

1 Generation and characterization of two immortalized dermal fibroblast
2 cell lines from the spiny mouse (*Acomys*)

3

4 Michele N. Dill^{1,*}, Mohammad Tabatabaei², Manasi Kamat³, Kari B. Basso³, Chelsey S.
5 Simmons^{1,2}

6 ¹J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida,
7 Gainesville, Florida, United States of America

8 ²Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,
9 Florida, United States of America

10 ³Department of Chemistry, University of Florida, Gainesville, Florida, United States of America

11

12 *Corresponding Author

13 Email: mdill@ufl.edu (MND)

14

15 **Abstract**

16 The spiny mouse (*Acomys*) is gaining popularity as a research organism due to its
17 phenomenal regenerative capabilities. *Acomys* recovers from injuries to several organs without
18 fibrosis. For example, *Acomys* heals full thickness skin injuries with rapid re-epithelialization of
19 the wound and regeneration of hair follicles, sebaceous glands, erector pili muscles, adipocytes,
20 and dermis without scarring. Understanding mechanisms of *Acomys* regeneration may uncover
21 potential therapeutics for wound healing in humans. However, access to *Acomys* colonies is
22 limited and primary fibroblasts can only be maintained in culture for a limited time. To address
23 these obstacles, we generated immortalized *Acomys* dermal fibroblast cell lines using two
24 methods: transfection with the SV40 large T antigen and spontaneous immortalization. The two
25 cell lines (AcoSV40 and AcoSI-1) maintained the morphological and functional characteristics
26 of primary *Acomys* fibroblasts, including maintenance of key fibroblast markers and ECM
27 deposition. The availability of these cells will lower the barrier to working with *Acomys* as a
28 model research organism, increasing the pace at which new discoveries to promote regeneration
29 in humans can be made.

30 **Introduction**

31 The spiny mouse (*Acomys*) is gaining popularity as a research organism, largely due to its
32 phenomenal regenerative capabilities [1]. *Acomys* has been shown to regenerate damage to the
33 skin [2–7], ear pinna [8–10], skeletal muscle [11], kidney [12], heart [13–15], and spinal cord
34 [16,17]. Remarkably, all these findings have occurred within the last decade. The increased
35 interest of *Acomys* as a research organism and its potential for future regenerative medicine
36 applications creates a need for research tools that can be used to increase the accessibility of

37 *Acomys* as a model organism and promote collaboration among researchers across different
38 fields and universities.

39 However, the use of emerging research organisms has challenges. Many researchers do
40 not have access to non-traditional animal facilities, and there are higher associated costs with
41 maintaining non-traditional animal colonies. In the case of *Acomys*, the obstacles are even
42 greater, as they are not sold by commonly used vendors like the Jackson laboratory and their
43 colonies require maintenance procedures that differ from those of commonly housed rodents
44 [1,18–20]. In addition, *Acomys* have longer gestation periods and smaller litters which makes
45 building and maintaining a colony difficult. The limited presence and size of *Acomys* colonies
46 available for research limits access to *Acomys* even as interest continues to increase.

47 Using primary cell cultures from *Acomys* carries similar challenges as primary cells
48 require access to an *Acomys* colony, and repeated cell isolation can place stress on colonies being
49 used for multiple projects. In addition, primary and secondary cell cultures can only be
50 maintained *in vitro* for a short period of time before they enter replicative senescence and cell
51 division is no longer possible [21,22]. Even prior to replicative senescence, primary and
52 secondary cell cultures begin to show morphological and functional changes which limits their
53 use to early passages. Isolation of primary cells is also time consuming, and the initial population
54 of cells may be heterogeneous. While sorting for the cell type of interest is typically an option
55 when working with primary isolates, the poor cross-reactivity of many antibodies presents even
56 more challenges in *Acomys* [1,23,24].

57 In comparison to primary and secondary cell cultures, immortal cell lines have ‘infinite’
58 culturing capabilities and off-the-shelf availability, meaning they can easily be shared across
59 research institutions. Immortal cell lines have acquired the ability to proliferate indefinitely

60 through either artificial genetic modifications or spontaneous mutations. They are widely used
61 because they are easy and inexpensive to maintain, manipulate, and expand. Immortal cells are a
62 valuable tool for preliminary experiments because they are a pure population of cells which
63 improves reproducibility. In addition, they obviate the need for consistent isolation of primary
64 cells to support *in vitro* experiments.

65 Cell immortalization through artificial genetic modifications is often performed by
66 transfection with viral oncogenes. Immortalization of cells through transfection with the simian
67 virus 40 large T antigen (SV40-LT) has been used for decades and is described as a simple and
68 reliable agent for the immortalization of many different cell types, and there are over 170 SV40-
69 LT transfected cell lines available through ATCC alone [25–28]. Although the SV40-LT binds to
70 many proteins, its interactions with the tumor suppressors retinoblastoma (Rb) and p53 are
71 essential for bypassing replicative senescence [25,29]. Rb and p53 serve to prevent excessive cell
72 growth and mutations by halting cell cycle progression, and their inhibition by SV40-LT
73 promotes cell immortalization by preventing senescence. Cells transfected with SV40-LT also
74 demonstrate stabilization of telomere length due to increased telomerase activity [30]. Viral
75 transfection is not complete in all cells. Instead, within a cell culture, there are nonpermissive
76 infections, semipermissive infections, and full transformations [31,32]. Fully transformed cells
77 will eventually overtake the other populations in culture, but they can also be reliably isolated
78 using selectable markers like antibiotic resistance genes, producing a culture of transformed
79 cells.

80 Cells can also be immortalized through spontaneous mutations that result from prolonged
81 subculture and genomic instability. Spontaneous immortalization of normal human cell lines is
82 rare whereas normal rodent cells can regularly be established spontaneously [33,34]. One

83 example is NIH3T3 fibroblasts which have been utilized in research since they were first
84 developed by Todaro and Green in 1963 [35]. Loss of a key tumor suppressor gene like p53 is
85 necessary for spontaneous immortalization, but another mutation such as chromosomal
86 recombination or epigenetic silencing is also required [36,37]. Interestingly, the mutations
87 required to escape replicative senescence can change with cell type and culture conditions [38–
88 40], making it difficult to point to any specific mutations as being the key to spontaneous
89 immortalization. Nonetheless, a variety of cell lines from different organisms including mice,
90 humans, pigs, and chickens have been derived through spontaneous immortalization and utilized
91 in experimentation [41–44].

92 To support the regenerative medicine community and to reduce the number of animals
93 used in research, we sought to generate immortalized *Acomys* fibroblasts. We chose to focus on
94 the dermis because regeneration of *Acomys* skin has been widely reported [2–7], but exact
95 mechanisms remain elusive. Strikingly, *Acomys* can regenerate hairs, sebaceous glands, erector
96 pili muscles, adipocytes, and the panniculus carnosus following full thickness excision wounds
97 [2] and burn wounds [5] to the skin. We have chosen to focus on fibroblasts because we
98 hypothesize that fibroblast activation plays a notable role in *Acomys* regeneration [45], and we
99 are investing in *in vitro* experimental platforms to uncover specific regenerative mechanisms.
100 We generated two *Acomys* dermal fibroblast lines—one through transfection with SV40-LT and
101 one through extended subculture—and verified their functional similarity to primary *Acomys*
102 fibroblasts (pAFs). These cell lines have been accepted into the ATCC general collection, and we
103 expect availability in 2023.

104

105 Materials and Methods

106 **Isolation of pAFs**

107 Care and use of animals was conducted in accordance with the United States Department
108 of Agriculture (USDA) and National Institutes of Health (NIH) guidelines and were approved by
109 the UF Institutional Animal Care and Use Committee. *Acomys cahirinus* and CD-1 *Mus*
110 *musculus* pups were obtained from UF breeding colonies.

111 *Acomys* pups were euthanized within 3 days of birth and the dorsal skin was removed.
112 The tissue was incubated overnight in 0.2% dispase II (Roche) in DMEM at 4°C, after which the
113 dermis and epidermis were separated with forceps. The dermis was dissociated by incubation in
114 0.24% collagenase type I (Gibco) in PBS at 37°C for 60-90 minutes with constant agitation. A
115 cell suspension was obtained using a vacuum filtered conical tube, and the cells were rinsed and
116 cultured in DMEM/F12 supplemented with 10% fetal bovine serum (Gibco), 10% NuSerum
117 (Corning), 1% Gentamicin/Amphotericin B (Gibco), and 0.1% insulin-transferrin-selenium
118 (Gibco). Isolation of cells from CD-1 *Mus musculus* pups followed the same procedure.

119

120 **SV40LT transfection of pAFs**

121 Fibroblasts were isolated from an *Acomys* neonate and expanded for two passages on soft
122 silicone (Sylgard™ 527 Silicone Dielectric Gel, Dow Inc.) coated with 0.01mg/mL rat tail
123 collagen I (Corning) prior to being frozen and shipped to ALSTEM, Inc for immortalization. At
124 ALSTEM, cells were cultured in provided collagen-coated Sylgard 527 well plates and using the
125 media formulation described above. Sylgard 527 was used to mimic the stiffness of *in vivo* tissue
126 and avoid phenotypic changes in the pAFs during culture. 100,000 cells were infected with a
127 lentivirus encoding the SV40 large T antigen and puromycin N-acetyltransferase. The cells were

128 selected by puromycin at 2ug/mL and passaged for 2-3 passages. The expression of SV40 and
129 puromycin resistance genes was confirmed via PCR (S1 Fig) before the cells were frozen.

130 Upon receiving the cells, continuous proliferation was confirmed by passaging the cells
131 at a constant interval (3 days) and seeding density (5,300 cells/cm²). Growth curves were
132 generated by calculating the population doubling (PDL) at each passage using the formula PDL
133 = PDL₀ + 3.32(LogC_f – LogC₀) where C_f is the final cell count at the time of passaging and C₀ is
134 the seeding number. The cells were intermittently frozen so proliferation could be assessed
135 across both passages and freeze/thaw cycles. We utilized the media formulation that has been
136 optimized for our pAFs (described above) for both immortalized lines to directly compare them
137 to pAFs. However, we have demonstrated that both lines also retain continuous proliferation in
138 the presence of a more commonly used formulation (S2 Fig).

139

140 **Spontaneous immortalization of primary *Acomys* fibroblasts**

141 Fibroblasts were isolated from three *Acomys* neonates from separate litters and cultured
142 until logarithmic growth was re-established following a period of reduced proliferation. Cells
143 were passaged at 80% confluence, and a constant seeding density (5,300 cells/cm²) was used.
144 The cells were classified as immortalized once proliferation increased for 3 passages following
145 the period of reduced proliferation, or crisis.

146 One set of immortalized *Acomys* fibroblasts (AcoSI-1) was chosen for further
147 characterization. Continuous proliferation of AcoSI-1 cells was confirmed by passaging the cells
148 at a constant interval (3 days) and seeding density (5,300 cells/cm²). Growth curves were
149 generated by calculating the PDL at each passage as described above. The cells were

150 intermittently frozen so proliferation could be assessed across both passages and freeze/thaw
151 cycles.

152

153 **Assessment of fibroblast markers via western blot**

154 Cell lysates were prepared in RIPA buffer, and equal amounts of protein were loaded into
155 NuPage 4-12% Bis-Tris Midi gels (Invitrogen) submerged in NuPage MES SDS Running Buffer
156 (Life Technologies). The proteins were transferred onto a nitrocellulose membrane using the
157 SureLock™ Tandem Midi Blot Module (Life Technologies) and NuPage Transfer Buffer (Life
158 Technologies) containing 10% methanol. The membrane was blocked with 5% powdered milk in
159 tris-buffered saline for 1 hour at room temperature. Membranes were incubated with either a
160 mouse monoclonal anti-alpha smooth muscle actin (Abcam ab7817, 0.341ug/mL) or a rabbit
161 monoclonal anti-vimentin antibody (Abcam ab92547, 1:5000 dilution) with a mouse monoclonal
162 anti-GAPDH loading control (Arigo biolaboratories ARG10112, 1:5000 dilution) overnight at
163 4°C. Incubation with HRP secondary antibodies (Arigo biolaboratories ARG65350, 1:5000
164 dilution or enQuire BioReagents QAB10303, 1:15,000 dilution) was performed for 1 hour at
165 room temperature. Signal was produced using SuperSignal™ West Pico PLUS
166 Chemiluminescent Substrate (Thermo Scientific) and the blots were imaged on a LI-COR Fc
167 Imager (Odyssey).

168

169 **Assessment of contractility with traction force microscopy**

170 Cell contractility was evaluated by using traction force microscopy (TFM) as described
171 previously [46]. Cells were seeded on 8kPa polyacrylamide hydrogels coated with fluorescent
172 nano-beads (Cell&Soft) and allowed to adhere for 12 hours. The samples were then mounted on

173 a Nikon microscope with a 37°C chamber, and DMEM media was replaced with CO₂-
174 independent media (Leibovitz) prior to the test. Fluorescent images of the nano-beads were
175 captured before and after cell detachment with a 1% Triton-X and 200 mM KOH solution. Bead
176 displacement was quantified and used to calculate the root-mean-squared values of stress and
177 strain energy. For each group of tests, at least 50 cells were measured and results were reported
178 as the mean ± standard deviation. The results were compared using one-way analysis of variance
179 (ANOVA) with the Bonferroni post hoc test. p-value < 0.05 was considered statistically
180 significant.

181

182 **Preparation of cell derived matrices**

183 Cell derived matrices (CDMs) were obtained by seeding pAFs, AcoSV40, or AcoSI-1
184 fibroblasts onto collagen-functionalized Sylgard 527 PDMS. Primary *Mus* fibroblasts and
185 NIH3T3 fibroblasts were included as controls, and 3 sets of CDMs were made from each cell
186 type (15 samples total). Prior to cell seeding, the substrate was plasma treated to oxidize the
187 surface before functionalizing with (3-Aminopropyl)trimethoxysilane, followed by
188 glutaraldehyde and then rat tail collagen I. Functionalization with collagen I is needed to prolong
189 adherence of *Acomys* cells to the substrate. Cells were cultured for 7-28 days in media containing
190 25mg/mL Ficoll 400, with immortalized cells requiring less time in culture to generate similar
191 protein mass as primary cells. Following this period, CDMs were decellularized by treating with
192 a solution of 0.5%Triton X-100 and 0.3M ammonium hydroxide in PBS for 5 minutes. The
193 presence of residual DNA was reduced by treating decellularized CDMs with 10ug/mL DNase I
194 at 37oC for 30 minutes.

195 Decellularized CDMs were homogenized with RIPA Buffer and a tissue homogenizer
196 (FisherbrandTM 150 Handheld Homogenizer). The samples were centrifuged at 3200g and 4°C
197 for 15 minutes, followed by 14,000g for 2 minutes. The supernatant was removed and stored at -
198 20°C as the RIPA soluble protein fraction. The pellet was resuspended in a membrane
199 solubilization buffer containing 40mM Tris-Cl (pH 8.0), 7M urea, 2M thiourea, 0.25% w/v ASB-
200 14, and 0.25% NP-40 and incubated at room temperature for 15 minutes. The samples were
201 vortexed for 1 minute, then centrifuged at 3200g for 30 minutes. The supernatant was removed
202 and diluted by 2.5 with dH₂O and stored at -20°C as the RIPA insoluble protein fraction. Prior to
203 analysis, both the RIPA soluble and RIPA insoluble protein fractions were precipitated in ice-
204 cold acetone overnight. The solutions were centrifuged at 3200g and 4°C for 15 minutes. The
205 acetone was fully removed, and the remaining pellets were resuspended in 2M urea. Equal
206 concentrations of the RIPA soluble and RIPA insoluble protein fractions from each sample were
207 combined, and label-free quantitative proteomics was performed by the UF Mass Spectrometry
208 Research and Education Center.

209

210 **Label-free quantitative proteomics of CDM samples**

211 **In Solution Digestion**

212 Total protein was determined on a Qubit and the appropriate volume of each sample was
213 taken to equal 20 µg total protein for digestion. The samples were digested with sequencing grade
214 trypsin/lys C enzyme (Promega) using manufacture recommended protocol. The samples were
215 diluted with 50mM ammonium bicarbonate buffer. The samples were incubated at 56°C with 1.0
216 µL of dithiothreitol (DTT) solution (0.1 M in 50 mM ammonium bicarbonate) for 30 minutes prior
217 to the addition of 3.0 µL of 55 mM iodoacetamide in 50 mM ammonium bicarbonate. Samples

218 with iodoacetamide were incubated at room temperature in the dark for 30 min. The trypsin/lys C
219 was prepared fresh as 1 μ g/ μ L in reconstitution buffer (provided with the enzyme). 1 μ L of
220 enzyme was added and the samples were incubated at 37°C overnight. The digestion was stopped
221 with addition of 0.5% trifluoracetic acid. The MS analysis is immediately performed to ensure
222 high quality tryptic peptides with minimal non-specific cleavage.

223 **Q Exactive HF Orbitrap**

224 Nano-liquid chromatography tandem mass spectrometry (Nano-LC/MS/MS) was
225 performed on a Thermo Scientific Q Exactive HF Orbitrap mass spectrometer equipped with an
226 EASY Spray nanospray source (Thermo Scientific) operated in positive ion mode. The LC system
227 was an UltiMate™ 3000 RSLCnano system from Thermo Scientific. The mobile phase A was
228 water containing 0.1% formic acid and the mobile phase B was acetonitrile with 0.1% formic
229 acid. The mobile phase A for the loading pump was water containing 0.1% trifluoracetic acid. 5
230 mL of sample is injected on to a PharmaFluidics mPAC™ C18 trapping column (C18, 5 μ m pillar
231 diameter, 10 mm length, 2.5 μ m inter-pillar distance). at 25 μ l/min flow rate. This was held for 3
232 minutes and washed with 1% B to desalt and concentrate the peptides. The injector port was
233 switched to inject, and the peptides were eluted off of the trap onto the column. PharmaFluidics
234 50 cm mPAC™ was used for chromatographic separations (C18, 5 μ m pillar diameter, 50 cm
235 length, 2.5 μ m inter-pillar distance). The column temperature was maintained 40°C. A flow-rate
236 of 750 nL/min was used for the first 15 minutes and then the flow was reduced to 300 nL/min.
237 Peptides were eluted directly off the column into the Q Exactive system using a gradient of 1% B
238 to 20% B over 100 minutes and then to 45% B in 20 minutes for a total run time of 150 minutes.

239 The MS/MS was acquired according to standard conditions established in the lab. The
240 EASY Spray source operated with a spray voltage of 1.5 KV and a capillary temperature of
241 200°C. The scan sequence of the mass spectrometer was based on the original TopTen™ method;
242 the analysis was programmed for a full scan recorded between 375 – 1575 Da at 60,000 resolution,
243 and a MS/MS scan at resolution 15,000 to generate product ion spectra to determine amino acid
244 sequence in consecutive instrument scans of the fifteen most abundant peaks in the spectrum. The
245 AGC Target ion number was set at 3e6 ions for full scan and 2e5 ions for MS² mode. Maximum
246 ion injection time was set at 50 ms for full scan and 55 ms for MS² mode. Micro scan number was
247 set at 1 for both full scan and MS² scan. The HCD fragmentation energy (N)CE/stepped NCE was
248 set to 28 and an isolation window of 4 *m/z*. Singly charged ions were excluded from MS². Dynamic
249 exclusion was enabled with a repeat count of 1 within 15 seconds and to exclude isotopes. A
250 Siloxane background peak at 445.12003 was used as the internal lock mass.

251 HeLa protein digest standard is used to evaluate the integrity and the performance of the
252 columns and mass spectrometer. If the number of protein ID's from the HeLa standard falls below
253 2700, the instrument is cleaned and new columns are installed.

254 All MS/MS spectra were analyzed using Sequest (Thermo Fisher Scientific; version
255 IseNode in Proteome Discoverer 2.4.0.305). Sequest was set up to search *Mus saxicola* Tax ID:
256 10094 assuming the digestion enzyme trypsin. Sequest was searched with a fragment ion mass
257 tolerance of 0.020 Da and a parent ion tolerance of 10.0 ppm. Carbamidomethyl of cysteine was
258 specified in Sequest as a fixed modification. Met-loss of methionine, met-loss+Acetyl of
259 methionine, oxidation of methionine and acetyl of the n-terminus were specified in Sequest as
260 variable modifications.

261 Precursor ion intensity label free quantitation was done using Proteome Discoverer
262 (Thermo Fisher Scientific vs 2.4.0.305). The two groups (B33p4 vs Hp4) were compared using a
263 “non-nested” study factor. Normalization was derived by using all peptides. Protein abundances
264 were calculated by summed abundances, meaning the protein abundances are calculated by
265 summing sample abundances of the connected peptide groups. Fisher’s exact test (pairwise ratio-
266 based) was used to calculate p-values with no missing value imputation included. Adjusted p-
267 values were calculated using Benjamini-Hochberg.

268

269 **Determining sex of immortalized *Acomys* fibroblast lines**

270 Genomic DNA was isolated from 1 million cells of each cell line using the QIAamp®
271 DNA Micro Kit (QIAGEN) following the manufacturer’s guidelines. Control gDNA was
272 obtained from the peripheral blood of an adult male *Acomys*. DNA quantity was determined
273 using a BioTek Synergy H1 plate reader (Agilent Technologies), and PCR reactions were
274 performed using *Acomys*-specific primers for the target SrY. The PCR products were added to
275 2% E-Gel agarose gels with SYBR Safe DNA Stain (Invitrogen) and run in an E-Gel PowerSnap
276 system (Invitrogen). Images were acquired using a LI-COR Fc Imager (Odyssey).

277

278

279 **Results**

280 **Immortalized *Acomys* fibroblasts demonstrate continuous** 281 **proliferation**

282 Primary *Acomys* fibroblasts (pAFs) were isolated, cultured on silicone-coated tissue
283 culture plates (Sylgard 527, Elastic Modulus ~5 kPa), and sent to ALSTEM, Inc for
284 immortalization with the SV40 large T antigen via lentiviral infection. The cells were selected by
285 puromycin, and successful immortalization was confirmed through PCR assessment of SV40 and
286 puromycin resistance genes (S1 Fig). We refer to these cells as “AcoSV40” cells. Continuous
287 proliferation was confirmed by passaging the cells at a constant interval (3 days) and seeding
288 density (5,300 cells/cm²) and calculating the population-doubling level at each passage. The
289 AcoSV40 cells demonstrated continuous proliferation over 30 passages and multiple freeze/thaw
290 cycles (Fig 1a).

291

292 **Figure 1. Immortalized AcoSV40 and AcoSI-1 fibroblasts demonstrate logarithmic growth**
293 **over at least 30 passages.** (a) AcoSV40 fibroblasts maintain logarithmic growth across 30
294 passages and 3 freeze/thaw cycles. (b) pAFs subjected to continuous subculture spontaneously
295 immortalize after about 40 days. (c) AcoSI-1 fibroblasts maintain logarithmic growth across 30
296 passages and 3 freeze/thaw cycles.

297

298 Spontaneous immortalization of pAFs was performed through extended subculturing
299 where the seeding density was kept constant (5,300 cells/cm²), and the cells were passaged upon
300 reaching 80-90% confluency. As shown in Fig 1b, the fibroblasts demonstrated consistent
301 proliferation for several passages prior to experiencing a period of ‘crisis’ during which there
302 was a progressive decline in proliferation. A subpopulation of these cells eventually recovered
303 and began to proliferate, overtaking the culture. Once this occurred, the cells were deemed
304 immortalized and were named “AcoSI” cells. pAFs were isolated from three different animals,

305 and the process was repeated to demonstrate replicability. AcoSI cells were generated within 13-
306 17 generations and 40-55 days in culture, similar to reports by Todero and Green, in which
307 mouse endothelial fibroblasts exited crisis after 15-30 generations and 45-75 days in culture [35].
308 The decreased time to immortalization in *Acomys* fibroblasts may be due in part to higher rates
309 of proliferation in *Acomys* fibroblast cultures when compared to mouse fibroblast cultures (S3
310 Fig).

311 AcoSI-1 fibroblasts were chosen for further assays due to the marked crisis period and
312 median proliferation rates compared to the other two AcoSI lines. The passage at which the
313 *Acomys* fibroblasts were deemed to be immortalized is marked by the arrow in Fig 1b and was
314 recorded as AcoSI-1 passage 1. The same procedure was followed to determine continuous
315 proliferation in the AcoSI-1 cells as the AcoSV40 cells. The cells were passaged every three
316 days and seeded at a constant cell density. Population doubling remained consistent over 30
317 passages and multiple freeze/thaw cycles (Fig 1c).

318

319 **AcoSV40 and AcoSI fibroblasts retain similar morphological
320 characteristics compared to pAFs**

321

322 The morphology of the two immortalized *Acomys* fibroblast lines was compared to
323 passage 1 pAFs via phase imaging. As depicted in Fig 2a, all three cell types share a similar size
324 and shape, with the immortal cell lines appearing less spread than the pAFs and more cuboidal in
325 shape.

326

327 **Figure 2. AcoSV40 and AcoSI-1 fibroblasts maintain morphological characteristics and**
328 **fibroblast markers (vimentin and α SMA) of pAFs.** (a) Phase images of passage 1 pAFs,
329 AcoSV40, and AcoSI-1 fibroblast demonstrate similar morphology; scale = 100um. (b) pAFs,
330 AcoSV40, and AcoSI-1 fibroblasts express vimentin at similar levels, but α SMA is weekly
331 present in AcoSV40 and absent in AcoSI-1 fibroblasts under standard culture conditions. We
332 demonstrated that under serum starvation, AcoSV40 and AcoSI-1 can (c) upregulate α SMA and
333 (d) co-localize it to stress fibers; scale = 100 μ m.

334

335 The AcoSV40 and AcoSI lines were also assessed for the fibroblast markers vimentin
336 and alpha smooth muscle actin (α SMA) to confirm relevant markers are retained during
337 immortalization. Primary *Mus musculus* and immortalized *Mus musculus* (NIH3T3) fibroblasts
338 were included as a comparison. As demonstrated by western blot (Fig 2b), all cell types maintain
339 the vimentin marker and express it at similar levels under normal culture conditions. The
340 AcoSV40 fibroblasts express α SMA at low levels in normal culture conditions compared to
341 pAFs. Interestingly, the AcoSI-1 cells did not produce α SMA bands when assessed via western
342 blot. However, this finding was shared with the NIH3T3 cells, which are also a spontaneously
343 immortalized cell line. NIH3T3 fibroblasts are known to upregulate α SMA in culture when
344 treated with TGF- β 1 [47–49], suggesting that AcoSI-1 fibroblasts may also be able to upregulate
345 α SMA under different culture conditions. TGF- β 1 was not a good candidate for our purposes due
346 to the lack of response documented in *Acomys* fibroblasts [50]. Instead, we assessed α SMA
347 upregulation under serum starvation conditions and found that both AcoSV40 and AcoSI-1
348 fibroblasts produce more α SMA in the absence of serum, although AcoSI-1 cells make only a

349 small quantity (Fig 2c). Both AcoSV40 and AcoSI-1 cells were also able to co-localize α SMA to
350 stress fibers (Fig 2d), supporting their utility in fibroblast activation studies.

351

352 **AcoSV40 and AcoSI-1 fibroblasts retain functional characteristics of**
353 **pAFs**

354

355 Contractility and deposition of extracellular matrix (ECM) are important functional
356 characteristics of fibroblasts and play a key role in stabilization of the wound bed following
357 injury. We assessed the contractility of AcoSV40 and AcoSI-1 fibroblasts through traction force
358 microscopy and found that they generate similar average (root-mean-square traction, rmst) and
359 maximum (Max rmst) traction forces as pAFs (Fig 3). Strain energy (integrated traction force
360 and deformation over the area of the cell) is unsurprisingly lower for immortalized fibroblasts
361 since they have a smaller spread area than primary cells. Traction force microscopy confirms
362 maintenance of contractile function in both AcoSV40 and AcoSI-1 immortalized lines.

363

364 **Figure 3. Traction forces of pAFs, AcoSV40, and AcoSI-1 fibroblasts are similar, and**
365 **differences in strain energy correlate with differences in cell area.** Cells were seeded on 8kPa
366 polyacrylamide gels to evaluate root-mean-square of traction (rmst), max rmst, strain energy, and
367 area. pAFs have higher maximum contraction stresses than AcoSI-1 cells, but similar average
368 stresses to both immortalized lines. While pAFs have higher strain energy (i.e., do more work)
369 than the immortalized fibroblasts, it is likely a function of their larger area. *p<0.05 as assessed
370 by ANOVA with Bonferroni test.

371

372 Fibroblasts are responsible for maintaining the ECM proteome, composed of hundreds of
373 proteins and proteoglycans which are encoded by over 1000 genes [51]. To capture this
374 complexity, we compared ECM production in primary and immortalized *Acomys* fibroblasts by
375 generating cell derived matrices (CDMs). CDMs recapitulate native tissue structure and
376 composition *in vitro* and are useful for studying bulk matrix composition in a controlled setting.
377 CDMs were generated in culture for 1-4 weeks depending on cell type, homogenized, and
378 analyzed via label-free quantitative proteomics. No significant differences in CDM composition
379 were found between pAFs and AcoSV40 fibroblasts, while AcoSI-1 CDMs shared 88% of
380 proteins identified with pAFs (Fig 4a). The proteins that differed between the two samples were
381 involved in biological processes related to metabolism and translation, based on a GO
382 enrichment analysis. In comparison, NIH3T3s, a commonly used substitute for *Mus musculus*
383 cells, only shared 75% of proteins with their counterpart (Fig 4b). Based on these results,
384 AcoSV40 and AcoSI-1 are representative of pAFs in experiments related to ECM deposition.
385

386 **Figure 4. Immortalized lines AcoSV40 and AcoSI-1 share most proteins with pAFs.** The
387 comparison of AcoSV40 and pAF CDMs via mass spectrometry resulted in no significant
388 difference in deposited proteins. (a) AcoSI-1 CDMs shared 604 out of 686 proteins identified
389 with pAFs and enriched biological processes within the dissimilar proteins were unrelated to
390 ECM organization. (b) In comparison, NIH3T3 fibroblasts share 641 out of 853 identified
391 proteins with *Mus* primary fibroblasts, some of which are related to ECM organization. GO
392 biological processes were determined by running the proteins that were exclusive to Primary
393 *Acomys*, AcoSI-1, Primary *Mus*, and NIH3T3 fibroblasts through the PANTHER classification

394 system. For brevity, only the top eight enriched biological processes were reported in the
395 NIH3T3 exclusive proteins, all of which had a fold enrichment change of over 50.

396

397 **Determining sex of immortalized *Acomys* cell lines**

398 It is becoming increasingly evident that considering the sex of cell lines is important.
399 Genes expressed on the sex chromosomes can have an impact on a cell's biology, and cells differ
400 according to sex, regardless of their exposure to sex hormones. The basis of differences between
401 male and female cells and examples of known differences between male and female cells from a
402 variety of tissues are reviewed by Shah et al [52]. Since we were unable to sex the *Acomys* pups
403 from which the cells were isolated, we determined the sex of our immortalized lines via PCR
404 using primers designed for the *Acomys* SRY gene. The SRY gene provides instructions for
405 making the sex-determining region Y protein which is located on the Y chromosome and is
406 involved in male-typical sex development. Genomic DNA was obtained from cell cultures of the
407 four immortalized lines and the blood of a male *Acomys* and assessed for the presence of SRY
408 (Fig 5a). DNA from AcoSV40 fibroblasts did not contain the SrY gene, while all AcoSI cell lines
409 did, meaning AcoSV40 cells are female while all AcoSI cells are male (Fig 5b).

410

411 **Figure 5. AcoSV40 cells are female while all AcoSI cells are male.** (a) Forward and reverse
412 primers specific to Acomys SrY. (b) PCR products for Y chromosome in all 4 cell lines
413 compared to a DNA sample obtained from the blood of an *Acomys* adult male.

414

415 **Discussion**

416 Tissue damage in humans generally results in the formation of scar tissue, which has
417 structural and mechanical properties that differ from uninjured tissue and often impede tissue
418 function. Regenerative organisms present an opportunity to uncover mechanisms behind scar-
419 free healing that can improve patient outcomes following tissue damage. The spiny mouse
420 (*Acomys*) is an exciting research organism with the most extensive regeneration capabilities of
421 any known mammal. Unfortunately, *Acomys* research is currently limited to a handful of
422 institutions due to the need for non-traditional animal facilities and husbandry protocols, as well
423 as the limited access to *Acomys* vendors [1,18–20]. To increase access to *Acomys* research and
424 reduce the use of animals in regenerative medicine research, we developed two immortalized
425 *Acomys* fibroblast cell lines. We generated the lines through two well described methods—
426 SV40LT transfection (“AcoSV40”) and spontaneous immortalization (“AcoSI-1”—and
427 assessed morphological and functional characteristics.

428 As mediators of matrix deposition and wound contraction, fibroblasts are likely key
429 players in the scar-free healing of *Acomys*. *Acomys* wounds have low populations of α SMA
430 positive myofibroblasts [2], even though there is a high concentration of TGF- β 1 [3], a pro-
431 fibrotic cytokine. *In vitro*, *Acomys* fibroblasts do not upregulate α SMA when treated with TGF-
432 β 1 [50]. These findings suggest that *Acomys* fibroblasts are protected from TGF- β 1-mediated
433 activation. Inhibition of TGF- β 1 signaling *in vivo* is associated with reduced wound scarring, as
434 demonstrated in a rabbit ear hypertrophic scarring model [53]. However, direct blocking of TGF-
435 β through antibody-based methods have been unsuccessful due to adverse effects [54].
436 Uncovering mechanisms behind the response of *Acomys* fibroblasts to TGF- β 1 may lead to more
437 nuanced treatments targeting the TGF- β pathway. In addition to an altered response to TGF- β 1,
438 *Acomys* fibroblasts demonstrate an increased migration rate and decreased response to stiffness

439 *in vitro*, which may also play roles in wound healing and fibrosis, respectively [45]. Proliferation
440 and migration of dermal fibroblasts is a crucial step in wound healing due to the role of
441 fibroblasts in depositing granulation tissue and beginning the proliferative phase of healing [55].
442 The lack of stiffness-induced myofibroblast differentiation in *Acomys* fibroblasts is a deviation
443 from the common feed-forward mechanism between increased ECM deposition and
444 myofibroblast activation that occurs in fibrotic disorders [56]. Understanding these intrinsic
445 differences between *Acomys* fibroblasts and fibroblasts in non-regenerative mammals may point
446 to new therapeutics to improve wound healing and mediate fibrosis.

447 AcoSV40 and AcoSI-1 immortalized *Acomys* fibroblasts present a great opportunity for
448 researchers to uncover new mechanisms behind scar-free wound healing. The two cell lines are
449 easier to culture than pAFs due to higher proliferation rates, consistent characteristics, and
450 simplified media requirements (S3 Fig). Their off-the-shelf availability allows for more frequent
451 experiments and collaboration across institutions. Although the two cell lines behave similarly,
452 there are instances where one cell type may be preferred over the other. For example, AcoSV40
453 cells express puromycin N-acetyltransferase, a puromycin resistance gene commonly used in
454 selection of transformed mammalian cells. This prevents the use of puromycin selection in any
455 further genetic modifications of these cells, making the AcoSI-1 cells preferable if using
456 lentiviral vectors with puromycin resistance. In addition, AcoSI-1 cells may be a more
457 appropriate comparison when compared to NIH3T3 fibroblasts because they are both
458 spontaneously immortalized lines and have low α SMA expression in standard culture conditions.
459 However, if α SMA expression is desired under standard culture conditions, AcoSV40 fibroblasts
460 would be preferred over AcoSI-1. Like α SMA, other proteins may be differentially expressed
461 between the two cell lines and a decision between the two lines will need to be made based on

462 the proteins of interest for specific experiments. Finally, AcoSV40 cells are female and AcoSI-1
463 cells are male, which may affect cell line choice depending on research questions, as there are
464 differences between male and female cells from a variety of tissues [52].

465 To increase access to *Acomys* research and reduce the use of animals in regenerative
466 medicine research, we developed two immortalized *Acomys* fibroblast cell lines and confirmed
467 that morphological and functional characteristics were representative of pAFs. We believe the
468 availability of these cells will contribute to the field's understanding of mammalian regeneration.

469

470 Acknowledgements

471 The authors gratefully acknowledge assistance from the Mass Spectrometry Research and
472 Education Center with proteomic analysis and ALSTEM Inc. for immortalization services related
473 to the AcoSV40 fibroblasts. The authors would also like to acknowledge Malcolm Maden for his
474 assistance with isolation of primary *Acomys* and *Mus* fibroblasts, Janak Gaire for assistance with
475 PCR, and Paulina W. Kapuscinska for her work on Supplemental Figure 2.

476

477 References

- 478 1. Gaire J, Varholick JA, Rana S, Sunshine MD, Doré S, Barbazuk WB, et al. Spiny mouse (*Acomys*):
479 an emerging research organism for regenerative medicine with applications beyond the skin. *npj*
480 *Regenerative Medicine* 2021 6:1 [Internet]. 2021 Jan 4 [cited 2021 Jul 20];6(1):1–6. Available
481 from: <https://www.nature.com/articles/s41536-020-00111-1>
- 482 2. Seifert AW, Kiama SG, Seifert MG, Goheen JR, Palmer TM, Maden M. Skin shedding and tissue
483 regeneration in African spiny mice (*Acomys*). *Nature* 2012 489:7417 [Internet]. 2012 Sep 26
484 [cited 2022 Jan 31];489(7417):561–5. Available from:
485 <https://www.nature.com/articles/nature11499>
- 486 3. Brant JO, Lopez MC, Baker H v., Barbazuk WB, Maden M. A Comparative Analysis of Gene
487 Expression Profiles during Skin Regeneration in *Mus* and *Acomys*. *PLoS One* [Internet]. 2015 Nov

488 1 [cited 2022 Jan 31];10(11):e0142931. Available from:
489 <https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0142931>

490 4. Brant JO, Yoon JH, Polvadore T, Barbazuk WB, Maden M. Cellular events during scar-free skin
491 regeneration in the spiny mouse, *Acomys*. *Wound Repair and Regeneration* [Internet]. 2016 Jan 1
492 [cited 2022 Jan 31];24(1):75–88. Available from:
493 <https://onlinelibrary.wiley.com/doi/full/10.1111/wrr.12385>

494 5. Maden M. Optimal skin regeneration after full thickness thermal burn injury in the spiny mouse,
495 *Acomys cahirinus*. *Burns*. 2018 Sep 1;44(6):1509–20.

496 6. Maden M, Brant JO. Insights into the regeneration of skin from *Acomys*, the spiny mouse. *Exp
497 Dermatol* [Internet]. 2019 Apr 1 [cited 2022 Jan 31];28(4):436–41. Available from:
498 <https://onlinelibrary.wiley.com/doi/full/10.1111/exd.13847>

499 7. Yoon JH, Cho K, Garrett TJ, Finch P, Maden M. Comparative Proteomic Analysis in Scar-Free Skin
500 Regeneration in *Acomys cahirinus* and Scarring *Mus musculus*. *Scientific Reports* 2020 10:1
501 [Internet]. 2020 Jan 13 [cited 2022 Jan 31];10(1):1–16. Available from:
502 <https://www.nature.com/articles/s41598-019-56823-y>

503 8. Matias Santos D, Rita AM, Casanellas I, Brito Ova A, Araújo IM, Power D, et al. Ear wound
504 regeneration in the African spiny mouse *Acomys cahirinus*. *Regeneration* [Internet]. 2016 Feb 1
505 [cited 2019 Jan 16];3(1):52–61. Available from: <http://doi.wiley.com/10.1002/reg.2.50>

506 9. Gawriluk TR, Simkin J, Thompson KL, Biswas SK, Clare-Salzler Z, Kimani JM, et al. Comparative
507 analysis of ear-hole closure identifies epimorphic regeneration as a discrete trait in mammals.
508 *Nat Commun* [Internet]. 2016 Apr 25 [cited 2020 Nov 11];7(1):1–16. Available from:
509 www.nature.com/naturecommunications

510 10. Simkin J, Gawriluk TR, Gensel JC, Seifert AW. Macrophages are necessary for epimorphic
511 regeneration in African spiny mice. *Elife*. 2017 May 16;6.

512 11. Maden M, Brant JO, Rubiano A, Sandoval AGW, Simmons C, Mitchell R, et al. Perfect chronic
513 skeletal muscle regeneration in adult spiny mice, *Acomys cahirinus*. *Scientific Reports* 2018 8:1
514 [Internet]. 2018 Jun 11 [cited 2022 Jan 31];8(1):1–14. Available from:
515 <https://www.nature.com/articles/s41598-018-27178-7>

516 12. Okamura DM, Brewer CM, Wakenight P, Bahrami N, Bernardi K, Tran A, et al. Spiny mice activate
517 unique transcriptional programs after severe kidney injury regenerating organ function without
518 fibrosis. *iScience*. 2021 Nov 19;24(11):103269.

519 13. Qi Y, Dasa O, Maden M, Vohra R, Batra A, Walter G, et al. Functional heart recovery in an adult
520 mammal, the spiny mouse. *Int J Cardiol*. 2021 Sep 1;338:196–203.

521 14. Peng H, Shindo K, Donahue RR, Gao E, Ahern BM, Levitan BM, et al. Adult spiny mice (*Acomys*)
522 exhibit endogenous cardiac recovery in response to myocardial infarction. *npj Regenerative
523 Medicine* 2021 6:1 [Internet]. 2021 Nov 17 [cited 2022 Jan 31];6(1):1–15. Available from:
524 <https://www.nature.com/articles/s41536-021-00186-4>

525 15. Koopmans T, van Beijnum H, Roovers EF, Tomasso A, Malhotra D, Boeter J, et al. Ischemic
526 tolerance and cardiac repair in the spiny mouse (*Acomys*). *npj Regenerative Medicine* 2021 6:1
527 [Internet]. 2021 Nov 17 [cited 2022 Jan 31];6(1):1–16. Available from:
528 <https://www.nature.com/articles/s41536-021-00188-2>

529 16. Streeter KA, Sunshine MD, Brant JO, Sandoval AGW, Maden M, Fuller DD. Molecular and
530 histologic outcomes following spinal cord injury in spiny mice, *Acomys cahirinus*. *Journal of*
531 *Comparative Neurology* [Internet]. 2020 Jun 15 [cited 2020 Aug 12];528(9):1535–47. Available
532 from: <https://pubmed.ncbi.nlm.nih.gov/31820438/>

533 17. Nogueira-Rodrigues J, Leite SC, Pinto-Costa R, Sousa SC, Luz LL, Sintra MA, et al. Rewired
534 glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after
535 complete spinal cord transection. *Dev Cell*. 2022 Jan 4;

536 18. Pinheiro G, Prata DF, Araújo IM, Tiscornia G. The African spiny mouse (*Acomys spp.*) as an
537 emerging model for development and regeneration. *Lab Anim*. 2018 Dec 1;52(6):565–76.

538 19. Haughton CL, Gawriluk TR, Seifert AW. The Biology and Husbandry of the African Spiny Mouse
539 (*Acomys cahirinus*) and the Research Uses of a Laboratory Colony. *J Am Assoc Lab Anim Sci*
540 [Internet]. 2016 Jan 1 [cited 2022 Feb 1];55(1):9. Available from: [/pmc/articles/PMC4747004/](https://pmc/articles/PMC4747004/)

541 20. Dickinson H, Walker D. Managing a colony of spiny mice (. Australian and New Zealand Council
542 for the Care of Animals in Research and Training (ANZCCART) News. 2007 Jan 1;20:4–11.

543 21. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. *Exp Cell Res*. 1961
544 Dec 1;25(3):585–621.

545 22. Goldstein S. Replicative Senescence: the Human Fibroblast Comes of Age. *Science* (1979)
546 [Internet]. 1990 [cited 2022 Feb 13];249(4973):1129–33. Available from:
547 <https://www.science.org/doi/abs/10.1126/science.2204114>

548 23. Maden M, Varholick JA. Model systems for regeneration: the spiny mouse, *Acomys cahirinus*.
549 *Development* [Internet]. 2020 [cited 2022 Feb 14];147(4). Available from:
550 [/pmc/articles/PMC7055364/](https://pmc/articles/PMC7055364/)

551 24. Pennello A, Taylor J, Matlack R, Karp J, Riggs J. Spiny mice (*Acomys cahirinus*) do not respond to
552 thymus-independent type 2 antigens. *Dev Comp Immunol*. 2006 Jan 1;30(12):1181–90.

553 25. Ozer HL, Banga SS, Dasgupta T, Houghton J, Hubbard K, Jha KK, et al. SV40-mediated
554 immortalization of human fibroblasts. *Exp Gerontol*. 1996 Jan 1;31(1–2):303–10.

555 26. Nobre A, Kalve I, Cesnulevicius K, Rangancokova D, Ratzka A, Halfer N, et al. Characterization and
556 differentiation potential of rat ventral mesencephalic neuronal progenitor cells immortalized
557 with SV40 large T antigen. *Cell Tissue Res* [Internet]. 2010 Feb 23 [cited 2022 Feb 14];340(1):29–
558 43. Available from: <https://link.springer.com/article/10.1007/s00441-010-0933-4>

559 27. Chen Y, Hu S, Wang M, Zhao B, Yang N, Li J, et al. Characterization and Establishment of an
560 Immortalized Rabbit Melanocyte Cell Line Using the SV40 Large T Antigen. *International Journal*
561 *of Molecular Sciences* 2019, Vol 20, Page 4874 [Internet]. 2019 Sep 30 [cited 2022 Feb
562 14];20(19):4874. Available from: <https://www.mdpi.com/1422-0067/20/19/4874/htm>

563 28. Whitehead RH, Robinson PS. Establishment of conditionally immortalized epithelial cell lines
564 from the intestinal tissue of adult normal and transgenic mice. *Am J Physiol Gastrointest Liver*
565 *Physiol* [Internet]. 2009 Mar [cited 2022 Feb 14];296(3):455–60. Available from:
566 <https://journals.physiology.org/doi/abs/10.1152/ajpgi.90381.2008>

567 29. Hara E, Tsurui H, Shinozaki A, Nakada S, Oda K. Cooperative effect of antisense-Rb and antisense-
568 p53 oligomers on the extension of life span in human diploid fibroblasts, TIG-1. *Biochem Biophys*
569 *Res Commun*. 1991 Aug 30;179(1):528–34.

570 30. Counter CM, Avilion AA, Lefeuvre CE, Stewart NG, Greider CW, Harley CB, et al. Telomere
571 shortening associated with chromosome instability is arrested in immortal cells which express
572 telomerase activity. *EMBO J* [Internet]. 1992 [cited 2022 Feb 13];11(5):1921. Available from:
573 [/pmc/articles/PMC556651/?report=abstract](https://pmc/articles/PMC556651/?report=abstract)

574 31. Ozer HL, Slater ML, Dermody JJ, Mandel M. Replication of simian virus 40 DNA in normal human
575 fibroblasts and in fibroblasts from xeroderma pigmentosum. *J Virol* [Internet]. 1981 Aug [cited
576 2022 Feb 13];39(2):481–9. Available from:
577 <https://journals.asm.org/doi/abs/10.1128/jvi.39.2.481-489.1981>

578 32. Small MB, Gluzman Y, Ozer HL. Enhanced transformation of human fibroblasts by origin-
579 defective simian virus 40. *Nature*. 1982;296.

580 33. Katakura Y, Alam S, Shirahata S. Immortalization by gene transfection. *Methods Cell Biol*.
581 1998;57:69–91.

582 34. Justin McCormick J, Maher VM. Towards an understanding of the malignant transformation of
583 diploid human fibroblasts. *Mutat Res* [Internet]. 1988 [cited 2022 Feb 14];199(2):273–91.
584 Available from: <https://pubmed.ncbi.nlm.nih.gov/3287148/>

585 35. TODARO GJ, GREEN H. Quantitative studies of the growth of mouse embryo cells in culture and
586 their development into established lines. *J Cell Biol* [Internet]. 1963 [cited 2020 Nov
587 18];17(2):299–313. Available from: [/pmc/articles/PMC2106200/?report=abstract](https://pmc/articles/PMC2106200/?report=abstract)

588 36. Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by
589 gene expression profiling. *Oncogene* [Internet]. 2008 Oct 9 [cited 2022 Mar 9];27(46):5975–87.
590 Available from: <https://pubmed.ncbi.nlm.nih.gov/18711403/>

591 37. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P, et al. In vitro growth
592 characteristics of embryo fibroblasts isolated from p53-deficient mice. *Oncogene*. 1993
593 Sep;8(9):2457–67.

594 38. Harvey DM, Levine AJ. p53 alteration is a common event in the spontaneous immortalization of
595 primary BALB/c murine embryo fibroblasts. *Genes Dev* [Internet]. 1991 [cited 2022 Mar
596 9];5(12B):2375–85. Available from: <https://pubmed.ncbi.nlm.nih.gov/1752433/>

597 39. Zhang H, Pan KH, Cohen SN. Senescence-specific gene expression fingerprints reveal cell-type-
598 dependent physical clustering of up-regulated chromosomal loci. *Proc Natl Acad Sci U S A*
599 [Internet]. 2003 Mar 18 [cited 2022 Mar 9];100(6):3251–6. Available from:
600 www.pnas.org/cgi/doi/10.1073/pnas.2627983100

601 40. Zhang H, Herbert BS, Pan KH, Shay JW, Cohen SN. Disparate effects of telomere attrition on gene
602 expression during replicative senescence of human mammary epithelial cells cultured under
603 different conditions. *Oncogene* 2004;23:37 [Internet]. 2004 Jun 14 [cited 2022 Mar
604 9];23(37):6193–8. Available from: <https://www.nature.com/articles/1207834>

605 41. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao NA, Sun X, et al. Spontaneous immortalization of mouse liver
606 sinusoidal endothelial cells. *Int J Mol Med* [Internet]. 2015 Mar 1 [cited 2022 Mar 9];35(3):617–
607 24. Available from: <http://www.spandidos-publications.com/10.3892/ijmm.2015.2067/abstract>

608 42. Diebold Y, Calonge M, de Salamanca AE, Callejo S, Corrales RM, Sáez V, et al. Characterization of
609 a Spontaneously Immortalized Cell Line (IOBA-NHC) from Normal Human Conjunctiva. *Invest
610 Ophthalmol Vis Sci.* 2003 Oct 1;44(10):4263–74.

611 43. Gillio-Meina C, Swan CL, Crellin NK, Stocco DM, Chedrese PJ. Generation of Stable Cell Lines by
612 Spontaneous Immortalization of Primary Cultures of Porcine Granulosa Cells. *Mol Reprod Dev.*
613 2000;57:366–74.

614 44. Christman SA, Kong BW, Landry MM, Kim H, Foster DN. Contributions of differential p53
615 expression in the spontaneous immortalization of a chicken embryo fibroblast cell line. *BMC Cell
616 Biol* [Internet]. 2006 Jun 30 [cited 2022 Mar 9];7(1):1–12. Available from:
617 <https://bmcmolcellbiol.biomedcentral.com/articles/10.1186/1471-2121-7-27>

618 45. Stewart DC, Serrano PN, Rubiano A, Yokosawa R, Sandler J, Mukhtar M, et al. Unique behavior of
619 dermal cells from regenerative mammal, the African Spiny Mouse, in response to substrate
620 stiffness. *J Biomech* [Internet]. 2018 Nov 16 [cited 2019 Jan 1];81:149–54. Available from:
621 <https://www.sciencedirect.com/science/article/pii/S002192901830767X>

622 46. Butler JP, Toli-Nørrelykke IM, Fabry B, Fredberg JJ. Traction fields, moments, and strain energy
623 that cells exert on their surroundings. *Am J Physiol Cell Physiol* [Internet]. 2002 [cited 2022 Sep
624 13];282(3). Available from: <https://pubmed.ncbi.nlm.nih.gov/11832345/>

625 47. Negmadjanov U, Godic Z, Rizvi F, Emelyanova L, Ross G, Richards J, et al. TGF- β 1-Mediated
626 Differentiation of Fibroblasts Is Associated with Increased Mitochondrial Content and Cellular
627 Respiration. *PLoS One* [Internet]. 2015 Apr 7 [cited 2022 Mar 23];10(4). Available from:
628 [/pmc/articles/PMC4388650/](https://pmc/articles/PMC4388650/)

629 48. Abdalla M, Thompson LA, Gurley E, Burke S, Ujjin J, Newsome R, et al. Dasatinib inhibits TGF β -
630 induced myofibroblast differentiation through Src-SRF Pathway. *Eur J Pharmacol.* 2015 Dec
631 15;769:134–42.

632 49. Cheng W, Xu R, Li D, Bortolini C, He J, Dong M, et al. Artificial extracellular matrix delivers TGFb1
633 regulating myofibroblast differentiation. *RSC Adv* [Internet]. 2016 Feb 23 [cited 2022 Mar
634 23];6(26):21922–8. Available from:
635 <https://pubs.rsc.org/en/content/articlehtml/2016/ra/c5ra26164c>

636 50. Brewer CM, Nelson BR, Wakenight P, Collins SJ, Okamura DM, Dong XR, et al. Adaptations in
637 Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in
638 spiny mice. *Dev Cell* [Internet]. 2021 Oct [cited 2021 Nov 21];56(19):2722–2740.e6. Available
639 from: <https://pubmed.ncbi.nlm.nih.gov/34610329/>

640 51. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The Extracellular Matrix: Tools and
641 Insights for the “Omics” Era. *Matrix Biol* [Internet]. 2016 Jan 1 [cited 2022 May 12];49:10.
642 Available from: /pmc/articles/PMC5013529/

643 52. Shah K, McCormack CE, Bradbury NA. Do you know the sex of your cells? *Am J Physiol Cell Physiol*
644 [Internet]. 2014 Jan 1 [cited 2022 May 3];306(1):C3. Available from: /pmc/articles/PMC3919971/

645 53. Wang YW, Liou NH, Cherrng JH, Chang SJ, Ma KH, Fu E, et al. siRNA-targeting transforming growth
646 factor- β type I receptor reduces wound scarring and extracellular matrix deposition of scar tissue.
647 *J Invest Dermatol* [Internet]. 2014 [cited 2022 Sep 13];134(7):2016–25. Available from:
648 <https://pubmed.ncbi.nlm.nih.gov/24670383/>

649 54. Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. *Nature* 2020
650 587:7835 [Internet]. 2020 Nov 25 [cited 2022 Sep 14];587(7835):555–66. Available from:
651 <https://www.nature.com/articles/s41586-020-2938-9>

652 55. Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during
653 wound healing. *Cellular and Molecular Life Sciences* [Internet]. 2016 Oct 1 [cited 2022 Sep
654 14];73(20):3861. Available from: /pmc/articles/PMC5021733/

655 56. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis
656 through matrix stiffening and COX-2 suppression. *J Cell Biol* [Internet]. 2010 Aug 8 [cited 2022
657 Dec 13];190(4):693. Available from: /pmc/articles/PMC2928007/

658

659 **Supporting Information**

660

661 **Supplemental Figure 1. Confirmation of expression of SV40 and puromycin resistance**

662 **gene.** (a) Primer sequences used to analyze transgene expression, provided by ALSTEM, Inc. (b)

663 PCR products to confirm transgene expression in AcoSV40 cells. Lane 1. MEF Sample for

664 SV40; Lanes 2 and 5, ladder; Lane 3 and 6, positive control; Lane 4, MEF Sample for

665 puromycin. After amplifying with primers SV40-F/R and puro-F/R, respectively, the MEF cells

666 showed 112 bp bands for SV40 and 198 bp bands for puromycin resistance gene.

667

668 **Supplemental Figure 2. AcoSV40 and AcoSI-1 fibroblasts maintain constant proliferation rates**

669 **when cultured in a standard media formulation (DMEM, 10%FBS, 1%PenStrep).** Fibroblasts

670 were seeded at a constant cell density (5,300 cells/cm²) and passaged every 3 days.

671

672 **Supplemental Figure 3. Primary *Acomys* fibroblasts demonstrate faster proliferation**

673 **compared to primary *Mus* fibroblasts.** Growth curves for early passage primary *Acomys* (blue)

674 and *Mus musculus* (orange) fibroblasts. Fibroblasts were seeded at a constant cell density

675 (5,300 cells/cm²) and passaged at 80-90% confluence.

676

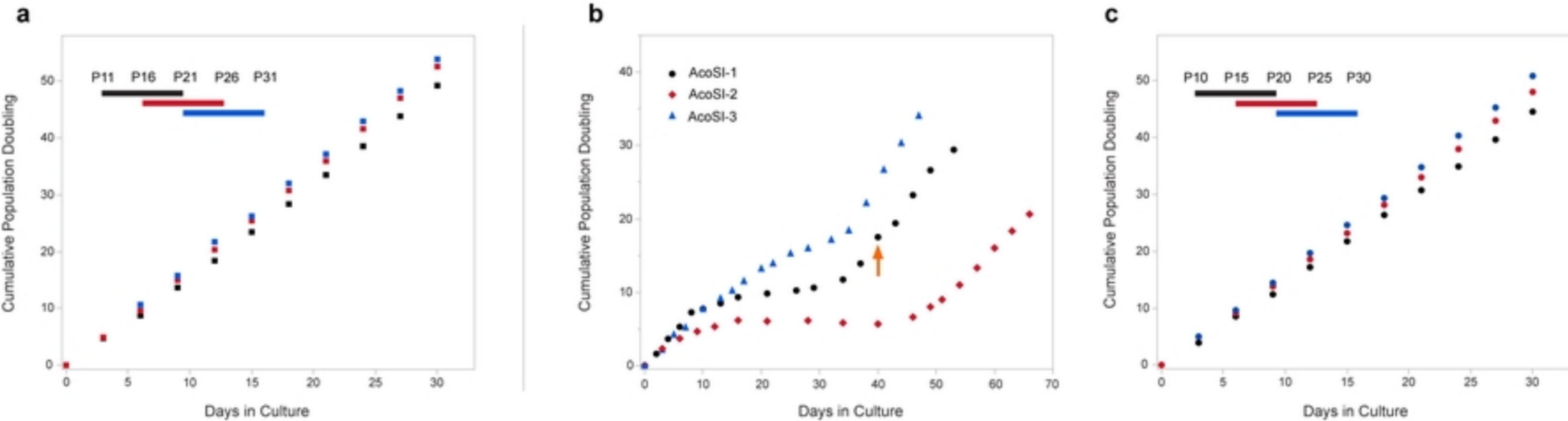


Figure 1

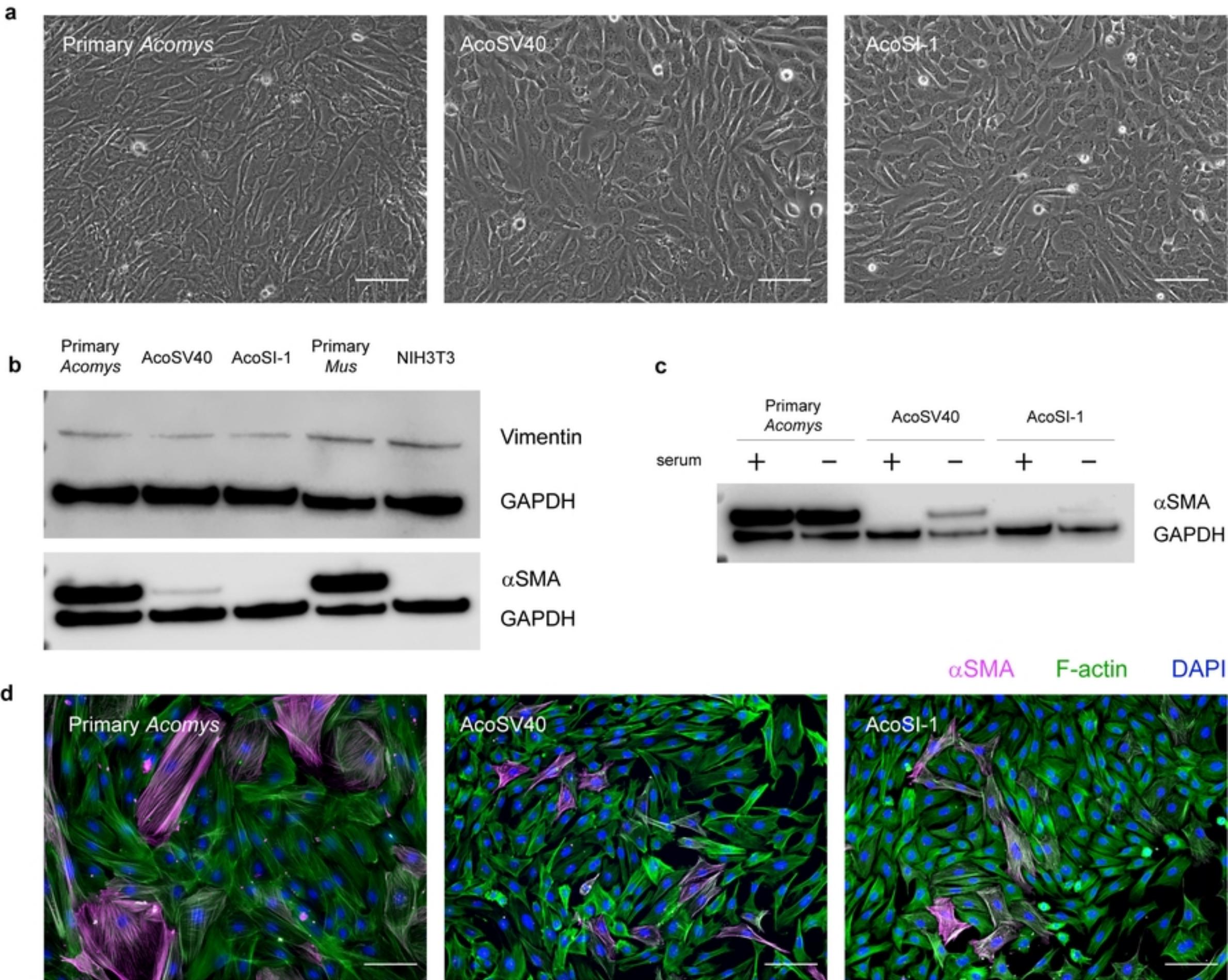


Figure 2

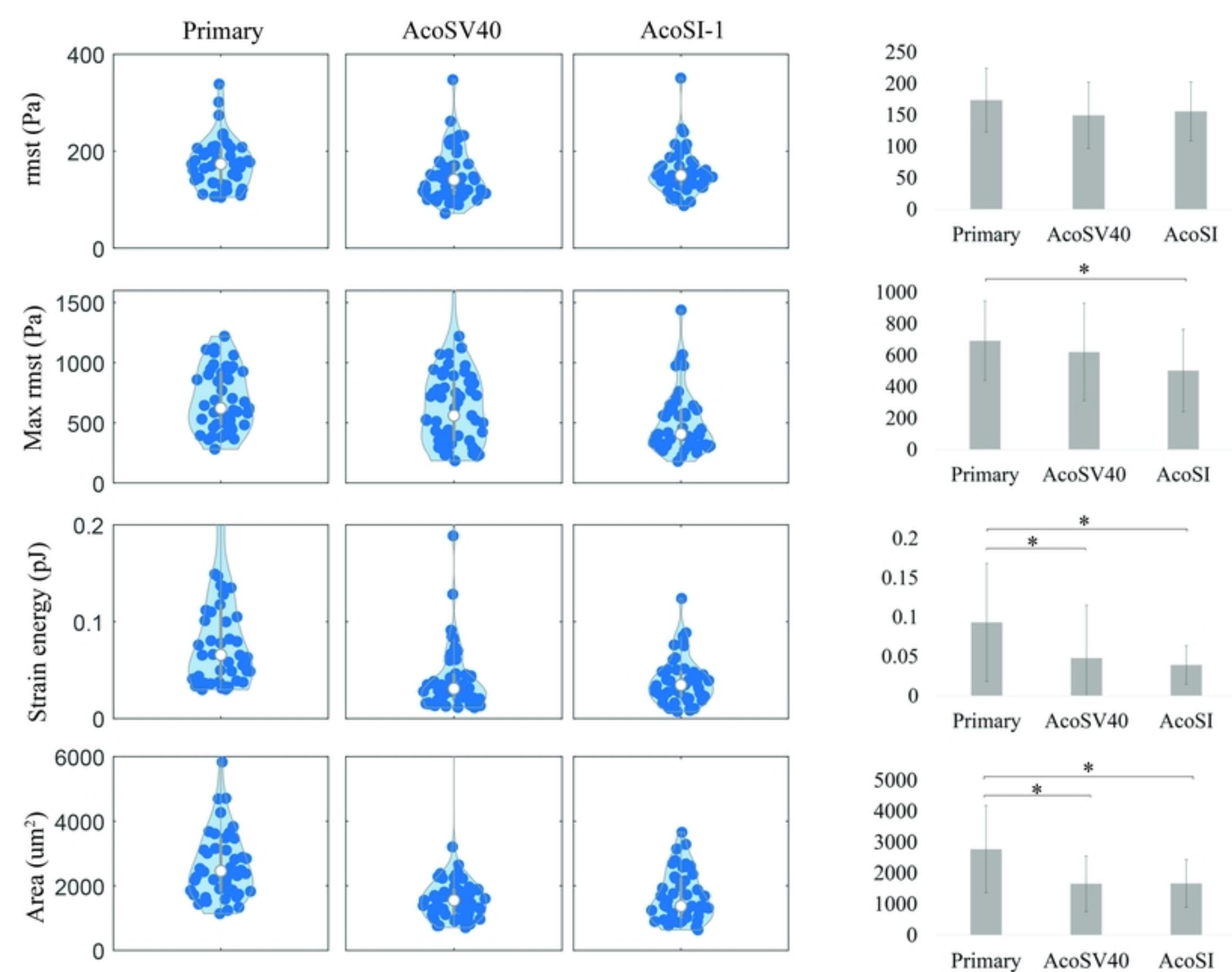
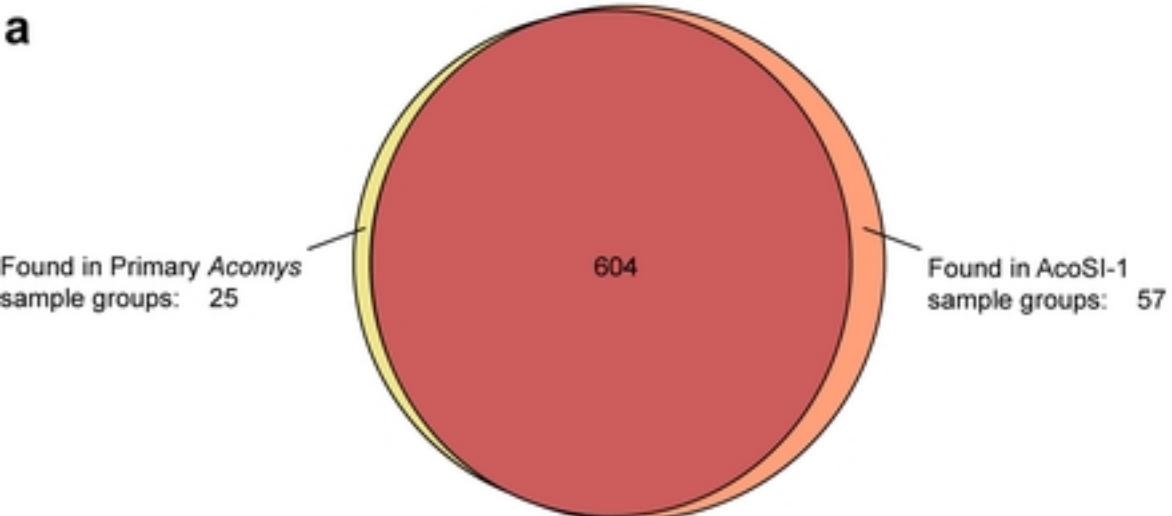
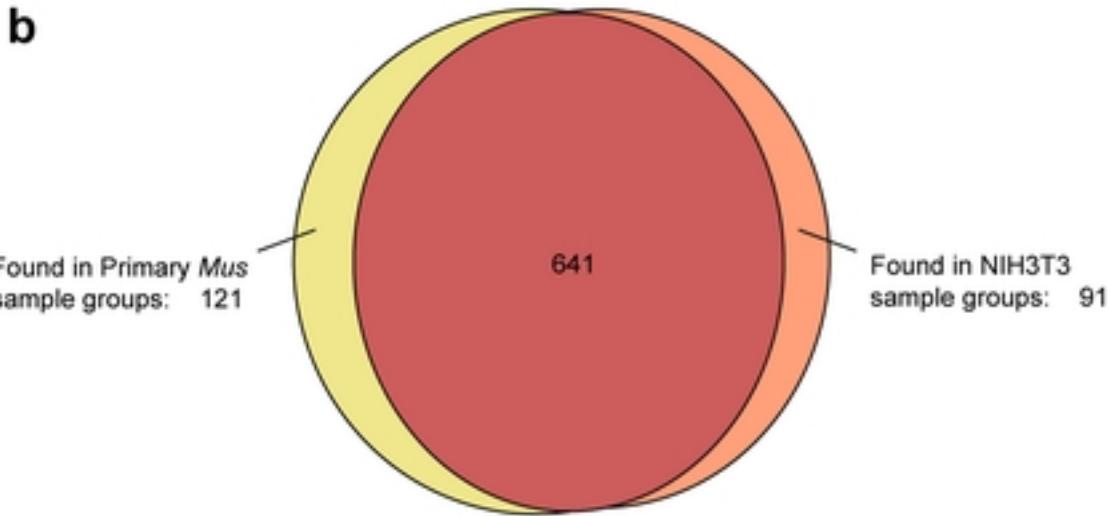




Figure 3

a

	Exclusive	Total	Label
A	25	629	Found in Primary Acomys sample groups
B	57	661	Found in AcoSI-1 sample groups
A ∩ B	604	604	Found in Primary Acomys sample groups Found in AcoSI-1 sample groups
Sum	686		

Enriched in Acomys exclusive proteins	Enriched in AcoSI exclusive proteins
No statistically significant results	pentose-phosphate shunt, non-oxidative branch mitochondrial acetyl-CoA biosynthetic process from pyruvate glyceraldehyde-3-phosphate metabolic process tricarboxylic acid cycle regulation of mRNA splicing, via spliceosome regulation of translation

b

	Exclusive	Total	Label
A	121	762	Found in Primary Mus sample groups
B	91	732	Found in NIH3T3 sample groups
A ∩ B	641	641	Found in Primary Mus sample groups Found in NIH3T3 sample groups
Sum	853		

Enriched in Mus exclusive proteins	Enriched in NIH3T3 exclusive proteins
proton motive force-driven mitochondrial ATP synthesis mitochondrial respiratory chain complex I assembly proton transmembrane transport glial cell migration extracellular matrix organization	positive regulation of telomerase RNA reverse transcriptase activity mitotic DNA replication initiation regulation of translation at postsynapse, modulating synaptic transmission double-strand break repair via break-induced replication DNA strand elongation involved in DNA replication DNA unwinding involved in DNA replication GMP biosynthetic process mitochondrial electron transport, NADH to ubiquinone

Figure 4

a

SRY-F	5'-TCAGCAAGCTGTTAGGATACCA-3'
SRY-R	5'-CCTGCGACGAGGTTGATATT-3'

b

Acomys
(+) control

AcoSV40

AcoSI-1

AcoSI-2

AcoSI-3

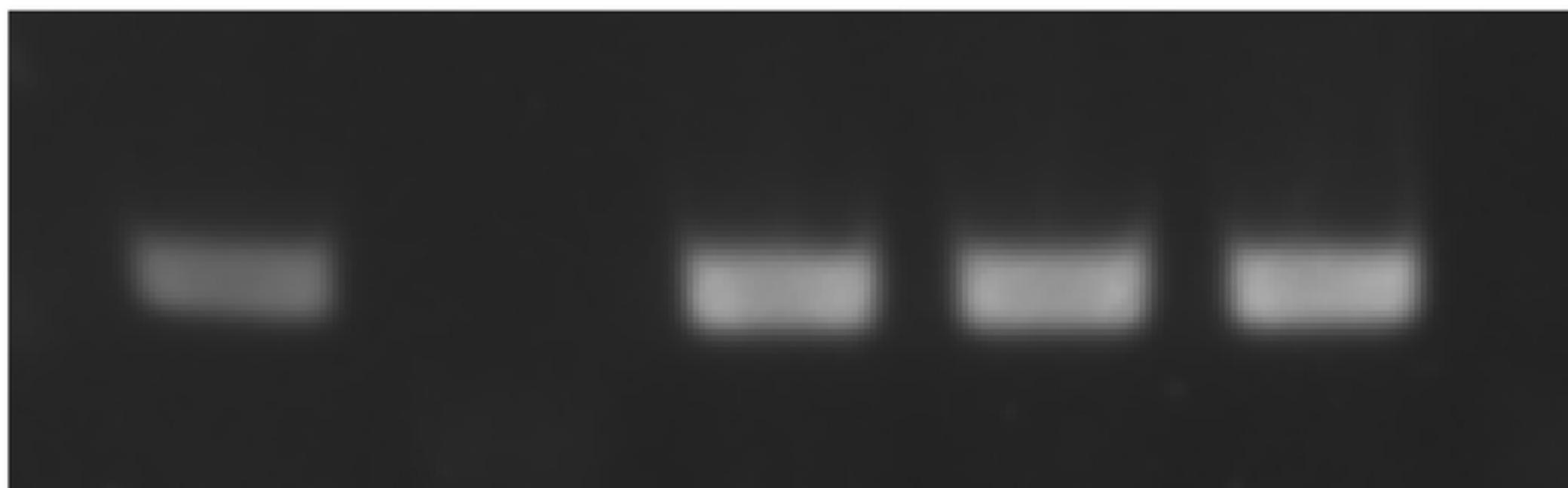


Figure 5