

1
2
3
4
5
6
7
8
9
10

11 **Title:** Somatomotor Beta Bursts Mediate the Negative Impact of PTSD Severity on Conflict Monitoring

12

13

14 **Authors:** Eric Rawls¹, Craig A. Marquardt^{2,1}, Scott R. Sponheim^{2,1}

15

16

17 **Affiliations:** ¹Department of Psychiatry and Behavioral Sciences, University of Minnesota, ²Minneapolis
18 Veterans Affairs Health Care System

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Correspondence: Eric Rawls <https://orcid.org/0000-0002-4852-9961>, rawls017@umn.edu

45 **Abstract**

46 Cognitive control deficits are associated with posttraumatic stress disorder (PTSD) and may explain how
47 reminders of past traumatic events intrude upon daily experiences of people who have experienced
48 trauma. Lateralized somatomotor beta-band desynchronization, an electrophysiological signature of
49 controlled movement, indexes the downstream output of cognitive control processes. Recent evidence
50 suggests that somatomotor beta activity does not manifest as rhythmic oscillations, but instead as discrete
51 and stochastic burst-like events. Here, we quantified the rates of lateralized somatomotor beta bursts (beta
52 burst rates; BBR) evoked during a flanker cognitive control paradigm among United States military
53 veterans from Operations Iraqi and Enduring Freedom (OEF/OIF) who show varying degrees of PTSD.
54 We found BBR reflected both response direction and conflict monitoring during processing of stimuli that
55 evoked response conflict. Impaired behavioral performance and increased peri-response BBR were
56 related to greater posttraumatic stress symptomatology (PTSS). Critically, increased BBR mediated the
57 link between PTSS and decreased conflict monitoring accuracy. Results suggest that poor cognitive
58 control in PTSS reflects a failure to adaptively disinhibit target motor representations, rather than a failure
59 to inhibit distractor representations. Thus, BBR reveal limited representation of target stimuli as a primary
60 contributor to impaired cognitive control in PTSD. Because BBR were robustly associated with
61 behavioral performance and exhibited high statistical reliability the index may carry utility for appraising
62 individual differences in cognitive control in other brain disorders.

63

64 Keywords: beta-band, beta burst, somatomotor, PTSD, conflict monitoring

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

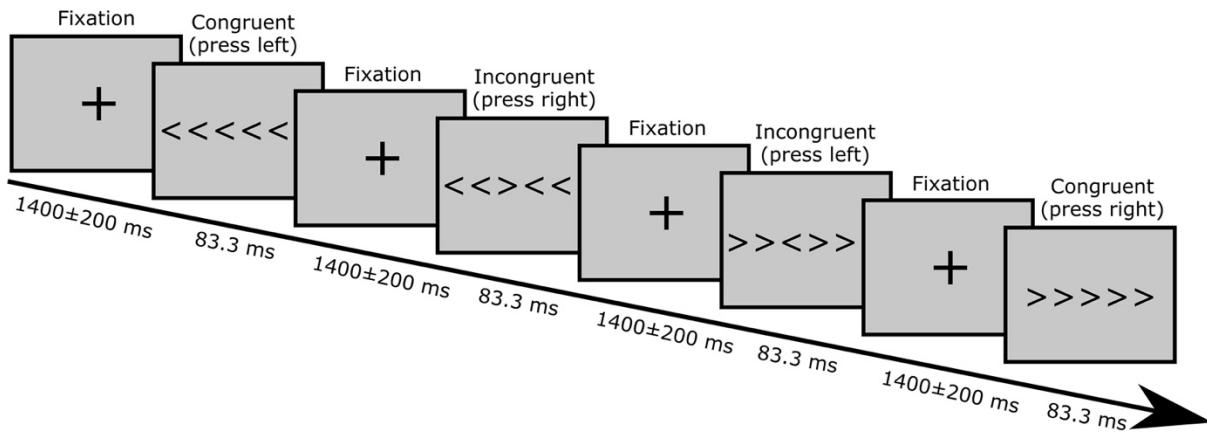
89 **1 Introduction**

90 Posttraumatic stress disorder (PTSD) is a debilitating condition that will impact ~8% of the US
91 population within their lifetime (Kessler et al., 2005, 2012), and as many as 15% of US military veterans
92 returning from deployments during Operations Enduring Freedom or Iraqi Freedom (Tanielian et al.,
93 2008). PTSD is characterized by recurring intrusive thoughts of traumatic events, maladaptive avoidance,
94 negative changes in affect or mood, and hyperarousal (American Psychiatric Association, 2013). Deficits
95 in cognitive control, or the ability to control our actions in pursuit of long-term goals (Botvinick et al.,
96 2001), are also apparent in PTSD. Cognitive control is particularly relevant to the ability to suppress
97 intrusive thoughts (Bomyea & Lang, 2015, 2016; Brewin & Beaton, 2002), a key feature of PTSD.

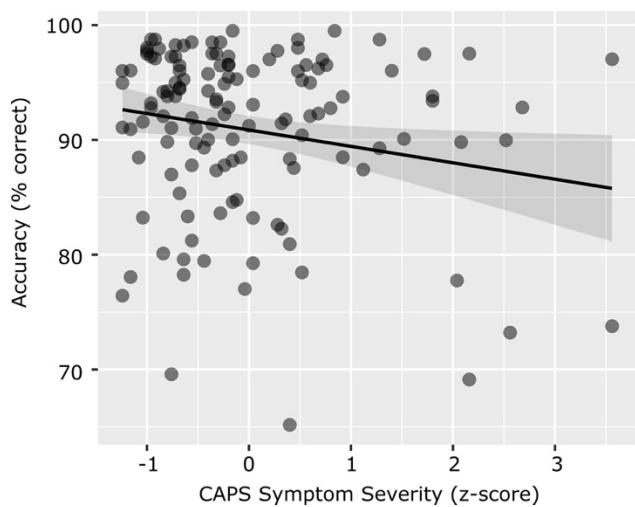
98 Cognitive control can be assessed using laboratory tasks that simultaneously prime mutually
99 incompatible responses, such as the Flanker (Eriksen & Eriksen, 1974) and Stroop (Stroop, 1935)
100 paradigms. Such tasks engage conflict monitoring, a subdomain of cognitive control that involves
101 detecting when incompatible response patterns are activated and arbitrating between them to execute the
102 correct response (Botvinick et al., 2001). This monitoring function relies on interactions between anterior
103 cingulate, prefrontal, and premotor/motor cortices (Botvinick, 2007; Botvinick et al., 2004; Gehring &
104 Knight, 2000), a neural circuit that contributes to our ability to regulate emotional responses (Ochsner &
105 Gross, 2005). In this framework, ACC is thought to assume the role of monitoring for response conflict,
106 and DLPFC is thought to take the role of implementing control. Premotor/motor cortex is densely
107 connected with the ACC and DLPFC (Botvinick et al., 2001), and receives these downstream control
108 signals to dynamically adjust motor inhibition. In the present investigation we sought to better understand
109 neural processes related to conflict monitoring that might account for impaired cognitive control in
110 posttraumatic psychopathology.

111 Cognitive control processes in prefrontal brain regions are associated with theta-band (4-8 Hz)
112 activity (Cavanagh et al., 2012; Cavanagh & Frank, 2014). However, motor signals representing the
113 output of conflict monitoring systems, and corresponding to directed movement, are most prominent in
114 the beta frequency band (15-30 Hz). Motor cortical activity is sensitive to competition among choice
115 stimuli prior to choice commission (Cisek & Kalaska, 2005; Pape & Siegel, 2016; Pastor-Bernier &
116 Cisek, 2011), and predicts eventual choice during perceptual decision-making (Donner et al., 2009).
117 Lateralized somatomotor beta power also reflects cognitive control influences over motor output. Fischer
118 et al. (2018) demonstrated that motor beta reflects post-error regulation in the flanker task, and
119 specifically appears to gate the rate at which environmental information informs responding. As such,
120 motor cortical signaling furnishes a readout of the downstream influence of conflict monitoring,
121 potentially providing a neural indicator of clinically significant impairments in cognitive control.

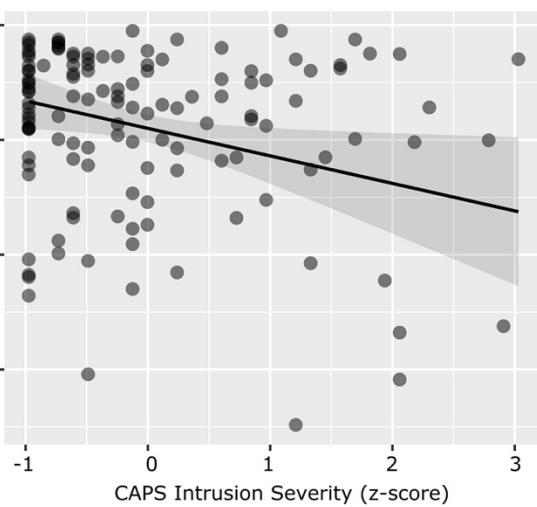
122 Investigations of activity from non-invasive electrophysiological sensors over the human motor
123 cortex have shown that power decreases in a broad beta-frequency (15-30) Hz band during the several
124 hundred milliseconds that surround a behavioral response. However, investigations of beta-frequency
125 neural activity in unaveraged single-trial traces suggest that beta activity is not rhythmic, but instead is
126 better characterized as a series of transient burst events, each lasting approximately 150 ms (Lundqvist et
127 al., 2016; Sherman et al., 2016). In primary somatosensory cortex, differences in pre-stimulus beta power
128 that predicted detection of tactile stimuli (Jones et al., 2010) were later shown to instead reflect a
129 difference in the rate of averaged pre-stimulus beta burst events (Shin et al., 2017), and the rate of beta
130 burst events measured from somatomotor EEG sensors predicted response commission and successful
131 response inhibition more strongly than averaged beta power (Wessel, 2020).


132 In the present study we examined conflict monitoring and posttraumatic psychopathology in 130
133 US military veterans who were previously deployed to combat zones. We hypothesized that the rate of
134 somatomotor beta burst events would reflect conflict monitoring by signaling response direction and
135 stimulus congruency in a flanker paradigm. Specifically, since beta burst rate decreases are thought to
136 reflect disinhibition of motor cortex during movement, we hypothesized that beta burst rates would
137 decrease over motor cortex contralateral to the responding hand for both congruent and incongruent trials.
138 Furthermore, we hypothesized that ipsilateral beta burst rates would be lower for incongruent trials
139 (compared to congruent), reflecting disinhibition of ipsilateral motor cortex by distracting flanker stimuli.
140 We then investigated whether beta burst rates during conflict monitoring might characterize PTSD-
141 relevant impairments in cognitive control. Critically, increased rates of peri-response beta burst events
142 were systematically related to increased severity of posttraumatic stress symptomatology, and statistically
143 mediated the link between PTSD symptom severity and impaired conflict monitoring.
144

145 2 Results


146 2.1 Lateralized Response Conflict Paradigm Demonstrates Cognitive Control Deficits in PTSD

147 Participants showed the lateralized response conflict effects typical for behavior on the flanker
148 task. The mean accuracy rate was $90.9 \pm 7.7\%$ (congruent: $96.3 \pm 4.6\%$, incongruent: $85.7 \pm 10.7\%$). Mean
149 response times (RTs) were 455 ± 44 ms (congruent: 409 ± 40 ms, incongruent: 501 ± 48 ms). A linear mixed-
150 effects model (LMM) on accuracy rates demonstrated the expected within-subject effect of stimulus
151 congruency, $\text{Wald } \chi^2(1) = 137.30, p < .001$, but no effect of group (all $p > .1$). Results were equivalent
152 whether or not we included individuals with subthreshold PTSD diagnoses in the PTSD diagnostic
153 groups. However, a model that considered overall PTSD symptom severity instead of PTSD diagnosis
154 showed a main effect of symptom severity, $\text{Wald } \chi^2(1) = 5.05, p = .025$ (*Figure 1B*). This effect was
155 equivalent when we instead used a robust model to predict accuracy rates, $t(127.99) = -2.35, p = .020$. A
156 model that instead considered individual symptom subscales from the CAPS (instead of overall symptom
157 severity) revealed a main effect of Intrusion symptom severity on accuracy, $\text{Wald } \chi^2(1) = 4.98, p = .026$,
158 indicating lower accuracy with increasing intrusion symptom severity (*Figure 1C*). This effect was
159 equivalent when we instead used a robust model to predict accuracy rates, $t(123.99) = -2.57, p = .011$.
160 This model also indicated a significant main effect of blast mTBI severity, $\text{Wald } \chi^2(1) = 7.47, p = .006$,
161 indicating increasing accuracy with increasing blast mTBI severity. This effect was equivalent when we
162 instead used a robust model to predict accuracy rates, $t(123.99) = 3.09, p = .002$. RTs demonstrated the
163 expected within-subject effect of congruency, $\text{Wald } \chi^2(1) = 939.59, p < .001$, but no effects of diagnostic
164 group or of symptom severity. As such, our analyses reveal response control deficits associated with
165 overall PTSD symptom severity, but not a formal diagnosis of PTSD, as well as likely confounded
166 response control benefits associated with increasing blast mTBI severity.
167


A Flanker Task Design and Timing

B PTSD Symptom Performance Effects

C Intrusion Symptom Performance Effects

168

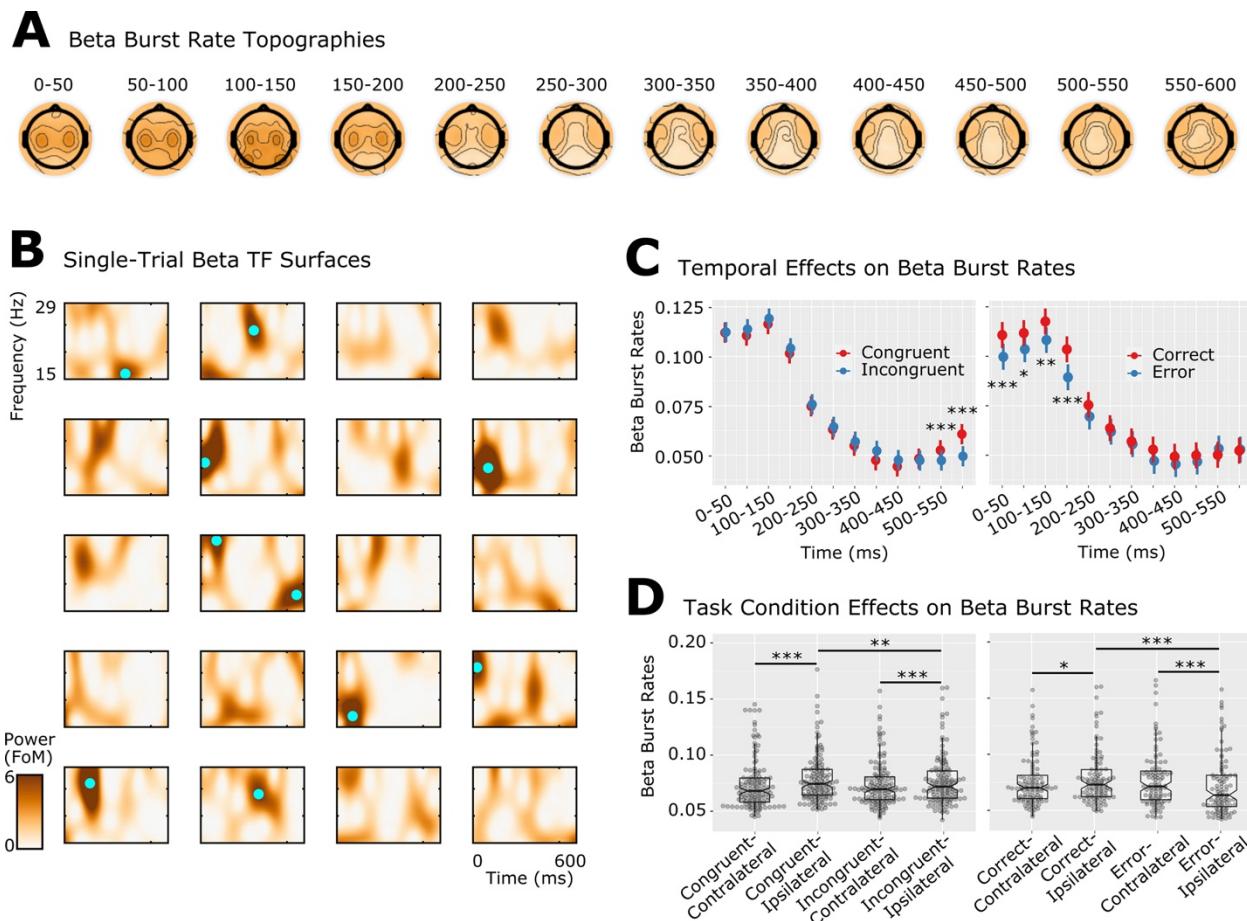
169 *Figure 1. Lateralized Response Conflict Paradigm Reveals Lower Cognitive Control Related to Worse*
170 *PTSD Symptomatology.*

171 *A: Participants (n = 130) completed a flanker task while we recorded dense-array EEG.*

172 *B: Worse task accuracy was predicted by increased overall PTSD (i.e., CAPS) symptom severity (p =*
173 *.025).*

174 *C: Worse task accuracy was predicted by increased intrusive reexperiencing of traumatic events (i.e.,*
175 *Intrusion) severity (p = .026).*

176


177 2.2 Somatomotor Beta Burst Rates Track Competing Motor Representations During Conflict

178 We examined the motor cortical outputs of conflict monitoring processes by detecting beta-
179 frequency (15-29 Hz) bursts in single trials of cleaned EEG. Grand-average topographical plots of BBR
180 are presented in *Figure 2A*. Single trials of beta-band activity at lateral somatomotor sensors clearly
181 indicated the presence of burst-like activity that was brief (~150 ms) and varying in time and frequency
182 over trials (*Figure 2B*).

183 We first characterized somatomotor beta bursts in correct trials using a LMM containing within-
184 subject factors of Congruency, Laterality, and Time Window. This analysis revealed main effects of Time
185 Window, Wald $\chi^2(11) = 9679.18, p < .001$, and of Laterality, Wald $\chi^2(1) = 54.76, p < .001$, as well as
186 interactions between Laterality and Congruency, Wald $\chi^2(1) = 4.71, p = .030$, and between Congruency
187 and Time Window, Wald $\chi^2(11) = 56.99, p < .001$. The effect of Time Window indicated that beta burst
188 rates decreased steadily from ~150 ms post-stimulus up to the time of response (~400-500 ms), followed
189 by a significant post-response rebound. The interaction of Congruency and Time Window demonstrated
190 that in late response windows, incongruent trials have lower BBR than congruent trials (time: 500-600
191 ms, $|z| > 3.36, p < .001$; *Figure 2C, left panel*). These results remained significant when p -values were
192 corrected for $n=12$ multiple comparisons via the FDR (Benjamini & Hochberg, 1995) method. This likely
193 represents slower motor processing induced by distractor stimuli, which activate conflicting motor
194 representations and slow correct response activation. Finally, the interaction of Congruency and Laterality
195 revealed that the effect of Laterality was significant in both congruent and incongruent trials, with lower
196 BBR for contralateral, compared to ipsilateral, sensors ($|z| > 3.69, p < .001$; *Figure 2D, left panel*). The
197 effect of Congruency was significant over ipsilateral sensors ($z = 2.64, p = .008$), with higher burst rates
198 for congruent trials compared to incongruent trials, but there was no influence of Congruency over
199 contralateral sensors ($z = -0.41, p > .6$; *Figure 2D, left panel*). Thus, we interpret this effect as most likely
200 reflecting disinhibition of competing motor responses by distracting flanker stimuli.

201 Next, we characterized somatomotor beta bursts in incongruent trials using within-subject factors
202 of Outcome, Laterality, and Time Window (*Figure 2C, right panel*). This analysis revealed main effects
203 of Outcome, Wald $\chi^2(1) = 29.47, p < .001$ and of Time Window, Wald $\chi^2(11) = 2863.36, p < .001$, as
204 well as interactions between Outcome and Laterality, Wald $\chi^2(1) = 20.23, p < .001$, and between
205 Outcome and Time Window, Wald $\chi^2(11) = 26.57, p = .005$. Interpretation of the interaction of Outcome
206 and Time Window demonstrated that BBR were significantly higher for correct trials (compared to error)
207 during pre-response periods consisting of 0-200 ms ($|z| > 2.54, p < .01$; *Figure 2C, right panel*). These
208 results remained significant when p -values were corrected for $n=12$ multiple comparisons via the FDR
209 (Benjamini & Hochberg, 1995) method. Interpretation of the interaction of Outcome and Laterality
210 demonstrated that correct trials had significantly higher BBR than error trials at sensors ipsilateral to the
211 flanker target stimulus (representing processing of distractors), $z = 7.02, p < .001$, but not at sensors
212 contralateral to the flanker target stimulus (representing processing of targets), $z = 0.65, p > .5$ (*Figure*
213 *2D, right panel*). Thus, incongruent trial errors are primarily associated with decreased inhibition at
214 ipsilateral somatomotor sites, representing increased engagement of distractor motor responses.

215

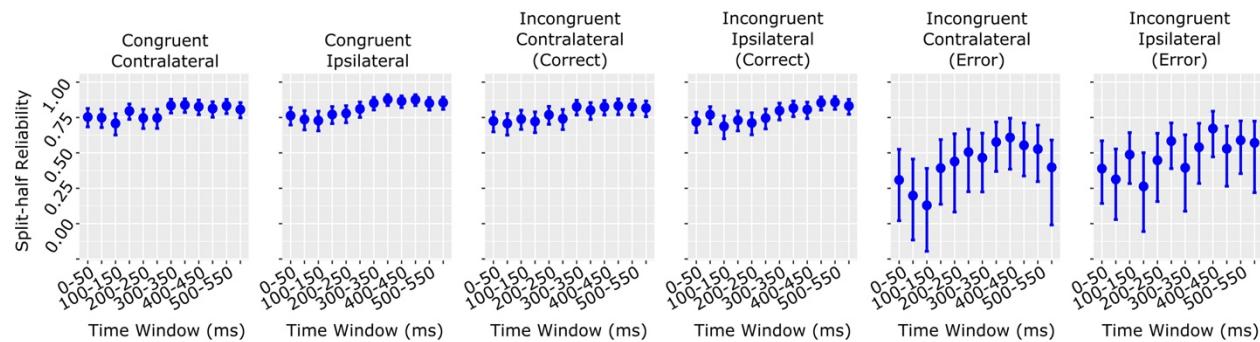
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

Figure 2. Somatomotor beta burst rates (BBR) track competing motor representations during conflict.

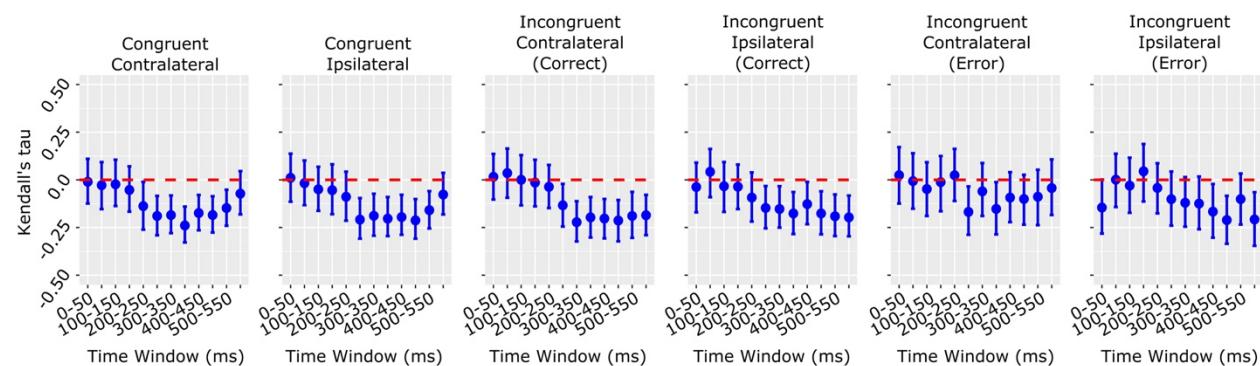
A: Topographies of BBR, averaged within 50 ms windows (all conditions, 0 ms is stimulus onset).

B: Example time-frequency surfaces of C3/C4 beta-band activity in single trials for randomly selected single subjects (one subject per row). Note that beta activity is brief and varying in time across trials (i.e., burst like). Detected bursts are superimposed on TF surfaces as cyan dots. Color scaling is in Factors of Median (FoM) as data are normalized according to frequency-specific medians.

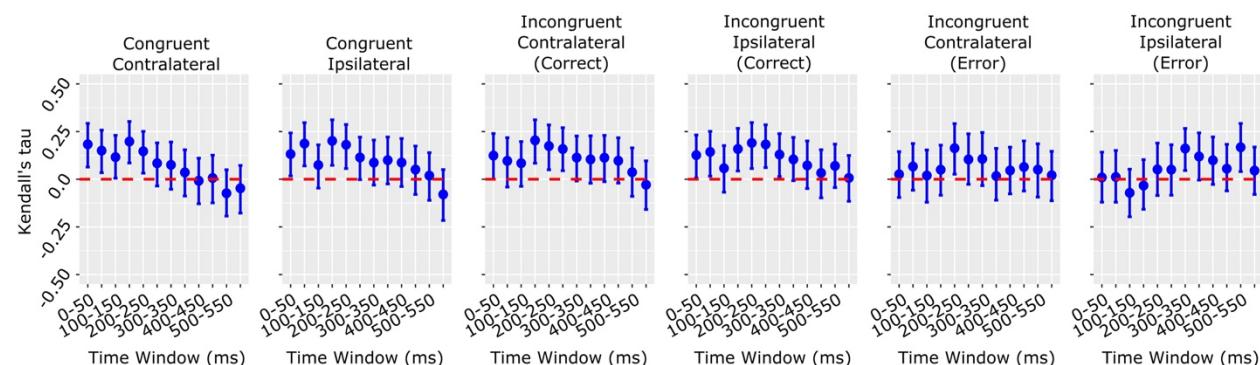
C: Left: Time Window X Congruency effects on averaged BBR. As described in Section 4.6 (Methods), the axis is interpreted as the average number of beta bursts in each time window per trial. BBR were increased for congruent compared to incongruent trials, but only for late time windows. Right: Time Window X Accuracy effects on averaged BBR. BBR were increased for correct compared to error trials, but only for early time windows. * $p < .05$, ** $p < .01$, *** $p < .001$.


D: Left: Congruency X Laterality effects on averaged BBR. As described in Section 4.6 (Methods), the axis is interpreted as the average number of beta bursts in each time window per trial. BBR were reduced for contralateral compared to ipsilateral sensors indicative of less motor inhibition, for both congruent and incongruent stimuli. BBR were also reduced for incongruent compared to congruent trials, but only for ipsilateral sensors. Right: Accuracy X Laterality effects on averaged BBR. BBR were reduced for error trials compared to correct trials at sensors ipsilateral to the target, indicating increased motor engagement with the distractor stimuli during erroneous responses. Meanwhile, Laterality effects within correct/error trials both indicated that BBR were reduced contralateral to the response direction. * $p < .05$, ** $p < .01$, *** $p < .001$.

237


238 **2.3 Somatomotor Beta Burst Rates are Reliable and are Associated with Individual Differences**
239 **in Response Control**

240 We found that correct-trial BBRs had good split-half reliability ($r > .7$) during early time periods,
241 and reliability increased to become very good peri-response ($r > .8$; *Figure 3A*). Error-trial
242 BBRs had notably lower and more variable split-half reliability estimates, but still had adequate reliability
243 peri-response ($r > .65$; *Figure 3A*). As such, we consider the psychometric properties of BBRs to be well-
244 suited for individual differences analyses. We further observed that individual differences in accuracy
245 rates negatively correlated with correct-trial BBR in time windows corresponding to 250-550 ms for
246 congruent trials, and in time windows corresponding to 300-600 ms post-stimulus for incongruent trials
247 (*Figure 3B*). These correlation coefficients were similar across ipsilateral and contralateral sensors. This
248 is interesting, as one might expect the directions of these correlations to be in opposite directions for
249 contralateral and ipsilateral sensors (at least for incongruent trials). We suggest this might be due to the
250 high correlation ($r > .9$) between contralateral and ipsilateral beta burst rates, such that subjects with high
251 ipsilateral BBR almost always had high contralateral BBR. Meanwhile, we observed that individual
252 differences in response times positively correlated with BBRs in the pre-response period, with minor
253 differences between conditions (*Figure 3C*). Error-trial BBR did not systematically relate to individual
254 differences in behavior. As such, these results replicate and extend those of (Wessel, 2020), who
255 demonstrated positive relationships between BBR and response times in a stop-signal task.
256


A Beta Burst Rate Split-Half Reliability Estimates (Across Subjects)

B Beta Burst Rate - Accuracy Correlations (Across Subjects)

C Beta Burst Rate - RT Correlations (Across Subjects)

257

258 *Figure 3. Somatomotor beta burst rates are reliable and are associated with individual differences in*
259 *conflict monitoring.*

260 *A: Across-subject beta burst rate (BBR) split-half trial-averaged reliabilities (Pearson correlations,*
261 *Spearman-Brown corrected; bars = 95% CI). Split-half reliabilities were estimated by randomly*
262 *generating two split-half averages per subject ($n = 130$ averages per vector; 5000 repetitions) and*
263 *correlating these estimates across subjects.*

264 *B: Across-subject trial-averaged BBR correlations with flanker task accuracy (ACC; Kendall's tau; bars*
265 *= bootstrap 95% CI).*

266 *C: Across-subject trial-averaged BBR correlations with flanker task reaction times (RT; Kendall's tau;*
267 *bars = bootstrap 95% CI).*

268

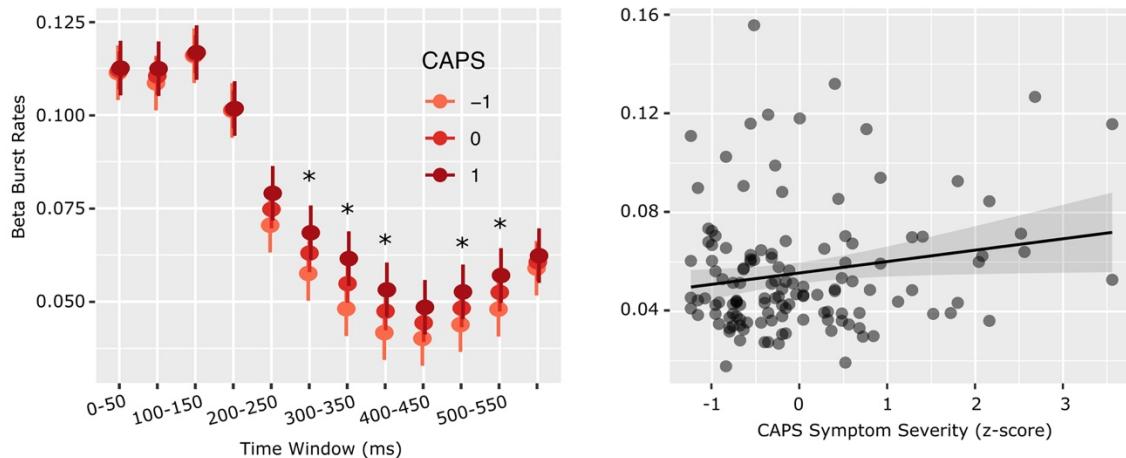
269 **2.4 Correct-Trial Somatomotor Beta Burst Rates Are Related to Overall PTSD Symptom**
270 **Severity**

271 Thus far we have established that BBR track flanker task experimental manipulations including
272 lateralized response direction and stimulus congruency. We next asked whether BBR might provide a
273 neurobiological marker of cognitive control dysfunction after military deployment for individuals with
274 PTSD symptomatology. The addition of diagnostic groups (controls/PTSD/mTBI/PTSD+mTBI) to our
275 previous analysis of correct-trial BBR demonstrated an interaction of diagnostic group by time window,
276 Wald $\chi^2(33) = 92.42, p < .001$, but post-hoc interpretation of this effect found no significant group
277 differences in BBR in any time window (all $p > .2$). Results of this group-based analysis were equivalent
278 when subjects with subthreshold PTSD were included in the PTSD groups.

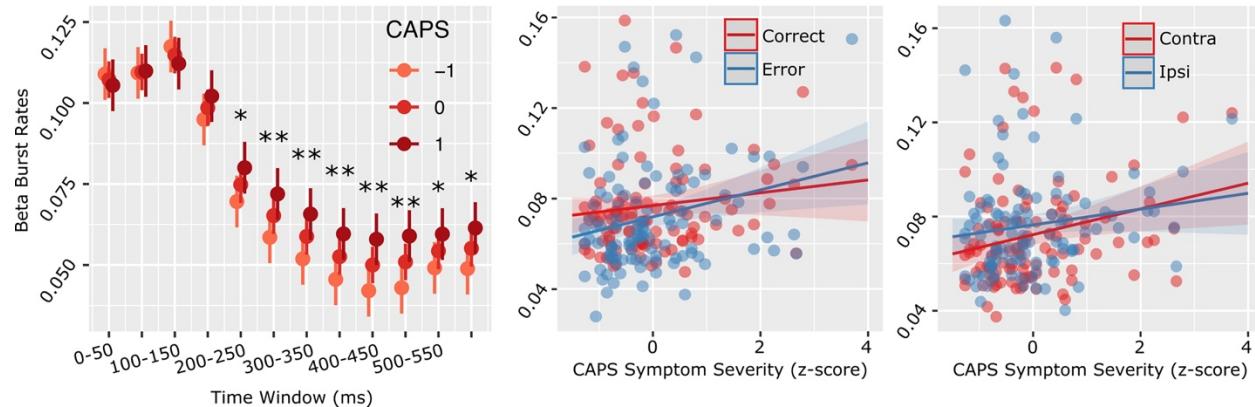
279 A model that included overall PTSD symptom severity (as assessed via the CAPS) rather than a
280 formal diagnosis of PTSD showed an interaction between PTSD symptom severity and time window,
281 Wald $\chi^2(11) = 51.67, p < .001$. Post-hoc examination of the linear trend of CAPS within each time bin
282 indicated that PTSD symptom severity predicted increased BBR in time windows corresponding to 250-
283 300 ms ($z = 2.07, p = .039$), 300-350 ms ($z = 2.31, p = .021$), 350-400 ms ($z = 2.35, p = .019$), 450-500
284 ms ($z = 2.35, p = .019$), and 500-550 ms ($z = 1.98, p = .047$; *Figure 4A*). These results fell below
285 significance (all $p > .08$) when p -values were corrected for $n=12$ multiple comparisons via the FDR
286 (Benjamini & Hochberg, 1995) method.

287 A model that included the four CAPS symptom severity groupings separately revealed several
288 significant interactions [Dysphoria severity and Congruency, Wald $\chi^2(1) = 8.45, p = .003$, Hyperarousal
289 severity and Congruency, Wald $\chi^2(1) = 5.33, p = .021$], but post-hoc examination of these effects did not
290 reveal any significant relationships between symptom domains and BBR. Overall, our analyses suggest
291 that overall PTSD symptom severity may be associated with a failure to adaptively reduce motor
292 inhibition to support response control, as indexed by increased peri-response BBR.

293 **2.5 Error-Related Somatomotor Beta Burst Rates Are Associated with Overall PTSD Symptom**
294 **Severity**


295 The addition of diagnostic groups (controls/PTSD/mTBI/PTSD+mTBI) to our previous analysis
296 of correct-error differences in BBR (incongruent trials only) demonstrated an interaction of diagnostic
297 group by time window, Wald $\chi^2(33) = 95.79, p < .001$. Post-hoc examination of this effect found a
298 difference between healthy controls and individuals with both mTBI and PTSD in a single time window,
299 50-100 ms ($z = 2.67, p = .037$), indicating higher pre-response BBR for healthy controls than for
300 comorbid individuals. This contrast was no longer significant when results were corrected for $n=12$ time
301 windows using the FDR method (Benjamini & Hochberg, 1995). When subjects with subthreshold PTSD
302 were included in the PTSD groups, this analysis revealed an interaction of Group by Time Window, Wald
303 $\chi^2(33) = 48.82, p = .037$, and an interaction between Group and Accuracy, Wald $\chi^2(3) = 13.51, p = .007$.
304 However, post hoc interpretation of these interactions did not reveal any significant group differences.

305 A model that considered overall PTSD symptom severity (as assessed via the CAPS) rather than a
306 formal diagnosis of PTSD showed a main effect of overall PTSD symptom severity, Wald $\chi^2(1) = 4.54, p$
307 = .033, an interaction between overall PTSD symptom severity and Accuracy (correct/error), Wald $\chi^2(1) =$
308 $11.56, p < .001$, an interaction between overall PTSD symptom severity and Laterality, Wald $\chi^2(1) =$
309 $5.18, p = .023$, and an interaction between overall PTSD symptom severity and Time Window, Wald
310 $\chi^2(11) = 59.99, p < .001$. Examination of the simple effect of CAPS on BBR within correct/error trials
311 indicated that CAPS was significantly related to increased BBR in error trials ($z = 2.81, p = .005$) but not
312 correct trials ($z = 1.36, p > .1$; *Figure 4B*). Examination of the simple effect of CAPS on BBR within


313 contralateral/ipsilateral trials indicated that CAPS was significantly related to increased BBR contralateral
314 to the flanker target stimulus ($z = 2.57, p = .010$) but not ipsilateral to the target stimulus ($z = 1.60, p > .1$;
315 *Figure 4B*). Finally, examination of the simple effect of CAPS within each time window indicated that
316 overall symptom severity was related to a diminished BBR reduction in peri-response time windows from
317 200-600 ms post-stimulus (200-250 ms $z = 2.03, p = .042$, 250-300 ms $z = 2.62, p = .008$, 300-350 ms $z =$
318 $2.70, p = .007$, 350-400 ms $z = 2.70, p = .007$, 400-450 ms $z = 3.08, p = .002$, 450-500 ms $z = 3.07, p =$
319 $.002$, 500-550 ms $z = 2.03, p = .043$, 500-600 ms $z = 2.47, p = .014$; *Figure 4B*). These results remained
320 significant for the 250-300, 300-350, 350-400, 400-450, 450-500, and 550-600 ms time windows (no
321 longer significant at 200-250 and 500-550 ms) when p -values were corrected for $n=12$ multiple
322 comparisons via the FDR (Benjamini & Hochberg, 1995) method.

323 A model that included CAPS symptom severity groupings revealed several significant
324 interactions [Dysphoria severity and Accuracy, Wald $\chi^2(1) = 8.82, p = .002$, Avoidance severity and
325 Accuracy, Wald $\chi^2(1) = 12.69, p < .001$, Intrusion severity and Accuracy, Wald $\chi^2(1) = 17.80, p < .001$],
326 but post-hoc interpretation of these effects did not reveal any significant relationships between symptom
327 domains and BBR. Our analyses suggest that overall PTSD symptom severity is associated with error-
328 related BBR (rather than correct) and also appears specific to target-contralateral BBR (as opposed to
329 distractor-contralateral BBR). Overall, PTSD symptom severity appears to be associated with a failure to
330 adaptively reduce motor inhibition to support response control, as indexed by increased patterns of BBR.
331

A BBR Relationships with PTSD Symptom Severity (Congruent/Incongruent, Correct Trials Only)

B BBR Relationships with PTSD Symptom Severity (Correct/Error, Incongruent Trials Only)

332

333 *Figure 4. Somatomotor Beta Burst Rates Are Systematically Related to Overall PTSD Symptom Severity.*
 334 *A: Overall PTSD symptom severity (CAPS; shown at z-scores of -1, 0, and 1) effects on correct-trial BBR*
 335 *by time window (left panel; * uncorrected $p < .05$) and averaged over 250 to 550 ms time windows (right*
 336 *panel). Note that these effects fell below significance when results were corrected for $n=12$ comparisons*
 337 *($p > .08$).*

338 *B: Overall PTSD symptom severity (CAPS; shown at z-scores of -1, 0, and 1) on incongruent-trial BBR.*
 339 *Left panel: results by time window (* uncorrected $p < .05$, ** uncorrected $p < .01$). Results were*
 340 *comparable when p -values were corrected for $n=12$ comparisons using the FDR method ($p < .05$ at time*
 341 *windows 250-300, 300-350, 350-400, 400-450, 450-500, and 500-600). Middle panel: averaged over all*
 342 *time windows and lateralities, separately for correct/error trials. Right panel: averaged over all time*
 343 *windows and correct/error trials, separately for ipsi/contralateral sensors (right panel).*

344

345 **2.6 Somatomotor Beta Burst Rates Mediate the Link Between Overall PTSD Symptom Severity**
 346 **and Impaired Conflict Monitoring**

347 Given significant associations between overall PTSD symptom severity, peri-response BBR (250-
 348 550 ms), and accuracy rates, we tested the hypothesis that peri-response BBR might mediate the link
 349 between overall PTSD symptom severity and impaired conflict monitoring performance. We ran this

350 analysis separately for correct congruent, correct incongruent, and error incongruent trial BBR and
351 congruent/incongruent accuracy rates, respectively, for a total of three mediation analyses. For correct
352 congruent trials, robust mediation analysis failed to demonstrate any significant indirect effects ($p > .4$).
353 Robust mediation analysis also failed to demonstrate any mediating influence of error incongruent BBR
354 ($p > .9$).

355 However, for correct incongruent trials, robust mediation analysis demonstrated a significant
356 indirect effect of overall PTSD symptom severity on accuracy mediated by peri-response BBR, $\beta: -.035$,
357 95% bootstrap CI = [-.106, -.004], $p = .027$. Furthermore, prior to inclusion of BBR in the regression,
358 overall PTSD symptom severity significantly predicted incongruent trial accuracy rates, $\beta = -.19$, $p =$
359 .047. Following the addition of BBR to the model, overall PTSD symptom severity no longer predicted
360 incongruent accuracy rates, $\beta = -.13$, $p > .1$. Thus, we conclude that correct incongruent BBR fully
361 mediate the association between overall PTSD symptom severity and impaired conflict monitoring
362 accuracy.

363

364 3 Discussion

365 3.1 General Discussion

366 We measured motor cortical indicators of cognitive control by characterizing beta-frequency
367 bursts in a large sample of United States military veterans who had been deployed during either Operation
368 Iraqi Freedom or Enduring Freedom. Beta burst rates (BBR) tracked motor control processes during
369 conflict monitoring, correlated with individual differences in conflict monitoring, and were
370 psychometrically reliable, suggesting that BBR are suitable for use as a measure of individual differences.
371 Individual differences in peri-response BBR were related to dimensional posttraumatic stress symptom
372 severity and explained (mediated) the influence of symptomatology on reduced conflict monitoring. Our
373 investigation reveals that posttraumatic stress symptom severity modulates brain processing of cognitive
374 control via inhibition at the motor representational level.

375 3.2 Beta Bursts Reveal the Dynamics of Motor Inhibition During Conflict Monitoring

376 Human somatomotor brain potentials in the beta frequency band reflect the output of cognitive
377 control processes (Fischer et al., 2018; Soh et al., 2021). Physiologically, somatomotor beta-band activity
378 is better characterized as an aperiodic burst-like process rather than a continuous and slow change in
379 power (Shin et al., 2017). Somatomotor BBR decrease contralateral to the responding hand and predict
380 individual differences in “go” response times (RTs) in the stop-signal task (Wessel, 2020), a common task
381 examining response inhibition (Verbruggen et al., 2019). Furthermore, BBR increase precipitously
382 following stop-signals (Wessel, 2020), suggesting BBR correspond to inhibition of inappropriate motor
383 responses. We found that BBR were lower over contralateral (compared to ipsilateral) motor sensors for
384 both congruent and incongruent correct trials, and ipsilateral, but not contralateral, BBR were lower for
385 incongruent trials (compared to congruent). Since action preparation suppresses beta oscillations (Doyle
386 et al., 2005; Pfurtscheller et al., 1996), BBR likely index disinhibition of ipsilateral motor cortex by
387 distracting flanker stimuli. Correct/incorrect BBR did not differ contralateral to the target, that is, motor
388 representations of target stimuli were equivalent for correct/error trials. However, error trials showed
389 reduced BBR (compared to correct trials) over motor cortex contralateral to distractors. This result is
390 undoubtedly confounded since individuals responded in the distractor direction on error trials, thus being
391 at least partially driven by differences in the direction of response. Nevertheless, conflict monitoring
392 errors appear driven by increased motor representations of distractor stimuli, rather than decreased motor
393 representations of target stimuli.

394 Peri-response BBR negatively correlated with individual differences in accuracy rates for all task
395 conditions, indicating that reduced peri-response motor disinhibition is associated with worse response
396 control performance across subjects. Intriguingly, this effect was in the same direction over contralateral
397 and ipsilateral sensors, where one might expect the correlation to be opposite in sign for ipsilateral
398 sensors (i.e., increased suppression of distractor motor responses should improve accuracy). This is likely
399 because BBR lateralization (contralateral<ipsilateral) is a within-subject effect, while BBR-accuracy
400 correlations are a between-subjects effect. That is, lower contralateral (vs. ipsilateral) BBR reveals the
401 mechanism of BBR to be inhibition of motor representations. Meanwhile, between subjects, increased
402 BBR overall index increased motor inhibition.

403 While BBR appear sensitive to individual differences including Parkinson's severity (Vinding et
404 al., 2020), state anxiety (Sporn et al., 2020), and disorganization symptoms in psychosis (Briley et al.,
405 2021), to our knowledge no report has yet characterized the *reliability* of beta burst rates. Given that
406 reliable brain indices are required for characterizing individual differences and making clinical
407 predictions (Button et al., 2013; Hedge et al., 2018; Zuo et al., 2019), we examined the split-half
408 reliability of BBR in the flanker paradigm. Our approach assessed split-half reliability by bootstrapping
409 random split-half averages per subject and correlating them across subjects, which avoids potential noise
410 due to trials included in a single-split-half analysis (Macatee et al., 2021). Pre-correct-response BBR have
411 good split-half reliability (Pearson $r > 0.7$) in the flanker paradigm, which increases to become very high
412 in peri-response time windows (Pearson $r > 0.8$). Error-trial BBR were less psychometrically reliable, but
413 still approached adequate levels during peri-response time periods (Pearson $r > .65$). Remarkably, this
414 indicates that beta burst events show comparable split-half reliability to event-related potentials (ERPs)
415 evoked during cognitive tasks. For example, the error-related negativity, an ERP component often used to
416 assess individual differences in performance monitoring, has a split-half reliability estimated to be
417 between 0.7 and 0.9 (Foti et al., 2013; Hajcak et al., 2019; Olvet & Hajcak, 2009a, 2009b; Riesel et al.,
418 2013). Thus, beta burst rates carry potential as a measure of individual differences in neural responses
419 subserving cognitive control.

420 **3.3 Beta Burst Rates are Systematically Related to the Severity of Posttraumatic Stress**

421 Our primary intention in the current report was to investigate if beta burst events could index
422 response control dysfunction related to posttraumatic stress symptomatology in combat-exposed veterans.
423 In line with prior reports of brain activation in combat-exposed veterans (Marquardt et al., 2021), we
424 found that BBR predicted PTSD symptom severity but failed to be associated with a categorical diagnosis
425 of PTSD. It is possible that the association with symptoms merely reflects an increase in statistical power
426 with continuous as opposed to dichotomous measures (Altman & Royston, 2006; Lazic, 2008); however,
427 the benefit of dimensional measures mirrors a recent focus on less reliance on diagnostic categories in
428 psychopathology research. For example, the DSM-5 (2013) includes severity indicators for many
429 disorders, consistent with the critical role that disorder severity plays in clinical management. The lack of
430 an association of BBR with mTBI adds to the growing body of evidence that many reported consequences
431 of military mTBI can be attributed to psychopathology other than mTBI, including PTSD (Disner et al.,
432 2017; Marquardt et al., 2021).

433 Careful characterization of a large sample of individuals with varying levels of PTSD and mTBI
434 enabled us to investigate influences of both common deployment-related conditions. Severity of
435 posttraumatic stress, but not comorbid mTBI, was related to maladaptive motor cortex activity during
436 conflict monitoring. These results were stronger for error trials than for correct trials, and for sensors
437 contralateral to the flanker target stimulus (compared to ipsilateral). As such, increasing PTSD symptom

438 severity was associated with impaired motor inhibitory processes related to target, rather than distractor,
439 motor processing. We suggest that lower reactivity (reduction) in peri-response BBR could index
440 difficulty in effectively reducing inhibitory drive in motor cortex and releasing the correct response to
441 target stimuli. This is supported by the specificity of these BBR-symptom associations, which were
442 strongest for incongruent target-contralateral and error conditions. The dysfunction in the somatomotor
443 inhibitory mechanism explained (mediated) the link between increasing PTSD symptom severity and
444 reduced response control, supporting the argument that dysfunctional somatomotor inhibition underlies
445 conflict monitoring deficits in PTSD.

446 Future research should continue to elucidate other neural circuits affecting motor inhibitory
447 processes. For example, in a stop-signal paradigm, prefrontal brain regions rapidly instantiate beta
448 bursting at somatomotor sensors (Wessel, 2020), and inhibition can also be transmitted to motor cortex
449 via beta bursting from the subthalamic nucleus that is transmitted to motor cortex via the thalamus
450 (Diesburg et al., 2021). The effect of prefrontal beta bursting might be specific to outright response
451 stopping, however, as we did not note any prefrontal increases in BBR in our topographic plots. While we
452 did explore the possibility that conflict monitoring recruits prefrontal beta bursts the same way outright
453 response stopping does (Wessel, 2020), we did not find any congruency effects on BBR at prefrontal
454 sensors. Somatomotor beta bursts, the motor inhibitory mechanism underlying PTSD-relevant cognitive
455 control deficits, might also be under the control of executive brain regions via cross-frequency
456 interactions (for example frontal midline theta). In healthy controls, but not individuals with PTSD,
457 somatomotor beta activity was linked to prefrontal theta-band activation (Cohen et al., 2013) – a common
458 substrate underlying multiple types of cognitive control (Cavanagh et al., 2012; Cavanagh & Frank, 2014;
459 Eisma et al., 2021). Furthermore, in a sample of trauma-exposed veterans, increased cognitive control-
460 related brain activation in the anterior cingulate cortex (ACC), a key brain region regulating cognitive
461 control computations (Botvinick, 2007; Botvinick et al., 2004; Gehring & Knight, 2000; Sohn et al.,
462 2007), was associated with reduced PTSD symptom severity (White et al., 2018). This suggests PTSD is
463 characterized by a failure of top-down motor modulation paired with dysregulated motor output systems.
464 Thus, PTSD-related impairments in executive and somatomotor brain regions might be linked.

465 3.4 Limitations

466 A limitation of the current report is the cross-sectional nature of the military sample. Since
467 soldiers were recruited and studied following deployment, we are unable to assess whether the observed
468 associations represent a consequence of posttraumatic stress or a risk factor for developing more severe
469 posttraumatic stress. Examinations that measure recruits prior to and following trauma exposure are
470 needed to disambiguate these possibilities. Such studies could also allow the potential development of
471 adaptive reduction of motor inhibition into a mature biomarker for resilience to PTSD following trauma
472 exposure. Additionally, PTSD is commonly associated with psychopathological comorbidities including
473 anxiety, depression, and alcohol use disorder, all of which are associated with altered cognitive control
474 (Bogg et al., 2012; Cavanagh et al., 2017; Grahek et al., 2019; Krug & Carter, 2010; Rawls et al., 2021;
475 Zilverstand et al., 2018). While control analyses demonstrated that none of the observed motor inhibition
476 or conflict monitoring effects were confounded by these diagnoses (Generalized Anxiety/Major
477 Depression/Alcohol Dependence), deeper consideration of comorbidities is essential to understand the
478 complex clinical presentation of PTSD. Future studies might address this deficit by oversampling
479 individuals with specific comorbidities. With thorough and dimensional phenotyping, it is possible that
480 this approach might reveal BBR as a transdiagnostic neural mechanism providing a readout of impaired
481 conflict monitoring that spans diagnostic labels. Finally, as in prior examinations of beta-bursting in scalp

482 EEG, we recorded a relatively low proportion of trials containing beta-bursts (in some time windows,
483 only 4-20% of trials contained a beta burst). While this could suggest that beta bursts are not frequent
484 enough to completely explain motor inhibition (Errington et al., 2020), this could also be due to the
485 relatively low signal-to-noise ratio of beta activity in scalp EEG (Wessel, 2020), and beta burst counts are
486 also sensitive to the threshold used to define bursts (Shin et al., 2017). As such, while we recorded
487 relatively low BBR during this task, these rates are in line with published estimates of BBR and showed
488 very good reliability despite the low incidence of bursts.

489 **3.5 Conclusion and Future Directions**

490 Our analysis of the role of somatomotor beta-burst events demonstrates that beta bursts index
491 critical brain mechanisms of cognitive control and reveal failures to adaptively reduce motor inhibition in
492 PTSD. Findings of the current study support the possibility of using training of response control to
493 improve aspects of PTSD symptomatology. Furthermore, since beta bursts occur in single trials of EEG,
494 we suggest a possible focus on noninvasive closed-loop neuromodulation of human somatomotor cortex
495 triggered by real-time detection of beta burst events to detect and correct conflict monitoring failures in
496 real time. Such a stimulation protocol could be titrated to an individual's average beta-frequency power
497 during a calibration session, and excitatory neuromodulation could be used to adaptively disinhibit motor
498 cortex during periods of pathologically high beta bursting. Such a stimulation protocol would clarify the
499 causal role of somatomotor BBR interventions in support of cognitive control functions. This protocol
500 would also allow testing whether a neuromodulatory intervention at the level of the motor cortex could
501 generalize to brain regions responsible for non-motor functions, for example emotion regulation. It
502 appears that consideration of dimensional aspects of posttraumatic psychopathology is critical to
503 understanding and eventually treating the neural basis of trauma-related dysfunction.

504

505 **4 Materials & Methods**

506 **4.1 Participants**

507 The sample was $n = 130$ US military veterans (see *Table 1* for demographics) recruited through
508 the Minneapolis VA Health Care System (VAHCS). Participants were recruited based on their history of
509 deployment to combat zones in either Iraq and/or Afghanistan (Operations Iraqi Freedom and Enduring
510 Freedom, respectively). Recruitment targeted veterans with likely posttraumatic stress disorder (PTSD)
511 diagnoses as well as non-treatment-seeking veterans with similar deployment experiences for recruitment.
512 Study procedures were approved by the Institutional Review Boards at the VAHCS and the University of
513 Minnesota, and study participants gave written informed consent prior to undergoing the study
514 procedures. This sample has been previously reported in (Davenport et al., 2016; Disner et al., 2018;
515 Marquardt et al., 2021); none of these publications have examined data from the flanker paradigm. Error
516 trial analysis considered a smaller subset of these participants ($n = 106$) who had at least ten error trials
517 with clean EEG (all $n = 130$ subjects had sufficient correct trial data).

518

519

520

521

522

523

524

525

526 *Table 1. Demographic and clinical characteristics of sample.*

527

Variable	No PTSD						PTSD+Subthreshold					
	No mTBI			mTBI			No mTBI			mTBI		
	<i>n</i>	<i>M</i>	<i>SD</i>	<i>n</i>	<i>M</i>	<i>SD</i>	<i>n</i>	<i>M</i>	<i>SD</i>	<i>n</i>	<i>M</i>	<i>SD</i>
Total Count	61			25			22			22		
Female	3			0			1			0		
Age (years)		34.78	8.49		32.05	8.62		36.18	7.97		33.17	6.08
Education (years)		14.83	1.56		14.14	1.67		14.82	2.22		14.06	2.01
Depressive Disorder Diagnosis												
Alcohol Dependence Diagnosis	8			2			4			10		
CAPS Severity (total)		20.5	15.7		18.4	12.3		50	28.6		55.5	23.9
CAPS Intrusive Reexperiencing Total		4.2	4.96		5.36	6.7		13.1	8.88		16.6	7.44
CAPS Avoidance Total		1.66	2.78		0.72	1.4		6.32	4.81		6.82	3.95
CAPS Dysphoria Total		10.2	8.96		7.04	6.09		22.5	12.9		23.6	12.6
CAPS Hyperarousal Total		4.44	3.39		5.24	3.06		8.09	4.18		8.45	3.76
MN-BEST Blast mTBI Severity	0	0		3.04	1.80		0	0		3.23	1.35	

528 *PTSD = posttraumatic stress disorder, mTBI = mild traumatic brain injury, N = count, M = mean, SD =*
529 *standard deviation. “+Subthreshold” reflects individuals who meet criteria for at least one symptom*
530 *from each symptom domain of DSM-IV PTSD.*

531

532 4.2 Clinical Assessment

533 We conducted interview-based assessments for psychopathology using the Structured Clinical
534 Interview for DSM-IV Axis I Disorders excluding the PTSD module (SCID-I; (First & Gibbon, 2004)).
535 We assessed for posttraumatic stress using the Clinician-Administered PTSD Scale for DSM-IV [CAPS,
536 fourth edition; (Blake et al., 1995; Weathers et al., 2001)]. We achieved consensus for categorical
537 psychiatric diagnoses with assessment teams that reviewed all available research and clinical information
538 and included at least one licensed doctoral-level clinical psychologist. We also determined the PTSD and
539 “subthreshold” PTSD diagnoses using the same consensus procedure. Individuals were labeled as having
540 subthreshold PTSD if they endorsed at least one symptom in each DSM-IV-TR Criterion B-D symptom
541 groupings and met the threshold for being exposed to a traumatic event (Criterion A). We subdivided the
542 CAPS into four subscales based on previous analyses of the factor structure of DSM-IV(-TR)-defined
543 posttraumatic stress symptomatology (Palmieri et al., 2007; Simms et al., 2002; Yufik & Simms, 2010).
544 By summing the CAPS frequency and intensity scores, we produced dimensional measures of symptom
545 severity within the domains of intrusive reexperiencing (B1-B5), avoidance (C1, C2), dysphoria (C3-D3),
546 and hyperarousal (D4, D5). For our analyses using the CAPS, we first examined overall severity score (all
547 factors summed) then followed up with additional analyses using the four symptom groupings.

548 We assessed participant history of likely mTBI events using the semi-structured Minnesota Blast
549 Exposure Screening Tool (MN-BEST; Nelson et al., 2011), focusing on the three most severe self-
550 identified deployment-related blast exposure events. We achieved consensus on mTBI via assessment

551 teams that included at least one licensed clinical neuropsychologist (Nelson et al., 2015). Blast-induced
552 mTBI severity was quantified using an adaptation of the (Ruff & Richardson, 1999) rating scheme.

553 **4.3 Conflict Monitoring Task**

554 Participants completed an Eriksen Flanker paradigm that presented congruent (<<<< or >>>>)
555 or incongruent (<<><< or >><>>) sets of arrows (50% incongruent). Participants were instructed to
556 respond with their left thumb if the middle arrow pointed left, and to respond with their right thumb if the
557 middle arrow pointed right, while ignoring the distractor arrows on either side of the target arrow.
558 Participants completed 400 trials, which were divided into 4 blocks with self-paced breaks in between.
559 The task required approximately 20 minutes to complete.

560 **4.4 EEG Acquisition and Preprocessing**

561 EEG was sampled at 1024 Hz using a 128-channel BioSemi ActiveTwo EEG system, acquired
562 reference-free (via CMS/DRL sensors) and re-referenced to Cz upon import. Data were automatically
563 preprocessed using EEGLAB 2021 (Delorme & Makeig, 2004) and MATLAB R2021a. Continuous data
564 were high-pass filtered at 0.5 Hz (transition band width of 0.5 Hz) and low-pass filtered at 35 Hz
565 (transition band width of 10 Hz) using zero-phase least-squares FIR filters, then downsampled to 250 Hz.
566 Bad channels were detected using joint probabilities (3 SD cutoff) and removed. Data were epoched
567 around the flanker arrow stimulus (400 ms before to 700 ms after) and trials containing non-stereotyped
568 artifacts were removed using a cutoff of $\pm 500 \mu\text{V}$ prior to ICA computation. Temporal infomax ICA
569 (Makeig et al., 1996) was computed, and components capturing stereotyped artifacts were removed using
570 ICLLabel (Pion-Tonachini et al., 2019). Trials containing residual artifacts were detected and removed
571 using a voltage cutoff of $\pm 125 \mu\text{V}$. Single trials with improbably fast RTs (<100 ms) were removed from
572 the EEG, as were trials where the participant did not respond. Deleted channels were spherically
573 interpolated, channel Cz was added back to the data, and single trials of artifact-free EEG were re-
574 referenced to the montage average. To sharpen the focal motor topographies of beta bursts (Wessel, 2020)
575 and to improve our ability to resolve lateralized brain responses by removing volume-conducted activity
576 (Kayser & Tenke, 2015), we applied the surface Laplacian transform using the CSD Toolbox
577 (<https://psychophysiology.cpmc.columbia.edu/software/csdtoolbox/index.html>) with default parameters.
578 This transformed the EEG to a reference-free current scalp density representation, which we employed for
579 all further analyses.

580 **4.5 Quantification of Beta Bursts from Scalp EEG**

581 Beta burst detection was performed exactly as described by (Shin et al., 2017) and (Wessel,
582 2020); the following description is adapted from those works. Single trials of artifact-free EEG were
583 transformed to a time-frequency representation by convolving the raw data with a family of Morlet
584 wavelets described by

$$585 w(t, f_0) = A \exp\left(-\frac{t^2}{2\sigma_t^2}\right) \exp(2i\pi f_0 t)$$

586 for each frequency of interest f_0 , where $\sigma_t = \frac{m}{2\pi f_0}$, normalization factor $A = \frac{1}{\sigma_t} \sqrt{2\pi}$, and $m = 7$ cycles
587 for each of 15 evenly spaced frequencies spanning the beta band (15-29 Hz). Time-frequency power
588 estimates were calculated by squaring the magnitude of the complex result of the convolution. All within-
589 subject time-frequency power estimates were normalized by frequency-specific medians calculated across
590 all time points (i.e., -400 to 700 ms surrounding stimulus onset) and all single trials (Shin et al., 2017).
591 Following this power normalization, which corrected both for differences in average beta power between
592 subjects and between frequencies, beta bursts in single trials were defined as local maxima in the time-

593 frequency surface (using the MATLAB function *imregionalmax*) that exceeded an *a priori* threshold of 6
594 times the median power (Shin et al., 2017; Wessel, 2020).

595 **4.6 Data Reduction for Beta Burst Rate Analysis**

596 We defined 12 50-ms time bins extending from the onset of the flanker stimulus to 600 ms post-
597 stimulus (0-50 ms, 50-100 ms, 100-150 ms, 150-200 ms, 200-250 ms, 250-300 ms, 300-350 ms, 350-400
598 ms, 400-450 ms, 450-500, 500-550 ms, 550-600 ms). Time windows were defined inclusively, so that a
599 sample at 48 ms went in the 0-50 ms bin and a sample at 52 ms went in the 50-100 ms bin. For samples
600 that landed exactly on a start/end point of a time window (e.g., 100 ms), the sample was included in both
601 time windows. Since the average response time for correct incongruent trials was 501 ms, this
602 measurement window ensured that we captured beta bursting occurring between stimulus presentation
603 and response for most trials. Within each time bin, we counted the number of bursts that occurred in each
604 single trial and for each sensor. These beta burst counts were averaged over all trials, forming our primary
605 dependent variable “beta burst rate” (BBR). As in prior applications of this method, BBR are thus
606 measured as $n(\text{beta-bursts})/n(\text{trials})$, where each window typically has either 0 or 1 (but sometimes more)
607 beta burst(s). BBR measured following this procedure are interpreted as the average number of beta bursts
608 in each time window per trial. BBR were extracted from small spatial clusters of lateral somatomotor
609 sensors surrounding C3 (left) and C4 (right), and separately averaged (over trials) into four beta burst
610 time series according to factors of congruency (congruent vs. incongruent) and laterality (ipsilateral vs.
611 contralateral). For incongruent trials only, we also averaged beta bursts for incorrect trials. Together,
612 these procedures produced our primary dependent variable “beta burst rate,” (BBR) or the average
613 number of beta bursts that occur each trial (per time window and trial type).

614 **4.7 Reliability Analysis of Beta Burst Rates**

615 While recent studies have begun examining the relationships of BBR with individual difference
616 factors [e.g., RT relationships in (Wessel, 2020), Parkinsonian disease severity in (Vinding et al., 2020)],
617 none of these recent examinations have considered the important point of whether their investigation
618 provided a *reliable* measure of BBR. Psychometric reliability is critical for interpretation of brain-disease
619 relationships and for development of robust biomarkers of disease (Button et al., 2013; Hedge et al., 2018;
620 Zuo et al., 2019). We characterized the reliability of our measured BBR, separately for congruent
621 (incongruent) trials and ipsi(contra)-lateral sensors. We estimated the average split-half reliability, as well
622 as 95% confidence intervals (CIs) surrounding the estimate, by generating random split-half across-trial
623 averages per subject (5000 repetitions) and correlating each of the split-half estimates together across
624 subjects (Pearson correlation, corrected for halving the sample size using Spearman-Brown correction).
625 Note that while BBR deviated from normality and Pearson correlations are sensitive to deviations from
626 normality (Kowalski, 1972), we used Pearson correlations for this analysis to render our reliability
627 metrics comparable to the existing EEG reliability literature (Luking et al., 2017; Olvet & Hajcak, 2009b,
628 2009b; Riesel et al., 2013; Towers & Allen, 2009).

629 **4.8 Beta Burst Rate and Task Performance Associations**

630 We tested the hypothesis that BBR index trait-like individual differences in cognitive control
631 operations. For all considered variables, we first checked the normality of data distributions. BBR, RT,
632 and accuracy rates were all visibly non-normal, which was verified by significant Shapiro-Wilk tests for
633 all variables. As such, we used Kendall’s tau rather than Pearson correlations because the distribution of
634 Pearson’s r is not robust to non-normality (Kowalski, 1972), and Kendall’s tau has lower gross error
635 sensitivity (i.e., is more robust) than Spearman’s correlation (Croux & Dehon, 2010). We calculated
636 bivariate correlations between accuracy rates and trial-averaged BBR, and between response times and

637 trial-averaged BBR, separately for ipsilateral and contralateral sensors and for congruent and incongruent
638 trials, as well as for error trials (incongruent only). We constructed 95% bias-corrected accelerated
639 bootstrap CIs (5000 repetitions) surrounding each of these correlation coefficients using the ‘confint’
640 package, version 0.1.2 (Mayer, 2022).

641 **4.9 Statistical Analysis of Behavior and Beta Burst Rates**

642 For statistical analyses of behavioral responses (accuracy, RT) and BBR, we fit linear mixed-
643 effect models (LMMs) using the ‘lme4’ package, version 1.1-29 (Bates et al., 2015, 2022). LMMs are
644 robust against violations of distributional assumptions (Schielzeth et al., 2020), being robust for data with
645 moderate skewness and even extreme kurtosis with sample sizes > 60 (Arnau et al., 2013). Of our primary
646 outcome variables, only accuracy rates exhibited concerning skewness (skewness = -1.62; all other
647 outcome variable $|\text{skewness}| < 0.68$). As such, for LMMs predicting accuracy rates, we compared the
648 results of LMMs fit using lme4 to those fit using the ‘robustlmm’ package, version 3.0-4 (Koller, 2016) to
649 ensure that resulting estimates replicated using robust model estimation. We estimated robust LMM *p*-
650 values using model *t*-statistics and Satterthwaite-approximated degrees-of-freedom as in (Geniole et al.,
651 2019).

652 LMMs predicting accuracy rates and response times used a single within-subject factor of
653 Congruency (congruent/incongruent), and LMMs predicting correct-trial BBR used within-subject factors
654 of Congruency (congruent/incongruent), sensor Laterality (ipsilateral/contralateral), and Time Window
655 (50 ms levels). Note that sensor Laterality refers to sensor location relative to the direction of the target
656 stimulus (center arrow). All LMMs examining error-related BBR instead included within-subject factors
657 of Outcome (correct/error), sensor Laterality (ipsilateral/contralateral), and Time Window (50 ms levels),
658 for incongruent trials only (since subjects made almost no errors on congruent trials). In analyses
659 comparing correct and error trials, “contralateral” refers to sensors on the side opposite the target stimulus
660 and “ipsilateral” refers to sensors on the same side as the target stimulus (i.e., contralateral to the
661 distractor stimuli). As such, this analysis directly compares motor inhibitory processing of target and
662 distractor stimuli.

663 Models included one or more between-subjects factors describing clinical presentation. First, we
664 ran models with a between-subjects factor of diagnostic group (four levels: controls, PTSD, mTBI, both
665 PTSD and mTBI). We used two versions of this diagnosis-based model; the second enlarged the PTSD
666 groups to include participants with subthreshold, but clinically significant, PTSD symptomatology. We
667 then analyzed models that used overall PTSD symptom severity (CAPS; z-scored across participants), to
668 examine whether increasing severity of PTSD symptomatology predicted cognitive control performance
669 or BBR. Finally, we considered models that used each of the four CAPS subscales (intrusion, avoidance,
670 dysphoria, hyperarousal; z-scored across participants) as the primary between-subjects factors. All models
671 contained a random intercept per participant, and all severity-based models covaried for mTBI severity.
672 All models included interaction terms between all within-subjects factors and the primary between-
673 subjects factors.

674 Significance of individual factors was assessed using type III Wald chi-square tests implemented
675 with the R ‘car’ package, version 3.0-13 (Fox et al., 2022). Significant categorical-categorical interactions
676 were characterized using the emmeans function, and significant categorical-continuous interactions were
677 assessed by comparing trends within each categorical factor level using the emtrends function, both
678 implemented in the R ‘emmeans’ package, version 1.7.4-1 (Lenth et al., 2022). For post hoc testing of
679 significant BBR interactions at each level of Time Window, we present results both without further
680 correction (i.e., Fisher’s Least Significant Difference) and following correction for $n=12$ multiple

681 comparisons using the false discovery rate (FDR) method with $q < .05$ taken as evidence of a significant
682 result (Benjamini & Hochberg, 1995).

683 **4.10 Mediation Analysis**

684 Given the significant associations between overall PTSD symptom severity, peri-response BBR,
685 and accuracy rates, we ran follow-up analyses to examine whether peri-response BBR (averaged over time
686 windows comprising 250-550 ms post-stimulus) mediated the link between overall PTSD symptom
687 severity and accuracy, separately for correct congruent, correct incongruent, and incorrect incongruent
688 trials. Often ordinary least squares (OLS) regression is used for mediation analysis, with CIs for the
689 indirect (causal mediation) effect estimated via parametric bootstrapping. However, the parametric
690 bootstrap for indirect effects fits a mediation model to the data using normal-theory Maximum Likelihood
691 (ML) estimation (Tofghi, 2020), which is easily distorted by even small deviations from normality. As
692 noted previously, several measures were non-normal in our sample, suggesting that OLS mediation is not
693 a proper approach for this analysis. Instead, we conducted outlier- and distribution-robust mediation
694 analysis (Alfons et al., 2022a) using the R ‘robmed’ package, version 1.0.0 (Alfons et al., 2022b). This
695 test used robust regression with 95% CIs estimated via percentile bootstrapping (5000 repetitions). We
696 used the total CAPS score as the independent variable, accuracy rates as the outcome variable, and peri-
697 response BBR (250-550 ms) as the mediating variable. Causal mediation analyses covaried for potential
698 confounding effects of mTBI severity. Variables were z-scored prior to model fitting.

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725 **CRediT Author Statement**

726 ER: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Writing -
727 Original Draft, Writing - Review and Editing, Visualization. CAM: Validation, Data Curation, Writing -
728 Review and Editing. SRS: Resources, Data Curation, Writing - Review and Editing, Supervision, Project
729 Administration, Funding Acquisition.

730

731 **Acknowledgments**

732 ER is supported by the National Institutes of Health's National Center for Advancing Translational
733 Sciences, grants TL1TR002493 and UL1TR002494. This work was funded through a Department of
734 Veterans Affairs Rehabilitation R&D Program (I01RX000622) grant to SRS. In addition, this project was
735 supported with resources and the use of facilities at the Minneapolis VA Health Care System. The content
736 is solely the responsibility of the authors and does not necessarily represent the official views or policy of
737 the U.S. Department of Veterans Affairs, the United States Government, or the National Institutes of
738 Health's National Center for Advancing Translational Sciences. We acknowledge code graciously hosted
739 by Stephanie Jones (<https://github.com/jonescompeurolab/SpectralEvents>) and Jan Wessel
740 (<https://osf.io/v3a78/>) for analyzing beta bursts.

741 The authors have no conflicts of interest to report.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **References**

757 Alfons, A., Ateş, N. Y., & Groenen, P. J. F. (2022a). A Robust Bootstrap Test for Mediation Analysis.
758 *Organizational Research Methods*, 25(3), 591–617. <https://doi.org/10.1177/1094428121999096>

759 Alfons, A., Ateş, N. Y., & Groenen, P. J. F. (2022b). Robust Mediation Analysis: The R Package robmed.
760 *Journal of Statistical Software*, 103, 1–45. <https://doi.org/10.18637/jss.v103.i13>

761 Altman, D. G., & Royston, P. (2006). The cost of dichotomising continuous variables. *BMJ: British
762 Medical Journal*, 332(7549), 1080.

763 American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders: DSM-
764 5TM, 5th ed* (pp. xliv, 947). American Psychiatric Publishing, Inc.
765 <https://doi.org/10.1176/appi.books.9780890425596>

766 Arnau, J., Bendayan, R., Blanca, M. J., & Bono, R. (2013). The effect of skewness and kurtosis on the
767 robustness of linear mixed models. *Behavior Research Methods*, 45(3), 873–879.
768 <https://doi.org/10.3758/s13428-012-0306-x>

769 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using
770 *lme4*. *Journal of Statistical Software*, 67(1), Article 1. <https://doi.org/10.18637/jss.v067.i01>

771 Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B., Scheipl, F.,
772 Grothendieck, G., Green, P., Fox, J., Bauer, A., & Krivitsky, P. N. (2022). *lme4: Linear Mixed-
773 Effects Models using “Eigen” and S4* (1.1-31). <https://CRAN.R-project.org/package=lme4>

774 Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful
775 Approach to Multiple Testing. *Journal of the Royal Statistical Society. Series B
776 (Methodological)*, 57(1), 289–300. JSTOR.

777 Blake, D. D., Weathers, F. W., Nagy, L. M., Kaloupek, D. G., Gusman, F. D., Charney, D. S., & Keane,
778 T. M. (1995). The development of a Clinician-Administered PTSD Scale. *Journal of Traumatic
779 Stress*, 8(1), 75–90. <https://doi.org/10.1007/BF02105408>

780 Bogg, T., Fukunaga, R., Finn, P. R., & Brown, J. W. (2012). Cognitive control links alcohol use, trait
781 disinhibition, and reduced cognitive capacity: Evidence for medial prefrontal cortex dysregulation
782 during reward-seeking behavior. *Drug and Alcohol Dependence*, 122(1–2), 112–118.
783 <https://doi.org/10.1016/j.drugalcdep.2011.09.018>

784 Bomyea, J., & Lang, A. J. (2015). The Role of Executive Functioning in PTSD and its Treatment.
785 *Current Psychiatry Reviews*, 11(3), 160–171.

786 Bomyea, J., & Lang, A. J. (2016). Accounting for intrusive thoughts in PTSD: Contributions of cognitive
787 control and deliberate regulation strategies. *Journal of Affective Disorders*, 192, 184–190.
788 <https://doi.org/10.1016/j.jad.2015.12.021>

789 Botvinick, M. M. (2007). Conflict monitoring and decision making: Reconciling two perspectives on
790 anterior cingulate function. *Cognitive, Affective & Behavioral Neuroscience*, 7(4), 356–366.
791 <https://doi.org/10.3758/cabn.7.4.356>

792 Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring
793 and cognitive control. *Psychological Review*, 108(3), 624–652. [https://doi.org/10.1037/0033-295x.108.3.624](https://doi.org/10.1037/0033-
794 295x.108.3.624)

795 Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex:
796 An update. *Trends in Cognitive Sciences*, 8(12), 539–546.
797 <https://doi.org/10.1016/j.tics.2004.10.003>

798 Brewin, C. R., & Beaton, A. (2002). Thought suppression, intelligence, and working memory capacity.

799 *Behaviour Research and Therapy*, 40(8), 923–930. [https://doi.org/10.1016/S0005-7967\(01\)00127-9](https://doi.org/10.1016/S0005-7967(01)00127-9)

800 Briley, P. M., Liddle, E. B., Simmonite, M., Jansen, M., White, T. P., Balain, V., Palaniyappan, L.,
801 Bowtell, R., Mullinger, K. J., & Liddle, P. F. (2021). Regional Brain Correlates of Beta Bursts in
802 Health and Psychosis: A Concurrent Electroencephalography and Functional Magnetic
803 Resonance Imaging Study. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*,
804 6(12), 1145–1156. <https://doi.org/10.1016/j.bpsc.2020.10.018>

805 Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M.
806 R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience.
807 *Nature Reviews Neuroscience*, 14(5), 365–376. <https://doi.org/10.1038/nrn3475>

808 Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. *Trends in
809 Cognitive Sciences*, 18(8), 414–421. <https://doi.org/10.1016/j.tics.2014.04.012>

810 Cavanagh, J. F., Meyer, A., & Hajcak, G. (2017). Error-Specific Cognitive Control Alterations in
811 Generalized Anxiety Disorder. *Biological Psychiatry: Cognitive Neuroscience and
812 Neuroimaging*, 2(5), 413–420. <https://doi.org/10.1016/j.bpsc.2017.01.004>

813 Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: A common mid-
814 frontal substrate for action monitoring processes. *Psychophysiology*, 49(2), 220–238.
815 <https://doi.org/10.1111/j.1469-8986.2011.01293.x>

816 Cisek, P., & Kalaska, J. F. (2005). Neural correlates of reaching decisions in dorsal premotor cortex:
817 Specification of multiple direction choices and final selection of action. *Neuron*, 45(5), 801–814.
818 <https://doi.org/10.1016/j.neuron.2005.01.027>

819 Cohen, J. E., Shalev, H., Admon, R., Hefetz, S., Gasho, C. J., Shachar, L. J., Shelef, I., Hendl, T., &
820 Friedman, A. (2013). Emotional brain rhythms and their impairment in post-traumatic patients.
821 *Human Brain Mapping*, 34(6), 1344–1356. <https://doi.org/10.1002/hbm.21516>

822 Croux, C., & Dehon, C. (2010). Influence functions of the Spearman and Kendall correlation measures.
823 *Statistical Methods & Applications*, 19(4), 497–515. <https://doi.org/10.1007/s10260-010-0142-z>

824 Davenport, N. D., Lamberty, G. J., Nelson, N. W., Lim, K. O., Armstrong, M. T., & Sponheim, S. R.
825 (2016). PTSD confounds detection of compromised cerebral white matter integrity in military
826 veterans reporting a history of mild traumatic brain injury. *Brain Injury*, 30(12), 1491–1500.
827 <https://doi.org/10.1080/02699052.2016.1219057>

828 Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG
829 dynamics including independent component analysis. *Journal of Neuroscience Methods*, 134(1),
830 9–21. <https://doi.org/10.1016/j.jneumeth.2003.10.009>

831 Diesburg, D. A., Greenlee, J. D., & Wessel, J. R. (2021). Cortico-subcortical β burst dynamics underlying
832 movement cancellation in humans. *eLife*, 10. <https://doi.org/10.7554/eLife.70270>

833 Disner, S. G., Kramer, M. D., Nelson, N. W., Lipinski, A. J., Christensen, J. M., Polusny, M. A., &
834 Sponheim, S. R. (2017). Predictors of Postdeployment Functioning in Combat-Exposed U.S.
835 Military Veterans. *Clinical Psychological Science*, 5(4), 650–663.
836 <https://doi.org/10.1177/2167702617703436>

837 Disner, S. G., Marquardt, C. A., Mueller, B. A., Burton, P. C., & Sponheim, S. R. (2018). Spontaneous
838 neural activity differences in posttraumatic stress disorder: A quantitative resting-state meta-
839 analysis and fMRI validation. *Human Brain Mapping*, 39(2), 837–850.
840 <https://doi.org/10.1002/hbm.23886>

841 Donner, T. H., Siegel, M., Fries, P., & Engel, A. K. (2009). Buildup of choice-predictive activity in
842

843 human motor cortex during perceptual decision making. *Current Biology: CB*, 19(18), 1581–
844 1585. <https://doi.org/10.1016/j.cub.2009.07.066>

845 Doyle, L. M. F., Yarrow, K., & Brown, P. (2005). Lateralization of event-related beta desynchronization
846 in the EEG during pre-cued reaction time tasks. *Clinical Neurophysiology*, 116(8), 1879–1888.
847 <https://doi.org/10.1016/j.clinph.2005.03.017>

848 Eisma, J., Rawls, E., Long, S., Mach, R., & Lamm, C. (2021). Frontal midline theta differentiates separate
849 cognitive control strategies while still generalizing the need for cognitive control. *Scientific
850 Reports*, 11(1), 14641. <https://doi.org/10.1038/s41598-021-94162-z>

851 Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in
852 a nonsearch task. *Perception & Psychophysics*, 16(1), 143–149.
853 <https://doi.org/10.3758/BF03203267>

854 Errington, S. P., Woodman, G. F., & Schall, J. D. (2020). Dissociation of Medial Frontal β -Bursts and
855 Executive Control. *Journal of Neuroscience*, 40(48), 9272–9282.
856 <https://doi.org/10.1523/JNEUROSCI.2072-20.2020>

857 First, M. B., & Gibbon, M. (2004). The Structured Clinical Interview for DSM-IV Axis I Disorders
858 (SCID-I) and the Structured Clinical Interview for DSM-IV Axis II Disorders (SCID-II). In
859 *Comprehensive handbook of psychological assessment, Vol. 2: Personality assessment* (pp. 134–
860 143). John Wiley & Sons, Inc.

861 Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C., & Ullsperger, M. (2018). Cortical beta power
862 reflects decision dynamics and uncovers multiple facets of post-error adaptation. *Nature
863 Communications*, 9(1), 5038. <https://doi.org/10.1038/s41467-018-07456-8>

864 Foti, D., Kotov, R., & Hajcak, G. (2013). Psychometric considerations in using error-related brain activity
865 as a biomarker in psychotic disorders. *Journal of Abnormal Psychology*, 122, 520–531.
866 <https://doi.org/10.1037/a0032618>

867 Fox, J., Weisberg, S., Price, B., Adler, D., Bates, D., Baud-Bovy, G., Bolker, B., Ellison, S., Firth, D.,
868 Friendly, M., Gorjanc, G., Graves, S., Heiberger, R., Krivitsky, P., Laboissiere, R., Maechler, M.,
869 Monette, G., Murdoch, D., Nilsson, H., ... R-Core. (2022). *car: Companion to Applied
870 Regression* (3.1-1). <https://CRAN.R-project.org/package=car>

871 Gehring, W. J., & Knight, R. T. (2000). Prefrontal-cingulate interactions in action monitoring. *Nature
872 Neuroscience*, 3(5), 516–520. <https://doi.org/10.1038/74899>

873 Geniole, S. N., Proietti, V., Bird, B. M., Ortiz, T. L., Bonin, P. L., Goldfarb, B., Watson, N. V., & Carré,
874 J. M. (2019). Testosterone reduces the threat premium in competitive resource division.
875 *Proceedings of the Royal Society B: Biological Sciences*, 286(1903), 20190720.
876 <https://doi.org/10.1098/rspb.2019.0720>

877 Grahek, I., Shenhav, A., Musslick, S., Krebs, R. M., & Koster, E. H. W. (2019). Motivation and cognitive
878 control in depression. *Neuroscience & Biobehavioral Reviews*, 102, 371–381.
879 <https://doi.org/10.1016/j.neubiorev.2019.04.011>

880 Hajcak, G., Klawohn, J., & Meyer, A. (2019). The Utility of Event-Related Potentials in Clinical
881 Psychology. *Annual Review of Clinical Psychology*, 15, 71–95. <https://doi.org/10.1146/annurev-clinpsy-050718-095457>

882 Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not
883 produce reliable individual differences. *Behavior Research Methods*, 50(3), 1166–1186.
884 <https://doi.org/10.3758/s13428-017-0935-1>

885 Jones, S. R., Kerr, C. E., Wan, Q., Pritchett, D. L., Hämäläinen, M., & Moore, C. I. (2010). Cued Spatial

887 Attention Drives Functionally Relevant Modulation of the Mu Rhythm in Primary Somatosensory
888 Cortex. *Journal of Neuroscience*, 30(41), 13760–13765.
889 <https://doi.org/10.1523/JNEUROSCI.2969-10.2010>

890 Kayser, J., & Tenke, C. E. (2015). Hemifield-dependent N1 and event-related theta/delta oscillations: An
891 unbiased comparison of surface Laplacian and common EEG reference choices. *International*
892 *Journal of Psychophysiology*, 97(3), 258–270. <https://doi.org/10.1016/j.ijpsycho.2014.12.011>

893 Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime
894 Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity
895 Survey Replication. *Archives of General Psychiatry*, 62(6), 593–602.
896 <https://doi.org/10.1001/archpsyc.62.6.593>

897 Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H.-U. (2012). Twelve-
898 month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the
899 United States. *International Journal of Methods in Psychiatric Research*, 21(3), 169–184.
900 <https://doi.org/10.1002/mpr.1359>

901 Koller, M. (2016). robustlmm: An R Package for Robust Estimation of Linear Mixed-Effects Models.
902 *Journal of Statistical Software*, 75, 1–24. <https://doi.org/10.18637/jss.v075.i06>

903 Kowalski, C. J. (1972). On the Effects of Non-Normality on the Distribution of the Sample Product-
904 Moment Correlation Coefficient. *Journal of the Royal Statistical Society. Series C (Applied*
905 *Statistics)*, 21(1), 1–12. <https://doi.org/10.2307/2346598>

906 Krug, M. K., & Carter, C. S. (2010). Adding fear to conflict: A general purpose cognitive control network
907 is modulated by trait anxiety. *Cognitive, Affective, & Behavioral Neuroscience*, 10(3), 357–371.
908 <https://doi.org/10.3758/CABN.10.3.357>

909 Lazic, S. E. (2008). Why we should use simpler models if the data allow this: Relevance for ANOVA
910 designs in experimental biology. *BMC Physiology*, 8, 16. <https://doi.org/10.1186/1472-6793-8-16>

911 Lenth, R. V., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Riebl, H., &
912 Singmann, H. (2022). *emmeans: Estimated Marginal Means, aka Least-Squares Means* (1.8.2).
913 <https://CRAN.R-project.org/package=emmeans>

914 Luking, K. R., Nelson, B. D., Infantolino, Z. P., Sauder, C. L., & Hajcak, G. (2017). Internal Consistency
915 of Functional Magnetic Resonance Imaging and Electroencephalography Measures of Reward in
916 Late Childhood and Early Adolescence. *Biological Psychiatry: Cognitive Neuroscience and*
917 *Neuroimaging*, 2(3), 289–297. <https://doi.org/10.1016/j.bpsc.2016.12.004>

918 Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. J., & Miller, E. K. (2016). Gamma and
919 Beta Bursts Underlie Working Memory. *Neuron*, 90(1), 152–164.
920 <https://doi.org/10.1016/j.neuron.2016.02.028>

921 Macatee, R. J., Burkhouse, K. L., Afshar, K., Schroth, C., Aase, D. M., Greenstein, J. E., Proescher, E., &
922 Phan, K. L. (2021). Psychometric properties of the late positive potential in combat-exposed
923 veterans. *International Journal of Psychophysiology*, 161, 13–26.
924 <https://doi.org/10.1016/j.ijpsycho.2021.01.001>

925 Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. (1996). Independent Component Analysis of
926 Electroencephalographic Data. *Advances in Neural Information Processing Systems*, 7.

927 Marquardt, C. A., Pokorny, V. J., Kang, S. S., Cuthbert, B. N., & Sponheim, S. R. (2021). Posttraumatic
928 stress symptom dimensions and brain responses to startling auditory stimuli in combat veterans.
929 *Journal of Abnormal Psychology*, 130, 455–467. <https://doi.org/10.1037/abn0000552>

930 Mayer, M. (2022). *confintr: Confidence Intervals* (0.2.0). <https://CRAN.R-project.org/package=confintr>

931 Nelson, N. W., Davenport, N. D., Sponheim, S. R., & Anderson, C. R. (2015). Blast-Related Mild
932 Traumatic Brain Injury: Neuropsychological Evaluation and Findings. In *Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects*. Taylor & Francis.

933

934 Nelson, N. W., Hoelzle, J. B., McGuire, K. A., Ferrier-Auerbach, A. G., Charlesworth, M. J., &
935 Sponheim, S. R. (2011). Neuropsychological evaluation of blast-related concussion: Illustrating
936 the challenges and complexities through OEF/OIF case studies. *Brain Injury*, 25(5), 511–525.
937 <https://doi.org/10.3109/02699052.2011.558040>

938 Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. *Trends in Cognitive Sciences*,
939 9(5), 242–249. <https://doi.org/10.1016/j.tics.2005.03.010>

940 Olvet, D. M., & Hajcak, G. (2009a). The stability of error-related brain activity with increasing trials.
941 *Psychophysiology*, 46(5), 957–961. <https://doi.org/10.1111/j.1469-8986.2009.00848.x>

942 Olvet, D. M., & Hajcak, G. (2009b). Reliability of error-related brain activity. *Brain Research*, 1284, 89–
943 99. <https://doi.org/10.1016/j.brainres.2009.05.079>

944 Palmieri, P. A., Weathers, F. W., Difede, J., & King, D. W. (2007). Confirmatory factor analysis of the
945 PTSD Checklist and the Clinician-Administered PTSD Scale in disaster workers exposed to the
946 World Trade Center Ground Zero. *Journal of Abnormal Psychology*, 116, 329–341.
947 <https://doi.org/10.1037/0021-843X.116.2.329>

948 Pape, A.-A., & Siegel, M. (2016). Motor cortex activity predicts response alternation during sensorimotor
949 decisions. *Nature Communications*, 7(1), Article 1. <https://doi.org/10.1038/ncomms13098>

950 Pastor-Bernier, A., & Cisek, P. (2011). Neural correlates of biased competition in premotor cortex. *The
951 Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 31(19), 7083–
952 7088. <https://doi.org/10.1523/JNEUROSCI.5681-10.2011>

953 Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Post-movement beta synchronization. A correlate of
954 an idling motor area? *Electroencephalography and Clinical Neurophysiology*, 98(4), 281–293.
955 [https://doi.org/10.1016/0013-4694\(95\)00258-8](https://doi.org/10.1016/0013-4694(95)00258-8)

956 Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLLabel: An automated
957 electroencephalographic independent component classifier, dataset, and website. *NeuroImage*,
958 198, 181–197. <https://doi.org/10.1016/j.neuroimage.2019.05.026>

959 Rawls, E., Kummerfeld, E., & Zilverstand, A. (2021). An integrated multimodal model of alcohol use
960 disorder generated by data-driven causal discovery analysis. *Communications Biology*, 4(1),
961 Article 1. <https://doi.org/10.1038/s42003-021-01955-z>

962 Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN?
963 Convergent validity of error-related brain activity across different tasks. *Biological Psychology*,
964 93(3), 377–385. <https://doi.org/10.1016/j.biopsych.2013.04.007>

965 Ruff, R. M., & Richardson, A. M. (1999). Mild traumatic brain injury. In *Forensic neuropsychology: Fundamentals and practice* (pp. 315–338). Swets & Zeitlinger Publishers.

966

967 Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, D.,
968 Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020). Robustness of linear
969 mixed-effects models to violations of distributional assumptions. *Methods in Ecology and
970 Evolution*, 11(9), 1141–1152. <https://doi.org/10.1111/2041-210X.13434>

971 Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., Hämäläinen, M. S., Moore, C. I., & Jones,
972 S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence
973 from humans, computational modeling, monkeys, and mice. *Proceedings of the National
974 Academy of Sciences*, 113(33), E4885–E4894. <https://doi.org/10.1073/pnas.1604135113>

975 Shin, H., Law, R., Tsutsui, S., Moore, C. I., & Jones, S. R. (2017). The rate of transient beta frequency
976 events predicts behavior across tasks and species. *eLife*, 6, e29086.
977 <https://doi.org/10.7554/eLife.29086>

978 Simms, L. J., Watson, D., & Doebbeling, B. N. (2002). Confirmatory factor analyses of posttraumatic
979 stress symptoms in deployed and nondeployed veterans of the Gulf War. *Journal of Abnormal
980 Psychology*, 111, 637–647. <https://doi.org/10.1037/0021-843X.111.4.637>

981 Soh, C., Hynd, M., Rangel, B. O., & Wessel, J. R. (2021). Adjustments to Proactive Motor Inhibition
982 without Effector-Specific Foreknowledge Are Reflected in a Bilateral Upregulation of
983 Sensorimotor β -Burst Rates. *Journal of Cognitive Neuroscience*, 33(5), 784–798.
984 https://doi.org/10.1162/jocn_a_01682

985 Sporn, S., Hein, T., & Herrojo Ruiz, M. (2020). Alterations in the amplitude and burst rate of beta
986 oscillations impair reward-dependent motor learning in anxiety. *eLife*, 9, e50654.
987 <https://doi.org/10.7554/eLife.50654>

988 Stroop, J. R. (1935). Studies of interference in serial verbal reactions. *Journal of Experimental
989 Psychology*, 18, 643–662. <https://doi.org/10.1037/h0054651>

990 Tanielian, T. L., Tanielian, T., & Jaycox, L. (2008). *Invisible Wounds of War: Psychological and
991 Cognitive Injuries, Their Consequences, and Services to Assist Recovery*. Rand Corporation.

992 Tofighi, D. (2020). Bootstrap Model-Based Constrained Optimization Tests of Indirect Effects. *Frontiers
993 in Psychology*, 10. <https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02989>

994 Towers, D. N., & Allen, J. J. B. (2009). A better estimate of the internal consistency reliability of frontal
995 EEG asymmetry scores. *Psychophysiology*, 46(1), 132–142. [https://doi.org/10.1111/j.1469-8986.2008.00759.x](https://doi.org/10.1111/j.1469-
996 8986.2008.00759.x)

997 Verbruggen, F., Aron, A. R., Band, G. P., Beste, C., Bissett, P. G., Brockett, A. T., Brown, J. W.,
998 Chamberlain, S. R., Chambers, C. D., Colonius, H., Colzato, L. S., Corneil, B. D., Coxon, J. P.,
999 Dupuis, A., Eagle, D. M., Garavan, H., Greenhouse, I., Heathcote, A., Huster, R. J., ... Boehler,
1000 C. N. (2019). A consensus guide to capturing the ability to inhibit actions and impulsive
1001 behaviors in the stop-signal task. *eLife*, 8, e46323. <https://doi.org/10.7554/eLife.46323>

1002 Vinding, M. C., Tsitsi, P., Waldthaler, J., Oostenveld, R., Ingvar, M., Svensson, P., & Lundqvist, D.
1003 (2020). Reduction of spontaneous cortical beta bursts in Parkinson's disease is linked to symptom
1004 severity. *Brain Communications*, 2(1), fcaa052. <https://doi.org/10.1093/braincomms/fcaa052>

1005 Weathers, F. W., Keane, T. M., & Davidson, J. R. T. (2001). Clinician-administered PTSD scale: A
1006 review of the first ten years of research. *Depression and Anxiety*, 13(3), 132–156.
1007 <https://doi.org/10.1002/da.1029>

1008 Wessel, J. R. (2020). β -Bursts Reveal the Trial-to-Trial Dynamics of Movement Initiation and
1009 Cancellation. *Journal of Neuroscience*, 40(2), 411–423.
1010 <https://doi.org/10.1523/JNEUROSCI.1887-19.2019>

1011 Yufik, T., & Simms, L. J. (2010). A meta-analytic investigation of the structure of posttraumatic stress
1012 disorder symptoms. *Journal of Abnormal Psychology*, 119, 764–776.
1013 <https://doi.org/10.1037/a0020981>

1014 Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging Impaired
1015 Response Inhibition and Salience Attribution in Human Drug Addiction: A Systematic Review.
1016 *Neuron*, 98(5), 886–903. <https://doi.org/10.1016/j.neuron.2018.03.048>

1017 Zuo, X.-N., Xu, T., & Milham, M. P. (2019). Harnessing reliability for neuroscience research. *Nature
1018 Human Behaviour*, 3(8), Article 8. <https://doi.org/10.1038/s41562-019-0655-x>