

IGHV allele similarity clustering improves genotype inference from adaptive immune receptor repertoire sequencing data

Ayelet Peres^{1,2}, William D. Lees³, Oscar L. Rodriguez⁴, Noah Y. Lee⁵, Pazit Polak^{1,2}, Ronen Hope¹, Meirav Kedmi^{6,7,8}, Andrew M. Collins⁹, Mats Ohlin¹⁰, Steven H. Kleinstein⁵, Corey T Watson⁴ and Gur Yaari^{1,2,†}

¹Faculty of Engineering, Bar Ilan University, 5290002 Ramat Gan, Israel

²Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, 5290002 Ramat Gan, Israel

³Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom

⁴Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States

⁵Yale School of Medicine, New Haven, Connecticut, USA.

⁶Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Israel

⁷Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel

⁸The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Israel

⁹School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia

¹⁰Department of Immunotechnology, Lund University, Lund, Sweden

[†]To whom correspondence should be addressed. Tel: +972 3 7384625; Email: gur.yaari@biu.ac.il

December 27, 2022

Abstract

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region.

Here, we propose an alternative naming scheme for the V alleles as well as a novel method to infer individual genotypes. We demonstrate the strength of the two by comparing their outcomes to other genotype inference methods and validated the genotype approach with independent genomic long read data.

The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET). To allow researchers to explore further the approach on real data

40 and to adapt it for their future uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).
41

42 Introduction

43 The adaptive immune system's diversity is key in fighting the array of countless pathogens
44 our bodies encounter. Part of this diversity comes from the immunoglobulin (Ig)-encoding
45 genomic loci, resulting from the stochastic recombination process they undergo. The IG loci
46 are challenging to study because of their repetitive nature and structural variants [19, 46, 31].
47 In adaptive immune receptor repertoire sequencing (AIRR-seq)-driven studies, a crucial step
48 for downstream analyses is germline annotation, which infers the germline subgroup, gene,
49 and allele for each variable (V), diversity (D), and joining (J) sequence. Studies in the field of
50 adaptive immunity are as diverse as the system itself, yet they need a common language to
51 be able to integrate the data and studies' conclusions. Understanding of the architecture of
52 the human Ig loci has developed over multiple decades. A widely used taxonomy for human
53 IG genes, which provides a common language for V, D, and J germline subgroups, genes,
54 and alleles [15, 19], was codified by the ImMunoGeneTics Information System (IMGT) [9].
55 This nomenclature, sometimes referred to as the IMGT nomenclature, is referred to here as
56 the International Union of Immunological Societies (IUIS) nomenclature, for the gene names
57 are allocated according to a process governed by the IUIS. With technological advances
58 in the field, the number of known alleles and genes has increased dramatically [22, 20,
59 25]. Figure. 1A illustrates the IG heavy chain V (IGHV) locus on chromosome 14, based
60 on the GRCh38 [36] assembly, demonstrating the complexity of the region. A number of
61 genes are duplicated, leading to the presence of genes at different locations (for example
62 IGHV2-70/IGHV2-70D, IGHV3-23/IGHV3-23D) that share common alleles [46]. Additionally,
63 as previously shown for short read IGHV sequences [18], exploring the similarity between
64 all full length functional alleles within the germline set shows that in some cases alleles from
65 different genes are clustered together (Fig. 1B). Closely observing a case of shared alleles
66 between duplicated genes demonstrates the complexity of correctly assigning the germline
67 allele in AIRR-seq data (Fig. 1B, lower panel).

68 Germline annotation is typically performed by an aligner tool, which determines the
69 germline allele by comparison to sequences listed in a 'germline set'. For V genes, the
70 accuracy of this assignment is strongly influenced by the sequencing read length [25, 49].
71 Reads that cover the entire V sequence (typically 290-320nt in length) permit the greatest
72 accuracy, but shorter reads are often employed, and many studies focus only on sequencing
73 the complementarity-determining region 3 (CDR3) with short flanking sequences, thus
74 dramatically reducing the number of alleles that can be categorically resolved, particularly
75 as there is reduced diversity at the 3' end of the V gene germline sequences [28, 26, 25].
76 Even when full-length reads of the V sequence are available, sequence alignment against
77 the germline set will not provide a single categorical germline allele for every sequence,
78 both because of duplicated sequences in the germline set itself, and because even a small
79 number of mismatches from the germline can cause a V sequence to become equidistant
80 from > 1 sequence in the set. As a result, the aligner tool will frequently emit 'multiple as-
81 signments' - a list of germline alleles that statistically indistinguishable to the V sequence
82 present in the read.

83 This complexity of assignments impacts clonal inference [49] among other things. Clones
84 are a measure of diversity and selection within B cell receptor (BCR) repertoires [48]. Each
85 clone stems from an ancestral naive B cell expressing an unmutated BCR. In AIRR-seq
86 repertoires, it is common to identify a BCR clone as a group of sequences that share the

87 same V and J germline assignments, and CDR3 length [10], as well as having similarity
88 in the CDR3 sequence. To achieve correct clonal inference, annotating the AIRR-seq data
89 correctly is therefore crucial, and mis-assignments and multiple assignments can result in
90 difficulty to infer clones, hindering any clonal-based downstream analysis. For example, in
91 Fig. 1C, 14 alleles between IGHV2-70 and IGHV2-70D have a nucleotide sequence similarity
92 greater than 95%.

93 To address this problem, we propose the use of a naming scheme system for analysis
94 that is based on the hierarchical clustering of alleles, according to nucleotide sequence sim-
95 ilarity. In our system, gene families are defined as sequences with 75% similarity [19], and
96 'allele similarity clusters' (ASCs) as groups of sequences that share 95% similarity (Fig. 1C
97 left panel). Essentially, assignments are made to ASCs rather than genes for the purposes
98 of downstream analysis. Sequence similarity is based here on germline sequences that are
99 matched to read length, hence the number of clusters, and overall precision of the annota-
100 tion, reflects the precision of the underlying germline set. The 95% threshold represents the
101 best relation between clustering similar alleles and avoiding "over" splitting known groups
102 (Genes). At the end of analysis, where it is necessary to refer to specific allele assignments,
103 the alleles names can be converted to the familiar IUIS nomenclature: we do not propose a
104 replacement nomenclature, but rather a method of data representation that is more tractable
105 for analysis.

106 Because of the high sequence identity between many alleles, aligner tools typically infer
107 a biologically implausible number of alleles in an individual's repertoire [6]. Tools inferring
108 'personal genotypes' assess support for each allele [7, 30, 34]. This can be helpful in down-
109 stream analyses such as disease susceptibility inference [2, 21]. We propose a genotyping
110 approach based on consideration of the absolute expression of each allele, using ASC an-
111 notation to ensure that each allele sequence is only considered once (Fig. 1C right panel).
112 We show that this provides improved results compared to a commonly used existing tool and
113 is in good correspondence with genotypes derived from genomic sequencing.

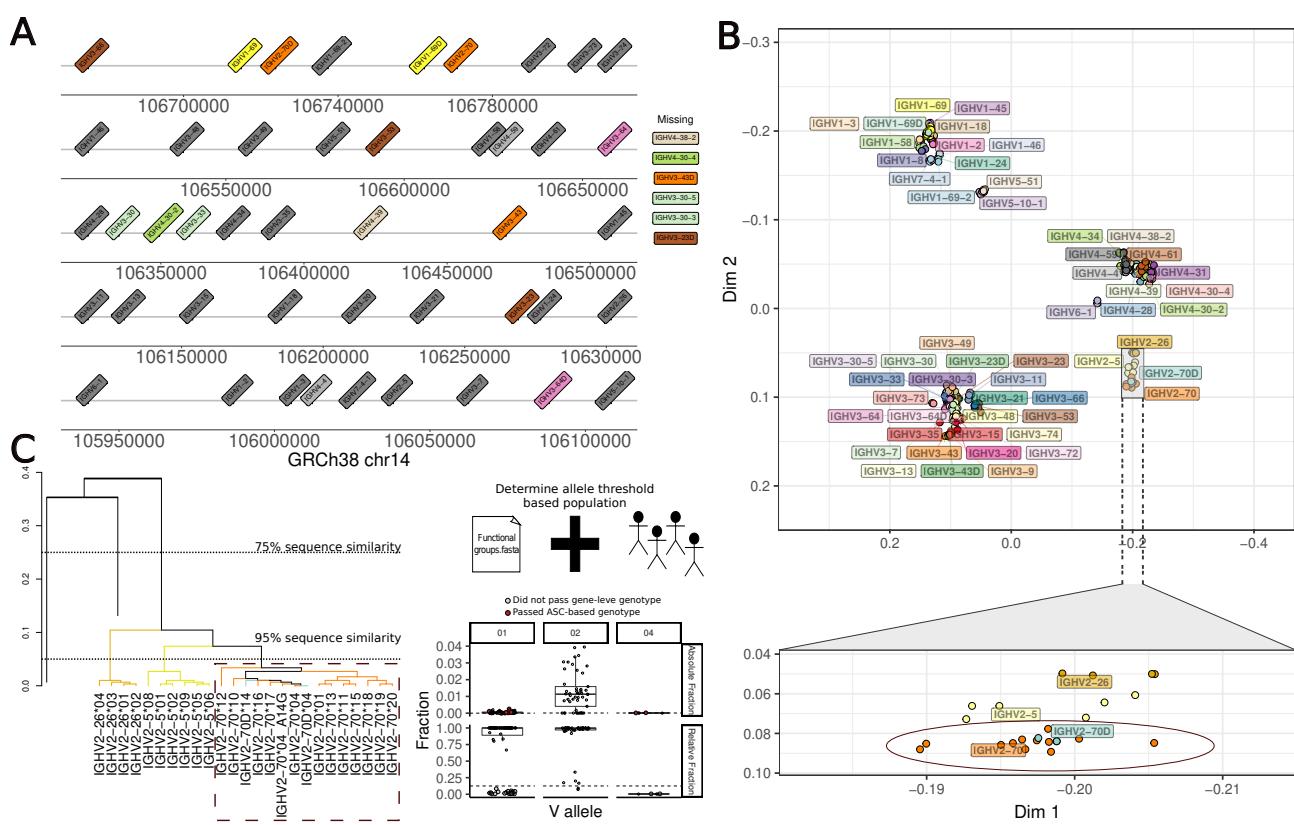


Figure 1: Sequence similarity in the IGH locus. (A) The IGHV locus on human chromosome 14 (x axis, GRCh38 coordinates). The colored genes (non dark-gray) are those with 95%-100% germline sequence similarity. Genes that share similarity, but do not have a genomic location in the GRCh38 assembly, are shown to the right of the plot. Dark gray genes are stand alone genes, and other colors indicate genes with similar alleles. (B) Multidimensional scaling of the IGHV IMGT germline set pairs distance matrix; plot shows the first two dimensions. Each dot is a functional allele colored by gene. The bottom panel shows a zoom into the IGHV2 subgroup, demonstrating the proximity between alleles of the duplicated genes (IGHV2-70 and IGHV2-70D). (C) The left panel shows the hierarchical clustering of the IGHV2 subgroup. The color of the branches was determined by the gene color in panel B. The right panel is a schematic representation of the new ASC-based approaches for genotyping. The top and bottom panels show the genotype inference for a given ASC/gene. The columns are the alleles of the ASC/gene, and the rows are the different genotyping method. Each dot is an individual's allele call frequency, calculated appropriate to the genotyping method (Top panel relative to the total repertoire size, and bottom panel to the ASC/gene size). The dotted lines represent the genotype thresholds: the allele specific threshold ($1e-04$) in the top panel, and the gene-based threshold (0.125) in the lower panel. The gray and red points represent individual allele calls that did not enter the genotype based on the gene-based method, but did based on the ASC-method (respectively).

114 Results

115 Allele naming system based on germline hierarchical structure.

116 Using hierarchical clustering with complete linkage, we defined a two-level naming scheme
117 for the set of functional germline alleles (downloaded from IMGT July 2022): allele families
118 (AFs) and ASCs. For the family level, we followed the logic and threshold (75% nucleotide

119 similarity) from IMGT [17]. Since we applied this methodology to the contemporary set of
120 functional alleles, the resulting families mildly deviate from the present IUIS family definitions.
121 In particular, the IGHV3 subgroup is split into two families with our approach (Fig. 2A, the
122 orange dashed circle defines the 75% threshold). Using the same hierarchical tree, we
123 clustered the sequences based on 95% nucleotide similarity (Fig. 2A, blue dashed line).
124 This resulted in 46 clusters, which we define as ASCs, some of which span several genes
125 (Fig. 2B). In addition, alleles of some genes are split between different clusters. Adapting
126 the two-level naming scheme results in an annotated germline reference set that reduces
127 ambiguities in several analysis steps as shown below.

128 Many AIRR-seq experimental protocols result in sequences that do not cover the full V
129 gene. The two most common partial sequencing libraries are BIOMED-2 [39], with primers in
130 the framework 1 (FW1) and framework 2 (FW2) regions, and ImmunoSeq [23], which offers
131 only the CDR3 and a small fragment of the V and J region. Partial V sequencing exacerbates
132 the computational challenges mentioned above caused by similar alleles originating from
133 distinct genes. Our proposed naming scheme can be generalized in a straightforward way
134 to these situations.

135 To adapt the above naming scheme to partial V sequences, we computationally trimmed
136 the 5' region of the germline set's V sequences according to the sequence lengths obtained
137 using the BIOMED-2 and ImmunoSeq protocols. For simplicity, we defined the sequencing
138 protocols by the library amplicon length, and named the full-length amplicons "S1", the partial
139 V sequences corresponding to the BIOMED-2 style "S2", and the minimal V coverage of
140 ImmunoSeq "S3" (Fig. 2A).

141 Depending on the amplicon length used, we obtained a different number of ASCs. As
142 expected, the 5' V trimming resulted in higher similarity between the alleles. Compared to
143 the 54 genes in the IUIS database, after clustering we observed 46 ASCs in S1, 43 in S2,
144 and 11 in S3 (Fig. 2C).

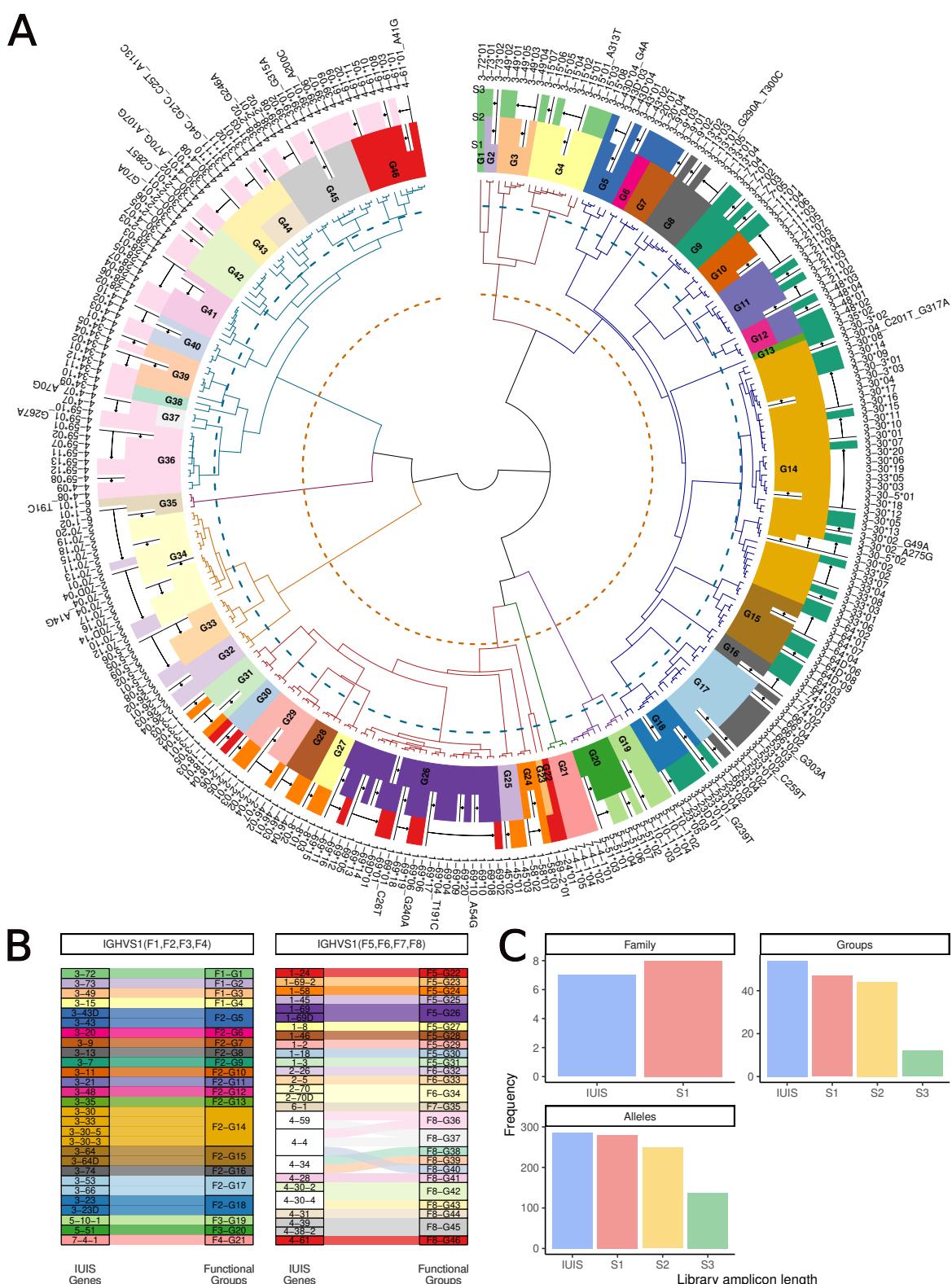


Figure 2: Allele Similarity Clusters. (A) Hierarchical clustering of the functional IGH germline set. The inner layer shows a dendrogram of the clustering, the dotted circles indicate the sequence similarity of 75% (orange) and 95% (blue). The dendrogram branches are colored by the 75% sequence similarity. The first colored circle shows the clusters and alleles for the library amplicon length of S1, the second circle for the length of S2, and the third for S3. The white color indicates alleles that cannot be distinguished in the library's germline set. (B) An alluvial plot showing the connection between the allele clusters and the IUIS genes. The colors represent the allele clusters. White represents IUIS genes whose alleles are clustered into more than a single allele cluster. (C) The frequency of the subgroups/families, genes/clusters, and alleles for each amplicon length. The x-axis is the amplicon length and the y-axis is the count of the unique subgroups/families, genes/clusters, or alleles.

145 **Allele similarity clusters based threshold for genotyping are robust to** 146 **nomenclature and more accurate than gene-based inference**

147 Many computational genotyping tools consider the relative frequency of a candidate allele
148 during inference and filtering steps [7, 5, 37, 3]. An inference is made or accepted if the
149 number of assignments to an allele exceeds a threshold percentage of the total assign-
150 ments to all alleles of the corresponding gene. A need for allele-specific filtering processes
151 has been suggested in the past [24]. Here, we propose and implement a method based
152 on the explicit comparison of each allele's frequency in the repertoire under study with that
153 observed in the population. We do so by using the ASC naming scheme so that each
154 identical nucleotide sequences belonging to different alleles are collapsed and represented
155 in the germline reference set only once (Fig. 1C right panel). This addresses issues that
156 can confound frequency observations in current methods: variable expression levels be-
157 tween alleles of the same gene, multiple assignments, duplicated genes, and short reads.
158 In our implementation, we initially set a default allele threshold of $1e^{-4}$ for each of the al-
159 leles in the ASC germline set. We then manually adjusted the threshold, such that each
160 allele has an allele-specific threshold (Sup. Table 1). This was determined from observa-
161 tions of the allele's usage across all available naive B cell samples present in VDJbase [26].
162 In particular, thresholds were adjusted in the following cases: A. haplotype inference sug-
163 gested that the default threshold led to a non-sensible biological scenario. B. The allele
164 usage in a given individual was very far from the usage distribution of across the whole
165 sampled population. Overall, 129 of 280 thresholds were adjusted. For further refining
166 the threshold from specific populations of interest, we developed an interactive web server
167 ([\[https://yaarilab.github.io/IGHV_reference_book/\]](https://yaarilab.github.io/IGHV_reference_book/)). The server presents the frequencies of
168 the alleles and the chosen thresholds. Further, the server allows the end user to explore
169 different choices for the allele threshold and inspect the implications of these modifications
170 by comparing matching haplotype data for available individuals. We found such modification
171 to be helpful in maximizing discrimination, particularly in cases where some alleles of the
172 gene are found to have lower expression levels than others [14, 8, 28, 24].

173 After reviewing and, where necessary, adjusting the allele-specific thresholds for all the
174 IGHV alleles observed in two naive cell datasets (VDJbase projects P1 [8] and P11 (un-
175 published study), 142 repertoires in total), we compared the resulting inferred genotypes
176 with the ones inferred by TIgGER, a gene-based inference tool (Fig. 3A). In the ASC-based
177 genotype approach, alleles enter the genotype if their usage is higher than the allele-specific
178 thresholds. In TIgGER genotype inference on the other hand, the alleles enter the genotype
179 based on the relative usage normalized by all sequences mapped to this gene. A common
180 step in this kind of analysis includes an undocumented allele inference. In the ASC-based
181 genotype inference, each inferred undocumented allele is given the allele-specific thresh-
182 old of its most similar allele. Overall, there were 5695 allele calls that were included in
183 either or both genotypes. Results were concordant for inference of highly used alleles, with
184 5471 allele calls that fully matched between the methods (95%, green squares). However,
185 there were 4 allele calls that only entered the genotype with the gene-based method (pink
186 squares), and 220 alleles that were called only by the ASC-method (black squares).

187 The potential false positives in the gene-based genotyping were seen in cases where all
188 observed alleles of a particular gene were expressed at low levels, according to population
189 data. An example is IGHV7-4-1 (part of ASC IGHVS1F4-G21). In all individual genotype
190 inferences, there was not a single situation of heterozygosity for this cluster, as in most
191 individuals there was one dominant allele. In the single occasion where heterozygosity was
192 declared, both alleles *01 and *02 entered the genotype. However, the inference of allele
193 *02 is likely to be incorrect. In this particular sample (VDJbase: P1_I44_S1), the poorly

194 expressed allele was *01, with 4 sequences, while the highly expressed allele *02 only had
195 a single sequence. This deviates from what is seen in the population. The three alleles
196 attributed to this cluster vary in usage, with allele *02 being the most expressed allele [24]
197 with a median usage of $1.19e^{-02}$. This is 33 times more than the second expressed allele
198 (*01). Hence, the situation where allele *01 dominates over allele *02 is unlikely (p value of
199 4×10^{-6} according to a binomial test), and the identification of a read associated to allele
200 *02 might be the result of a sequencing error. This indicates clear deviations between the
201 approaches that may lead to different specificities in lowly expressed clusters.

202 Potential false negatives in the gene-based genotyping are seen in cases where one al-
203 lele is expressed at a lower rate than other alleles of the gene, according to population data.
204 An example is IGHV3-64*02 (corresponding to ASC IGHVS1F2-G15*01). This allele entered
205 the genotype using the ASC-based method, but not using the gene-based method. The
206 IGHVS1F2-G15 cluster combines alleles from two IUIS genes, IGHV3-64 and IGHV3-64D,
207 that merge under the 95% threshold. The alleles of this cluster vary in usage, i.e., alleles
208 *05, *06, and *07 are more frequently used than 02 and 01 (Fig. 3B). Allele IGHVS1F2-
209 G15*01 is expressed at a considerably lower rate than the other alleles, with a median of
210 $2.1e^{-04}$ absolute usage: roughly 12 times lower than the second most lowly expressed allele,
211 IGHVS1F2-G15*02 (aka IGHV3-64*01). Even so, allele IGHVS1F2-G15*01 (aka IGHV3-
212 64*02) was above the ASC-based threshold ($1e^{-04}$) and entered the genotype, while being
213 far below the gene-based relative fraction threshold of 12.5% or 5%, with a median of 1.86%
214 (3B). To validate the inference of allele IGHVS1F2-G15*01, we looked at the haplotype of
215 alleles IGHVS1F2-G15*01 and IGHVS1F2-G15*02, since they come from the same chro-
216 mosomal location (IGHV3-64). We haplotyped seven individuals who ostensibly included
217 allele *01 with the ASC-method but not in the gene-based method, using heterozygosity at
218 IGHJ6 as the anchor (Fig. 3C). In all seven individuals, alleles *01 and *02 are found on
219 opposite chromosomes, strongly supporting the presence of allele IGHVS1F2-G15*01. This
220 example demonstrates the sensitivity of the ASC-based approach to lowly expressed allele
221 inferences, which may provide important insights in future studies.

222 Fig. 3D summarizes the distribution of allele prevalence in cohorts P1 and P11 (Fig. S1).
223 Seven out of the 280 alleles present in the ASC germline reference set appear in all 142
224 individuals, while 41% of the alleles, 116 out of 280, do not enter any of the genotypes. This
225 could imply that reference sets should be population-specific [43, 27], or that the current
226 reference set includes a large fraction of unexpressed or non-existent alleles [35].

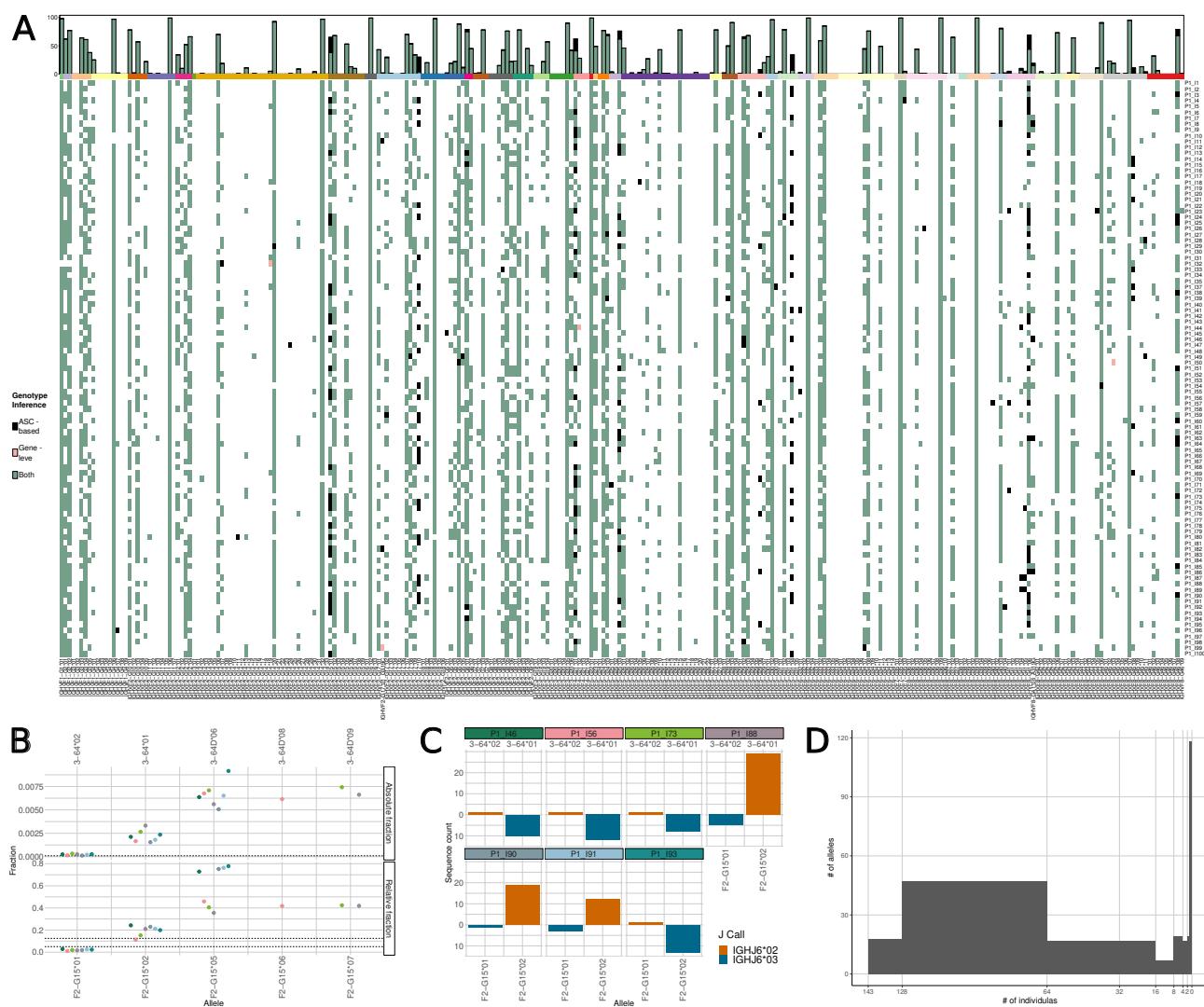


Figure 3: **Genotype comparison.** (A) A heatmap comparing the genotypes inferred from the gene-based and the ASC-based method. The bottom panel is the heatmap comparison, where each row is a genotype inference of an individual from the P1 dataset and each column is a different allele. Black and Pink colors represent alleles that only entered the genotype either in the ASC-based method or in gene-based method with a 12.5% threshold, respectively. Green represents alleles that entered the genotype in both methods, and white represents alleles that did not pass in both methods. The top panel is the summation of the heatmap events. The y-axis is the count of the individuals for which a given allele entered the genotype. The x-axis is the different alleles. (B) The relative and absolute frequency of the ASC IGHVF2-G15. Each dot is an individual for which the allele 01 entered the genotype with the ASC-based method, but did not in the gene-based method. The colors represent the different individuals. Each column is a different allele from the cluster. The top row is the absolute frequency and the bottom is for the relative frequency. (C) Haplotype based on IGHJ6 for the individuals from (B). Each facet is a different individual, and the facet color matches the dots from (B). In each facet, the top row and orange color is the frequency for the IGHJ6*02 chromosome and the bottom and blue color for the IGHJ6*03 chromosome. The x-axis is the different alleles for the cluster, and the y-axis is the frequency of the sequence count. (D) The distribution of the allele abundance in the population. The x-axis is the number of individuals attributed to each allele, and the y-axis is the number of alleles.

227 **Allele usage reporting**

228 Subgroups, genes, and sometimes alleles are commonly used as AIRR-seq features, for
229 example in reporting over-expression of specific genes/families in the context of specific
230 diseases. These features are highly sensitive to the nomenclature and the genotypes of the
231 individuals in the cohort. Here, we compare the reporting of allele-level usage versus gene
232 or cluster level. Fig. 4 shows that reporting of usage is highly influenced by the genotypes of
233 the individuals. For example, in IGHVS1F2-G5 the mean absolute usage of individuals who
234 carry alleles *04 and *05 is significantly higher than those who carry *03 and *04. If we were
235 to report the overall ASC instead of the usage of the carried allele combinations, the mean
236 usage would have been closer to the lowly expressed combination, masking the differences.
237 Moreover, if IUIS genes were used to report the usage of these alleles, it would have been
238 split between the V3-43 and V3-43D columns, as the genes share a common allele that
239 would have resulted in a multiple assignment in the alignment process. Consequently, when
240 studying allele usage in human cohorts, we recommend that usage is reported at the ASC
241 level, to avoid unnecessary ambiguities.

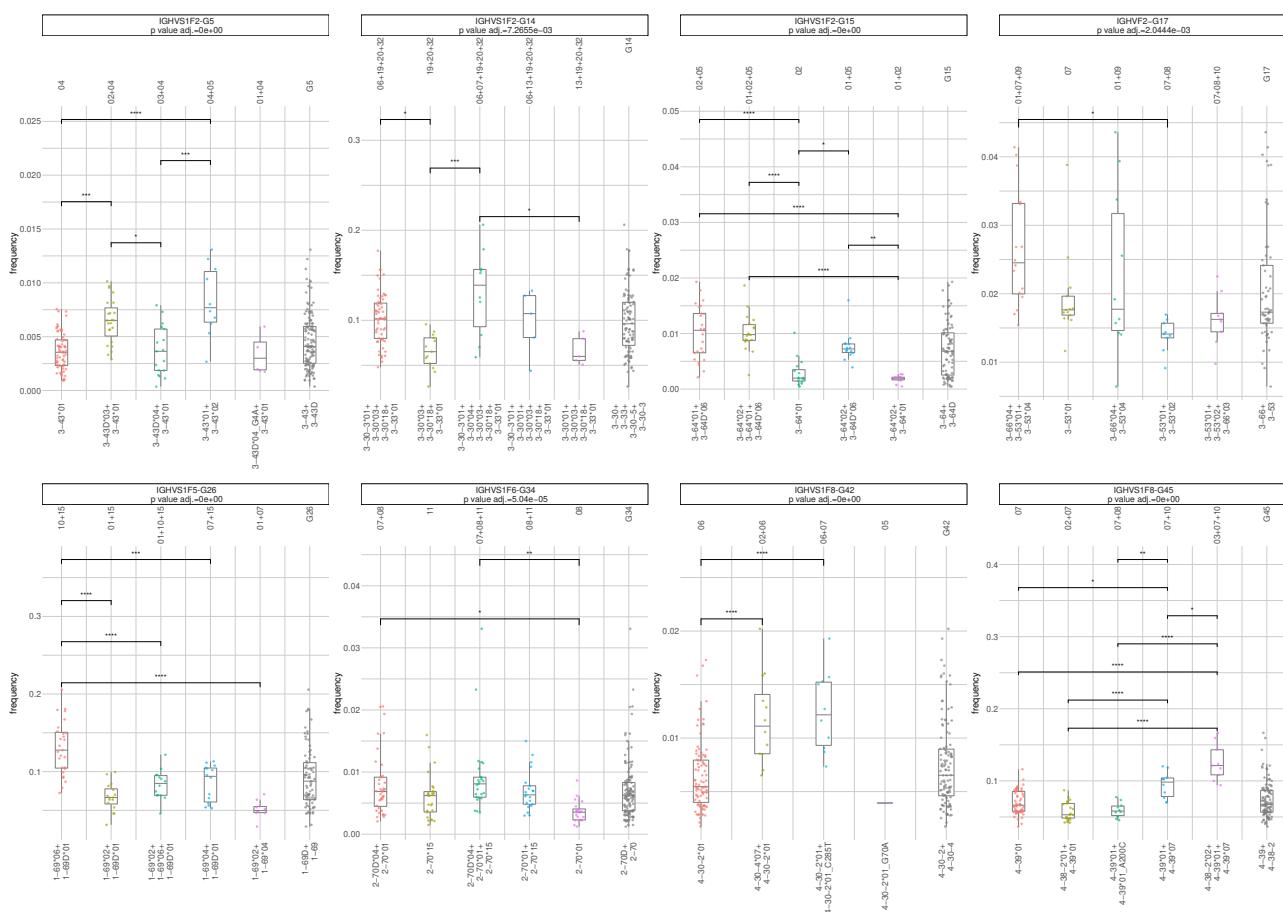


Figure 4: Gene usage-based genotype. The absolute usage frequency (calls out of the total repertoire size) of the top five allele combinations for the given clusters. The x-axis columns are the cluster's allele combination after genotype inference, ordered by the number of individuals carrying the combinations. The y-axis is the absolute frequency of the cluster within the total repertoire. Each point is an individual's absolute frequency. The colors represent the order of the combinations, where the combination which is present in most individuals is colored in red and so on. The gray color, last column in every x-axis facet, indicates the absolute frequency in terms of the whole cluster. For each cluster, an ANOVA test was calculated and the adjusted p value is presented in the cluster's plot title. A Tukey's HSD multiple comparison test was calculated with the adjusted p value, comparing between allele clusters indicated on the connecting line; only the statistically significant combination were drawn. ns: $p > 0.05$, *: $p \leq 0.05$, **: $p \leq 0.01$, ***: $p \leq 0.001$, ****: $p \leq 0.0001$

242 Genomic validation of the ASC-based genotype

243 We validated our ASC-based genotyping method using a paired dataset drawn from six
 244 subjects, comprising AIRR-seq repertoire sequencing of IgM naïve enriched cells, and a
 245 haplotyped assembly of the genomic IGHV locus derived from long-read sequencing (REF).
 246 Across the six subjects (5), a total of 304 ASC allele calls were made from the AIRR-seq
 247 repertoires (counting the identification of a single allele in a single individual as an allele
 248 call).

249 In several subjects, the genomic assembly was incomplete, either not covering certain
 250 genes at all, or not resolving to haplotypes in certain regions. In total, 2 of the 304 calls
 251 were in genes without coverage (orange squares), and 2 in locations with unresolved hap-
 252 lotypes (gray squares). This left 301 allele calls from the repertoires that could be verified

253 in the assemblies. Of those calls, 296 (> 97 percent) were concordant between the ASC
254 and genomic results (green squares). In the four discordant cases, the assemblies for the
255 particular gene were resolved, but only a single allele was observed (black squares). This
256 contrasted with the ASC inferred genotype, in which donors were characterized as heterozy-
257 gous, carrying two alleles. All cases were of the allele IGHV4-59*08.

258 34 allele calls were found only in the genomic samples (pink squares) and not in the ASC
259 genotypes, implying that these alleles are poorly or not at all expressed. Such examples
260 have been described in the literature [24, 16]

261 In summary, out of the 304 allele calls that were made across six individual genotypes
262 using the ASC-based method, we found potential contradictions from the genomic data only
263 in four cases. These cases most likely indicate technical issues with the genomic assembly
264 due to reduced coverage, rather than in the ASC-based genotype inference method.

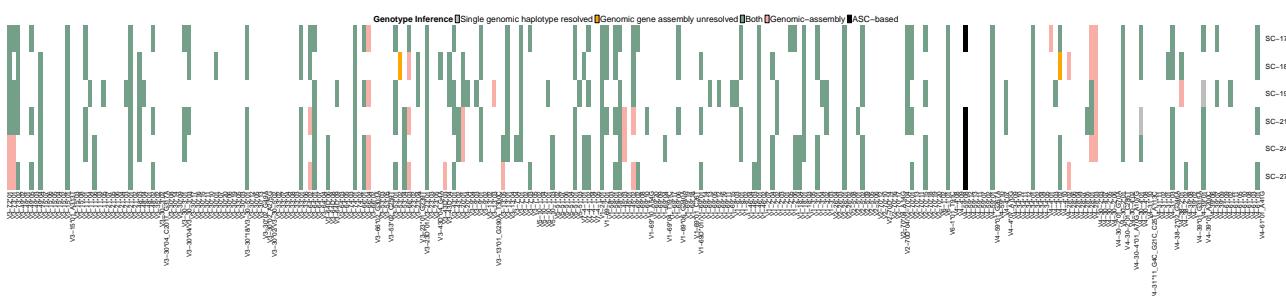


Figure 5: **Genomic inference compared to AIRR-seq genotype inference.** A heatmap of a comparison between the ASC-based genotype method and genomic validation. Each row is an individual, and each column is a different allele. Black and Pink colors represent alleles that are only present in the ASC-based method or in genomic validation, respectively. Green represents alleles that are present in both methods, and white represents alleles that are not seen in either. Orange represents alleles that for them there are no gene evidence in the genomic validation, and gray represents alleles that only one haplotype was resolved in the genomic validation.

265 Generalizability to other germline sets

266 One potential limitation of the proposed naming scheme is that the specific alleles in the
267 germline reference set determine the allele families and ASCs, hence the clustering may
268 change when alleles are added or removed from the set. To quantify the impact of an altered
269 germline reference set, we created a reduced germline set consisting only of the alleles that
270 entered the genotype of P1 individuals, as determined by our ASC-based method. This is
271 an example of transferring one germline reference set from one dataset to another without
272 adjusting it. We then applied the clustering algorithm and obtained the new families and
273 clusters (Fig. 6A). Compared to the original set, two cluster pairs were merged, G36/G37 and
274 G43/G44, and G13 and G38 were dropped, as none of their alleles entered the genotype.
275 The overall structure was maintained, despite the reduction from 280 to 163 alleles (Fig.
276 6B). From this, we conclude that the clustering method is relatively robust to changes in the
277 reference set composition.

278 To further assess the flexibility and effect of the reference set, we tested the multiple
279 assignments in a non-naive repertoire. Multiple assignments are cases in which the aligner,
280 IgBlast in our evaluations, cannot determine the single matched allele, and outputs multi-
281 ple options for the most likely germline ancestor allele. This can be caused by sequenc-
282 ing errors, somatic hypermutation, identical germline alleles shared by multiple genes, or a

283 combination. We explored this effect using the P4 dataset from VDJbase, which includes
 284 non-naive repertoires from 28 individuals. We aligned the repertoires three times, once with
 285 the IUIS gene definitions downloaded from IMGT (the IMGT set), once with an identical set
 286 of sequences but using the proposed assignment nomenclature (the S1 set), and once with
 287 the reduced germline set described above (the reduced S1 set). We calculated the fraction
 288 of sequences that were attributed by the aligner to more than a single gene/ASC. Figure 6C
 289 shows an expected but significant reduction of 3-fold in multiple assignments between the
 290 IMGT set and the S1 set. The reduced S1 set showed a further reduction in multiple assign-
 291 ments.

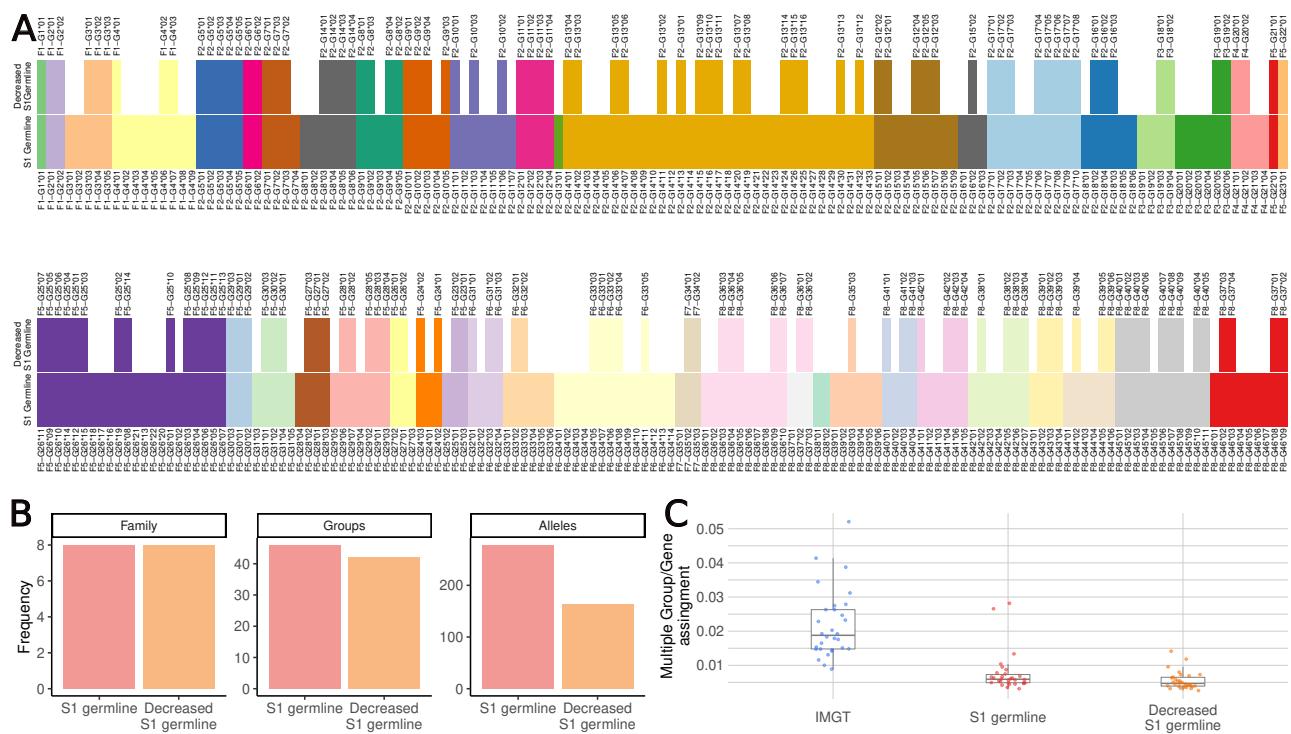


Figure 6: **Reduced germline-based genotype.** (A) The heatmap shows the clusters based on the full germline used in Figure 2, and the re-clustering after the reduced germline, which includes alleles that entered the genotype using the ASC-based method on the P1 and P11 cohorts. The bottom row shows the clusters for the full germline set, and the top row shows the clusters for the new germline. The colors represent the different clusters. White represents alleles that did not enter the genotype. (B) Summation of the number of families, clusters, and alleles in the S1 germline and the reduced reference. The x-axis is the different reference sets and the y-axis is the count of the events. (C) The frequency of multiple cluster/gene assignments. The x-axis is the different reference sets and the y-axis is the absolute frequency of multiple assignments. Each dot is an individual's multiple assignment frequency from the non-naive P4 cohort.

292 We then applied the ASC approach to other AIR-encoding genomic loci. We clustered the
 293 sets of functional alleles downloaded from IMGT (July 2022) for human IGKV, IGLV, TRBV,
 294 and TRAV. We applied the same thresholds of 75% and 95% for determining the allele fami-
 295 lies and ASCs (Fig. 7). The IGK locus is unique because of its duplicated pattern. The locus
 296 has two V gene blocks with a large gap in between, where the 3' distal block is essentially
 297 an inverted duplication of the 5' block. Here, as in IGHV, some genes share alleles with
 298 identical sequences. As expected, these duplicated alleles are clustered together under the
 299 95% threshold. A split is observed in IGKV1-17, whose alleles are assigned to two ASCs. In
 300 the IGL locus, where IUIS defines 10 subgroups, we found 12 families using our approach

301 and thresholds. Four genes were combined into ASCs, and a single gene was split into
302 two ASCs. The loci of TRB and TRA remained relatively constant, except for four TRBV
303 genes, which were merged into two ASCs. We developed an interactive application that ap-
304 plies the ASC naming scheme to V allele reference sets from different loci and organisms,
305 https://yaarilab.github.io/IGHV_reference_book/alleles_groups.html. As the reference set can
306 change over time, we recommend not to use the nomenclature in reporting but only in the
307 downstream analyses. Nevertheless, for backtracking, reproducibility, and interoperability,
308 we maintain an <https://doi.org/10.5281/zenodo.7401189> of all ASC runs conducted by our
309 web server. Allowing translation of the allele cluster names into IUIS names and also into
310 the unique names suggested in the supplementary materials (Sup. Table 1).

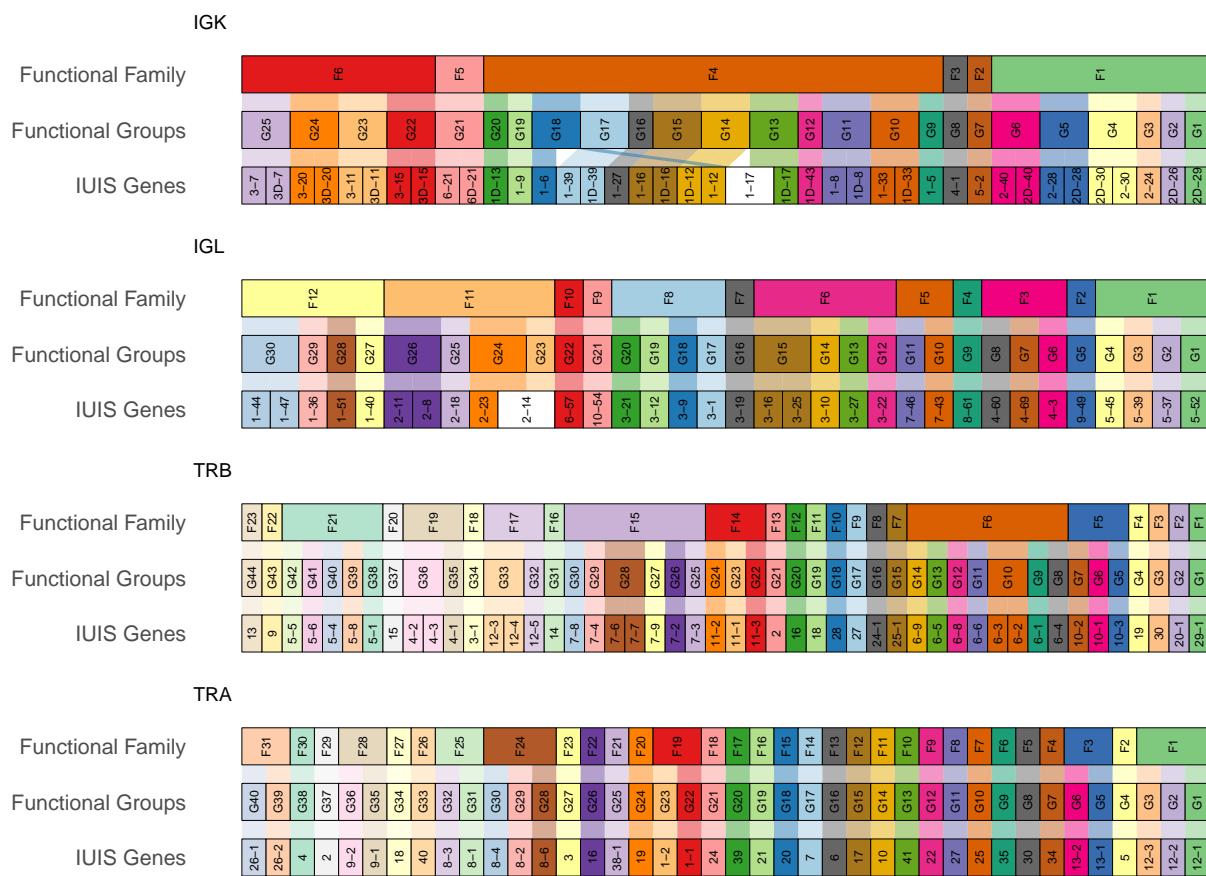


Figure 7: Allele clusters for V genes from IGL/K and TRB/A loci. Each alluvial plot represents the cluster division for a given locus. The first row of each plot shows the division of the families, the second row the ASCs, and the third IUIS gene clustering. The colors represent the allele clusters. White represents IUIS genes that have been re-clustered into more than a single allele cluster.

311 Discussion

312 Several groups have used repertoire sequencing to study IG and TR loci, using inferenc-
313 ing tools. They discovered a plethora of undocumented allele sequences [5, 8, 25, 20,
314 22, 40, 12, 45, 38]. With careful review, many novel alleles identified in the human loci
315 may be mapped to specific genes, on the basis that their sequence clusters closely with
316 other alleles of a single gene. [13, 24]. In other species, the genes are not well char-
317 acterized, and macaque and mouse germline sets resulting from these studies are pub-

318 lished as discrete sets of allele sequences unmapped to genes. This can pose challenges
319 when trying to genotype and haplotype using the conventional method, which is based
320 on the gene level. In this study, we report on two innovations that can be highly benefi-
321 cial in such situations. The first is our proposed naming scheme that organizes the alle-
322 les within clusters of sequence similarities, which aids downstream analyses. The ASCs
323 can be used for clonal inference, usage reporting, and genotype and haplotype inference.
324 We believe that the ASC naming scheme can be a good starting point until more informa-
325 tion on the layout of the species' genomic loci is discovered. That being said, the pro-
326 posed scheme is not meant to replace the existing IUIS naming, but rather an accom-
327 panied set to allow for a more inclusive analysis. We created an R package (PIgLET,
328 <https://bitbucket.org/yaarilab/piglet>), and an online application within the ASC web-
329 site (https://yaarilab.github.io/IGHV_reference_book/alleles_groups.html) that al-
330 lows the users to infer the ASC based on their own V allele reference set and plot the ASC
331 results. Another potential use case for our proposed naming scheme is clonal inference.
332 Many of the clonal inferences rely on the V segment assignments, which can be influenced
333 by similar genes and alleles. Considering this factor in the clonal inference can be influential
334 on the final results. Therefore, utilizing the ASC approach may lead to better clustering tools.

335 The second innovation we report is a new and improved approach for inference of a
336 personal genotype and for determination of VDJ gene usage from AIRR-seq data. The ap-
337 proach is based on the absolute frequency of allele usage within a specific population, rather
338 than on relative usage (normalized at the gene level), as other approaches do. We created
339 an interactive website where each page shows the allele usage across the naive IGHV reper-
340 toires from P1 and P11 studies of VDJbase. The site allows users to play with the data and
341 explore the ASC-base thresholds. Further, the website includes an interactive interface to
342 create ASCs based on a reference set. Our site will be continuously updated as more naive
343 AIRR-seq and direct genomic sequencing datasets accumulate. Along with the site, the
344 thresholds for allele detection in VDJbase will also be updated. Moreover, as new species
345 are sequenced and published, we will include them as well in the site and in VDJbase. It is
346 worth mentioning a potential issue with all AIRR-seq based genotype approaches: in some
347 rare cases two alleles differ only at the 3' end of the sequence (in human IGHV, > 318),
348 imposing many instances of multiple assignments as the aligners cannot differentiate be-
349 tween the two when the rearrangements are trimmed before. In human IGHV, only two such
350 cases exist (3-66*01 and 3-66*04, 4-28*01 and 4-28*03). These cases should be treated
351 separately, considering all particularities of the sequences, and should be reported with an
352 adequate confidence level.

353 We have demonstrated the application of ASC-based allele usage information to the
354 analysis of over- or under-expression in specific diseases or conditions. Annotation with
355 ASCs tailored to the sequencing read length employed, followed by ASC-based genotyp-
356 ing, will provide a single orthogonal vector of allele usages that can be compared across
357 repertoires, eliminating the complexity and bias that can arise from the much larger num-
358 bers of multiple assignments produced by gene-based approaches. The allele usage vector
359 provides a clear signal, tailored to the precision of the underlying data set, which can be
360 used in graphical analysis or machine learning applications. Important conclusions can be
361 translated back to IUIS nomenclature.

362 It is known that some alleles of a gene may be expressed at higher levels than other
363 alleles. Gene-based genotyping based on transcriptomic data can overlook relatively lowly
364 expressed alleles, however, our ASC-based method, which takes account of the typical lev-
365 els of allele expression, will add them to the genotype correctly. Identifying lowly expressed
366 alleles and including them in the genotype can be critical for investigating disease suscepti-
367 bility [41, 42, 11, 47]. Since genotypes are relatively similar within populations [27], variations

368 in susceptibility to diseases are plausibly caused by such small differences [2].

369 We validated the ASC-based approach by comparing AIRR-seq genotypes with a geno-
370 type based on direct long read genomic sequencing [31]. Even though some repertoires in
371 these genetically sequenced cohorts had relatively low AIRR-seq depths, the comparison
372 showed a strong concordance between the direct sequencing and the proposed inference
373 method.

374 Our results show reduced variability in genotypes among individuals, as compared with
375 the current IGH reference available in IMGT. This raises an interesting debate of whether all
376 alleles in the existing reference set truly exist. This point was previously reviewed in [44],
377 in which the authors discovered that several alleles were erroneous. We believe that this
378 matter should be further discussed and reviewed to curate an optimal reference set for AIRR-
379 seq analyses. Exploring naive repertoires is far from complete, as most studies focus on
380 the same ethnic populations. As demonstrated by Rodriguez et al. [32] different ethnicity
381 influence the IGH composition (i.e genes, deletions, etc.). With more repertoire data curated
382 with different ethnic background, the allele specific threshold might have to be tailored toward
383 the ethnic population. We envisage that with the rising interest in AIRR-seq, future studies
384 will provide more diversity, which will contribute to the efforts to enhance both the ASC
385 website and VDJbase, and to optimization of the inferences and tools.

386 Methods

387 Data

388 Naive and non-naive BCR repertoire heavy chain data were used, of individuals from three
389 VDJbase [26] projects, P1, P11 (naive), and P4 (non-naive). Library preparation and pro-
390 cessing for projects P1 and P11 were performed as described in [8]. The processing for
391 project P4 repertoires is described in [4]. The most recent IMGT IGHV reference set was
392 downloaded in July 2022. For this study, we downloaded the V, D, and J allele reference
393 set from IMGT on July 2022, the reference set included the functionality annotation for each
394 allele. Within the V reference set, alleles which were non-functional were discarded. This
395 lead to discarding subgroup IGHV8, as none of the alleles in this subgroup are functional.
396 Hence, the V reference set includes only alleles from subgroups IGHV1-7.

397 ASCs

398 To create the ASCs, we used the most recent available IGHV reference set from IMGT, with
399 addition of undocumented allele sequences inferred from both P1 and P11 cohorts. The
400 combined set was then filtered to include only functional alleles that start from the first pos-
401 ition of the V sequence region (as defined by IMGT numbering scheme). We then discarded
402 short sequences in the 5' end, those that do not start in the first nucleotide, and short se-
403 quences in the 3' end: the upper limit was chosen based on the quantile that contains the
404 largest number of sequences with the longest coverage. The position selected was 318,
405 shown to be a reliable position for inferring undocumented alleles [20].

406 To cluster the alleles, we calculated the Levenshtein distance between all allele pairs
407 after aligned to the IMGT numbering scheme. For calculating the distance, we trimmed the
408 sequences to the 3' upper limit position of 318. We then used hierarchical clustering with
409 complete linkage. The final tree was cut by two similarity thresholds of 75% and 95% to
410 obtain the allele families and ASCs. As a result of the clustering, the alleles were renamed
411 to represent the new allele families and ASCs (Supp. Table S1, [29]). For example, in the

412 allele IGHVS1F2-G15*02, the family is represented by F2, the ASC by G15, and the allele
413 by 02. The S1 is an indicator of the library amplicon length of a given reference set. A key
414 table that links between the IUIS naming scheme and the ASC naming scheme can be found
415 in the supplementary (Sup. Table 1). The reference set with the new naming scheme was
416 then used for downstream processing.

417 For the downstream analysis, we used the full length of the V germline sequence. Meaning,
418 without the 3' trim that was used for the clustering. As the alleles 01 and 04 of IGHV3-
419 66, and alleles 01 and 03 of IGHV4-28, only differentiate in position 319 it is collapsed in the
420 cluster analysis. Hence, in the reference set we have decided to add both alleles for both
421 genes, however in the new name scheme allele IGHV3-66*04 is marked as a novel allele.

422 **Allele similarity clusters based genotype method**

423 The ASC-based genotype utilizes a population derived thresholds to determine the presence
424 of a given allele within an individual's genotype. We first had to set a default threshold for the
425 absolute allele usage fraction before tailoring it to each allele, the chosen value was 10^{-4} .
426 We then observed the absolute usage of each allele within its ASC to determine the final
427 allele-specific threshold. A list of all thresholds can be found here (Sup. Table S1).

428 **AIRR-seq processing**

429 For inferring the personal genotype either by the ASC-based or the gene-based method,
430 the repertoires were first aligned with IgBlast (V1.17) using the customized germline set.
431 Then, for each clone a representative with the least number of mutations was chosen, un-
432 documented alleles were inferred using TiGER [7], and in case new alleles were found,
433 the repertoire was realigned. Then, if the dataset came from naive B cells, the sequences
434 were filtered for no mutations within the V region up to position 316, accounting for possible
435 sequencing errors at the end of the V region [8]. For repertoires coming from full V region
436 length amplicons, the repertoires were filtered to omit 5' trimmed sequences. Sequences
437 were also filtered for sufficient 3' coverage of the V region (at least 312 nucleotide long). For
438 the ASC-based inference, the allele's absolute usage was calculated, and in cases where
439 a given sequence had more than a single assignment, the counts were divided among all
440 clusters. For each allele within the repertoire, the absolute usage was compared to the spe-
441 cific threshold. Alleles that passed the threshold were then added to the final individual's
442 genotype. For the gene-based genotype inference, the TiGER 'inferGenotype' [7] function
443 was used with the chosen threshold, either 12.5% or 5%.

444 **Using genome long-read assemblies to validate alleles**

445 Long-read assemblies from 6 samples generated using SequelIle HiFi reads and IGenotyper
446 [31] were downloaded from Rodriguez et al. [33]. The assemblies were aligned to a cus-
447 tom immunoglobulin heavy chain (IGH) genome reference containing previously discovered
448 IGHV genes using BLASR [46, 1]. From the alignments, gene sequences (5' UTR, leader-1,
449 leader-2 and exons) were extracted. The matched repertoire sequences were processed as
450 described in the method section (AIRR-seq processing), reducing the small fraction of non-
451 naive cells in the following way: after the initial alignment and the inference of novel alleles,
452 we inferred clones using the new allele clusters, and then for each clone we chose the least
453 mutated sequence as a representative. Because the sequences were pre-sorted to IgM, we
454 inferred the genotype only for unmutated sequences (after inferring novel alleles).

455 Acknowledgements

456 We thank all members of the iARC sub-committee of the AIRR community for productive
457 discussions. This study was partially supported by grants from the ISF (2940/21), the United
458 States–Israel Binational Science Foundation (2017253), VATAT grant, and the European
459 Union’s Horizon 2020 research and innovation program (825821 to GY). The contents of
460 this document are the sole responsibility of the iReceptor Plus Consortium and can under
461 no circumstances be regarded as reflecting the position of the European Union.

462 References

- 463 [1] Mark J Chaisson and Glenn Tesler. Mapping single molecule sequencing reads using
464 basic local alignment with successive refinement (blasr): application and theory. *BMC
465 bioinformatics*, 13(1):1–18, 2012.
- 466 [2] Andrew M Collins, Gur Yaari, Adrian J Shepherd, William Lees, and Corey T Watson.
467 Germline immunoglobulin genes: disease susceptibility genes hidden in plain sight?
468 *Current Opinion in Systems Biology*, 24:100–108, 2020.
- 469 [3] Martin M. Corcoran, Ganesh E. Phad, Néstor Vázquez Bernat, Christiane Stahl-
470 Hennig, Noriyuki Sumida, Mats A.A. Persson, Marcel Martin, and Gunilla B. Karlsson
471 Hedestam. Production of individualized v gene databases reveals high levels of im-
472 munoglobulin genetic diversity. *Nature Communications*, 7(1):13642, Dec 2016.
- 473 [4] Sivan Eliyahu, Oz Sharabi, Shiri Elmedvi, Reut Timor, Ateret Davidovich, Francois Vi-
474 gneault, Chris Clouser, Ronen Hope, Assy Nimer, Marius Braun, Yaakov Y. Weiss,
475 Pazit Polak, Gur Yaari, and Meital Gal-Tanamy. Antibody repertoire analysis of hepatitis
476 c virus infections identifies immune signatures associated with spontaneous clearance.
477 *Frontiers in Immunology*, 9:3004, 2018.
- 478 [5] Daniel Gadala-Maria, Moriah Gidoni, Susanna Marquez, Jason A Vander Heiden,
479 Justin T Kos, Corey T Watson, Kevin C O’Connor, Gur Yaari, and Steven H Kleinstein.
480 Identification of subject-specific immunoglobulin alleles from expressed repertoire se-
481 quencing data. *Frontiers in immunology*, 10:129, 2019.
- 482 [6] Daniel Gadala-Maria, Gur Yaari, Mohamed Uduman, and Steven H Kleinstein. Auto-
483 mated analysis of high-throughput b-cell sequencing data reveals a high frequency of
484 novel immunoglobulin v gene segment alleles. *Proceedings of the National Academy
485 of Sciences*, 112(8):E862–E870, 2015.
- 486 [7] Daniel Gadala-Maria, Gur Yaari, Mohamed Uduman, and Steven H. Kleinstein. Auto-
487 mated analysis of high-throughput b-cell sequencing data reveals a high frequency of
488 novel immunoglobulin v gene segment alleles. *Proceedings of the National Academy
489 of Sciences*, 112(8):E862–E870, 2015.
- 490 [8] Moriah Gidoni, Omri Snir, Ayelet Peres, Pazit Polak, Ida Lindeman, Ivana Mikocziava,
491 Vikas Kumar Sarna, Knut EA Lundin, Christopher Clouser, Francois Vigneault, et al.
492 Mosaic deletion patterns of the human antibody heavy chain gene locus shown by
493 bayesian haplotyping. *Nature communications*, 10(1):1–14, 2019.
- 494 [9] Veronique Giudicelli and Marie-Paule Lefranc. Ontology for immunogenetics: the imgt-
495 ontology. *Bioinformatics*, 15(12):1047–1054, 1999.

496 [10] Namita T Gupta, Kristofor D Adams, Adrian W Briggs, Sonia C Timberlake, Francois
497 Vigneault, and Steven H Kleinstein. Hierarchical clustering can identify b cell clones
498 with high confidence in ig repertoire sequencing data. *The Journal of Immunology*,
499 198(6):2489–2499, 2017.

500 [11] LL Hashimoto, MA Walter, DW Cox, and GC Ebers. Immunoglobulin heavy chain vari-
501 able region polymorphisms and multiple sclerosis susceptibility. *Journal of neuroim-
502 munology*, 44(1):77–83, 1993.

503 [12] Katherine JL Jackson, Justin T Kos, William Lees, William S Gibson, Melissa Laird
504 Smith, Ayelet Peres, Gur Yaari, Martin Corcoran, Christian E Busse, Mats Ohlin, et al.
505 A balb/c ighv reference set, defined by haplotype analysis of long-read vdj-c sequences
506 from f1 (balb/c/c57bl/6) mice. *Biorxiv*, 2022.

507 [13] Mateusz Kaduk, Martin Corcoran, and Gunilla B Karlsson Hedestam. Addressing ighv
508 gene structural diversity enhances immunoglobulin repertoire analysis: Lessons from
509 rhesus macaque. *Frontiers in Immunology*, page 1206, 2022.

510 [14] Marie J. Kidd, Zhiliang Chen, Yan Wang, Katherine J. Jackson, Lyndon Zhang, Scott D.
511 Boyd, Andrew Z. Fire, Mark M. Tanaka, Bruno A. Gaëta, and Andrew M. Collins. The
512 inference of phased haplotypes for the immunoglobulin h chain v region gene loci by
513 analysis of vdj gene rearrangements. *The Journal of Immunology*, 188(3):1333–1340,
514 2012.

515 [15] Mieko Kodaira, Tatsuo Kinashi, Isao Umemura, Fumihiko Matsuda, Takafumi Noma,
516 Yasushi Ono, and Tasuku Honjo. Organization and evolution of variable region genes
517 of the human immunoglobulin heavy chain. *Journal of molecular biology*, 190(4):529–
518 541, 1986.

519 [16] Jeong Hyun Lee, Laura Toy, Justin T Kos, Yana Safonova, William R Schief, Colin
520 Havenar-Daughton, Corey T Watson, and Shane Crotty. Vaccine genetics of ighv1-2
521 vrc01-class broadly neutralizing antibody precursor naïve human b cells. *NPJ vaccines*,
522 6(1):1–12, 2021.

523 [17] Marie-Paule Lefranc and Gérard Lefranc. *The immunoglobulin factsbook*. Academic
524 press, 2001.

525 [18] Shishi Luo, Jane A Yu, and Yun S Song. Estimating copy number and allelic variation at
526 the immunoglobulin heavy chain locus using short reads. *PLoS computational biology*,
527 12(9):e1005117, 2016.

528 [19] Fumihiko Matsuda, Kazuo Ishii, Patrice Bourvagnet, Kei-ichi Kuma, Hidenori
529 Hayashida, Takashi Miyata, and Tasuku Honjo. The complete nucleotide sequence
530 of the human immunoglobulin heavy chain variable region locus. *The Journal of exper-
531 imental medicine*, 188(11):2151–2162, 1998.

532 [20] Ivana Mikocziava, Moriah Gidoni, Ida Lindeman, Ayelet Peres, Omri Snir, Gur Yaari, and
533 Ludvig M Sollid. Polymorphisms in human immunoglobulin heavy chain variable genes
534 and their upstream regions. *Nucleic Acids Research*, 48(10):5499–5510, 05 2020.

535 [21] Ivana Mikocziava, Victor Greiff, and Ludvig M Sollid. Immunoglobulin germline gene
536 variation and its impact on human disease. *Genes & Immunity*, 22(4):205–217, 2021.

537 [22] Ivana Mikocziova, Ayelet Peres, Moriah Gidoni, Victor Greiff, Gur Yaari, and Ludvig M
538 Sollid. Germline polymorphisms and alternative splicing of human immunoglobulin light
539 chain genes. *Iscience*, 24(10):103192, 2021.

540 [23] Andréanne Morin, Tony Kwan, Bing Ge, Louis Letourneau, Maria Ban, Karolina Tan-
541 dre, Maxime Caron, Johanna K Sandling, Jonas Carlsson, Guillaume Bourque, et al.
542 Immunoseq: the identification of functionally relevant variants through targeted capture
543 and sequencing of active regulatory regions in human immune cells. *BMC medical
544 genomics*, 9(1):1–12, 2016.

545 [24] Mats Ohlin. Poorly expressed alleles of several human immunoglobulin heavy chain
546 variable genes are common in the human population. *Frontiers in immunology*,
547 11:603980, 2021.

548 [25] Aviv Omer, Ayelet Peres, Oscar L Rodriguez, Corey T Watson, William Lees, Pazit
549 Polak, Andrew M Collins, and Gur Yaari. T cell receptor beta germline variability is
550 revealed by inference from repertoire data. *Genome medicine*, 14(1):1–19, 2022.

551 [26] Aviv Omer, Or Shemesh, Ayelet Peres, Pazit Polak, Adrian J Shepherd, Corey T Wat-
552 son, Scott D Boyd, Andrew M Collins, William Lees, and Gur Yaari. Vdjbase: an
553 adaptive immune receptor genotype and haplotype database. *Nucleic acids research*,
554 48(D1):D1051–D1056, 2020.

555 [27] Kerui Peng, Yana Safonova, Mikhail Shugay, Alice B Popejoy, Oscar L Rodriguez, Fe-
556 lix Breden, Petter Brodin, Amanda M Burkhardt, Carlos Bustamante, Van-Mai Cao-
557 Lormeau, et al. Diversity in immunogenomics: the value and the challenge. *Nature
558 Methods*, 18(6):588–591, 2021.

559 [28] Ayelet Peres, Moriah Gidoni, Pazit Polak, and Gur Yaari. RAbHIT: R Antibody Haplotype
560 Inference Tool. *Bioinformatics*, 06 2019.

561 [29] Ayelet Peres, William D. Lees, Oscar L. Rodriguez, Noah Y. Lee, Pazit Polak, Ronen
562 Hope, Meirav Kedmi, Andrew M. Collins, Mats Ohlin, Steve H. Kleinstein, Corey T Wat-
563 son, and Gur Yaari. Allele similarity cluster archive for ighv alleles germline set, Novem-
564 ber 2022. If you use this software, please cite it as below.

565 [30] Duncan K Ralph and Frederick A Matsen IV. Per-sample immunoglobulin germline
566 inference from b cell receptor deep sequencing data. *PLoS computational biology*,
567 15(7):e1007133, 2019.

568 [31] Oscar L Rodriguez, William S Gibson, Tom Parks, Matthew Emery, James Powell, Maya
569 Strahl, Gintaras Deikus, Kathryn Auckland, Evan E Eichler, Wayne A Marasco, et al.
570 A novel framework for characterizing genomic haplotype diversity in the human im-
571 munoglobulin heavy chain locus. *Frontiers in immunology*, 11:2136, 2020.

572 [32] Oscar L. Rodriguez, Yana Safonova, Catherine A. Silver, Kaitlyn Shields, William S.
573 Gibson, Justin T. Kos, David Tieri, Hanzhong Ke, Katherine J. L. Jackson, Scott D.
574 Boyd, Melissa L. Smith, Wayne A. Marasco, and Corey T. Watson. Genetic variation in
575 the immunoglobulin heavy chain locus shapes the human antibody repertoire. *bioRxiv*,
576 2022.

577 [33] Oscar Luis Rodriguez, Yana Safonova, Catherine A Silver, Kaitlyn Shields, William S
578 Gibson, Justin T Kos, David Tieri, Hanzhong Ke, Katherine JL Jackson, Scott D Boyd,
579 et al. Antibody repertoire gene usage is explained by common genetic variants in the
580 immunoglobulin heavy chain locus. *bioRxiv*, 2022.

581 [34] Aaron M Rosenfeld, Wenzhao Meng, Eline T Luning Prak, and Uri Hershberg. Immunedb, a novel tool for the analysis, storage, and dissemination of immune repertoire
582 sequencing data. *Frontiers in immunology*, 9:2107, 2018.

583

584 [35] Cathrine Scheepers, Ram K Shrestha, Bronwen E Lambson, Katherine JL Jackson,
585 Imogen A Wright, Dshanta Naicker, Mark Goosen, Leigh Berrie, Arshad Ismail, Nigel
586 Garrett, et al. Ability to develop broadly neutralizing hiv-1 antibodies is not restricted by
587 the germline ig gene repertoire. *The Journal of Immunology*, 194(9):4371–4378, 2015.

588 [36] Valerie A. Schneider, Tina Graves-Lindsay, Kerstin Howe, Nathan Bouk, Hsiu-Chuan
589 Chen, Paul A. Kitts, Terence D. Murphy, Kim D. Pruitt, Françoise Thibaud-Nissen,
590 Derek Albracht, Robert S. Fulton, Miliinn Kremitzki, Vince Magrini, Chris Markovic,
591 Sean McGrath, Karyn Meltz Steinberg, Kate Auger, Will Chow, Joanna Collins, Glenn
592 Harden, Tim Hubbard, Sarah Pelan, Jared T. Simpson, Glen Threadgold, James Tor-
593 rance, Jonathan Wood, Laura Clarke, Sergey Koren, Matthew Boitano, Heng Li, Chen-
594 Shan Chin, Adam M. Phillippy, Richard Durbin, Richard K. Wilson, Paul Flicek, and
595 Deanna M. Church. Evaluation of grch38 and de novo haploid genome assemblies
596 demonstrates the enduring quality of the reference assembly. *bioRxiv*, 2016.

597 [37] Andrei Slabodkin, Maria Chernigovskaya, Ivana Mikocziova, Rahmad Akbar, Lonneke
598 Scheffer, Milena Pavlović, Habib Bashour, Igor Snapkov, Brij Bhushan Mehta, Cédric R
599 Weber, et al. Individualized vdj recombination predisposes the available ig sequence
600 space. *Genome Research*, 31(12):2209–2224, 2021.

601 [38] Linnea Thörnqvist and Mats Ohlin. Critical steps for computational inference of the
602 3'-end of novel alleles of immunoglobulin heavy chain variable genes-illustrated by an
603 allele of ighv3-7. *Molecular Immunology*, 103:1–6, 2018.

604 [39] J. J. M. van Dongen, A. W. Langerak, M. Brüggemann, P. A. S. Evans, M. Hummel,
605 F. L. Lavender, E. Delabesse, F. Davi, E. Schuuring, R. García-Sanz, J. H. J. M. van
606 Krieken, J. Droese, D. González, C. Bastard, H. E. White, M. Spaargaren, M. González,
607 A. Parreira, J. L. Smith, G. J. Morgan, M. Kneba, and E. A. Macintyre. Design and stan-
608 dardization of pcr primers and protocols for detection of clonal immunoglobulin and t-cell
609 receptor gene recombinations in suspect lymphoproliferations: Report of the biomed-2
610 concerted action bmh4-ct98-3936. *Leukemia*, 17(12):2257–2317, Dec 2003.

611 [40] Néstor Vázquez Bernat, Martin Corcoran, Uta Hardt, Mateusz Kaduk, Ganesh E Phad,
612 Marcel Martin, and Gunilla B Karlsson Hedestam. High-quality library preparation for
613 ngs-based immunoglobulin germline gene inference and repertoire expression analy-
614 sis. *Frontiers in immunology*, 10:660, 2019.

615 [41] J Vencovský, E Zdárský, SP Moyes, A Hajeer, Š Ruzicková, Z Cimburek, WE Ollier,
616 RN Maini, and RA Mageed. Polymorphism in the immunoglobulin vh gene v1-69 affects
617 susceptibility to rheumatoid arthritis in subjects lacking the hla-drb1 shared epitope.
618 *Rheumatology*, 41(4):401–410, 2002.

619 [42] Michael A Walter, William T Gibson, GC Ebers, DW Cox, et al. Susceptibility to multiple
620 sclerosis is associated with the proximal immunoglobulin heavy chain variable region.
621 *The Journal of clinical investigation*, 87(4):1266–1273, 1991.

622 [43] Yan Wang, Katherine J Jackson, Bruno Gäta, William Pomat, Peter Siba, William A
623 Sewell, and Andrew M Collins. Genomic screening by 454 pyrosequencing identifies
624 a new human ighv gene and sixteen other new ighv allelic variants. *Immunogenetics*,
625 63(5):259–265, 2011.

626 [44] Yan Wang, Katherine JL Jackson, William A Sewell, and Andrew M Collins. Many
627 human immunoglobulin heavy-chain ighv gene polymorphisms have been reported in
628 error. *Immunology and cell biology*, 86(2):111–115, 2008.

629 [45] Corey T Watson, Justin T Kos, William S Gibson, Leah Newman, Gintaras Deikus,
630 Christian E Busse, Melissa L Smith, Katherine JL Jackson, and Andrew M Collins. A
631 comparison of immunoglobulin ighv, ighd and ighj genes in wild-derived and classical
632 inbred mouse strains. *Immunology and cell biology*, 97(10):888–901, 2019.

633 [46] Corey T Watson, Karyn M Steinberg, John Huddleston, Rene L Warren, Maika Malig,
634 Jacqueline Schein, A Jeremy Willsey, Jeffrey B Joy, Jamie K Scott, Tina A Graves,
635 Richard K Wilson, Robert A Holt, Evan E Eichler, and Felix Breden. Complete haplotype
636 sequence of the human immunoglobulin heavy-chain variable, diversity, and joining
637 genes and characterization of allelic and copy-number variation. *The American Journal
638 of Human Genetics*, 92(4):530–546, 2013.

639 [47] NW Wood, SJ Sawcer, HF Kellar-Wood, P Holmans, D Clayton, Neil Robertson, and
640 DAS Compston. Susceptibility to multiple sclerosis and the immunoglobulin heavy chain
641 variable region. *Journal of neurology*, 242(10):677–682, 1995.

642 [48] Gur Yaari and Steven H Kleinstein. Practical guidelines for b-cell receptor repertoire
643 sequencing analysis. *Genome medicine*, 7(1):1–14, 2015.

644 [49] Bochao Zhang, Wenzhao Meng, Eline T Luning Prak, and Uri Hershberg. Discrimi-
645 nation of germline v genes at different sequencing lengths and mutational burdens: a
646 new tool for identifying and evaluating the reliability of v gene assignment. *Journal of
647 immunological methods*, 427:105–116, 2015.