

1 **Host MOSPD2 enrichment at the parasitophorous vacuole membrane varies between**

2 ***Toxoplasma* strains and involves complex interactions**

3

4 Abel Ferrel¹, Julia Romano², Michael W. Panas¹, Isabelle Coppens², John C. Boothroyd¹

5

6 1 Department of Microbiology and Immunology, Stanford School of Medicine, Stanford,
7 California, USA

8 2 Department of Molecular Microbiology and Immunology, Johns Hopkins University

9 Bloomberg School of Public Health, Baltimore, Maryland, USA

10 **Abstract**

11 *Toxoplasma gondii* is an obligate, intracellular parasite capable of causing severe disease
12 in warm-blooded animals. Infection of a cell produces a unique niche for the parasite named the
13 parasitophorous vacuole (PV) initially composed of host plasma membrane invaginated during
14 invasion. The PV and its membrane (PVM) are subsequently decorated with a variety of parasite
15 proteins allowing the parasite to optimally grow in addition to manipulate host processes.

16 Recently, we reported a proximity-labeling screen at the PVM-host interface and identified host
17 ER-resident MOSPD2 as being enriched at this location. Here we extend these findings in
18 several important respects. First, we show that the extent and pattern of host MOSPD2
19 association with the PVM differs dramatically in cells infected with different strains of
20 *Toxoplasma*. Second, in cells infected with Type I RH strain, the MOSPD2 staining is mutually
21 exclusive with regions of the PVM that associate with mitochondria. Third, immunoprecipitation
22 and LC-MS/MS with epitope-tagged MOSPD2-expressing host cells reveals strong enrichment
23 of several PVM-localized parasite proteins, although none appear to play an essential role in
24 MOSPD2 association. Lastly, most MOSPD2 associating with the PVM is newly translated after
25 infection of the cell and requires the major functional domains of MOSPD2, identified as the
26 CRAL/TRIO domain and tail anchor, although these domains were not sufficient for PVM
27 association. Collectively, these studies provide new insight into the molecular interactions
28 involving MOSPD2 at the dynamic interface between the PVM and the host cytosol.

29

30 **Importance**

31 *Toxoplasma gondii* is an intracellular pathogen that lives within a membranous vacuole inside of
32 its host cell. This vacuole is decorated by a variety of parasite proteins that allow it to defend
33 against host attack, acquire nutrients, and interact with the host cell. Recent work identified and
34 validated host proteins enriched at this host-pathogen interface. Here, we follow up on one
35 candidate named MOSPD2 shown to be enriched at the vacuolar membrane and describe it as
36 having a dynamic interaction at this location depending on a variety of factors. Some of these
37 include the presence of host mitochondria, intrinsic domains of the host protein, and whether
38 translation is active. Importantly, we show that MOSPD2 enrichment at the vacuole membrane
39 differs between strains indicating active involvement of the parasite with this phenotype.
40 Altogether, these results shed light on the mechanism and role of protein associations in the host-
41 pathogen interaction.

42

43 **Introduction**

44 *Toxoplasma gondii* is an obligate, intracellular parasite in the Apicomplexa phylum. It is
45 estimated that one in three people globally is infected. Although most cases are mild or
46 asymptomatic, severe disease can occur in individuals that are immunocompromised or in
47 congenitally infected fetuses [1]. The symptomatic stage of infection is caused by a fast-
48 replicating form called tachyzoite.

49 Tachyzoites, like the other stages of *Toxoplasma*'s life cycle, have three unique sets of
50 organelles that allow them to invade a host cell and set up a niche for intracellular growth.
51 Preceding invasion, the first set of these organelles called micronemes are deployed for the main
52 role of attachment [2], [3]. Rhoptries are the second set of invasion organelles to be deployed and
53 their protein contents can be subdivided into two main classes, the rhoptry neck (RON) proteins
54 that aid in invasion and the rhoptry bulb (ROP) proteins that can co-opt host functions [4]. After
55 the deployment of ROPs, a tachyzoite invades the host cell by mechanically pulling itself in and
56 invaginating the host plasma membrane to form the PV with its delimiting membrane, the PVM
57 [5]–[10]. Remarkably, this process sieves many host proteins from the PVM which grants it the
58 privilege of being non-fusogenic with harmful host lysosomes or endosomes [11]. During and
59 after the formation of the PV, the parasite secretes proteins from its third set of unique organelles
60 termed dense granules with their protein contents termed GRAs [12]. Characterized GRAs have
61 myriad functions including nutrient acquisition [13], interactions with mitochondria [14], and
62 manipulation of host signaling pathways [15], [16].

63 The PVM is a dynamic interface that separates the host cell and parasite. Association of
64 host organelles derived from the exocytic pathway (e.g., endoplasmic reticulum and Golgi
65 apparatus), endocytic pathway (endolysosomes and lysosomes), and mitochondria has been

66 described to occur at the PVM [17]–[19]. Host mitochondrial association (HMA) is a strain-
67 dependent phenotype mediated by the parasite's mitochondrial association factor 1b (MAF1b)
68 found at the PVM [14], [20]; Type I and III parasites express MAF1b and recruit mitochondria,
69 while Type II parasites do not express the protein and therefore do not display HMA [20].
70 Interestingly, engineering expression of MAF1b in Type II parasites is sufficient for HMA to
71 occur [14]. Although the parasite effector mediating HMA has been described, the parasite
72 proteins that allow association of other organelles have remained elusive.

73 In contrast to proteins derived from the parasite, only a few host proteins have been
74 described to localize to the PVM post-invasion. Of the few, host Immunity Related Guanosine
75 Triphosphatases (IRGs), along with p65 guanylate binding proteins (GBPs), are encoded by IFN-
76 γ -stimulated genes involved in cell-autonomous immune defense against *Toxoplasma* in rodents
77 [21], [22]. They localize to the PVM and lead to permeabilization of the vacuolar membrane,
78 allowing clearance of the parasite. To combat this, *Toxoplasma* injects ROP5/17/18 during
79 rhoptry discharge and these eventually associate with the host-cytosolic face of the PVM [23]–
80 [25]. These are all ROP2-family members with arginine-rich amphipathic helix (RAH) domains
81 that mediate PVM association [26]. Functionally, ROP17 and ROP18 are serine/threonine
82 kinases that inactivate host IRGs by phosphorylating them [23], [25]. ROP5 is a catalytically
83 inactive pseudokinase that binds IRGs, altering their shape and making them available for
84 ROP18 inactivation [24]. Because of this crucial role, polymorphisms in ROP5/17/18 sequences
85 and/or expression levels are associated with dramatic differences in virulence in mice, at least
86 [27]–[31]. More recently, two PVM-localized GRAs, GRA14 and GRA64, have been shown to
87 interact with host Endosomal Sorting Complex Required for Transport (ESCRT) subsequently
88 leading to internalization of proteins from the host cell [32], [33].

89 Recently, Cygan et al. performed an unbiased proteomic screen to identify additional host
90 and parasite PVM proteins by localizing the promiscuous biotin ligase, miniTurbo, to the host-
91 cytosolic face of the PVM [34]. Among the host proteins detected as enriched at the PVM were
92 accessory proteins to the ESCRT complex. Additionally, and unexpectedly, the ER-anchored
93 membrane protein motile sperm domain-containing protein 2 (MOSPD2) was also identified and
94 subsequently validated to be at the PVM using a transiently expressed, epitope-tagged construct
95 [34]. MOSPD2 has been described in prior studies of uninfected cells as mediating inter-
96 organellar associations through protein-protein interactions via its Major Sperm Protein (MSP)
97 and cellular retinaldehyde-binding protein (CRAL)/triple functional domain protein (TRIO)
98 domain [35], [36]. It was tantalizing to hypothesize, therefore, that MOSPD2 might be mediating
99 host ER-PVM interactions in infected cells, and in this study, we utilize microscopy, genetic, and
100 biochemical techniques to investigate the mechanism and function of MOSPD2 localization at
101 the PVM. We take advantage of three common strains of *Toxoplasma* to narrow down possible
102 functions. In addition, biochemical methods allowed us to immunoprecipitate MOSPD2 and
103 identify interacting *Toxoplasma* proteins at the PVM which were then tested for a role in and/or
104 dependence on MOSPD2 association. We also assessed MOSPD2 association in the context of
105 other parasite/host interactions at the PVM. The results reveal a unique interaction between
106 *Toxoplasma* tachyzoites and the host cells they infect.

107

108 **Results**

109 Association of MOSPD2 with the PVM was previously described by Cygan et al. using
110 Type I RH. To determine whether MOSPD2 association differs between strains of *Toxoplasma*,
111 human foreskin fibroblasts (HFFs) were infected with either Type I RH, Type II ME49, Type III

112 CTG, or the close relative apicomplexan parasite, *Neospora caninum* (Nc) for 21 hours and then
113 stained using anti-MOSPD2 antibodies. The results showed association of MOSPD2 with the
114 PVMs of cells infected with RH and ME49 at substantially higher levels than those infected with
115 CTG and Nc (Fig. 1A). To quantify these apparent differences, we used Fiji to measure the
116 fluorescence intensity at the PVM 21 hours post infection (hpi) while excluding the host
117 cytoplasm and lumen of the PV. The results showed that while there was considerable variability
118 between the mean fluorescence intensity of each PVM in a given monolayer, overall, the PVMs
119 in cells infected with RH and ME49 averaged almost twice the fluorescence intensity of cells
120 infected with CTG or Nc (Fig. 1B). To more precisely characterize this association, we
121 performed immune-electron microscopy (IEM) with MOSPD2 antibodies on RH-infected HFFs.
122 IEM images showed MOSPD2 located at the ER- PVM interface, although the extremely close
123 apposition of these two membranes does not allow determination of precisely which membrane
124 MOSPD2 is anchored within (Fig. 1C).

125 Although the major difference in MOSPD2 association seen during infection is between
126 RH/ME49 and CTG/Nc, RH and ME49 also appear to differ in the pattern of MOSPD2
127 association at the PVM (Fig. 1A). To quantify the fluctuation in MOSPD2 signal in infected
128 cells, the PVM-localized fluorescent signal was measured using Fiji (see methods). MOSPD2
129 fluorescence at the PVM appeared considerably more patchy (i.e. had more variation in
130 fluorescence intensity around any given PVM) in cells infected with RH than ME49 (Fig. 2A and
131 B). A major difference known for the PVM of cells infected with RH vs. ME49 is the
132 phenomenon of host mitochondrial association or HMA [14]. MOSPD2 is known to have a role
133 in membrane contact sites between organelles and is present at ER-mitochondria interface in
134 HeLa cells [35]. Therefore, it was possible that MOSPD2 might be playing a role in HMA at the

135 PVM. To first determine whether MOSPD2 co-localizes with mitochondria at the PVM, RH-
136 infected HFFs were stained with MitoTracker and antibodies to endogenous MOSPD2. The
137 results showed that localization of host mitochondria and MOSPD2 at the PVM were, in fact,
138 anti-correlated (Fig. 2C). This was confirmed by immuno-electron microscopy with the results
139 showing MOSPD2 at the PVM only in regions that did not have HMA (Fig. 2D). These results
140 suggest that MOSPD2 can only associate with regions of the PVM that are not occupied by host
141 mitochondria.

142 The parasite protein responsible for HMA is known to be MAF1b [14]. It colocalizes
143 with host mitochondria at the PVM and is not expressed in ME49. To determine if MAF1b
144 influences the loci where MOSPD2 localizes, whether directly or indirectly, HFFs were infected
145 with ME49 parasites that ectopically express MAF1b. Immunostaining showed wild type ME49
146 had low signal fluctuations around the PVM while ME49 that express MAF1b had MOSPD2
147 signal mirroring the pattern seen in RH; i.e., MOSPD2 appeared absent wherever MAF1b was
148 present (Fig. 3 A-C). While we cannot exclude the possibility that MAF1b itself directly prevents
149 MOSPD2 association, these results seem most likely to be due to active exclusion by host
150 mitochondria recruited to the PVM.

151 The so-called MYR complex is known to translocate soluble GRA effector proteins
152 across the PVM and into the host cell [37]–[39]. The first component characterized of the MYR
153 complex was MYR1 and knocking out this gene leads to the inability of GRA effectors (e. g.,
154 GRA16, GRA24, etc.) to translocate across the PVM and into the host cell. *Toxoplasma* effectors
155 have a variety of functions and to explore whether one or more of the MYR1-mediated set might
156 be responsible for the MOSPD2-association phenotype, HFFs infected with MYR1-knockout
157 strains were assessed by immunofluorescence [40]. The results showed that the absence of *MYR1*

158 in ME49 did not affect recruitment of MOSPD2 to the PVM (Fig. 4A), with fluorescence
159 quantifications on ME49 and ME49 Δ myr1 PVMs showing no statistical difference between the
160 two (Fig. 4B). These data indicate that MYR1 and the MYR1-dependent GRA effectors are not
161 needed for the association of host MOSPD2 at the PVM. GRA45 is a protein known to be
162 important for proper insertion of a different class of GRA proteins, ones that are integral to (i.e.,
163 spanning) the PVM [41]. To test if any such GRAs were necessary for MOSPD2 association
164 with the PVM, HFFs were infected with parasites having a disrupted *GRA45* gene. Results
165 showed no difference between control and Δ gra45 parasites (Fig. 4C and D) indicating that
166 PVM-integral GRAs are not required for the presence of MOSPD2 at the PVM.

167 To further explore which *Toxoplasma* proteins at the PVM might interact with MOSPD2,
168 HFFs overexpressing V5-tagged MOSPD2 were infected with ME49 and immunoprecipitated
169 using anti-V5 nanobodies for LC-MS/MS identification. Western blot stains for V5 showed
170 strong enrichment of the epitope-tagged protein in the eluted material (Fig. 5A). VAP-A, a host
171 protein known to interact with MOSPD2 at the ER [42], was also enriched in the elution while
172 calreticulin which is also an ER protein but is known to not associate with MOSPD2 was not co-
173 precipitated and acted as a negative control (Fig. 5A). To determine the proteins most enriched in
174 our immunoprecipitation, ratios between our V5-MOSPD2 and untagged control were generated
175 (Fig 5B). The most enriched *Toxoplasma* protein was ROP17, a serine/threonine kinase known
176 to be at the PVM and having at least two functions [25], [43]; and among the top 15 most
177 enriched proteins, 7 (ROP1/5/17/18, GRA12/14 and MAF1a) have previously been reported to
178 localize to the PVM [20], [25], [30], [44]–[48] indicating that our protocol was indeed enriching
179 for proteins associating, directly or indirectly, with MOSPD2 at the PVM.

180 To determine whether the top *Toxoplasma* candidate proteins from the V5-MOSPD2
181 immunoprecipitation play a direct role in MOSPD2 association at the PVM, HFFs were infected
182 with wild type parasites or ones carrying mutations in the candidate genes. The results showed
183 no difference in MOSPD2 association for RH Δ rop17 relative to wild type RH (Fig. 6A),
184 indicating that ROP17 is not needed for MOSPD2 association with the PVM. Similarly, mutant
185 parasites in *ROP1*, *ROP5*, *ROP18*, TGGT1_247350, and *GRA12* showed no change in host
186 MOSPD2 association at the PVM relative to infection with RH-wild type (Fig. 6B-D). Together,
187 these results suggest that while there are parasite proteins at the PVM that MOSPD2 is
188 interacting with, at least the candidates tested so far are not individually responsible for the
189 presence of MOSPD2 at this location.

190 The MOSPD2 association could either be pre-existing MOSPD2 recruited to the PVM-
191 ER interface from other cellular compartments or newly synthesized material that is drawn to
192 this location as its first (and only) destination. To distinguish between these competing
193 hypotheses, HFFs were pre-treated with cycloheximide (CHX) for 1 hour then infected with
194 ME49 for 6 additional hours (Fig. 7A). CHX blocks host cell translation and it was previously
195 shown that *Toxoplasma* tachyzoites can grow for at least 16 hours in host cells blocked for
196 protein translation [49]. Quantitation of the MOSPD2 fluorescent signal at the PVM in HFFs
197 pretreated with CHX was greatly reduced relative to untreated controls (Fig. 7B and C). To
198 determine if CHX was somehow disrupting the trafficking and insertion of parasite-derived PVM
199 proteins, we infected and treated HFFs as described above and stained for GRA7 and MAF1b.
200 Imaging these monolayers showed GRA7 and MAF1b localized to the PVM, as expected (Fig.
201 7D). To determine whether global levels of MOSPD2 change with CHX treatment, a Western
202 blot was performed under the same conditions as the immunofluorescence assay described

203 above. Levels of MOSPD2 did not perceptibly change up to 7 hours post-CHX treatment,
204 indicating MOSPD2 was not being degraded to any significant extent during this period of
205 treatment (Fig. 7E). To confirm translation was successfully inhibited in HFFs, ubiquitin levels
206 were assessed under the assumption that the proteasome would still be rapidly degrading
207 ubiquitinated proteins during CHX treatment, a result reported in other cell types [50]. Western
208 blot analysis of ubiquitin levels showed a marked reduction of ubiquitinated proteins after CHX
209 treatment relative to untreated controls (Fig. 7E), indicating that the CHX treatment was
210 working, as expected. Together, these results indicate that association of MOSPD2 with the
211 PVM depends on active translation, suggesting that newly synthesized material is what
212 associates with the PVM, rather than previously synthesized MOSPD2 being “stolen” from other
213 membranes.

214 Three main domains have been previously described for MOSPD2: the CRAL/TRIO,
215 MSP, and a c-terminal tail anchor (Fig. 8A). To determine which of these domains plays a role in
216 association with the PVM, V5-tagged mutant constructs of each domain were generated and
217 overexpressed in wild type HFFs using lentivirus transduction methods. For the CRAL/TRIO
218 and tail anchor regions, the mutants were deletion constructs (Δ CT and Δ TA, respectively),
219 whereas for the MSP domain, point mutations at Arg404 and Leu406 were generated
220 (R404D/L406D) since these mutations were previously reported to destroy the ability of MSP to
221 associate with the FFAT motifs they normally recognize [35]. Western blot analysis shows
222 protein bands at the expected size for each mutant and in the wild type (Fig. 8C), albeit with
223 different expression levels for each, possibly because of toxicity associated with some of these
224 constructs. To determine if association at the PVM was still achieved with the mutant constructs,
225 these HFF cell lines were infected with ME49 and stained by immunofluorescence. Association

226 at the PVM was seen in infected cells expressing the wild type, Δ CT, and R404D/L406D
227 constructs, although the association was reduced for the Δ CT version (Fig. 8B). For Δ TA,
228 however, which was expressed at reduced but still detectable levels, no PVM association was
229 seen (Fig. 8B). Quantifying the ratio of PVM-localized V5 signal (MOSPD2) relative to signal
230 within the host cytosol showed a significant drop in the Δ CT line and no significant PVM-
231 enrichment in the Δ TA line compared to the wild type control. Interestingly, the double point
232 mutant appeared to have the opposite effect; i.e., a greater tendency to localize to the PVM than
233 the wild type control (Fig. 8D). Together, these results indicate that the CRAL/TRIO and tail
234 anchor of MOSPD2 are necessary for its efficient association at the *Toxoplasma* PVM whereas
235 the MSP domain might even work against such association.

236 Arginine-rich amphipathic helices (AHs) present in many ROPs are known to be
237 sufficient to enable association with the PVM [26], and MOSPD2 was recently described to
238 harbor one positively charged AH within the CRAL/TRIO [35]. Using AlphaFold [51], [52],
239 MOSPD2 is also predicted to have a second c-terminal AH, proximal to the tail anchor. To
240 determine if these structures are sufficient for PVM-association, the CRAL/TRIO AH (AH-CT)
241 and the AH just preceding the tail anchor along with the tail anchor itself (AH-TA) were
242 conjugated to the C-terminal end of eGFP and transiently transfected into HFFs (Fig. 9A). Live-
243 cell imaging and quantitation of eGFP signal showed prominent association of eGFP-MOSPD2
244 with the PVM while the negative control had no apparent association (Fig. 9B and 9C). AH-CT
245 and AH-TA constructs, like the negative control, also had no apparent association with the
246 PVM (Fig. 9B and 9C). Together, these results indicate that neither the AH-CT nor the tail
247 anchor and its associated AH are sufficient for association with the PVM.

248 MOSPD2 has been reported to not be essential for human cell growth [53] and so to
249 generate a stable knockout in HFFs, a CRISPR guide targeting MOSPD2 was transduced into
250 host cells while control cells received a non-targeting (Control) guide. After puromycin-selection
251 for uptake of the gRNA-containing constructs, which also carry a puromycin-resistance cassette,
252 knockout (Δ MOSPD2) efficiency was assessed in the population by Western blot.
253 Immunostaining showed a band for endogenous MOSPD2 in the HFFs receiving no virus or the
254 Control gRNA while no detectable signal was seen in the Δ MOSPD2 knockout population (Fig.
255 10A), indicating the knockout efficiency was extremely high. To further confirm the Δ MOSPD2
256 HFFs were knockouts, they were infected for 21-24 hours and stained for endogenous MOSPD2.
257 *Toxoplasma* vacuoles in “No-virus” and Control HFFs had association of MOSPD2 while all
258 observed Δ MOSPD2 HFFs had no detectable MOSPD2 at the PVM confirming efficient
259 knockout (Fig. 10B). To determine whether loss of MOSPD2 has an impact on *in vitro* growth of
260 *Toxoplasma* tachyzoites, plaque assays were performed in triplicate for each of Type I/II/III
261 parasites in Control vs. Δ MOSPD2 HFFs. The results (Fig. 10C) showed no significant
262 difference in plaque size after growth on the two host cell lines for Type I (RH) and Type II
263 (ME49). For Type III (CTG), however, there was a small difference that showed statistical
264 significance with smaller plaques in the Δ MOSPD2 vs. Control HFFs. Examination of the
265 triplicate flasks contributing to this difference, however, revealed considerable variability in
266 overall plaque size with just one of the three flasks containing Control HFFs having unusually
267 large plaques and just one flask with the Δ MOSPD2 HFFs having unusually small plaques (Fig.
268 10D). Examining the nine pair-wise comparisons for these two sets of three replicate flasks
269 shows only one difference is significant (that between the two flasks just mentioned). Overall,

270 these data indicate that loss of host MOSPD2 has little, if any, impact on growth in HFFs *in*
271 *vitro*.

272 The fact that MOSPD2 normally localizes to the ER and has a prominent role in
273 mediating contact sites between host organelles suggested the possibility that it might have a role
274 in ER association with the PVM in *Toxoplasma*-infected cells. To test this hypothesis, wild type
275 and Δ MOSPD2 HFFs were infected with RH for 6 and 24 hours and then imaged using electron
276 microscopy. Control HFFs showed strong HMA and host ER association with the PVM, as
277 expected (Fig. 11A); interestingly, however, infected Δ MOSPD2 HFFs also exhibited clear
278 association of the PVM with these two classes of host organelle (Fig. 11B). To determine if there
279 were any changes in the fraction of PVM associated with ER, this was quantified in Control and
280 Δ MOSPD2 HFFs. The results for both 6- and 24-hours post-infection showed no significant
281 difference in Δ MOSPD2 relative to Control HFFs (Fig. 11C). These results argue against
282 MOSPD2 playing an important role in mediating association of host ER with the *Toxoplasma*
283 PVM.

284 It has been hypothesized that the arginine-rich AH domain of ROPs drives association
285 with the PVM through the attraction of the AH to the negative curvature of the PVM [26], but
286 this possibility has not been directly tested. The MSP domain is known to be a protein-protein
287 interactor [54] and so we decided to test whether the MSP domain might be interacting with the
288 ROP-AH domain and whether this, in fact, is what draws ROP proteins to the PVM. To test this
289 possibility, Control and Δ MOSPD2 HFFs were infected with ME49, and then fixed and stained
290 with a monoclonal antibody that recognizes both ROP2 and ROP4 [55], or an antibody that
291 recognizes the HA-tag on ROP17-3xHA (ROP2, ROP4 and ROP17 all have arginine-rich AH
292 domains at their N-termini). The results showed no difference in association of ROP2/4 and

293 ROP17 between the Control and the Δ MOSPD2 knockout cells (Fig. 12). Together with the
294 results described above (Fig. 6), this indicates that association with the PVM of at least these
295 three ROP proteins is neither responsible for, nor mediated by, MOSPD2.

296

297 **Discussion**

298 The PVM is a dynamic interface that allows *Toxoplasma* tachyzoites to co-opt host
299 functions while remaining “hidden” from detection. Here, we dissected possible mechanisms and
300 consequences of the dramatic presence of host MOSPD2 at this interface, a phenomenon that
301 seems unlikely to be a chance event. One possible role for this association is that the
302 CRAL/TRIO domain of MOSPD2 might bind to lipid substrates and move them between
303 membranes, a function described for other proteins with similar domains [56]–[58]. Thus,
304 MOSPD2-PVM association could be one of the ways *Toxoplasma* acquires lipids from its host,
305 including lipids needed to expand the PVM and elaborate the IVN as the parasites grow. Future
306 work assessing lipid scavenging in wild type and MOSPD2 knockout cells will be needed to
307 address this possibility.

308 Another possibility is that MOSPD2 association at the PVM could be related to the
309 immune response and so its function will only be revealed when infection of a cell type other
310 than HFFs is examined or when cells are stimulated by cytokines like IFN- γ . For example,
311 monocytes and macrophages have previously been shown to express higher levels of MOSPD2
312 [59]. The migration of monocytes has also been shown to be dependent on this host protein [59].
313 Our studies, however, have all been in nonmotile HFFs, precluding an assessment of the role of
314 such enrichment in cell migration. *Toxoplasma* is known to induce hypermigratory phenotypes in
315 monocytes, macrophages, and dendritic cells [60]–[65]. One *Toxoplasma* protein involved in this

316 hypermigration is ROP17 [64], a protein specifically enriched in the MOSPD2
317 immunoprecipitation. It is therefore appealing to hypothesize that the association of MOSPD2 at
318 the PVM could be a mechanism by which *Toxoplasma* influences monocyte migration. Future
319 work could focus on detailing whether MOSPD2 association in monocytes impacts cell
320 migration upon infection with *Toxoplasma*. Ultimately, however, *in vivo* studies will be needed
321 and while viable MOSPD2 knockout mice have been reported [53], discriminating between
322 direct and indirect effects of such a disruption will be extremely difficult; i.e., determining
323 whether any difference in the course of an infection with *Toxoplasma* in such animals is because
324 of a specific role of MOSPD2 at the PVM or is due to a generalized effect on the host's overall
325 metabolism, immunity or other characteristic.

326 In terms of the mechanism of MOSPD2-PVM association, we found that host
327 mitochondria at the PVM preclude MOSPD2 association with this membrane. This seems most
328 likely to relate to the fact that MOSPD2 is typically found embedded within the ER and, in any
329 one patch of PVM at any one time, direct association can be with either host mitochondria or ER,
330 but not both. Further work will be needed to determine whether other PVM-associating proteins
331 show similar specificity in their location and, therefore, whether the mutually exclusive
332 association of host mitochondria and MOSPD2 is mediated by the bulk size of mitochondria and
333 ER or is due to more molecule-level effects such as localized differences in the lipid composition
334 of the PV membrane. It is known, for example, that HMA facilitates lipid scavenging [66] and a
335 possible hypothesis would be that the PVM's lipid composition or some other aspect of the PVM
336 is altered when mitochondria associate with the vacuole. Although studies have investigated
337 lipids important for *Toxoplasma*'s growth (reviewed in [67]), characterization of the PVM has

338 been difficult in the context of lipids due to the fragile nature of the vacuole and arduous task of
339 separating host and parasite membranes/lipids.

340 We show that there are substantial differences in the extent of MOSPD2 association
341 depending on the parasite strain used to infect HFFs. Many polymorphisms are known to exist
342 between Types I/II/III parasites, including in expression levels and/or sequence of ROP5, ROP17
343 and ROP18 [29]–[31]. All of these co-precipitated with MOSPD2 from ME49-infected cells but
344 none appeared individually responsible for MOSPD2’s association with the PVM. Fortunately,
345 F1 progeny from crosses between Type I/II/III strains exist [68] and have been mapped.
346 Therefore, phenotyping them with respect to MOSPD2 association should reveal the locus or loci
347 involved, even if multiple such loci contribute collectively to the strain-specific difference; i.e.,
348 even if it is a quantitative trait.

349 The MOSPD2-*Toxoplasma* interactome at the PVM identified additional parasite proteins
350 known to be at this host-parasite interface [20], [25], [30], [44]–[48]. Among these, ROP1 and
351 the polymorphic ROP5 and ROP17 are of particular interest due to the presence of a short linear
352 motif that resembles a FFAT (two phenylalanine in an acidic tract) [69]; such a motif in other
353 host proteins is known to bind to the MOSPD2 MSP domain allowing MCS to occur between
354 this ER-resident protein and other organelles [35]. Although we found that deletion of any one of
355 these *ROP* loci on their own did not affect MOSPD2 recruitment, the possibility certainly
356 remains that these and related ROP proteins collectively mediate MOSPD2 association with the
357 PVM and that removal of multiple such proteins would markedly reduce MOSPD2 association.
358 Alternatively, these parasite PVM proteins might associate with MOSPD2 indirectly, perhaps
359 through interactions with other molecules, for example with specific lipid domains, as discussed
360 above.

361 Mutant constructs in each of the three major domains of MOSPD2 revealed that the
362 CRAL/TRIO and tail anchor play a role in, but are not sufficient for, MOSPD2's localization to
363 the PVM. This strongly suggests that MOSPD2 must be anchored into a membrane for it to be
364 enriched at the PVM, but which membrane, the PVM-proximal side of host ER or the PVM
365 itself, is not addressed by our data. CHX treatment showed that translation is necessary for
366 association suggesting that the MOSPD2 accumulating at the PVM is newly translated rather
367 than being taken from pre-existing supplies in the cell, although we cannot exclude the
368 possibility that inhibiting translation eliminates a short-lived host protein necessary for such
369 accumulation. For example, tail-anchored proteins are known to be chaperoned by a class of
370 proteins in the GET pathway in yeast and TRC pathway in mammals once their translation is
371 completed [70]. Perhaps one or many of these chaperones is short-lived, disrupting the pathway
372 of tail anchor insertion into membranes. Certainly, a GET/TRC seems likely to be involved in
373 the overall process but whether such is of parasite or host origin is not easily predicted. If it is of
374 parasite origin, it could be polymorphic and explain the strain-specific difference. The
375 *Toxoplasma* genome encodes strongly predicted GET/TRC proteins [ToxoDB.org] but there is
376 no evidence reported that any of these are secreted outside the parasite, suggesting that they
377 instead perform the usual duties for such proteins within the parasite (which are known to have
378 their own tail-anchored proteins [71], [72] and so in need of their own GET/TRCs). Whether
379 GET/TRCs are involved in MOSPD2's association with the PVM, and whatever their source,
380 this does not address which membrane, PVM or ER, harbors MOSPD2's tail-anchor and the
381 immune-electron microscopy performed here does not have the resolution needed to address this
382 crucial point. Future studies could aim at characterizing this using a combination of molecular,
383 genetic, and structural biology techniques.

384 The extent of the association of MOSPD2 with the PVM is, so far, one of the greatest of
385 any host protein studied to date in both the degree and specificity of the association. It has the
386 potential, therefore, to reveal both important biochemistry and biology about the host-parasite
387 interaction. The work described here reveals several important details about this phenomenon but
388 much more work will be needed to reveal exactly how and why it is drawn to this site so
389 strongly.

390

391 **Materials and Methods**

392 **Parasite strains, culture, and infections.**

393 *Toxoplasma* tachyzoites used in this study include type I RH strain, type II ME49, and
394 type III CTG. RH *Toxoplasma* lines include: RH::*MYR1*-3xHA [38], RHΔ*myr1* [37],
395 RHΔ*hpt*Δ*ku80* [73], RHΔ*rop17* [43]. ME49 *Toxoplasma* lines include: ME49Δ*hpt*, ME49Δ*myr1*
396 [37], ME49 MAF1b-NHA [74]. CTG *Toxoplasma* line was CTG (also referred to as CEP)
397 expressing GFP luciferase [75]. *Neospora caninum* was NC-1 [76].

398 These tachyzoites and all subsequently generated lines were propagated in human
399 foreskin fibroblasts (HFFs) cultured in complete Dulbecco's modified Eagle medium (DMEM)
400 supplemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone, Logan, UT), 2mM
401 L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin at 37°C with 5% CO₂. The HFFs
402 were obtained from the neonatal clinic at Stanford University following routine circumcisions
403 that are performed at the request of the parents for cultural, health, or other personal medical
404 reasons (i.e., not in any way related to research). These foreskins, which would otherwise be
405 discarded, are fully deidentified and therefore do not constitute human subjects research.

406 To obtain parasites, infected monolayers were scraped and the host cells lysed by passage
407 through a 25-gauge needle and counted using a hemocytometer.

408

409 **Cycloheximide (CHX) treatment.**

410 HFF monolayers were seeded on sterile, glass-coverslips 18 or more hours prior to
411 adding 1 μ g/mL or 10 μ g/mL cycloheximide (CHX, Millipore Sigma). HFFs in 24-well or 6-well
412 dishes were incubated with CHX for 1 h before adding ME49 and pulse spun at 82 g for 1
413 second to help the parasites make contact with the host cells. Parasites were cultured on HFFs for
414 1 h then washed, and control or CHX-containing media was added where appropriate. The
415 infected monolayers were then incubated for 5 additional hours prior to carrying out IFA
416 protocols.

417

418 **Immunofluorescence assay (IFA).**

419 Infected cells grown on glass coverslips were fixed and permeabilized using 100% cold
420 methanol for 15 min. Samples were washed 3 times with phosphate-buffered saline (PBS) and
421 blocked using 3% bovine serum albumin (BSA) in PBS for 30 min at room temperature (RT).
422 HA was detected with rat monoclonal anti-HA antibody 3F10 (Roche), SAG1 was detected with
423 mouse anti-SAG1 monoclonal antibody DG52 [77], GRA7 was detected with rabbit anti-GRA7
424 antibodies [78], V5 was detected with a mouse anti-V5 tag monoclonal antibody (Invitrogen),
425 MOSPD2 was detected with a rabbit polyclonal antibody (Millipore Sigma), Calreticulin was
426 detected with a mouse monoclonal antibody FMC 75 (Abcam), ROP2/4 was detected with a
427 mouse monoclonal antibody [55]. Primary antibodies were detected with goat polyclonal Alexa
428 Fluor-conjugated secondary antibodies (Invitrogen). Both the primary and secondary antibodies

429 were diluted in 3% BSA in PBS. Coverslips were incubated with the primary antibodies for 1 h
430 at RT, washed, and incubated with secondary antibodies for 45 min. at RT. Vectashield with
431 DAPI (4',6- diamidino-2-phenylindole) stain (Vector Laboratories) was used to mount the
432 coverslips on slides. Fluorescence was detected using wide-field epifluorescence microscopy or
433 by confocal microscopy on an LSM 700 laser scanning confocal microscope. Images were
434 analyzed using ImageJ software and the intensity levels of the images adjusted such that no data
435 were removed from images. All images shown for any given condition/staining in any given
436 comparison/data set were obtained using identical parameters unless otherwise stated.

437 For mitochondrial staining, HFF monolayers were infected as described. MitoTracker
438 (Invitrogen) was used at manufacture's recommendation prior to fixing with 4% formaldehyde in
439 DMEM lacking phenol red for 15 minutes at room temperature. Samples were then washed and
440 permeabilized with 0.2% Triton X-100 for 15 minutes at room temperature. IFA staining was
441 done as described above.

442

443 **Partial Permeabilization.**

444 Parasites were syringe released as described and used to infect HFFs for 2-3 h, at which
445 time the cells were washed with PBS and then fixed with 4% formaldehyde at room temperature
446 for 15 min. Formaldehyde-fixed samples were rinsed once with PBS, permeabilized with 0.02%
447 digitonin solution for 1-3 min, and then blocked with 3% BSA in PBS for 1 h at RT. Staining
448 was performed as described above.

449

450 **IFA analysis.**

451 Quantification of MOSPD2 fluorescence around the PVM was performed in Fiji. To
452 quantify fluorescence intensity, a polygonal region of interest (roi) was generated around the
453 outside and inside of the PVM as defined by calreticulin or SAG1 staining to exclude the host
454 cytosol, parasites and lumen of the PV. The roi was copied onto the MOSPD2 channel and pixel
455 intensity was measured. Average fluorescence intensity for the roi was plotted as arbitrary units.

456 Alternatively, a single line 1 or 5 pixels wide was generated around the PVM, again
457 guided by calreticulin/SAG1 staining or intra-parasitic fluorescent signal. It was copied onto the
458 MOSPD2 channel and pixel intensity measured at each point on the line. To normalize across
459 vacuoles, each pixel intensity value was divided by the median or mean pixel intensity for that
460 given vacuole and the ratios generated plotted.

461

462 **Plasmid construction.**

463 For lentiviral plasmid constructs, standard molecular cloning techniques were used to
464 amplify wild type MOSPD2 from a pCDNA construct (primers A1, A2, A20 and A21, [34]; a
465 list of all primers used in this study can be found in Supplementary Table 1).

466 The amplified V5-MOSPD2 was subsequently inserted into pLenti-CMV-puro (Addgene
467 plasmid no. 17452). MOSPD2 CRISPR guides for MOSPD2 (A3 and A4, [79]) and a non-
468 targeting guide (A5 and A6, [79]) were annealed and ligated into lentiCRISPRv2 (a generous gift
469 from Jan Carette, Stanford University, Addgene, plasmid no. 52961). Plasmids were
470 subsequently sequenced to confirm correct inserts A22 and 3CMVFW (Sequetech.com,
471 Sequetech Corporations).

472 For mutant MOSPD2 constructs, Δ CT (primers A9 and A10), Δ TA (primers A11 and
473 A12), and RL/DD (primers A7 and A8) were generated using wild type pCDNA and ligated.

474 Mutant constructs were then amplified (Δ CT and RL/DD: primers A1 and A2; Δ TA: primers A1
475 and A19) and inserted into pLenti DEST.

476 For eGFP constructs, the backbone originated from pCDNA-MOSPD2 [34]. The
477 backbone for AH-TA was amplified using A9 and A25 from pCDNA-MOSPD2 [34]. The eGFP
478 insert was amplified from CAS9_sgRNA [80] using primers A23 and A24. The negative control
479 and AH-CT plasmids were constructed using AH-TA as a template and primers A11 and A28
480 then A26 and A27, respectively. The full length eGFP-MOSPD2 plasmid was constructed
481 using primers A11 and A30 from HA-TA. The MOSPD2 insert was amplified using primers
482 A29 and A31 from pCDNA-MOSPD2 [34]. Plasmids were ligated using standard molecular
483 biology techniques.

484

485 **Mammalian cell culture and stable cell line generation.**

486 All mammalian cell lines were propagated in complete Dulbecco's modified Eagle
487 medium (DMEM) supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine, 100 U/ml
488 penicillin, and 100 mg/ml streptomycin at 37°C with 5% CO₂, unless otherwise noted.

489 For preparation of lentiviruses, HEK 293T cells in 10-cm dishes were transfected at 80%
490 confluence with the lentiviral plasmid pLenti-CMV-Puro (Addgene plasmid no. 17452)
491 containing the gene of interest (2 mg) and the lentiviral packaging plasmids pVSV-G, pDVPR,
492 and pAdvant (gifts from Jan Carette, Stanford University) using FuGENE HD transfection
493 reagent (Promega) according to manufacturer's instructions. After about 24 h, the medium was
494 replaced with fresh medium. Approximately 48 h after transfection, the cell medium containing
495 the lentivirus was harvested and filtered through a 0.45- μ m filter and supplemented with 8
496 mg/ml protamine sulfate. To generate stable lines, HFFs in T25 culture flasks were then infected

497 with the virus-containing medium (1-2.5 ml). The following day, the viral-containing medium
498 was removed and replaced with fresh, antibiotic-free medium. The HFFs were allowed to
499 recover for 48 h and then selected with medium containing 2 μ g/ml puromycin for 3 days.

500

501 **Transient mammalian transfections.**

502 HFFs were grown on glass coverslips to ~80% confluence and subsequently transfected
503 with Lipofectamine LTX reagent (Invitrogen) and 500 ng of each pCDNA plasmid (with the
504 tagged gene of interest as described above) according to the manufacturer's instructions in
505 antibiotic-free medium. Cells were incubated with the transfection reagent for ~6-7 h and
506 tachyzoites were added for another 21 h before imaging or fixing.

507

508 ***Toxoplasma* Transfections.**

509 All transfections were performed using the Amaxa 4D Nucleofector (Lonza) model.
510 Tachyzoites were mechanically released in PBS, pelleted, and resuspended in 20 μ l P3 primary
511 cell Nucleofector solution (Lonza) with 5 to 20 μ g DNA for transfection. After transfection,
512 parasites were allowed to infect HFFs in DMEM.

513

514 **Gene disruption in *Toxoplasma*.**

515 A list of all sgRNA sequences and primers used in this study can be found in
516 Supplemental Table 1. For gene disruption plasmids, guide RNAs, designed against a PAM site
517 of each gene of interest, were cloned into the pU6-Universal plasmid (Addgene plasmid number
518 52694; <http://n2t.net/addgene:52694>; RRID:Addgene_52694). Parasites were transfected with
519 the pU6-sgRNA plasmid containing the guide for GRA12 (A13 and A14) or TGGT1_247350

520 (A32 and A33) and allowed to infect HFFs in DMEM. Linear PCR-amplified hypoxanthine-
521 guanine phosphoribosyl transferase (HPT) (primers A15 and A16 from pTKO2 [38]) was co-
522 transfected with the GRA12 guide. After at least 18 hours of recovery time, transfected cell
523 cultures were drug selected for 8 days with 25 µg/ml mycophenolic acid (MPA) and 50 µg/ml
524 xanthine (XAN). Single clones were selected from the transfected populations in 96-well plates
525 using limiting dilution in MPA/XAN-supplemented medium and PCR verified for gene
526 disruption (A17 and A18).

527

528 **Western blotting.**

529 Cell lysates were prepared in Laemmli sample buffer (Bio-Rad) at the time points post-
530 infection indicated. The samples were boiled for 5 min, separated by SDS-PAGE, and transferred
531 to polyvinylidene difluoride (PVDF) membranes. The membranes were blocked with 5% nonfat
532 dry milk or 5% BSA in Tris-buffered saline supplemented with 0.5% Tween 20, and proteins
533 were detected by incubation with primary antibodies diluted in blocking buffer, followed by
534 incubation with secondary antibodies (raised in goat against the appropriate species) conjugated
535 to horseradish peroxidase (HRP) and diluted in blocking buffer. HA was detected using an HRP-
536 conjugated HA antibody (catalog no. 12013819001; Roche), SAG2A was detected using rabbit
537 polyclonal anti-SAG2A antibodies, VAP-A was detected using mouse monoclonal 4C12 (Santa
538 Cruz), Calreticulin was detected with a mouse monoclonal antibody FMC 75 (Abcam),
539 MOSPD2 was detected with a rabbit polyclonal antibody (Millipore Sigma), Ubiquitin was
540 detected using rabbit polyclonal antibody (Thermo), α -Tubulin was detected using mouse
541 monoclonal antibody B-5-1-2 (Sigma-Aldrich), and GAPDH (glyceraldehyde-3-phosphate
542 dehydrogenase) was detected using mouse monoclonal anti-GAPDH antibody 6C5

543 (Calbiochem). Horseradish peroxidase (HRP) was detected using an enhanced
544 chemiluminescence (ECL) kit (Pierce).

545

546 **Plaque assay.**

547 Parasites were syringe released from HFFs and added to confluent HFFs in T25 flasks.
548 After 10 or 13 days of undisturbed incubation at 37°C as described above, the infected
549 monolayers were washed with PBS, fixed with methanol, and stained with crystal violet. The
550 plaque area was measured in arbitrary units using ImageJ software.

551

552 **Transmission electron microscopy (TEM).**

553 For ultrastructural observations of Toxoplasma-infected HFF for 24 h by thin section,
554 samples were fixed in 2.5% glutaraldehyde in 0.1 mM sodium cacodylate and processed as
555 described previously [81]. Ultrathin sections of infected cells were stained with osmium
556 tetroxide before examination with Hitachi 7600 EM under 80 kV equipped with a dual AMT
557 CCD camera system. Quantitative measurement of length for the PV membrane and host ER
558 elements attached to this membrane using ImageJ was performed on 18 representative electron
559 micrographs at low magnification to ensure the entire PV fit into the field of view.

560

561 **Immunoelectron microscopy (IEM).**

562 Monolayers of HFF infected with Toxoplasma from 6 or 24 h were fixed in 4%
563 paraformaldehyde (PFA; Electron Microscopy Sciences, PA) in 0.25 M HEPES (ph7.4) for 1 h
564 at room temperature, then in 8% PFA in the same buffer overnight at 4°C. Samples were
565 infiltrated, frozen and sectioned as previously described [82]. The sections were immunolabeled

566 with rabbit anti-MOSPD2 antibody at 1/50 diluted in PBS/1% fish skin gelatin. The sections
567 were then incubated with IgG antibodies, followed directly by 10 nm protein A-gold particles
568 before examination with the EM.

569

570 **IPs for mass spectrometry.**

571 Immunoprecipitations (IP) to identify MOSPD2-interacting proteins in HFFs were
572 performed as follows. One 10-cm dish of HFFs for each infection condition were seeded with 3
573 million HFFs 18-24 hours prior to infection. HFFs were infected with 16 million ME49Δ*hpt*
574 parasites for 19 h. Infected cells were washed 3 times in cold PBS and then scraped into 1 ml
575 cold cell lysis buffer (50 mM Tris [pH 8.0], 150 mM NaCl, 0.1% [vol/vol] Nonidet P-40
576 alternative [CAS no. 9016-45-9]) supplemented with complete protease inhibitor cocktail
577 (cComplete, EDTA free; Roche) and phosphatase inhibitor (PhosSTOP, Roche). Cell lysates were
578 passed 3 times through a 25-gauge needle, followed by passage 3 times through a 27-gauge
579 needle. After lysing, samples were incubated on ice for 30 additional minutes. The cell lysates
580 were spun at 10,000 g for 10 min at 4°C to remove insoluble material and unlysed cells. Protein
581 concentration was calculated using a Bradford Assay (Thermo Scientific). Equal amounts of
582 protein (3,500 µg) from lysates were added to 100 µl magnetic beads conjugated to anti-V5
583 nanobodies (Chromotech), and the mixture was incubated rotating at 4°C for 1 h. Unbound
584 protein lysate was removed, and the anti-V5 magnetic beads were then washed 10 times in cell
585 lysis buffer containing protease inhibitor and lacking NP-40. V5-tagged MOSPD2 and associated
586 proteins bound to the beads were delivered to the Stanford University Mass Spectrometry core
587 for on-bead digestion.

588

589 **Mass spectrometry sample preparation.**

590 For on-bead digestion, beads were resuspended in 100 mM TEAB and mixed head-over-head on a ThermoLyne LabQuake shaker for 10 minutes. DTT was added to a final concentration of 10 mM at 55°C for five minutes followed by head-over-head mixing, at room temperature, for 25 minutes. Acrylamide was added at 30 mM for cysteine capping during head-over-head mixing for an additional 30 minutes. Trypsin/LysC (500 ng) was added for proteolysis overnight, at 37°C. Samples were then quenched with 5 uL of 50% formic acid, separated from beads, and cleaned by C18.

597

598 **Mass spectrometry.**

599 For peptides from on-bead digests, the samples were analyzed either on a Orbitrap Fusion 600 tribrid mass spectrometer (Thermo Scientific) RRID:SCR_018702 or an Orbitrap Eclipse tribrid 601 mass spectrometer (Thermo Scientific) RRID:SCR_022212, in both cases coupled to a Acquity 602 M-Class liquid chromatograph (Waters Corporation). In brief, peptides were injected at a flow 603 rate of 300 nL/min with a mobile phase A of 0.2% aqueous formic acid and a mobile phase B of 604 0.2% formic acid in acetonitrile. Peptides were directly injected onto a ~25 cm in-house pulled- 605 and-packed fused silica column with an I.D. of 100 microns. The column was packed with 1.8 606 micron C18 stationary phase, and the gradient was a 2-45% B, followed by a high B wash for a 607 total gradient time of 180 min. The mass spectrometer was operated in a data dependent fashion 608 using CID fragmentation in the ion trap to generate MS/MS spectra and HCD in the orbitrap 609 following synchronous precursor selection for detection and quantification of report ions in the 610 MS3 step.

611

612 **Mass spectrometric analysis.**

613 For a typical data analysis, Peptide spectra assignments and protein inferences were
614 performed using Byonic v.4.2.4 (Protein Metrics), assuming fully-specific tryptic digestion and
615 up to 2 missed cleavages, as well as common modifications such as methionine oxidation and
616 cysteine alkylation.

617

618 **Data availability.**

619 The mass spectrometry proteomics data have been deposited to the ProteomeXchange
620 Consortium via the PRIDE [83] partner repository with the dataset identifier PXD038158 and
621 10.6019/PXD038158.

622 **Acknowledgments**

623 We thank all members of our laboratory for helpful comments and input to the
624 experiments and manuscript and Melanie Espiritu for help with tissue culture and ordering. We
625 also thank Ryan Leib, Fang Liu, Kratika Singhal, and Norah Brown for their support at the
626 Stanford SUMS core. We would like to thank the Bogyo lab for allowing us to use their confocal
627 microscope. We thank Christine Peters from the Carette lab for providing input and gifting
628 reagents for knocking out MOSPD2. We thank the excellent technical staff of the Electron
629 Microscopy Core Facility at the Johns Hopkins University School of Medicine and at the Yale
630 University School of Medicine.

631 This project has been funded in whole or part with: federal funds from the National
632 Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health
633 and Human Services under Award Numbers NIH RO1-AI21423 (JCB), NIH RO1-AI129529
634 (JCB); 5T32AI007328-30 to AF; Gilliam Fellowship HHMI to AF. Mass spectrometry
635 measurements were performed at the Vincent Coates Foundation Mass Spectrometry Laboratory,
636 Stanford University Mass Spectrometry (SUMS - RRID:SCR_017801). This work was
637 supported in part by NIH P30 CA124435 utilizing the Stanford Cancer Institute Proteomics/Mass
638 Spectrometry Shared Resource. This work includes data collected using the Orbitrap Eclipse
639 mass spectrometer system (RRID:022212) which was purchased using funding through the
640 National Institutes of Health Shared Instrumentation Grant 1S10OD030473-01. The funders had
641 no role in study design, data collection and analysis, decision to publish, or preparation of the
642 manuscript.

643 **Supplementary Table 1: Primers**

Primer ID	Primer sequence (5' -> 3')
A1	TCCAGTGTGGTGGATTCTGCAGATGCCACCATGGCAAGCCC
A2	AGCGGCCGCACTGTGCTGGATTAACTGTACAATAATAGAAC
A3	CACCGACTTACAGTCCACCCATGT
A4	AAACACATGGGTGGAACTGTAAGTC
A5	CACCGCGCGACGACTCAACCTAGTC
A6	AAACGACTAGGTTGAGTCGTCGCGC
A7	GACATAATGGCTGCAGAAATGGAACAGT
A8	AAAATCGCTTGGGCAGAGACTGTTA
A9	GTGATTCTGCCATGCTAGCGGT
A10	AGCTATCCACCACTAGTAGATGAT
A11	TAACTCGAGCATGCATAGAGGGC
A12	GATACAACGCTGAACCTGGTCTTC
A13	AAGTTAACGACCGAAATACCCCGAG
A14	AAAACTCGCGGGTATTCGGTCGTTA
A15	TTACCGTTCGTATAATGTATGCTATA
A16	ATCGAATTCTACCGTTCGTATAGCATA
A17	CATGTACTAAGTGACCGTGCATTGA
A18	TGCTACGGCTGTGCTAACATTCTATG
A19	AGCGGCCGCACTGTGCTGGATTAGATACAACGCTGAACCTGC
A20	AGACACCGACTCTAGTCCAGTGTGGATTCTGCAGAT
A21	TCCAGAGGGTGTGAGCGCCACTGTGCTGGAT
A22	GCAACCAGGATTTATAACAAG
A23	GACAGCACCGCTAGCATGGCAGAGAAATCACGTGAGCAAGGGC
A24	TATCTTCACTGGTTTATCTGACATCTGTACAGCTCGTCCATGCC
A25	TCTCGGCATGGACGAGCTGTACAAGATGTCAGATAAAACAGT
A26	TTGAAAGCAGCATTCTAACCATCTGTACAGCTCGTCCATG
A27	AATTGTGAAAACCTGGCTGGTTAAGCTGAGCATGCTAGAC
A28	TGACATCTGTACAGCTCGTCATG
A29	ACGAGCTGTACAAGATGTCAGCTAGCATGGCAGAGAAATCACGC
A30	TGATTCTCTGCCATGCTAGCTGACATCTGTACAGCTCGTCCA
A31	GCCCTCTAGATGCATGCTCGAGTTA
A32	GCTTCCGTTCCCCCTACGACGTTTAGAGCTAGAAATAGC
A33	AACTTGACATCCCCATTAC

644

645

646 **Supplementary Data Set 1: V5-MOSPD2 IP Ranked protein list**

647 Complete mass spectrometry data from Human and *T. gondii*.

648

649 **References**

650 [1] D. Hill and J. P. Dubey, "Toxoplasma gondii: transmission, diagnosis and prevention,"
651 *Clin. Microbiol. Infect.*, vol. 8, no. 10, pp. 634–640, Oct. 2002, doi: 10.1046/J.1469-
652 0691.2002.00485.X.

653 [2] M. H. Huynh and V. B. Carruthers, "Toxoplasma MIC2 Is a Major Determinant of
654 Invasion and Virulence," *PLoS Pathog.*, vol. 2, no. 8, pp. 0753–0762, 2006, doi:
655 10.1371/JOURNAL.PPAT.0020084.

656 [3] V. B. Carruthers, S. Håkansson, O. K. Giddings, and L. David Sibley, "Toxoplasma
657 gondii Uses Sulfated Proteoglycans for Substrate and Host Cell Attachment," *Infect.*
658 *Immun.*, vol. 68, no. 7, p. 4005, Jul. 2000, doi: 10.1128/IAI.68.7.4005-4011.2000.

659 [4] R. Ben Chaabene, G. Lentini, and D. Soldati-Favre, "Biogenesis and discharge of the
660 rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa," *Mol.*
661 *Microbiol.*, vol. 115, no. 3, pp. 453–465, 2021, doi: 10.1111/mmi.14674.

662 [5] A. B. Hehl *et al.*, "Toxoplasma gondii homologue of plasmodium apical membrane
663 antigen 1 is involved in invasion of host cells," *Infect. Immun.*, vol. 68, no. 12, pp. 7078–
664 7086, 2000, doi: 10.1128/IAI.68.12.7078-7086.2000/ASSET/4A34E8A1-DD9B-4308-
665 9689-F106ABE493C1/ASSETS/GRAPHIC/II1201092008.JPG.

666 [6] C. G. Donahue, V. B. Carruthers, S. D. Gilk, and G. E. Ward, "The Toxoplasma homolog
667 of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in
668 response to elevated intracellular calcium levels," *Mol. Biochem. Parasitol.*, vol. 111, no.
669 1, pp. 15–30, Nov. 2000, doi: 10.1016/S0166-6851(00)00289-9.

670 [7] M. Lamarque *et al.*, "The RON2-AMA1 Interaction is a Critical Step in Moving Junction-
671 Dependent Invasion by Apicomplexan Parasites," *PLoS Pathog.*, vol. 7, no. 2, p.
672 e1001276, 2011, doi: 10.1371/JOURNAL.PPAT.1001276.

673 [8] S. Besteiro, A. Michelin, J. Poncet, J. F. Dubremetz, and M. Lebrun, "Export of a
674 Toxoplasma gondii Rhopty Neck Protein Complex at the Host Cell Membrane to Form
675 the Moving Junction during Invasion," *PLoS Pathog.*, vol. 5, no. 2, p. e1000309, Feb.
676 2009, doi: 10.1371/JOURNAL.PPAT.1000309.

677 [9] M. H. Lamarque *et al.*, "Plasticity and redundancy among AMA–RON pairs ensure host
678 cell entry of Toxoplasma parasites," *Nat. Commun.* 2014 51, vol. 5, no. 1, pp. 1–13, Jun.
679 2014, doi: 10.1038/ncomms5098.

680 [10] A. Guérin *et al.*, "Efficient invasion by Toxoplasma depends on the subversion of host
681 protein networks," *Nat. Microbiol.*, 2017, doi: 10.1038/s41564-017-0018-1.

682 [11] D. G. Mordue, S. Håkansson, I. Niesman, and L. David Sibley, "Toxoplasma gondii
683 Resides in a Vacuole That Avoids Fusion with Host Cell Endocytic and Exocytic
684 Vesicular Trafficking Pathways," *Exp. Parasitol.*, vol. 92, no. 2, pp. 87–99, Jun. 1999,
685 doi: 10.1006/EXPR.1999.4412.

686 [12] M. F. Cesbron-Delauw, L. Lecordier, and C. Mercier, "Role of secretory dense granule
687 organelles in the pathogenesis of toxoplasmosis," *Curr. Top. Microbiol. Immunol.*, vol.
688 219, pp. 59–65, 1996, doi: 10.1007/978-3-642-51014-4_6.

689 [13] D. A. Gold *et al.*, "The Toxoplasma dense granule proteins GRA17 and GRA23 mediate
690 the movement of small molecules between the host and the parasitophorous vacuole," *Cell*
691 *Host Microbe*, vol. 17, no. 5, pp. 642–652, 2015, doi: 10.1016/j.chom.2015.04.003.

692 [14] L. Pernas *et al.*, "Toxoplasma Effector MAF1 Mediates Recruitment of Host
693 Mitochondria and Impacts the Host Response," *PLoS Biol.*, vol. 12, no. 4, 2014, doi:

694 10.1371/journal.pbio.1001845.

695 [15] M.-A. Hakimi, P. Olias, and D. L. Sibley, “Toxoplasma Effectors Targeting Host
696 Signaling and Transcription,” vol. 30, no. 3, pp. 615–645, 2017, doi:
697 10.1128/CMR.00005-17CE.

698 [16] M. A. Hakimi and A. Bougdour, “Toxoplasma’s ways of manipulating the host
699 transcriptome via secreted effectors,” *Curr. Opin. Microbiol.*, vol. 26, pp. 24–31, Aug.
700 2015, doi: 10.1016/J.MIB.2015.04.003.

701 [17] I. Coppens *et al.*, “Toxoplasma gondii Sequesters Lysosomes from Mammalian Hosts in
702 the Vacuolar Space,” *Cell*, vol. 125, no. 2, pp. 261–274, Apr. 2006, doi:
703 10.1016/J.CELL.2006.01.056/ATTACHMENT/F14C0F33-D4DC-4CCF-99BD-
704 FD454A6C10E7/MMC1.PDF.

705 [18] M. E. Walker *et al.*, “Toxoplasma gondii actively remodels the microtubule network in
706 host cells,” *Microbes Infect.*, vol. 10, no. 14–15, p. 1440, Nov. 2008, doi:
707 10.1016/J.MICINF.2008.08.014.

708 [19] J. D. Romano *et al.*, “The parasite Toxoplasma sequesters diverse Rab host vesicles within
709 an intravacuolar network,” *J. Cell Biol.*, vol. 216, no. 12, pp. 4235–4254, Dec. 2017, doi:
710 10.1083/JCB.201701108.

711 [20] Y. Adomako-Ankomah *et al.*, “Host mitochondrial association evolved in the human
712 parasite Toxoplasma gondii via neofunctionalization of a gene duplicate,” *Genetics*, vol.
713 203, no. 1, pp. 283–298, May 2016, doi: 10.1534/GENETICS.115.186270/-/DC1.

714 [21] G. A. Taylor, C. G. Feng, and A. Sher, “Control of IFN- γ -mediated host resistance to
715 intracellular pathogens by immunity-related GTPases (p47 GTPases),” *Microbes Infect.*,
716 vol. 9, no. 14–15, pp. 1644–1651, Nov. 2007, doi: 10.1016/J.MICINF.2007.09.004.

717 [22] E. Kravets *et al.*, “Guanylate binding proteins directly attack toxoplasma gondii via
718 supramolecular complexes,” *Elife*, vol. 5, no. JANUARY2016, Jan. 2016, doi:
719 10.7554/ELIFE.11479.001.

720 [23] S. J. Fentress *et al.*, “Phosphorylation of immunity-related GTPases by a toxoplasma
721 gondii-secreted kinase promotes macrophage survival and virulence,” *Cell Host Microbe*,
722 vol. 8, no. 6, pp. 484–495, Dec. 2010, doi:
723 10.1016/J.CHOM.2010.11.005/ATTACHMENT/57AABEAC-CEB7-44ED-9D35-
724 CD5C6A7A1C5F/MMC2.PDF.

725 [24] M. C. Fleckenstein, M. L. Reese, S. Könen-Waisman, J. C. Boothroyd, J. C. Howard, and
726 T. Steinfeldt, “A Toxoplasma gondii Pseudokinase Inhibits Host IRG Resistance
727 Proteins,” *PLOS Biol.*, vol. 10, no. 7, p. e1001358, Jul. 2012, doi:
728 10.1371/JOURNAL.PBIO.1001358.

729 [25] R. D. Etheridge, A. Alaganan, K. Tang, H. J. Lou, B. E. Turk, and L. D. Sibley, “The
730 Toxoplasma pseudokinase ROP5 forms complexes with ROP18 and ROP17 kinases that
731 synergize to control acute virulence in mice,” *Cell Host Microbe*, vol. 15, no. 5, pp. 537–
732 550, 2014, doi: 10.1016/j.chom.2014.04.002.

733 [26] M. L. Reese and J. C. Boothroyd, “A helical membrane-binding domain targets the
734 Toxoplasma ROP2 family to the parasitophorous vacuole,” *Traffic*, vol. 10, no. 10, pp.
735 1458–1470, 2009, doi: 10.1111/j.1600-0854.2009.00958.x.

736 [27] M. S. Behnke, A. Khan, J. C. Wootton, J. P. Dubey, K. Tang, and L. D. Sibley, “Virulence
737 differences in Toxoplasma mediated by amplification of a family of polymorphic
738 pseudokinases,” *Proc. Natl. Acad. Sci. U. S. A.*, vol. 108, no. 23, pp. 9631–9636, Jun.
739 2011, doi: 10.1073/PNAS.1015338108/SUPPL_FILE/SD02.TXT.

740 [28] M. L. Reese, G. M. Zeiner, J. P. J. Saeij, J. C. Boothroyd, and J. P. Boyle, “Polymorphic
741 family of injected pseudokinases is paramount in *Toxoplasma* virulence,” *Proc. Natl.
742 Acad. Sci. U. S. A.*, vol. 108, no. 23, pp. 9625–9630, Jun. 2011, doi:
743 10.1073/PNAS.1015980108/SUPPL_FILE/PNAS.201015980SI.PDF.
744 [29] J. P. Boyle, J. P. J. Saeij, S. Y. Harada, J. W. Ajioka, and J. C. Boothroyd, “Expression
745 quantitative trait locus mapping of *Toxoplasma* genes reveals multiple mechanisms for
746 strain-specific differences in gene expression,” *Eukaryot. Cell*, vol. 7, no. 8, pp. 1403–
747 1414, Aug. 2008, doi: 10.1128/EC.00073-08/ASSET/12EB2061-B090-416B-9E42-
748 75FF5CAC606B/ASSETS/GRAPHIC/ZEK0080831710003.jpeg.
749 [30] S. Taylor *et al.*, “A secreted serine-threonine kinase determines virulence in the eukaryotic
750 pathogen *Toxoplasma gondii*,” *Science* (80-.), vol. 314, no. 5806, pp. 1776–1780, 2006,
751 doi: 10.1126/science.1133643.
752 [31] J. P. J. Saeij *et al.*, “Polymorphic secreted kinases are key virulence factors in
753 toxoplasmosis,” *Science* (80-.), vol. 314, no. 5806, pp. 1780–1783, Dec. 2006, doi:
754 10.1126/SCIENCE.1133690/SUPPL_FILE/SAEIJ-SOM.PDF.
755 [32] Y. Rivera-Cuevas *et al.*, “*Toxoplasma gondii* exploits the host ESCRT machinery for
756 parasite uptake of host cytosolic proteins,” *PLOS Pathog.*, vol. 17, no. 12, p. e1010138,
757 Dec. 2021, doi: 10.1371/JOURNAL.PPAT.1010138.
758 [33] J. Mayoral *et al.*, “Dense Granule Protein GRA64 Interacts with Host Cell ESCRT
759 Proteins during *Toxoplasma gondii* Infection,” *MBio*, vol. 13, no. 4, Aug. 2022, doi:
760 10.1128/MBIO.01442-22/SUPPL_FILE/MBIO.01442-22-S0010.XLSX.
761 [34] A. M. Cygan *et al.*, “Proximity-Labeling Reveals Novel Host and Parasite Proteins at the
762 *Toxoplasma* Parasitophorous Vacuole Membrane,” *MBio*, vol. 12, no. 6, 2021, doi:
763 10.1128/mBio.00260-21.
764 [35] T. Di Mattia *et al.*, “Identification of MOSPD2, a novel scaffold for endoplasmic
765 reticulum membrane contact sites,” *EMBO Rep.*, vol. 19, no. 7, pp. 1–22, 2018, doi:
766 10.15252/embr.201745453.
767 [36] M. Zouliouch *et al.*, “MOSPD2 is an endoplasmic reticulum–lipid droplet tether
768 functioning in LD homeostasis,” *J. Cell Biol.*, vol. 221, no. 6, Jun. 2022, doi:
769 10.1083/JCB.202110044/213116.
770 [37] M. Franco *et al.*, “A novel secreted protein, MYR1, is central to *Toxoplasma*’s
771 manipulation of host cells,” *MBio*, vol. 7, no. 1, pp. 1–16, 2016, doi:
772 10.1128/mBio.02231-15.
773 [38] N. D. Marino *et al.*, “Identification of a novel protein complex essential for effector
774 translocation across the parasitophorous vacuole membrane of *Toxoplasma gondii*,” *PLOS
775 Pathog.*, vol. 14, no. 1, p. e1006828, Jan. 2018, doi: 10.1371/journal.ppat.1006828.
776 [39] A. M. Cygan, T. C. Theisen, A. G. Mendoza, N. D. Marino, M. W. Panas, and J. C.
777 Boothroyd, “Coimmunoprecipitation with MYR1 Identifies Three Additional Proteins
778 within the *Toxoplasma gondii* Parasitophorous Vacuole Required for Translocation of
779 Dense Granule Effectors into Host Cells,” *mSphere*, vol. 5, no. 1, pp. 1–17, 2020, doi:
780 10.1128/msphere.00858-19.
781 [40] M. W. Panas and J. C. Boothroyd, “Seizing control: How dense granule effector proteins
782 enable *Toxoplasma* to take charge,” *Mol. Microbiol.*, vol. 115, no. 3, pp. 466–477, 2021,
783 doi: 10.1111/mmi.14679.
784 [41] Y. Wang *et al.*, “Genome-wide screens identify *Toxoplasma gondii* determinants of
785 parasite fitness in IFN γ -activated murine macrophages,” *Nat. Commun.* 2020 111, vol. 11,

786 no. 1, pp. 1–19, Oct. 2020, doi: 10.1038/s41467-020-18991-8.

787 [42] E. L. Huttlin *et al.*, “Architecture of the human interactome defines protein communities
788 and disease networks,” *Nature*, vol. 545, no. 7655, p. 505, May 2017, doi:
789 10.1038/NATURE22366.

790 [43] M. W. Panas, A. Ferrel, A. Naor, E. Tenborg, H. A. Lorenzi, and J. C. Boothroyd, “
791 Translocation of Dense Granule Effectors across the Parasitophorous Vacuole Membrane
792 in Toxoplasma- Infected Cells Requires the Activity of ROP17, a Rhopty Protein Kinase
793 ,” *mSphere*, vol. 4, no. 4, pp. 1–15, 2019, doi: 10.1128/msphere.00276-19.

794 [44] H. El Hajj, M. Lebrun, M. N. Fourmaux, H. Vial, and J. F. Dubremetz, “Inverted topology
795 of the Toxoplasma gondii ROP5 rhopty protein provides new insights into the association
796 of the ROP2 protein family with the parasitophorous vacuole membrane,” *Cell.*
797 *Microbiol.*, vol. 9, no. 1, pp. 54–64, Jan. 2007, doi: 10.1111/J.1462-5822.2006.00767.X.

798 [45] M. E. Rome, J. R. Beck, J. M. Turetzky, P. Webster, and P. J. Bradley, “Intervacuolar
799 transport and unique topology of GRA14, a novel dense granule protein in Toxoplasma
800 gondii,” *Infect. Immun.*, vol. 76, no. 11, pp. 4865–4875, 2008, doi: 10.1128/IAI.00782-08.

801 [46] A. Michelin *et al.*, “GRA12, a Toxoplasma dense granule protein associated with the
802 intravacuolar membranous nanotubular network,” *Int. J. Parasitol.*, vol. 39, no. 3, pp.
803 299–306, Feb. 2009, doi: 10.1016/J.IJPARA.2008.07.011.

804 [47] L. D. SAFFER, O. MERCEREAU-PUIJALON, J. -F DUBREMETZ, and J. D.
805 SCHWARTZMAN, “Localization of a Toxoplasma gondii Rhopty Protein by
806 Immunoelectron Microscopy During and After Host Cell Penetration,” *J. Protozool.*, vol.
807 39, no. 4, pp. 526–530, 1992, doi: 10.1111/J.1550-7408.1992.TB04844.X.

808 [48] J. L. Wang *et al.*, “Novel roles of dense granule protein 12 (GRA12) in Toxoplasma
809 gondii infection,” *FASEB J.*, vol. 34, no. 2, pp. 3165–3178, Feb. 2020, doi:
810 10.1096/FJ.201901416RR.

811 [49] L. C. Pfefferkorn, E. R., Pfefferkorn, “Toxoplasma gondii: Growth in the Absence of Host
812 Cell Protein Synthesis,” *Exp. Parasitol.*, vol. 52, pp. 129–136, 1981.

813 [50] V. Croons, W. Martinet, A. G. Herman, and G. R. Y. De Meyer, “Differential Effect of
814 the Protein Synthesis Inhibitors Puromycin and Cycloheximide on Vascular Smooth
815 Muscle Cell Viability,” *J. Pharmacol. Exp. Ther.*, vol. 325, no. 3, pp. 824–832, Jun. 2008,
816 doi: 10.1124/JPET.107.132944.

817 [51] J. Jumper *et al.*, “Highly accurate protein structure prediction with AlphaFold,” *Nat.* 2021
818 5967873, vol. 596, no. 7873, pp. 583–589, Jul. 2021, doi: 10.1038/s41586-021-03819-2.

819 [52] M. Varadi *et al.*, “AlphaFold Protein Structure Database: massively expanding the
820 structural coverage of protein-sequence space with high-accuracy models,” *Nucleic Acids
821 Res.*, vol. 50, no. D1, pp. D439–D444, Jan. 2022, doi: 10.1093/NAR/GKAB1061.

822 [53] N. Yacov *et al.*, “MOSPD2 is a therapeutic target for the treatment of CNS inflammation,”
823 *Clin. Exp. Immunol.*, vol. 201, no. 2, p. 105, Aug. 2020, doi: 10.1111/CEI.13448.

824 [54] C. James and R. H. Kehlenbach, “The Interactome of the VAP Family of Proteins: An
825 Overview,” *Cells*, vol. 10, no. 7, Jul. 2021, doi: 10.3390/CELLS10071780.

826 [55] A. Sadak, Z. Taghy, B. Fortier, and J. F. Dubremetz, “Characterization of a family of
827 rhopty proteins of Toxoplasma gondii,” *Mol. Biochem. Parasitol.*, vol. 29, no. 2–3, pp.
828 203–211, Jun. 1988, doi: 10.1016/0166-6851(88)90075-8.

829 [56] V. A. Bankaitis, J. R. Aitken, A. E. Cleves, and W. Dowhan, “An essential role for a
830 phospholipid transfer protein in yeast Golgi function,” *Nature*, vol. 347, no. 6293, pp.
831 561–562, 1990, doi: 10.1038/347561A0.

832 [57] K. Saito, L. Tautz, and T. Mustelin, “The lipid-binding SEC14 domain,” *Biochim. Biophys. Acta*, vol. 1771, no. 6, pp. 719–726, 2007, doi: 10.1016/J.BBALIP.2007.02.010.

833 [58] B. Sha, S. E. Phillips, V. A. Bankaitis, and M. Luo, “Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol-transfer protein,” *Nature*, vol. 391, no. 6666, pp. 506–510, Jan. 1998, doi: 10.1038/35179.

834 [59] I. Mendel, N. Yacov, Y. Salem, O. Propheta-Meiran, E. Ishai, and E. Breitbart, “Identification of Motile Sperm Domain-Containing Protein 2 as Regulator of Human Monocyte Migration,” *J. Immunol.*, vol. 198, no. 5, pp. 2125–2132, 2017, doi: 10.4049/jimmunol.1601662.

835 [60] J. M. Weidner *et al.*, “Rapid cytoskeleton remodelling in dendritic cells following invasion by *Toxoplasma gondii* coincides with the onset of a hypermigratory phenotype,” *Cell. Microbiol.*, vol. 15, no. 10, pp. 1735–1752, Oct. 2013, doi: 10.1111/CMI.12145.

836 [61] J. M. Fuks *et al.*, “GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by *Toxoplasma gondii*,” *PLoS Pathog.*, vol. 8, no. 12, Dec. 2012, doi: 10.1371/JOURNAL.PPAT.1003051.

837 [62] H. Lambert, P. P. Vutova, W. C. Adams, K. Loré, and A. Barragan, “The *Toxoplasma gondii*-shuttling function of dendritic cells is linked to the parasite genotype,” *Infect. Immun.*, vol. 77, no. 4, pp. 1679–1688, Apr. 2009, doi: 10.1128/IAI.01289-08.

838 [63] E. B. Ólafsson, M. Varas-Godoy, and A. Barragan, “*Toxoplasma gondii* infection shifts dendritic cells into an amoeboid rapid migration mode encompassing podosome dissolution, secretion of TIMP-1, and reduced proteolysis of extracellular matrix,” *Cell. Microbiol.*, vol. 20, no. 3, p. e12808, Mar. 2018, doi: 10.1111/CMI.12808.

839 [64] L. L. Drewry, N. G. Jones, Q. Wang, M. D. Onken, M. J. Miller, and L. D. Sibley, “The secreted kinase ROP17 promotes *Toxoplasma gondii* dissemination by hijacking monocyte tissue migration,” *Nat. Microbiol.*, vol. 4, no. 11, pp. 1951–1963, 2019, doi: 10.1038/s41564-019-0504-8.

840 [65] A. L. ten Hoeve *et al.*, “The *Toxoplasma* effector GRA28 promotes parasite dissemination by inducing dendritic cell-like migratory properties in infected macrophages,” *Cell Host Microbe*, vol. 30, no. 11, pp. 1570–1588.e7, Nov. 2022, doi: 10.1016/J.CHOM.2022.10.001/ATTACHMENT/E22B770D-696D-4A98-818B-D31620E2C158/MMC3.XLSX.

841 [66] M. J. Crawford, N. Thomsen-Zieger, M. Ray, J. Schachtner, D. S. Roos, and F. Seeber, “*Toxoplasma gondii* scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplast,” *EMBO J.*, vol. 25, no. 13, pp. 3214–3222, Jul. 2006, doi: 10.1038/SJ.EMBOJ.7601189.

842 [67] Y. Wang, L. O. Sangaré, T. C. Paredes-Santos, and J. P. J. Saeij, “*Toxoplasma* Mechanisms for Delivery of Proteins and Uptake of Nutrients across the Host-Pathogen Interface,” *Annu. Rev. Microbiol.*, vol. 74, pp. 567–586, 2020, doi: 10.1146/annurev-micro-011720-122318.

843 [68] L. D. Sibley, A. J. LeBlanc, E. R. Pfefferkorn, and J. C. Boothroyd, “Generation of a restriction fragment length polymorphism linkage map for *Toxoplasma gondii*,” *Genetics*, vol. 132, no. 4, pp. 1003–1015, Dec. 1992, doi: 10.1093/GENETICS/132.4.1003.

844 [69] J. A. Slee and T. P. Levine, “Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum,” *Contact (Thousand Oaks (Ventura County, Calif.))*, vol. 2, p. 1, Jan. 2019, doi: 10.1177/2515256419883136.

878 [70] Á. Farkas and K. E. Bohnsack, “Capture and delivery of tail-anchored proteins to the
879 endoplasmic reticulum,” *J. Cell Biol.*, vol. 220, no. 8, Aug. 2021, doi:
880 10.1083/JCB.202105004/212470.

881 [71] L. R. Padgett, G. Arrizabalaga, and W. J. Sullivan, “Targeting of tail-anchored membrane
882 proteins to subcellular organelles in *Toxoplasma gondii*,” *Traffic*, vol. 18, no. 3, p. 149,
883 Mar. 2017, doi: 10.1111/TRA.12464.

884 [72] L. R. Padgett, J. M. Lentini, M. J. Holmes, K. L. Stilger, D. Fu, and W. J. Sullivan, “Elp3
885 and RlmN: A tale of two mitochondrial tail-anchored radical SAM enzymes in
886 *Toxoplasma gondii*,” *PLoS One*, vol. 13, no. 1, p. e0189688, Jan. 2018, doi:
887 10.1371/JOURNAL.PONE.0189688.

888 [73] B. A. Fox, J. G. Ristuccia, J. P. Gigley, and D. J. Bzik, “Efficient gene replacements in
889 *Toxoplasma gondii* strains deficient for nonhomologous end joining,” *Eukaryot. Cell*, vol.
890 8, no. 4, pp. 520–529, Apr. 2009, doi: 10.1128/EC.00357-
891 08/SUPPL_FILE/FOX_BZIK_SUP_MATERIAL_FINAL.DOC.

892 [74] F. D. Kelly, B. M. Wei, A. M. Cygan, M. L. Parker, M. J. Boulanger, and J. C. Boothroyd,
893 “*Toxoplasma gondii* MAF1b Binds the Host Cell MIB Complex To Mediate
894 Mitochondrial Association,” *mSphere*, vol. 2, no. 3, Jun. 2017, doi:
895 10.1128/MSphere.00183-17/ASSET/E483E0B1-E181-45D8-9410-
896 2A388BFD964B/ASSETS/GRAPHIC/SPH0031722880004.jpeg.

897 [75] J. P. J. Saeij, J. P. Boyle, M. E. Grigg, G. Arrizabalaga, and J. C. Boothroyd,
898 “Bioluminescence imaging of *Toxoplasma gondii* infection in living mice reveals
899 dramatic differences between strains,” *Infect. Immun.*, vol. 73, no. 2, pp. 695–702, Feb.
900 2005, doi: 10.1128/IAI.73.2.695-702.2005/ASSET/1DB86254-36ED-4FB7-8F2E-
901 0376CAEC8DB4/ASSETS/GRAPHIC/ZII0020545680005.jpeg.

902 [76] J. P. Lindsay, D. S., Dubey, “Infections in mice with tachyzoites and bradyzoites of
903 *Neospora caninum* (Protozoa: Apicomplexa),” *J Parasitol.*, vol. 76, no. 3, pp. 410–413,
904 1990.

905 [77] R. Bülow and J. C. Boothroyd, “Protection of mice from fatal *Toxoplasma gondii*
906 infection by immunization with p30 antigen in liposomes.,” *J. Immunol.*, vol. 147, no. 10,
907 1991.

908 [78] J. D. Dunn, S. Ravindran, S. K. Kim, and J. C. Boothroyd, “The *Toxoplasma gondii* dense
909 granule protein GRA7 is phosphorylated upon invasion and forms an unexpected
910 association with the rhoptry proteins ROP2 and ROP4,” *Infect. Immun.*, vol. 76, no. 12,
911 pp. 5853–5861, Dec. 2008, doi: 10.1128/IAI.01667-07/ASSET/18684DD3-E06E-4D94-
912 B4EC-676A2512257A/ASSETS/GRAPHIC/ZII0120877030008.jpeg.

913 [79] K. R. Sanson *et al.*, “Optimized libraries for CRISPR-Cas9 genetic screens with multiple
914 modalities,” *Nat. Commun.*, vol. 9, no. 1, Dec. 2018, doi: 10.1038/S41467-018-07901-8.

915 [80] B. Shen, K. M. Brown, T. D. Lee, and L. David Sibley, “Efficient gene disruption in
916 diverse strains of *toxoplasma gondii* Using CRISPR/CAS9,” *MBio*, vol. 5, no. 3, May
917 2014, doi: 10.1128/MBIO.01114-14/SUPPL_FILE/MBO002141824S1.PDF.

918 [81] I. Coppens and K. A. Joiner, “Host but Not Parasite Cholesterol Controls *Toxoplasma*
919 Cell Entry by Modulating Organelle Discharge,” *Mol. Biol. Cell*, vol. 14, no. 9, p. 3804,
920 Sep. 2003, doi: 10.1091/MBC.E02-12-0830.

921 [82] H. Fölsch, M. Pypaert, P. Schu, and I. Mellman, “Distribution and Function of Ap-1
922 Clathrin Adaptor Complexes in Polarized Epithelial Cells,” *J. Cell Biol.*, vol. 152, no. 3,
923 pp. 595–606, Feb. 2001, doi: 10.1083/JCB.152.3.595.

924 [83] V. J. Perez-Riverol Y, Bai J, Bandla C, Hewapathirana S, García-Seisdedos D,
925 Kamatchinathan S, Kundu D, Prakash A, Frericks-Zipper A, Eisenacher M, Walzer M,
926 Wang S, Brazma A, “The PRIDE database resources in 2022: A Hub for mass
927 spectrometry-based proteomics evidences.,” *Nucleic Acids Res*, vol. 50, no. D1, pp. D543-
928 552, 2022.

929 [84] K. Barylyuk *et al.*, “A Comprehensive Subcellular Atlas of the Toxoplasma Proteome via
930 hyperLOPIT Provides Spatial Context for Protein Functions,” *Cell Host Microbe*, vol. 28,
931 no. 5, pp. 752-766.e9, 2020, doi: 10.1016/j.chom.2020.09.011.

932

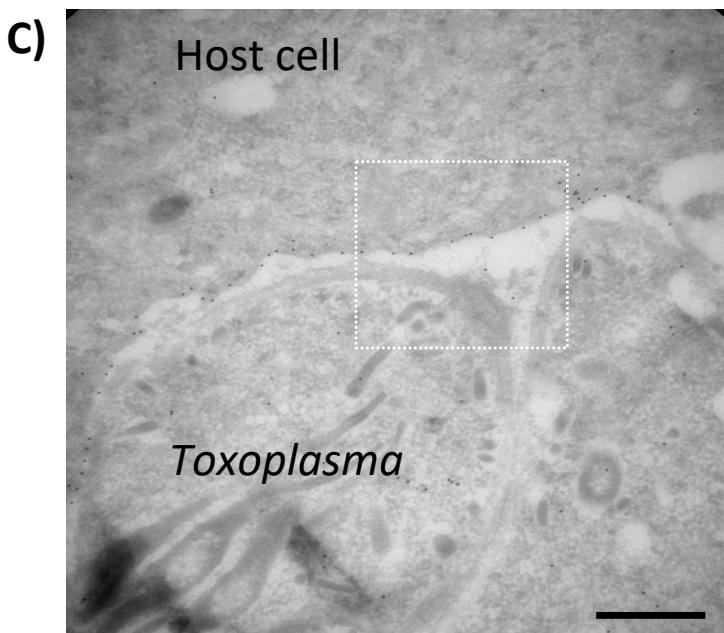
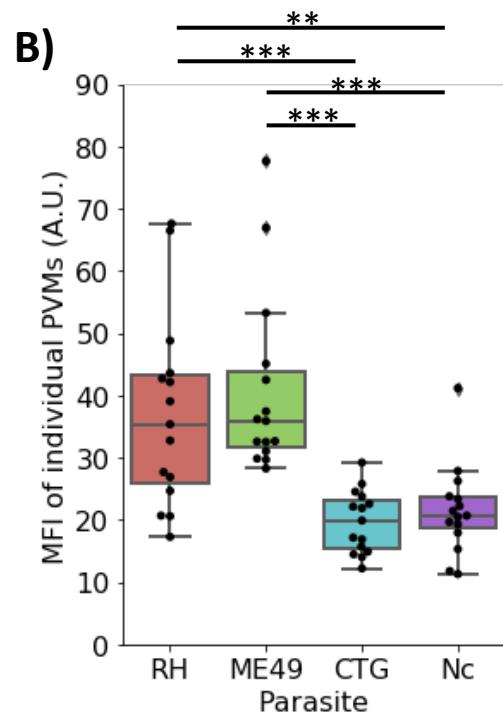
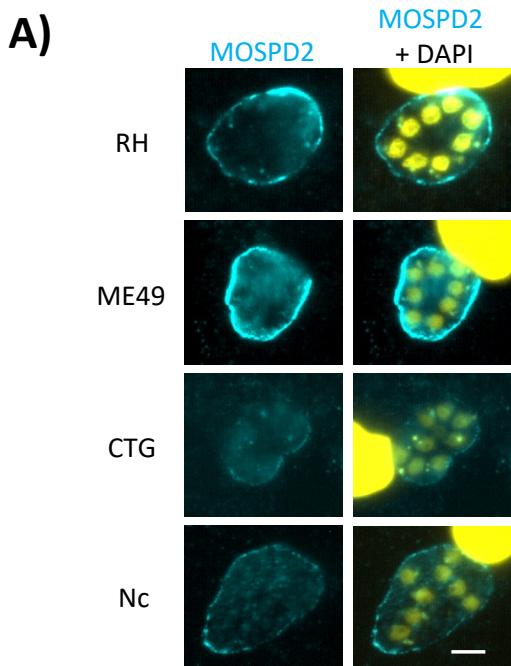




Fig 1: MOSPD2 localizes to the PVM and differs between strains.

A. Representative images of HFFs infected with either RH, ME49, CTG, or *Neospora caninum* (Nc) for 21 h prior to fixing with methanol. Monolayers were then stained for endogenous MOSPD2 (cyan) and DAPI (yellow). Scale bar = 5 μ m. B. Bar plot showing mean fluorescence intensity (MFI) of MOSPD2 signal on the PVM of individual vacuoles 21 hpi. Whiskers show the maximum value within 1.5 of the interquartile range. Data are from one experiment that pooled three biological replicates. One of three fully independent experiments is shown. Significance was tested using a One-way ANOVA and Tukey Post-HOC test thereafter. (** indicates $P < 0.01$, *** indicates $P < 0.001$). C. Left panel, electron micrograph of 24 h RH-infected HFFs stained with MOSPD2 antibody (1/50) and visualized using Protein A-gold particles. Scale bar = 500 nm. Right panel, zoomed image of boxed region in left image with an arrow pointing at the PVM.

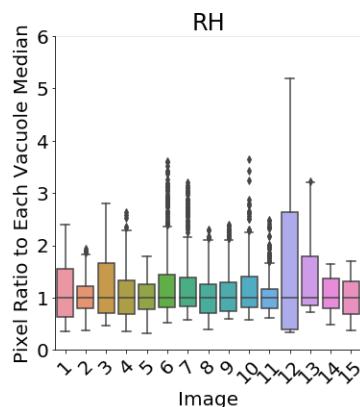
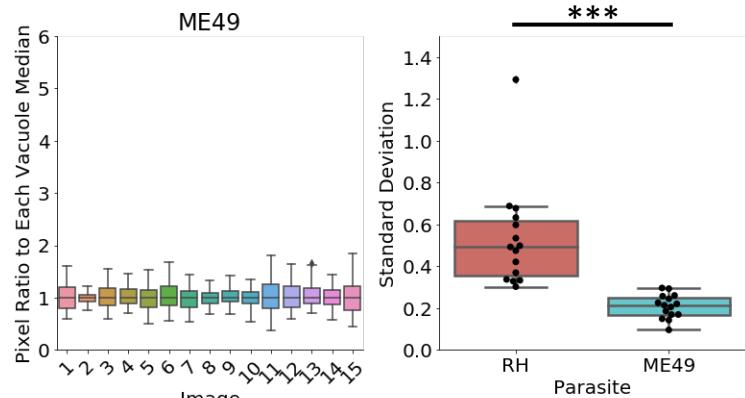
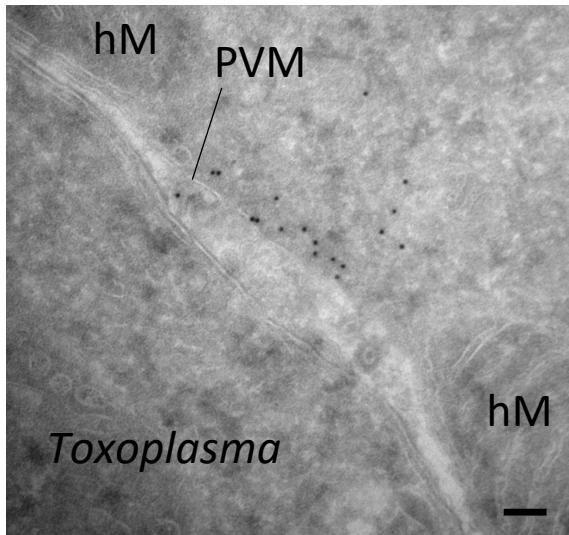



A)**B)****C)****D)**

Fig 2: MOSPD2 associates at the PVM where host mitochondria are not recruited.

A. HFFs were infected with RH or ME49 for 21-24 h, then fixed with methanol and stained for MOSPD2 and calreticulin. MOSPD2 fluorescence intensity at the PVM from 15 vacuoles in each strain were quantified (see methods). The fluorescence intensity at each pixel was divided by the median of that respective vacuole to normalize all vacuoles to the median (y-axis). Data are from one experiment that pooled three biological replicates. Data are representative of two independent experiments. B. The standard deviation (y-axis) of the ratios from (A) for each vacuole were plotted.

Significance was tested using Student's t test (*** indicates $P < 0.001$). C. HFFs were infected with RH parasites for 21 h, stained with MitoTracker (see Methods), fixed with paraformaldehyde, and permeabilized with 0.1% Triton-X100. Stains include mitochondria (magenta), MOSPD2 (cyan), and DAPI (yellow). Data are representative of two independent experiments. Scale bar = 5 μ m. D. Electron image of the PVM of RH-infected HFFs stained with MOSPD2 antibody and visualized with Protein A-gold particles thereafter. hM, host mitochondria. Scale bar = 100 nm.

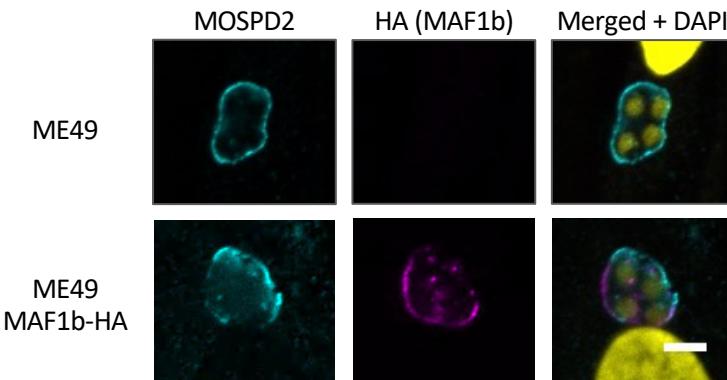
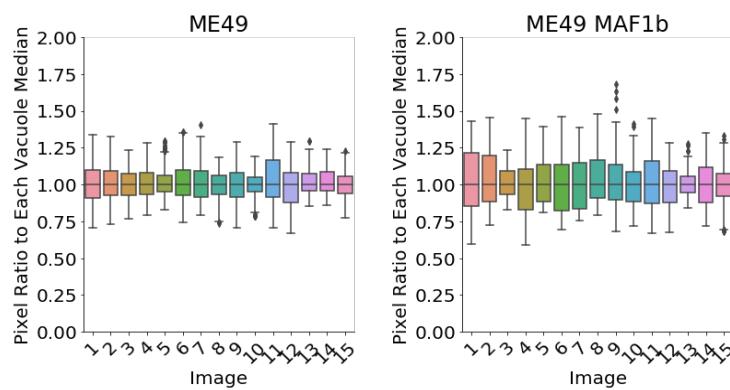
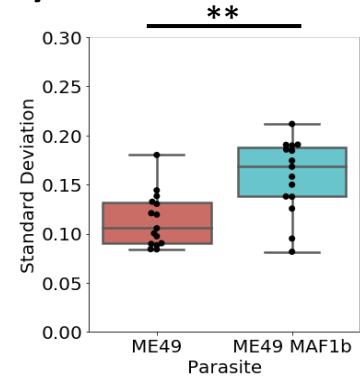



A)**B)****C)**

Fig 3: MOSPD2 association at the PVM is altered in ME49 by ectopically expressed MAF1b.

HFFs were infected with either ME49 or ME49 MAF1b-HA for 21 h then fixed with methanol. A. Representative images from two independent experiments show stains for MOSPD2 (cyan), HA (MAF1b, magenta), DAPI (yellow). Scale bar = 5 μ m. B. HFFs were infected with ME49 or ME49 MAF1b-HA as described. MOSPD2 normalization measurements were done as described in Fig. 2 and methods. Representative data are from one experiment that pooled three biological replicates. Data are representative of two independent experiments C. Standard deviations (y-axis) plotted for each strain from (B). Significance was tested using Student's t test (** indicates $P < 0.01$).

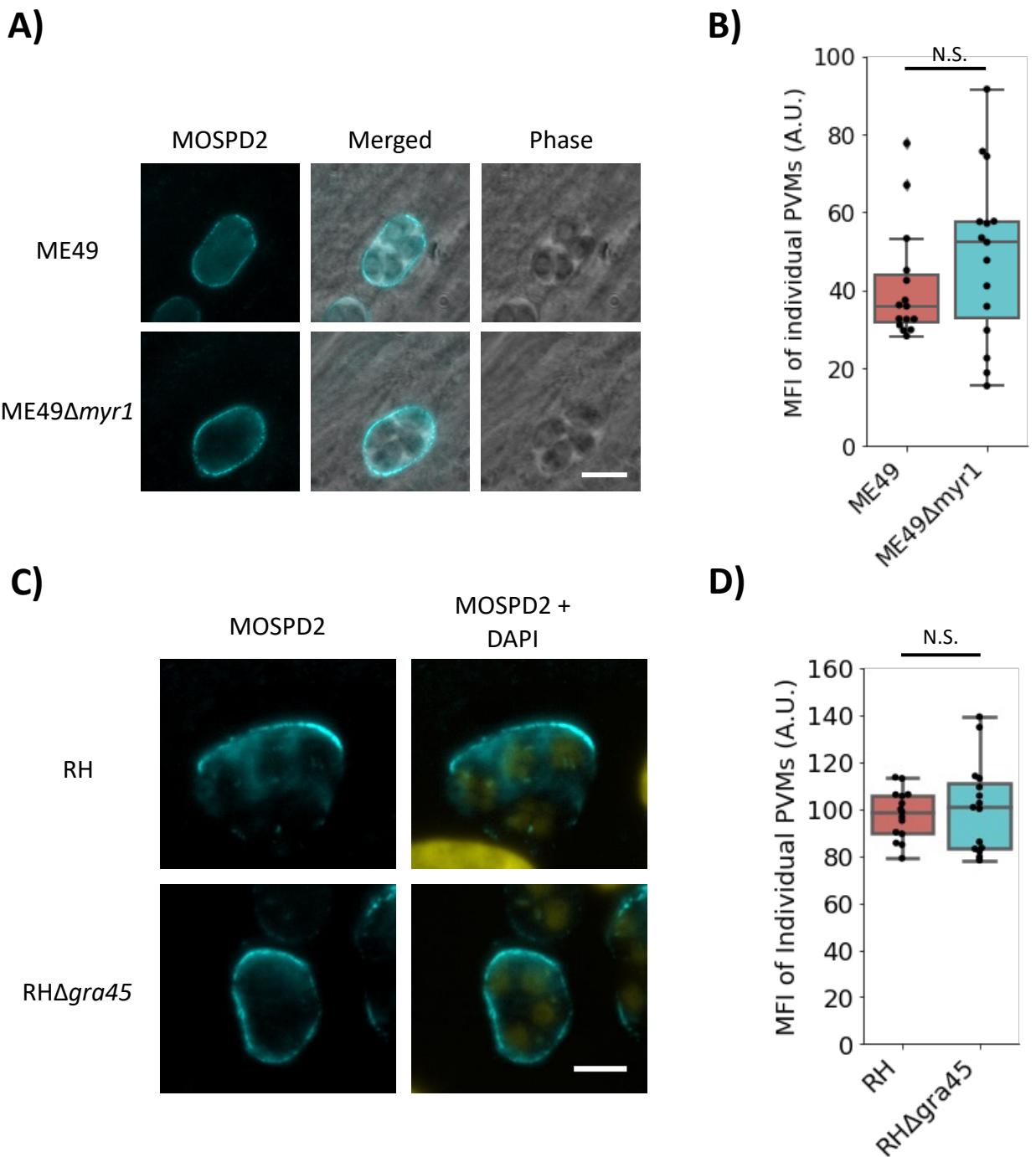
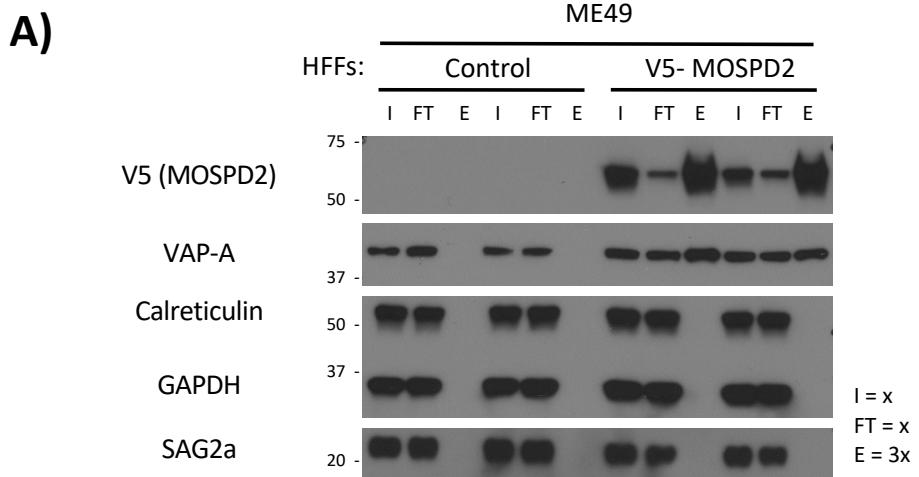



Fig 4: MYR1 and GRA45 are not necessary for host MOSPD2 association at the PVM. A. Representative images of ME49- or ME49 Δ myr1-infected HFFs 21 hpi. Cells were then fixed with methanol and stained with anti-MOSPD2 antibodies. Scale bar = 10 μ m. B. Boxplot of MOSPD2 fluorescence intensities at the PVM from vacuoles in (A). N.S. indicates not statistically significant ($P \geq 0.05$). Representative images (C) and quantitation (D) 21 hpi of HFFs infected with RH Δ gra16::GRA16-HA parental (RH) and Δ gra45 made in the same background (RH Δ gra45). Samples were processed as described above. Scale bar = 5 μ m. Quantitation was performed in Fiji as described in the methods. Data are from one representative of three independent experiments, each consisting of three pooled biological replicates. Significance was tested using Student's t test for significance.

B)

Rank	<i>T. gondii</i> Gene ID	Transcript Product	Control #1	Control #2	MOSPD2 #1	MOSPD2 #2	LOPIT
1	TGME49_258580	ROP17	0	0	34	31	rhoptries 1
2	TGME49_309590	ROP1	0	1	32	27	rhoptries 1
3	TGME49_243800	long-chain fatty acid CoA ligase, putative	0	0	12	14	PM - peripheral 2
4	TGME49_288650	GRA12	0	0	12	12	dense granules
5	TGME49_308090	ROP5	1	0	18	15	rhoptries 1
6	TGME49_230980	myosin I	0	0	9	9	unknown
7	TGME49_205250	ROP18	0	0	10	7	rhoptries 1
8	TGME49_310000	membrane protein, putative	0	0	6	8	Golgi
9	TGME49_247350	thioredoxin domain-containing protein	0	0	7	6	ER 1
10	TGME49_233480	SRS29C	0	0	7	5	PM - peripheral 1
11	TGME49_288380	heat shock protein	0	0	7	5	cytosol
12	TGME49_311720	chaperonin protein BiP	0	0	6	5	ER 2
13	TGME49_279100	MAF1a	0	1	10	6	dense granules
14	TGME49_239740	GRA14	0	0	5	4	dense granules
15	TGME49_205658	F5/8 type C domain-containing protein	0	0	8	0	unknown

Fig 5: V5-MOSPD2 immunoprecipitation and LC-MS/MS identifies known *T. gondii* proteins at the PVM. A. ME49-infected control or V5-MOSPD2 expressing HFFs were infected for 19 h then lysed with RIPA. Whole cell lysates were incubated with anti-V5 nanobodies, spinning for 1 h at 4°C. Nonbinding lysates were collected, and beads were washed. Bound proteins were eluted in Laemmli buffer at 90°C for 5 minutes. Western blot was probed for V5 (MOSPD2), VAP-A, Calreticulin, GAPDH, and SAG2a. “x” values denote relative amount of the sample loaded into each lane (i.e., elution had three times as much of the total sample loaded relative to the input and flowthrough lanes) Data are representative of three independent experiments. B. Samples described in (A) were submitted for LC-MS/MS protein identification. A value of 1 was added to all spectral counts for control and V5-MOSPD2 conditions then averaged and the results for each parasite protein were listed in descending rank for enrichment in the MOSPD2 samples relative to controls [Supp. Data Set 1]. Intensity of red shading reflects relative number of spectral counts detected in each sample. LOPIT data describes subcellular localization within intact parasites for identified proteins [84]. Such data do not relate to a given protein’s final location within the infected host cell.

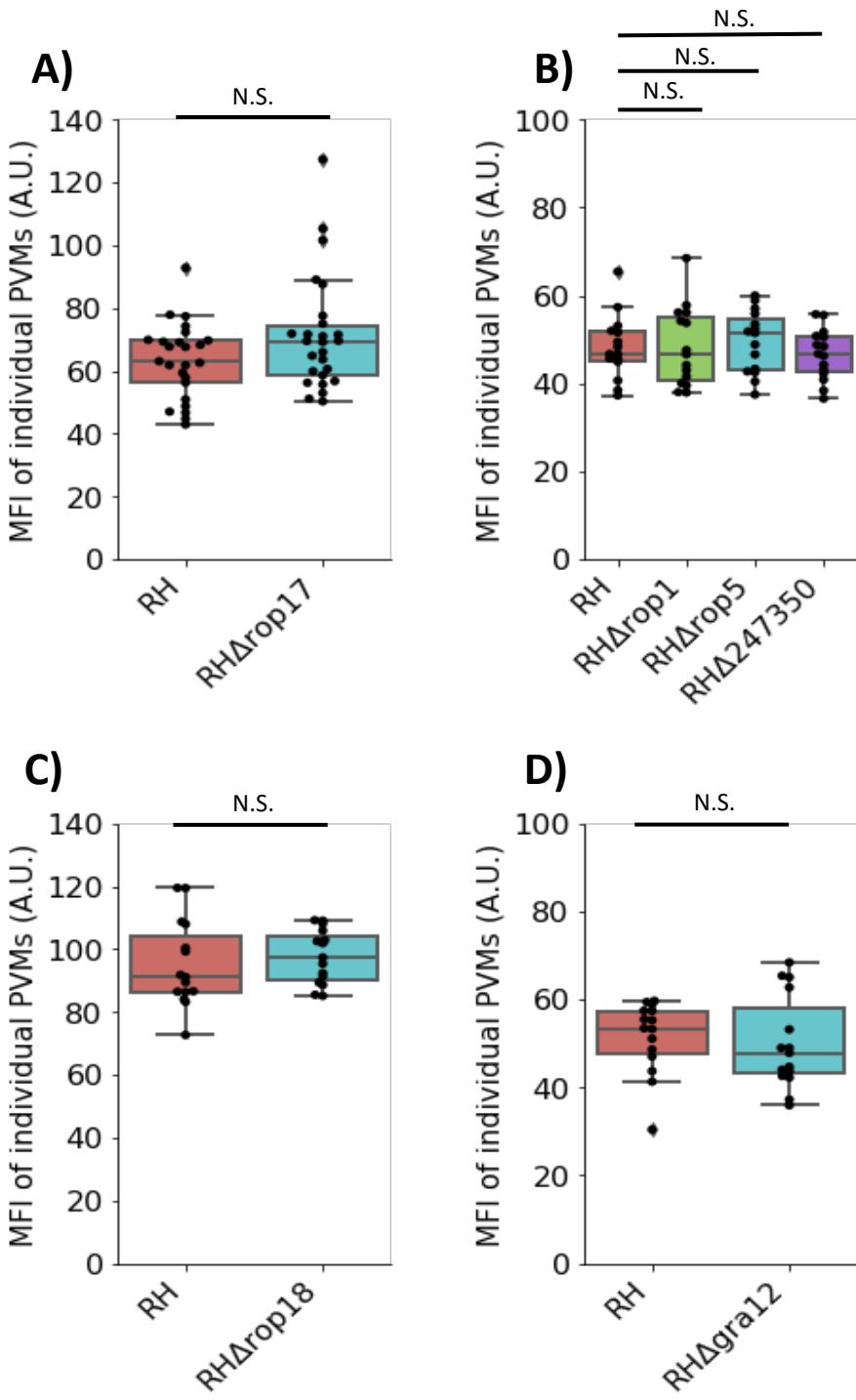


Fig 6: MOSPD2 association is not dependent on interacting proteins assessed so far. HFFs were infected with the indicated RH strains for 21-24 h. Monolayers were fixed with methanol then stained for endogenous MOSPD2. Fluorescence intensity of host MOSPD2 was quantified at the PVM using Fiji (see methods) for: A. RH, RH Δ rop17, B. RH, RH Δ rop1, RH Δ rop5, RH Δ 247350, C. RH, RH Δ gra12, D. and RH, RH Δ rop18. Data are from one experiment that pooled three biological replicates. One-way ANOVA was used to test significance in (B). N.S. indicates not statistically significant ($P \geq 0.05$). Student's t test was used to test significance in (A), (C), and (D). All data are representative of three biological replicates pooled from one experiment. One of two fully independent experiments is shown.

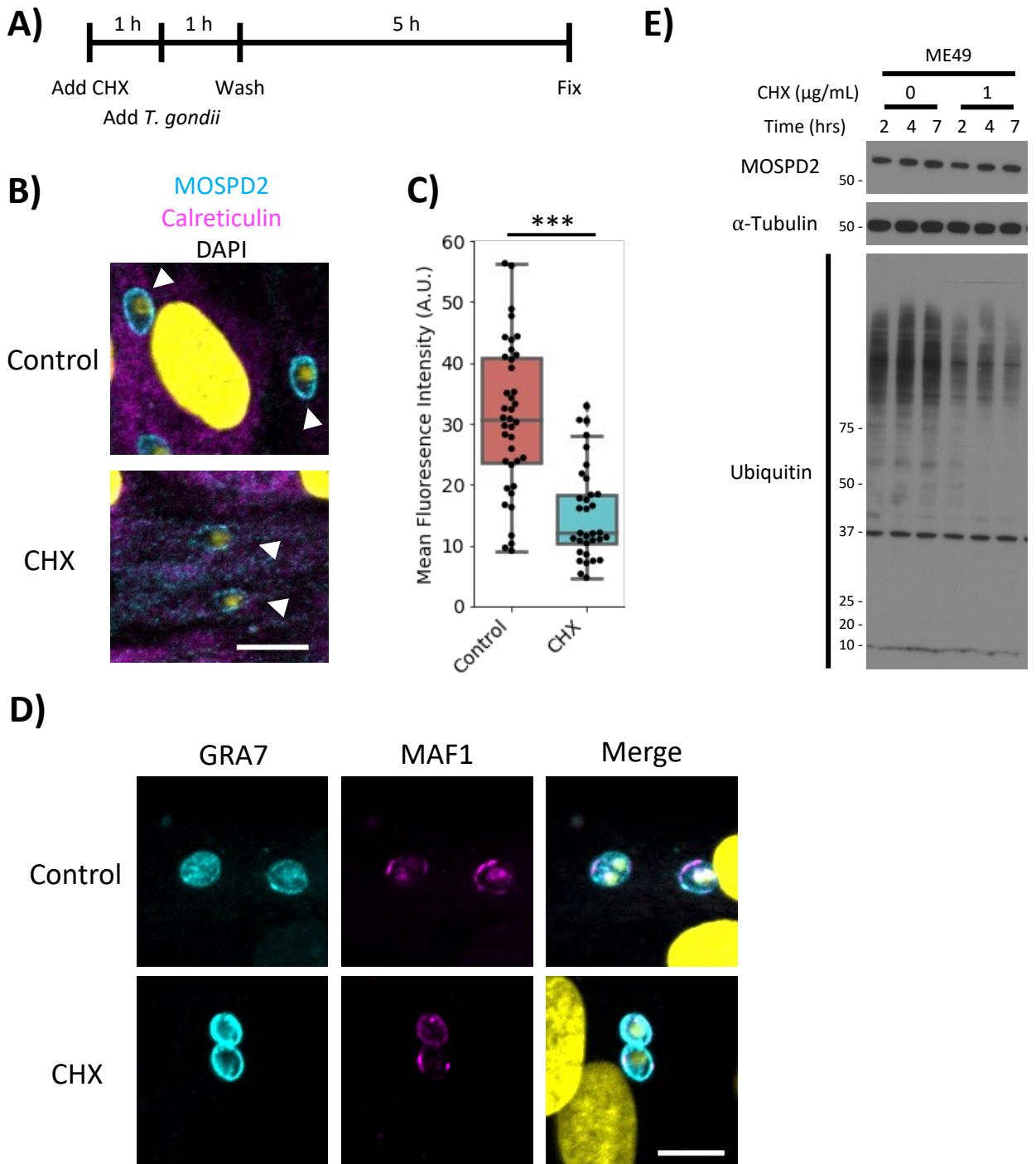
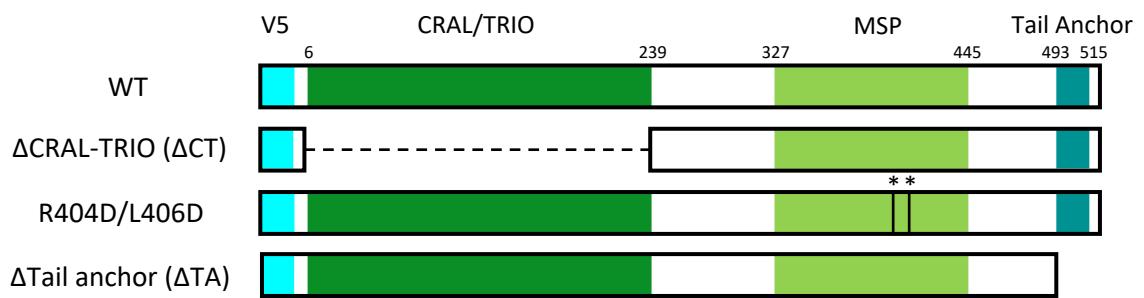
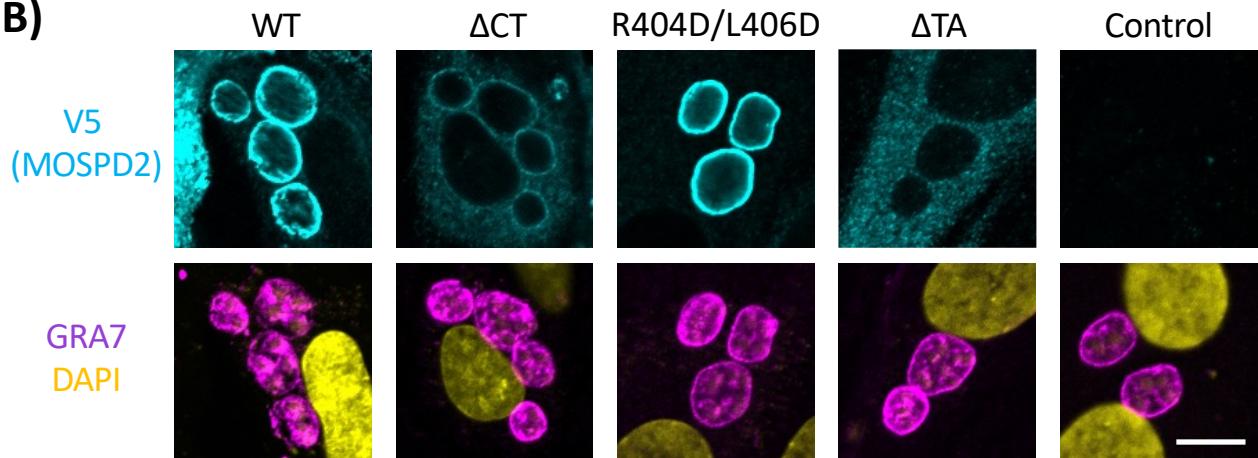
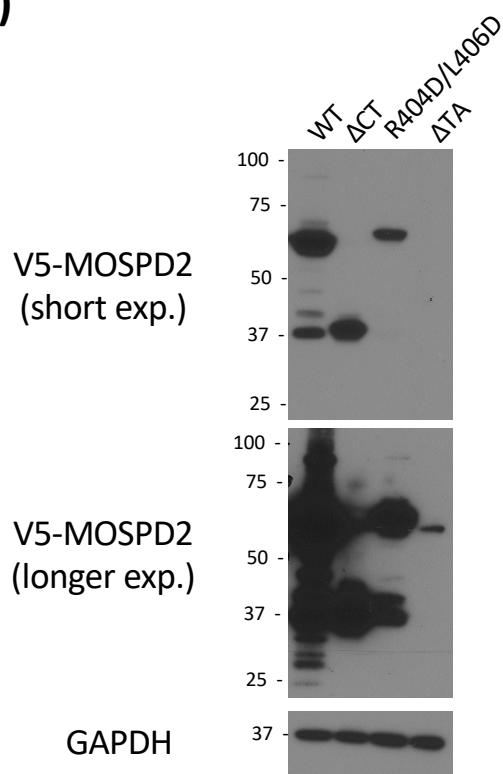
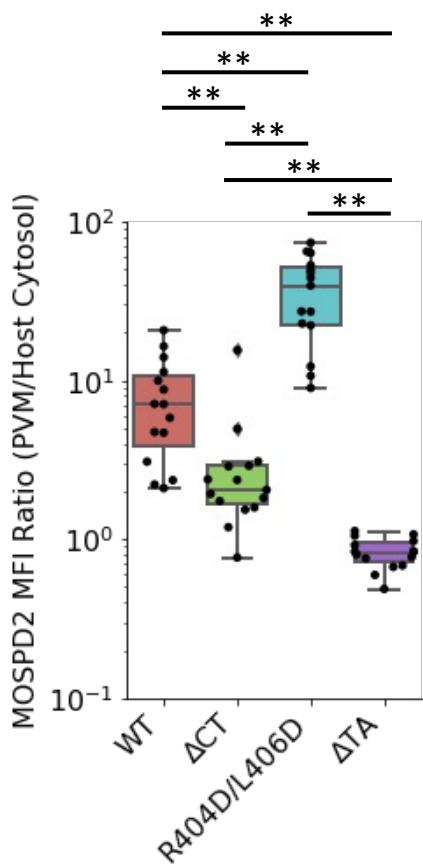






Fig 7: Host translation is necessary for prominent MOSPD2 association at the PVM.

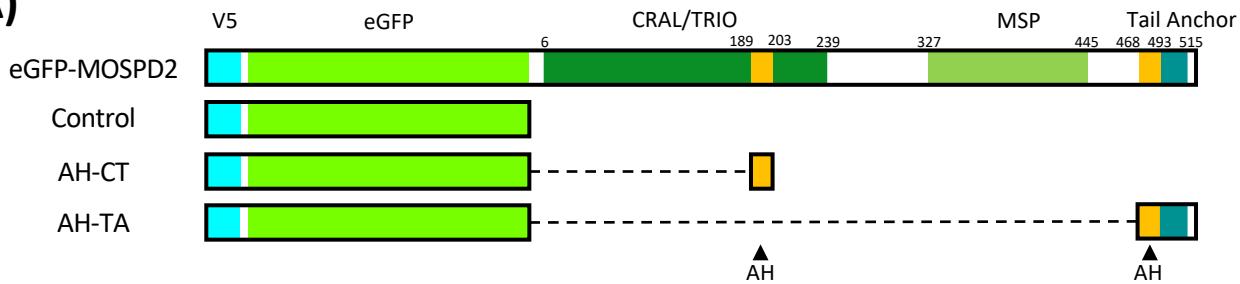
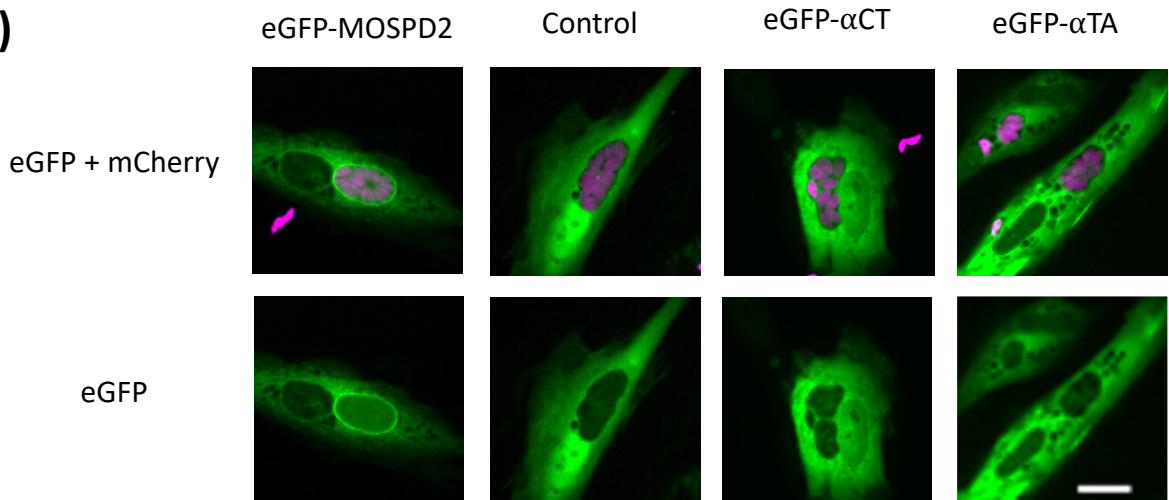
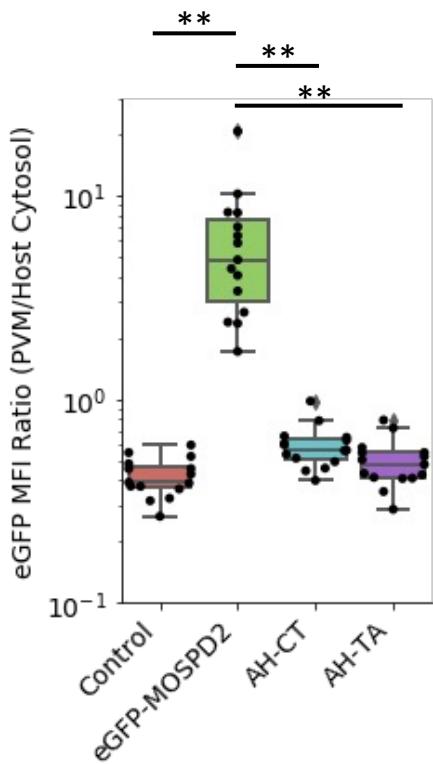
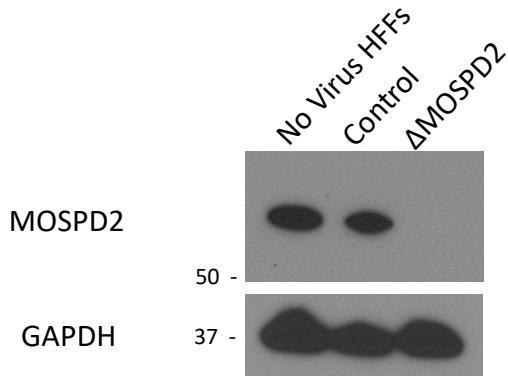
A. Schematic showing the addition of CHX (1 μ g/mL) to HFFs 1 h prior to the addition of ME49. The monolayer was washed 1 h after the addition of the parasite. Media was replaced with either control or CHX-containing media where appropriate. B. Representative images of control and CHX-treated HFFs infected with ME49 for 6 h. Cell monolayers were fixed with methanol and stained with MOSPD2 (cyan) and calreticulin (magenta). DAPI is in yellow. Scale bar = 10 μ m. C. Quantification of MOSPD2 signal at ME49 PVMs at 6 hpi from (B). Data are from one experiment that pooled 3 biological replicates. Data are representative of two fully independent experiments. Significance was tested using the Student's t test (*** indicates $P < 0.001$). D. Infected HFFs prepared as described in (A). Monolayers were stained for GRA7 (cyan), MAF1b (magenta), and DAPI (yellow). Data are representative of two experiments. Scale bar = 10 μ m. E. Representative Western blot of whole cell lysate from ME49-infected HFFs prepared as in (A). The blot was probed with antibodies against host MOSPD2, α -Tubulin, and Ubiquitin. Data are representative of three independent experiments.

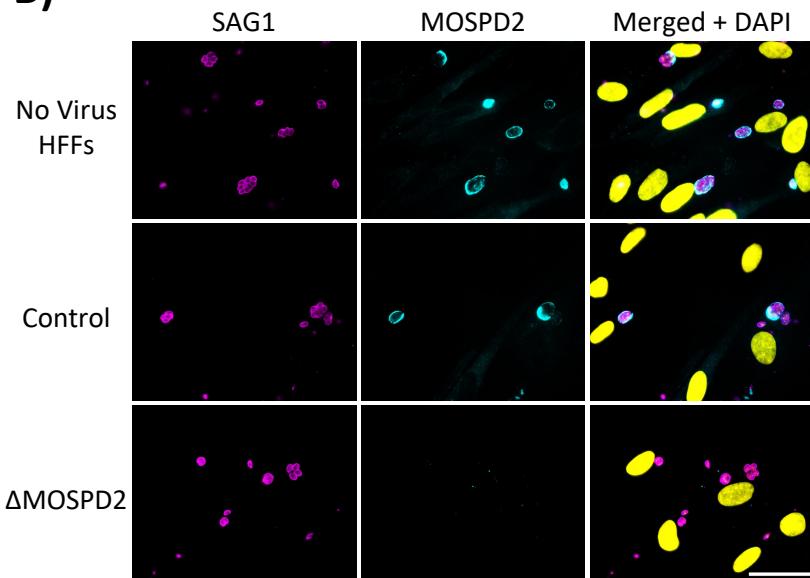
A)**B)****C)****D)**

Fig 8: The tail anchor and CRAL/TRIO of MOSPD2 are necessary for association at the PVM.

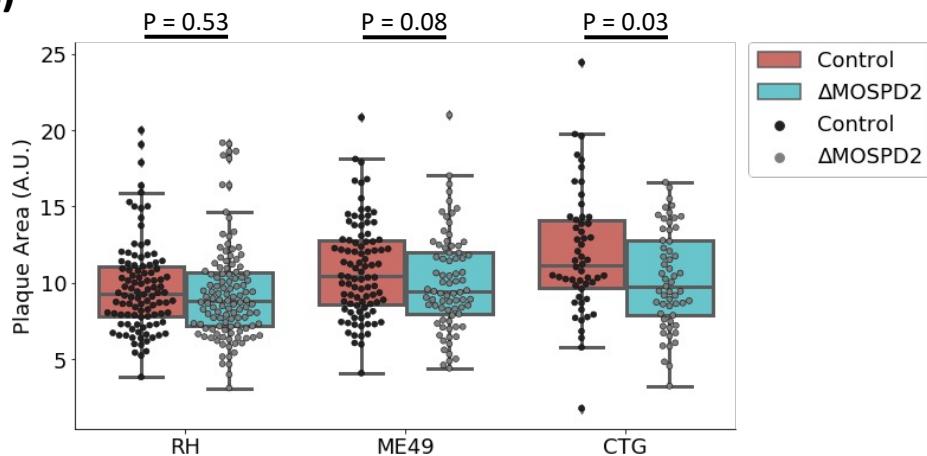
Fig 8: The tail anchor and CRAL/TRIO of MOSPD2 are necessary for association at the PVM.

A. Schematic showing wild type MOSPD2 and mutant constructs Δ CRAL-TRIO (Δ CT), the double point-mutant R404D/L406D, and Δ Tail-Anchor (Δ TA). V5 (cyan) is an inserted V5-epitope tag. B. Stable HFF cell lines over-expressing wild type, mutant MOSPD2 constructs outlined in (A), or control cells that did not receive lentivirus vector. HFFs were infected with ME49 for 21-24 h then fixed with methanol and probed for GRA7 (magenta), V5 (MOSPD2, cyan), and DAPI (yellow). Images are representative from 3 independent experiments. Scale bar = 10 μ m. C. Uninfected whole cell lysates were lysed in RIPA. Western blot on the lysates was probed for V5 (MOSPD2), and GAPDH. Short and long exposure of the blot was used to capture Δ TA protein without saturating the other sample lanes. Data are representative of one experiment. D. Quantitation of V5 signal at the PVM as a ratio of PVM V5 signal divided by cytosolic signal. Data shown are from one experiment that pooled three biological replicates. One of three fully independent experiments is shown. Significance was tested using a One-way ANOVA and Tukey Post-HOC test (** indicates $P < 0.01$).





A)**B)****C)**


Fig 9: The CRAL/TRIO amphipathic helix or tail anchor are not sufficient to associate with the Toxoplasma PVM.

A. Schematic showing eGFP constructs conjugated to a full length MOSPD2 (eGFP-MOSPD2), the amphipathic sequence in the CRAL/TRIO (AH-CT), the tail anchor including the proximal amphipathic sequence (AH-TA), and a control. AH = amphipathic helix. B. HFFs transiently transfected with the constructs from (A). HFFs were infected 7 h post-transfection with RH mCherry (magenta) for 21 h then imaged live. Images are show from 1 experiment and representative of at least 3 fully independent experiments. Scale bar = 20 μ m. C. Quantitation of PVM localized eGFP signal normalized to host cytosol for each individual host cell. Significance was tested using a One-way ANOVA and Tukey Post-HOC test (** indicates $P < 0.01$).


A)

B)

C)

D)

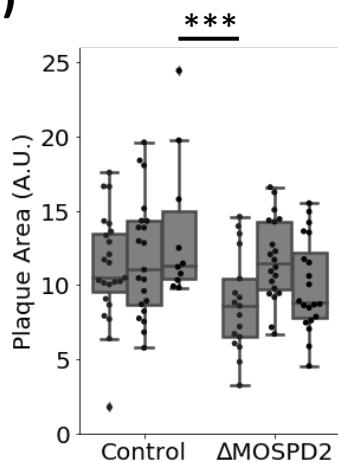
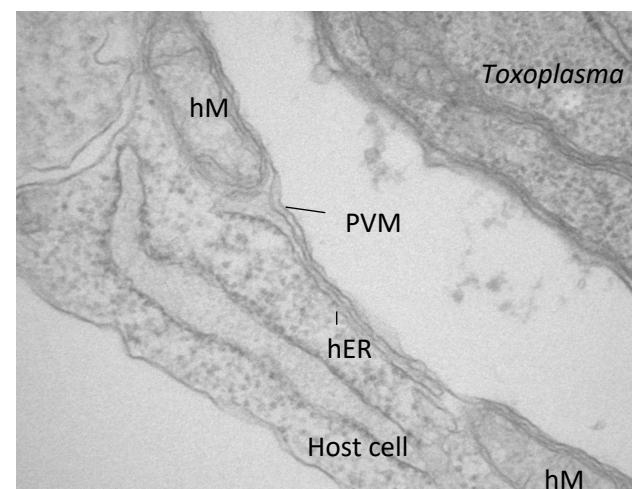
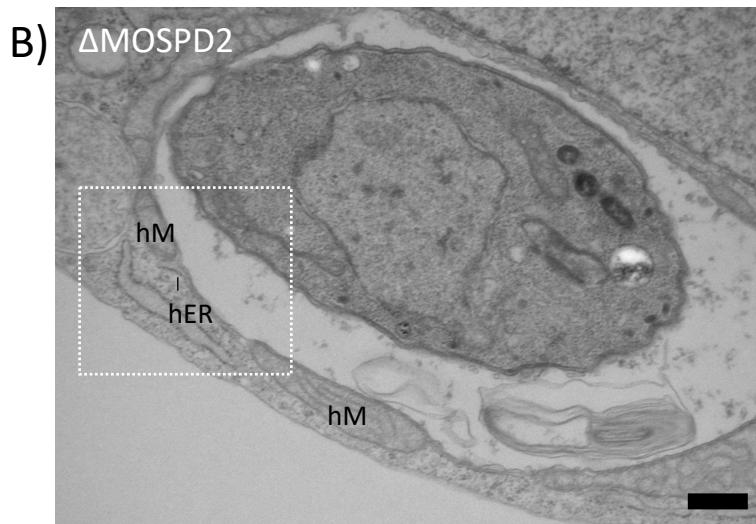
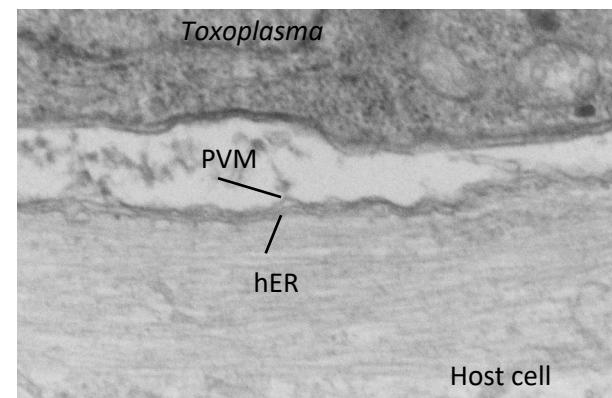
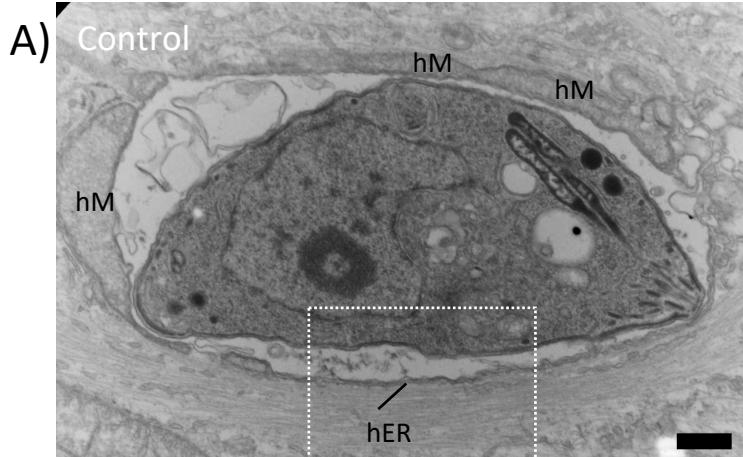






Fig 10: Ablation of MOSPD2 has little, if any, effect on *Toxoplasma* growth in vitro.

A. HFF cell lines were generated using lentivirus to introduce CRISPR/Cas9 guides for MOSPD2 or a non-targeting control. Transduced HFFs were selected for using puromycin and expanded. Western blot for whole cell lysates from HFFs receiving no virus, Control (non-targeting control), and Δ MOSPD2 (MOSPD2 guide) was stained for endogenous MOSPD2 and GAPDH. B. No Virus HFFs, Control, and Δ MOSPD2 HFFs were infected with RH for 21-24 h, then fixed with methanol, and stained for SAG1 (magenta), MOSPD2 (cyan), DAPI (yellow). Scale bar = 40 μ m. C. Control and Δ MOSPD2 cells were infected with RH, ME49, or CTG parasites for 10 days (RH), or 13 days (ME49, CTG). Monolayers were then stained with crystal violet and allowed to dry. Plaque area for each condition was measured in Fiji and plotted. Data are from one of two representative experiments each consisting of three biological replicates. Significance was tested using Student's t test to do pair-wise comparisons. D. Plotted individual replicates from CTG in (C). Significance was tested using a One-way ANOVA and Tukey Post-HOC test (** indicates $P < 0.001$).

C)

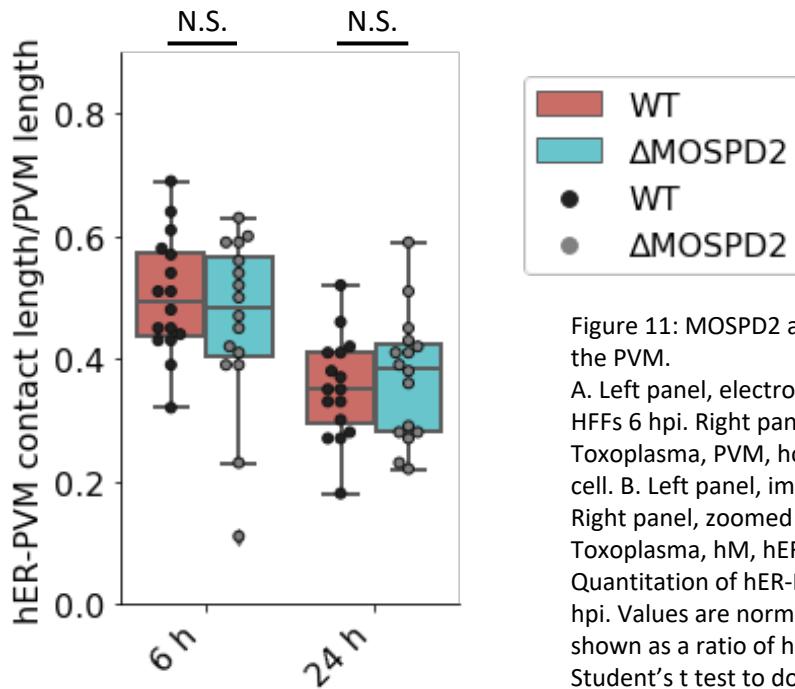


Figure 11: MOSPD2 ablation does not affect host ER association with the PVM.

A. Left panel, electron micrograph images of RH-infected control HFFs 6 hpi. Right panel, zoomed image with labels marking Toxoplasma, PVM, host ER (hER), host Mitochondria (hM), and host cell. B. Left panel, image showing a RH-infected Δ MOSPD2 HFF 6 hpi. Right panel, zoomed image of the boxed region showing labeled Toxoplasma, hM, hER, host ribosomes, and the host cell. C. Quantitation of hER-PVM contact sites around the PVM at 6 and 24 hpi. Values are normalized to the circumference of the PVM and shown as a ratio of hER to PVM length. Significance was tested using Student's t test to do pair-wise comparisons.

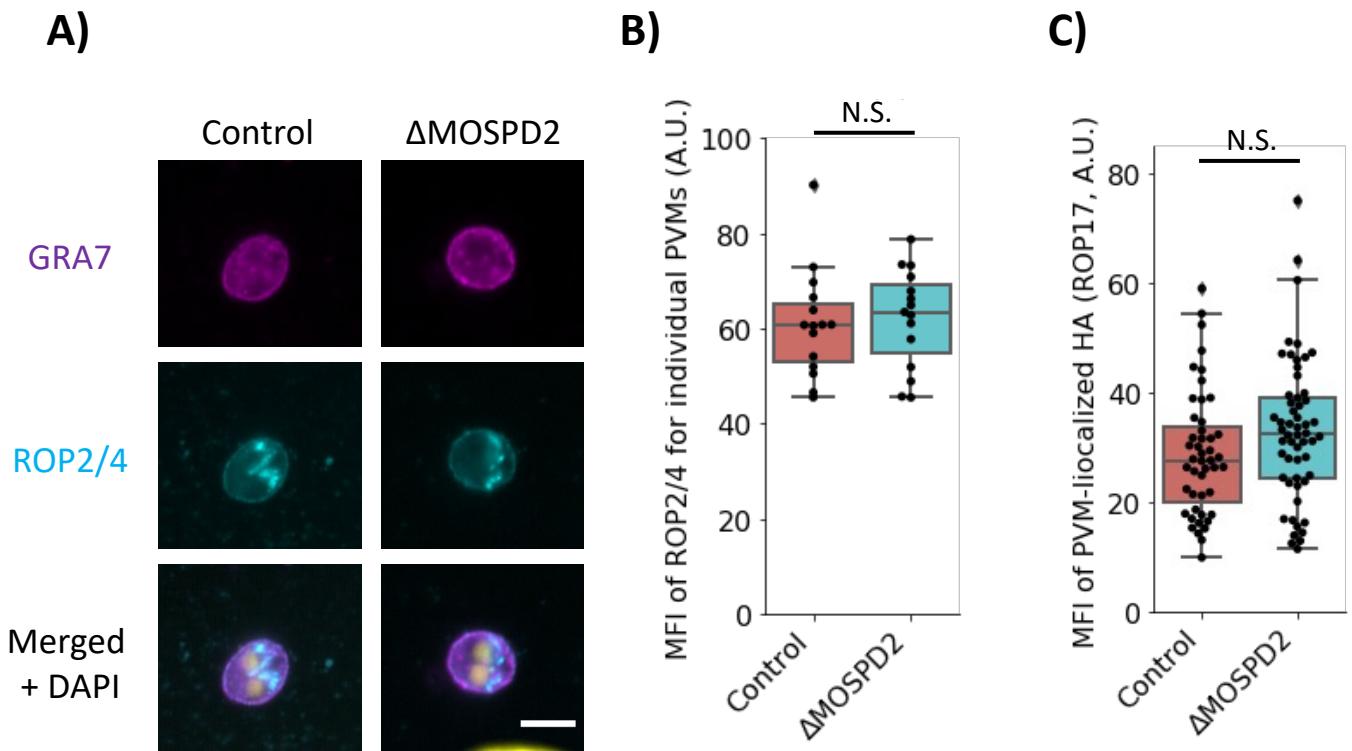


Fig 12: ROP2/4 and ROP17 association is not dependent on MOSPD2.

A. Control and Δ MOSPD2 HFFs were infected with ME49 for 3 h and fixed with methanol. Monolayers were stained for ROP2/4 (cyan) and GRA7 (magenta). Fluorescence intensity of ROP2/4 signal was quantified for individual vacuoles in Fiji and MFI for individual vacuoles was plotted. Data are from one of two representative experiments each consisting of three biological replicates. Significance was tested using Student's t test. Scale bar = 5 μ m. B. Quantitation of sample data from (A). C. Control and Δ MOSPD2 HFFs were infected with RH Δ rop17::ROP17-3xHA for 2-3 h then fixed with 4% formaldehyde. Samples were partially permeabilized using 0.02% Digitonin for 1-3 min, blocked with 3% BSA in PBS, and stained for HA (ROP17) and SAG1. Quantitative data shown are from one of two experiments each consisting of three biological replicates. Significance was tested using Student's t test.