

1  
2 **Title: Recurrent evolution of small body size and loss of the sword ornament in Northern**  
3 **Swordtail fish**  
4

5 Gabriel A. Preising<sup>1,2</sup>, Theresa Gunn<sup>1,2</sup>, John J. Baczenas<sup>1</sup>, Alexa Pollock<sup>1</sup>, Daniel L. Powell<sup>1,2</sup>,  
6 Tristram O. Dodge<sup>1,2</sup>, Jose Angel Machin Kairuz<sup>1</sup>, Markita Savage<sup>3</sup>, Yuan Lu<sup>3</sup>, Meredith  
7 Fitschen-Brown<sup>4</sup>, Molly Cummings<sup>5</sup>, Sunishka Thakur<sup>5</sup>, Michael Tobler<sup>6</sup>, Oscar Ríos-Cardenas<sup>7</sup>,  
8 Molly Morris<sup>4</sup>, Molly Schumer<sup>1,2,8</sup>

9  
10 <sup>1</sup>Department of Biology, Stanford University

11 <sup>2</sup>Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C.

12 <sup>3</sup>*Xiphophorus* Genetic Stock Center, Texas State University

13 <sup>4</sup>Department of Biology, Ohio University

14 <sup>5</sup>Integrative Biology, University of Texas at Austin

15 <sup>6</sup>Division of Biology, Kansas State University, Manhattan, Kansas

16 <sup>7</sup>Red de Biología Evolutiva, Instituto de Ecología, A.C.

17 <sup>8</sup>Hanna H. Gray Fellow, Howard Hughes Medical Institute

18  
19

20 **Key words:** Sexual selection, sword ornament, body size, hybridization, *Xiphophorus*

21 *Abstract*

22

23 Across the tree of life, species have repeatedly evolved similar phenotypes. While well-  
24 studied for ecological traits, there is also evidence for convergent evolution of sexually selected  
25 traits. Swordtail fish (*Xiphophorus*) are a classic model system for studying sexual selection, and  
26 female *Xiphophorus* exhibit strong mate preferences for large male body size and a range of  
27 sexually dimorphic ornaments. However, sexually selected traits have been lost multiple times in  
28 the genus. Phylogenetic relationships between species in this group have historically been  
29 controversial, likely as a result of prevalent gene flow, resulting in uncertainty over the number  
30 of losses of ornamentation and large body size. Here, we use whole-genome sequencing  
31 approaches to re-examine phylogenetic relationships within a *Xiphophorus* clade that varies in  
32 the presence and absence of sexually selected traits. Using wild-caught individuals, we determine  
33 the phylogenetic placement of a small, unornamented species, *X. continens*, confirming an  
34 additional loss of ornamentation and large body size in the clade. With these revised  
35 phylogenetic relationships, we analyze evidence for coevolution between body size and other  
36 sexually selected traits using a phylogenetically independent contrasts approach. These results  
37 provide insights into the evolutionary pressures driving the recurrent loss of suites of sexually  
38 selected traits.

39

40 *Introduction*

41  
42 A fundamental puzzle in evolutionary biology is understanding the pressures that can  
43 lead to the recurrent evolution (or loss) of certain traits. Decades of work in evolutionary biology  
44 have studied convergent evolution in response to similar ecological pressures at the phenotypic  
45 (Reed *et al.*, 2011), molecular (Nachman *et al.*, 2003; Hoekstra *et al.*, 2006; Zhen *et al.*, 2012;  
46 Mohammadi *et al.*, 2021), and genomic levels (Lee & Coop, 2019). Research has also  
47 highlighted how convergent evolution to similar ecological pressures can drive phenotypic shifts  
48 in several quantitative traits, resulting in distantly related species with shared suites of traits.  
49 Recent work in this area includes phenotypic shifts associated with pollination (Katzer *et al.*,  
50 2019; Wessinger *et al.*, 2019), the evolution of Batesian mimicry (Kunte, 2009; Kunte *et al.*,  
51 2014; Nixon & Parzer, 2021), adaptation to similar ecological niches (Rennison *et al.*, 2019), or  
52 even to similar social environments (Purcell *et al.*, 2014). Understanding repeated shifts in  
53 phenotype in response to environmental pressures—especially when such shifts involve  
54 concurrent changes in several traits—is a key piece of the puzzle of how organisms adapt to their  
55 environments.

56 One area in which recurrent phenotypic evolution has not been well-studied is in the case  
57 of sexually selected traits. These traits are particularly interesting because they often experience  
58 conflicting selective pressures from sexual selection and natural selection. Theory posits that in  
59 species where males experience stronger sexual selection, large, ornamented males tend to be  
60 preferred by females and have higher fitness as a result of greater mating opportunities (Shuster  
61 & Wade, 2003; Møller, 2021; Rosenthal, 2017). However, the same ornaments that improve  
62 mating success can also reduce the probability of survival, often through an increase in the risk of  
63 predation (Hernandez-Jimenez & Rios-Cardenas, 2012; Okada *et al.*, 2021); although other  
64 mechanisms exist (McKean & Nunney, 2008; McNamara *et al.*, 2013; Moore *et al.*, 2021).  
65 Variation in the relative costs and benefits of ornamentation can lead to a range of reproductive  
66 strategies over evolutionary timescales. For example, in groups of species where sexual selection  
67 is stronger on males, males of some species may evolve costly ornaments and others may lose  
68 ornamentation entirely. Ornamentation is frequently associated with behavioral traits such as  
69 courtship (Mitoyen *et al.*, 2019), and in some taxa, lack of ornamentation is frequently associated  
70 with the use of coercive mating strategies (Ryan & Causey, 1989; Emlen, 1997; Taborsky, 1998;  
71 Abbott *et al.*, 2019). These different mating strategies have evolved repeatedly (Zimmerer &  
72 Kallman, 1989; Gross, 1996; Neff, 2001; Corl *et al.*, 2010), and often involve coordinated  
73 changes in suites of traits.

74 *Xiphophorus* are a classic model of sexual selection and an ideal system with which to  
75 study how suites of sexually selected traits evolve. Commonly referred to as swordtails, males in  
76 many species develop a long extension on their caudal fin referred to as the “sword” ornament  
77 (Darwin, 1871). The sword ornament is a composite trait: the fin extension is paired with one or  
78 two black stripes under independent genetic control (Powell *et al.*, 2021), and in some species  
79 the sword itself is colorful (Kallman & Bao, 1987). The sword ornament is attractive to females,  
80 especially in combination with courtship displays (Rosenthal *et al.*, 2001; Basolo & Trainor,  
81 2002). Despite this, there have been several losses of the sword within the genus (Fig. 1). In

82 some cases, these losses are associated with changes in mating behavior (Ryan & Causey, 1989;  
83 Morris *et al.*, 2005), suggesting possible shifts in reproductive strategy.

84 The sword is not the only trait that is attractive to *Xiphophorus* females, and by  
85 examining coordinated evolution of other sexually selected traits, we can begin to disentangle  
86 how suites of sexually selected traits evolve. In *Xiphophorus* species tested to date (and in many  
87 other related species), females prefer to mate with larger bodied males [e.g. (Ryan & Wagner,  
88 1987; Rosenthal & Evans, 1998; Cummings & Mollaghan, 2006; MacLaren & Rowland, 2006;  
89 Wong *et al.*, 2011)]. Male *Xiphophorus* vary up to 3-fold in body size across species and some  
90 exhibit stable polymorphisms in body size within-species (Kallman, 1989; Ryan & Causey,  
91 1989; Lampert *et al.*, 2010). These stable male polymorphisms are known as male “morphs.” In  
92 both *X. multilineatus* and *X. nigrensis*, the larger morphs exhibit a suite of sexually selected  
93 traits, including the sword ornament, a deeper body shape, varied pigmentation patterns, and are  
94 more likely to exhibit courtship behaviors (Ryan & Causey, 1989; Zimmerer & Kallman, 1989;  
95 Liotta *et al.*, 2019, 2020). Smaller morphs exhibit muted versions or the complete absence of  
96 these sexually selected traits and are more likely to engage in coercive mating tactics (often  
97 referred to as “sneaker” males). Similarly, in multiple species where males are fixed for  
98 especially small body size, there appears to have been concurrent loss or reduction of other  
99 sexually selected traits (Morris *et al.*, 2005), but this hypothesis has not been systematically  
100 tested.

101 To formally test for convergent evolution of different sexually selected traits, we require  
102 an accurate phylogeny. The phylogeny of *Xiphophorus* has been the subject of frequent revision  
103 over the past several decades, and we revisit the phylogeny here focusing on species whose  
104 phylogenetic relationships may not be accurately resolved. Two species within one clade, the  
105 “Northern” swordtail clade, *X. pygmaeus* and *X. continens*, are the smallest and least ornamented  
106 species (Fig. 1). Two previous studies using whole-genome data placed these species as sister  
107 taxa (Fig. 1B; Cui *et al.*, 2013; Jones *et al.*, 2013). Earlier studies that used a variety of  
108 approaches including morphological traits, mitochondrial markers, and allozymes placed *X.*  
109 *continens* as the sister species of *X. montezumae* (Fig. 1A; Rauchenberger *et al.*, 1990; Meyer *et*  
110 *al.*, 1994; Morris *et al.*, 2001; Kang *et al.*, 2013). These findings were striking because *X.*  
111 *montezumae* is one of the most dramatically ornamented swordtail species (Fig. 1). The  
112 phylogenies of Cui *et al.* and Jones *et al.* (2013) directly contradicted this finding, including in  
113 analyses of mitochondrial markers, and the authors noted the discrepancy as a potential source of  
114 concern in the placement of *X. continens* (Cui *et al.*, 2013). Interpretation of this result has been  
115 complicated by the fact that most studies have used long-maintained lab-stocks for *X. continens*  
116 (Table S1). While lab-stocks maintained by the *Xiphophorus* Genetic Stock Center and in  
117 individual research labs have been an invaluable resource for researchers for over 50 years,  
118 interfertility between nearly all species and high phenotypic similarity in some pairs of species  
119 raises challenges for maintaining long-term genetic resources.

120 In this study, we generate a phylogeny of *X. continens* and its relatives in the Northern  
121 swordtail clade, relying largely on whole-genome sequencing of wild-caught specimens. We find  
122 that *X. continens* is the sister species of the highly ornamented species *X. montezumae*, indicating  
123 a dramatic shift in reproductive strategy since the two species diverged (Fig. 1C). With the new

124 phylogeny, we use phylogenetically independent contrasts to test hypotheses about the recurrent  
125 loss of suites of sexually selected traits across the genus.  
126

127 **Methods**

128

129 *Sampling and terminology*

130 Throughout the manuscript, we refer to several different recognized clades of  
131 *Xiphophorus*, outlined in Figure 1. These include the Southern swordtail, Northern swordtail, and  
132 platyfish clades, which are the three major evolutionary lineages within *Xiphophorus* (Fig. 1).  
133 We also refer to the “pygmy” swordtail clade, which includes *X. pygmaeus* and its close relatives  
134 (Fig. 1).

135 Samples included in this phylogenetic analysis were a combination of previously  
136 published data from wild-caught Northern swordtail individuals and data generated for this  
137 project. The only species from which a wild caught sample was not available was the species *X.*  
138 *nigrensis* (see Supplementary Information 1; Fig. S1-S3). For this species we used a sample from  
139 the Brackenridge Field Laboratory at University of Texas at Austin where *X. nigrensis*  
140 individuals have been maintained in a colony derived from a wild-caught population since 2016.  
141 Sampling localities for the other specimens and data sources can be found in Table 1. All  
142 sequenced individuals were males.

143

144 *Whole genome resequencing*

145 For this project, we generated data for four species where whole-genome data was not  
146 already available: *X. continens*, *X. pygmaeus*, *X. multilineatus*, and *X. nigrensis*, using a  
147 shearing-based library preparation protocol. DNA was extracted from fin clips using the  
148 Agencourt DNAdvance bead-based extraction protocol. The extraction method followed the  
149 manufacturer’s recommendations except that half-reactions were used. DNA was quantified  
150 using a Qubit fluorometer. The library preparation protocol used 500 ng – 1 ug of genomic DNA  
151 and followed the protocol developed by Quail *et al.* for Illumina library preparation (Quail *et al.*,  
152 2009). Genomic DNA was sheared to approximately 400 bp using a QSonica sonicator. Sheared  
153 DNA underwent end-repair via a 30-minute incubation at room temperature with dNTPs, T4  
154 DNA polymerase, Klenow DNA polymerase and T4 PNK. Fragments were A-tailed with  
155 Klenow exonuclease and dATP via a 30-minute incubation at 37 °C, and adapters were ligated  
156 following this step. Purification was performed between each reaction step with a Qiagen  
157 QIAquick PCR purification kit. Unique barcodes were added to the libraries using indexed  
158 primers in a final PCR reaction using the Phusion PCR kit, with 12 cycles of amplification. This  
159 reaction was purified using 18% SPRI beads and resulting libraries were run on an Agilent 4200  
160 Tapestation and quantified using a Qubit fluorometer. Libraries were sequenced on an Illumina  
161 HiSeq 4000 at Admera Health Services, South Plainfield, NJ. Raw sequence data has been  
162 deposited on the NCBI Sequence Read Archive (SRAXXXXX).

163

164 *Phenotyping*

165 We were interested in generating a dataset where we could compare the evolution of  
166 sexually selected traits across *Xiphophorus*. Ideally, we would have access to photos of a number  
167 of individuals from wild populations. However, many species are only available as lab strains at  
168 the *Xiphophorus* genetic stock center, complicating interpretation of phenotypic variation within  
169 species. As a result, for our main analysis investigating coevolution between body size and male  
170 ornamentation we obtained photographs suitable for morphometric analysis from a single male  
171 and single female from each species and manually collected morphometric measurements in  
172 ImageJ 1.53k (Schneider *et al.*, 2012) from each of them. For *X. multilineatus* and *X. nigrensis*,

173 species which have large and small male morphs (Kallman, 1989), we collected data for one  
174 male of each morph. While some previous studies had suggested that other species might have  
175 more than one body size morph (Borowsky, 1987), we do not find clear support for this  
176 hypothesis in our analyses (see Supplementary Information 5). For each individual we measured  
177 standard length, sword length, dorsal fin length and height, peduncle depth, body depth, number  
178 of vertical bars, length and width of the lower and upper melanocyte pigmentation on the sword,  
179 peduncle pigmentation, as well as several binary traits (presence or absence of melanocyte  
180 pigmentation features, body color and sword color).

181 We were separately interested in quantifying phenotypic similarity between species that  
182 had similar ornamentation phenotypes but were distantly related based on our phylogenetic  
183 analysis (see Results). As a result, we generated an additional dataset for evaluating male  
184 phenotypic variation in *X. continens* and its relatives, as well as in *X. pygmaeus* and its relatives.  
185 For most of these species we were able to obtain morphometric photos of multiple wild-caught  
186 males (with the exception of *X. montezumae*, whose photos were provided by the *Xiphophorus*  
187 Genetic Stock Center). We measured the same phenotypes described above for a larger sample  
188 of *X. pygmaeus* (n = 11), *X. continens* (n = 6), *X. multilineatus* (n = 14; 7 per morph), *X.*  
189 *nigrensis* (n = 14; 7 per morph), and *X. montezumae* (n = 6).

190 *Xiphophorus* and related species have a reproductive strategy of internal fertilization and  
191 live birth. The gonopodium is a specialized male organ that is modified from the anal fin and is  
192 used to deposit sperm during internal fertilization. In addition to phenotypic measurements from  
193 pictures, we supplemented our dataset with measurements from the literature for gonopodial  
194 characteristics (Table S2; Jones *et al.*, 2016; Supplementary Information 5). Several of these  
195 measurements were unavailable from the literature for the outgroup species (*Pseudoxiphophorus*  
196 *jonesii*). We also collected measurements from the literature, where available, on average male  
197 body size within *Xiphophorus* (Supplementary Information 5).

198 Sexual dimorphism is a frequently used proxy for the strength of sexual selection  
199 (Culumber & Tobler, 2017). To quantify sexual dimorphism, for each trait we took the  
200 difference between the male trait value and the female trait value in that species (following  
201 Culumber & Tobler, 2017). We normalized our measurements by standard length for traits that  
202 scale with body size (e.g. sword length, dorsal fin height). For example, in *X. malinche* the sword  
203 length divided by the body length was 0.13 in the focal male and 0 in the focal female, so the  
204 value for that trait for the dimorphism analysis in *X. malinche* was 0.13. We performed principal  
205 component analysis on a matrix of these male-female differences for all *Xiphophorus* species and  
206 an outgroup (*Pseudoxiphophorus jonesii*).

#### 207

#### 208 *Variant calling and construction of alignments*

209 To generate alignments for phylogenetic analysis, we first performed mapping of  
210 Illumina reads and variant calling. We mapped reads for each individual to the *X. birchmanni*  
211 reference genome (Powell *et al.*, 2020a) using *bwa* (Li & Durbin, 2009). We identified and  
212 removed likely PCR duplicates using the program PicardTools (McKenna *et al.*, 2010). We  
213 performed indel realignments and variant calling using GATK (version 3.4; McKenna *et al.*,  
214 2010) in the GVCF HaplotypeCaller mode. Past work has used mendelian errors in pedigrees to  
215 explore appropriate hard-call filtering parameters in *Xiphophorus* (Schumer *et al.*, 2018). We  
216 used the thresholds identified by this work to filter variants based on a suite of summary statistics  
217 related to variant and invariant quality (DP, QD, MQ, FS, SOR, ReadPosRankSum, and  
218 MQRankSum; see Schumer *et al.*, 2018). Based on the results of this previous analysis, we also

219 masked all variants within 5 bp of an indel and all sites that exceeded 2X or were less than 0.5X  
220 the genome-wide background in coverage.

221 With this information in hand, we next turned to generating alignments for all northern  
222 swordtail species and outgroup species. Since all individuals were mapped to *X. birchmanni*, we  
223 generated pseudoreferences based on the *X. birchmanni* reference genome. Briefly, for each  
224 species, we used the *X. birchmanni* genome sequence and updated sites that were identified as  
225 variants and passed our quality thresholds, and masked all variant sites that did not pass our  
226 quality thresholds. We also masked invariant sites that failed quality thresholds that applied to  
227 both invariant and variant sites (for example, depth or proximity to INDEL filters). This resulted  
228 in pseudoreference sequences for 14 species (all Northern swordtails, two Southern swordtail  
229 species, and three platyfish species), aligned in the same coordinate space. Scripts and step-by-  
230 step examples for this workflow can be found online (scripts:  
231 [https://github.com/schumerlab/Lab\\_shared\\_scripts](https://github.com/schumerlab/Lab_shared_scripts); workflow:  
232 [https://openwetware.org/wiki/Schumer\\_lab:\\_Commonly\\_used\\_workflows](https://openwetware.org/wiki/Schumer_lab:_Commonly_used_workflows)).  
233

#### 234 *Phylogenetic reconstruction with RAxML*

235 For phylogenetic analysis, we extracted the twenty-four *Xiphophorus* chromosomes. We  
236 found that it was computationally intractable to analyze alignments with all sites included, so we  
237 took a two-pronged approach. For the analyses presented in the main text, we identified sites that  
238 were not monomorphic across the 14 focal species. We used these alignments as input into  
239 RAxML to build a total evidence phylogeny (Stamatakis, 2006). To construct the phylogeny, we  
240 conducted a rapid bootstrap analysis and searched for the best-scoring maximum-likelihood tree  
241 using a generalized time-reversible model (GTR+GAMMA) with 100 alternative runs on distinct  
242 starting trees. To perform analyses including invariant sites, we randomly sampled 1500  
243 alignments 100 kb in length from the full dataset, representing approximately 20% of the  
244 genome. We analyzed this sub-sampled dataset as described above. These results mirror our  
245 results based only on variant sites (see Fig. S4). We separately analyzed an alignment of the  
246 mitochondrial genome (Fig. S5). We visualized results using the R packages ape, tidyverse,  
247 ggtree and associated packages (Yu *et al.*, 2018; Paradis & Schliep, 2019; Wickham *et al.*, 2019;  
248 Wang *et al.*, 2020).  
249

#### 250 *Generating a merged phylogeny and performing phylogenetically independent contrasts*

251 Using our newly developed phylogeny for Northern swordtails and previous phylogenetic  
252 results from our group for other *Xiphophorus* species (Cui *et al.*, 2013), we generated a merged  
253 newick tree describing the inferred phylogenetic relationships between all *Xiphophorus* species,  
254 with the exception of *X. monticolus* and *X. kallmani*. Because our original phylogeny relied on  
255 coding sequences from RNAseq data (Cui *et al.*, 2013) and our revised phylogeny for Northern  
256 swordtails is based on whole-genome sequences, we rescaled branch lengths to account for this  
257 (Supplementary Information 2). For the two species with multiple male morphs, *X. multilineatus*  
258 and *X. nigrensis*, we tried several different approaches and ultimately set the branch lengths  
259 within species to the length of the branch leading to the most recent common ancestor of *X.*  
260 *multilineatus* and *X. nigrensis* (Supplementary Information 2). This decision reduced possible  
261 issues identified in diagnostic tests that have been shown to lead to elevated false positive rates  
262 in phylogenetic analyses in previous work (Garland *et al.*, 1992; Díaz-Uriarte & Garland, 1996);  
263 see Supplementary Information 2 for an in-depth discussion. We also used simulations to verify

264 that the expected false positive rate in downstream phylogenetic analyses was not likely to be  
265 inflated (Supplementary Information 2).

266 Given the new placement of *X. continens* in the phylogeny (see Results), we were  
267 particularly interested in examining correlations between body size and other sexually selected  
268 traits. We leveraged our phylogeny and phenotypic data for each species to perform  
269 phylogenetically independent contrasts analysis for traits of interest (Felsenstein, 1985). Briefly,  
270 because a group of species shares a specific evolutionary history and hierarchy of relatedness, in  
271 some cases phenotypes are expected to be correlated simply as a result of their shared  
272 evolutionary histories. This non-independence generates statistical problems when testing for  
273 coevolution between traits of interest across species that vary in their relatedness to one another  
274 (Felsenstein, 1985). Phylogenetically independent contrasts methods attempt to correct for this  
275 non-independence using phylogenetic relationships between species and information about their  
276 divergence inferred from branch lengths (Garland *et al.*, 1992).

277 For continuous traits, we used the R package *ape* to perform phylogenetically  
278 independent contrasts analysis. Before running these analyses, we first used the observed  
279 phylogenetic relationships between species, inferred branch lengths, and values for traits of  
280 interest, to perform diagnostic tests as proposed by Garland and colleagues (Garland *et al.*,  
281 1992); see Supplementary Information 3. We used the *ape* function *pic* to correct for  
282 phylogenetic signal in the traits of interest, including body size, sword index (calculated as sword  
283 length divided by standard length), dorsal fin index, sword edge width, number of vertical bars,  
284 and Principal Component 1 of sexual dimorphism (see Fig. 2). As recommended by theoretical  
285 work, we performed a regression through the origin to test for a correlation between the  
286 phylogenetically corrected traits of interest (Garland *et al.*, 1992). We also used the R package  
287 *phytools* (Revell, 2012) to infer likely ancestral states for male body size, which was of particular  
288 interest for downstream analyses, using the *fastAnc* function.

289 We were interested in the relationships between body size and a subset of binary sexually  
290 dimorphic traits. In addition, certain traits in our dataset such as sword length take on continuous  
291 values but have a bimodal distribution (Fig. S6; see Supplementary Information 3). We analyzed  
292 several binary traits including the presence of the sword, the presence of the upper and lower  
293 sword edge, and a gonopodial trait (classification of ray 3 spine angle), using the method  
294 proposed by Ives and Garland (Ives & Garland, 2010) implemented in the R package *phylolm*  
295 (method="logistic\_IG10"; Tung Ho & Ané, 2014).

#### 296 *Evaluation of demographic history, divergence and polymorphism in newly sequenced species*

297 Several samples sequenced for this project represent wild-caught samples from species  
298 for which whole genome resequencing data has not been previously collected. For these species  
299 we calculated population genetic summary statistics including pairwise genetic divergence ( $D_{xy}$ )  
300 between each species and their closest relative in our dataset and the  $\theta_\pi$  estimate of genetic  
301 diversity within species.

302 We analyzed whole genome sequences using the pairwise sequentially Markovian  
303 coalescent (PSMC) approach (Li & Durbin, 2011) to infer changes in historical effective  
304 population size in *X. pygmaeus*, *X. continens*, and *X. multilineatus*. We excluded *X. nigrensis*  
305 from both this and the above analysis since wild caught samples were unavailable. In performing  
306 PSMC analysis, we assumed a generation time of 2 per year, a mutation rate of  $3.5 \times 10^{-9}$  per  
307 basepair per generation and a ratio of  $\rho/\theta$  of 2, as we have for previous analyses of *Xiphophorus*  
308 demographic history (Schumer *et al.*, 2018). Each species was analyzed separately. We

310 performed bootstrap resampling of the data in bin sizes of 1 Mb to determine where we lose  
311 resolution to infer demographic history for each species in the recent and distant past.  
312

### 313 *Analyses of gene flow*

314 With newly available whole genome data, we were interested in re-examining patterns of  
315 gene flow within the Northern swordtail clade. Because we had aligned reads to a Northern  
316 swordtail assembly (*X. birchmanni*) for phylogenetic analysis, we were concerned about issues  
317 arising from reference bias that might generate similar signals to gene flow. To avoid this, we  
318 generated a new .vcf file using the *X. maculatus* genome (Schartl *et al.*, 2013), which is an  
319 outgroup to all Northern swordtail species (Cui *et al.*, 2013).

320 To do so, we indexed the *X. maculatus* genome using *samtools faidx* and *bwa index*. We  
321 then generated bam files using the same workflow and focal species as described above. Next,  
322 we performed variant calling for all of the *X. maculatus*-aligned bam files using *bcftools mpileup*  
323 to generate a joint .vcf file. We used vcftools to remove indels and sites with a minor allele  
324 frequency <5% (Danecek *et al.*, 2011). The resulting .vcf was analyzed with the program *Dsuite*  
325 using the *Dtrios* and *Fbranch* commands to calculate Patterson's D-statistic and F4 ratio  
326 statistics for each trio of Northern swordtail species (Malinsky *et al.*, 2021), and distinguish  
327 between different branches as possible sources of phylogenetic discordance. For this analysis, we  
328 used *X. variatus* as an outgroup and provided *Dsuite* with the inferred genome-wide tree for  
329 Northern swordtails. We used a p-value threshold of  $6 \times 10^{-5}$  for the *Fbranch* analysis,  
330 corresponding to a Z-score of ~4.

331 *Dsuite* analysis indicated strong evidence of gene flow between *X. continens* and an  
332 ornamented species, *X. nezahualcoyotl* (see Results). We were interested in polarizing the  
333 direction of this gene flow. However, existing approaches like *DFOIL* (Pease & Hahn, 2015) could  
334 not be applied to this admixture event because of the branching order of the phylogeny. Instead,  
335 we took a different approach. We used PhyloNetHMM (Liu *et al.*, 2014) to identify ancestry  
336 tracts that may have introgressed between *X. continens* and *X. nezahualcoyotl*, and examined  
337 patterns of divergence between pairs of species within these ancestry tracts to see if they were  
338 informative about the direction of gene flow. See Supplementary Information 4 for more details  
339 on this approach.

340 **Results**

341

342 *An updated phylogeny for Northern swordtails*

343 The total evidence phylogeny generated with RAxML had 100% bootstrap support at all  
344 nodes corresponding to species-level groups (Fig. 1C, Fig. S4; for mitochondrial results see Fig.  
345 S5). Most notably, our results using whole-genome sequencing data from a wild-caught *X.*  
346 *continens* sample place it sister to *X. montezumae* in the phylogeny. While this finding conflicts  
347 with previous results that used lab stocks (Cui *et al.*, 2013; Jones *et al.*, 2013), the phylogenetic  
348 placement of *X. continens* is concordant with older marker-based and morphological  
349 phylogenies, some of which used wild-caught *X. continens* samples (Table S1; Meyer *et al.*,  
350 1994; Morris *et al.*, 2005; Kang *et al.* 2013). This indicates that the reproductive strategy of  
351 having unornamented, small males and using only coercive mating tactics (Ryan & Causey,  
352 1989; Morris *et al.*, 2005) evolved at least twice among Northern swordtails (Fig. 1C).

353

354 *Analysis of sexual dimorphism and traits correlated with body size in Xiphophorus*

355 In contrast to previous findings (Cui *et al.*, 2013; Jones *et al.*, 2013), our revised  
356 phylogeny indicates that the evolution of both small body size and the loss of other sexually  
357 selected ornaments including the sword, vertical bars, and several pigmentation phenotypes, has  
358 occurred multiple times in *Xiphophorus*. With our revised phylogeny we infer three losses of the  
359 sword in Northern swordtails alone, and two instances of the evolution of extremely small body  
360 size (assuming that small body size arose once in the common ancestor of the pygmy swordtail  
361 clade and once in the lineage leading to *X. continens*; Fig. 1C). Ancestral state reconstruction  
362 analysis suggests that the ancestor of Northern swordtails was likely moderate in size, although  
363 confidence intervals for these estimates are large (Fig. S7).

364 Despite the phylogenetic placement of *X. continens* as sister species to *X. montezumae*,  
365 PCA analysis of phenotypic traits in *X. continens* and other swordtail species do not reflect this  
366 close relationship (Fig. 2A-2B). Instead, males of *X. continens* are grouped in PCA space with  
367 the small bodied males of other species, including *X. pygmaeus* and the small morphs of *X.*  
368 *nigrensis* and *X. multilineatus* (Fig. 2B).

369 To more formally explore which traits coevolve with body size in the revised  
370 *Xiphophorus* phylogeny, we used a phylogenetically independent contrasts approach  
371 (Felsenstein, 1985). We tested for correlations between phylogenetically corrected measures of  
372 body size and a number of traits that naively appear to correlate with body size in swordtails (i.e.  
373 without phylogenetic correction). Results for all traits analyzed are reported in Tables S3 & S4.  
374 We report p-values based on a Bonferroni correction for the number of tests in Tables S3 & S4  
375 but discuss all results with uncorrected p-values <0.05 in the main text.

376 We first evaluated continuous traits. We found a strong relationship between body size  
377 and the number of vertical bars (Fig. 3A) and body size and dorsal fin index (Fig. 3C), traits that  
378 play a dual role in both mate choice and male-male competition. We also found a relationship  
379 between body size and the degree of sexual dimorphism within species based on PC1 of sexual  
380 dimorphism (Fig. 2A, Fig. 3B). We found a weaker but significant relationship between the  
381 sword length index and body size (Table S3). We also detected a significant relationship between  
382 sword edge pigmentation and body size (Table S3). Past research has highlighted the importance  
383 of the sword edge pigmentation in visual detection of the sword by females (Basolo & Trainor,  
384 2002). Other continuous traits showed marginal or no significant associations with body size  
385 after phylogenetic correction (Table S3).

386 Analyzing the relationship between body size and binary traits, we observed a significant  
387 correlation between male size and the presence or absence of the sword (Log Likelihood ratio = -  
388 11,  $p=0.0067$ ; Fig. 3D), but not the presence or absence of the lower (Log Likelihood ratio= -13,  
389  $p=0.082$ ) or upper sword edge (Likelihood ratio=-13.4,  $p=0.052$ ). Using a different threshold for  
390 sword presence or absence had some impact on the significance of our results but did not change  
391 qualitative patterns (Fig. S6; Supplementary Information 3).

392 We also analyzed gonopodial traits collected from the literature. While the function of  
393 variation in these traits is poorly understood, given their potential connection to mating strategy,  
394 we analyzed available data from the literature (Jones *et al.*, 2016). We detected a significant  
395 relationship between the spine angle of ray 3 and body size (Table S4; Jones *et al.*, 2016).

396 We repeated all analyses using body size measurements collected from the literature for a  
397 larger number of individuals and found that our results were generally concordant  
398 (Supplementary Information 5). We also performed analyses excluding either the small or large  
399 morphs of *X. multilineatus* and *X. nigrensis*. These results are reported in Supplementary  
400 Information 2 and Table S5.

401  
402 *Population history of newly sequenced species*  
403 For our phylogenetic analysis we collected whole-genome resequencing data from wild-  
404 caught individuals of three species that had not been previously sequenced (apart from with  
405 RNAseq and reduced representation approaches; Cui *et al.*, 2013; Jones *et al.*, 2013): *X.*  
406 *pygmaeus*, *X. multilineatus*, and *X. continens*. Given the lack of previous data for these species,  
407 we report basic summary statistics on genetic diversity and divergence from their close relatives  
408 here and discuss inferences about their population history in more detail in the supplement  
409 (Supplementary Information 3; Fig. S8).

410 Like several other previously sequenced Northern swordtails, *X. continens* has very low  
411 genetic diversity, with a genome-wide  $\theta_\pi$  estimate of 0.033% polymorphisms per basepair. This  
412 mirrors the low levels of genetic diversity previously reported in its closest relative, *X.*  
413 *montezumae* ( $\theta_\pi = 0.03\%$ ; Schumer *et al.*, 2016). Assuming that this level of diversity reflects the  
414 ancestral  $\theta$  for the *X. montezumae* and *X. continens* clade (i.e.  $\theta_A \sim 0.03\%$ ), the estimated  
415 divergence time between *X. continens* and *X. montezumae* is 5.75 in units of  $4Ne$  generations  
416 ( $D_{xy} = 0.38\%$  per basepair). While *X. continens* and *X. montezumae* have similar levels of  
417 present-day nucleotide diversity, PSMC analysis suggests that *X. montezumae* had experienced a  
418 severe and sustained bottleneck over the last ~10,000 generations (Fig. 4).

419 *X. multilineatus* and *X. pygmaeus* have substantially higher levels of genetic diversity ( $\theta_\pi$   
420 of 0.071% and 0.073% respectively). Assuming that the ancestral  $\theta$  was similar to present day  $\theta$   
421 in this clade ( $\theta_A \sim 0.07\%$ ), the estimated divergence time between *X. multilineatus* and *X.*  
422 *pygmaeus* is approximately 1.9 in units of  $4Ne$  generations ( $D_{xy} = 0.33\%$  per basepair). The  
423 periods of inferred population growth and contraction in these two species differ (Fig. S8) and  
424 are discussed in more detail in Supplementary Information 3.

425  
426 *History of admixture*  
427 The phylogenetic placement of *X. continens* indicates that this species either  
428 independently lost large male size, courtship, and male ornamentation traits, or that loci  
429 responsible for the loss of these traits spread from other species. To investigate this possibility,  
430 we used the program Dsuite to scan for evidence of gene flow across Northern swordtails  
431 (Malinsky *et al.*, 2021). We calculated D-statistics for each triplet of species and used the version

432 of the F4-ratio test implemented through the *Fbranch* command in Dsuite to explore admixture  
433 proportions and likely sources of gene flow within the Northern swordtail clade. These analyses  
434 confirmed several previously reported patterns of gene flow between species (Fig. 4;  
435 Supplementary Information 4; Cui *et al.*, 2013; Schumer *et al.*, 2016).

436 Surprisingly, we found very little signal of gene flow between *X. continens* and other  
437 Northern swordtails with small male body size (Fig. 4A; *X. pygmaeus*, *X. multilineatus*, and *X.*  
438 *nigrensis*) and instead found substantial evidence of gene flow with *X. nezahualcoyotl*. While  
439 this genetic exchange makes sense given their geographic proximity (Fig. 4C), *X. nezahualcoyotl*  
440 is an ornamented species with larger body size and lacks multiple male morphs (Fig. 2C).  
441 Although our results are not suggestive of gene flow driving the transfer of alleles related to  
442 smaller body size and a lack of ornamentation, we note that these genome-wide test do not  
443 completely rule out the hypothesis. We detect low levels of gene flow between *X. continens* and  
444 species with small male morphs (Fig. 4A). Future studies could test this hypothesis more  
445 rigorously by constructing local phylogenies around the genes that underlie traits of interest once  
446 their genetic architecture is better understood.

447 Our analyses of putatively introgressed ancestry tracts suggested that the direction of  
448 gene flow was likely from *X. continens* into *X. nezahualcoyotl*. This pattern is notable because  
449 we previously found that *X. nezahualcoyotl* has substantial genetic contribution from *X. cortezi*  
450 as well (Schumer *et al.*, 2016), implicating complex admixture in the evolutionary history of *X.*  
451 *nezahualcoyotl*. We discuss this result in more detail in Supplementary Information 4. More  
452 generally, *X. cortezi* is inferred to have extensive gene flow with many other species in the  
453 Northern swordtail clade, consistent with its widespread distribution (Fig. 4C). Given the  
454 complexity of gene flow involving *X. cortezi*, Fig. 4 shows the results without *X. cortezi* but we  
455 present the results of admixture involving this species in Fig. S9 and in Supplementary  
456 Information 4.

457  
458  
459  
460  
461

462 **Discussion**

463

464 In our revised phylogeny of Northern swordtails, we find that *X. continens*, a small,  
465 unornamented species, is the sister lineage of *X. montezumae*, among the most ornamented  
466 species in the genus (Fig. 1). This means that *X. continens* has evolved small body size since it  
467 diverged from its common ancestor with *X. montezumae* (an estimated 450 thousand generations  
468 ago). The evolution of small body size in *X. continens* is accompanied by the loss of all other  
469 ornaments found in its close relatives, including the iconic sword ornament. The loss of the  
470 sword ornament in the *X. continens* lineage represents the fourth time across the entire  
471 *Xiphophorus* phylogeny that the sword and corresponding phenotypes (e.g. sword edge  
472 pigmentation) have been lost, and the third time this has occurred within the Northern swordtail  
473 clade. Using a phylogenetically independent contrasts approach, we infer that the patterns found  
474 in *X. continens* are generalizable across *Xiphophorus*: the evolution of smaller body size  
475 coincides with the loss or reduction of suites of other sexually selected traits. In addition to the  
476 loss of the sword and sword pigmentation, we find that the evolution of smaller body size  
477 coincides with a reduction in vertical bars, dorsal fin size, changes in gonopodial morphology,  
478 and a reduction in overall levels of sexual dimorphism (Table S3-S4).

479 Our whole-genome dataset allows us to address certain hypotheses about the genetic  
480 mechanisms underlying the recurrent evolution of small, unornamented males in *Xiphophorus*.  
481 Introgression has been shown to underlie patterns of recurrent phenotypic evolution in other  
482 species groups (Heliconius Genome, 2012; Jones *et al.*, 2018; Oziolor *et al.*, 2019), and past  
483 work has underscored the frequency of hybridization in *Xiphophorus* (Cui *et al.*, 2013). We  
484 reexamined patterns of gene flow in Northern swordtails using our whole-genome dataset, and  
485 recapitulate several patterns of genetic exchange found by previous studies (Cui *et al.*, 2013;  
486 Schumer *et al.*, 2016). We see little evidence of genetic exchange between pairs of  
487 unornamented species such as *X. pygmaeus* and *X. continens*. This is despite the fact that *X.*  
488 *continens* and *X. pygmaeus* are strikingly similar at the phenotypic level (Fig. 2)—so similar as  
489 to have caused species misidentification in lab strains. Indeed, the only species inferred to have  
490 high levels of gene flow with *X. continens* is *X. nezahualcoyotl*, whose range is adjacent to that  
491 of *X. continens* (Fig. 4). This suggests that gene flow does not underlie recurrent loss of  
492 ornamentation in Northern swordtails, although future work should test this hypothesis at  
493 individual loci underlying particular traits (e.g. those associated with male body size; see  
494 Lampert *et al.*, 2010).

495 The results of our demographic analysis are also not consistent with the hypothesis that  
496 species like *X. continens* and *X. pygmaeus* might have lost ornamentation traits due to genetic  
497 drift in small populations (see Supplementary Information 4 for in-depth discussion). The case of  
498 *X. pygmaeus* is especially interesting since its relatives have maintained a polymorphism for  
499 large, ornamented males with courtship behavior. This includes *X. multilineatus*, whose range is  
500 adjacent to that of *X. pygmaeus* (Fig. 4). Large historical effective population sizes in *X.*  
501 *pygmaeus* (Fig. S8) are instead suggestive of changes in the costs or benefits courtship and  
502 ornamentation in the ancestors of *X. pygmaeus*.

503 Classic research in sexual selection has underscored the importance of trade-offs between  
504 traits that facilitate survival and those that facilitate reproduction. Elaborate ornaments can  
505 increase an individual's mating success while simultaneously reducing their probability of

506 survival. The best studied sexually selected trait in *Xiphophorus* is the sword ornament (Darwin,  
507 1871). Studies have indicated that females of most *Xiphophorus* species and those of related  
508 species strongly prefer the sword ornament, likely increasing the reproductive success of males  
509 with the trait (Morris *et al.*, 1995; Basolo and Trainor 2001). However, the benefits of ornaments  
510 for mating success are accompanied by costs for survival, since it has been shown  
511 experimentally to attract predators and reduce critical swimming speed (Rosenthal *et al.*, 2001;  
512 Kruesi & Alcaraz, 2007). In particular, *X. montezumae* has the longest sword ornament of all  
513 *Xiphophorus* species and our PCA analysis indicates that it is among the most sexually  
514 dimorphic species in the genus (Fig. 2; Kruesi & Alcaraz, 2007). Changes in the relative costs  
515 and benefits of ornamentation—for example, shifts in the ecological environment—could also  
516 explain the repeated evolution of small, swordless males (and the coincident loss of other  
517 sexually dimorphic traits; Fig. 3). Little is known about the ecological environments in which the  
518 least ornamented Northern swordtail species, *X. continens* and *X. pygmaeus*, are found, but  
519 anecdotal accounts suggest that they may live in faster flowing waters than many of their  
520 relatives (Rauchenberger *et al.*, 1990).

521 Beyond the sword, we also infer a strong correlation on a phylogenetic scale between  
522 body size and dorsal index (Fig. 3C) and body size and male vertical bar number (Fig. 3A).  
523 Larger dorsal fins relative to male body size have evolved in several *Xiphophorus* species and  
524 are especially pronounced in *X. birchmanni* (Fisher *et al.*, 2009). Females of some species appear  
525 to prefer large dorsal fins, perhaps because it contributes to larger perceived male size  
526 (MacLaren & Daniska, 2008; MacLaren *et al.*, 2011). There is mixed evidence for direct  
527 preference for the dorsal fin itself (Robinson *et al.*, 2011; Culumber & Rosenthal, 2013). In some  
528 species the dorsal fin is also important in male-male aggressive displays (Fisher & Rosenthal,  
529 2007), so coevolution with large male body size could be driven by female preferences or by  
530 male-male competition. Vertical bars are a sexually dimorphic pigmentation pattern found in  
531 male *Xiphophorus*. These pigmentation patterns are multifunctional: they can deter aggression  
532 from conspecific males and simultaneously attract females (Morris *et al.* 1995). Within species  
533 with multiple male morphs like *X. multilineatus*, the number of vertical bars is more strongly  
534 predictive of male body size than other sexually dimorphic traits (Zimmerer & Kallman, 1989).  
535 Males darken vertical bars while engaging in courtship (Morris *et al.*, 1995, 2008), directly  
536 linking this trait to a courtship strategy. In *X. multilineatus*, the absence of vertical bars is  
537 associated with small morph males that tend to exhibit coercive mating strategies (Morris *et al.*,  
538 2008). Like the sword ornament, large dorsal fins and vertical bars are thought to make males  
539 more conspicuous, and may similarly increase the risks of attracting predators.

540 It is interesting to speculate about connections between the evolution of these  
541 morphological phenotypes and the behavioral phenotypes observed in *X. continens* and in small  
542 males in the pygmy swordtail clade. Presumably once coercive mating strategies have arisen, the  
543 benefits of maintaining ornaments in individuals with this mating strategy are dramatically  
544 reduced while the costs remain, potentially explaining the coordinated loss of these suites of  
545 traits. Moreover, female preferences can also evolve, providing another possible mechanism that  
546 could drive the loss of ornamentation. For example, changes in female preference are thought to  
547 be responsible for the loss of the sword in the *X. birchmanni* lineage (Wong and Rosenthal  
548 2006). However, changes in female preference do not provide a clear explanation for the

549 evolution of small body size and the loss of ornaments in *X. pygmaeus* and *X. continens*. In *X.*  
550 *pygmaeus*, females prefer ornamented heterospecific males over unornamented conspecifics  
551 (Ryan & Wagner, 1987), although they discriminate against heterospecific males with vertical  
552 bars (Hankison & Morris, 2002, 2003), and females of some populations retain preferences for  
553 large male body size (Morris *et al.*, 1996). In *X. continens*, females do not retain preferences for  
554 large male body size but show variation in preference for other ornaments found only in  
555 heterospecifics, such as vertical bars (Morris *et al.*, 2005). This mixed evidenced on the role of  
556 female preferences in species where males have lost sexually selected traits leaves many  
557 unanswered questions about the drivers of this loss. Future work tackling whether changes in  
558 ornamentation in *X. pygmaeus* and *X. continens* are attributable to ecological shifts in these  
559 species (e.g. to inhabiting faster flowing rivers) or in part attributable to shifts in female  
560 preferences (e.g. weaker relative preferences) will shed light on the drivers of the repeated loss  
561 of male ornamentation.

562 More broadly, our results have implications for understanding convergent evolution at the  
563 phenotypic level. We find that suites of sexually selected ornaments—including the sword, the  
564 sword edge, and vertical bars—are coincidentally lost with the evolution of small male body size.  
565 Available genetic mapping data for the sword and sword edge indicates that each of these traits is  
566 likely controlled by multiple loci (Powell *et al.*, 2020). Similar repeated shifts in suites of traits  
567 have been previously reported in the context of adaptation to particular ecological conditions  
568 (Rennison *et al.*, 2019) or to certain pollinators (Wessinger *et al.*, 2019). Relative to convergent  
569 evolution of quantitative ecological traits, much less is known in practice about the drivers of  
570 convergent evolution of suites of sexually selected traits. Rigorously testing hypotheses about the  
571 drivers of convergent evolution of ornamentation require comparative studies of both potential  
572 ecological drivers and mate preferences across multiple species. Our results highlight the need  
573 for such studies in order to understand the recurrent gains or losses of suites of sexually selected  
574 traits in *Xiphophorus* and beyond.

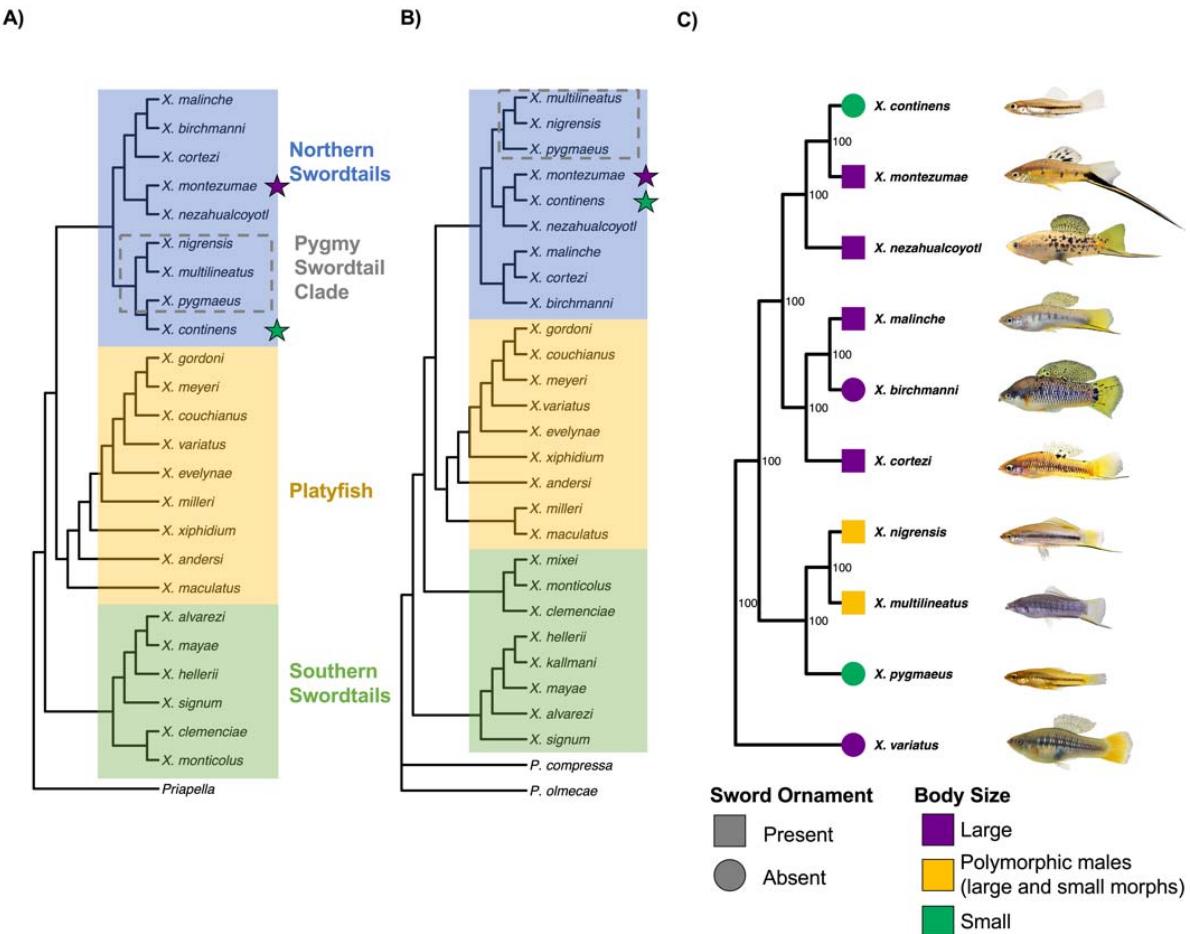
575

576 **Tables**

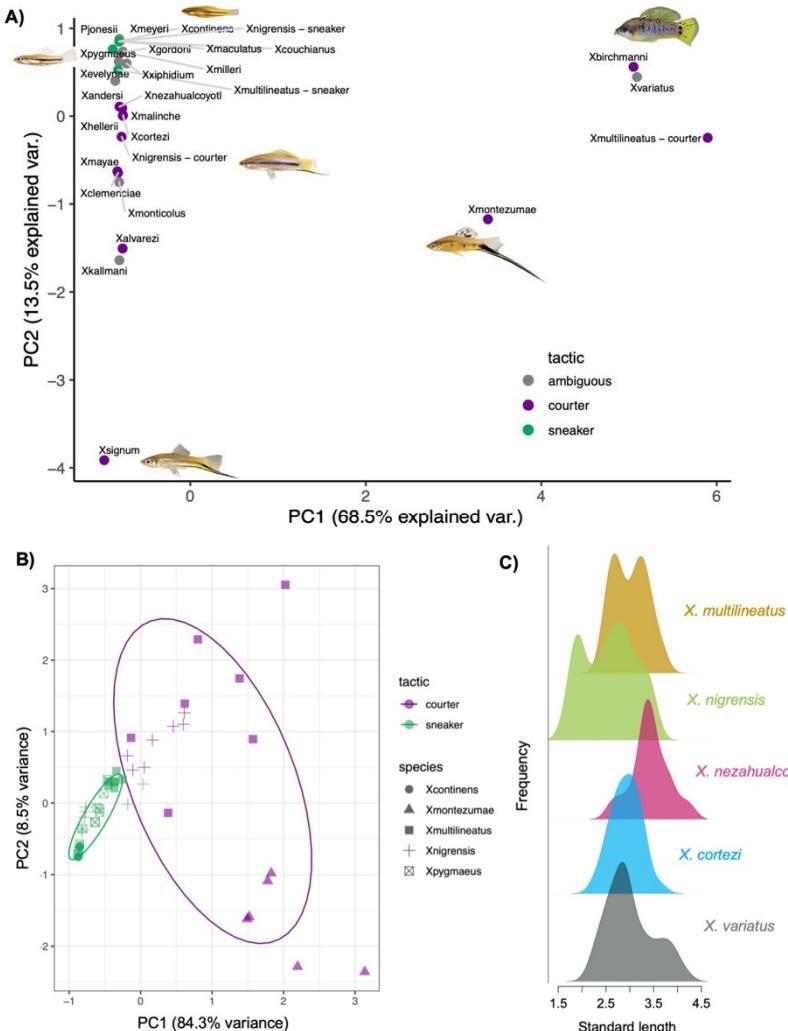
577

578 **Table 1.** Sampling locations and data sources of genomic data for Northern swordtail species  
579 analyzed in this study.

580


| Species                  | Source population                                     | Source data         |
|--------------------------|-------------------------------------------------------|---------------------|
| <i>X. malinche</i>       | Chicayotla                                            | Schumer et al. 2018 |
| <i>X. birchmanni</i>     | Coacuilco                                             | Schumer et al. 2018 |
| <i>X. cortezi</i>        | Huichihuyán                                           | Powell et al. 2021  |
| <i>X. montezumae</i>     | Tamasopo                                              | Schumer et al. 2016 |
| <i>X. nezahualcoyotl</i> | Los Gallitos                                          | Schumer et al. 2016 |
| <i>X. nigrensis</i>      | UT Austin – collection from<br>Nacimiento de Río Choy | This study          |
| <i>X. multilineatus</i>  | Río Tambaque                                          | This study          |
| <i>X. pygmaeus</i>       | Puente de Huichihuyán                                 | This study          |
| <i>X. continens</i>      | Río Ojo Frío                                          | This study          |

581


582

583  
584  
585

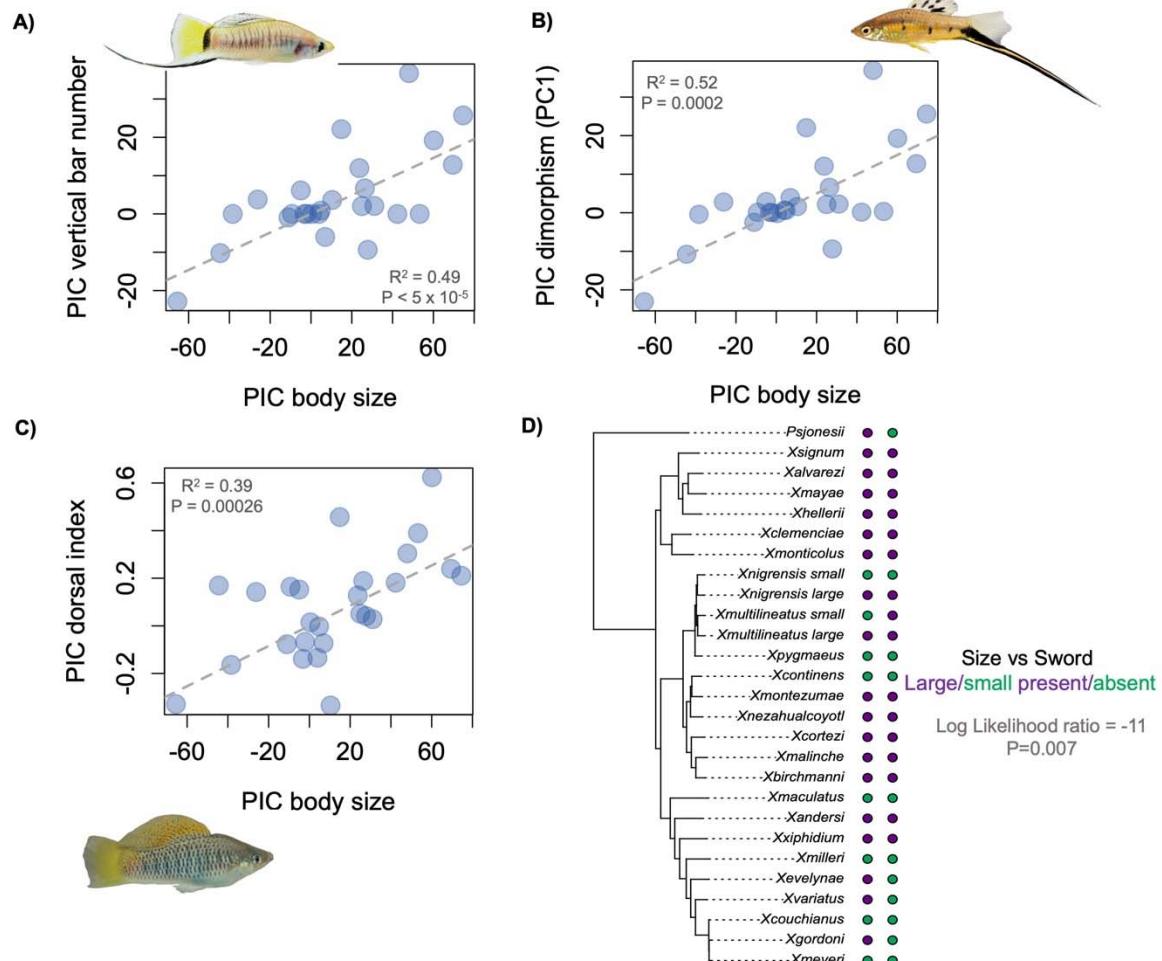
## Figures



586  
587 **Figure 1.** Phylogenetic relationships inferred in previous studies and in the present study. **A)**  
588 Summary of phylogenetic relationships inferred from previous genomic studies (green star)  
589 highlights placement of *X. continens*, purple star highlights placement of *X. montezumae*). Whole  
590 genome phylogenetic analysis based on RNAseq and RADseq data (Cui *et al.*, 2013 and Jones *et*  
591 *al.*, 2013 respectively) placed *X. continens* sister to *X. pygmaeus*, within the “pygmy” swordtail  
592 clade. **B)** Earlier phylogenies using nuclear and mitochondrial markers and morphological  
593 characteristics placed *X. continens* sister to *X. montezumae*. Shown here is a topology inferred  
594 with the dataset of Kang *et al.*, 2013 (note: this tree was inferred using the authors’ alignment  
595 with RAxML instead of MEGA and jModeltest, which may account for slight differences in  
596 species placement). **C)** Phylogenetic relationships between Northern swordtail species inferred  
597 by this study using whole genome resequencing data for whole genome nuclear alignments.  
598 Analysis was performed using RAxML with the GTR+GAMMA model. Nodal support was  
599 estimated using 100 rapid bootstraps. Trees were rooted using the branch separating platyfish  
600 species from Northern swordtail species. Representative male phenotypes are shown next to the  
601 species names. For phylogenetic relationships inferred using mitochondrial sequences see Fig.  
602 S5.  
603



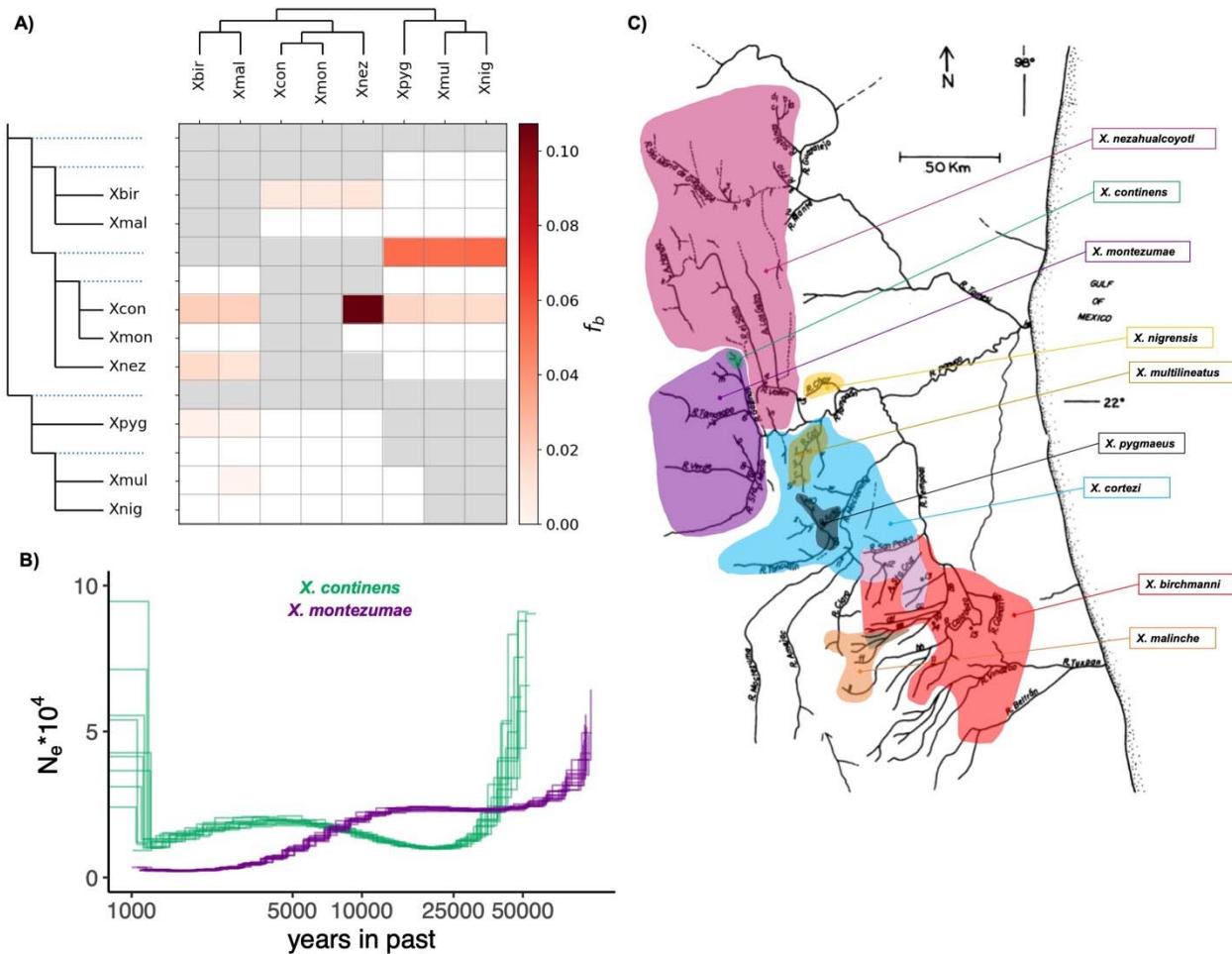
604


605

**Figure 2.** Sexual dimorphism across swordtails and analysis of male phenotypes and body size within Northern swordtails. **A)** Results of PCA analysis of sexual dimorphism among different *Xiphophorus* species and male morphs. See text for details on quantification of sexual dimorphism. **B)** PCA analysis indicates that *X. continens* and *X. pygmaeus* cluster with each other and with small morph males of *X. multilineatus* and *X. nigrensis*, but are phenotypically distinct from *X. montezumae* (the sister species of *X. continens*) and from large morphs of *X. multilineatus* and *X. nigrensis*. Color indicates mating strategy and shape indicates species. Ellipses indicate samples that falls within  $\pm 1$  standard deviation of the mean of that group. **C)** Standard length distribution of males from species that are known to have body size polymorphism (*X. nigrensis* and *X. multilineatus*), species that have not been reported to have body size polymorphism (*X. cortesi*), or species that have been previously suggested to have body size polymorphism (*X. variatus* and *X. nezahualcoyotl*). Color indicates species. The x-axis corresponds to standard length in centimeters. Sample sizes plotted per species are: *X. multilineatus* – n = 199, *X. nigrensis* – n = 60, *X. nezahualcoyotl* – n = 56, *X. cortesi* – n = 66, *X. variatus* – n = 56. A larger number of counter males compared to sneaker males was sampled for *X. nigrensis*; data was randomly downsampled for visualization.

621

622


623  
624



625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639

**Figure 3.** Results of phylogenetic independent contrasts analysis evaluating the correlations between body size and other sexually selected traits in the revised *Xiphophorus* phylogeny, after correcting for phylogenetic relationships between species. Results for all traits analyzed can be found in Tables S3-S4. **A)** We detect a significant correlation between body size and the number of vertical bars. A counter morph of *X. multilineatus* is shown in the inset. **B)** We also find a significant correlation between body size and PC1 of sexual dimorphism. A *X. montezumae* individual (with high sexual dimorphism), is shown in the inset. **C)** We detect a significant correlation between body size and dorsal fin index. *X. birchmanni*, a species with one of the highest scores for dorsal fin index, is shown. **D)** Using a phylogenetic logistic regression approach (Ives & Garland, 2010) we examined correlations between body size and binary traits. Shown here in colored dots next to the phylogeny is the relationship between body size (larger – purple, smaller – green) and sword presence (purple) or absence (green).

640



641

642

643 **Figure 4.** Gene flow estimates, species distributions, and demographic results for species of  
644 interest. **A)** Since Northern swordtail species are interfertile, we considered whether gene flow  
645 between the *X. pygmaeus* clade and *X. continua* could explain observed trait distributions. The  
646 gray squares indicate comparisons that could not be analyzed given the branching order of the  
647 phylogeny and the white squares indicate comparisons where no significant evidence of gene  
648 flow was found. Red hue squares indicate cases where evidence of gene flow is detected. The  
649 intensity of the red color corresponds to the value for the  $f_{branch}$  statistic calculated using *Dsuite*.  
650 The names of the focal species and their phylogenetic relationships are listed on the top and side  
651 of the matrix, blue dashed lines indicate comparisons involving the ancestral node. See Malinsky  
652 et al. for more information (Malinsky et al., 2021). These results show some evidence of  
653 admixture between the *X. pygmaeus* clade and *X. continua* but inferred levels of gene flow  
654 between these groups are low. Instead, *X. continua* is found to have substantial gene flow with  
655 *X. nezahualcoyotl*. For results including *X. cortezi*, which is inferred to have a history of gene  
656 flow with most species in the Northern swordtail clade see Fig. S9 and Supplementary  
657 Information 5. **B)** PSMC results estimating effective population size over time for sister species  
658 *X. continua* and *X. montezumae*. Analysis was conducted assuming a  $\rho/\theta$  ratio of 2, generation  
659 time of two generations per year, and mutation rate of  $3.5 \times 10^{-9}$  following Schumer et al. 2018.  
660 Multiple lines reflect the results from 10 bootstrap replicates resampling 1 Mb segments. **C)**

661 Range maps for Northern swordtail species; the original river map was adapted from  
662 Rauchenberger et al. 1990 and Cui et al. 2013.  
663

664 **Acknowledgements**

665

666 We thank Stepfanie Aguillon, Rongfeng Cui, Julia Palacios, Julie Zhang, Julia Palacios, and  
667 members of the Schumer lab for helpful discussion and/or feedback on earlier versions of this  
668 work. We thank Stanford University and the Stanford Research Computing Center for providing  
669 computational support for this project. This work was supported by a Hanna H. Gray, Pew and  
670 Searle fellowship to MS, the Ohio University Rush Elliot Professorship to MRM, and National  
671 Institute of Health R24-OD031467 to YL.

672

673 **Data and code availability**

674

675 All code generated for or used in this project is available at  
676 [https://github.com/Schumerlab/phylogeny\\_update](https://github.com/Schumerlab/phylogeny_update) and  
677 [https://github.com/Schumerlab/Lab\\_shared\\_scripts](https://github.com/Schumerlab/Lab_shared_scripts). All raw data will be deposited on the NCBI  
678 SRA. All phenotypic data will be deposited on Dryad.  
679

680 **References**

681

682 Abbott, J., Rios-Cardenas, O. & Morris, M.R. (2019) Insights from intralocus tactical conflict:  
683 adaptive states, interactions with ecology and population divergence. *Oikos*, **128**, 1525–1536.

684 Basolo, A.L. & Trainor, B.C. (2002) The conformation of a female preference for a composite  
685 male trait in green swordtails. *Animal Behaviour*, **63**, 469–474.

686 Borowsky, R.L. (1987) Genetic Polymorphism in Adult Male Size in *Xiphophorus variatus*  
687 (Atheriniformes: Poeciliidae). *Copeia*, **1987**, 782–787.

688 Corl, A., Davis, A.R., Kuchta, S.R., Comendant, T. & Sinervo, B. (2010) Alternative mating  
689 strategies and the evolution of sexual size dimorphism in the side-blotched lizard, *Uta*  
690 *stansburiana*: a population-level comparative analysis. *Evolution; International Journal of*  
691 *Organic Evolution*, **64**, 79–96.

692 Cui, R., Schumer, M., Kruesi, K., Walter, R., Andolfatto, P. & Rosenthal, G. (2013)  
693 Phylogenomics reveals extensive reticulate evolution in *Xiphophorus* fishes. *Evolution*, **67**,  
694 2166–2179.

695 Culumber, Z.W. & Rosenthal, G.G. (2013) Mating preferences do not maintain the tailspot  
696 polymorphism in the platyfish, *Xiphophorus variatus*. *Behavioral Ecology*, **24**, 1286–1291.

697 Culumber, Z.W. & Tobler, M. (2017) Sex-specific evolution during the diversification of live-  
698 bearing fishes. *Nature Ecology & Evolution*, **1**, 1185–1191.

699 Cummings, M. & Mollaghan, D. (2006) Repeatability and consistency of female preference  
700 behaviours in a northern swordtail, *Xiphophorus nigrensis*. *Animal Behaviour*, **72**, 217–224.

701 Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., *et al.* (2011) The  
702 variant call format and VCFtools. *Bioinformatics*, **27**, 2156–2158.

703 Darwin, C. (1871) *The Descent of Man, and Selection in Relation to Sex*. D. Appleton.

704 Díaz-Uriarte, R. & Garland, T., Jr. (1996) Testing Hypotheses of Correlated Evolution Using  
705 Phylogenetically Independent Contrasts: Sensitivity to Deviations from Brownian Motion.  
706 *Systematic Biology*, **45**, 27–47.

707 Emlen, D.J. (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle  
708 *Onthophagus acuminatus* (Coleoptera: Scarabaeidae). *Behavioral Ecology and Sociobiology*, **41**,  
709 335–341.

710 Felsenstein, J. (1985) Phylogenies and the Comparative Method. *The American Naturalist*, **125**,  
711 1–15.

712 Fisher, H.S., Mascuch, S.J. & Rosenthal, G.G. (2009) Multivariate male traits misalign with  
713 multivariate female preferences in the swordtail fish, *Xiphophorus birchmanni*. *Anim Behav*, **78**,  
714 265–269.

715 Fisher, H.S. & Rosenthal, G.G. (2007) Male swordtails court with an audience in mind. *Biology*  
716 *Letters*, **3**, 5–7.

717 Garland, T., Jr., Harvey, P.H. & Ives, A.R. (1992) Procedures for the Analysis of Comparative  
718 Data Using Phylogenetically Independent Contrasts. *Systematic Biology*, **41**, 18–32.

719 Gross, M.R. (1996) Alternative reproductive strategies and tactics: diversity within sexes. *Trends*  
720 *in Ecology & Evolution*, **11**, 92–98.

721 Hankison, S.J. & Morris, M.R. (2002) Sexual Selection and Species Recognition in the Pygmy  
722 Swordtail, *Xiphophorus pygmaeus*: Conflicting Preferences. *Behavioral Ecology and*  
723 *Sociobiology*, **51**, 140–145.

724 Hankison, S.J. & Morris, M.R. (2003) Avoiding a compromise between sexual selection and  
725 species recognition: female swordtail fish assess multiple species-specific cues. *Behavioral*  
726 *Ecology*, **14**.

727 Heliconius Genome, C. (2012) Butterfly genome reveals promiscuous exchange of mimicry  
728 adaptations among species. *Nature*, **487**, 94–8.

729 Hernandez-Jimenez, A. & Rios-Cardenas, O. (2012) Natural versus sexual selection: predation  
730 risk in relation to body size and sexual ornaments in the green swordtail. *Animal Behaviour*, **84**,  
731 1051–1059.

732 Hoekstra, H.E., Hirschmann, R.J., Bundey, R.A., Insel, P.A. & Crossland, J.P. (2006) A single  
733 amino acid mutation contributes to adaptive beach mouse color pattern. *Science (New York,*  
734 *N.Y.*), **313**, 101–104.

735 Ives, A.R. & Garland, T., Jr. (2010) Phylogenetic Logistic Regression for Binary Dependent  
736 Variables. *Systematic Biology*, **59**, 9–26.

737 Jones, J.C., Fan, S., Franchini, P., Schartl, M. & Meyer, A. (2013) The evolutionary history of  
738 Xiphophorus fish and their sexually selected sword: a genome-wide approach using restriction  
739 site-associated DNA sequencing. *Molecular Ecology*, **22**, 2986–3001.

740 Jones, J.C., Fruciano, C., Keller, A., Schartl, M. & Meyer, A. (2016) Evolution of the elaborate  
741 male intromittent organ of Xiphophorus fishes. *Ecology and Evolution*, **6**, 7207–7220.

742 Jones, M.R., Mills, L.S., Alves, P.C., Callahan, C.M., Alves, J.M., Lafferty, D.J.R., *et al.* (2018)  
743 Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. *Science*  
744 (*New York, N.Y.*), **360**, 1355–1358.

745 Kallman. (1989) Genetic control of size at maturity in Xiphophorus. *Ecology and evolution of*  
746 *livebearing fishes*.

747 Kallman, K.D. & Bao, I.Y. (1987) Female heterogamety in the swordtail, Xiphophorus alvarezi  
748 Rosen (Pisces, Poeciliidae), with comments on a natural polymorphism affecting sword  
749 coloration. *The Journal of Experimental Zoology*, **243**, 93–102.

750 Kang, J.H., Schartl, M., Walter, R.B. & Meyer, A. (2013) Comprehensive phylogenetic analysis  
751 of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of  
752 a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword  
753 originated in the ancestral lineage of the genus, but was lost again secondarily. *BMC*  
754 *Evolutionary Biology*, **13**, 25.

755 Katzer, A.M., Wessinger, C.A. & Hileman, L.C. (2019) Nectary size is a pollination syndrome  
756 trait in Penstemon. *New Phytologist*, **223**, 377–384.

757 Kruesi, K. & Alcaraz, G. (2007) Does a sexually selected trait represent a burden in locomotion?  
758 *Journal of Fish Biology*, **70**, 1161–1170.

759 Kunte, K. (2009) The Diversity and Evolution of Batesian Mimicry in Papilio Swallowtail  
760 Butterflies. *Evolution*, **63**, 2707–2716.

761 Kunte, K., Zhang, W., Tenger-Trolander, A., Palmer, D.H., Martin, A., Reed, R.D., *et al.* (2014)  
762 doublesex is a mimicry supergene. *Nature*, **507**, 229–232.

763 Lampert, K.P., Schmidt, C., Fischer, P., Volff, J.-N., Hoffmann, C., Muck, J., *et al.* (2010)  
764 Determination of Onset of Sexual Maturation and Mating Behavior by Melanocortin Receptor 4  
765 Polymorphisms. *Current Biology*, **20**, 1729–1734.

766 Lee, K.M. & Coop, G. (2019) Population genomics perspectives on convergent adaptation.  
767 *Philosophical Transactions of the Royal Society B: Biological Sciences*, **374**, 20180236.

768 Li, H. & Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler  
769 transform. *Bioinformatics*, **25**.

770 Li, H. & Durbin, R. (2011) Inference of human population history from individual whole-  
771 genome sequences. *Nature*, **475**, 493–496.

772 Liotta, M., Abbott, J., Morris, M. & Rios-Cardenas, O. (2020) *Evidence for tactically*  
773 *antagonistic selection on body size and the sword in a wild population of the swordtail fish,*  
774 *Xiphophorus multilineatus* (preprint). Preprints.

775 Liotta, M.N., Abbott, J.K., Rios-Cardenas, O. & Morris, M.R. (2019) Tactical dimorphism: the  
776 interplay between body shape and mating behaviour in the swordtail *Xiphophorus multilineatus*  
777 (Cyprinodontiformes: Poeciliidae). *Biological Journal of the Linnean Society*, **127**, 337–350.

778 Liu, K.J., Dai, J., Truong, K., Song, Y., Kohn, M.H. & Nakhleh, L. (2014) An HMM-Based  
779 Comparative Genomic Framework for Detecting Introgression in Eukaryotes. *PLOS*  
780 *Computational Biology*, **10**, e1003649.

781 MacLaren, R.D. & Daniska, D. (2008) Female Preferences for Dorsal Fin and Body Size in  
782 *Xiphophorus helleri*: Further Investigation of the LPA Bias in Poeciliid Fishes. *Behaviour*, **145**,  
783 897–913.

784 MacLaren, R.D., Gagnon, J. & He, R. (2011) Female bias for enlarged male body and dorsal fins  
785 in *Xiphophorus variatus*. *Behavioural Processes*, **87**, 197–202.

786 MacLaren, R.D. & Rowland, W.J. (2006) Differences in female preference for male body size in  
787 *Poecilia latipinna* using simultaneous versus sequential stimulus presentation designs. *Behaviour*,  
788 **143**, 273–292.

789 Malinsky, M., Matschiner, M. & Svardal, H. (2021) Dsuite - Fast D-statistics and related  
790 admixture evidence from VCF files. *Molecular Ecology Resources*, **21**, 584–595.

791 McKean, K.A. & Nunney, L. (2008) Sexual Selection and Immune Function in *Drosophila*  
792 *Melanogaster*. *Evolution*, **62**, 386–400.

793 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., *et al.* (2010)  
794 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA  
795 sequencing data. *Genome research*, **20**, 1297–1303.

796 McNamara, K.B., Wedell, N. & Simmons, L.W. (2013) Experimental evolution reveals trade-  
797 offs between mating and immunity. *Biology Letters*, **9**, 20130262.

798 Meyer, A., Morrissey, J.M. & Schartl, M. (1994) Recurrent origin of a sexually selected trait in  
799 *Xiphophorus* fishes inferred from a molecular phylogeny. *Nature*, **368**, 539–542.

800 Mitoyen, C., Quigley, C. & Fusani, L. (2019) Evolution and function of multimodal courtship  
801 displays. *Ethology*, **125**, 503–515.

802 Mohammadi, S., Yang, L., Harpak, A., Herrera-Álvarez, S., Pilar Rodríguez-Ordoñez, M. del,  
803 Peng, J., *et al.* (2021) Concerted evolution reveals co-adapted amino acid substitutions in  
804 Na<sup>+</sup>K<sup>+</sup>-ATPase of frogs that prey on toxic toads. *Current Biology*, **31**, 2530-2538.e10.

805 Møller, A.P. (2021) Mate Choice, Mating Systems, and Sexual Selection. In *The Behavior of*  
806 *Animals, 2nd Edition*. John Wiley & Sons, Ltd, pp. 315–341.

807 Moore, M.P., Hersch, K., Sricharoen, C., Lee, S., Reice, C., Rice, P., *et al.* (2021) Sex-specific  
808 ornament evolution is a consistent feature of climatic adaptation across space and time in  
809 dragonflies. *Proceedings of the National Academy of Sciences*, **118**, e2101458118.

810 Morris, M.R., Moretz, J.A., Farley, K. & Nicoletto, P. (2005) The role of sexual selection in the  
811 loss of sexually selected traits in the swordtail fish *Xiphophorus continens*. *Animal Behaviour*,  
812 **69**.

813 Morris, M.R., Mussel, M. & Ryan, M.J. (1995) Vertical bars on male *Xiphophorus multilineatus*:  
814 a signal that deters rival males and attracts females. *Behavioral Ecology*, **6**, 274–279.

815 Morris, M.R., Queiroz, K. de & Morizot, D.C. (2001) Phylogenetic relationships among  
816 populations of Northern Swordtails (*Xiphophorus*) as inferred from allozyme data. *Copeia*, **2001**.  
817 Morris, M.R., Rios-Cardenas, O. & Darrah, A. (2008) Male Mating Tactics in the Northern  
818 Mountain Swordtail Fish (*Xiphophorus nezahualcoyotl*): Coaxing and Coercing Females to  
819 Mate. *Ethology*, **114**, 977–988.  
820 Morris, M.R., Wagner, W.E. & Ryan, M.J. (1996) A negative correlation between trait and mate  
821 preference in *Xiphophorus pygmaeus*. *Animal Behaviour*, **52**.  
822 Nachman, M.W., Hoekstra, H.E. & D'Agostino, S.L. (2003) The genetic basis of adaptive  
823 melanism in pocket mice. *Proceedings of the National Academy of Sciences of the United States*  
824 *of America*, **100**, 5268–5273.  
825 Neff, B.D. (2001) Alternative reproductive tactics and sexual selection. *Trends in Ecology &*  
826 *Evolution*, **16**, 669.  
827 Nixon, K.J.A. & Parzer, H.F. (2021) Mimicry: just wing it. Wing shape comparison between a  
828 mimicking swallowtail and its toxic model. *Biological Journal of the Linnean Society*, **134**, 707–  
829 715.  
830 Okada, K., Katsuki, M., Sharma, M.D., Kiyose, K., Seko, T., Okada, Y., *et al.* (2021) Natural  
831 selection increases female fitness by reversing the exaggeration of a male sexually selected trait.  
832 *Nature Communications*, **12**, 3420.  
833 Oziolor, E.M., Reid, N.M., Yair, S., Lee, K.M., VerPloeg, S.G., Bruns, P.C., *et al.* (2019)  
834 Adaptive introgression enables evolutionary rescue from extreme environmental pollution.  
835 *Science*, **364**, 455–457.  
836 Paradis, E. & Schliep, K. (2019) ape 5.0: an environment for modern phylogenetics and  
837 evolutionary analyses in R. *Bioinformatics*, **35**, 526–528.  
838 Pease, J.B. & Hahn, M.W. (2015) Detection and Polarization of Introgression in a Five-Taxon  
839 Phylogeny. *Systematic Biology*, **64**, 651–662.  
840 Powell, D.L., García-Olazábal, M., Keegan, M., Reilly, P., Du, K., Díaz-Loyo, A.P., *et al.*  
841 (2020a) Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish.  
842 *Science*, **368**, 731–736.  
843 Powell, D.L., Payne, C., Banerjee, S.M., Keegan, M., Bashkirova, E., Cui, R., *et al.* (2021) The  
844 Genetic Architecture of Variation in the Sexually Selected Sword Ornament and Its Evolution in  
845 Hybrid Populations. *Current Biology*.  
846 Powell, D.L., Payne, C., Keegan, M., Banerjee, S.M., Cui, R., Andolfatto, P., *et al.* (2020b) The  
847 genetic architecture of the sexually selected sword ornament and its evolution in hybrid  
848 populations. *bioRxiv*, 2020.07.23.218164.  
849 Purcell, J., Brelsford, A., Wurm, Y., Perrin, N. & Chapuisat, M. (2014) Convergent Genetic  
850 Architecture Underlies Social Organization in Ants. *Current Biology*, **24**, 2728–2732.  
851 Quail, M.A., Swerdlow, H. & Turner, D.J. (2009) Improved Protocols for the Illumina Genome  
852 Analyzer Sequencing System. *Current Protocols in Human Genetics*, **62**, 18.2.1-18.2.27.  
853 Rauchenberger, M., Kallman, K.D. & Morizot, D.C. (1990) Monophyly and geography of the  
854 Rio Panuco Basin Mexico Swordtails (genus *Xiphophorus*) with descriptions of four new  
855 species. *Am Mus Novit*.  
856 Reed, R.D., Papa, R., Martin, A., Hines, H.M., Counterman, B.A., Pardo-Diaz, C., *et al.* (2011)  
857 optix drives the repeated convergent evolution of butterfly wing pattern mimicry. *Science (New*  
858 *York, N.Y.)*, **333**, 1137–1141.  
859 Rennison, D.J., Stuart, Y.E., Bolnick, D.I. & Peichel, C.L. (2019) Ecological factors and  
860 morphological traits are associated with repeated genomic differentiation between lake and

861 stream stickleback. *Philosophical Transactions of the Royal Society B: Biological Sciences*, **374**,  
862 20180241.

863 Revell, L.J. (2012) phytools: an R package for phylogenetic comparative biology (and other  
864 things). *Methods in Ecology and Evolution*, **3**, 217–223.

865 Robinson, D.M., Tudor, M.S. & Morris, M.R. (2011) Female preference and the evolution of an  
866 exaggerated male ornament: the shape of the preference function matters. *Animal Behaviour*, **81**,  
867 1015–1021.

868 Rosenthal, G. (2017) *Mate Choice: the Evolution of Sexual Decision Making from Microbes to*  
869 *Humans*. Princeton University Press.

870 Rosenthal, G.G. & Evans, C.S. (1998) Female preference for swords in *Xiphophorus helleri*  
871 reflects a bias for large apparent size. *Proceedings of the National Academy of Sciences of the*  
872 *United States of America*, **95**.

873 Rosenthal, G.G., Martinez, T.Y.F., Leon, F.J.G. de & Ryan, M.J. (2001) Shared preferences by  
874 predators and females for male ornaments in swordtails. *American Naturalist*, **158**.

875 Ryan, M.J. & Causey, B.A. (1989) “Alternative” mating behavior in the swordtails *Xiphophorus*  
876 *nigrensis* and *Xiphophorus pygmaeus* (Pisces: Poeciliidae). *Behavioral Ecology and*  
877 *Sociobiology*, **24**, 341–348.

878 Ryan, M.J. & Wagner, W.E. (1987) Asymmetries in mating preferences between species -  
879 female swordtails prefer heterospecific males. *Science*, **236**.

880 Schartl, M., Walter, R.B., Shen, Y., Garcia, T., Catchen, J., Amores, A., *et al.* (2013) The  
881 genome of the platyfish, *Xiphophorus maculatus*, provides insights into evolutionary adaptation  
882 and several complex traits. *Nature Genetics*, **45**, 567.

883 Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 years of  
884 Image Analysis. *Nature methods*, **9**, 671–675.

885 Schumer, M., Cui, R., Powell, D.L., Rosenthal, G.G. & Andolfatto, P. (2016) Ancient  
886 hybridization and genomic stabilization in a swordtail fish. *Molecular Ecology*, **25**, 2661–2679.

887 Schumer, M., Xu, C., Powell, D.L., Durvasula, A., Skov, L., Holland, C., *et al.* (2018) Natural  
888 selection interacts with recombination to shape the evolution of hybrid genomes. *Science*, **360**,  
889 656.

890 Shuster, S.M. & Wade, M.J. (2003) *Mating Systems and Strategies*. Princeton University Press.

891 Stamatakis, A. (2006) RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with  
892 thousands of taxa and mixed models. *Bioinformatics*, **22**, 2688–2690.

893 Taborsky, M. (1998) Sperm competition in fish: ‘bourgeois’ males and parasitic spawning.  
894 *Trends in Ecology & Evolution*, **13**, 222–227.

895 Tung Ho, L. si & Ané, C. (2014) A Linear-Time Algorithm for Gaussian and Non-Gaussian  
896 Trait Evolution Models. *Systematic Biology*, **63**, 397–408.

897 Wang, L.-G., Lam, T.T.-Y., Xu, S., Dai, Z., Zhou, L., Feng, T., *et al.* (2020) Treeio: An R  
898 Package for Phylogenetic Tree Input and Output with Richly Annotated and Associated Data.  
899 *Molecular Biology and Evolution*, **37**, 599–603.

900 Wessinger, C.A., Rausher, M.D. & Hileman, L.C. (2019) Adaptation to hummingbird pollination  
901 is associated with reduced diversification in *Penstemon*. *Evolution Letters*, **3**, 521–533.

902 Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L.D., François, R., *et al.* (2019)  
903 Welcome to the Tidyverse. *Journal of Open Source Software*, **4**, 1686.

904 Wong, R.Y., So, P. & Cummings, M.E. (2011) How female size and male displays influence  
905 mate preference in a swordtail. *Animal Behaviour*, **82**, 691–697.

906 Yu, G., Lam, T.T.-Y., Zhu, H. & Guan, Y. (2018) Two Methods for Mapping and Visualizing  
907 Associated Data on Phylogeny Using Ggtree. *Molecular Biology and Evolution*, **35**, 3041–3043.  
908 Zhen, Y., Aardema, M.L., Medina, E.M., Schumer, M. & Andolfatto, P. (2012) Parallel  
909 Molecular Evolution in an Herbivore Community. *Science*, **337**, 1634–1637.  
910 Zimmerer, E.J. & Kallman, K.D. (1989) Genetic basis for alternative reproductive tactics in the  
911 pygmy swordtail *Xiphophorus nigrensis*. *Evolution*, **43**.  
912