

1 **Molecular evolution of protein sequences and codon usage in monkeypox viruses**

2

3 Ke-jia Shan^{1, #}, Changcheng Wu^{2, #}, Xiaolu Tang¹, Roujian Lu², Wenjie Tan^{2,*}, and Jian Lu^{1,*}

4

5 1. State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics,
6 School of Life Sciences, Peking University, Beijing 100871, China

7

8 2. NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and
9 Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China

10

11 #Equal contribution

12

13 *Corresponding authors:

14 Jian Lu, Email: LUJ@pku.edu.cn

15 Wenjie Tan, Email: tanwj@ivdc.chinacdc.cn

16

17 **Keywords:** Monkeypox virus, Mpox virus, positive selection, accelerated evolution, codon
18 usage bias, fatality rate, *OPG027*

19

20

21 **ABSTRACT**

22 The monkeypox virus (mpox virus, MPXV) epidemic in 2022 poses a significant public health
23 risk. However, the evolutionary principles of MPXV are largely unknown. Here, we examined
24 the evolutionary patterns of protein sequences and codon usage in MPXV. We first showed the
25 signal of positive selection in *OPG027* specifically in Clade I. We then discovered accelerated
26 protein sequence evolution over time in 2022 outbreak-causing variants. We also found strong
27 epistasis between amino acid substitutions located in different genes. Codon adaptation index
28 (CAI) analysis revealed that MPXV tended to use more unpreferred codons than human genes
29 and that the CAI decreased with time and diverged between clades, with Clade I > IIa and IIb-
30 A > IIb-B. Although the decrease in fatality rate in the three groups matched the CAI pattern,
31 it is unclear whether this is a coincidence or if the deoptimization of codon usage in MPXV
32 induced a decrease in fatality. This study sheds new light on the processes influencing the
33 evolution of MPXV in human populations.

34

35

36 **Introduction**

37 The monkeypox virus (mpox virus, MPXV) epidemic in 2022 has caused substantial public
38 health risks. MPXV is a linear double-stranded DNA virus that belongs to the *Poxviridae* family,
39 *Chordopoxvirinae* subfamily, and *Orthopoxvirus* genus¹⁻³. The genome of MPXV is
40 approximately 197 kb in length and encodes approximately two hundred genes⁴. MPXV can
41 infect multiple animal species, including humans, nonhuman primates, and rodents⁵⁻⁸. MPXV,
42 like variola virus (VARV) and vaccinia virus (VACV) in the *Orthopoxvirus* genus, can cause
43 disease and death in humans.

44

45 In 1958, MPXV was discovered in a Danish animal facility⁸; in 1970, it was isolated from the
46 first human case in the Democratic Republic of the Congo⁹. Prior to 2022, MPXV was
47 predominantly endemic in the countries of Central and Western Africa, with spontaneously
48 reported instances in other regions resulting from importations¹⁰⁻¹⁵. On May 7, 2022, the first
49 human case of MPXV in the outbreak of 2022 was reported in the United Kingdom^{16,17}. The
50 global outbreak of MPXV was confirmed as an international public health emergency on July
51 23, 2022¹⁸. As of November 13, 2022, 79,411 confirmed cases had been recorded from 109
52 countries and regions in the 2022 outbreak¹⁹.

53

54 MPXV was classified into two clades based on phylogenetic analysis²⁰. Clade I (also known as
55 the 'Central African' clade) and Clade II (also known as the 'West African' clade). Clade II was
56 further subdivided into the IIa and IIb subclades. The MPXV variants collected in the 2017-
57 2018 outbreak corresponded to subclade IIa or lineage A in IIb (IIb-A)^{21,22}. The majority of the
58 MPXV variants that triggered the 2022 outbreak belong to IIb-B, and they are phylogenetically
59 more closely related to the variants transported from Nigeria to the United Kingdom, Israel,
60 and Singapore in 2018-2019 than to the variants collected during the 2017-2018 Nigeria
61 outbreak^{17,20}. In the 2022 outbreak, however, sporadic cases of IIb-A.2 sublineages have also
62 been reported^{17,20}.

63

64 The mutation rate of orthopoxviruses is 1-2 substitutions per genome per year²³. Nevertheless,
65 the evolutionary analysis revealed approximately 50 nucleotide differences in the 2022 variants
66 compared to the 2018-2019 variants, which was 6-12 times greater than expected based on the
67 usual orthopoxvirus mutation rate¹⁷. Moreover, excessive TC>TT and GA>AA mutations have
68 been identified between the two clades of variants. It was hypothesized that the increased
69 substitution rate in the 2022 MPXV genomes is the result of genome editing by apolipoprotein
70 B mRNA-editing catalytic polypeptide-like 3 (APOBEC3) enzymes, which cause C>T
71 mutations if editing occurs in the sense strand and G>A mutations if editing occurs in the
72 antisense strand^{17,20}. Since APOBEC3 enzymes are primate-specific²⁴, it is plausible that the

73 recent circulation of MPXV in humans has resulted in a higher mutation rate due to APOBEC3
74 editing than in its natural animal hosts, which include numerous non-primate species²⁰.

75

76 Despite these recent discoveries, the evolutionary principles of MPXV remain poorly
77 understood. Here, we first identified signatures of positive selection on MPXV genes. Then, we
78 investigated epistasis in 2022 outbreak-causing MPXV variants. Finally, we examined MPXV
79 codon usage patterns and their potential impact on fatality rates. This study revealed the
80 accelerated evolution of the 2022 outbreak-causing MPXV variants and cautions the possible
81 relationship between deoptimization codon usage and the decreased fatality rate in the MPXV
82 evolutionary process.

83

84 **Results**

85 **Positive selection on *OPG027* in Clade I of MPXV**

86 To detect signatures of positive selection, we downloaded 1,953 high-quality MPXV genome
87 sequences from the National Center for Biotechnology Information (NCBI)²⁵ and GISAID²⁶
88 (<https://www.gisaid.org>, as of November 13, 2022) and divided these sequences into four clades
89 (I, IIa, IIb-A, and IIb-B) and calculated the dN (nonsynonymous substitutions per
90 nonsynonymous site), dS (synonymous substitutions per synonymous site), and dN/dS (ω)
91 values for each gene between any two genomes from different clades. The majority of the
92 comparisons yielded $\omega < 1$, showing that purifying selection is the dominant force driving
93 MPXV gene evolution (**Fig. 1a**). Interestingly, we found $\omega > 1$ for *OPG027* in pairwise
94 comparisons between clades I and II, suggesting that this gene was subjected to positive
95 selection during the divergence of these two clades. However, *OPG027* showed strong
96 signatures of purifying selection ($\omega < 1$) in the pairwise comparisons between Clade II genomes.
97 To better understand the discrepancies between these findings, we analyzed the SNPs in
98 *OPG027* across the 1,953 MPXV genomes, using VACV and VARV as outgroups. In the
99 branch from the most recent common ancestor of Clades I and II to Clade I, we found three
100 nonsynonymous changes (I47V, F79L, and V126I) and one synonymous nucleotide
101 substitution (C276T). In contrast, no substitutions were found on the Clade II branch (**Fig. 1b**
102 and **Table S1**). These data imply that *OPG027* has experienced accelerated protein sequence
103 evolution specifically in Clade I. *OPG027* is crucial in determining host ranges and inhibiting
104 host antiviral activities^{25,27,28}. The accelerated evolution of *OPG027* in Clade I could have been
105 triggered by evolutionary arms races related to viral replication or immune evasion.

106

107 **Accelerated protein evolution in 2022 outbreak-causing MPXV variants**

108 To decipher the evolutionary trends of currently circulating MPXV variants, we analyzed 756
109 IIb-B genomes with exact collection dates throughout the 2022 outbreak. In one MPXV genome,

110 the median number of substitutions relative to the reference genome (NC_063383, collected in
111 August 2018 in Rivers State, Nigeria) was 69 (2.5th and 97.5th percentiles of 67 and 81,
112 respectively), while the median numbers of synonymous and nonsynonymous SNPs were 27
113 (2.5th and 97.5th percentiles of 27 and 30, respectively) and 33 (the 2.5th and 97.5th percentiles
114 of 32 and 41, respectively).

115

116 TreeTime²⁹ analysis of these 756 MPXV genomes yielded a substitution rate of $6.07 \pm 0.86 \times$
117 10^{-5} substitutions/site/year at the genomic scale and lower substitution rates in the coding
118 regions (the substitution rates in the first, second, and third positions of the codons were $5.70 \pm$
119 2.70×10^{-5} , $3.17 \pm 2.52 \times 10^{-5}$ and $4.66 \pm 2.56 \times 10^{-5}$ substitutions/site/year, respectively).
120 Because nucleotide changes in the second position of a codon are nonsynonymous, while
121 changes in the third position of a codon are mostly synonymous, these findings support the
122 notion that purifying selection is the dominant evolutionary force affecting MPXV protein
123 sequences.

124

125 The number of substitutions in an MPXV genome increased with the time between the sample's
126 collection date and the reference genome availability date (which was arbitrarily set on August
127 15, 2018) (**Fig. 2a-c**). Notably, the number of nonsynonymous substitutions showed a
128 significantly higher correlation coefficient with time than the number of synonymous
129 substitutions (*Rho* was 0.33 versus 0.16 for the former versus the latter, respectively; *P* = 0.0008,
130 Fisher's method). Remarkably, the slope of the linear regression between nonsynonymous
131 substitutions and time was significantly steeper than that of the linear regression between
132 synonymous substitutions and time (the slopes were 0.029 versus 0.0046, respectively; *P* =
133 0.001). These findings support the notion that the 2022 outbreak-causing MPXV variants have
134 experienced accelerated protein sequence evolution.

135

136 **Epistasis in 2022 outbreak-causing MPXV variants**

137 We analyzed the patterns of linkage disequilibrium (LD) between MPXV SNPs (**Fig. S1**). We
138 focused on SNPs with frequencies ranging from 0.005 to 0.8 in the 1,873 MPXV genomes of
139 Clade IIb-B, and only SNP pairs with $r^2 \geq 0.8$ were considered in the LD analysis. Under these
140 criteria, we discovered 41 substitutions (16 synonymous, 21 nonsynonymous, and 4 intergenic
141 ones) forming 15 linkage groups that were distributed in 12 sublineages of Clade IIb-B (**Fig. 3**
142 and **Table S2**). Two linkage groups (Groups 6 and 8) had just synonymous or noncoding
143 alterations, and six groups (Groups 1, 2, 3, 4, 12, and 15) had one nonsynonymous substitution
144 plus at least one synonymous (or noncoding) substitution (**Table S2**). Notably, six linkage
145 groups (Groups 5, 7, 9, 10, 11, and 13) were composed of at least two tightly linked
146 nonsynonymous substitutions located in different genes, such as H173Y in *OPG038* (NF- κ B

147 inhibitor) and D124N in *OPG099* (Membrane protein CL5) in the case of B.1.8, D162N in
148 *OPG040* (Serpine) and R88K in *OPG107* (Entry-fusion complex essential component) in the
149 case of B.1.4, and S288L in *OPG185* (Hemagglutinin) and S156L in *OPG055* (Protein F11) in
150 the case of B.1.14. One linkage group, in particular, consisted of one synonymous substitution
151 (V273V in *OPG130*) and three nonsynonymous substitutions: S532L in *OPG210* (B22R family
152 protein), D729N in *OPG117* (NTPase), and G4R in *OPG118* (Early transcription factor 70 kDa
153 subunit) (**Table S2**). We speculated that these epistatic interactions would be associated with
154 the fitness of an MPXV lineage because many genes with these tightly linked amino acid
155 alterations are involved in viral infection or anti-host immunity. More functional research is
156 needed to determine the biological functions of these changes as well as their epistatic impacts.
157

158 **Deoptimization of codon usage in MPXV over time**

159 Viruses often rely on the host organism's cellular machinery for biological functions such as
160 translation. They also often exhibit a low level of codon use bias, owing to mutational pressure
161 or natural selection^{30,31}. Viruses with poor codon usage are proposed to be more adaptable to
162 different host species³¹⁻³³.

163
164 To examine the codon usage bias in MPXV variants, we calculated the codon adaptation index
165 (CAI) of the concatenated coding sequences (CDSs) in each MPXV genome as previously
166 described³⁴. The MPXV CAI values varied from 0.6093 to 0.6104, with 0.6098 as the median
167 and 0.6098 and 0.6100 as the 2.5th and 97.5th percentiles, respectively. Overall, the CAI value
168 of MPXV was substantially lower than those of human genes (**Fig. 4a**), suggesting that MPXV
169 is more likely to use unpreferred codons than human genes. This observation is in line with the
170 notion that MPXV genomes are A/T rich because codons rich in A/T nucleotides are generally
171 unpreferred in humans.

172
173 When we grouped the MPXV variants into three categories based on the collection dates in
174 1968-2008, 2017-2021, and 2022, we found that the CAI of MPXV decreased over time, and
175 this trend was statistically significant (**Fig. 4b**). Because Clade I is the oldest and Clade IIb-B
176 is the most recent, it is not surprising that a significant difference in the CAI was found when
177 we separated the MPXV genomes into three groups based on lineage, in the order of Clade I >
178 IIa and IIb-A > IIb-B (**Fig. 4c**). The continued deoptimization of codons in MPXV genomes
179 was most likely caused by an overabundance of C>T or G>A mutations driven by APOBEC3-
180 mediated viral editing (**Table S3**).

181
182 MPXV Clade I had a fatality rate of 10.6% (95% CI: 8.4–13.3%), while clades IIa and IIb-A
183 had a fatality rate of 3.6% (95% CI: 1.7%–6.8%)¹⁰. Clade IIb-B, which primarily caused the

184 2022 MPXV outbreak, had a fatality rate of 0.063% (50 deaths out of 79,411 confirmed cases,
185 according to the WHO as of November 13, 2022)¹⁹. Notably, there was a significant difference
186 in fatality rate among the MPXV clades, with Clade I > IIa and IIb-A > IIb-B (**Fig. 4d**).
187 Although the decline in fatality rate followed a pattern similar to that of CAI in the three groups,
188 it is unclear if this is simply a coincidence or the consequence of a causal relationship in which
189 the deoptimization of codon usage caused a decrease in fatality across the three groups.
190

191 **Discussion**

192 The pathogenicity and drug resistance of viruses could be significantly boosted by only a few
193 amino acid changes. For instance, an amino acid substitution (N752D) in the DNA polymerase
194 of equid herpesvirus type 1 (EHV-1) could significantly alter its neuropathogenicity³⁵, and one
195 amino acid change (T831I) or two linked changes (A314V and A684V) in the DNA polymerase
196 (E9L) of VACV significantly increased levels of drug resistance³⁶. In this study, we detected
197 signals of positive selection in *OPG027* specifically in Clade I of MPXV. Because *OPG027* is
198 important in determining host range and inhibiting type-1 interferon^{27,28}, the amino acid
199 changes (I47V, F79L, and V126I) in *OPG027* may serve as candidates for future functional
200 studies to investigate the biological difference between Clade I and II variants.
201

202 Similar to findings for SARS-CoV-2³⁷⁻³⁹, we detected many tightly linked amino acid changes
203 in the 2022 outbreak-causing MPXV variants. These changes tend to be located in different
204 genes, most of which are associated with viral entry or immune evasion. It is plausible that
205 compensatory advantageous mutations occurred during the 2022 outbreak, which could explain
206 the accelerated protein sequence evolution in these MPXV variants. However, we cannot rule
207 out the possibility that sampling bias or founder effects influenced the observed trends. Future
208 research should examine the evolutionary driving mechanisms and biological significance of
209 these epistatic interactions.
210

211 Codon usage bias can affect protein expression and function by changing translation
212 efficiency⁴⁰, mRNA stability⁴¹, and peptide conformation^{42,43}. MPXV, similar to SARS-CoV-2
213 and many other viruses³⁴, tends to use more unpreferred codons than human genes. The CAI of
214 MPXV also declined with time and differed between clades, with Clade I > IIa and IIb-A > IIb-
215 B. Notably, the fatality rate also differed significantly among the MPXV clades, in the order of
216 Clade I > IIa and IIb-A > IIb-B. Since viruses with significant translational activities may
217 impose a translational burden on the host or cause severe clinical symptoms⁴⁴, the
218 deoptimization of codon usage in MPXV might cause the virus to replicate slowly and thus
219 reduce the fatality rate during evolution. However, we cannot rule out the possibility that the
220 similar trends in the CAI and fatality rates are simply coincidences caused by sampling bias or

221 other confounding factors. Further studies are needed to decipher the observed relationship.
222 There is a need for vaccine development to combat MPXV⁴⁵, and our findings show the
223 importance of optimizing codon usage in mRNA and DNA vaccine design because codon usage
224 impacts the efficiency of antigen expression.

225

226 **Materials and methods**

227 **Evolutionary analysis**

228 A total of 2,789 MPXV genome sequences were retrieved from the National Center for
229 Biotechnology Information (NCBI)²⁵ and GISAID²⁶ (<https://www.gisaid.org>, as of November
230 13, 2022). Only 1,953 complete and unique sequences were used for downstream analysis.
231 Multiple sequence alignment and mutation identification were performed by Nextclade v2.4.0⁴⁶.
232 The mutations were annotated by SnpEff v5.0e⁴⁷ based on the reference genome (NCBI:
233 NC_063383). Only 756 IIb-B genomes with exact collection dates were used to estimate the
234 mutation rates based on the phylogenetic relationships by TreeTime v0.9.4 (--reroot oldest --
235 covariation)²⁹.

236

237 **The detection of positive selection**

238 For each gene, we kept only one sequence of pairs of identical sequences and discarded
239 sequences containing more than 15 ambiguous nucleotides or gaps. Then, we calculated N (the
240 number of nonsynonymous sites), S (the number of nonsynonymous sites), dN
241 (nonsynonymous mutations per nonsynonymous site), dS (synonymous mutations per
242 synonymous site) and the dN/dS (ω) ratio of every sequence pair by implementing the yn00
243 program in PAML v4⁴⁸.

244

245 **The linkage disequilibrium of Clade IIb-B**

246 We calculated the r^2 (square of the correlation coefficient) of each SNP pair outside the inverted
247 terminal repeat regions of Clade IIb-B using an in-house script. Each SNP was supported by at
248 least five genome sequences and had a frequency of less than 0.8 but more than 0.005 in Clade
249 IIb-B. Only the SNP pairs with $r^2 \geq 0.8$ were selected as linked SNPs.

250

251 **Calculation of the codon adaptation index (CAI) of MPXV**

252 The CAI was calculated as previously described³⁴. In brief, we weighted the frequencies of
253 codons based on the median expression levels in 54 human tissues from the Genotype-Tissue
254 Expression (GTEx) database Version 8 (<https://www.gtexportal.org/>). Then, the CAI was
255 calculated according to the actual frequencies of codons in the transcriptomes.

256

257 We extracted the coding sequences of each MPXV sequence based on the multiple sequence
258 alignment from Nextclade⁴⁶ and the annotation of the reference genome (NCBI: NC_063383).
259 We concatenated the coding sequences of MPXV to calculate the human-expression weighted
260 CAI value.

261

262 **Conflicts of interest**

263 The authors declare that they have no conflicts of interest.

264

265 **Acknowledgments**

266 We thank the researchers who generated and shared the sequencing data in the NCBI and
267 GISAID (<https://www.gisaid.org/>) databases, on which this research is based. This work was
268 supported by the National Natural Science Foundation of China (82241080), the National Key
269 Research and Development Projects of the Ministry of Science and Technology of China
270 (2021YFC2301300, 2022YFC2304100, 2022YFC2303401), and the SLS-Qidong
271 Innovation Fund.

272

273 **References**

- 274 1 Samaranayake, L. & Anil, S. The Monkeypox Outbreak and Implications for Dental Practice.
275 *Int Dent J* **72**, 589-596, doi:10.1016/j.identj.2022.07.006 (2022).
- 276 2 Petersen, E. *et al.* Human Monkeypox Epidemiologic and Clinical Characteristics, Diagnosis,
277 and Prevention. *Infect Dis Clin N Am* **33**, 1027-1043, doi:10.1016/j.idc.2019.03.001 (2019).
- 278 3 Seitz, R. *et al.* Orthopox Viruses: Infections in Humans. *Transfus Med Hemoth* **37**, 351-364,
279 doi:10.1159/000322101 (2010).
- 280 4 Shchelkunov, S. N. *et al.* Analysis of the monkeypox virus genome. *Virology* **297**, 172-194,
281 doi:10.1006/viro.2002.1446 (2002).
- 282 5 Doty, J. B. *et al.* Assessing Monkeypox Virus Prevalence in Small Mammals at the Human-
283 Animal Interface in the Democratic Republic of the Congo. *Viruses* **9**, 283,
284 doi:10.3390/v9100283 (2017).
- 285 6 Radonic, A. *et al.* Fatal monkeypox in wild-living sooty mangabey, Cote d'Ivoire, 2012.
286 *Emerg Infect Dis* **20**, 1009-1011, doi:10.3201/eid2006.13-1329 (2014).
- 287 7 Haddad, N. The presumed receptivity and susceptibility to monkeypox of European animal
288 species. *Infect Dis Now* **52**, 294-298, doi:10.1016/j.idnow.2022.06.006 (2022).
- 289 8 Parker, S. & Buller, R. M. A review of experimental and natural infections of animals with
290 monkeypox virus between 1958 and 2012. *Future Virol* **8**, 129-157,
291 doi:10.2217/fvl.12.130 (2013).
- 292 9 Ladnyj, I. D., Ziegler, P. & Kima, E. A human infection caused by monkeypox virus in
293 Basankusu Territory, Democratic Republic of the Congo. *Bull World Health Organ* **46**, 593-
294 597 (1972).
- 295 10 Bunge, E. M. *et al.* The changing epidemiology of human monkeypox-A potential threat? A
296 systematic review. *PLoS Negl Trop Dis* **16**, e0010141, doi:10.1371/journal.pntd.0010141
297 (2022).

298 11 Centers for Disease, C. & Prevention. Update: multistate outbreak of monkeypox--Illinois,
299 Indiana, Kansas, Missouri, Ohio, and Wisconsin, 2003. *MMWR Morb Mortal Wkly Rep* **52**,
300 561-564 (2003).

301 12 Yinka-Ogunleye, A. *et al.* Outbreak of human monkeypox in Nigeria in 2017-18: a clinical
302 and epidemiological report. *Lancet Infect Dis* **19**, 872-879, doi:10.1016/S1473-
303 3099(19)30294-4 (2019).

304 13 Mauldin, M. R. *et al.* Exportation of Monkeypox Virus From the African Continent. *J Infect*
305 *Dis* **225**, 1367-1376, doi:10.1093/infdis/jiaa559 (2022).

306 14 Costello, V. *et al.* Imported Monkeypox from International Traveler, Maryland, USA, 2021.
307 *Emerg Infect Dis* **28**, 1002-1005, doi:10.3201/eid2805.220292 (2022).

308 15 Rao, A. K. *et al.* Monkeypox in a Traveler Returning from Nigeria - Dallas, Texas, July 2021.
309 *MMWR Morb Mortal Wkly Rep* **71**, 509-516, doi:10.15585/mmwr.mm7114a1 (2022).

310 16 World Health Organization. Monkeypox - United Kingdom of Great Britain and Northern
311 Ireland. <https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON2381> (2022).

312 17 Isidro, J. *et al.* Phylogenomic characterization and signs of microevolution in the 2022
313 multi-country outbreak of monkeypox virus. *Nat Med* **28**, 1569-1572,
314 doi:10.1038/s41591-022-01907-y (2022).

315 18 World Health Organization. WHO Director-General's statement at the press conference
316 following IHR Emergency Committee regarding the multi-country outbreak of monkeypox
317 - 23 July 2022. <https://www.who.int/director-general/speeches/detail/who-director-general-s-statement-on-the-press-conference-following-IHR-emergency-committee-regarding-the-multi-country-outbreak-of-monkeypox--23-july-2022> (2022).

318 19 World Health Organization. Multi-country outbreak of monkeypox.
319 <https://www.who.int/publications/m/item/multi-country-outbreak-of-monkeypox--external-situation-report--10---16-november-2022> (2022).

320 20 Gigante, C. M. *et al.* Multiple lineages of monkeypox virus detected in the United States,
321 2021-2022. *Science* **378**, 560-565, doi:doi:10.1126/science.add4153 (2022).

322 21 Forni, D., Cagliani, R., Molteni, C., Clerici, M. & Sironi, M. Monkeypox virus: The changing
323 facets of a zoonotic pathogen. *Infect Genet Evol* **105**, 105372,
324 doi:10.1016/j.meegid.2022.105372 (2022).

325 22 Luna, N. *et al.* Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak:
326 Emergence of a novel viral lineage? *Travel Med Infect Di* **49**, 102402,
327 doi:10.1016/j.tmaid.2022.102402 (2022).

328 23 Firth, C. *et al.* Using time-structured data to estimate evolutionary rates of double-stranded
329 DNA viruses. *Mol Biol Evol* **27**, 2038-2051, doi:10.1093/molbev/msq088 (2010).

330 24 Jarmuz, A. *et al.* An anthropoid-specific locus of orphan C to U RNA-editing enzymes on
331 chromosome 22. *Genomics* **79**, 285-296, doi:10.1006/geno.2002.6718 (2002).

332 25 Sayers, E. W. *et al.* Database resources of the national center for biotechnology information.
333 *Nucleic Acids Res.*, D10-D17, doi:10.1093/nar/gkab1112 (2021).

334 26 Shu, Y. L. & McCauley, J. GISAID: Global initiative on sharing all influenza data - from vision
335 to reality. *Eurosurveillance* **22**, 2-4, doi:10.2807/1560-7917.Es.2017.22.13.30494 (2017).

336 27 Meng, X. Z. *et al.* C7L Family of Poxvirus Host Range Genes Inhibits Antiviral Activities
337 Induced by Type I Interferons and Interferon Regulatory Factor 1. *J Virol* **86**, 4538-4547,

342 342 doi:10.1128/Jvi.06140-11 (2012).

343 28 Meng, X. Z. *et al.* Vaccinia Virus K1L and C7L Inhibit Antiviral Activities Induced by Type I
344 Interferons. *J Virol* **83**, 10627-10636, doi:10.1128/Jvi.01260-09 (2009).

345 29 Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: Maximum-likelihood phylodynamic
346 analysis. *Virus Evol* **4**, vex042, doi:10.1093/ve/vex042 (2018).

347 30 Shackelton, L. A., Parrish, C. R. & Holmes, E. C. Evolutionary Basis of Codon Usage and
348 Nucleotide Composition Bias in Vertebrate DNA Viruses. *Journal of Molecular Evolution* **62**,
349 551-563, doi:10.1007/s00239-005-0221-1 (2006).

350 31 Jenkins, G. M. & Holmes, E. C. The extent of codon usage bias in human RNA viruses and its
351 evolutionary origin. *Virus Res* **92**, 1-7, doi:10.1016/s0168-1702(02)00309-x (2003).

352 32 Carmi, G., Gorohovski, A., Mukherjee, S. & Frenkel-Morgenstern, M. Non-optimal codon
353 usage preferences of coronaviruses determine their promiscuity for infecting multiple
354 hosts. *The FEBS journal* **288**, 5201-5223, doi:10.1111/febs.15835 (2021).

355 33 Butt, A. M., Nasrullah, I., Qamar, R. & Tong, Y. Evolution of codon usage in Zika virus
356 genomes is host and vector specific. *Emerging microbes & infections* **5**, e107,
357 doi:10.1038/emi.2016.106 (2016).

358 34 Wu, X. *et al.* Optimization and deoptimization of codons in SARS-CoV-2 and the
359 implications for vaccine development. *bioRxiv*, doi:10.1101/2022.09.03.506470 (2022).

360 35 Goodman, L. B. *et al.* A point mutation in a herpesvirus polymerase determines
361 neuropathogenicity. *Plos Pathog* **3**, 1583-1592, doi:10.1371/journal.ppat.0030160 (2007).

362 36 Duraffour, S. *et al.* Mutations Conferring Resistance to Viral DNA Polymerase Inhibitors in
363 Camelpox Virus Give Different Drug-Susceptibility Profiles in Vaccinia Virus. *J Virol* **86**,
364 7310-7325, doi:10.1128/Jvi.00355-12 (2012).

365 37 Tang, X. *et al.* Evolutionary analysis and lineage designation of SARS-CoV-2 genomes.
366 *Science Bulletin* **66**, 2297-2311, doi:10.1016/j.scib.2021.02.012 (2021).

367 38 Tang, X. *et al.* On the origin and continuing evolution of SARS-CoV-2. *National Science
368 Review* **7**, 1012-1023, doi:10.1093/nsr/nwaa036 (2020).

369 39 Qian, Z., Li, P., Tang, X. & Lu, J. Evolutionary dynamics of the severe acute respiratory
370 syndrome coronavirus 2 genomes. *Medical Review*, 3-22, doi:10.1515/mr-2021-0035
371 (2022).

372 40 Yan, X., Hoek, T. A., Vale, R. D. & Tanenbaum, M. E. Dynamics of Translation of Single mRNA
373 Molecules In Vivo. *Cell* **165**, 976-989, doi:10.1016/j.cell.2016.04.034 (2016).

374 41 Presnyak, V. *et al.* Codon optimality is a major determinant of mRNA stability. *Cell* **160**,
375 1111-1124, doi:10.1016/j.cell.2015.02.029 (2015).

376 42 Buhr, F. *et al.* Synonymous Codons Direct Cotranslational Folding toward Different Protein
377 Conformations. *Mol Cell* **61**, 341-351, doi:10.1016/j.molcel.2016.01.008 (2016).

378 43 Yu, C. H. *et al.* Codon Usage Influences the Local Rate of Translation Elongation to Regulate
379 Co-translational Protein Folding. *Mol Cell* **59**, 744-754, doi:10.1016/j.molcel.2015.07.018
380 (2015).

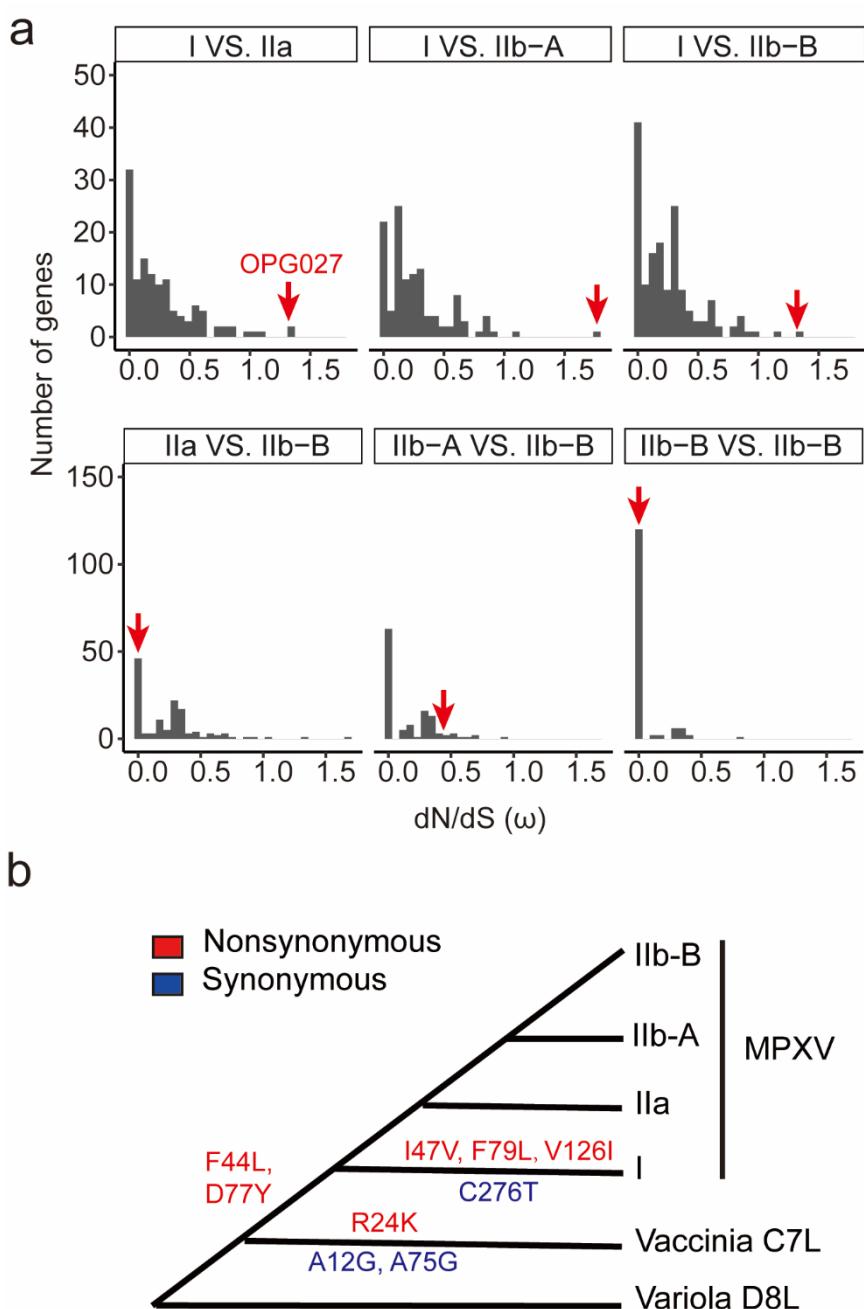
381 44 Chen, F. *et al.* Dissimilation of synonymous codon usage bias in virus-host coevolution due
382 to translational selection. *Nat Ecol Evol* **4**, 589-600, doi:10.1038/s41559-020-1124-7
383 (2020).

384 45 Poland, G. A., Kennedy, R. B. & Tosh, P. K. Prevention of monkeypox with vaccines: a rapid
385 review. *The Lancet Infectious Diseases* **22**, e349-e358, doi:10.1016/S1473-

386 3099(22)00574-6 (2022).

387 46 Aksamentov, I., Roemer, C., Hodcroft, E. & Neher, R. Nextclade: clade assignment, mutation
388 calling and quality control for viral genomes. *Journal of Open Source Software* **6**, 3773,
389 doi:10.21105/joss.03773 (2021).

390 47 Cingolani, P. *et al.* A program for annotating and predicting the effects of single nucleotide
391 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118;
392 iso-2; iso-3. *Fly (Austin)* **6**, 80-92, doi:10.4161/fly.19695 (2012).

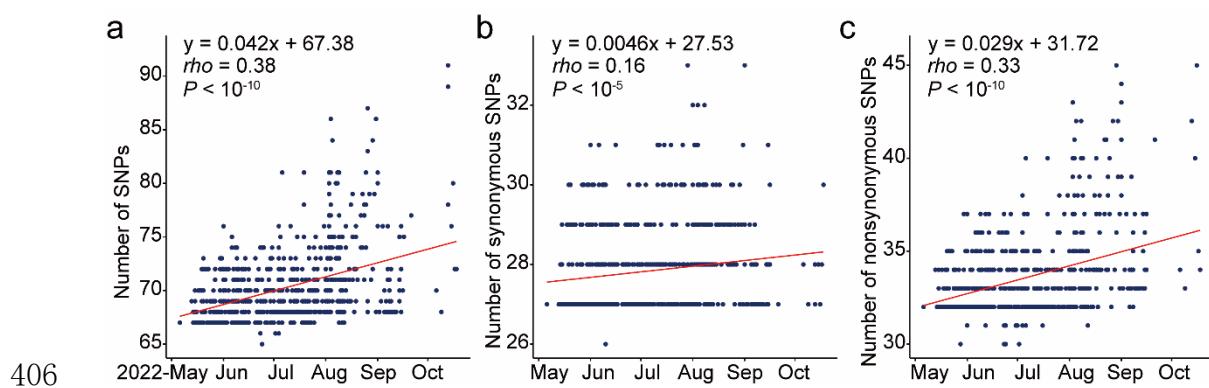

393 48 Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* **24**, 1586-
394 1591, doi:10.1093/molbev/msm088 (2007).

395

396

397

398 **Figures & legends**

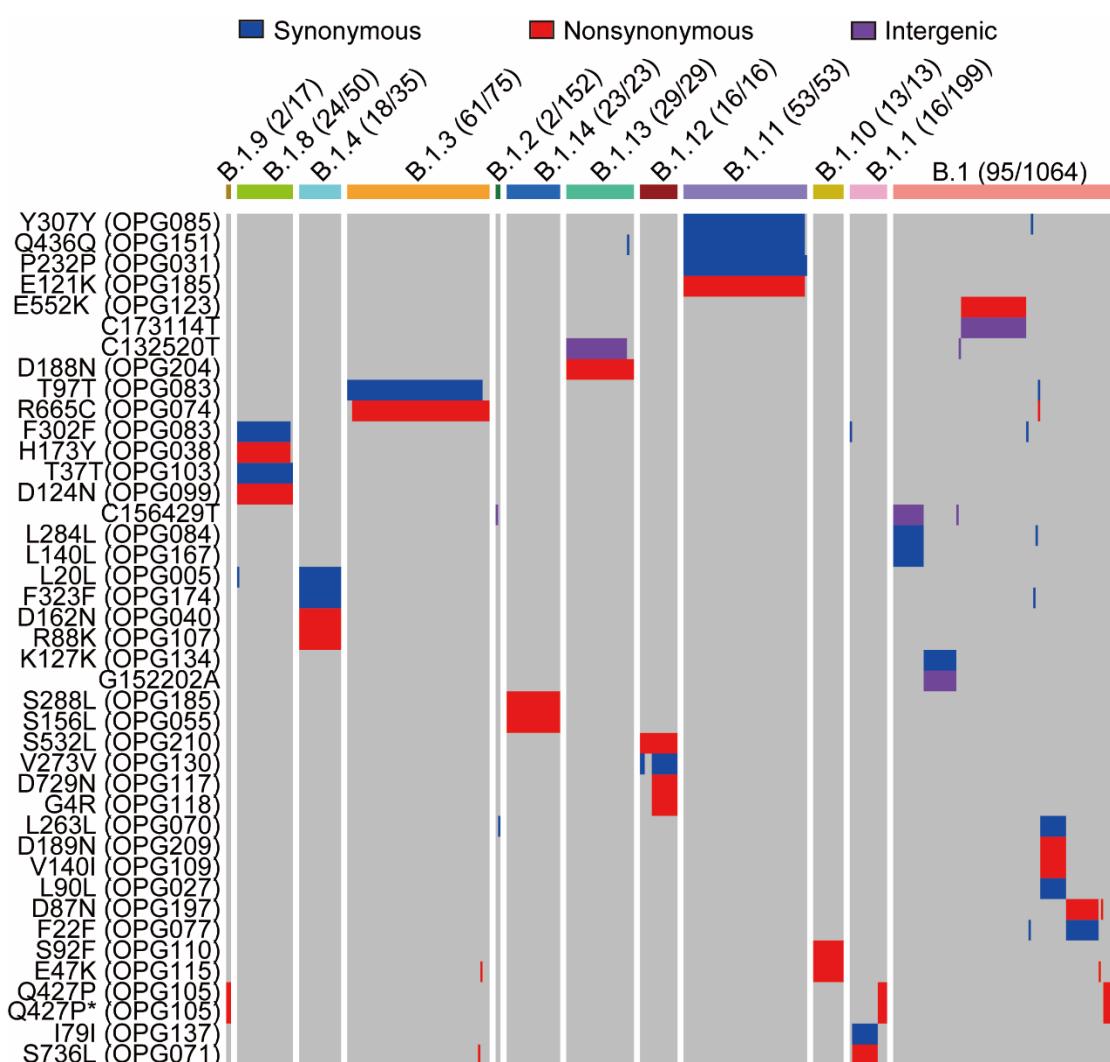

399

400 **Figure 1 Positive selection on OPG027.**

401 (a) The distribution of the median dN/dS ratio (ω) between two sequences of each MPXV
402 gene from different clades. The ω values of OPG027 are indicated by the red arrows. (b) The
403 amino acid substitutions of OPG027 in the evolutionary process of MPXV.

404

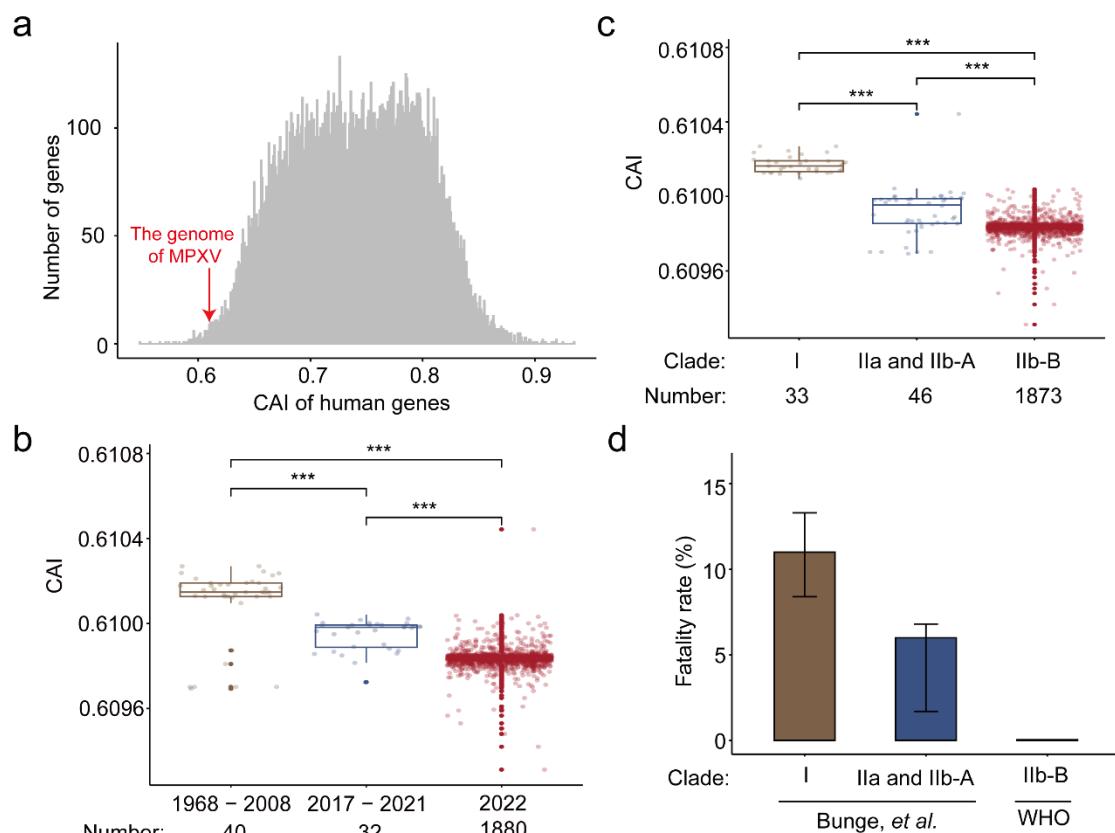
405



406
407 **Figure 2 SNPs of lineage B during the 2022 monkeypox outbreak.**

408 The number of SNPs in the whole genome (**a**), at synonymous sites (**b**), and at nonsynonymous
409 sites (**c**). The *y*-axis indicates the number of SNPs in each genome sequence relative to the
410 reference genome (NC_063383). The *x*-axis indicates the collection date.

411


412

413

414 **Figure 3 Linkage disequilibrium between SNPs in Clade IIb-B of MPXV.**

415 The fifteen linked SNP groups ($r^2 \geq 0.8$) in Clade IIb-B of MPXV. The y-axis indicates the
416 amino acid substitutions in the proteins caused by SNPs or SNPs in the intergenic region. The
417 A82405C/A82406T causing CAA (Q) > CCT (P) in *OPG105* is labeled Q427P/Q427P*. The
418 number of sequences containing at least one of these 41 substitutions and the number of
419 sequences used to detect LD are shown as the numerator and denominator, respectively.

420

421 **Figure 4 The CAI and fatality rate of MPXV.**

422 (a) The distribution of CAI values of human genes and the concatenated coding sequences of
423 MPXV. (b) The CAI values decreased over time. (c) The CAI of different clades and lineages.
424 (d) The fatality rate of different clades and lineages. The error bars indicate the 95% confidence
425 intervals.

426

427

428 **Supplementary Tables and Figures**

429 **Table S1 The number of sequences with mutations in *OPG027* among different clades of**
430 **MPXV.**

SNP	Type ^a	AA change	Clade			
			I	IIa	IIb-A	IIb-B
G16333A	syn	I15I	-	-	-	1/1873
C16327T	syn	L17L	-	-	-	2/1873
T16239C	nonsyn	I47V	33/33	-	-	-
C16227T	nonsyn	D51N	-	-	1/31	-
G16213A	syn	I55I	-	-	-	1/1873
C16209T	nonsyn	E57K	-	-	-	1/1873
G16147A	syn	Y77Y	1/33	-	-	-
G16141T	nonsyn	F79L	32/33	-	-	-
C16125T	nonsyn	E85K	-	-	-	1/1873
C16123A	nonsyn	E85D	12/33	-	-	-
G16110A	syn	L90L	-	-	-	11/1873
G16102A	syn	N92N	33/33	-	-	-
C16002T	nonsyn	V126I	33/33	-	-	-
C15947T	nonsyn	R144K	-	-	-	1/1873

431 ^asyn: synonymous; nonsyn: nonsynonymous.

432

433
434

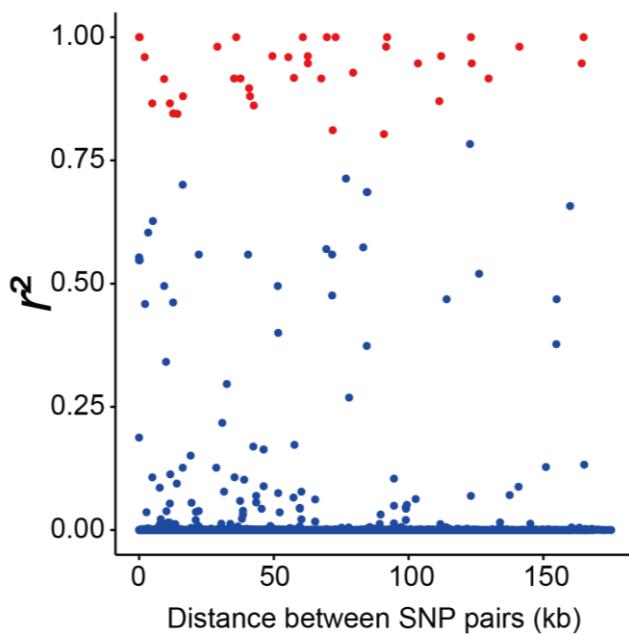
Table S2 The linkage group of substitutions in Clade IIb-B of MPXV

Linkage group (Lineage)	Pos	SNP	AA change	Type	Gene	Protein
Group 1 (B.1.11)	67611	G>A	Y307Y	syn	<i>OPG085</i>	Metalloendopeptidase
	130231	G>A	Q436Q	syn	<i>OPG151</i>	DNA-dependent RNA polymerase subunit rpo132
	18133	C>T	P232P	syn	<i>OPG031</i>	C4L/C10L-like family protein
	159277	G>A	E121K	nonsyn	<i>OPG185</i>	Hemagglutinin
Group 2 (B.1)	103417	C>T	E552K	nonsyn	<i>OPG123</i>	Nucleoside triphosphatase I
	173114	C>T		intergenic	<i>OPG200-OPG204</i>	
Group 3 (B.1.13)	132520	C>T		intergenic	<i>OPG151-OPG153</i>	
	175093	G>A	D188N	nonsyn	<i>OPG204</i>	IFN-alpha/beta-receptor-like secreted glycoprotein
Group 4 (B.1.3)	64426	C>T	T97T	syn	<i>OPG083</i>	Viral core cysteine proteinase
	55133	G>A	R665C	nonsyn	<i>OPG074</i>	Iev morphogenesis protein
Group 5 (B.1.8)	63811	G>A	F302F	syn	<i>OPG083</i>	Viral core cysteine proteinase
	22643	G>A	H173Y	nonsyn	<i>OPG038</i>	NFkB inhibitor
	80111	C>T	T37T	syn	<i>OPG103</i>	DNA-directed RNA polymerase subunit
	78034	G>A	D124N	nonsyn	<i>OPG099</i>	Membrane protein CL5
Group 6 (B.1)	156429	C>T		intergenic	<i>OPG181-OPG185</i>	
	65571	C>T	L284L	syn	<i>OPG084</i>	RNA helicase NPH-II (2)
	144988	G>A	L140L	syn	<i>OPG167</i>	CD47-like protein
Group 7 (B.1.4)	189258	G>A	L20L	syn	<i>OPG005</i>	Bcl-2-like protein
	148427	G>A	F323F	syn	<i>OPG174</i>	Hydroxysteroid dehydrogenase
	24995	C>T	D162N	nonsyn	<i>OPG040</i>	Serpin
	85774	G>A	R88K	nonsyn	<i>OPG107</i>	Entry-fusion complex essential component
Group 8 (B.1)	116130	G>A	K127K	syn	<i>OPG134</i>	Intermediate transcription factor VITF-3 (1)
	152202	G>A		intergenic	<i>OPG178-OPG180</i>	
Group 9 (B.1.14)	159779	C>T	S288L	nonsyn	<i>OPG185</i>	Hemagglutinin
	36617	G>A	S156L	nonsyn	<i>OPG055</i>	Protein F11
Group 10 (B.1.12)	182950	C>T	S532L	nonsyn	<i>OPG210</i>	B22R family protein
	111084	G>A	V273V	syn	<i>OPG130</i>	A5L protein-like
	98233	G>A	D729N	nonsyn	<i>OPG117</i>	NTPase (1)
	98455	G>A	G4R	nonsyn	<i>OPG118</i>	Early transcription factor 70 kDa subunit
Group 11 (B.1)	51378	G>A	L263L	syn	<i>OPG070</i>	Membrane protein E8
	181082	G>A	D189N	nonsyn	<i>OPG209</i>	Virulence protein
	89030	C>T	V140I	nonsyn	<i>OPG109</i>	RNA polymerase-associated transcription-specificity factor RAP94
Group 12 (B.1)	16110	G>A	L90L	syn	<i>OPG027</i>	Host range protein
	169928	G>A	D87N	nonsyn	<i>OPG197</i>	CPXV205 protein
	58518	G>A	F22F	syn	<i>OPG077</i>	Telomere-binding protein I1
Group 13 (B.1.10)	89906	C>T	S92F	nonsyn	<i>OPG110</i>	Late transcription factor VLTF-4 (1)
	94798	G>A	E47K	nonsyn	<i>OPG115</i>	Virion core protein D3
Group 14 (B.1.9, B.1.1, B.1)	82405	CAA> CCT	Q427P	nonsyn	<i>OPG105</i>	DNA-dependent RNA polymerase subunit rpo147
	82406					
Group 15 (B.1.1)	119838	C>T	I79I	syn	<i>OPG137</i>	Viral membrane formation protein
	52232	G>A	S736L	nonsyn	<i>OPG071</i>	DNA polymerase (2)

435
436

437

438 **Table S3 Summary of SNPs in Clade IIb-B of MPXV**


439

Type of SNPs	Synonymous SNPs	Nonsynonymous SNPs
C>T	244 (43.7%)	454 (43.2%)
G>A	252 (45.2%)	387 (36.9%)
Other types	62 (11.1%)	209 (19.9%)
Total number of SNPs	558	1050

440

441

442

443

444

Figure S1 Linkage disequilibrium between SNPs in Clade IIb-B of MPXV.

445

The r^2 (y-axis) against the distance between each SNP pair (x-axis). The SNP pairs in the

446 fifteen linked SNP groups ($r^2 \geq 0.8$) included in **Fig. 3** are shown as red points.

447

448