we observed a peak correlation 
performance at 8 components (Figure 2C) and when the cytokine data was scaled to have a total 
variance 32 times larger than the RNA-seq data (Figure 2D). 
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Coupled factors improve the accuracy of discerning MRSA bacteremia outcomes 
We next sought to evaluate the extent to which CMTF-derived patterns could accurately distinguish 
MRSA PB vs. RB outcomes. We built a regularized logistic regression classifier to assign 
persistence outcome from the CMTF components and compared its performance to those built with 
a single data source (Figure 3A/B). As elevated IL-10 is associated with PB (4, 5, 16), we also 
constructed logistic regression models to assign persistence outcome from IL-10 measurements 
alone. We consistently observed that CMTF-derived factors could more accurately differentiate PB 
vs. RB outcomes. These results also revealed that the plasma cytokines were especially important 
to assignment accuracy, as CMTF performed better on patients having these measurements 
(Figure 3A). Note that, because each data source was not available for all patients, comparisons 
were made using the subset of patients having the respective data measurements. This is the 
reason for the performance of CMTF varying in each comparison. As further validation, we 
compared the prediction accuracy for a separate cohort that remained blinded during the model 
assembly process. While there was an expected decrease in accuracy overall, we again 
consistently observed that CMTF-derived factors were more effective at differentiating PB vs. RB 
outcomes (Figure 3C/D). Thus, data integration improved the accuracy of PB assignment, and 
CMTF-derived factors can have as high as 75% balanced accuracy when plasma cytokine samples 
are available (Figure 3A). 
 
We also sought to evaluate any relationships between the CMTF-derived components and patient 
demographic characteristics, specifically biological sex, age, and race (Figure 3E). MRSA 
susceptibility is known to vary with each of these parameters, and so we surmised that persistence 
may be influenced by factors that also vary with these characteristics (7). However, neither sex, 
age, nor race correlated better than chance, and there were no significant associations of the 
molecular components studied with these demographic features (Figure 3E). 
 
A benefit of the logistic regression model is its ease of interpretation. As part of the fitting process, 
the logistic regression model assigns a coefficient to each CMTF component (Figure 3F). These 
coefficients indicate the relative impact of each CMTF component in MRSA PB vs. RB outcomes; 
more influential components have associated coefficients of greater magnitude. Additionally, the 
sign of the coefficient informs the directionality of the association; positive coefficients indicate an 
association with PB outcomes, while negative coefficients associate with RB outcomes. We 
quantified the uncertainty in each coefficient by bootstrapping the patient factors produced via 
CMTF (17). Notably, CMTF components 3 and 7 were strongly associated with the PB outcome, 
whereas component 6 was strongly associated with the RB outcome (Figure 3F). Overall, by 
magnitude, component 6 had the strongest correlation with MRSA bacteremia outcome. 
 
Coupled factors reveal conserved immunological responses in MRSA bacteremia 
We plotted the composition of each CMTF component against the four factor dimensions (patient, 
cytokine, serum vs. plasma, and RNA expression module) to evaluate the relative biological 
significance of each component (Figure 4A–D). Factor components were scaled to have a dynamic 
range of -1 and 1. Next, gene enrichment analysis was performed to identify biological processes 
enriched within each gene module (Figure 4E). 
 
These factor matrices can be interpreted in two primary ways. To interpret the biological 
significance of a particular CMTF component, one can evaluate its composition across every factor 
matrix. For instance, component 3 corresponds to upregulation of IL-12(p40) and downregulation 
of IL-4 (Figure 4B) across both plasma and serum sources (Figure 4C). Component 3 also 
correlates with the downregulation of module P1_I11_M18 (Figure 4D) that enriches for gene sets 
involving neutrophil activation (Figure 4E). In parallel, one can also compare the differences 
between components and the variance they explain by examining each individual factor matrix. 
Components 6 and 7, for example, are mostly similar in their associations to RNA profiles (Figure 
4D) and serum and plasma cytokine sources (Figure 4C) but are distinct in their association with 
specific cytokines (Figure 4B).  
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Figure 3F identifies components 3, 6, and 7 as important correlates of persistent MRSA bacteremia 
outcome. As shown in Figure 4, component 7, which correlates with PB outcomes, corresponds to 
upregulation of G-CSF, IL-17A, and the gene module P2_I6_M3. Enrichment analyses of 
P2_I6_M3 identifies significant enrichment of gene sets involving regulation of cellular apoptosis 
and differentiation. Component 6, which associates with RB outcomes, demonstrates some 
similarities to component 7 as it has similar RNA-seq associations and corresponds to G-CSF 
upregulation. Component 6, unlike component 7, also associates with the upregulation of GRO and 
the downregulation IL-10 and IL-17A. 
 
The remaining CMTF components (1, 2, 4, 5, and 8) identify biological processes across RNA-seq 
and cytokine measurements that do not strongly associate with persistent MRSA bacteremia 
outcome. Of these components, we find that component 1 associates strongly with IL-12(p40) and 
gene module P1_I11_M12 upregulation; enrichment analysis of P1_I11_M12 was inconclusive, but 
we find genes relating to monocyte activation (see Supplementary Data). Component 2 
corresponds with the upregulation of IL-4 and module P1_I11_M18 that enriches for gene sets 
involving neutrophil activation and immunity, suggesting that this component corresponds to a 
neutrophil activation pathway. Components 4 and 5, similarly to component 1, relate to 
P1_I11_M12 upregulation; these components are unique in their cytokine signatures, however, as 
they associate with strong IL-5 upregulation (component 4) and IL-13 downregulation (component 
5). Finally, like components 6 and 7, component 8 associates strongly with G-CSF upregulation. 
Component 8, however, corresponds to both P6_I6_M2 downregulation and P1_I11_M7 
upregulation that enrich for secretory granule lumens and cardiac tissue morphogenesis, 
respectively (refer to the enrichment results under Data and Materials Availability). 
 
Components 1, 2, 4, and 5 appear to be primarily influenced by batch effects. Figure 4A shows that 
the magnitudes of these components vary greatly across cohorts, suggesting that these 
components identify signals with cohort-to-cohort differences. Dimensionality reduction techniques, 
including tensor factorization, are routinely used for correcting batch effects, and these batch-
associated components help to capture and “remove” patterns associated to batch effects so that 
the remaining components may better associate with persistence-related mechanisms. 
 

A reduced model reveals heterogeneity in persistent MRSA bacteremia outcomes 
Given that only a subset of components was strongly associated with MRSA persistence, we next 
sought to test whether a reduced model using few components could be equally associative with 
persistence as the full model. To do so, we fit support vector machine (SVM) classification models 
using pairings of components 3, 6, and 7 given their high associations with persistence in Figure 
3F. We compared these reduced SVM models to a logistic regression model that uses all eight 
CMTF components. In contrast to our earlier analysis, we included both cohorts of patients in this 
analysis, examining all 177 patients. We observed that an SVM model trained with only 
components 6 (upregulation of G-CSF, GRO, and granulocyte activation and downregulation of IL-
10, IL-17A) and 7 (upregulation of G-CSF, IL-17A, and granulocyte recruitment and downregulation 
of granulocyte activation) had equal balanced classification accuracy to the model built with all 
components (Figure 5A–B), supporting the notion that components 6 and 7 are informative of 
bacteremia persistence outcome on their own. 
 
With the reduced model indicating the independent value of components 6 and 7, we then plotted 
the patients within this reduced space (Figure 5C). Here, we find a clear subset of patients who 
experienced persistent MRSA bacteremia in the top-left that the model identifies as PB. This 
relationship indicates that negative component 6 values coupled with positive component 7 values 
are strongly associated with PB; that is, decreases in RB-associated component 6 in conjunction 
with increases in PB-associated component 7 associates with PB. 

The combined importance of components 6 and 7 was surprising because they share many factor 
associations (Figure 4). To examine the distinction between components 6 and 7 more closely, we 
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plotted the cytokine (Figure 5D) and RNA module (Figure 5E) factor values of components 6 and 
7 against each other. We find that many cytokines demonstrate similar factor values across 
components 6 and 7.  However, IL-17A and IL-10 are relatively much lower in component 6 while 
GRO is much higher. Likewise, the RNA module factors are also similar between components 6 
and 7 except for P1_I11_M15 and P1_I11_M17, both of which are more positive in component 6, 
and P1_I11_M19, which is lower in component 6. Enrichment analyses of P1_I11_M15 shows 
significant enrichment for hematopoietic stem cell generation (Figure 5F). Enrichment analyses for 
P1_I11_M17 and P1_I11_M19 failed to find significantly enriched gene sets. However, these gene 
modules do contain fibroblast growth factor 23 (P1_I11_M17) and cytokine receptor expression 
(P1_I11_M19; see TableS1 under Supplementary Data).  
 
Discussion  
 
Here, we demonstrate that CMTF can improve our understanding of host immune responses 
correlated with persistence outcomes in human MRSA bacteremia. This insight is gained by 
characterizing the host immune response through the integration of multiple data types. We find 
that CMTF captures over 70% of the variation observed across clinical RNA expression and 
proteomic measurements in just 8 components, that these components strongly associate with 
MRSA persistence (Figure 2), and that the components more accurately predict persistence 
outcome than RNA expression or proteomic measurements alone (Figure 3). Our prediction model 
indicates each component’s association to persistence, while CMTF supplies information about 
how each component relates to the individual measurements. Consequently, we can biologically 
interpret these components to better understand the underlying immunologic mechanisms (Figure 
4). We find a subset of components are equally associated with persistence to our full model (Figure 
5). Examination of this component subset more precisely delineates heterogeneity in immune 
responses to MRSA bacteremia. We have summarized this observed heterogeneity in immune 
responses and highlight the key immunological signatures associated with PB and RB outcomes 
in Figure 6. 
 
In integrating the serum and plasma cytokine with whole blood RNA-seq measurements, we found 
that the plasma cytokine measurements were most important for evaluating persistence (Figure 3). 
While the integration of data types leads to optimal persistence assignment accuracy, the 
importance of the cytokine measurements over RNA-seq suggests that the former is more directly 
indicative of MRSA persistence. Additionally, while previous studies have found associations 
between sex, race, and age with persistent MRSA bacteremia (7), we found that the CMTF 
components are not associative with these auxiliary demographics. This perhaps suggests that our 
molecularly derived patterns are associated with persistence through independent means. 
 
The observed differences in cytokine profiles typically generated by distinct CD4+ T helper cell 
polarization in response to infection implies T cell responses are integral to persisting versus 
resolving outcomes in MRSA bacteremia. This concept is consistent with findings regarding 
epigenetic correlates of such outcomes (4). In the present study, further interrogation of the 
cytokine and gene expression factors relevant to each component also support and extend existing 
literature in MRSA persistence mechanisms. Component 3 associates strongly with IL-12 (p40) 
upregulation that typically associates with antigen-presenting cell response early in the course of 
infection and subsequent downregulation of IL-4 and IL-10 (18–20). In contrast, component 3 also 
correlated with the downregulation of IL-4 and gene sets enriched in neutrophil activation. 
Neutrophils are essential for phagocytosis in the innate immune response via the Th17 pathway 
(21), and MRSA has well-documented mechanisms of avoiding neutrophil recognition (22).  
Additionally, IL-4 and IL-12 (p70) are both implicated in B cell maturation (23–25); as component 3 
is associated with the downregulation of IL-4 and the upregulation of an IL-12 (p70) regulatory 
counterpart, IL-12 (p40), this component also potentially corresponds to a process that suppresses 
B cell maturation and signaling. This mechanism is also synergistic with neutrophil suppression as 
neutrophils, B cells, and IL-12 (p70) have documented cross-talk mechanisms in response to 
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inflammation (25). Alternatively, IL-12 (p40) upregulation could correspond to an increase in IL-23, 
a pro-inflammatory, Th17-promoting cytokine that includes an IL-12 (p40) subunit (26). IL-23 
promotion of inflammation and Th17 cells has been linked to pathogenic inflammation (26, 27), 
suggesting that, overall, component 3 may correspond to a non-protective inflammation 
mechanism in response to MRSA bacteremia. 
 
Intriguingly, components 6 and 7 demonstrate some similar cytokine and RNA expression 
signatures but have opposite associations with persistence outcome. Both components strongly 
associate with G-CSF upregulation, which promotes neutrophil production and maturation (28), 
suggesting both components involve increases in neutrophil production. Component 7, however, 
also strongly associates with IL-17A upregulation whereas component 6 associates with IL-17A 
downregulation. Elevated levels of G-CSF and IL-17A are linked to neutrophilia (4, 29), suggesting 
that component 7 may correspond to a pathogenic neutrophil production mechanism. Component 
6, conversely, corresponds to increased GRO which associates with improved neutrophil 
recruitment and infiltration (30), suggesting that component 6 associates with both improved 
neutrophil production and recruitment to sites of infection that may hematogenously see ongoing 
bacteremia. Component 6 also associates with the downregulation of IL-10, an immune-
suppressing cytokine known to be aberrantly induced by MRSA (4, 5, 16), implicating the 
downregulation of IL-10 production in clearance of bacteremia in context of vancomycin therapy as 
in the current study cohort. In contrast, component 7 associates with the upregulation of gene sets 
associated with the negative regulation of erythrocyte differentiation, suggesting that component 7 
corresponds to an immunosuppressive process that prevents immune cell differentiation. A recent 
study found that persistent MRSA outcomes correlate with suppressed neutrophil maturation, 
suggesting that component 7 may indeed identify a persister-associated mechanism that involves 
the proliferation of immature immune cells or their non-protective maturation (4). Altogether, these 
differences between components 6 and 7 highlight that immune cell maturation, differentiation, and 
trafficking are critical in resolving MRSA infections, and that immune cell production alone can be 
either persister- or resolver-associated. The key concept is that outcome of MRSA bacteremia is 
defined through a balance of these immune responses. 
 
More broadly, these results find that a comprehensive view of cytokine and RNA expression data 
improves our understanding of the immune response to MRSA. Integrating data types to define 
molecular patterns of immunologic response provides dual benefits: Firstly, interpretation of the 
resulting patterns is made easier through a broader view of the involved molecular factors.   
Additionally, immune response patterns, especially with data reduction in tensor form, are more 
precisely defined through more effective dimensionality reduction. We find that the mechanisms of 
persistent MRSA bacteremia manifest over multiple biological modalities, and that tensor 
factorization methods can recognize patterns across modalities to identify these mechanisms of 
MRSA persistence. These results demonstrate the importance of multi-omics data profiling and 
integration in characterizing the human immune response, with coupled tensor factorization as a 
powerful tool for providing interpretable data integration. 
 

Materials and Methods 
 

Patients and sample collection 
This case-controlled study consisted of 177 SAB patients (71 PB and 106 RB) propensity matched 
by sex, race, age, hemodialysis status, type I diabetes, and presence of an implantable device. 
Details of clinical characteristics of study cohort are presented in Table 1. Of the 177 patients, 129 
had serum cytokine measurements, 115 had plasma cytokine measurements, and 88 had RNA-
seq measurements. SAB cases were evaluated and consented for enrolment in the S. aureus 
Bacteremia Group (SABG) biorepository at Duke University Medical Centre (DUMC). 
Plasma and/or sera and whole blood Paxgene samples were collected at time of diagnosis of 
MRSA infection and stored in the SABG biorepository. Cases for the current study were carefully 
selected based on the following inclusion criteria: laboratory confirmed MRSA bacteremia; received 
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appropriate vancomycin therapy; enrolled in the SABG study between 2007 and 2017 (to ensure 
contemporary medical practices) and had available serum or plasma samples. PB was defined as 
patients had continuous MRSA positive blood cultures for at least 5 days after vancomycin antibiotic 
treatment (5); while RB patients had initial blood cultures that were positive for MRSA, but the 
subsequent blood cultures were negative. 
 
Molecular analysis 
Luminex-based cytokine measurement 
Human 38-plex magnetic cytokine/chemokine kits (EMD Millipore, HCYTMAG-60K- PX38) were 
used per manufacturer’s instructions. The panel includes IL-1RA, IL-10, IL-1ɑ, IL- 1β, IL-6, IFN-ɑ2, 
TNF-β, TNF-ɑ, sCD40L, IL-12p40, IFN-γ, IL-12/IL-12p70, IL-4, IL-5, IL-13, IL-9, IL-17A, 
GRO/CXCL1, IL-8/CXCL8, eotaxin/CCL11, MDC/CCL22, fractalkine/CX3CL1, IP-10/CXCL10, 
MCP-1/CCL2, MCP-3/CCL7, MIP-1ɑ/CCL3, MIP-1β/CCL4, IL-2, IL-7, IL-15, GM-CSF, Flt-
3L/CD135, G-CSF, IL-3, EGF, FGF-2, TGF-β, and VEGF. Fluorescence was quantified using a 
Luminex 200TM instrument. Cytokine/chemokine concentrations were calculated using Milliplex 
Analyst software version 4.2 (EMD Millipore). Luminex assay and analysis were performed by the 
UCLA Immune Assessment Core. 
 
RNA sequencing, mapping, quantification, and quality control 
Total RNA was isolated with Qiagen RNA Blood kit, and quality control was performed with 
Nanodrop 8000 and Agilent Bioanalyzer 2100. Globin RNA was removed with Life Technologies 
GLOBINCLEAR (human) kit. Libraries for RNA-Seq were prepared with KAPA Stranded mRNA-
Seq Kit. The workflow consists of mRNA enrichment, cDNA generation, and end repair to generate 
blunt ends, A-tailing, adaptor ligation and PCR amplification. Different adaptors were used for 
multiplexing samples in one lane. Sequencing was performed on Illumina Hiseq3000 for a single 
read 50 run. Each sample generated an average of 15 million reads. Data quality check was done 
on Illumina SAV. Demultiplexing was performed with Illumina Bcl2fastq2 v 2.17 program. 
 
Computational Analysis 
Cytokine Normalization 
Prior to analysis, cytokine data were separated into two matrices including the serum and plasma 
samples each. These cytokine measurements included available data from both cohorts. For both 
sets of cytokine measurements, values above or below the limit of detections were set to be equal 
to those limits. IL-12p70 had an unusually low limit within cohort 1, and so values were set to the 
lowest measured value to minimize biased results during normalization. As each cytokine may span 
a different range of values, measurements were first log transformed and then mean-centered for 
each cytokine across all patients. Finally, because tensor factorization attempts to explain variation 
among the data, we divided each matrix by its standard deviation to ensure equal overall variance. 
 
RNA Processing 
Gene expression counts were converted to transcripts per million (TPM). Measured genes with an 
average TPM below 1 were removed. Genes then were grouped into modules through Weighted 
Gene Correlation Network Analysis (WGCNA) (15); modules were determined using the TPM of 
each gene across all patients. Each gene appears in at most one module, and a cut-off of kME > 
0.8 was used to define module membership. The arithmetic mean TPM was calculated for every 
module for each patient, resulting in a matrix of mean module TPM for each patient. Prior to further 
analysis, the mean module expression is mean-centered and variance-scaled for each module 
across all patients. 
 
Enrichment Analysis 
Enrichment analyses were performed with Enrichr to interpret the biological significance of the gene 
modules. For each module, the genes contained within the module were compared to the Gene 
Ontology’s Biological Process 2021 library of gene sets. Both the (1) p-value via Fisher’s Exact 
Test and (2) combined score via Enrichr’s rank-correction test were derived for each gene set with 
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overlap to a module. Only gene sets with a p-value < 0.05 were considered significantly enriched; 
for modules with multiple significantly enriched gene sets, gene sets with the largest combined 
scores were considered most significantly enriched. 
 
Coupled Matrix-Tensor Factorization 
We separated the data into a three-mode tensor organized by patient, cytokine, and measurement 
source (serum or plasma) coupled with a matrix of RNA modules for each patient (Figure 1B). 
Tensor operations were performed using Tensorly (31). Here, we reduced the molecular 
measurements into the sum of ! Kruskal-formatted components: 
 

"cytokine ≈$%! ∘ '! ∘ (!
"

!#$
= "*cytokine 

+RNA ≈$%! ∘ ,!
"

!#$
= +-RNA 

 
where %!, '!, (!, and ,! are vectors indicating variation along the patient, cytokine species, 
cytokine sources (serum or plasma), and RNA module modes, respectively, and “∘” indicates vector 
outer product. Concatenating all ! vectors for each mode, we have their factor respective matrices, 
., /, 0, and 1.  
 
As we have reported elsewhere (13), tensor factorization was performed via an alternating 
censored least squares method (9). Each factor matrix was first initialized with imputed singular 
value decomposition of the unfolded tensor along its respective mode. With each iteration, least-
squares solving is performed separately for each mode with the missing values ignored. The 
cytokine factor matrix (/) is updated to the least-squares solution of the Khatri-Rao product 
(indicated by “⨀”) of the cytokine source (0) and patient (.) factors and the cytokine tensor unfolded 
along the cytokine mode (+cytokine, (2)) 
 

min
%
6+cytokine, (2) 	− /(0⨀.)&6	

(, 
 
and the cytokines source matrix is updated in a similar fashion, with the unfolding performed along 
the source mode (+cytokine, (3)) 
 

min
)
6+cytokine, (3) 	− 0(/⨀.)&6	

(. 
 
For the RNA modules matrix, the RNA factor matrix (1) is updated to the least-squares solution of 
the patient factors and RNA modules matrix 
 

min
*
‖+RNA 	− .1&‖	(. 

 
Finally, to enforce that the patient factors explain the variance across both datasets, the unfolded 
cytokine tensor is concatenated with the RNA module matrix  
 

min
+
6>+cytokine, (1)		+RNA? − .[(0⨀/)&	1&]6	

(, 
 
where +cytokine, (1) indicates the tensor unfolding of "cytokine along its patient mode, and “[	]” indicates 
the concatenation of two matrices within the bracket. Similarly, the Khatri-Rao product of the 
cytokine (/) and cytokine source (0) factors is concatenated with the RNA module factors (1)  and 
the least-squares solution is derived using these concatenated matrices, leading to patient factors 
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that minimize squared error overall. Iterations were repeated until the variance explained (R2X) 
improved by less than 1⨉10-6 between iterations. 
 
Reconstruction Fidelity 
To evaluate the fidelity of our factorization, we calculate the percent variance explained, R2X. First, 
the total variance is derived as the sum of the Frobenius norms squared of the cytokine tensor and 
RNA module matrix: Ctotal =	6"cytokine6

( + ‖+RNA‖(. We then calculate the Frobenius norms 
squared of the difference between the cytokine tensor and RNA matrix and their reconstructed 
versions: C!,	cytokine = 6"cytokine −"*cytokine6

(
 and C!,	RNA = 6+RNA − +-RNA6

(
. The variance explained 

is then calculated as 
 

!2+ = 1 − C!,cytokine + C!,RNA

Ctotal
 

 
Missing values are ignored in all calculations. 
 
Prediction Models 
Following factorization, we use scikit-learn’s logistic regression classifier to predict persistence from 
CMTF’s patient factors (32). Data is regularized via elastic-net regularization with an 0.8 L1 ratio. 
Regularization strength is fitted via grid search using a stratified 10-fold cross-validation to evaluate 
prediction accuracy. This setup is also used for the single data source persistence prediction 
models (Figure 3A-D) and the CMTF race and sex prediction models (Figure 3E). Age is predicted 
using scikit-learn’s linear regression model (Figure 3E). 
  
For the reduced models in Figure 5, we use scikit-learn’s support vector classification (SVC) model 
to predict persistence from pairs of components 3, 6, and 7. Data is regularized using L2 
regularization with a regularization strength determined using the same scheme as the logistic 
regression model above. 
 
Data and materials availability 
The code used to perform these analyses is available on GitHub at https://github.com/meyer-
lab/tfac-mrsa. The cytokine and RNA-seq measurements are available in the GitHub repository at 
https://github.com/meyer-lab/tfac-mrsa/tree/main/tfac/data/mrsa. Enrichment results for each gene 
module are available at https://github.com/meyer-lab/tfac-
mrsa/blob/main/tfac/data/mrsa/enrichment_results.zip. Gene memberships are available in 
Dataset S1. 
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Figures and Tables 
 

Figure 1. Structured data decomposition integrates clinical measurements with varying 

degrees of overlap. A) General approach description. Patients with MRSA bacteremia treated with 
vancomycin had samples collected at admission and then were monitored 5 days post-admission 
for clearance of MRSA from the bloodstream. Measurements of patient serum cytokine, plasma 
cytokine, and whole blood transcriptional profiles were assessed. These measurements were then 
reduced into overall factors describing patterns within the data, which in turn were used to assign 
disease outcomes, defined as resolving (RB) or persisting (PB) bacteremia. B) Overall structure of 
the data. Cytokine measurements from either plasma or serum can be arranged in a three-
dimensional tensor, wherein each dimension indicates patient, cytokine, or sample source, 
respectively. In parallel, gene expression measurements are aligned with cytokine measurements 
by virtue of sharing patients. C) Data reduction is performed by identifying additively separable 
components represented by the outer product of vectors along each dimension. The patient factors 
are shared across both the tensor and matrix reconstruction. D) Venn diagram of the variance 
explained by each factorization method. Canonical polyadic (CP) decomposition can explain the 
variation present within the cytokines tensor, or principal component analysis (PCA) could be used 
to reduce the gene expression matrix (9). Tensor partial least squares regression (tPLS) allows 
one to explain the shared variation between the matrix and tensor (33, 34). In contrast, here we 
wish to explain the total variation across both the tensor and matrix. This is accomplished with 
CMTF (11–13). 
 

Figure 2. CMTF parameter tuning to correlate bacteremia outcome. A) Number of components 
used in the CMTF decomposition versus the percent variance reconstructed (R2X). B) Percent 
variance explained upon reconstruction (R2X) of the entire data, RNA, or cytokine measurements 
with varying scaling between the two datasets. C–D) Balanced accuracy in assigning bacteremia 
outcomes with varying number of components (C) and scaling (D). 
 
Figure 3. CMTF improves assignment accuracy of persistent MRSA bacteremia. A) Balanced 
accuracy in RB/PB assignment from models trained with CMTF components and raw data sources. 
Accuracy is evaluated using 10-fold cross-validation over the training cohort. B) Receiver operating 
characteristic curves for the models depicted in (A). C) Balanced accuracy in RB/PB assignment 
from models trained with CMTF or the raw data sources. Model accuracy is evaluated against a 
masked validation cohort following training against the training cohort. D) Receiver operating 
characteristic curves for models depicted in (C). E) CMTF model performance in assigning auxiliary 
demographics. F) Model coefficients assigned to each CMTF component. Dots and error bars 
depict the bootstrapping means and standard deviations of model coefficients, respectively. 
 

Figure 4. Components identify conserved patterns of MRSA immunologic response. A) 
Patient factors for each component. B) Component associations with each measured cytokine. C) 
Component associations with the two cytokine sources: plasma and serum. D) Component 
associations with each gene module. E) Selected enrichment analysis results for modules with high 
association to a persistence-associated component. 
 

Figure 5. A reduced model visualizes heterogeneity in persistent MRSA bacteremia 

outcomes. A) Balanced accuracy scores of support vector machine classification models trained 
with subsets of CMTF components. Accuracy is evaluated using 10-fold cross-validation over all 
patients. B) Receiver operating characteristic curves for models depicted in (A). C) Patient factor 
values for CMTF components 6 and 7. The dashed line represents the persistence decision 
boundary of the SVM model. Purple and red shading indicate persister- and resolver-predicted 
patients, respectively. D) Cytokine factor values for CMTF components 6 and 7. Cytokine factors 
with large absolute differences between components 6 and 7 are highlighted in orange. E) RNA 
module factor values for CMTF components 6 and 7. RNA module factors with large absolute 
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differences between components 6 and 7 are highlighted in orange. F) Enrichment analysis results 
for module P1_I11_M15. 
 

Figure 6. CMTF emphasizes role of T-helper cell polarization in granulocyte formation and 

in bacteremia persistence. Illustration depicting immunological signatures associated with 
combinations of component 6 and 7. Red shading indicates signatures associated with PB; green 
shading indicates association with RB. 
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Table 1. Demographic and Clinical Characteristics of the Patients with Resolving and 

Persistent Bacteremia. 

 
Overall 
(N=177) 

Resolving 
Bacteremia 

(N=108) 

Persistent 
Bacteremia 

(N=69) 
P-Value 

Demographics      
Age, mean (median), y 61 (63) 62.3 (62.5) 63 (64.0) 0.38 
Sex     0.42 

Male 110 (62.1%) 66 (61.1%) 44 (63.8%)  

Female 67 (37.8%) 42 (38.9%) 25 (36.2%)  

Race    0.36 
Black 67 (37.9%) 39 (36.1%) 28 (40.6%)  
White 106 (59.9%) 68 (63.0%) 38 (55.1%)  
Other 4 (2.3%) 1 (0.9%) 3 (4.3%)  

Route of infection    0.03 
Hospital acquired 23 (13.0%) 19 (17.6%) 4 (5.8%)  

Community acquired, 
Healthcare associated  

122 (68.9%) 67 (62.0%) 55 (79.7%)  

Community acquired, 
NON- Healthcare 

associated 
32 (18.1%) 22 (20.4%) 10 (14.5%)  

Initial Source of 

Bacteremia  
   NA 

Skin/Soft tissue/ 
Osteoarticular 

51 (28.8%) 36 (33.3%) 15 (21.7%)  

Endovascular1 50 (28.2%) 28 (25.9%) 22 (31.9%)  
Pulmonary2 17 (9.6%) 12 (11.1%) 5 (7.3%)  

GI/GU 7 (4.0%) 5 (4.6%) 2 (2.9%)  
Unknown/Other  49 (27.7%) 27 (25.0%) 22 (31.9%)  

     
Metastatic Infection 91 (51.4%) 41 (38.0%) 50 (72.5%) <0.01 
Apache II, mean (range) 16.6 (2-50) 16.1 (2-50) 17.4 (6-36) 0.90 
Length of Stay (days)    <0.01 

<9 30 (16.9%) 30 (27.8%) 0 (0.0%)  
9-14 49 (27.7%) 33 (30.6%) 16 (23.2%)  

15-20 39 (22.0%) 16 (14.8%) 23 (33.3%)  

>20 59 (33.3%) 29 (26.9%) 30 (43.5%)  
Procedures     

Surgical removal of 
foreign device 

57 (32.2%) 22 (20.4%) 35 (50.7%) <0.01 

Surgical Debridement 36 (20.3%) 20 (18.5%) 16 (23.2%) 0.37 
Surgical Insertion of 

foreign device 
18 (10.2%) 8 (7.4%) 10 (14.5%) 0.13 

Abscess Drainage  25 (14.1%) 11(10.2%) 14 (20.3%) 0.07 
Line Removal 18 (10.2%) 14 (13.0%) 4 (5.8%)  

Other  54 (30.5%) 30 (27.8%) 24 (34.8%) 0.31 
Comorbidities     
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Neoplasm 28 (15.8%) 24 (22.2%) 4 (5.8%) <0.01 
Diabetes mellitus 85 (48.0%) 47 (43.5%) 38 (55.1%) 0.10 

Dialysis dependence 37 (20.9%) 16 (14.8%) 21 (30.4%) 0.01 
HIV  4 (2.3%) 2 (1.9%) 2 (2.9%) 0.51 

Organ Transplant 
Recipient 

15(8.5%) 10 (9.3%) 5 (7.2%) 0.43 

Intravenous drug use 9 (5.1%) 6 (5.6%) 3 (4.4%)  
Steroid use in previous 

30 days 
44 (24.9%) 30 (28.0%) 14 (20.3%)  

Surgery in previous 30 
days 

44 (24.9%) 29 (26.9%) 15 (21.7%)  

Outcome, 90 day    0.15 
Cure 139 (78.5%) 90 (83.3%) 49 (71.0%)  

Recurrent SA Infection 12 (6.8%) 7 (6.5%) 5 (7.3%)  
Death due to SA 

Infection 
17 (9.6%) 6 (5.6%) 11 (15.9%)  

Death due to Other 
Causes 

6 (3.4%) 3 (2.8%) 3 (4.4%)  

Unknown/Other3 3 (1.7%) 2 (1.9%) 1 (1.4%)  
1Endovascular source includes catheters, LVADs, Pacemaker/defibrillator and gortex graft source 
of infection. 
2Pulmonary source of infection includes pneumonia and empyema.  
3Outcome, 90 day, Unknown/Other includes Discharge to hospice, Lost to follow-up, and missing. 
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