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Abstract

An open discussion in studies of intrinsic brain functional connectivity is the mitigation of head
motion-related artifacts, particularly in the presence of peculiar symptomatology such as in
Parkinson’s disease (PD). Previous studies show that Independent Component Analysis (ICA)
denoising improves the reproducibility of functional connectivity findings by detecting sources
of non-neural signals. However, there is still no consensus about which pre-processing
pipeline should be applied in natural high motion populations such as PD, particularly in
relation to novel functional network descriptions derived from dynamic connectivity analyses.
In this study, we investigated how different pre-processing pipelines affect intrinsic brain
connectivity metrics, both static and dynamic, derived from a group of young healthy controls
(HC) and a group of PD participants.

A total of 20 HC and 20 PD subjects participated in this 3 T MRI study. Resting-state functional
MRI images were used to test the effects of the pre-processing pipeline of static (sFC) and
temporal-varying functional connectivity (dFC) estimations. Both MRI datasets were pre-
processed using three different workflows differing in the motion correction approach: (i)
standard motion realignment (mc); (i) motion outlier detection and deweighting based on
image intensity change estimations (DVARS) and (iii) ICA-based noise removal using
reference noise features (AROMA). Furthermore, the PD dataset was also processed with a
fourth method by applying an ICA-based denoising (FIX), previously trained on the HC group.
sFC analysis was performed using Group ICA, by temporally concatenating different pre-
processing types in pairs of different runs. Two types of dFC analyses were considered:
innovation-driven co-activation patterns (iCAPs) and co-activation patterns (CAPs). CAPs
allow dFC estimations that do not require the deconvolution of the hemodynamic response
function and its derivative, thus potentially being less sensitive to head-motion related noise.
We found that regardless of substantial head motion differences in the two groups, sFC results
were consistent across denoising strategies. Conversely, dFC was extremely sensitive to
denoising strategies, particularly for the PD group with the transient-based dFC analyses.
Indeed, the use of the peak-based dFC framework enables the detection of time-varying
networks but in a way that is highly dependent on the motion correction pipeline. In conclusion,
we show that dynamic functional network representations are highly sensitive to both head
motion and to fMRI denoising methods. These findings stress the importance of considering
and reporting these experimental aspects to help with the reproducibility and interpretation of
different studies. Future work is needed to further investigate transient-based dFC strategies
that are more robust to head motion.
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1. Introduction

1.1 Background

Head motion is one of the majors confounds in brain functional MRI (fMRI) studies,
particularly in studies of functional connectivity (FC) networks derived from intrinsic
activity 3. The impact of head motion, however, has untii now been mostly
investigated considering static brain networks, which are representations of FC that
use the entire timecourse of the fMRI acquisition 4. Little is known about how head
motion affects dynamic FC network representations, especially in the case of frame-
wise techniques.

Some of the first studies in the field highlighted that even small or transitory
head movements could result in severe biases in static FC estimations >¢ and
consequently misleading interpretations in the context of pathologies 8. However,
while in the case of static FC the need to carefully correct for motion is widely
recognized across experts, in the context of dynamic FC this is still a matter of debate.
On one hand, some studies suggest that head movement may only partially affect
dynamic metrics and their reliability °, whereas others claim the need of a specific tool
to effectively correct for motion and overcome biases in the dynamic FC estimates *°.
Overall, there is a strong interest in the fMRI neuroimaging community to develop
robust processing strategies aimed at controlling head motion confounds in the BOLD
time course 1%, but an understanding of their impact on dynamic FC networks is still
lacking.

At the current state-of-the-art, several methodologies have been proposed as
denoising pipelines for BOLD fMRI time series. These pipelines are typically set up as
a “cascade” of various possible steps for which, to the best of our knowledge, there is
no global consensus. The first and most common way of correcting for head motion is
the so-called linear realignment 12 retrospectively done after the acquisition (here
referred to as motion correction pipeline; mc). In this traditional method, head motion
estimates over time are calculated along three translational trajectories (left-right,
anterior-posterior and dorsal-ventral) and three rotational planes (roll, pitch and yaw).
Following the mc correction step, data can be further corrected by discarding or
weighting the BOLD signal of time points based on their level of head motion level.
Common head motion metrics used for this include: (i) framewise displacement® (FD),
defined as the average frame-to-frame whole-brain displacement considering both
rotation and translation parameters differences between consecutive frames; (i)
DVARS °, defined as the root mean square (RMS) intensity difference of single volume
(N) to another single volume (N+1) (here referred to as motion outliers deweighting
pipeline; DVARS); (iii) RMS intensity difference of single-volume respect to the
reference volume. Subsequently, brain fMRI volumes defined as corrupted by the
chosen head motion metric may be fed into a confound matrix and regressed out from
the BOLD time series with a general linear model. A weakness of the above-cited
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metrics is the implicit assumption that motion remains similar along the whole fMRI
time course, with the extreme case of framewise displacement, which is considered to
be stationary even across translational and rotational planes thus neglecting its spatio-
temporal features 314,

In an attempt to address these limitations, especially in the case of populations
that tend to present large head motion (such as pediatrics or clinical cohorts), distinct
denoising pipelines based on Independent Component Analysis (ICA) have been
proposed, including ICA-AROMA *° and FMRIB’s ICA-based Xnoisifier (FIX; Salimi-
Khorshidi et al., 2014)!6. In contrast to previous methods, ICA-derived denoising
pipelines are completely data-driven, can identify different sources of structured noise,
and unlike brain volume censoring, they preserve the temporal structure of the data.
Specifically, ICA-AROMA (here referred to as motion denoising; AROMA) is an
algorithm used for the automatic removal of motion-related components based on their
spatial and temporal features. Conversely, FIX (here referred to as motion denoising;
F1X) is an fMRI noise detection algorithm that uses binarized characterization of ‘good’
or ‘bad’ independent components (IC) based on ~180 features captured from IC’s
spatial and temporal characteristics through a multi-level classifier’-18.

In sum, when interested in studying functional brain networks, there is a wide
variety of different and publicly available head motion correction strategies that can be
applied. However, it is not clear how these approaches may differ between populations
that show different levels of natural head motion (natural motion intended as not the
result from motion instructions to healthy collaborative subjects).

In this study, we investigate how intrinsic functional networks derived from both
static and dynamic FC fMRI methods are affected by head motion. To this end, we
manipulated denoising strategies on two populations with different natural head motion
levels: healthy young volunteers (where we tested mc, DVARS, AROMA) and
Parkinson’s disease participants (where we tested mc, DVARS, AROMA and FIX
trained on the healthy volunteers).

2. Materials and Methods

2.1 Participants

A total of 20 healthy controls (HC - 10 females; age 24+3 years) and 20 PD subjects
(8 females; age 67+7 years) participated in this study, which was approved by the
Ethical Committee of the University of Trento, Italy. For what concerns HC, exclusion
criteria included the presence of any neurological and/or psychiatric disease. For the
PD participants inclusions criteria were diagnosis of idiopathic PD based on the
Movement Disorders Society-Unified Parkinson disease rating Scale (MDS) criteria 1°,
with disease severity < 3 based on the modified Hoen and Yahr scale 2° and being
under anti-parkinsonian medication. Patients with evidence of dementia or other
neuropsychiatric disorders were excluded. All patients were tested while in their
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medication-on condition. The participants from the two cohorts gave written informed
consent.

2.2 MRI Acquisition

Data were acquired with a 3T clinical MRI scanner (MAGNETOM Prisma, Siemens
Healthcare, Erlangen, Germany) equipped with a 64-channel receive-only head-neck
RF coil. Structural T1-weighted multi-echo MPRAGE 2! for the PD cohort (TR=2.5s,
TEs=[1.69, 3.55, 5.41, 7.27 ms], Imme-isotropic voxels), standard MPRAGE for the HC
group (TR/TE=2.31s/3.48ms, 1mme-isotropic voxels) and resting-state functional MRI
(rs-fMRI, TR/TE=1s/28ms, 3mme-isotropic voxels, FA=59 degree, MB=6) images were
used to test the effects of the motion-denoising approach on static (sFC) and time-
varying FC (dFC) estimations. Double-echo gradient echo sequence was acquired for
both cohorts to later control con geometric distortions (TR 682ms, TE1/TE2 4.2/7.4ms,
3mm-isotropic voxels).

2.3 MRI Pre-processing

The MRI datasets from the two groups (HC and PD) were pre-processed using three
different workflows (see Figure 1). Common pre-processing steps across the three
workflows were conducted with an FSL-based automated pipeline
(https://github.com/tambalostefano/Inifmri_prep) and included: (1) slice timing and head
motion correction (mc); (2) co-registration of the T1-weighted image to the rs-fMRI
time-series; (3) T1l-weighted image tissue segmentation; (4) rs-fMRI temporal
detrending and median filtering; (5) regression from the rs-fMRI time-series of the 6
head motion parameters, white matter and cerebro-spinal fluid signals (standard
motion _correction, mc); (7) normalization to standard MNI template space; and (8)
spatial smoothing 6 mm FWHM Gaussian kernel size.

Together with these standard pre-processing steps, the three pipelines differed
in the following motion correction approaches: (i) mc (nothing additional to the
standard pre-processing); (i) motion outliers detection and deweighting based on
DVARS estimations (DVARS; Power et al., 2012); (iii) noise removal by means of ICA-
AROMA (AROMA), where motion-related artifacts are detected automatically if the
high-frequency content exceeds 35% of the fMRI time course, Cerebro-spinal fluid
fraction is > 10%, and if it falls behind the decision boundary created for edge fraction
and maximum correlation with realignment parameters 1°.

Additionally, the PD cohort was further pre-processed (iv) using FIX-Classifier
(F1X), previously trained on 17 subjects of the HC dataset 17?2, The definition of a
training set to train the classifier consisted in (1) ICA decomposition of rs-fMRI time
series into n=30 independent components, (2) manual classification of motion-related
components by visual inspection of their spatiotemporal features. The training set was
then used to train the classifier and the accuracy was assessed by a leave-one-out
approach. The FIX classifier was further applied to the PD dataset with a threshold of
20 corresponding to 95.2% (mean TPR) of correctly classified components.
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Figure 1: Schematic representation of the pre-processing pipelines for the two cohorts,
healthy controls (HC) and Parkinson’s disease participants (PD). The pre-processing
pipeline of resting-state fMRI (rs-fMRI) data for HC included three different workflows: (i) mc:
head motion correction (in grey); (ii) DVARS: outliers’ motion deweighting (in light blue); (iii):
AROMA: ICA-AROMA denoising (in light pink). For the PD sample, the same three pipelines
were used together with another denoising technique: FIX (in light green).

2.4 Static functional connectivity

In order to estimate static FC differences across the different head motion pipelines,
the pre-processed resting-state fMRI data was then decomposed using Multivariate
Exploratory Linear Optimized Decomposition into Independent Components 3.0
(MELODIC) into their distinct spatial and temporal components using ICA. As the aim
of the analysis was to detect resting-state FC changes associated with different head
motion pre-processing pipelines, we did not assume consistent temporal responses
within subjects. Therefore, the ICA group analysis was temporarily concatenated (FSL;
Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) in different pre-processing
pipeline runs, respectively combining mc vs DVARS, mc vs AROMA and mc vs FIX
(for the PD only), to then perform a paired nonparametric permutation test in each
group separately. The ICs number was manually set to 20 as low-order model analysis
24, To separate noise components from the underlying resting-state networks, ICs
were tested for their correlation (threshold of r-value >0.2) to labelled networks 2°.
Subsequently, 10 ICs out of 20 were retained with the highest r-value. As a final step
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in the network identification, ICs were visually inspected by expert users to detect
consistency between ICs matching with template networks (high correlation values)
resembling well-known functional networks.

2.5 Dynamic functional connectivity
Concerning the evaluation of head motion effects and denoising approaches on
dynamic FC, the following two frame-wise methods were considered.

2.5.1 Transient-based dynamic FC analysis
We first estimate recurrent brain states by means of innovation-driven co-
activation patterns (iICAPs; Karahanoglu & Van De Ville, 2015)
(https://c4science.ch/source/iCAPs/). This technique enables the detection of
iICAPs in a data-driven way, by looking at transients of the fMRI signal. Indeed,
by computing at the single-subject level the derivative of the previously
regularized and hemodynamic response function (HRF) deconvolved fMRI
signal, the innovation signal is derived, comprehending the original fluctuations
of the BOLD time course ?’. These innovations signals are then clustered
together across subjects, in order to reconstruct the iCAPs, which describe how
brain regions are functionally characterized by similar temporal dynamics 22
The iCAPs framework was applied separately to the two groups (HC and
PD, respectively) for all the types of pre-processing and by means of consensus
clustering. The best-fitting k was chosen for both populations in k=10. As a final
step, spatiotemporal transient-informed regression 2° was used to reconstruct
the time course of each iCAPs. Temporal properties of iCAPs for each group in
each pre-processing type, were extracted by transforming the time courses to
z-scores and thresholding them (|z-score|>1), and total duration of each iCAPs
were retrieved (i.e. duration of the overall ICAP activation represented as
percentage of the scanning time) 3. In order to separate noise components
from the underlying dynamic networks, ICAPs were tested for their correlation
(threshold of r-value > 0.2) to labelled networks 2°

2.5.2 Peak-based dynamic FC analysis

The results obtained by the transient-based dFC analysis, showed large effects
of denoising methods on iICAPs estimation, especially in the PD cohort. We
hypothesized that this may be due to the incorrect assumption of the HRF
model when applied to a BOLD time series with strong frame-wise head motion
effects. To test this, in the PD group we also applied a framewise dFC method
that was not dependent on assumptions of the HRF for the estimation of brain
recurrent states: co-activation patterns (CAPs; Liu & Duyn, 2013)
(https://c4science.ch/source/CAP_Toolbox.git.). In our case, CAPs were
estimated by defining a seed in the posterior cingulate cortex (PCC) region from
the Harvard-Oxford Labeling atlas and extracting co-activations and co-
deactivations patterns with respect to the seed, for limited periods of the time
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course, with temporal clustering aiming at detecting the Default-mode network
(DMN) components. For each group and each pipeline, we extracted and z-
transformed the seed BOLD time course and selected the top 10% time points
with the highest activation. Consensus clustering revealed k=4 as the best-
fitting k and by using k-means clustering spatial states of the four CAPs were
then summarized in spatial z-maps and temporal occurrences (i.e. how many
times a given CAP is expressed throughout the time course).

2.6 Statistical analysis

Within each group of participants, HC and PD, we evaluated separately whether
static and dynamic resting-state networks (RSNs) were affected by the choice of head
motion denoising strategy.

For the sFC analysis, we performed a dual regression to investigate differences
in RSNs related to pre-processing pipeline in each group. To do so, based on our a-
priori hypotheses, a paired t-test, randomized with permutation testing, was performed
on 10 ICs with Bonferroni correction for multiple comparisons (10 ICs tested for 2
contrasts of interest: p-value< 0.0025) to detect network changes due to head motion
controlling pipeline. Comparisons were done voxel-wise taking the standard mc as a
reference pipeline and contrasting all the other pipeline to it (for HC: mc>DVARS,
mc>AROMA; for PD: mc>DVARS, mc>AROMA, mc>FIX) in both contrasts’ directions.

For the transient-based dFC analysis, to understand voxels-wise differences
between pipelines multiple paired t-tests were performed in randomise 3? across iCAPs
of interest. Results are reported with Bonferroni correction considering dynamic
network comparisons and 2 contrast of interest (respectively for HC group: [AROMA
vs mc, AROMA vs DVARS and mc vs DVARS prwe<0.00416] whereas for the PD
group: [AROMA vs mc, AROMA vs DVARS and FIX vs AROMA prwe<0.0125; mc vs
DVARS, FIX vs mc and FIX vs DVARS p<rwe0.00625]; Figure S3). Furthermore,
iICAPs durations between different pipelines were compared using a paired t-test for
the two different runs described above for both groups (HC and PD separately,
respectively contrasting mc-DVARS and mc-AROMA and mc-FIX for the PD only).
The p-values were subsequently corrected for multiple comparisons with false
discovery rate (FDR).

For the peak-based dFC analysis performed in the PD sample, CAP properties
from different pipelines were compared by using a paired t-test for the two different
runs described above (respectively contrasting mc-DVARS and mc-AROMA and mc-
FIX) for occurrences, betweenness centrality, in degree, out degree and resilience and
then correcting for multiple comparisons with FDR.

Finally, to gain insights into the effect of AROMA with respect to mc, a two-
sample unpaired t-test was performed for both groups on the algebraic sum of the
Independent Components labelled as noise and regressed out at single subject level
by AROMA.
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3. Results

3.1 Assessment of head motion

The amount of head-motion (both estimated as mean framewise displacement (FD)
and DVARS) estimated during the resting state fMRI acquisitions was significantly
higher in the PD group relative to the HC group: prp<0.001, t-valuerp=-7.5;
povars<0.001, t-valuepvars=-7.9 (Table 1; Figure S1).

Population DVARS FD (mm)
(meanzSD) (meanzSD)

Healthy controls 3015 0.1+0.03

Parkinson’s disease 457 0.3£1.2

Table 1: Head motion assessment of the sample.

3.2 Static functional connectivity

Despite the fact that the two groups showed significantly different natural head motion
levels, the resting state networks (RSNs) derived from static FC approaches were
rather robust as function to head motion denoising strategies (Figure 2). For the HC
group (N=20): (i) the RSNs derived from mc and DVARS showed no significant
differences; (ii) whereas relative to mc, AROMA shows significant voxel-wise
differences for all RSNs but in brain regions expected to be motion-sensitive in both
groups (Figure S2, Panel A). This can be interpreted as if mc denoising maintains a
higher level of static FC in edge gray matter voxels relative to AROMA denoising. For
what concerns PD (N=20): (i) both the comparisons between mc and DVARS and mc
and AROMA shows significant voxel-wise differences (Figure S2, Panel B).; (ii)
however RSNs derived from mc and FIX showed no significant differences. This can
be interpreted as if FIX denoising maintains a within network static FC, comparable to
the one seen using mc.
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_________________________________________________________________

Figure 2: Head motion correction effects on static intrinsic functional networks in
healthy controls and Parkinson’s disease. Spatial patterns of the independent components
in the healthy control group (Panel A) and Parkinson’s disease (Panel B) were retrieved from
all subjects in all sessions (gray: mc, blue: DVARS; red: AROMA, green: FIX).

3.3 Dynamic functional connectivity

3.3.2 Transient-based analysis

Regarding dynamic FC in the HC group, from a spatial point of view, the three motion
correction pipelines retrieved ICAPs maps of well-known resting-state networks
(Figure 3; N=20; Table S1). However, while some iCAP networks appear to be robust
as function as denoising strategy (auditory, visual, DMN, insula), other iICAPs are
sensitive to denoising strategy (anterior Salience Network, aSN, and the visuospatial
network, VSN), as can be qualitatively seen in Figure 3. In other words, even in a
group of healthy volunteers with low head motion, the choice of head motion denoising
strategy affects the spatial maps of transient-based dynamic networks.
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Figure 3: Head motion correction effects on dynamic intrinsic functional networks in
healthy controls. Spatial patterns of the relevant innovation-driven coactivation patterns
(iCAPs) in the healthy control group were retrieved from all subjects in all sessions (gray: mc,
blue: DVARS; red: AROMA).

These effects of pipeline in the iCAPs of the HC group were further investigated
by doing voxel-wise comparisons of the iCAP dynamic networks (Figure S3; Panel A),
which showed: (i) lower connectivity in dorsal default mode network (dDMN) in
precuneal regions in DVARS while compared to mc (prwe< 0.01); (ii) lower connectivity
in insula network in thalamic regions in AROMA while compared to DVARS (prwe<
0.01); (iii) higher connectivity for the VSN network in both AROMA and DVARS
compared to mc, in regions characteristic of the network itself, as demonstrated by the
poor accuracy of the network detection (prwe< 0.01); (iv) lower connectivity in frontal
regions of the VSN while comparing AROMA to mc (prwe< 0.01). All the reported
results are family-wise errors (FWE)-corrected across voxels and Bonferroni corrected
across different networks and contrast of interests.

When considering the temporal properties of the dynamic networks in the HC
group, we found that the choice of head motion denoising strategy affects the percent
duration of the various networks. We observed differences in engagement of a given
state throughout the time course for the different runs (Figure 4): (i) for Auditory, Visual,
aSN and dDMN total duration is significantly increased in mc compared to DVARS and
compared to AROMA (prpr<0.05), which also show a disruption in the Insula network,
(i) on the other hand, the VSN, which was poorly spatially retrieved with mc, had a
reduced total duration compared to DVARS and AROMA (prpr<0.05).
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Figure 4: Head motion correction effects on the duration of intrinsic dynamic
functional networks in healthy controls. For each iCAPs (spatial maps from mc), horizontal
boxplots show the innovation frames per session in the healthy control group as a percentage
of the total scanning time, highlighting the differences between: (i) mc vs DVARS
denoising(*=p<0.05gpr) in the second column, (ii) mc vs AROMA denoising(*=p<0.05pr) in
the third column.

In the PD cohort, the spatial dynamic FC maps are severely affected by the
motion correction pipeline (Figure 5; Table S1), resulting in a lower number of networks
detected. Spatial distribution of brain networks is affected when choosing AROMA (two
ICAPs detected) compared to mc and DVARS (four iCAPs detected). The FIX pipeline
is the only denoising method enabling the detection of a higher number of consistent
ICAPs compared to mc (five iCAPs detected). Therefore only 5 out of the 10 iCAPs
(displayed in Figure 5), gave the resemblance of well-known resting state networks
whereas the remaining iCAPs were characterized by noisy sparse activation.
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Figure 5. Head motion correction effects on the duration of intrinsic dynamic
functional networks in Parkinson’s disease. Spatial patterns of the relevant innovation-
driven coactivation patterns (iCAPs) in PD group retrieved from all subjects in different
sessions (gray: mc, blue: DVARS; red: AROMA, green: FIX). Conditions in which no iCAPs
were identified are left without maps.
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Voxel-wise comparisons of dynamic networks (Figure S3; Panel B) revealed
that: (i) lower connectivity in the Auditory network was found in cuneal and lateral
regions while comparing FIX to both mc and DVARS ( prwe< 0.01); (ii) lower
connectivity was also found in the Orbitofrontal-hippocampal network in orbitofrontal
regions while comparing AROMA to both mc and DVARS ( prwe< 0.01), whereas
higher connectivity was found within the same network in left temporal regions while
comparing FIX to AROMA (prwe< 0.01). Interestingly none of the detected ICAPs was
significantly spatially different while comparing DVARS to mc (prwe> 0.01). All the
reported results are FWE-corrected across voxels and Bonferroni corrected across
different networks and contrast of interests.

From a temporal perspective, dynamic FC networks in the PD group showed
differences in engagement of a given state throughout the time course for the four
different runs (Figure 6): (i) for Auditory network total duration is increased in mc
compared to DVARS and FIX (prpor<0.05), (ii) on the other hand, the Orbitofrontal-
hippocampal had a reduced total duration in mc compared to DVARS and an
increased total duration compared to AROMA (prpr<0.05).
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Figure 6: Head motion correction effects on the duration of intrinsic dynamic
functional networks in Parkinson’s disease participants. For each iCAPs (spatial maps
from mc denoising), horizontal boxplots show the innovation frames per session in the
Parkinson’s disease group as a percentage of the total scanning time, highlighting the
differences between: (i) mc vs DVARS denoising (*=p<0.05¢pr) in the second column, (ii) mc
vs AROMA denoising (*=p<0.05¢pr) in the third column, (iii) mc vs FIX denoising (*=p<0.05¢pr)
in the fourth column. No AROMA iCAPs were detected for the Auditory and Anterior salience
networks.
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Voxel-wise statistical maps of the noise components removed by AROMA
(Figure S4) show a clear increase in the effect of AROMA denoising in PD compared
to HC (prwe<0.05).

In summary, transient-based dynamic intrinsic functional connectivity analysis
is sensitive to the choice of head motion denoising strategy. In a population of young
healthy subjects with low amounts of head motion, the pipeline choice affects some of
the spatial ICAPs and the percent duration of the various networks. In a population of
PD participants, instead, the effects are rather more drastic, and it becomes
challenging to actually estimate iCAPs.

3.3.2 Peak-based analysis

The transient-based ICAPs results in the PD group showed that it was not possible to
detect the expected dynamic networks present in the HC group, such as the DMN. We
hypothesized that a potential reason for this may be related to the HRF assumption
that is built into the ICAPs method for its temporal deconvolution step. In addition,
functional MRI activity transients are detected using the derivative of this signal, which
can further amplify the effect of noise. We tested this on the DMN network by using
the PCC seed-based CAP technique for dynamic connectivity in the PD group. Using
this, and irrespective of head denoising strategy, we were able to detect comparable
dynamic DMN co-activating networks.

Voxelwise cross-correlation between different DMN CAPs z-scored maps
revealed high anatomical concordance across pipelines in PD cohort (Figure 7) (mc
vs DVARS: r-value=0.99; mc vs AROMA: r-value=0.90; mc vs FIX: r-value=0.97).
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Figure 7: Intrinsic default mode network (DMN) co-activation patterns (CAPS) in
Parkinson’s disease participants across pre-processing pipelines. Surface display of
DMN CAPs in, starting from upper left: mc (gray); DVARS (light blue); AROMA (light pink) and
FIX (light green). Boxplots display respectively occurrences and resilience of the DMN CAP
(p-valuerpr<0.05).

Moreover, by considering the occurrence of the DMN across subjects, FIX
resulted to be the head motion denoising pipeline with higher z-score median and low
z-score standard deviation across voxels compared to other pipelines, showing higher
temporal stability in the detection of the network.

In terms of DMN CAP temporal properties (Table S2), we found no significant
differences when comparing the results derived from using the mc to either of the
AROMA or FIX denoising pipelines. Instead, significant differences were found when
comparing temporal properties from mc relative to DVARS (Table S4): (i) a decrease
in DMN occurrences with mc (i.e. how many times the CAP is expressed across the
time course, p-valuerpr<0.05, t-value=-3.5) and a decreased in DMN resilience with
mc (i.e. a stability index expressing the likelihood to remain in the same CAP
configuration across time, p-valuerpr<0.05, t-value=-3.1).
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4. Discussion

In this study, within two groups of subjects having different head motion levels
(HC and PD), we evaluated how standard mc, DVARS, AROMA and FIX denoising
methods differentially affect intrinsic static and dynamic FC metrics.

We replicated previous results in the field, showing that large head motion and
denoising strategies do affect intrinsic FC estimates ¢33, Until now, such evaluations
have been done mostly applying static FC estimations. In this study, we extend those
results to the consideration of framewise dynamic FC strategies, both transient- and
peak-based. Our main finding is that both of these dynamic FC methods are affected
by both the level of head motion and the retrospective denoising methods used to
mitigate motion effects. Indeed, we demonstrate that even in a group of HC with low
level of head motion, dynamic FC results can be affected by denoising pipelines.
Whereas, if the group shows larger head motion such as in our PD group, dynamic
FC can completely fail to capture transients-based networks. On the other hand, the
use of peak-based dynamic FC can help recovering networks in the PD group, but
these can still show temporal features of dynamic networks that are dependent on
head motion denoising pipeline.

4.1 Head motion correction pipelines: effects on the estimation of intrinsic
functional connectivity metrics

When looking at the effect of head motion correction in the two samples (HC
and PD), it is clear that different denoising strategies will distinctively affect the results
derived downstream.

Previous studies!® suggested that volume censoring (i.e. “scrubbing”) could be
beneficial in the context of dynamic FC, a viable approach that implicitly
underestimates the temporal relationship of timepoints 1. Indeed, in this study, we
demonstrate that volume de-weighting alone (DVARS) is sufficient to alter temporal
properties of iICAPs (e.g., total network duration) and CAPs (e.g., network occurrences
and resilience), thus extending previous reports on sliding-window approaches 343,
Moreover, we showed that in a high-motion population even a subtle scrubbing
approach such as DVARS can cause a decrease in within network static FC.

On the other hand, data-driven decomposition approaches for denoising such
as AROMA and FIX, may be more specific in filtering motion related temporal
dynamics of brain MR signals 3637, For what concerns static FC, we found differences
in within-network FC in both populations while comparing mc with AROMA, with the
PD cohort exhibiting larger changes in key network nodes. Whereas when comparing
mc with FIX in the PD sample, no significant differences were found.

In fact, in the PD group, where the denoising was performed separately for
AROMA and FIX, we found that AROMA removed a lot more “noise” and probably as
a consequence detected fewer dynamic networks. It is possible that AROMA
performed in a suboptimal way on our PD dataset (TR=1s) because the detection and
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elimination of head motion components has been originally developed and validated
under different experimental conditions (TR= 1.96s'® ), which differentially affects the
spectral distribution of noise components. The higher sampling rate of our experiment
most likely allows us to maintain low frequency BOLD components that have less
aliasing from higher frequency components, like from head motion. Therefore, the use
of AROMA may remove some low frequency components that are wrongly interpreted
as noise 3839,

Instead, in the case of FIX, which in PD enables the detection of a higher
number of ICAPs compared to mc by preserving their temporal properties, ICA-
denoising seems to be more effective and not disruptive. In this study, the FIX
classifier, later tested on PD, was trained on manually labelled noisy components
detected by four experts in our HC sample. This enabled the definition of components
resembling “noise”, being it physiological or related to head motion, specific to our
acquisition protocol. Importantly, the acquisition protocol was identical in the training
(HC) and testing (PD) sample.

4.2 Transient-based dynamic connectivity is sensitive to head motion and
head motion denoising pipeline

We showed for the first time that frame-wise dynamic FC is sensitive to both
the level of head motion in the group and the choice of head motion denoising pipeline.

Our results demonstrated how even in the case of small-head motion (FD <0.1
mm) frame-wise techniques, especially iCAPs, are susceptible to different head
motion correction. Indeed, in HC standard head motion correction (mc) was not
sufficient to dynamically detect networks such as the VSN. However, more aggressive
denoising techniques (i.e. AROMA) resulted in changes of temporal properties of
several iICAPs (such as temporal durations) which are closer to zero (i.e. absent) for a
large part of the sample even if characterized by a low motion level, as previously
stated 40, Besides, if we look at populations with inherited large motion levels,
implications are even worse. In the PD sample, iCAPs are spatially disturbed with
simple outliers’ volume de-weighting (DVARS) whereas large parts of networks are
absent for more disruptive denoising such as AROMA. Therefore, it seems that in the
presence of a higher proportion of corrupted functional volumes, two factors may
contribute to the loss of sensitivity to detect dynamic networks. On one hand, the
removal of noisy components from the original signal interferes with the proper
reconstruction of spatial and temporal properties of iCAPs. On the other hand, the
simple regression of volumes from the time-course disables the capability of the
algorithm to detect these fluctuations. On the contrary, applying a denoising pipeline
that is more specific to the sample (i.e. FIX), appears to help preserve the signal
temporal variance and frequency content, thus improving the estimation of the iCAPs
41 by boosting network identifiability.
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4.3 The use of co-activation patterns enables the detection of well-known
functional networks even in high motion populations

We found that the iCAPs algorithm was not able to detect the dynamics of well-
known RSNs, such as the DMN, in samples characterized by large head motion (PD).
Thinking that this may be related to problems with the HRF deconvolution in a noisy
time series, we explored the use of an alternative framewise dynamic method. We
applied the CAPs technique which rather than looking for transient framewise
fluctuations, it attempts to detect peaks in the single frame. We found that by selecting
a precise region of interest, even in the presence of large head motion, the CAPs
framework is capable of detecting DMN co-activation and deactivation over the time
course. However, we showed that the temporal properties of the DMN are still
differentially affected by the choice of denoising pipeline, especially when using
DVARS. This may be partially explained by the fact that CAPs correlations are largely
driven by the spatial nonspecific correlation components of global signals 42. The close
relationship between spatially non-specific CAPs and head motion can be strongly
affected by the denoising pipeline. In fact, we observed that the pipeline affects the
classification of single frame peaks over the time course as neurally relevant or not
CAPs. Indeed, DVARS head motion correction is thought to be also sensitive to global
signal changes in the BOLD content not related to motion °, resulting in considerable
effects on temporal CAPs compared to other denoising techniques.

Moreover, it is also relevant to keep in mind that iCAPs and CAPs, being
framewise dynamic techniques, are largely affected by changes in transient arousal
level of the subjects, which are usually accompanied by head motion peaks 3.

4.4 Limitations

This study has several limitations. We did not aim to directly compare intrinsic
functional activity across the HC and PD groups, which were not age matched.
Instead, the focus was on quantifying how static and dynamic connectivity networks
were affected by head motion denoising pipeline as an independent variable. Future
studies are needed to generalize our results to other age ranges of our groups. Also,
in terms of head motion denoising methods, our goal was not to explore all possible
head motion correction methods but rather to investigate if some of the most used
techniques differentially affect FC representations, especially with dynamic
connectivity approaches. Using the healthy young volunteer’s data as a training set
for FIX denoising of the Parkinson’s group may be suboptimal because of the age
differences across groups. The peak-based dynamic connectivity was limited to the
PD group only and considering only one seed, the posterior cingulate cortex, in order
to evaluate the possibility of detecting the default mode network. The healthy group
was not evaluated with the peak-based dynamic method because the known networks
were retrieved with the transient-based approach. Further, our estimation of TVC
patterns was limited to frame-wise approaches. Further studies are needed to better
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understand the effects of head motion denoising in sliding-window correlation and
other dynamic algorithms 2843,

5. Conclusions

To the best of our knowledge this is the first study comparing how head motion
denoising strategies affects static and dynamic functional intrinsic BOLD connectivity
in two populations with very different natural head motion properties. We found that
static intrinsic FC metrics are mostly robust across motion denoising strategies in both
young healthy controls and Parkinson’s participants. This is consistent with and
supports previous studies 444°. However, dynamic FC metrics were very sensitive to
denoising methods, in both groups but critically in the PD group. Therefore, further
work is needed to better understand: (i) how to retain useful information from a BOLD
time-series in high motion populations, (ii) and how to disentangle subject-specific
dynamic head motion signatures potentially retaining relevant neural information 341,
Ultimately, our study contributes to emphasizing the importance of head motion in the
context of novel dynamic FC studies. To facilitate the comparison and reproducibility
of such studies it remains crucial to report both the head motion properties of the
populations involved and the details of the denoising strategies used “6.
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