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Abstract

The spiny mouse (Acomys) is gaining popularity as a research organism due to its
phenomenal regenerative capabilities. Acomys recovers from injuries to several organs without
fibrosis. For example, Acomys heals full thickness skin injuries with rapid re-epithelialization of
the wound and regeneration of hair follicles, sebaceous glands, erector pili muscles, adipocytes,
and dermis without scarring. Understanding mechanisms of Acomys regeneration may uncover
potential therapeutics for wound healing in humans. However, access to Acomys colonies is
limited and primary fibroblasts can only be maintained in culture for a limited time. To address
these obstacles, we generated immortalized Acomys dermal fibroblast cell lines using two
methods: transfection with the SV40 large T antigen and spontaneous immortalization. The two
cell lines (AcoSV40 and AcoSI-1) maintained the morphological and functional characteristics
of primary Acomys fibroblasts, including maintenance of key fibroblast markers and ECM
deposition. The availability of these cells will lower the barrier to working with Acomys as a
model research organism, increasing the pace at which new discoveries to promote regeneration

in humans can be made.

Introduction

The spiny mouse (Acomys) is gaining popularity as a research organism, largely due to its
phenomenal regenerative capabilities [1]. Acomys has been shown to regenerate damage to the
skin [2-7], ear pinna [8—10], skeletal muscle [11], kidney [12], heart [13—15], and spinal cord
[16,17]. Remarkably, all these findings have occurred within the last decade. The increased
interest of Acomys as a research organism and its potential for future regenerative medicine

applications creates a need for research tools that can be used to increase the accessibility of
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Acomys as a model organism and promote collaboration among researchers across different
fields and universities.

However, the use of emerging research organisms has challenges. Many researchers do
not have access to non-traditional animal facilities, and there are higher associated costs with
maintaining non-traditional animal colonies. In the case of Acomys, the obstacles are even
greater, as they are not sold by commonly used vendors like the Jackson laboratory and their
colonies require maintenance procedures that differ from those of commonly housed rodents
[1,18-20]. In addition, Acomys have longer gestation periods and smaller litters which makes
building and maintaining a colony difficult. The limited presence and size of Acomys colonies
available for research limits access to Acomys even as interest continues to increase.

Using primary cell cultures from Acomys carries similar challenges as primary cells
require access to an Acomys colony, and repeated cell isolation can place stress on colonies being
used for multiple projects. In addition, primary and secondary cell cultures can only be
maintained in vitro for a short period of time before they enter replicative senescence and cell
division is no longer possible [21,22]. Even prior to replicative senescence, primary and
secondary cell cultures begin to show morphological and functional changes which limits their
use to early passages. Isolation of primary cells is also time consuming, and the initial population
of cells may be heterogeneous. While sorting for the cell type of interest is typically an option
when working with primary isolates, the poor cross-reactivity of many antibodies presents even
more challenges in Acomys [1,23,24].

In comparison to primary and secondary cell cultures, immortal cell lines have ‘infinite’
culturing capabilities and off-the-shelf availability, meaning they can easily be shared across

research institutions. Immortal cell lines have acquired the ability to proliferate indefinitely
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through either artificial genetic modifications or spontaneous mutations. They are widely used
because they are easy and inexpensive to maintain, manipulate, and expand. Immortal cells are a
valuable tool for preliminary experiments because they are a pure population of cells which
improves reproducibility. In addition, they obviate the need for consistent isolation of primary
cells to support in vitro experiments.

Cell immortalization through artificial genetic modifications is often performed by
transfection with viral oncogenes. Immortalization of cells through transfection with the simian
virus 40 large T antigen (SV40-LT) has been used for decades and is described as a simple and
reliable agent for the immortalization of many different cell types, and there are over 170 SV40-
LT transfected cell lines available through ATCC alone [25-28]. Although the SV40-LT binds to
many proteins, its interactions with the tumor suppressors retinoblastoma (Rb) and p53 are
essential for bypassing replicative senescence [25,29]. Rb and p53 serve to prevent excessive cell
growth and mutations by halting cell cycle progression, and their inhibition by SV40-LT
promotes cell immortalization by preventing senescence. Cells transfected with SV40-LT also
demonstrate stabilization of telomere length due to increased telomerase activity [30]. Viral
transfection is not complete in all cells. Instead, within a cell culture, there are nonpermissive
infections, semipermissive infections, and full transformations [31,32]. Fully transformed cells
will eventually overtake the other populations in culture, but they can also be reliably isolated
using selectable markers like antibiotic resistance genes, producing a culture of transformed
cells.

Cells can also be immortalized through spontaneous mutations that result from prolonged
subculture and genomic instability. Spontaneous immortalization of normal human cell lines is

rare whereas normal rodent cells can regularly be established spontaneously [33,34]. One
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83  example is NIH3T3 fibroblasts which have been utilized in research since they were first

84  developed by Todaro and Green in 1963 [35]. Loss of a key tumor suppressor gene like p53 is

85  necessary for spontaneous immortalization, but another mutation such as chromosomal

86  recombination or epigenetic silencing is also required [36,37]. Interestingly, the mutations

87  required to escape replicative senescence can change with cell type and culture conditions [38—

88  40], making it difficult to point to any specific mutations as being the key to spontaneous

89 immortalization. Nonetheless, a variety of cell lines from different organisms including mice,

90 humans, pigs, and chickens have been derived through spontaneous immortalization and utilized

91 in experimentation [41—44].

92 To support the regenerative medicine community and to reduce the number of animals

93  used in research, we sought to generate immortalized Acomys fibroblasts. We chose to focus on

94  the dermis because regeneration of Acomys skin has been widely reported [2—7], but exact

95  mechanisms remain elusive. Strikingly, 4comys can regenerate hairs, sebaceous glands, erector

96 pili muscles, adipocytes, and the panniculus carnosus following full thickness excision wounds

97  [2] and burn wounds [5] to the skin. We have chosen to focus on fibroblasts because we

98  hypothesize that fibroblast activation plays a notable role in Acomys regeneration [45], and we

99 are investing in in vitro experimental platforms to uncover specific regenerative mechanisms.
100  We generated two Acomys dermal fibroblast lines—one through transfection with SV40-LT and
101  one through extended subculture—and verified their functional similarity to primary Acomys
102  fibroblasts (pAFs). These cell lines have been accepted into the ATCC general collection, and we
103  expect availability in 2023.

104

105 Materials and Methods
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Isolation of pAFs

Care and use of animals was conducted in accordance with the United States Department
of Agriculture (USDA) and National Institutes of Health (NIH) guidelines and were approved by
the UF Institutional Animal Care and Use Committee. Acomys cahirinus and CD-1 Mus
musculus pups were obtained from UF breeding colonies.

Acomys pups were euthanized within 3 days of birth and the dorsal skin was removed.
The tissue was incubated overnight in 0.2% dispase II (Roche) in DMEM at 4°C, after which the
dermis and epidermis were separated with forceps. The dermis was dissociated by incubation in
0.24% collagenase type I (Gibco) in PBS at 37°C for 60-90 minutes with constant agitation. A
cell suspension was obtained using a vacuum filtered conical tube, and the cells were rinsed and
cultured in DMEM/F:12 supplemented with 10% fetal bovine serum (Gibco), 10% NuSerum
(Corning), 1% Gentamicin/Amphotericin B (Gibco), and 0.1% insulin-transferrin-selenium

(Gibco). Isolation of cells from CD-1 Mus musculus pups followed the same procedure.

SV40LT transfection of pAFs

Fibroblasts were isolated from an Acomys neonate and expanded for two passages on soft
silicone (Sylgard™ 527 Silicone Dielectric Gel, Dow Inc.) coated with 0.01mg/mL rat tail
collagen I (Corning) prior to being frozen and shipped to ALSTEM, Inc for immortalization. At
ALSTEM, cells were cultured in provided collagen-coated Sylgard 527 well plates and using the
media formulation described above. Sylgard 527 was used to mimic the stiffness of in vivo tissue
and avoid phenotypic changes in the pAFs during culture. 100,000 cells were infected with a

lentivirus encoding the SV40 large T antigen and puromycin N-acetyltransferase. The cells were
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128  selected by puromycin at 2ug/mL and passaged for 2-3 passages. The expression of SV40 and
129  puromycin resistance genes was confirmed via PCR (S1 Fig) before the cells were frozen.

130 Upon receiving the cells, continuous proliferation was confirmed by passaging the cells
131  at a constant interval (3 days) and seeding density (5,300 cells/cm?). Growth curves were

132 generated by calculating the population doubling (PDL) at each passage using the formula PDL
133 =PDL, + 3.32(LogC¢— LogCy) where Cs is the final cell count at the time of passaging and C,is
134  the seeding number. The cells were intermittently frozen so proliferation could be assessed

135  across both passages and freeze/thaw cycles. We utilized the media formulation that has been
136  optimized for our pAFs (described above) for both immortalized lines to directly compare them
137  to pAFs. However, we have demonstrated that both lines also retain continuous proliferation in
138  the presence of a more commonly used formulation (S2 Fig).

139

140 Spontaneous immortalization of primary Acomys fibroblasts

141 Fibroblasts were isolated from three Acomys neonates from separate litters and cultured
142 until logarithmic growth was re-established following a period of reduced proliferation. Cells
143 were passaged at 80% confluency, and a constant seeding density (5,300 cells/cm?) was used.
144  The cells were classified as immortalized once proliferation increased for 3 passages following
145  the period of reduced proliferation, or crisis.

146 One set of immortalized Acomys fibroblasts (AcoSI-1) was chosen for further

147  characterization. Continuous proliferation of AcoSI-1 cells was confirmed by passaging the cells
148  at a constant interval (3 days) and seeding density (5,300 cells/cm?). Growth curves were

149  generated by calculating the PDL at each passage as described above. The cells were
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intermittently frozen so proliferation could be assessed across both passages and freeze/thaw

cycles.

Assessment of fibroblast markers via western blot

Cell lysates were prepared in RIPA buffer, and equal amounts of protein were loaded into
NuPage 4-12% Bis-Tris Midi gels (Invitrogen) submerged in NuPage MES SDS Running Buffer
(Life Technologies). The proteins were transferred onto a nitrocellulose membrane using the
SureLock™ Tandem Midi Blot Module (Life Technologies) and NuPage Transfer Buffer (Life
Technologies) containing 10% methanol. The membrane was blocked with 5% powdered milk in
tris-buffered saline for 1 hour at room temperature. Membranes were incubated with either a
mouse monoclonal anti-alpha smooth muscle actin (Abcam ab7817, 0.341ug/mL) or a rabbit
monoclonal anti-vimentin antibody (Abcam ab92547, 1:5000 dilution) with a mouse monoclonal
anti-GAPDH loading control (Arigo biolaboratories ARG10112, 1:5000 dilution) overnight at
4°C. Incubation with HRP secondary antibodies (Arigo biolaboratories ARG65350, 1:5000
dilution or enQuire BioReagents QAB10303, 1:15,000 dilution) was performed for 1 hour at
room temperature. Signal was produced using SuperSignal™ West Pico PLUS
Chemiluminescent Substrate (Thermo Scientific) and the blots were imaged on a LI-COR Fc

Imager (Odyssey).

Assessment of contractility with traction force microscopy

Cell contractility was evaluated by using traction force microscopy (TFM) as described
previously [46]. Cells were seeded on 8kPa polyacrylamide hydrogels coated with fluorescent

nano-beads (Cell&Soft) and allowed to adhere for 12 hours. The samples were then mounted on
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173 a Nikon microscope with a 37°C chamber, and DMEM media was replaced with CO,-

174  independent media (Leibovitz) prior to the test. Fluorescent images of the nano-beads were

175  captured before and after cell detachment with a 1% Triton-X and 200 mM KOH solution. Bead
176  displacement was quantified and used to calculate the root-mean-squared values of stress and
177  strain energy. For each group of tests, at least 50 cells were measured and results were reported
178  as the mean + standard deviation. The results were compared using one-way analysis of variance
179  (ANOVA) with the Bonferroni post hoc test. p-value < 0.05 was considered statistically

180  significant.

181
182 Preparation of cell derived matrices

183 Cell derived matrices (CDMs) were obtained by seeding pAFs, AcoSV40, or AcoSI-1
184  fibroblasts onto collagen-functionalized Sylgard 527 PDMS. Primary Mus fibroblasts and

185  NIH3T3 fibroblasts were included as controls, and 3 sets of CDMs were made from each cell
186  type (15 samples total). Prior to cell seeding, the substrate was plasma treated to oxidize the

187  surface before functionalizing with (3-Aminopropyl)trimethoxysilane, followed by

188  glutaraldehyde and then rat tail collagen I. Functionalization with collagen I is needed to prolong
189  adherence of Acomys cells to the substrate. Cells were cultured for 7-28 days in media containing
190  25mg/mL Ficoll 400, with immortalized cells requiring less time in culture to generate similar
191  protein mass as primary cells. Following this period, CDMs were decellularized by treating with
192  asolution of 0.5%Triton X-100 and 0.3M ammonium hydroxide in PBS for 5 minutes. The

193  presence of residual DNA was reduced by treating decellularized CDMs with 10ug/mL DNase |

194  at 370C for 30 minutes.
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195 Decellularized CDMs were homogenized with RIPA Buffer and a tissue homogenizer
196  (Fisherbrand™ 150 Handheld Homogenizer). The samples were centrifuged at 3200g and 4°C
197  for 15 minutes, followed by 14,000¢g for 2 minutes. The supernatant was removed and stored at -
198  20°C as the RIPA soluble protein fraction. The pellet was resuspended in a membrane

199  solubilization buffer containing 40mM Tris-Cl (pH 8.0), 7M urea, 2M thiourea, 0.25% w/v ASB-
200 14, and 0.25% NP-40 and incubated at room temperature for 15 minutes. The samples were

201  vortexed for 1 minute, then centrifuged at 3200g for 30 minutes. The supernatant was removed
202  and diluted by 2.5 with dH,O and stored at —20°C as the RIPA insoluble protein fraction. Prior to
203  analysis, both the RIPA soluble and RIPA insoluble protein fractions were precipitated in ice-
204  cold acetone overnight. The solutions were centrifuged at 3200g and 4°C for 15 minutes. The
205 acetone was fully removed, and the remaining pellets were resuspended in 2M urea. Equal

206  concentrations of the RIPA soluble and RIPA insoluble protein fractions from each sample were
207  combined, and label-free quantitative proteomics was performed by the UF Mass Spectrometry
208  Research and Education Center.

209

210 Label-free quantitative proteomics of CDM samples

211 In Solution Digestion

212 Total protein was determined on a Qubit and the appropriate volume of each sample was
213 taken to equal 20 pg total protein for digestion. The samples were digested with sequencing grade
214 trypsin/lys C enzyme (Promega) using manufacture recommended protocol. The samples were
215  diluted with 50mM ammonium bicarbonate buffer. The samples were incubated at 56°C with 1.0
216  pL of dithiothreitol (DTT) solution (0.1 M in 50 mM ammonium bicarbonate) for 30 minutes prior
217  to the addition of 3.0 pL of 55 mM iodoacetamide in 50 mM ammonium bicarbonate. Samples

10
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218  with iodoacetamide were incubated at room temperature in the dark for 30 min. The trypsin/lys C
219  was prepared fresh as 1 pg/uL in reconstitution buffer (provided with the enzyme). 1 pL of
220  enzyme was added and the samples were incubated at 37°C overnight. The digestion was stopped
221 with addition of 0.5% trifluoracetic acid. The MS analysis is immediately performed to ensure

222 high quality tryptic peptides with minimal non-specific cleavage.
223 Q Exactive HF Orbitrap

224 Nano-liquid chromatography tandem mass spectrometry (Nano-LC/MS/MS) was
225  performed on a Thermo Scientific Q Exactive HF Orbitrap mass spectrometer equipped with an
226  EASY Spray nanospray source (Thermo Scientific) operated in positive ion mode. The LC system
227  was an UltiMate™ 3000 RSLCnano system from Thermo Scientific. The mobile phase A was
228  water containing 0.1% formic acid and the mobile phase B was acetonitrile with 0.1% formic
229  acid. The mobile phase A for the loading pump was water containing 0.1% trifluoracetic acid. 5
230 mL of sample is injected on to a PharmaFluidics mPAC™ C18 trapping column (C18, 5 um pillar
231 diameter, 10 mm length, 2.5 pm inter-pillar distance). at 25 pl/min flow rate. This was held for 3
232 minutes and washed with 1% B to desalt and concentrate the peptides. The injector port was
233 switched to inject, and the peptides were eluted off of the trap onto the column. PharmaFluidics
234 50 cm mPAC™ was used for chromatographic separations (C18, 5 um pillar diameter, 50 cm
235  length, 2.5 um inter-pillar distance). The column temperature was maintained 40°C. A flow-rate
236 of 750 nL/min was used for the first 15 minutes and then the flow was reduced to 300 nL/min.
237  Peptides were eluted directly off the column into the Q Exactive system using a gradient of 1% B

238  to 20%B over 100 minutes and then to 45%B in 20 minutes for a total run time of 150 minutes.

11
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239 The MS/MS was acquired according to standard conditions established in the lab. The
240 EASY Spray source operated with a spray voltage of 1.5 KV and a capillary temperature of
241 200°C. The scan sequence of the mass spectrometer was based on the original TopTen™ method;
242  the analysis was programmed for a full scan recorded between 375 — 1575 Da at 60,000 resolution,
243  and a MS/MS scan at resolution 15,000 to generate product ion spectra to determine amino acid
244  sequence in consecutive instrument scans of the fifteen most abundant peaks in the spectrum. The
245  AGC Target ion number was set at 3e6 ions for full scan and 2e5 ions for MS? mode. Maximum
246  ion injection time was set at 50 ms for full scan and 55 ms for MS? mode. Micro scan number was
247  setat 1 for both full scan and MS? scan. The HCD fragmentation energy (N)CE/stepped NCE was
248  setto 28 and an isolation window of 4 m/z. Singly charged ions were excluded from MS?. Dynamic
249  exclusion was enabled with a repeat count of 1 within 15 seconds and to exclude isotopes. A

250  Siloxane background peak at 445.12003 was used as the internal lock mass.

251 HeLa protein digest standard is used to evaluate the integrity and the performance of the
252  columns and mass spectrometer. If the number of protein ID’s from the HeLa standard falls below

253 2700, the instrument is cleaned and new columns are installed.

254 All MS/MS spectra were analyzed using Sequest (Thermo Fisher Scientific; version
255  IseNode in Proteome Discoverer 2.4.0.305). Sequest was set up to search Mus saxicola Tax ID:
256 10094 assuming the digestion enzyme trypsin. Sequest was searched with a fragment ion mass
257  tolerance of 0.020 Da and a parent ion tolerance of 10.0 ppm. Carbamidomethyl of cysteine was
258  specified in Sequest as a fixed modification. Met-loss of methionine, met-loss+Acetyl of
259  methionine, oxidation of methionine and acetyl of the n-terminus were specified in Sequest as

260  variable modifications.

12
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261 Precursor ion intensity label free quantitation was done using Proteome Discoverer
262 (Thermo Fisher Scientific vs 2.4.0.305). The two groups (B33p4 vs Hp4) were compared using a
263  “non-nested” study factor. Normalization was derived by using all peptides. Protein abundances
264  were calculated by summed abundances, meaning the protein abundances are calculated by
265 summing sample abundances of the connected peptide groups. Fisher’s exact test (pairwise ratio-
266  based) was used to calculate p-values with no missing value imputation included. Adjusted p-

267  values were calculated using Benjamini-Hochberg.

268

269 Determining sex of immortalized Acomys fibroblast lines

270 Genomic DNA was isolated from 1 million cells of each cell line using the QIAamp®
271 DNA Micro Kit (QIAGEN) following the manufacturer’s guidelines. Control gDNA was

272 obtained from the peripheral blood of an adult male Acomys. DNA quantity was determined

273  using a BioTek Synergy H1 plate reader (Agilent Technologies), and PCR reactions were

274  performed using Acomys-specific primers for the target SrY. The PCR products were added to
275 2% E-Gel agarose gels with SYBR Safe DNA Stain (Invitrogen) and run in an E-Gel PowerSnap
276  system (Invitrogen). Images were acquired using a LI-COR Fc¢ Imager (Odyssey).

277

278

279 Results

280 Immortalized Acomys fibroblasts demonstrate continuous

281 proliferation

13
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282 Primary Acomys fibroblasts (pAFs) were isolated, cultured on silicone-coated tissue

283 culture plates (Sylgard 527, Elastic Modulus ~5 kPa), and sent to ALSTEM, Inc for

284  immortalization with the SV40 large T antigen via lentiviral infection. The cells were selected by
285  puromycin, and successful immortalization was confirmed through PCR assessment of SV40 and
286  puromycin resistance genes (S1 Fig). We refer to these cells as “AcoSV40” cells. Continuous
287  proliferation was confirmed by passaging the cells at a constant interval (3 days) and seeding
288  density (5,300 cells/cm?) and calculating the population-doubling level at each passage. The

289  AcoSV40 cells demonstrated continuous proliferation over 30 passages and multiple freeze/thaw
290  cycles (Fig 1a).

291

292  Figure 1. Immortalized AcoSV40 and AcoSI-1 fibroblasts demonstrate logarithmic growth
293  over at least 30 passages. (a) AcoSV40 fibroblasts maintain logarithmic growth across 30

294  passages and 3 freeze/thaw cycles. (b) pAFs subjected to continuous subculture spontaneously
295 immortalize after about 40 days. (c) AcoSI-1 fibroblasts maintain logarithmic growth across 30
296  passages and 3 freeze/thaw cycles.

297

298 Spontaneous immortalization of pAFs was performed through extended subculturing

299  where the seeding density was kept constant (5,300 cells/cm?), and the cells were passaged upon
300 reaching 80-90% confluency. As shown in Fig 1b, the fibroblasts demonstrated consistent

301 proliferation for several passages prior to experiencing a period of ‘crisis’ during which there
302  was a progressive decline in proliferation. A subpopulation of these cells eventually recovered
303 and began to proliferate, overtaking the culture. Once this occurred, the cells were deemed

304 immortalized and were named “AcoSI” cells. pAFs were isolated from three different animals,
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and the process was repeated to demonstrate replicability. AcoSI cells were generated within 13-
17 generations and 40-55 days in culture, similar to reports by Todero and Green, in which
mouse endothelial fibroblasts exited crisis after 15-30 generations and 45-75 days in culture [35].
The decreased time to immortalization in Acomys fibroblasts may be due in part to higher rates
of proliferation in Acomys fibroblast cultures when compared to mouse fibroblast cultures (S3
Fig).

AcoSI-1 fibroblasts were chosen for futher assays due to the marked crisis period and
median proliferation rates compared to the other two AcoSI lines. The passage at which the
Acomys fibroblasts were deemed to be immortalized is marked by the arrow in Fig 1b and was
recorded as AcoSI-1 passage 1. The same procedure was followed to determine continuous
proliferation in the AcoSI-1 cells as the AcoSV40 cells. The cells were passaged every three
days and seeded at a constant cell density. Population doubling remained consistent over 30

passages and multiple freeze/thaw cycles (Fig Ic).

AcoSV40 and AcoSlI fibroblasts retain similar morphological

characteristics compared to pAFs

The morphology of the two immortalized Acomys fibroblast lines was compared to
passage 1 pAFs via phase imaging. As depicted in Fig 2a, all three cell types share a similar size
and shape, with the immortal cell lines appearing less spread than the pAFs and more cuboidal in

shape.
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327  Figure 2. AcoSV40 and AcoSI-1 fibroblasts maintain morphological characteristics and
328 fibroblast markers (vimentin and aSMA) of pAFs. (a) Phase images of passage 1 pAFs,

329  AcoSV40, and AcoSI-1 fibroblast demonstrate similar morphology; scale = 100um. (b) pAFs,
330  AcoSV40, and AcoSI-1 fibroblasts express vimentin at similar levels, but aSMA is weekly

331  present in AcoSV40 and absent in AcoSI-1 fibroblasts under standard culture conditions. We
332  demonstrated that under serum starvation, AcoSV40 and AcoSI-1 can (c) upregulate aSMA and

333  (d) co-localize it to stress fibers; scale = 100pum.

334

335 The AcoSV40 and AcoSI lines were also assessed for the fibroblast markers vimentin
336  and alpha smooth muscle actin (aSMA) to confirm relevant markers are retained during

337  immortalization. Primary Mus musculus and immortalized Mus musculus (NIH3T3) fibroblasts
338  were included as a comparison. As demonstrated by western blot (Fig 2b), all cell types maintain
339  the vimentin marker and express it at similar levels under normal culture conditions. The

340  AcoSV4O0 fibroblasts express aSMA at low levels in normal culture conditions compared to

341  pAFs. Interestingly, the AcoSI-1 cells did not produce aSMA bands when assessed via western
342 bot. However, this finding was shared with the NIH3T3 cells, which are also a spontaneously
343  immortalized cell line. NIH3T3 fibroblasts are known to upregulate aSMA in culture when

344  treated with TGF-B1 [47-49], suggesting that AcoSI-1 fibroblasts may also be able to upregulate
345  aSMA under different culture conditions. TGF-B1 was not a good candidate for our purposes due
346  to the lack of response documented in Acomys fibroblasts [50]. Instead, we assessed aSMA

347  upregulation under serum starvation conditions and found that both AcoSV40 and AcoSI-1

348  fibroblasts produce more aSMA in the absence of serum, although AcoSI-1 cells make only a
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small quantity (Fig 2c). Both AcoSV40 and AcoSI-1 cells were also able to co-localize aSMA to

stress fibers (Fig 2d), supporting their utility in fibroblast activation studies.

AcoSV40 and AcoSI-1 fibroblasts retain functional characteristics of

pAFs

Contractility and deposition of extracellular matrix (ECM) are important functional
characteristics of fibroblasts and play a key role in stabilization of the wound bed following
injury. We assessed the contractility of AcoSV40 and AcoSI-1 fibroblasts through traction force
microscopy and found that they generate similar average (root-mean-square traction, rmst) and
maximum (Max rmst) traction forces as pAFs (Fig 3). Strain energy (integrated traction force
and deformation over the area of the cell) is unsurprisingly lower for immortalized fibroblasts
since they have a smaller spread area than primary cells. Traction force microscopy confirms

maintenance of contractile function in both AcoSV40 and AcoSI-1 immortalized lines.

Figure 3. Traction forces of pAFs, AcoSV40, and AcoSI-1 fibroblasts are similar, and
differences in strain energy correlate with differences in cell area. Cells were seeded on 8kPa
polyacrylamide gels to evaluate root-mean-square of traction (rmst), max rmst, strain energy, and
area. pAFs have higher maximum contraction stresses than AcoSI-1 cells, but similar average
stresses to both immortalized lines. While pAFs have higher strain energy (i.e., do more work)
than the immortalized fibroblasts, it is likely a function of their larger area. *p<0.05 as assessed

by ANOVA with Bonferroni test.
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Fibroblasts are responsible for maintaining the ECM proteome, composed of hundreds of
proteins and proteoglycans which are encoded by over 1000 genes [51]. To capture this
complexity, we compared ECM production in primary and immortalized Acomys fibroblasts by
generating cell derived matrices (CDMs). CDMs recapitulate native tissue structure and
composition in vitro and are useful for studying bulk matrix composition in a controlled setting.
CDMs were generated in culture for 1-4 weeks depending on cell type, homogenized, and
analyzed via label-free quantitative proteomics. No significant differences in CDM composition
were found between pAFs and AcoSV40 fibroblasts, while AcoSI-1 CDMs shared 88% of
proteins identified with pAFs (Fig 4a). The proteins that differed between the two samples were
involved in biological processes related to metabolism and translation, based on a GO
enrichment analysis. In comparison, NIH3T3s, a commonly used substitute for Mus musculus
cells, only shared 75% of proteins with their counterpart (Fig 4b). Based on these results,

AcoSV40 and AcoSI-1 are representative of pAFs in experiments related to ECM deposition.

Figure 4. Immortalized lines AcoSV40 and AcoSI-1 share most proteins with pAFs. The
comparison of AcoSV40 and pAF CDMs via mass spectrometry resulted in no significant
difference in deposited proteins. (a) AcoSI-1 CDMs shared 604 out of 686 proteins identified
with pAFs and enriched biological processes within the dissimilar proteins were unrelated to
ECM organization. (b) In comparison, NIH3T3 fibroblasts share 641 out of 853 identified
proteins with Mus primary fibroblasts, some of which are related to ECM organization. GO
biological processes were determined by running the proteins that were exclusive to Primary

Acomys, AcoSI-1, Primary Mus, and NIH3T3 fibroblasts through the PANTHER classification
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394  system. For brevity, only the top eight enriched biological processes were reported in the

395  NIH3T3 exclusive proteins, all of which had a fold enrichment change of over 50.

396

397 Determining sex of immortalized Acomys cell lines

398 It is becoming increasingly evident that considering the sex of cell lines is important.

399  Genes expressed on the sex chromosomes can have an impact on a cell’s biology, and cells differ
400 according to sex, regardless of their exposure to sex hormones. The basis of differences between
401 male and female cells and examples of known differences between male and female cells from a
402  variety of tissues are reviewed by Shah et al [52]. Since we were unable to sex the Acomys pups
403  from which the cells were isolated, we determined the sex of our immortalized lines via PCR
404  using primers designed for the Acomys SRY gene. The SRY gene provides instructions for

405  making the sex-determining region Y protein which is located on the Y chromosome and is

406  involved in male-typical sex development. Genomic DNA was obtained from cell cultures of the
407  four immortalized lines and the blood of a male Acomys and assessed for the presence of SRY
408  (Fig 5a). DNA from AcoSV40 fibroblasts did not contain the SrY gene, while all AcoSI cell lies
409  did, meaning AcoSV40 cells are female while all AcoSI cells are male (Fig 5b).

410

411  Figure 5. AcoSV40 cells are female while all AcoSI cells are male. (a) Forward and reverse
412 primers specific to Acomys SrY. (b) PCR products for Y chromosome in all 4 cell lines

413  compared to a DNA sample obtained from the blood of an 4comys adult male.

414

415 Discussion
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416 Tissue damage in humans generally results in the formation of scar tissue, which has
417  structural and mechanical properties that differ from uninjured tissue and often impede tissue
418  function. Regenerative organisms present an opportunity to uncover mechanisms behind scar-
419  free healing that can improve patient outcomes following tissue damage. The spiny mouse

420  (Acomys) is an exciting research organism with the most extensive regeneration capabilities of
421  any known mammal. Unfortunately, Acomys research is currently limited to a handful of

422  institutions due to the need for non-traditional animal facilities and husbandry protocols, as well
423 as the limited access to Acomys vendors [1,18-20]. To increase access to Acomys research and
424  reduce the use of animals in regenerative medicine research, we developed two immortalized
425  Acomys fibroblast cell lines. We generated the lines through two well described methods—

426 SVA40OLT transfection (“AcoSV40”) and spontaneous immortalization (“AcoSI-1”)—and

427  assessed morphological and functional characteristics.

428 As mediators of matrix deposition and wound contraction, fibroblasts are likely key

429  players in the scar-free healing of Acomys. Acomys wounds have low populations of aSMA

430  positive myofibroblasts [2], even though there is a high concentration of TGF-B1 [3], a pro-

431  fibrotic cytokine. In vitro, Acomys fibroblasts do not upregulate aSMA when treated with TGF-
432 B1[50]. These findings suggest that Acomys fibroblasts are protected from TGF-f1-mediated
433 activation. Inhibition of TGF-B1 signaling in vivo is associated with reduced wound scarring, as
434  demonstrated in a rabbit ear hypertrophic scarring model [53]. However, direct blocking of TGF-
435 [ through antibody-based methods have been unsuccessful due to adverse effects [54].

436  Uncovering mechanisms behind the response of Acomys fibroblasts to TGF-f1 may lead to more
437  nuanced treatments targeting the TGF-3 pathway. In addition to an altered response to TGF-f1,

438  Acomys fibroblasts demonstrate an increased migration rate and decreased response to stiffness
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in vitro, which may also play roles in wound healing and fibrosis, respectively [45]. Proliferation
and migration of dermal fibroblasts is a crucial step in wound healing due to the role of
fibroblasts in depositing granulation tissue and beginning the proliferative phase of healing [55].
The lack of stiffness-induced myofibroblast differentiation in Acomys fibroblasts is a deviation
from the common feed-forward mechanism between increased ECM deposition and
myofibroblast activation that occurs in fibrotic disorders [56]. Understanding these intrinsic
differences between Acomys fibroblasts and fibroblasts in non-regenerative mammals may point

to new therapeutics to improve wound healing and mediate fibrosis.

AcoSV40 and AcoSI-1 immortalized Acomys fibroblasts present a great opportunity for
researchers to uncover new mechanisms behind scar-free wound healing. The two cell lines are
easier to culture than pAFs due to higher proliferation rates, consistent characteristics, and
simplified media requirements (S3 Fig). Their off-the-shelf availability allows for more frequent
experiments and collaboration across institutions. Although the two cell lines behave similarly,
there are instances where one cell type may be preferred over the other. For example, AcoSV40
cells express puromycin N-acetyltransferase, a puromycin resistance gene commonly used in
selection of transformed mammalian cells. This prevents the use of puromycin selection in any
further genetic modifications of these cells, making the AcoSI-1 cells preferable if using
lentiviral vectors with puromycin resistance. In addition, AcoSI-1 cells may be a more
appropriate comparison when compared to NIH3T3 fibroblasts because they are both
spontaneously immortalized lines and have low aSMA expression in standard culture conditions.
However, if aSMA expression is desired under standard culture conditions, AcoSV40 fibroblasts
would be preferred over AcoSI-1. Like aSMA, other proteins may be differentially expressed

between the two cell lines and a decision between the two lines will need to be made based on
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462  the proteins of interest for specific experiments. Finally, AcoSV40 cells are female and AcoSI-1
463  cells are male, which may affect cell line choice depending on research questions, as there are

464  differences between male and female cells from a variety of tissues [52].

465 To increase access to Acomys research and reduce the use of animals in regenerative
466  medicine research, we developed two immortalized Acomys fibroblast cell lines and confirmed
467  that morphological and functional characteristics were representative of pAFs. We believe the

468  availability of these cells will contribute to the field’s understanding of mammalian regeneration.

469
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Supporting Information

Supplemental Figure 1. Confirmation of expression of SV40 and puromycin resistance

gene. (a) Primer sequences used to analyze transgene expression, provided by ALSTEM, Inc. (b)

PCR products to confirm transgene expression in AcoSV40 cells. Lane 1. MEF Sample for

SV40; Lanes 2 and 5, ladder; Lane 3 and 6, positive control; Lane 4, MEF Sample for

puromycin. After amplifying with primers SV40-F/R and puro-F/R, respectively, the MEF cells

showed 112 bp bands for SV40 and 198 bp bands for puromycin resistance gene.
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668  Supplemental Figure 2. AcoSV40 and AcoSl-1 fibroblasts maintain constant proliferation rates
669  when cultured in a standard media formulation (DMEM, 10%FBS, 1%PenStrep). Fibroblasts
670  were seeded at a constant cell density (5,300 cells/cm?) and passaged every 3 days.

671

672  Supplemental Figure 3. Primary Acomys fibroblasts demonstrate faster proliferation

673  compared to primary Mus fibroblasts. Growth curves for early passage primary Acomys (blue)
674  and Mus musculus (orange) fibroblasts. Fibroblasts were seeded at a constant cell density

675 (5,300 cells/cm?) and passaged at 80-90% confluency.

676
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