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Abstract 

 

An open discussion in studies of intrinsic brain functional connectivity is the mitigation of head 

motion-related artifacts, particularly in the presence of peculiar symptomatology such as in 

Parkinson’s disease (PD). Previous studies show that Independent Component Analysis (ICA) 

denoising improves the reproducibility of functional connectivity findings by detecting sources 

of non-neural signals. However, there is still no consensus about which pre-processing 

pipeline should be applied in natural high motion populations such as PD, particularly in 

relation to novel functional network descriptions derived from dynamic connectivity analyses. 

In this study, we investigated how different pre-processing pipelines affect intrinsic brain 

connectivity metrics, both static and dynamic, derived from a group of young healthy controls 

(HC) and a group of PD participants.  

A total of 20 HC and 20 PD subjects participated in this 3 T MRI study. Resting-state functional 

MRI images were used to test the effects of the pre-processing pipeline of static (sFC) and 

temporal-varying functional connectivity (dFC) estimations. Both MRI datasets were pre-

processed using three different workflows differing in the motion correction approach: (i) 

standard motion realignment (mc); (ii) motion outlier detection and deweighting based on 

image intensity change estimations (DVARS) and (iii) ICA-based noise removal using 

reference noise features (AROMA). Furthermore, the PD dataset was also processed with a 

fourth method by applying an ICA-based denoising (FIX), previously trained on the HC group. 

sFC analysis was performed using Group ICA, by temporally concatenating different pre-

processing types in pairs of different runs. Two types of dFC analyses were considered: 

innovation-driven co-activation patterns (iCAPs) and co-activation patterns (CAPs). CAPs 

allow dFC estimations that do not require the deconvolution of the hemodynamic response 

function and its derivative, thus potentially being less sensitive to head-motion related noise.   

We found that regardless of substantial head motion differences in the two groups, sFC results 

were consistent across denoising strategies. Conversely, dFC was extremely sensitive to 

denoising strategies, particularly for the PD group with the transient-based dFC analyses. 

Indeed, the use of the peak-based dFC framework enables the detection of time-varying 

networks but in a way that is highly dependent on the motion correction pipeline. In conclusion, 

we show that dynamic functional network representations are highly sensitive to both head 

motion and to fMRI denoising methods. These findings stress the importance of considering 

and reporting these experimental aspects to help with the reproducibility and interpretation of 

different studies. Future work is needed to further investigate transient-based dFC strategies 

that are more robust to head motion. 
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1. Introduction 

 

1.1 Background 

 

Head motion is one of the majors confounds in brain functional MRI (fMRI) studies, 

particularly in studies of functional connectivity (FC) networks derived from intrinsic 

activity 1–3. The impact of head motion, however, has until now been mostly 

investigated considering static brain networks, which are representations of FC that 

use the entire timecourse of the fMRI acquisition 4. Little is known about how head 

motion affects dynamic FC network representations, especially in the case of frame-

wise techniques. 

Some of the first studies in the field highlighted that even small or transitory 

head movements could result in severe biases in static FC estimations 5,6 and 

consequently misleading interpretations in the context of pathologies 7,8. However, 

while in the case of static FC the need to carefully correct for motion is widely 

recognized across experts, in the context of dynamic FC this is still a matter of debate. 

On one hand, some studies suggest that head movement may only partially affect 

dynamic metrics and their reliability 9, whereas others claim the need of a specific tool 

to effectively correct for motion and overcome biases in the dynamic FC estimates 10. 

Overall, there is a strong interest in the fMRI neuroimaging community to develop 

robust processing strategies aimed at controlling head motion confounds in the BOLD 

time course 11, but an understanding of their impact on dynamic FC networks is still 

lacking. 

 

At the current state-of-the-art, several methodologies have been proposed as 

denoising pipelines for BOLD fMRI time series. These pipelines are typically set up as 

a “cascade” of various possible steps for which, to the best of our knowledge, there is 

no global consensus. The first and most common way of correcting for head motion is 

the so-called linear realignment 12 retrospectively done after the acquisition (here 

referred to as motion correction pipeline; mc). In this traditional method, head motion 

estimates over time are calculated along three translational trajectories (left-right, 

anterior-posterior and dorsal-ventral) and three rotational planes (roll, pitch and yaw). 

Following the mc correction step, data can be further corrected by discarding or 

weighting the BOLD signal of time points based on their level of head motion level. 

Common head motion metrics used for this include: (i) framewise displacement5 (FD), 

defined as the average frame-to-frame whole-brain displacement considering both 

rotation and translation parameters differences between consecutive frames; (ii) 

DVARS 5, defined as the root mean square (RMS) intensity difference of single volume 

(N) to another single volume (N+1) (here referred to as motion outliers deweighting 

pipeline; DVARS); (iii) RMS intensity difference of single-volume respect to the 

reference volume. Subsequently, brain fMRI volumes defined as corrupted by the 

chosen head motion metric may be fed into a confound matrix and regressed out from 

the BOLD time series with a general linear model. A weakness of the above-cited 
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metrics is the implicit assumption that motion remains similar along the whole fMRI 

time course, with the extreme case of framewise displacement, which is considered to 

be stationary even across translational and rotational planes thus neglecting its spatio-

temporal features 13,14. 

In an attempt to address these limitations, especially in the case of populations 

that tend to present large head motion (such as pediatrics or clinical cohorts), distinct 

denoising pipelines based on Independent Component Analysis (ICA) have been 

proposed, including ICA-AROMA 15 and FMRIB’s ICA-based Xnoisifier (FIX; Salimi-

Khorshidi et al., 2014)16. In contrast to previous methods, ICA-derived denoising 

pipelines are completely data-driven, can identify different sources of structured noise, 

and unlike brain volume censoring, they preserve the temporal structure of the data. 

Specifically, ICA-AROMA (here referred to as motion denoising; AROMA) is an 

algorithm used for the automatic removal of motion-related components based on their 

spatial and temporal features. Conversely, FIX (here referred to as motion denoising; 

FIX) is an fMRI noise detection algorithm that uses binarized characterization of ‘good’ 

or ‘bad’ independent components (IC) based on ~180 features captured from IC’s 

spatial and temporal characteristics through a multi-level classifier17,18. 

In sum, when interested in studying functional brain networks, there is a wide 

variety of different and publicly available head motion correction strategies that can be 

applied. However, it is not clear how these approaches may differ between populations 

that show different levels of natural head motion (natural motion intended as not the 

result from motion instructions to healthy collaborative subjects).   

In this study, we investigate how intrinsic functional networks derived from both 

static and dynamic FC fMRI methods are affected by head motion. To this end, we 

manipulated denoising strategies on two populations with different natural head motion 

levels: healthy young volunteers (where we tested mc, DVARS, AROMA) and 

Parkinson’s disease participants (where we tested mc, DVARS, AROMA and FIX 

trained on the healthy volunteers).  

 

2. Materials and Methods 

 

2.1 Participants 

 

A total of 20 healthy controls (HC - 10 females; age 24±3 years) and 20 PD subjects 

(8 females; age 67±7 years) participated in this study, which was approved by the 

Ethical Committee of the University of Trento, Italy. For what concerns HC, exclusion 

criteria included the presence of any neurological and/or psychiatric disease. For the 

PD participants inclusions criteria were diagnosis of idiopathic PD based on the 

Movement Disorders Society-Unified Parkinson disease rating Scale (MDS) criteria 19, 

with disease severity ˂ 3 based on the modified Hoen and Yahr scale 20 and being 

under anti-parkinsonian medication. Patients with evidence of dementia or other 

neuropsychiatric disorders were excluded. All patients were tested while in their 
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medication-on condition. The participants from the two cohorts gave written informed 

consent.  

 

 

2.2 MRI Acquisition 

Data were acquired with a 3T clinical MRI scanner (MAGNETOM Prisma, Siemens 

Healthcare, Erlangen, Germany) equipped with a 64-channel receive-only head-neck 

RF coil. Structural T1-weighted multi-echo MPRAGE 21 for the PD cohort (TR=2.5s, 

TEs=[1.69, 3.55, 5.41, 7.27 ms], 1mm-isotropic voxels), standard MPRAGE for the HC 

group (TR/TE=2.31s/3.48ms, 1mm-isotropic voxels) and resting-state functional MRI 

(rs-fMRI, TR/TE=1s/28ms, 3mm-isotropic voxels, FA=59 degree, MB=6) images were 

used to test the effects of the motion-denoising approach on static (sFC) and time-

varying FC (dFC) estimations. Double-echo gradient echo sequence was acquired for 

both cohorts to later control con geometric distortions (TR 682ms, TE1/TE2 4.2/7.4ms, 

3mm-isotropic voxels). 

 

2.3 MRI Pre-processing 

The MRI datasets from the two groups (HC and PD) were pre-processed using three 

different workflows (see Figure 1). Common pre-processing steps across the three 

workflows were conducted with an FSL-based automated pipeline 

(https://github.com/tambalostefano/lnifmri_prep) and included: (1) slice timing and head 

motion correction (mc); (2) co-registration of the T1-weighted image to the rs-fMRI 

time-series; (3) T1-weighted image tissue segmentation; (4) rs-fMRI temporal 

detrending and median filtering; (5) regression from the rs-fMRI time-series of the 6 

head motion parameters, white matter and cerebro-spinal fluid signals (standard 

motion correction, mc); (7) normalization to standard MNI template space; and (8) 

spatial smoothing 6 mm FWHM Gaussian kernel size.  

Together with these standard pre-processing steps, the three pipelines differed 

in the following motion correction approaches: (i) mc (nothing additional to the 

standard pre-processing); (ii) motion outliers detection and deweighting based on 

DVARS estimations (DVARS; Power et al., 2012); (iii) noise removal by means of ICA-

AROMA (AROMA), where motion-related artifacts  are detected automatically if the 

high-frequency content exceeds 35% of the fMRI time course, Cerebro-spinal fluid 

fraction is > 10%, and if it falls behind the decision boundary created for edge fraction 

and maximum correlation with realignment parameters 15. 

Additionally, the PD cohort was further pre-processed (iv) using FIX-Classifier 

(FIX), previously trained on 17 subjects of the HC dataset 17,22.  The definition of a 

training set to train the classifier consisted in (1) ICA decomposition of rs-fMRI time 

series into n=30 independent components, (2) manual classification of motion-related 

components by visual inspection of their spatiotemporal features. The training set was 

then used to train the classifier and the accuracy was assessed by a leave-one-out 

approach. The FIX classifier was further applied to the PD dataset with a threshold of 

20 corresponding to 95.2% (mean TPR) of correctly classified components. 
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Figure 1: Schematic representation of the pre-processing pipelines for the two cohorts, 

healthy controls (HC) and Parkinson’s disease participants (PD). The pre-processing 

pipeline of resting-state fMRI (rs-fMRI) data for HC included three different workflows: (i) mc: 

head motion correction (in grey); (ii) DVARS: outliers’ motion deweighting (in light blue); (iii): 

AROMA: ICA-AROMA denoising (in light pink). For the PD sample, the same three pipelines 

were used together with another denoising technique: FIX (in light green). 

 

 

 

2.4 Static functional connectivity 

In order to estimate static FC differences across the different head motion pipelines, 

the pre-processed resting-state fMRI data was then decomposed using Multivariate 

Exploratory Linear Optimized Decomposition into Independent Components 3.0 

(MELODIC) into their distinct spatial and temporal components using ICA. As the aim 

of the analysis was to detect resting-state FC changes associated with different head 

motion pre-processing pipelines, we did not assume consistent temporal responses 

within subjects. Therefore, the ICA group analysis was temporarily concatenated (FSL; 

Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) in different pre-processing 

pipeline runs, respectively combining mc vs DVARS, mc vs AROMA and mc vs FIX 

(for the PD only), to then perform a paired nonparametric permutation test in each 

group separately. The ICs number was manually set to 20 as low-order model analysis  
24.  To separate noise components from the underlying resting-state networks, ICs 

were tested for their correlation (threshold of r-value > 0.2) to labelled networks 25. 

Subsequently, 10 ICs out of 20 were retained with the highest r-value. As a final step 
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in the network identification, ICs were visually inspected by expert users to detect 

consistency between ICs matching with template networks (high correlation values) 

resembling well-known functional networks.  

 

2.5 Dynamic functional connectivity 

Concerning the evaluation of head motion effects and denoising approaches on 

dynamic FC, the following two frame-wise methods were considered.  

 

2.5.1 Transient-based dynamic FC analysis 

We first estimate recurrent brain states by means of innovation-driven co-

activation patterns (iCAPs; Karahanoğlu & Van De Ville, 2015) 

(https://c4science.ch/source/iCAPs/). This technique enables the detection of 

iCAPs in a data-driven way, by looking at transients of the fMRI signal. Indeed, 

by computing at the single-subject level the derivative of the previously 

regularized and hemodynamic response function (HRF) deconvolved fMRI 

signal, the innovation signal is derived, comprehending the original fluctuations 

of the BOLD time course 27. These innovations signals are then clustered 

together across subjects, in order to reconstruct the iCAPs, which describe how 

brain regions are functionally characterized by similar temporal dynamics 28. 

The iCAPs framework was applied separately to the two groups (HC and 

PD, respectively) for all the types of pre-processing and by means of consensus 

clustering. The best-fitting k was chosen for both populations in k=10. As a final 

step, spatiotemporal transient-informed regression 29 was used to reconstruct 

the time course of each iCAPs. Temporal properties of iCAPs for each group in 

each pre-processing type, were extracted by transforming the time courses to 

z-scores and thresholding them (|z-score|>1), and total duration of each iCAPs 

were retrieved (i.e. duration of the overall iCAP activation represented as 

percentage of the scanning time) 30. In order to separate noise components 

from the underlying dynamic networks, ICAPs were tested for their correlation 

(threshold of r-value > 0.2) to labelled networks 25 
 

2.5.2 Peak-based dynamic FC analysis 

The results obtained by the transient-based dFC analysis, showed large effects 

of denoising methods on iCAPs estimation, especially in the PD cohort. We 

hypothesized that this may be due to the incorrect assumption of the HRF 

model when applied to a BOLD time series with strong frame-wise head motion 

effects. To test this, in the PD group we also applied a framewise dFC method 

that was not dependent on assumptions of the HRF for the estimation of brain 

recurrent states: co-activation patterns (CAPs; Liu & Duyn, 2013) 

(https://c4science.ch/source/CAP_Toolbox.git.). In our case, CAPs were 

estimated by defining a seed in the posterior cingulate cortex (PCC) region from 

the Harvard-Oxford Labeling atlas and extracting co-activations and co-

deactivations patterns with respect to the seed, for limited periods of the time 
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course, with temporal clustering aiming at detecting the Default-mode network 

(DMN) components. For each group and each pipeline, we extracted and z-

transformed the seed BOLD time course and selected the top 10% time points 

with the highest activation.  Consensus clustering revealed k=4 as the best-

fitting k and by using k-means clustering spatial states of the four CAPs were 

then summarized in spatial z-maps and temporal occurrences (i.e. how many 

times a given CAP is expressed throughout the time course).  

 

 

2.6 Statistical analysis 

Within each group of participants, HC and PD, we evaluated separately whether 

static and dynamic resting-state networks (RSNs) were affected by the choice of head 

motion denoising strategy.  

For the sFC analysis, we performed a dual regression to investigate differences 

in RSNs related to pre-processing pipeline in each group. To do so, based on our a-

priori hypotheses, a paired t-test, randomized with permutation testing, was performed 

on 10 ICs with Bonferroni correction for multiple comparisons (10 ICs tested for 2 

contrasts of interest: p-value< 0.0025) to detect network changes due to head motion 

controlling pipeline. Comparisons were done voxel-wise taking the standard mc as a 

reference pipeline and contrasting all the other pipeline to it (for HC: mc>DVARS, 

mc>AROMA; for PD: mc>DVARS, mc>AROMA, mc>FIX) in both contrasts’ directions.  

 

For the transient-based dFC analysis, to understand voxels-wise differences 

between pipelines multiple paired t-tests were performed in randomise 32 across iCAPs 

of interest. Results are reported with Bonferroni correction considering dynamic 

network comparisons and 2 contrast of interest (respectively for HC group: [AROMA 

vs mc, AROMA vs DVARS and mc vs DVARS pFWE<0.00416] whereas for the PD 

group: [AROMA vs mc, AROMA vs DVARS and FIX vs AROMA pFWE<0.0125; mc vs 

DVARS, FIX vs mc and FIX vs DVARS p<FWE0.00625]; Figure S3). Furthermore, 

iCAPs durations between different pipelines were compared using a paired t-test for 

the two different runs described above for both groups (HC and PD separately, 

respectively contrasting mc-DVARS and mc-AROMA and mc-FIX for the PD only). 

The p-values were subsequently corrected for multiple comparisons with false 

discovery rate (FDR). 

For the peak-based dFC analysis performed in the PD sample, CAP properties 

from different pipelines were compared by using a paired t-test for the two different 

runs described above (respectively contrasting mc-DVARS and mc-AROMA and mc-

FIX) for occurrences, betweenness centrality, in degree, out degree and resilience and 

then correcting for multiple comparisons with FDR. 

Finally, to gain insights into the effect of AROMA with respect to mc, a two-

sample unpaired t-test was performed for both groups on the algebraic sum of the 

Independent Components labelled as noise and regressed out at single subject level 

by AROMA.  
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3. Results 

 

3.1 Assessment of head motion 

The amount of head-motion (both estimated as mean framewise displacement (FD) 

and DVARS) estimated during the resting state fMRI acquisitions was significantly 

higher in the PD group relative to the HC group: pFD<0.001, t-valueFD=-7.5; 

pDVARS<0.001, t-valueDVARS=-7.9 (Table 1; Figure S1).  

 

Population DVARS 

(mean±SD) 

FD (mm) 

(mean±SD) 

Healthy controls 30±5 0.1±0.03 

Parkinson’s disease 45±7 0.3±1.2 

 

 

Table 1: Head motion assessment of the sample. 

 

 

3.2 Static functional connectivity 

Despite the fact that the two groups showed significantly different natural head motion 

levels, the resting state networks (RSNs) derived from static FC approaches were 

rather robust as function to head motion denoising strategies (Figure 2). For the HC 

group (N=20): (i) the RSNs derived from mc and DVARS showed no significant 

differences; (ii) whereas relative to mc, AROMA shows significant voxel-wise 

differences for all RSNs but in brain regions expected to be motion-sensitive in both 

groups (Figure S2, Panel A). This can be interpreted as if mc denoising maintains a 

higher level of static FC in edge gray matter voxels relative to AROMA denoising. For 

what concerns PD (N=20): (i) both the comparisons between mc and DVARS and mc 

and AROMA shows significant voxel-wise differences (Figure S2, Panel B).; (ii) 

however RSNs derived from mc and FIX showed no significant differences. This can 

be interpreted as if FIX denoising maintains a within network static FC, comparable to 

the one seen using mc. 
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Figure 2: Head motion correction effects on static intrinsic functional networks in 

healthy controls and Parkinson’s disease. Spatial patterns of the independent components 

in the healthy control group (Panel A) and Parkinson’s disease (Panel B) were retrieved from 

all subjects in all sessions (gray: mc, blue: DVARS; red: AROMA, green: FIX).  

 

3.3 Dynamic functional connectivity 

3.3.2 Transient-based analysis 

Regarding dynamic FC in the HC group, from a spatial point of view, the three motion 

correction pipelines retrieved iCAPs maps of well-known resting-state networks 

(Figure 3; N=20; Table S1). However, while some iCAP networks appear to be robust 

as function as denoising strategy (auditory, visual, DMN, insula), other iCAPs are 

sensitive to denoising strategy (anterior Salience Network, aSN, and the visuospatial 

network, VSN), as can be qualitatively seen in Figure 3. In other words, even in a 

group of healthy volunteers with low head motion, the choice of head motion denoising 

strategy affects the spatial maps of transient-based dynamic networks.  
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Figure 3: Head motion correction effects on dynamic intrinsic functional networks in 

healthy controls. Spatial patterns of the relevant innovation-driven coactivation patterns 

(iCAPs) in the healthy control group were retrieved from all subjects in all sessions (gray: mc, 

blue: DVARS; red: AROMA).  

 

These effects of pipeline in the iCAPs of the HC group were further investigated 

by doing voxel-wise comparisons of the iCAP dynamic networks (Figure S3; Panel A), 

which showed: (i) lower connectivity in dorsal default mode network (dDMN) in 

precuneal regions in DVARS while compared to mc (pFWE< 0.01); (ii) lower connectivity 

in insula network in thalamic regions in AROMA while compared to DVARS (pFWE< 

0.01); (iii) higher connectivity for the VSN network in both AROMA and DVARS 

compared to mc, in regions characteristic of the network itself, as demonstrated by the 

poor accuracy of the network detection (pFWE< 0.01); (iv) lower connectivity in frontal 

regions of the VSN while comparing AROMA to mc (pFWE< 0.01). All the reported 

results are family-wise errors (FWE)-corrected across voxels and Bonferroni corrected 

across different networks and contrast of interests.  

When considering the temporal properties of the dynamic networks in the HC 

group, we found that the choice of head motion denoising strategy affects the percent 

duration of the various networks. We observed differences in engagement of a given 

state throughout the time course for the different runs (Figure 4): (i) for Auditory, Visual, 

aSN and dDMN total duration is significantly increased in mc compared to DVARS and 

compared to AROMA (pFDR<0.05), which also show a disruption in the Insula network, 

(ii) on the other hand, the VSN, which was poorly spatially retrieved with mc, had a 

reduced total duration compared to DVARS and AROMA (pFDR<0.05).  
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Figure 4: Head motion correction effects on the duration of intrinsic dynamic 

functional networks in healthy controls. For each iCAPs (spatial maps from mc), horizontal 

boxplots show the innovation frames per session in the healthy control group as a percentage 

of the total scanning time, highlighting the differences between: (i) mc vs DVARS 

denoising(*=p<0.05FDR) in the second column, (ii) mc vs AROMA denoising(*=p<0.05FDR) in 

the third column.  

 

In the PD cohort, the spatial dynamic FC maps are severely affected by the 

motion correction pipeline (Figure 5; Table S1), resulting in a lower number of networks 

detected. Spatial distribution of brain networks is affected when choosing AROMA (two 

iCAPs detected) compared to mc and DVARS (four iCAPs detected). The FIX pipeline 

is the only denoising method enabling the detection of a higher number of consistent 

iCAPs compared to mc (five iCAPs detected). Therefore only 5 out of the 10 iCAPs 

(displayed in Figure 5), gave the resemblance of well-known resting state networks 

whereas the remaining iCAPs were characterized by noisy sparse activation. 
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Figure 5: Head motion correction effects on the duration of intrinsic dynamic 

functional networks in Parkinson’s disease. Spatial patterns of the relevant innovation-

driven coactivation patterns (iCAPs) in PD group retrieved from all subjects in different 

sessions (gray: mc, blue: DVARS; red: AROMA, green: FIX). Conditions in which no iCAPs 

were identified are left without maps.  
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Voxel-wise comparisons of dynamic networks (Figure S3; Panel B) revealed 

that: (i) lower connectivity in the Auditory network was found in cuneal and lateral 

regions while comparing FIX to both mc and DVARS ( pFWE< 0.01); (ii) lower 

connectivity was also found in the Orbitofrontal-hippocampal network in orbitofrontal 

regions while comparing AROMA to both mc and DVARS ( pFWE< 0.01), whereas 

higher connectivity was found within the same network in left temporal regions while 

comparing FIX to AROMA (pFWE< 0.01). Interestingly none of the detected iCAPs was 

significantly spatially different while comparing DVARS to mc (pFWE> 0.01).  All the 

reported results are FWE-corrected across voxels and Bonferroni corrected across 

different networks and contrast of interests.  

From a temporal perspective, dynamic FC networks in the PD group showed 

differences in engagement of a given state throughout the time course for the four 

different runs (Figure 6): (i) for Auditory network total duration is increased in mc 

compared to DVARS and FIX (pFDR<0.05), (ii) on the other hand,  the Orbitofrontal-

hippocampal had a reduced total duration in mc compared to DVARS and an 

increased total duration compared to AROMA (pFDR<0.05).  
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Figure 6: Head motion correction effects on the duration of intrinsic dynamic 

functional networks in Parkinson’s disease participants. For each iCAPs (spatial maps 

from mc denoising), horizontal boxplots show the innovation frames per session in the 

Parkinson’s disease group as a percentage of the total scanning time, highlighting the 

differences between: (i) mc vs DVARS denoising (*=p<0.05FDR) in the second column, (ii) mc 

vs AROMA denoising (*=p<0.05FDR) in the third column, (iii) mc vs FIX denoising (*=p<0.05FDR) 

in the fourth column. No AROMA iCAPs were detected for the Auditory and Anterior salience 

networks.  
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Voxel-wise statistical maps of the noise components removed by AROMA 

(Figure S4) show a clear increase in the effect of AROMA denoising in PD compared 

to HC (pFWE<0.05). 

In summary, transient-based dynamic intrinsic functional connectivity analysis 

is sensitive to the choice of head motion denoising strategy. In a population of young 

healthy subjects with low amounts of head motion, the pipeline choice affects some of 

the spatial iCAPs and the percent duration of the various networks. In a population of 

PD participants, instead, the effects are rather more drastic, and it becomes 

challenging to actually estimate iCAPs.  

 

 

 

 

3.3.2 Peak-based analysis 

 

The transient-based iCAPs results in the PD group showed that it was not possible to 

detect the expected dynamic networks present in the HC group, such as the DMN. We 

hypothesized that a potential reason for this may be related to the HRF assumption 

that is built into the iCAPs method for its temporal deconvolution step. In addition, 

functional MRI activity transients are detected using the derivative of this signal, which 

can further amplify the effect of noise. We tested this on the DMN network by using 

the PCC seed-based CAP technique for dynamic connectivity in the PD group. Using 

this, and irrespective of head denoising strategy, we were able to detect comparable 

dynamic DMN co-activating networks. 

Voxelwise cross-correlation between different DMN CAPs z-scored maps 

revealed high anatomical concordance across pipelines in PD cohort (Figure 7) (mc 

vs DVARS: r-value=0.99; mc vs AROMA: r-value=0.90; mc vs FIX: r-value=0.97). 
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Figure 7: Intrinsic default mode network (DMN) co-activation patterns (CAPs) in 

Parkinson’s disease participants across pre-processing pipelines. Surface display of 

DMN CAPs in, starting from upper left: mc (gray); DVARS (light blue); AROMA (light pink) and 

FIX (light green). Boxplots display respectively occurrences and resilience of the DMN CAP 

(p-valueFDR<0.05). 

 

Moreover, by considering the occurrence of the DMN across subjects, FIX 

resulted to be the head motion denoising pipeline with higher z-score median and low 

z-score standard deviation across voxels compared to other pipelines, showing higher 

temporal stability in the detection of the network.  

In terms of DMN CAP temporal properties (Table S2), we found no significant 

differences when comparing the results derived from using the mc to either of the 

AROMA or FIX denoising pipelines. Instead, significant differences were found when 

comparing temporal properties from mc relative to DVARS (Table S4): (i) a decrease 

in DMN occurrences with mc (i.e. how many times the CAP is expressed across the 

time course,  p-valueFDR<0.05, t-value=-3.5) and a decreased in DMN resilience with 

mc  (i.e. a stability index expressing the likelihood to remain in the same CAP 

configuration across time,  p-valueFDR<0.05, t-value=-3.1).  
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4. Discussion 

 

In this study, within two groups of subjects having different head motion levels 

(HC and PD), we evaluated how standard mc, DVARS, AROMA and FIX denoising 

methods differentially affect intrinsic static and dynamic FC metrics.  

We replicated previous results in the field, showing that large head motion and 

denoising strategies do affect intrinsic FC estimates 6,33. Until now, such evaluations 

have been done mostly applying static FC estimations. In this study, we extend those 

results to the consideration of framewise dynamic FC strategies, both transient- and 

peak-based. Our main finding is that both of these dynamic FC methods are affected 

by both the level of head motion and the retrospective denoising methods used to 

mitigate motion effects. Indeed, we demonstrate that even in a group of HC with low 

level of head motion, dynamic FC results can be affected by denoising pipelines. 

Whereas, if the group shows larger head motion such as in our PD group, dynamic 

FC can completely fail to capture transients-based networks. On the other hand, the 

use of peak-based dynamic FC can help recovering networks in the PD group, but 

these can still show temporal features of dynamic networks that are dependent on 

head motion denoising pipeline. 

 

4.1 Head motion correction pipelines:  effects on the estimation of intrinsic 

functional connectivity metrics 

 

When looking at the effect of head motion correction in the two samples (HC 

and PD), it is clear that different denoising strategies will distinctively affect the results 

derived downstream. 

Previous studies10 suggested that volume censoring (i.e. “scrubbing”) could be 

beneficial in the context of dynamic FC, a viable approach that implicitly 

underestimates the temporal relationship of timepoints 11. Indeed, in this study, we 

demonstrate that volume de-weighting alone (DVARS) is sufficient to alter temporal 

properties of iCAPs (e.g., total network duration) and CAPs (e.g., network occurrences 

and resilience), thus extending previous reports on sliding-window approaches 34,35.  

Moreover, we showed that in a high-motion population even a subtle scrubbing 

approach such as DVARS can cause a decrease in within network static FC. 

On the other hand, data-driven decomposition approaches for denoising such 

as AROMA and FIX, may be more specific in filtering motion related temporal 

dynamics of brain MR signals 36,37.  For what concerns static FC, we found differences 

in within-network FC in both populations while comparing mc with AROMA, with the 

PD cohort exhibiting larger changes in key network nodes. Whereas when comparing 

mc with FIX in the PD sample, no significant differences were found. 

In fact, in the PD group, where the denoising was performed separately for 

AROMA and FIX, we found that AROMA removed a lot more “noise” and probably as 

a consequence detected fewer dynamic networks. It is possible that AROMA 

performed in a suboptimal way on our PD dataset (TR=1s) because the detection and 
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elimination of head motion components has been originally developed and validated 

under different experimental conditions (TR= 1.96s15 ), which differentially affects the 

spectral distribution of noise components. The higher sampling rate of our experiment 

most likely allows us to maintain low frequency BOLD components that have less 

aliasing from higher frequency components, like from head motion. Therefore, the use 

of AROMA may remove some low frequency components that are wrongly interpreted 

as noise 38,39 .  

Instead, in the case of FIX, which in PD enables the detection of a higher 

number of iCAPs compared to mc by preserving their temporal properties, ICA-

denoising seems to be more effective and not disruptive. In this study, the FIX 

classifier, later tested on PD, was trained on manually labelled noisy components 

detected by four experts in our HC sample. This enabled the definition of components 

resembling “noise”, being it physiological or related to head motion, specific to our 

acquisition protocol. Importantly, the acquisition protocol was identical in the training 

(HC) and testing (PD) sample. 

 

4.2 Transient-based dynamic connectivity is sensitive to head motion and 

head motion denoising pipeline 

 

We showed for the first time that frame-wise dynamic FC is sensitive to both 

the level of head motion in the group and the choice of head motion denoising pipeline.  

Our results demonstrated how even in the case of small-head motion (FD <0.1 

mm) frame-wise techniques, especially iCAPs, are susceptible to different head 

motion correction. Indeed, in HC standard head motion correction (mc) was not 

sufficient to dynamically detect networks such as the VSN. However, more aggressive 

denoising techniques (i.e. AROMA) resulted in changes of temporal properties of 

several iCAPs (such as temporal durations) which are closer to zero (i.e. absent) for a 

large part of the sample even if characterized by a low motion level, as previously 

stated 40. Besides, if we look at populations with inherited large motion levels, 

implications are even worse. In the PD sample, iCAPs are spatially disturbed with 

simple outliers’ volume de-weighting (DVARS) whereas large parts of networks are 

absent for more disruptive denoising such as AROMA. Therefore, it seems that in the 

presence of a higher proportion of corrupted functional volumes, two factors may 

contribute to the loss of sensitivity to detect dynamic networks. On one hand, the 

removal of noisy components from the original signal interferes with the proper 

reconstruction of spatial and temporal properties of iCAPs. On the other hand, the 

simple regression of volumes from the time-course disables the capability of the 

algorithm to detect these fluctuations. On the contrary, applying a denoising pipeline 

that is more specific to the sample (i.e. FIX), appears to help preserve the signal 

temporal variance and frequency content, thus improving the estimation of the iCAPs 
41 by boosting network identifiability. 
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4.3 The use of co-activation patterns enables the detection of well-known 

functional networks even in high motion populations 

 

We found that the iCAPs algorithm was not able to detect the dynamics of well-

known RSNs, such as the DMN, in samples characterized by large head motion (PD). 

Thinking that this may be related to problems with the HRF deconvolution in a noisy 

time series, we explored the use of an alternative framewise dynamic method. We 

applied the CAPs technique which rather than looking for transient framewise 

fluctuations, it attempts to detect peaks in the single frame. We found that by selecting 

a precise region of interest, even in the presence of large head motion, the CAPs 

framework is capable of detecting DMN co-activation and deactivation over the time 

course. However, we showed that the temporal properties of the DMN are still 

differentially affected by the choice of denoising pipeline, especially when using 

DVARS. This may be partially explained by the fact that CAPs correlations are largely 

driven by the spatial nonspecific correlation components of global signals 42. The close 

relationship between spatially non-specific CAPs and head motion can be strongly 

affected by the denoising pipeline. In fact, we observed that the pipeline affects the 

classification of single frame peaks over the time course as neurally relevant or not 

CAPs. Indeed, DVARS head motion correction is thought to be also sensitive to global 

signal changes in the BOLD content not related to motion 5, resulting in considerable 

effects on temporal CAPs compared to other denoising techniques.  

Moreover, it is also relevant to keep in mind that iCAPs and CAPs, being 

framewise dynamic techniques, are largely affected by changes in transient arousal 

level of the subjects, which are usually accompanied by head motion peaks 34. 

 

 

4.4 Limitations 

 

This study has several limitations. We did not aim to directly compare intrinsic 

functional activity across the HC and PD groups, which were not age matched. 

Instead, the focus was on quantifying how static and dynamic connectivity networks 

were affected by head motion denoising pipeline as an independent variable. Future 

studies are needed to generalize our results to other age ranges of our groups. Also, 

in terms of head motion denoising methods, our goal was not to explore all possible 

head motion correction methods but rather to investigate if some of the most used 

techniques differentially affect FC representations, especially with dynamic 

connectivity approaches. Using the healthy young volunteer’s data as a training set 

for FIX denoising of the Parkinson’s group may be suboptimal because of the age 

differences across groups. The peak-based dynamic connectivity was limited to the 

PD group only and considering only one seed, the posterior cingulate cortex, in order 

to evaluate the possibility of detecting the default mode network. The healthy group 

was not evaluated with the peak-based dynamic method because the known networks 

were retrieved with the transient-based approach. Further, our estimation of TVC 

patterns was limited to frame-wise approaches. Further studies are needed to better 
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understand the effects of head motion denoising in sliding-window correlation and 

other dynamic algorithms 28,43.  

 

 

5. Conclusions 

 

To the best of our knowledge this is the first study comparing how head motion 

denoising strategies affects static and dynamic functional intrinsic BOLD connectivity 

in two populations with very different natural head motion properties. We found that 

static intrinsic FC metrics are mostly robust across motion denoising strategies in both 

young healthy controls and Parkinson’s participants. This is consistent with and 

supports previous studies 44,45. However, dynamic FC metrics were very sensitive to 

denoising methods, in both groups but critically in the PD group. Therefore, further 

work is needed to better understand: (i) how to retain useful information from a BOLD 

time-series in high motion populations, (ii) and how to disentangle subject-specific 

dynamic head motion signatures potentially retaining relevant neural information 13,41. 

Ultimately, our study contributes to emphasizing the importance of head motion in the 

context of novel dynamic FC studies. To facilitate the comparison and reproducibility 

of such studies it remains crucial to report both the head motion properties of the 

populations involved and the details of the denoising strategies used 46. 
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