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Abstract

In adaptive immune receptor repertoire analysis, determining the germline variable
(V) allele associated with each T- and B-cell receptor sequence is a crucial step. This
process is highly impacted by allele annotations. Aligning sequences, assigning them
to specific germline alleles, and inferring individual genotypes are challenging when the
repertoire is highly mutated, or sequence reads do not cover the whole V region.

Here, we propose an alternative naming scheme for the V alleles as well as a novel
method to infer individual genotypes. We demonstrate the strength of the two by com-
paring their outcomes to other genotype inference methods and validated the genotype
approach with independent genomic long read data.

The naming scheme is compatible with current annotation tools and pipelines. Anal-
ysis results can be converted from the proposed naming scheme to the nomencla-
ture determined by the International Union of Immunological Societies (IUIS). Both the
naming scheme and the genotype procedure are implemented in a freely available R
package (PIgLET). To allow researchers to explore further the approach on real data

1


https://doi.org/10.1101/2022.12.26.521922
http://creativecommons.org/licenses/by-nc/4.0/

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

!

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.26.521922; this version posted December 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

and to adapt it for their future uses, we also created an interactive website (https:
//yaarilab.github.io/IGHV_reference_book).

Introduction

The adaptive immune system’s diversity is key in fighting the array of countless pathogens
our bodies encounter. Part of this diversity comes from the immunoglobulin (lg)-encoding
genomic loci, resulting from the stochastic recombination process they undergo. The IG loci
are challenging to study because of their repetitive nature and structural variants [19, 46, 31].
In adaptive immune receptor repertoire sequencing (AIRR-seq)-driven studies, a crucial step
for downstream analyses is germline annotation, which infers the germline subgroup, gene,
and allele for each variable (V), diversity (D), and joining (J) sequence. Studies in the field of
adaptive immunity are as diverse as the system itself, yet they need a common language to
be able to integrate the data and studies’ conclusions. Understanding of the architecture of
the human Ig loci has developed over multiple decades. A widely used taxonomy for human
IG genes, which provides a common language for V, D, and J germline subgroups, genes,
and alleles [15, 19], was codified by the InMunoGeneTics Information System (IMGT) [9].
This nomenclature, sometimes referred to as the IMGT nomenclature, is referred to here as
the International Union of Immunological Societies (IUIS) nomenclature, for the gene names
are allocated according to a process governed by the IUIS. With technological advances
in the field, the number of known alleles and genes has increased dramatically [22, 20,
25]. Figure. 1A illustrates the IG heavy chain V (IGHV) locus on chromosome 14, based
on the GRCh38 [36] assembly, demonstrating the complexity of the region. A number of
genes are duplicated, leading to the presence of genes at different locations (for example
IGHV2-70/IGHV2-70D, IGHV3-23/IGHV3-23D) that share common alleles [46]. Additionally,
as previously shown for short read IGHV sequences [18], exploring the similarity between
all full length functional alleles within the germline set shows that in some cases alleles from
different genes are clustered together (Fig. 1B). Closely observing a case of shared alleles
between duplicated genes demonstrates the complexity of correctly assigning the germline
allele in AIRR-seq data (Fig. 1B, lower panel).

Germline annotation is typically performed by an aligner tool, which determines the
germline allele by comparison to sequences listed in a ‘germline set’. For V genes, the
accuracy of this assignment is strongly influenced by the sequencing read length [25, 49].
Reads that cover the entire V sequence (typically 290-320nt in length) permit the greatest
accuracy, but shorter reads are often employed, and many studies focus only on sequenc-
ing the complementarity-determining region 3 (CDR3) with short flanking sequences, thus
dramatically reducing the number of alleles that can be categorically resolved, particularly
as there is reduced diversity at the 3’ end of the V gene germline sequences [28, 26, 25].
Even when full-length reads of the V sequence are available, sequence alignment against
the germline set will not provide a single categorical germline allele for every sequence,
both because of duplicated sequences in the germline set itself, and because even a small
number of mismatches from the germline can cause a V sequence to become equidistant
from > 1 sequence in the set. As a result, the aligner tool will frequently emit 'multiple as-
signments’ - a list of germline alleles that statistically indistinguishable to the V sequence
present in the read.

This complexity of assignments impacts clonal inference [49] among other things. Clones
are a measure of diversity and selection within B cell receptor (BCR) repertoires [48]. Each
clone stems from an ancestral naive B cell expressing an unmutated BCR. In AIRR-seq
repertoires, it is common to identify a BCR clone as a group of sequences that share the
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same V and J germline assignments, and CDRS3 length [10], as well as having similarity
in the CDR3 sequence. To achieve correct clonal inference, annotating the AIRR-seq data
correctly is therefore crucial, and mis-assignments and multiple assignments can result in
difficulty to infer clones, hindering any clonal-based downstream analysis. For example, in
Fig. 1C, 14 alleles between IGHV2-70 and IGHV2-70D have a nucleotide sequence similarity
greater than 95%.

To address this problem, we propose the use of a naming scheme system for analysis
that is based on the hierarchical clustering of alleles, according to nucleotide sequence sim-
ilarity. In our system, gene families are defined as sequences with 75% similarity [19], and
‘allele similarity clusters’ (ASCs) as groups of sequences that share 95% similarity (Fig. 1C
left panel). Essentially, assignments are made to ASCs rather than genes for the purposes
of downstream analysis. Sequence similarity is based here on germline sequences that are
matched to read length, hence the number of clusters, and overall precision of the annota-
tion, reflects the precision of the underlying germline set. The 95% threshold represents the
best relation between clustering similar alleles and avoiding “over” splitting known groups
(Genes). At the end of analysis, where it is necessary to refer to specific allele assignments,
the alleles names can be converted to the familiar lUIS nomenclature: we do not propose a
replacement nomenclature, but rather a method of data representation that is more tractable
for analysis.

Because of the high sequence identity between many alleles, aligner tools typically infer
a biologically implausible number of alleles in an individual’s repertoire [6]. Tools inferring
‘personal genotypes’ assess support for each allele [7, 30, 34]. This can be helpful in down-
stream analyses such as disease susceptibility inference [2, 21]. We propose a genotyping
approach based on consideration of the absolute expression of each allele, using ASC an-
notation to ensure that each allele sequence is only considered once (Fig. 1C right panel).
We show that this provides improved results compared to a commonly used existing tool and
is in good correspondence with genotypes derived from genomic sequencing.


https://doi.org/10.1101/2022.12.26.521922
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.26.521922; this version posted December 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A g o8 20 200 B
106700000 106740000 106780000 ) IGHV1-69] [GHVA=45
Missing 024 1GHV1-3) (IGHV1-69D A TGHV1=18]
e & &€ & & P 4 ’ s igevees s
== =08 (iGmvi-ai)
106550000 106600000 106650000 o s O
& 0.1 —
,, , , (feAve-z30) (IGHV4-34) (IGHV4-38-2
« XiGHva-61)
106350000 106400000 106450000 106500000 c =)
,, , , , , ” , a oo (IGHV4-39] (IGHV4-30-4
.04 ’|GHV6_|%|GHVA»28 (IGHV4-30-2
IGHV3-49 (IGHV2-26)
106150000 106200000 106250000 10630000 (GHV3=30-5) 1GHV3-30) (1GHV3=23D) [IGHVEE3) (GHVZ-5| 5
- (GHVa-] @/ GHV2-70D
, , /, , f 0.1 (1GHV3-73}, AVa-21) (IGHVa66) - loHV2-70)
(IGHV3-64] (IGHV3 GHV3-45] (IGHV3=53) !
105950000 106000000 106050000 106100000 S (1GHvs-74)
C GRCh38 chri4 fierva-7) (GHYS-43) IGRVE-20) 1GHYS-72]
3 - 1GHV3-13] (IGHV3=43D) (IGHV3-9)
Determine allele threshold 0.2+
based population

] — ik
,,,,,,,,, 75% sequence similarity i i i 0.2 0.0 i02 -0.4
id not Vi

o Did not pass gene-leve genotype -
@ Passed ASC-based genotype _—

95% sequence similarity

0.04

0.04

e __o @
IGHV2-26
0.06 4 o

QNOTONGII =0 0RDS S 0.01 o o o
BgRhh b EE0 DEEREELEN 1§ 000 g s
FVYYVL AT SN TN @ 1.00 0.08- 9IGHY2-70D
QAAAANSSSSS AN TANT N AN L 0.75 . P Q O o o
>>>>IIIII%>>N>>?>N>>>>>>> g OD lGH\a—%@ o
ITIIIGGE6600IL>IIOISIIIIIIT 0.50 ~
OOVO===== FROFO0T OTO000000) 005 0.10 1 , T

£ o £ g |
| S | 0.00 -0.19 -0.20 -0.21
[ V allele Dim 1

Figure 1: Sequence similarity in the IGH locus. (A) The IGHV locus on human chro-
mosome 14 (x axis, GRCh38 coordinates). The colored genes (non dark-gray) are those
with 95%-100% germline sequence similarity. Genes that share similarity, but do not have
a genomic location in the GRCh38 assembly, are shown to the right of the plot. Dark gray
genes are stand alone genes, and other colors indicate genes with similar alleles. (B) Mul-
tidimensional scaling of the IGHV IMGT germline set pairs distance matrix; plot shows the
first two dimensions. Each dot is a functional allele colored by gene. The bottom panel
shows a zoom into the IGHV2 subgroup, demonstrating the proximity between alleles of
the duplicated genes (IGHV2-70 and IGHV2-70D). (C) The left panel shows the hierarchi-
cal clustering of the IGHV2 subgroup. The color of the branches was determined by the
gene color in panel B. The right panel is a schematic representation of the new ASC-based
approaches for genotyping. The top and bottom panels show the genotype inference for a
given ASC/gene. The columns are the alleles of the ASC/gene, and the rows are the different
genotyping method. Each dot is an individual’s allele call frequency, calculated appropriate
to the genotyping method (Top panel relative to the total repertoire size, and bottom panel
to the ASC/gene size). The dotted lines represent the genotype thresholds: the allele spe-
cific threshold (1e-04) in the top panel, and the gene-based threshold (0.125) in the lower
panel. The gray and red points represent individual allele calls that did not enter the geno-
type based on the gene-based method, but did based on the ASC-method (respectively).

Results

Allele naming system based on germline hierarchical structure.

Using hierarchical clustering with complete linkage, we defined a two-level naming scheme
for the set of functional germline alleles (downloaded from IMGT July 2022): allele families
(AFs) and ASCs. For the family level, we followed the logic and threshold (75% nucleotide
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similarity) from IMGT [17]. Since we applied this methodology to the contemporary set of
functional alleles, the resulting families mildly deviate from the present IUIS family definitions.
In particular, the IGHV3 subgroup is split into two families with our approach (Fig. 2A, the
orange dashed circle defines the 75% threshold). Using the same hierarchical tree, we
clustered the sequences based on 95% nucleotide similarity (Fig. 2A, blue dashed line).
This resulted in 46 clusters, which we define as ASCs, some of which span several genes
(Fig. 2B). In addition, alleles of some genes are split between different clusters. Adapting
the two-level naming scheme results in an annotated germline reference set that reduces
ambiguities in several analysis steps as shown below.

Many AIRR-seq experimental protocols result in sequences that do not cover the full V
gene. The two most common partial sequencing libraries are BIOMED-2 [39], with primers in
the framework 1 (FW1) and framework 2 (FW2) regions, and ImmunoSeq [23], which offers
only the CDR3 and a small fragment of the V and J region. Partial V sequencing exacerbates
the computational challenges mentioned above caused by similar alleles originating from
distinct genes. Our proposed naming scheme can be generalized in a straightforward way
to these situations.

To adapt the above naming scheme to partial V sequences, we computationally trimmed
the 5’ region of the germline set’s V sequences according to the sequence lengths obtained
using the BIOMED-2 and ImmunoSeq protocols. For simplicity, we defined the sequencing
protocols by the library amplicon length, and named the full-length amplicons “S1”, the partial
V sequences corresponding to the BIOMED-2 style “S2”, and the minimal V coverage of
ImmunoSeq “S3” (Fig. 2A).

Depending on the amplicon length used, we obtained a different number of ASCs. As
expected, the 5° V trimming resulted in higher similarity between the alleles. Compared to
the 54 genes in the IUIS database, after clustering we observed 46 ASCs in S1, 43 in S2,
and 11 in S3 (Fig. 2C).
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Figure 2: Allele Similarity Clusters. (A) Hierarchical clustering of the functional IGH
germline set. The inner layer shows a dendrogram of the clustering, the dotted circles indi-
cate the sequence similarity of 75% (orange) and 95% (blue). The dendrogram branches are
colored by the 75% sequence similarity. The first colored circle shows the clusters and alle-
les for the library amplicon length of S1, the second circle for the length of S2, and the third
for S3. The white color indicates alleles that cannot be distinguished in the library’s germline
set. (B) An alluvial plot showing the connection between the allele clusters and the IUIS
genes. The colors represent the allele clusters. White represents IUIS genes whose alleles
are clustered into more than a single allele cluster. (C) The frequency of the subgroups/fam-
ilies, genes/clusters, and alleles for each amplicon length. The x-axis is the amplicon length
and the y-axis is the count of the unique subgoups/families, genes/clusters, or alleles.
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Allele similarity clusters based threshold for genotyping are robust to
nomenclature and more accurate than gene-based inference

Many computational genotyping tools consider the relative frequency of a candidate allele
during inference and filtering steps [7, 5, 37, 3]. An inference is made or accepted if the
number of assignments to an allele exceeds a threshold percentage of the total assign-
ments to all alleles of the corresponding gene. A need for allele-specific filtering processes
has been suggested in the past [24]. Here, we propose and implement a method based
on the explicit comparison of each allele’s frequency in the repertoire under study with that
observed in the population. We do so by using the ASC naming scheme so that each
identical nucleotide sequences belonging to different alleles are collapsed and represented
in the germline reference set only once (Fig. 1C right panel). This addresses issues that
can confound frequency observations in current methods: variable expression levels be-
tween alleles of the same gene, multiple assignments, duplicated genes, and short reads.
In our implementation, we initially set a default allele threshold of 1¢~4 for each of the al-
leles in the ASC germline set. We then manually adjusted the threshold, such that each
allele has an allele-specific threshold (Sup. Table 1). This was determined from observa-
tions of the allele’s usage across all available naive B cell samples present in VDJbase [26].
In particular, thresholds were adjusted in the following cases: A. haplotype inference sug-
gested that the default threshold led to a non-sensible biological scenario. B. The allele
usage in a given individual was very far from the usage distribution of across the whole
sampled population. Overall, 129 of 280 thresholds were adjusted. For further refining
the threshold from specific populations of interest, we developed an interactive web server
([https://yaarilab.github.io/IGHV _reference_book/]). The server presents the frequencies of
the alleles and the chosen thresholds. Further, the server allows the end user to explore
different choices for the allele threshold and inspect the implications of these modifications
by comparing matching haplotype data for available individuals. We found such modification
to be helpful in maximizing discrimination, particularly in cases where some alleles of the
gene are found to have lower expression levels than others [14, 8, 28, 24].

After reviewing and, where necessary, adjusting the allele-specific thresholds for all the
IGHV alleles observed in two naive cell datasets (VDJbase projects P1 [8] and P11 (un-
published study), 142 repertoires in total), we compared the resulting inferred genotypes
with the ones inferred by TIQGER, a gene-based inference tool (Fig. 3A). In the ASC-based
genotype approach, alleles enter the genotype if their usage is higher than the allele-specific
thresholds. In TIQGER genotype inference on the other hand, the alleles enter the genotype
based on the relative usage normalized by all sequences mapped to this gene. A common
step in this kind of analysis includes an undocumented allele inference. In the ASC-based
genotype inference, each inferred undocumented allele is given the allele-specific thresh-
old of its most similar allele. Overall, there were 5695 allele calls that were included in
either or both genotypes. Results were concordant for inference of highly used alleles, with
5471 allele calls that fully matched between the methods ( 95%, green squares). However,
there were 4 allele calls that only entered the genotype with the gene-based method (pink
squares), and 220 alleles that were called only by the ASC-method (black squares).

The potential false positives in the gene-based genotyping were seen in cases where all
observed alleles of a particular gene were expressed at low levels, according to population
data. An example is IGHV7-4-1 (part of ASC IGHVS1F4-G21). In all individual genotype
inferences, there was not a single situation of heterozygosity for this cluster, as in most
individuals there was one dominant allele. In the single occasion where heterozygosity was
declared, both alleles »01 and «02 entered the genotype. However, the inference of allele
=02 is likely to be incorrect. In this particular sample (VDJbase: P1_144_S1), the poorly
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expressed allele was =01, with 4 sequences, while the highly expressed allele 02 only had
a single sequence. This deviates from what is seen in the population. The three alleles
attributed to this cluster vary in usage, with allele 02 being the most expressed allele [24]
with a median usage of 1.19¢7%2. This is 33 times more than the second expressed allele
(x01). Hence, the situation where allele 01 dominates over allele «02 is unlikely (p value of
4 x 10~°% according to a binomial test), and the identification of a read associated to allele
x02 might be the result of a sequencing error. This indicates clear deviations between the
approaches that may lead to different specificities in lowly expressed clusters.

Potential false negatives in the gene-based genotyping are seen in cases where one al-
lele is expressed at a lower rate than other alleles of the gene, according to population data.
An example is IGHV3-64*02 (corresponding to ASC IGHVS1F2-G15*01). This allele entered
the genotype using the ASC-based method, but not using the gene-based method. The
IGHVS1F2-G15 cluster combines alleles from two IUIS genes, IGHV3-64 and IGHV3-64D,
that merge under the 95% threshold. The alleles of this cluster vary in usage, i.e., alleles
<05, =06, and =07 are more frequently used than 02 and 01 (Fig. 3B). Allele IGHVS1F2-
G15*01 is expressed at a considerably lower rate than the other alleles, with a median of
2.1e~% absolute usage: roughly 12 times lower than the second most lowly expressed allele,
IGHVS1F2-G15*02 (aka IGHV3-64*01). Even so, allele IGHVS1F2-G15*01 (aka IGHV3-
64*02) was above the ASC-based threshold (1¢=%) and entered the genotype, while being
far below the gene-based relative fraction threshold of 12.5% or 5%, with a median of 1.86%
(3B). To validate the inference of allele IGHVS1F2-G15*01, we looked at the haplotype of
alleles IGHVS1F2-G15*01 and IGHVS1F2-G15*02, since they come from the same chro-
mosomal location (IGHV3-64). We haplotyped seven individuals who ostensibly included
allele =01 with the ASC-method but not in the gene-based method, using heterozygosity at
IGHJ6 as the anchor (Fig. 3C). In all seven individuals, alleles 01 and =02 are found on
opposite chromosomes, strongly supporting the presence of allele IGHVS1F2-G15*01. This
example demonstrates the sensitivity of the ASC-based approach to lowly expressed allele
inferences, which may provide important insights in future studies.

Fig. 3D summarizes the distribution of allele prevalence in cohorts P1 and P11 (Fig. S1).
Seven out of the 280 alleles present in the ASC germline reference set appear in all 142
individuals, while 41% of the alleles, 116 out of 280, do not enter any of the genotypes. This
could imply that reference sets should be population-specific [43, 27], or that the current
reference set includes a large fraction of unexpressed or non-existent alleles [35].
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Figure 3: Genotype comparison. (A) A heatmap comparing the genotypes inferred from
the gene-based and the ASC-based method. The bottom panel is the heatmap comparison,
where each row is a genotype inference of an individual from the P1 dataset and each
column is a different allele. Black and Pink colors represent alleles that only entered the
genotype either in the ASC-based method or in gene-based method with a 12.5% threshold,
respectively. Green represents alleles that entered the genotype in both methods, and white
represents alleles that did not pass in both methods. The top panel is the summation of the
heatmap events. The y-axis is the count of the individuals for which a given allele entered
the genotype. The x-axis is the different alleles. (B) The relative and absolute frequency
of the ASC IGHVF2-G15. Each dot is an individual for which the allele 01 entered the
genotype with the ASC-based method, but did not in the gene-based method. The colors
represent the different individuals. Each column is a different allele from the cluster. The
top row is the absolute frequency and the bottom is for the relative frequency. (C) Haplotype
based on IGHJ6 for the individuals from (B). Each facet is a different individual, and the
facet color matches the dots from (B). In each facet, the top row and orange color is the
frequency for the IGHJ6*02 chromosome and the bottom and blue color for the IGHJ6*03
chromosome. The x-axis is the different alleles for the cluster, and the y-axis is the frequency
of the sequence count. (D) The distribution of the allele abundance in the population. The
x-axis is the number of individuals attributed to each allele, and the y-axis is the number of
alleles.
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Allele usage reporting

Subgroups, genes, and sometimes alleles are commonly used as AlIRR-seq features, for
example in reporting over-expression of specific genes/families in the context of specific
diseases. These features are highly sensitive to the nomenclature and the genotypes of the
individuals in the cohort. Here, we compare the reporting of allele-level usage versus gene
or cluster level. Fig. 4 shows that reporting of usage is highly influenced by the genotypes of
the individuals. For example, in IGHVS1F2-G5 the mean absolute usage of individuals who
carry alleles 04 and =05 is significantly higher than those who carry »03 and =04. If we were
to report the overall ASC instead of the usage of the carried allele combinations, the mean
usage would have been closer to the lowly expressed combination, masking the differences.
Moreover, if IUIS genes were used to report the usage of these alleles, it would have been
split between the V3-43 and V3-43D columns, as the genes share a common allele that
would have resulted in a multiple assignment in the alignment process. Consequently, when
studying allele usage in human cohorts, we recommend that usage is reported at the ASC
level, to avoid unnecessary ambiguities.
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Figure 4: Gene usage-based genotype. The absolute usage frequency (calls out of the
total repertoire size) of the top five allele combinations for the given clusters. The x-axis
columns are the cluster’s allele combination after genotype inference, ordered by the number
of individuals carrying the combinations. The y-axis is the absolute frequency of the cluster
within the total repertoire. Each point is an individual’s absolute frequency. The colors
represent the order of the combinations, where the combination which is present in most
individuals is colored in red and so on. The gray color, last column in every x-axis facet,
indicates the absolute frequency in terms of the whole cluster. For each cluster, an ANOVA
test was calculated and the adjusted p value is presented in the cluster’s plot title. A Tukey’s
HSD multiple comparison test was calculated with the adjusted p value, comparing between
allele clusters indicated on the connecting line; only the statistically significant combination
were drawn. ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, *™*: p <= 0.001, ****: p <= 0.0001

Genomic validation of the ASC-based genotype

We validated our ASC-based genotyping method using a paired dataset drawn from six
subjects, comprising AIRR-seq repertoire sequencing of IgM naive enriched cells, and a
haplotyped assembly of the genomic IGHV locus derived from long-read sequencing (REF).
Across the six subjects (5), a total of 304 ASC allele calls were made from the AIRR-seq
repertoires (counting the identification of a single allele in a single individual as an allele
call).

In several subjects, the genomic assembly was incomplete, either not covering certain
genes at all, or not resolving to haplotypes in certain regions. In total, 2 of the 304 calls
were in genes without coverage (orange squares), and 2 in locations with unresolved hap-
lotypes (gray squares). This left 301 allele calls from the repertoires that could be verified
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in the assemblies. Of those calls, 296 (> 97 percent) were concordant between the ASC
and genomic results (green squares). In the four discordant cases, the assemblies for the
particular gene were resolved, but only a single allele was observed (black squares). This
contrasted with the ASC inferred genotype, in which donors were characterized as heterozy-
gous, carrying two alleles. All cases were of the allele IGHV4-59*08.

34 allele calls were found only in the genomic samples (pink squares) and not in the ASC
genotypes, implying that these alleles are poorly or not at all expressed. Such examples
have been described in the literature [24, 16]

In summary, out of the 304 allele calls that were made across six individual genotypes
using the ASC-based method, we found potential contradictions from the genomic data only
in four cases. These cases most likely indicate technical issues with the genomic assembly
due to reduced coverage, rather than in the ASC-based genotype inference method.

Inference [ISingle genomic haplotype resolved [IGenomic gene assembly unresolved [Both [IGenomic-assembly BASC-based

Figure 5: Genomic inference compared to AIRR-seq genotype inference. A heatmap
of a comparison between the ASC-based genotype method and genomic validation. Each
row is an individual, and each column is a different allele. Black and Pink colors represent
alleles that are only present in the ASC-based method or in genomic validation, respectively.
Green represents alleles that are present in both methods, and white represents alleles that
are not seen in either. Orange represents alleles that for them there are no gene evidence
in the genomic validation, and gray represents alleles that only one haplotype was resolved
in the genomic validation.

Generalizability to other germline sets

One potential limitation of the proposed naming scheme is that the specific alleles in the
germline reference set determine the allele families and ASCs, hence the clustering may
change when alleles are added or removed from the set. To quantify the impact of an altered
germline reference set, we created a reduced germline set consisting only of the alleles that
entered the genotype of P1 individuals, as determined by our ASC-based method. This is
an example of transferring one germline reference set from one dataset to another without
adjusting it. We then applied the clustering algorithm and obtained the new families and
clusters (Fig. 6A). Compared to the original set, two cluster pairs were merged, G36/G37 and
G43/G44, and G13 and G38 were dropped, as none of their alleles entered the genotype.
The overall structure was maintained, despite the reduction from 280 to 163 alleles (Fig.
6B). From this, we conclude that the clustering method is relatively robust to changes in the
reference set composition.

To further assess the flexibility and effect of the reference set, we tested the multiple
assignments in a non-naive repertoire. Multiple assignments are cases in which the aligner,
IgBlast in our evaluations, cannot determine the single matched allele, and outputs multi-
ple options for the most likely germline ancestor allele. This can be caused by sequenc-
ing errors, somatic hypermutation, identical germline alleles shared by multiple genes, or a
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combination. We explored this effect using the P4 dataset from VDJbase, which includes
non-naive repertoires from 28 individuals. We aligned the repertoires three times, once with
the IUIS gene definitions downloaded from IMGT (the IMGT set), once with an identical set
of sequences but using the proposed assignment nomenclature (the S1 set), and once with
the reduced germline set described above (the reduced S1 set). We calculated the fraction
of sequences that were attributed by the aligner to more than a single gene/ASC. Figure 6C
shows an expected but significant reduction of 3-fold in multiple assignments between the
IMGT set and the S1 set. The reduced S1 set showed a further reduction in multiple assign-
ments.
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F2-G13'15
F2-G13'16
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Germline S1Germline
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@]
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o
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Figure 6: Reduced germline-based genotype. (A) The heatmap shows the clusters based
on the full germline used in Figure 2, and the re-clustering after the reduced germline, which
includes alleles that entered the genotype using the ASC-based method on the P1 and
P11 cohorts. The bottom row shows the clusters for the full germline set, and the top row
shows the clusters for the new germline. The colors represent the different clusters. White
represents alleles that did not enter the genotype. (B) Summation of the number of families,
clusters, and alleles in the S1 germline and the reduced reference. The x-axis is the different
reference sets and the y-axis is the count of the events. (C) The frequency of multiple
cluster/gene assignments. The x-axis is the different reference sets and the y-axis is the
absolute frequency of multiple assignments. Each dot is an individual’s multiple assignment
frequency from the non-naive P4 cohort.

We then applied the ASC approach to other AIR-encoding genomic loci. We clustered the
sets of functional alleles downloaded from IMGT (July 2022) for human IGKYV, IGLV, TRBY,
and TRAV. We applied the same thresholds of 75% and 95% for determining the allele fami-
lies and ASCs (Fig. 7). The IGK locus is unique because of its duplicated pattern. The locus
has two V gene blocks with a large gap in between, where the 3’ distal block is essentially
an inverted duplication of the 5’ block. Here, as in IGHV, some genes share alleles with
identical sequences. As expected, these duplicated alleles are clustered together under the
95% threshold. A split is observed in IGKV1-17, whose alleles are assigned to two ASCs. In
the IGL locus, where IUIS defines 10 subgroups, we found 12 families using our approach
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and thresholds. Four genes were combined into ASCs, and a single gene was split into
two ASCs. The loci of TRB and TRA remained relatively constant, except for four TRBV
genes, which were merged into two ASCs. We developed an interactive application that ap-
plies the ASC naming scheme to V allele reference sets from different loci and organisms,
https://yaarilab.github.io/IGHV _reference_book/alleles_groups.html. As the reference set can
change over time, we recommend not to use the nomenclature in reporting but only in the
downstream analyses. Nevertheless, for backtracking, reproducibility, and interoperability,
we maintain an https://doi.org/10.5281/zenodo.7401189 of all ASC runs conducted by our
web server. Allowing translation of the allele cluster names into IUIS names and also into
the unique names suggested in the supplementary materials (Sup. Table 1).
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Figure 7: Allele clusters for V genes from IGL/K and TRB/A loci. Each alluvial plot
represents the cluster division for a given locus. The first row of each plot shows the division
of the families, the second row the ASCs, and the third IUIS gene clustering. The colors
represent the allele clusters. White represents IUIS genes that have been re-clustered into
more than a single allele cluster.

Discussion

Several groups have used repertoire sequencing to study IG and TR loci, using inferenc-
ing tools. They discovered a plethora of undocumented allele sequences [5, 8, 25, 20,
22, 40, 12, 45, 38]. With careful review, many novel alleles identified in the human loci
may be mapped to specific genes, on the basis that their sequence clusters closely with
other alleles of a single gene. [13, 24]. In other species, the genes are not well char-
acterized, and macaque and mouse germline sets resulting from these studies are pub-
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lished as discrete sets of allele sequences unmapped to genes. This can pose challenges
when trying to genotype and haplotype using the conventional method, which is based
on the gene level. In this study, we report on two innovations that can be highly benefi-
cial in such situations. The first is our proposed naming scheme that organizes the alle-
les within clusters of sequence similarities, which aids downstream analyses. The ASCs
can be used for clonal inference, usage reporting, and genotype and haplotype inference.
We believe that the ASC naming scheme can be a good starting point until more informa-
tion on the layout of the species’ genomic loci is discovered. That being said, the pro-
posed scheme is not meant to replace the existing IUIS naming, but rather an accom-
panied set to allow for a more inclusive analysis. We created an R package (PIgLET,
https://bitbucket.org/yaarilab/piglet), and an online application within the ASC web-
site (https://yaarilab.github.io/IGHV_reference_book/alleles_groups.html) that al-
lows the users to infer the ASC based on their own V allele reference set and plot the ASC
results. Another potential use case for our proposed naming scheme is clonal inference.
Many of the clonal inferences rely on the V segment assignments, which can be influenced
by similar genes and alleles. Considering this factor in the clonal inference can be influential
on the final results. Therefore, utilizing the ASC approach may lead to better clustering tools.

The second innovation we report is @ new and improved approach for inference of a
personal genotype and for determination of VDJ gene usage from AIRR-seq data. The ap-
proach is based on the absolute frequency of allele usage within a specific population, rather
than on relative usage (normalized at the gene level), as other approaches do. We created
an interactive website where each page shows the allele usage across the naive IGHV reper-
toires from P1 and P11 studies of VDJbase. The site allows users to play with the data and
explore the ASC-base thresholds. Further, the website includes an interactive interface to
create ASCs based on a reference set. Our site will be continuously updated as more naive
AIRR-seq and direct genomic sequencing datasets accumulate. Along with the site, the
thresholds for allele detection in VDJbase will also be updated. Moreover, as new species
are sequenced and published, we will include them as well in the site and in VDJbase. It is
worth mentioning a potential issue with all AIRR-seq based genotype approaches: in some
rare cases two alleles differ only at the 3’ end of the sequence (in human IGHV, > 318),
imposing many instances of multiple assignments as the aligners cannot differentiate be-
tween the two when the rearrangements are trimmed before. In human IGHV, only two such
cases exist (3-66*01 and 3-66*04, 4-28*01 and 4-28*03). These cases should be treated
separately, considering all particularities of the sequences, and should be reported with an
adequate confidence level.

We have demonstrated the application of ASC-based allele usage information to the
analysis of over- or under-expression in specific diseases or conditions. Annotation with
ASCs tailored to the sequencing read length employed, followed by ASC-based genotyp-
ing, will provide a single orthogonal vector of allele usages that can be compared across
repertoires, eliminating the complexity and bias that can arise from the much larger num-
bers of multiple assignments produced by gene-based approaches. The allele usage vector
provides a clear signal, tailored to the precision of the underlying data set, which can be
used in graphical analysis or machine learning applications. Important conclusions can be
translated back to IUIS nomenclature.

It is known that some alleles of a gene may be expressed at higher levels than other
alleles. Gene-based genotyping based on transcriptomic data can overlook relatively lowly
expressed alleles, however, our ASC-based method, which takes account of the typical lev-
els of allele expression, will add them to the genotype correctly. Identifying lowly expressed
alleles and including them in the genotype can be critical for investigating disease suscepti-
bility [41, 42, 11, 47]. Since genotypes are relatively similar within populations [27], variations
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in susceptibility to diseases are plausibly caused by such small differences [2].

We validated the ASC-based approach by comparing AIRR-seq genotypes with a geno-
type based on direct long read genomic sequencing [31]. Even though some repertoires in
these genomically sequenced cohorts had relatively low AIRR-seq depths, the comparison
showed a strong concordance between the direct sequencing and the proposed inference
method.

Our results show reduced variability in genotypes among individuals, as compared with
the current IGH reference available in IMGT. This raises an interesting debate of whether all
alleles in the existing reference set truly exist. This point was previously reviewed in [44],
in which the authors discovered that several alleles were erroneous. We believe that this
matter should be further discussed and reviewed to curate an optimal reference set for AIRR-
seq analyses. Exploring naive repertoires is far from complete, as most studies focus on
the same ethnic populations. As demonstrated by Rodriguez et al. [32] different ethnicity
influence the IGH composition (i.e genes, deletions, etc.). With more repertoire data curated
with different ethnic background, the allele specific threshold might have to be tailored toward
the ethnic population. We envisage that with the rising interest in AIRR-seq, future studies
will provide more diversity, which will contribute to the efforts to enhance both the ASC
website and VDJbase, and to optimization of the inferences and tools.

Methods

Data

Naive and non-naive BCR repertoire heavy chain data were used, of individuals from three
VDJbase [26] projects, P1, P11 (naive), and P4 (non-naive). Library preparation and pro-
cessing for projects P1 and P11 were performed as described in [8]. The processing for
project P4 repertoires is described in [4]. The most recent IMGT IGHV reference set was
downloaded in July 2022. For this study, we downloaded the V, D, and J allele reference
set from IMGT on July 2022, the reference set included the functionality annotation for each
allele. Within the V reference set, alleles which were non-functional were discarded. This
lead to discarding subgroup IGHV8, as none of the alleles in this subgroup are functional.
Hence, the V reference set includes only alleles from subgroups IGHV1-7.

ASCs

To create the ASCs, we used the most recent available IGHV reference set from IMGT, with
addition of undocumented allele sequences inferred from both P1 and P11 cohorts. The
combined set was then filtered to include only functional alleles that start from the first posi-
tion of the V sequence region (as defined by IMGT numbering scheme). We then discarded
short sequences in the 5’ end, those that do not start in the first nucleotide, and short se-
guences in the 3’ end: the upper limit was chosen based on the quantile that contains the
largest number of sequences with the longest coverage. The position selected was 318,
shown to be a reliable position for inferring undocumented alleles [20].

To cluster the alleles, we calculated the Levenshtein distance between all allele pairs
after aligned to the IMGT numbering scheme. For calculating the distance, we trimmed the
sequences to the 3’ upper limit position of 318. We then used hierarchical clustering with
complete linkage. The final tree was cut by two similarity thresholds of 75% and 95% to
obtain the allele families and ASCs. As a result of the clustering, the alleles were renamed
to represent the new allele families and ASCs (Supp. Table S1, [29]). For example, in the
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allele IGHVS1F2-G15*02, the family is represented by F2, the ASC by G15, and the allele
by 02. The S1 is an indicator of the library amplicon length of a given reference set. A key
table that links between the IUIS naming scheme and the ASC naming scheme can be found
in the supplementary (Sup. Table 1). The reference set with the new naming scheme was
then used for downstream processing.

For the downstream analysis, we used the full length of the V germline sequence. Mean-
ing, without the 3’ trim that was used for the clustering. As the alleles 01 and 04 of IGHV3-
66, and alleles 01 and 03 of IGHV4-28, only differentiate in position 319 it is collapsed in the
cluster analysis. Hence, in the reference set we have decided to add both alleles for both
genes, however in the new name scheme allele IGHV3-66*04 is marked as a novel allele.

Allele similarity clusters based genotype method

The ASC-based genotype utilizes a population derived thresholds to determine the presence
of a given allele within an individual’s genotype. We first had to set a default threshold for the
absolute allele usage fraction before tailoring it to each allele, the chosen value was 10~*.
We then observed the absolute usage of each allele within its ASC to determine the final
allele-specific threshold. A list of all thresholds can be found here (Sup. Table S1).

AIRR-seq processing

For inferring the personal genotype either by the ASC-based or the gene-based method,
the repertoires were first aligned with IgBlast (V1.17) using the customized germline set.
Then, for each clone a representative with the least number of mutations was chosen, un-
documented alleles were inferred using TIgGER [7], and in case new alleles were found,
the repertoire was realigned. Then, if the dataset came from naive B cells, the sequences
were filtered for no mutations within the V region up to position 316, accounting for possible
sequencing errors at the end of the V region [8]. For repertoires coming from full V region
length amplicons, the repertoires were filtered to omit 5’ trimmed sequences. Sequences
were also filtered for sufficient 3’ coverage of the V region (at least 312 nucleotide long). For
the ASC-based inference, the allele’s absolute usage was calculated, and in cases where
a given sequence had more than a single assignment, the counts were divided among all
clusters. For each allele within the repertoire, the absolute usage was compared to the spe-
cific threshold. Alleles that passed the threshold were then added to the final individual’s
genotype. For the gene-based genotype inference, the TIgGER ’inferGenotype’ [7] function
was used with the chosen threshold, either 12.5% or 5%.

Using genome long-read assemblies to validate alleles

Long-read assemblies from 6 samples generated using Sequellle HiFi reads and IGenotyper
[31] were downloaded from Rodriguez et al. [33]. The assemblies were aligned to a cus-
tom immunoglobulin heavy chain (IGH) genome reference containing previously discovered
IGHV genes using BLASR [46, 1]. From the alignments, gene sequences (5" UTR, leader-1,
leader-2 and exons) were extracted. The matched repertoire sequences were processed as
described in the method section (AIRR-seq processing), reducing the small fraction of non-
naive cells in the following way: after the initial alignment and the inference of novel alleles,
we inferred clones using the new allele clusters, and then for each clone we chose the least
mutated sequence as a representative. Because the sequences were pre-sorted to IgM, we
inferred the genotype only for unmutated sequences (after inferring novel alleles).
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