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1 Abstract

> Understanding the mechanisms underlining forage production and its biomass nutritive quality at the omics level is
3 crucial for boosting the output of high-quality dry matter per unit of land. Despite the advent of multiple omics inte-
4 gration for the study of biological systems in major crops, investigations on forage species are still scarce. Therefore,
5 this study aimed to combine multi-omics from grass hybrids by prioritizing omic features based on the reconstruction
6 of interacting networks and assessing their relevance in explaining economically important phenotypes. Transcrip-
7 tomic and NMR-based metabolomic data were used for sparse estimation via the fused graphical lasso, followed by
s modularity-based gene expression and metabolite-metabolite network reconstruction, node hub identification, omic-
9 phenotype association via pairwise fitting of a multivariate genomic model, and machine learning-based prediction
10 study. Analyses were jointly performed across two data sets composed of family pools of hybrid ryegrass (Lolium
u  perenne X L. multiflorum) and Festulolium loliaceum (L. perenne x Festuca pratensis), whose phenotypes were
12 recorded for eight traits in field trials across two European countries in 2020/21. Our results suggest substantial
13 changes in gene co-expression and metabolite-metabolite network topologies as a result of genetic perturbation by
14 hybridizing L. perenne with another species within the genus relative to across genera. However, conserved hub genes
15 and hub metabolomic features were detected between pedigree classes, some of which were highly heritable and dis-
16 played one or more significant edges with agronomic traits in a weighted omics-phenotype network. In spite of tagging
17 relevant biological molecules as, for example, the light-induced rice 1 (LIR1), hub features were not necessarily better
18 explanatory variables for omics-assisted prediction than features stochastically sampled. The use of the graphical
19 lasso method for network reconstruction and identification of biological targets is discussed with an emphasis on
20 forage grass breeding.

21 Keywords: Graphical lasso, metabolome, multi-trait mixed model, network science, polyploid, transcriptome.

» Background

;3 Forage grasses cover large portions of agricultural land worldwide, efficiently converting enormous amounts of
2 natural resources into macronutrients used primarily for feed. Their relevance can be recognized by the extent
»  of the network of researchers and breeding organizations devoted to maximizing production efficiency. This

Abbreviations: ADF, acid detergent fiber; ADL, acid deterged lignin; BIC, Bayesian information criterion; BLUE, best
linear unbiased estimator, DMDig, dry matter digestibility; DMY, dry matter yield; FDR, false discovery rate; FL, Festulolium
loliaceum; GBS, genotyping-by-sequence; GO, gene ontology; GRM, genomic relationship matrix; HR, hybrid ryegrass; IQR,
interquartile range; JGL, joint graphical lasso; LRT, log-likelihood ratio test; MAF, minor allele frequency; NDF, neutral
deterged fiber; NDFD, digestible NDF; NIR, near-infrared spectroscopy; NMR, nuclear magnetic resonance; OOB, out-of-the-
bag accuracy, PC, principal component; Prot, protein; REML, restricted maximum likelihood; RNA-seq, RNA sequencing; SNP,
single nucleotide polymorphism; WSC, water-soluble carbohydrate.
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»% has been largely achieved by conventional breeding techniques aiming to explore genetic variation not only
2,7 within but also across species and genera over the last decades. As biotechnology surged, breeders advanced
;s in experimenting with hybridizations across species and genera, leading to the release of successful varieties
2 of polyploid hybrid ryegrass (L. perenne x L. multiflorum) and Festulolium loliaceum (L. perenne X F.
w0  pratensis), for example. As high-throughput sequencing platforms reduced genotyping costs, genomics be-
s gan to play a significant role across grass breeding programs, reshaping breeding pipelines aiming at the
» optimization of resource allocation mainly via genome-wide selection (Keep et al. 2020; Arojju et al. 2020;
13 Fe et al. 2015). Recently, the complex problem of predicting phenotypes and finding candidate biological
a  molecules associated with it can also be supported not only by marker information at the DNA level but
55 also via transcriptomics (Pignon et al. 2021) and metabolomics (Wen et al. 2014), leading to a holistic view
3 of the phenomena controlling the expression of economically important traits.

s Improving existing weaknesses of elite genetic materials or simply unlocking genetic variability for breeding
s exploitation are processes that benefited by leveraging hybridization across genera and species within a genus.
% In spite of being predominantly diploid (2n = 2x = 14), L. perenne, L. multiflorum, and F. pratensis can
w0 also be found as or induced to tetraploid states, which is essential for amphidiploid production. However,
o genomic instability is often reported and a shift to the ryegrass genome over generations can happen in
» crosses with fescues (Kopecky et al. 2017; Akiyama et al. 2012). Additionally, homeolog expression bias
s and expression level dominance can be observed in such allopolyploids (Glombik et al. 2021). Collectively,
a these phenomena may lead to distinct interactomes when hybridizations are performed across species, which
s can be analyzed through network reconstruction by leveraging high throughput omics data and appropriate
s statistical methods. Using RNA-seq data, (Hu et al. 2017) reported network topologies of allopolyploid cotton
«  resembling more to one of the diploid species representing a progenitor besides a substantial domestication
s impact on the coexpression. Additional studies on expression modifications in allopolyploids remain scarce.

s Adding extra layers of biological information also means increasing data dimensionality (n < p problem).
s Reliable inferences in high dimensions require specific statistical procedures and an in-depth understanding
51 of the underlining phenomena. Among the methods proposed for the analysis of high dimensional omics
52 data (Bersanelli et al. 2016), the reconstruction and analysis of regulatory networks offer the possibility to
53 prioritize omic features (Naserkheil et al. 2022), significantly reducing the searching space for downstream
s« analyses. Organizing omic features in interacting networks can be seen as an approximation of the true
55 existent interconnected biological system that reads the information encoded on the genome and ends with a
ss functional organism. Reconstructed networks hold biological meaningful topological properties, for example,
57 the presence of modules that might cluster nodes (omic features) performing specific biological functions (Li
ss et al. 2015) and the existence of highly connected nodes. These hub nodes arise as biological networks are
5o assumed to be scale-free, meaning that node degrees are power-law distributed (Pereira-Leal et al. 2004) and,
6 therefore, few highly connected nodes are expected. The presence of these disproportionally connected hub
s nodes is an important topological property of networks as it may represent key genes/metabolites associated
62 with biological pathways. Thus, it would be of special interest to investigate the extent to which hub omic
63 features can be significantly linked to biomass yield and other economically important phenotypes of fodder
6 grasses. Researchers have found hub genes affecting biomass accumulation in other families of plants, for
e example, in Ulmus pumila L. (Chen et al. 2021) and Arabidopsis thaliana (Liu et al. 2021). That being
6 stated, one needs to first estimate the network to be able to explore its topological properties and this can
e be accomplished by leveraging graph theory and probability for modeling and representation of complex
s biological problems as probabilistic graphical models (Li et al. 2015).

s Omics data as a graphical model is based on the estimation of conditionally independent relationships across
7o random variables in a multivariate setting. Learning a graphic in high-dimension requires dealing with a
n  situation where the number of unknown parameters exceeds the sample size. In this case, ¢1-penalization has
2 been one of the main techniques used to make sparse inference in a Gaussian Markov random field (Friedman
et al. 2007), yielding a sparse structured precision matrix Zfl which, in turn, can be converted into an
7 undirected network and further analyzed for its topological properties. This approach has been applied to
75 the study of gene expression (Shahdoust et al. 2019; Wu et al. 2013) and metabolomic (Liu et al. 2022)
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7 data in humans, with few examples in plants (Li and Jackson 2015; Kapoor et al. 2021; e Lima et al.
7 2018; Bartzis et al. 2017). With a selected set of candidate features recovered from gene co-expression and
7 metabolic networks, one can perform omic-phenotype integration. The simple correlation-based integration
7 method of omic variables and phenotypes is widely used, with examples in maize (Zhang et al. 2019) and for
s the forage species E. sibiricus (Zheng et al. 2022). However, more robust approaches based on multivariate
s multi-level models have also been applied (de Steenhuijsen et al. 2016; Nantongo et al. 2021), showing better
@ properties (Bo et al. 2014). Finding significant associations of genes and metabolites with dry matter yield
e and nutritive quality traits in fooder grasses could reveal potential targets for quantitative trait dissection
s studies, improve the omics-assisted selection of elite families, and shed light on regulatory processes of key
s traits. Additionally, given the fact that a large part of the above-ground biomass is harvested in forage grasses,
s it can be hypothesized that randomly sampled hub features are more likely to be linked to a phenotype of
ez interest compared to, for example, grain crops.

s The inherent properties of an organism’s interactome, especially the power-law distribution of interactions,
s give plasticity in face of random disturbances. However, interferences on hub nodes may lead to severe product
o alterations (Crombach and Hogeweg 2008), making them targets for genetic studies. Additionally, hub genes
o appear to be associated with a variety of biological processes (Tahmasebi et al. 2019; Hollender et al. 2014;
o Zheng et al. 2022; Hu et al. 2017) and had been mentioned as potential targets for the molecular breeding of
e forage species (Yan et al. 2022). In the present study, we consider the problem of reconstructing the interplay
o« among biomolecules and narrowing down high-dimensional omics data to fewer hub features to further test
os their association with quantitative traits evaluated in family pools of allopolyploid grasses. Furthermore,
o having significantly associated hubs would confirm the relevance of these interacting biomolecules, which
oz could be targeted for molecular biology studies and marker-assisted breeding. Our objective is, therefore,
s to prioritize omic features in forage grasses by sparse estimation via undirected graphical models, filter the
% relevant ones, and expand on their biological functions for biomass accumulation.

w Methods

w  Plant material and phenotypes

02 Interspecific hybridization of L. perenne x L. multiflorum (hybrid ryegrass) and intergeneric crosses of L.
s perenne X F. pratensis (Festulolium loliaceum), all in tetraploidy forms (2n = 4x = 28), were performed as
e two connected (by L. perenne parents) sparse diallels in the summer of 2017 at the DLF Seeds A /S research
105 station, Store Heddinge - Denmark. Single plants used as parents were extracted from commercial varieties
ws of L. perenne, L. multiflorum, and F. pratensis. A total of 79 and 65 allotetraploid families of hybrid ryegrass
wr - and Festulolium loliaceum, respectively, were obtained out of several attempts. Hybrid ryegrass (referred to
s hereinafter as HR) families were obtained after crossing 31 L. perenne parents with 79 L. multiflorum in a
00 sparse diallel design. For the pedigree class F. loliaceum (referred to hereinafter as FL), 24 L. perenne pa-
1o rents out of the 31 from the HR diallel were crossed with four F. pratensis parents. A sufficient quantity of
m  seeds of F3 families was obtained after two rounds of multiplication. The field trials were carried out in the
uz  autumn of 2020 at two testing sites: i) Denmark (55° 17" 52”7 N, 12° 24’ 58" E) and ii) the Czech Republic
us (49° 40’ 59” N, 17° 58 05" E). Families from the HR pedigree class were sown in Denmark in plots of 12.5
1 m? with two replicates while families of the FL pedigree class were sown in the Czech Republic in plots of 6.25
us  m?, also with two replicates. At each location, entries were assigned to plots arranged in five smaller trials
ue in a randomized complete block design with ~16 entries each. Alongside the described steps, seeds from Fy
17 families were sown in a greenhouse environment in 2019 at Aarhus University, Research Center Flakkebjerg.
us  One gram of seeds from each family was sown in pots 10 cm in diameter aiming at 120 to 150 emerging
ne individual plants. The total above-ground biomass was harvested as one bulk per family, flash-frozen using
120 liquid nitrogen to stop metabolism, and placed in a -80°C freezer. Frozen tissue ground into a fine powder
1 with liquid nitrogen was used for RNA isolation and sequencing after a quality check. In addition, aliquots
122 weighing 300 mg from ground tissue were freeze-dried for NMR-based metabolomic profiling.

123 We collected phenotypes for eight traits at four-time points in Denmark and three-time points in the Czech
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12« Republic across the Spring, Summer, and Autumn of the 2021 production year. The following traits were
s assessed: moisture-corrected dry matter yield standardized by plot size (DMY, g m2), acid-detergent fiber
26 (ADF), acid-deterged lignin (ADL), dry matter digestibility (DMDig), neutral deterged fiber (NDF), diges-
w7 tible NDF (NDFD), protein (Prot), and water-soluble carbohydrates (WSC). All nutritive quality traits are
128 expressed as a percentage of DMY, except for NDFD, which is a percentage of NDF. Nutritive quality traits
e were obtained via a near-infrared (NIR) spectrometer onboard the plot combine harvester. Raw NIR data
10 had previously been calibrated and is yearly updated with new wet chemistry analysis, a routine procedure
w  in the breeding company.

2 Multi-omics data

133 Gene expression via RNA sequencing

1 RNASeq libraries were prepared and sequenced at the Beijing Genomics Institute (BGI Hong Kong) using
135 the BGISEQ-500RS sequencing platform technology in 100nt paired-end (PE100) mode. Paired-end reads
136 (20 to 25M sequences per sample) were mapped to pseudo-chromosomes and scaffolds of the Lolium_2.6.1
wr reference genome (Nagy et al. 2022) using the splice-aware aligner HISAT?2 (Kim et al. 2019). Alignments were
s processed by StringTie (Pertea et al. 2015) for transcript reconstruction and gene expression quantification.
130 Normalized read count values in fragments per kilobase of transcript per million (FPKM) were collected for
1w 139,004 transcripts annotated on the Lolium_2.6.1 reference genome. A filter was applied to the expression
w1 profile matrix to get rid of transcripts with expression values very low/equal to zero. The threshold for
12 transcription was set to 0.5 median FPKM across all samples, yielding the final filtered gene expression
13 matrix with 18,499 transcripts.

s RN ASeq-based genetic variants

us  Variant calling was performed from RNA-seq merged BAM-format alignments using the Bayesian genetic
us variant detector Freebayes (Garrison and Marth 2012). The initial single-nucleotide polymorphism (SNP)
w7 calling resulted in 1,689,206 variants. After retaining only biallelic markers, we filtered variants by the
us  following criteria: i) a maximum missing proportion of 50% at each locus, ii) a minimum mapping quality
1o of 20, iii) a minimum read coverage of five reads per variant position, and iv) minor allele frequency (MAF)
150 greater than 0.05. The final set of SNPs comprises 89,862 variants that were used for downstream analyses.

151 NMR-based metabolomic data

152 The metabolomic profiling by proton nuclear magnetic resonance spectroscopy (1H-NMR) was carried out at
155 the Natural Products Laboratory (The Netherlands). Following the sample preparation and spectra acquisi-
15« tion with a 600 MHz Bruker AVANCE III spectrometer (Bruker BioSpin GmbH, Germany), the raw NMR
155 data were processed using the software package NMRProcFlow (Jacob et al. 2017). After chemical shift ca-
16 libration and normalization, metabolomic fingerprinting yielded a total of 556 bins with non-zero intensities
57 (referred to hereafter as NMR variables) for 144 plant samples by applying an adaptive Intelligent Binning
s [AL-Binning, (Meyer et al. 2008)] algorithm. A tab-separated file with samples on rows, NMR variables on
159 columns, and cell-wise intensity values was generated for downstream analysis.

w Statistical analysis

11 Prior exploratory analysis revealed considerable differences between the omics data from the HR class com-
12 pared to FL class samples. Therefore, downstream analyses were performed considering each of the two
163 classes as distinct but related across layers of omics data. Additionally, this decision was supported by the
164 fact that phenotypes were assessed in different locations, lacking connectedness. Later, these data sets were
s merged for an omic-assisted prediction study.

s Allele frequency-based genomic kernel

17 The genomic relationship matrix (GRM), which gives the realized genetic similarities among any pair of
s individuals, was computed for SNP data sets of sizes p x n equal to 85,283x79 for the HR and 75,299x65
1o for FL data sets after individually re-filtering by MAF, depth, and missing rate using the same thresholds
wo as described before. The GRM was then used for downstream omics feature corrections due to populati-
1 on stratification and multivariate mixed model analysis. The GRM based on pooled DNA was calculated
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w2 using (VanRaden 2008) method 2 adapted to use allele frequencies instead of discrete genotype calls. First, a
w3 column-centered matrix M was computed as M = {f; — ?j}, with j indexing SNP markers, f; representing a
we  vector of alternative allele frequencies for SNP j, and {...} represents a matrix built up with column vectors.
s The matrix G can then be obtained as shown in Eq. 1.

U
= 1)
w 2iz1 Py (1= ;)
s where n is the ploidy of the breeding material, m is the number of markers, and p; represents the frequency
w at jth locus simply obtained by taking the column means of the M matrix. As outbred full-sib Fy families of
s tetraploid plants, the genotype of a family can be described as octoploid (Ashraf et al. 2014). Therefore, the
w9 realized relatedness is obtained by scaling the plain genomic relationship matrix from the cross product of M
10 by the expected SNP variances, yielding a kernel that is analogous to the traditional numerator relationship

11 matrix, also known as the A matrix. Finally, a diagonal correction was applied to G considering ploidy
12 number and coverage depth as proposed by (Cericola et al. 2018).

183 Adjustment for population stratification

18« The impute file for the analysis of gene expression data consisted of two subsets of 4,767 features times
15 the number of samples of each pedigree class. The reduced set of genes was obtained after further filtering
186 out transcripts with more than 50% of samples having zero reads and retaining positions with at least 10
17 or more samples having 10 or more reads. Additionally, a filter on the expressional variance of non-zero
188 elements was performed, selecting features ranked in the top 50th percentile as the variation for genes in the
19 bottom may be largely due to non-biological noise. Finally, we retained only features common to both data
10 sets followed by the addition of a pseudo count to the expression matrix, which was subsequently log(2)-
w1 transformed [loga(x+1)]. The input file for the analysis of NMR data consisted of two subsets of 556 NMR
12 variables for each pedigree class. NMR features were mean-centered and variable intensities were addressed
103 via Pareto scaling, which uses the square root of the standard deviation to reduce the relative importance
14 of high-variance features across the spectrum without much disturbance to the data structure.

s Population stratification was detected in an unsupervised manner via the multivariate statistical technique
106 of principal component analysis and corrected via regression modeling. We empirically retained coordinates
17 of the top 10 eigenvectors of each k pedigree class to regress out population stratification as well as possible
s batch effects among samples. Therefore, the transcriptomic and metabolomic data sets were feature-wise
109 corrected by incorporating principal component scores in the linear model of the form described in Eq. 2.

P
yi=p+ Yy (@h08) +e (2)
p=1

20 where, y; represents the response variable ¢ (omic feature); xPc

i is the entry-specific coordinates of the pth
20 principal component, with p = 1...P where P is equal to 10, 3, is the fixed regression coefficients adjusting
22 for population stratification, and ; is the residual which was retained to reconstruct the full corrected omics

203 data sets for network estimation.

20« Joint graphical lasso analysis for inverse covariance estimation

25 A joint graphical lasso (JGL) method was used for estimation in a scenario of double-related Gaussian
206 graphical models. The two-class problem of high dimensional features was present in the data set due to
a7 the available inter-species/genus crosses. One can expect similar graphical models between the two classes
28 as parents were shared among crosses between them, but also some nuances once the involved species have
20 substantial differences regarding phenotypic traits. Therefore, the joint graphical lasso proposed by (Danaher
a0 et al. 2014) can handle this situation by estimating two graphical models, one for each pedigree class,
au and borrowing information across classes. For each pedigree class k (k = 1,2), let a data matrix X ()
22 represent column-centered data with p omic features, and X*) ~ N (,u(k), E(k)), where ) is a positive
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x3  definite p X p covariance matrix of the omic features. The inverse of X(*) is the precision matrix @)
24 representing the network structure of omic features. By applying an ¢;-penalty on ©®*) the network is
25 made sparse, where elements will be 0 for conditionally independent pairs of features given the remaining
26 variables. The sparsity condition allows learning graphics even in small sample sizes. The fused graphical
a7 lasso formulation in which ®*) are estimated by maximizing the penalized form of the likelihood function
zs  for the two classes is shown in Eq. 3.

mazimize {22: ng (log det ®©F) — trace (S(k)G(k))> - P ({@})} (3)

e} k=

20 where P ({©®}) is as follows:

CHEPYS A B (4)

k=1 i#j h<k i,

20 here, S*) is the empirical covariance matrix of omics features calculated as S} = p=1X®XET  The
a1 optimization problem is here solved by the alternating direction method of multipliers (ADMM) algorithm.
222 The solution to the problem of n < p in the joint graphical lasso model is based on a penalized log-likelihood
223 approach. In addition, as can be seen in Eq. 4, running JGL requires tuning two nonnegative parameters (A
2¢ and Ag). The A1 penalty controls the degree of sparsity while Ao determines network similarity. If Ao is zero
25 (i.e., no penalty is imposed) then ©®®are independent and no information is shared between them. To select
26 the proper hyperparameters, we used a goodness-of-fit approach where a grid search was performed to select
27 values that minimize the Bayesian information criterion [BIC] (Schwarz 1978) specified in Eq. 5 (Augugliaro
28 et al. 2016), yielding values that balance model likelihood and complexity.

2
BIC (A1, A2) = Z ng {tT(S(k)(:)(k)) —log det @(k)} + log ny, Z 1{@,‘,7&0} (5)
k=1 i<y 7

»o In order to reduce the computational burden, a dense search was performed over \; for each fixed value
20 of Ag and a quick search for the former parameter for each fixed value of \; as suggested by (Danaher et
a1 al. 2014). For the metabolomic data set, a uniform log spaced grid starting from 0.01 to 20 with a size
a2 equal to 30 was defined for A; whereas a simple sequence equally spaced from 0 to 0.5 (size of 15) was
23 defined for Ay. The same grid search space was defined for transcriptomic data, however, smaller sizes of 15
2 for A; and 10 for Ay were specified. After selecting the proper hyperparameter values, we run JGL for each
x5 omics data set producing four precision matrices @®). From these matrices, one can compute the partial
26 correlation between pairs of dependent features as corryjiv (i3 = —0i;/+/0ii0;5. The joint graphical lasso
2 method implemented in the R package JGL (Danaher et al. 2014) was used for network estimation.

28 INetwork reconstruction, candidate modules, and hub identification

29 Network analyses aiming for complexity reduction were performed in order to prioritize candidate genes and
20 metabolomic features for further integration with phenotypes of interest. Initially, each precision matrix ©*)
21 was converted into a symmetric (graph is undirected) 0-1 matrix of dimensions equal to p X p, referred to as
22 the adjacency matrix A¥) for each k data set following the definition:

A _[1if 8 #£0, i #j; ©)
K 0 otherwise
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23 Four adjacency matrices A were obtained and from them, we created graphic objects using the R package
21 igraph (Csardi and Nepusz 2006). Initially, a graph is denoted as G = (V, E) in which each node v € V
25 represents a biomolecule in this study, whereas each edge e = (v;,v;) € E refers to the interaction between
26 pairs of nodes v; and v;. Each graph was organized in modules (communities) via a multi-level modularity
27 optimization algorithm (Blondel et al. 2008), forcing highly connected edges to cluster in modules that
xus are sparsely connected among them. In other words, more edges occur within identified modules than the
u9  quantity expected at random. The community structure is essential for finding hub nodes that are more
0 likely to be involved in different biological processes.

1 Hub features were identified intramodule via maximum Kleinberg’s hub centrality score, which is the principal

= eigenvector of AK). (A(’“))T (Kleinberg 1999). By using the hub scores, one can identify the most influential
»3  features in the network and explore the biological function of these interacting biomolecules. Therefore, we
»s selected the top five hub features per module and kept only those intersecting across data sets to maximize
5 the probability of selecting true/conserved hubs of genes and metabolites.

»s REML variance components and heritability

»7 - Single omic features were analyzed by fitting a linear mixed model of the form: y = 1u + Zu + e, where y
s 1is the response vector (normalized gene expression values or total area of the bin from the bucketed NMR
s spectrum), 1 is a vector of ones linking observations to the constant y, u ~ N(0,Go2), and e ~ N(0,I02) are
x0  vectors of the random additive genetic with covariance structure G (Equation 1) and independent (identity
s matrix I as covariance structure) residual effects, respectively. Z is the design matrix assigning observations
%2 of omic features to the respective Fy family. The genomic heritability was calculated as hg =02/(c% +02),
%3 Wwhere h; measures the proportion of the variance attributed to allele substitution effects captured by the
% genomewide markers relative to the total variance.

s Phenotypic variance within location was partitioned into the terms defined by the linear mixed model
26 displayed in Equation 7:

11
y=XB+Zu+) Siste (7)

%7 where, y, B, u, s, and e represent the vectors of the response variable, fixed trial-block effect, random additive
s genetic effect following u ~ N (0, Go2), random spatial effect following s ~ N(0,I02), and random residual
w0 effect assumed e ~ N(0,102), respectively. Matrices G and I are as defined before. Design matrices X, Z,
a0 and S link observations of the response variable to the specific model effect. The spatial effect is a sliding
an - window accounting for 10 neighboring plots in addition to the target experimental unit and works by scanning
oz the field for spatial variation not accounted for by the prior trial design. Genomic heritability was calculated
o as: hl = o /(0p 4+ 1102 + 02). Variance components and heritabilities for eight phenotypic traits can be
o found in the supplemental Table S1. Finally, the parameter o2 was multiplied by the average diagonal of the
a5 GRM in both heritability equations presented before.

s Phenotypes and omics integration via pairwise fitting of mixed models

o The raw phenotypic data were analyzed alongside hub omic features in a multitrait genome-wide fashion via
zs  linear mixed models to investigate pair-wise additive genetic correlations. The bivariate model (Eq. 8 and 9)
oo was fitted Im times, combining [ hub nodes and m phenotypic traits, for each data set, yielding correlations
20 used to describe the existence of a significant association between the concentration of selected biological
2 molecules and economically important phenotypes.

Youme, = X1BomEe, + XebomE, + ZuomE, + €omE, (8)

1
YPHE, = X1BprHE,, + X2bpug,, + Zupyg,, + Zi:l Sispug,, +eruE,, 9)
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22 where youm g, and yprg,, are vectors of expression/intensities of hub omic features and records of phenoty-
23 pic traits, respectively; Boam g, contains the fixed general mean effect while Bpr g, also contains the fixed
x4 effect of block within trial; vectors boag,and bpgg, contains fixed regression coeflicients estimated by
25 regressing response variables on principal components’ dimensional scores calculated from the genomic ker-
w6 nel; uoyg, and upp g, are vectors of families’ additive genetic effect; sppg,, is the vector of random spatial

2

i ); and epyg,and epp g, are vectors of random residuals for expressi-

27 effect with spyg,, ~ N (O,IU

s on/intensity of hub omic feature ! and phenotypic trait m, respectively. For incidence matrices X linking
20 fixed effects to response variables, the general mean was the only fixed effect for submodel 8, thus X; = 1.
20  Matrices X contain scores of the top three principal components computed from the G matrix (Eq. 1) ins-
21 tead of 1’s and 0’s, aiming at further accounting for population structure to avoid false-positive associations.
22 The selection of the appropriate number of PC’s followed an empirical evaluation of the changes in response
23 variables’ heritabilities as they were added. The matrix Z is the corresponding incidence matrix of additive
2 family effects. Finally, the series of matrices S link the random spatial effect to the surrounding plots and
205 work as a sliding window (cross-shaped format) mapping the field for microenvironmental variations missed
206 by the blocking design. The joint covariance structure of the remaining random terms was assumed as follows:

u 0'2 ag.
l: O]VIE;:l ~ N (07 G ® |: UOME; uOIvéEluPHEnl:|> (10)
UPHE,, OuoME, UPHE, Oupnge,,
207 and
€OME, o? 0
"|~N(0, T® | M (11)
ePHEVn 0 O-ePHETn

28 where I represents an identity matrix and ® is the Kronecker product. Besides the scores of the first three
209 principal components, here G also accounts for the whole-genomic relationship structure of the population.
wo Covariances between response vectors were set to non-existent for residual genetic and error random effects.

sn  For hypothesis testing, we also ran a constrained version of the bivariate model, setting the additive genetic
w2 covariance between submodels 8 and 9 (Eq. 10) t0 ze10 (Guprp upup,, = Cuorsupus,, = 0)- The significance
a3 of the additive genetic correlations was tested by comparing the constrained and unconstrained models via
se  a one-tailed log-likelihood ratio test (LRT) with 0.5 degrees of freedom (Gilmour et al. 2015; Self and
w5 Liang 1987). Multiple testing correction was performed for coeflicients across traits within omic features
ws via Benjamini-Hochberg false discovery rate (FDR) (Benjamini and Hochberg 1995) procedure at alpha
7 equals 0.05 aiming to control for type I error.

we  The Im additive genetic correlations estimated by fitting the full bivariate model for each data set we-
s re retained along with the p-values and FDR-based significant associations and used for constructing the
310 omics-phenotype weighted network graph. A visualization of the network was produced using the software
su  Cytoscape 3.9.1 (Shannon et al. 2003), weighing edges by the magnitude of the trait-omic associations.

s (Gene ontology enrichment analysis

a3 Transcript protein sequences were subjected to local InterPro analysis using InterProScan v5.28-67.0 (Jones
s et al. 2014). Predictive information concerning conserved protein domains, signal peptides, transmembrane
as  domains, and gene ontology (GO) data was acquired from 14 member databases of InterPro. Per trans-
as  cript, non-redundant GO information was collected from InterPro outputs using custom scripts. GO-term
s enrichment analysis was carried out using the Python library GOATOOLS (Klopfenstein et al. 2018) by
ais  intersecting the GO-term list of the full perennial ryegrass transcriptome, the GO-term subset of expressed
s genes, and the GO-term lists of filtered transcript sets (study lists). Significant enrichment was declared via
20 Fisher Exact Test, corrected for false discovery rate (Benjamini and Hochberg 1995).
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21 Omics-assisted prediction

2 Starting from the centered M matrix of SNP markers defined before, missing allele frequencies were imputed
323 by chained random forest. This method was selected after comparing the ability in predicting missing allele
2¢  frequencies against the weighted K-nearest neighbors (KNN) method via cross-validation. The imputations
25 were performed for each pedigree class separately using the R package missRanger (Mayer 2021). The miss-
2 Ranger function ran using the arguments num.trees equal to 100, sample.fraction equal to 0.1, max.depth of
27 6, and extratrees for the splitrule argument. The imputation was performed by looping over one chromosome
2 at a time within clusters of SNPs created by running a complete-linkage clustering algorithm with k£ = 30
29 as the desired number of groups.

a0 We used the best linear unbiased estimator (BLUE) of entries as response variables in the prediction study.
3 The adjusted phenotypes were obtained by rearranging the terms and refitting the submodel in Eq. 9 with
s families as a fixed effect and no PC scores were included. BLUEs within locations were mean-centered to
a3 remove differential environmental effects followed by the merging of phenotypes and predictors from HR
s and FL data sets. The unsupervised machine learning algorithm random forest was used as the engine
15 for the prediction study. Models were fitted using the ‘ranger’ R package (Wright and Ziegler 2017) with
35 the hyperparameters minimum node size and a number of randomly drawn candidate features set to five
s and |y/n], respectively, where n is the number of variables. Therefore, the random forest model was fitted on
18 the combined data sets, setting the number of decision trees to 2,000. Training out-of-the-bag accuracy (OOB
10 accuracy) was reported as a performance metric. Finally, variable importance was computed via permutation.

auo  Three prediction scenarios were studied. First, we selected a subset of SNPs tagging common hub genes
s across data sets, the common hub genes, and the common hub NMR variables as three sets of regressors.
s2 The second scenario consisted of stochastically sampling 20x sets of 30 genes (then SNPs within these genes)
us  and 32 NMR variables aiming to compare the prediction power contained in hub nodes with randomly
us  sampled features. In the last scenario, we used all common SNPs, genes, and NMR variables as regressors.
us  Besides comparing prediction accuracy with the previous scenarios, here we can assess a common prediction
us task where the goal is to evaluate the closeness of predicted and observed values using all available predictor
a7 variables.

us Statistical computing and data visualization

us  Large-scale computations were performed in the GenomeDK high-performance computing facility located
0 at Aarhus University, Denmark. Mixed model analyses were fitted using DMU package version 6 (Madsen
s and Jensen 2013). Modular network visualizations were produced using the R package NetBioV (Tripathi
2 et al. 2014) with the Fruchterman-Reingold layout algorithm to arrange nodes in each module. Finally,
33 miscellaneous plots wore drawn employing the ggplot2 R package (Wickham 2016).

=~ Results

w  (Genetic similarity among family pools and omics heritability

6 We constructed a genomic relationship matrix (GRM) for the L. perenne x L. multiflorum (hybrid rye-
w7 grass; HR pedigree class) using 85,283 SNPs and a GRM for the intergeneric crosses of L. perenne X F.
s pratensis (Festulolium loliaceum; FL pedigree class) using 75,299 SNPs (Figure 1 A and B, respectively).
0 The average genomic relationship was close to zero as expected due to the centering of allele frequencies
w0 in both data sets (-0.0178 and -0.024 for hybrid ryegrass and F. loliaceum, respectively) but with substan-
s tially more variation found in the FL data set (off-diagonal standard deviation equal to 0.21 compared to
2 0.15 in the HR class). In addition, GRM heatmaps are substantially populated with negative relationships,
%3 meaning that many pairs of individuals were less related than the average genomic relationship. Also, the
s GRMs revealed biparental combinations that substantially deviated from the expected offspring composition
s of bi-parental crosses of single-plant parents, suggested by the presence of blocks of high genomic relation-
w6 ships (>1.0) among families, especially for the FL data set (Figure 1B). For instance, the 4x4 block on the
w7 top-left side of Figure 1B holds highly related families that share the same pollen receptor parent crossed
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ws  with different F. pratensis genotypes. As the diallel design was not accounted for, downstream analyses we-
w0 re performed controlling for population stratification due to replicated parents in the crossing scheme using
so  principal component (PC) scores as covariates. The first 10 PCs of the GRM matrices explained a cumulative
sn percentage of variation equal to 75% and 82% for HR and FL data sets, respectively. Additionally, adjusted
sz means on the right-hand side of Figure 1 reveal blocks of families with similar trait-specific performance as
sz they were hierarchically clustered by IBS-based measurement of relatedness.
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Figure 1: Allele frequency-based genomic relationship matrix (GRM) for 79 families of hybrid ryegrass [HR]
(A) and 65 families of Festulolium loliaceum [FL] (B). Heatmap depictions of GRMs are annotated with best
linear unbiased estimators (BLUESs) for dry matter yield (DMY) and each of the seven nutritive quality traits:
ADF - acid detergent fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF: -neutral
detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates. Partially
surrounding dendrograms were produced using Euclidean as the distance measure and the agglomerative
complete-linkage method to build the hierarchy of clusters.
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s The GRMs displayed in Figure 1 were also used in a linear mixed model to estimate the genomic heritability
a5 of NMR variables and gene expression entities. The density plots of the heritabilities for both pedigree classes
s are displayed in Figure 2. For the HR class, median heritabilities of 0.047 and 0.122 with an interquartile

10
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range (IQR) of 0.177 and 0.311 were observed for NMR variables and gene expression, respectively. For
the FL class, we observed median heritability of 0.162 and 0.165 with IQR of 0.273 and 0.295 for NMR
variables and gene expression, respectively. Distributions are positively skewed and a higher quantity of high
heritable variables can be detected for gene expression data in comparison to NMR, variables. Additionally,
the figure suggests a slightly higher proportion of more heritable features measured on samples from the FL
class, especially for metabolomic data. Finally, subfigures 5B and 5C reveal the similarity in heritability
between pedigree classes according to the spectrum and genomic position, respectively. Overall, there is a
high correspondence between classes for regions displaying high and low heritability.

6
A NMR C Gene expression
variables {RNA-seq)
5
B D 0.8,
4 £ HR £ ] “\ HR
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Figure 2: Density plots displaying the SNP-based genomic heritability distribution of NMR, variables (A)
and gene expression (C) from family pools of two pedigree classes (HR: hybrid ryegrass and FL: Festulolium
loliaceum). The genomic heritability of NMR variables is displayed along the spectrum for both pedigree
classes in B and subfigure D displays the genomic heritability of gene expression data along genomic position
across chromosomes also for both pedigree classes.

Hyperparameter tuning of joint graphical lasso

The search for the appropriate values of A1 and Ay that returned the smallest Bayesian information criterion
(BIC) was computationally intensive as the model was fitted for all combinations of the penalties defined in
the grid search, requiring several days of CPU time for joint graphical lasso (JGL) model of transcriptomic
data but only using few wall time hours by taking advantage of multi-core processing. A total of 939
connected nodes were estimated for gene expression. Within data sets, four sparse subnetworks and 4,038
edges were obtained for HR whereas five sparse subnetworks and 2,182 edges were identified for the FL class
given the tunning parameters selected via BIC (Figure 3). Additionally, 462 edges were found to be shared
by the two pedigree crossing classes. For the next omic layer, all 556 nodes (NMR variables) were connected,
one sparse network on each pedigree class was estimated, 7,757 and 4,789 edges were available for HR and
FL data sets, respectivelly, and 2.371 common interactions shared by all classes.

11
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Figure 3: Grid searching of hyperparameters for graphical lasso model selection with ¢; regularization.
A and C shows the Bayesian information criterion (BIC) as a function of the second (A2) penalty for
transcriptomic and metabolomic data sets, respectively. B and D are heatmaps displaying the complete grid
search for the values of the tuning parameters A; and Ay that minimize BIC, yielding parsimonious models
for transcriptomic and metabolomics data sets, respectively.

s For the gene expression data, Ay was optimized at Ao = 0. This implies different networks for each pedigree
a7 class with a different arrangement of non-zero positions for the gene expression data. On the other hand, for
s NMR data, the best combination of A; and A, that minimized the BIC found a small non-zero value for Ao,
w0 implying a small level of similarity on the sparsity pattern across precision matrices for NMR data. Overall
w0 and across omic layers, the hybridization process generated substantial differences between pedigree classes
w1 and it seems to be better captured at the gene expression level.

« Exploring lasso penalized precision matrices and network topologies

w3 We detected 14 candidate modules for gene expression and 10 modules for metabolomic for the HR class
wi (Figure 4). In the FL data sets, it was estimated 16 modules for gene expression and also 10 modules
w5 for metabolomics data. The modularity view of the gene-to-gene and metabolite-to-metabolite networks
ws reveals the power-law distribution of node connections, where few vertices are highly connected whereas the
w7 majority has only one or few connecting edges. The organization of network structure based on modularity
ws optimization allowed for the selection of intramodular hub nodes that are more likely to be involved in
w0 different biological pathways. Out of 70 hubs extracted from HR transcriptomic data (Figure 4A) and 80
a0 from FL transcriptomic data (Figure 4C), 30 genes (hubs) were conserved. These high-degree genes are
a1 located across all seven chromosomes, varying from two hubs on chromosome three up to 10 on chromosome
a2 two. Also, the degree of the hub gene set ranged from 34 to 182 edges. For metabolomic data, we found 32
a3 conserved hub nodes (Figure 4, B and D), all localized in one half of the NMR spectrum and with degrees
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ranging from 52 to 357 edges.

Figure 4: Abstract modularity view of the gene co-expression and metabolite networks constructed from
gene expression data (A and C) and nuclear magnetic resonance (NMR) spectroscopy (B and D) for two
data sets (A and B is the HR data set; C and D is the FL data set). Both node color and size reflect the
hub score, i.e., the principal eigenvector of A -¢(A) matrix operation, where A is the adjacency matrix of
each graph. The color range goes from red for low-degree nodes to blue for highly connected ones. Edges
between modules were collapsed and the width refers to the number of connections shared between any two
modules. Venn diagrams show the overlap among sets of top hub features from each data set.

Integrative omics

The pairwise fitting of the multivariate genomic model revealed 21 significant edges between traits and omic
hub features after FDR correction (Figure 5). The multi-trait model was fitted 496 times but failed to
converge in 54 cases, possibly due to the variance component being close to zero. Therefore, five traits
displayed at least one significant edge with hub features in both pedigree classes. More edges can be seen on
the left side of the omics-phenotype network relative to the right side, which can be explained by the higher
heritability across traits in the FL data set (Supplemental Table S1) as well as overall higher heritability of
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w22 genomic features (Figure 2). Additionally, significant connections were found for six out of 30 hub genes and
w3 four out of 32 hub NMR variables. Three (hubs 16, 18, and 21) out of the six genes are located distantly
22 apart on chromosome four whereas the remaining hubs 3, 7, and 22 are located on chromosomes one, two,
s and five, respectively. Genomic heritabilities of hubs displaying significant edges were considerably higher
w26 compared to the full feature space, with median k2 twice as large. A closer look reveals a consistent pattern
w27 regarding the direction of the associations. Hub features positively or negatively associated with fiber content
w8 traits are also positively or negatively associated, respectively, to dry matter yield. The same holds true
w9 for protein content and digestibility traits, where associated hub features are inversely connected to fiber
a0 content. Additionally, the majority of hubs associated with phenotypes have more than one significant
a1 edge computed from independent analysis and, therefore, confirms the reliability of the estimated omics-
a2 phenotype network. We also fitted hub features as covariates in submodel 9 and computed the z-scores and
a3 associated p-values, which overall confirmed the results displayed in Figure 5 (data not shown). Finally, no
s hub feature had significant edges with traits from both pedigree classes, which can suggest steady genetic
5 differences between classes and/or a lack of power to detect these shared genomic-based associations.
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Figure 5: Weighted network linking hub omic features to phenotypes collected from family pools of two
fodder grass pedigree classes (HR [hybrid ryegrass] data set on the left side and FL [F. loliaceum] data set
on the right side). Edges represent the additive genetic correlation between omic features and traits and
were built by the pair-wise fitting of a multivariate genomic model. Stronger edges in a gradient from red
(negative) to blue (positive) colors represent false discovery rate corrected significant correlations at alpha
0.05. Highlighted omic nodes show at least one significant edge. DMY - dry matter yield; ADF - acid
detergent fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF: -neutral detergent fiber;
NDEFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates.
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s Gene-set enrichment analysis revealed four gene ontology (GO) terms enriched in the set of 30 hub genes
«r displayed in Figure 5. Overrepresented GO terms were GO:0019438 (aromatic compound biosynthetic pro-
s cess), GO:0018130 (heterocycle biosynthetic process), GO:1901362 (organic cyclic compound biosynthetic
a0 process), and GO:0044271 (cellular nitrogen compound biosynthetic process). Bivariate mixed model anal-
wo  ysis revealed significant genetic correlations between the expression of gene hubs 18 and 21 and dry matter
w yield. While hub gene 18 codes for the atpF gene (synthase subunit b, chloroplastic) and is associated
w>  with energy production (GO:0015986 - proton motive force-driven ATP synthesis), the blast of biological
a3 sequences revealed a putative unclassified retrotransposon protein originating from hub gene 21.

ws  Omics-assisted predictions

ws  Using gene expression data as an independent variable performed similarly to SNP-based marker predictions,
us  except for digestibility, protein, and neutral detergent fiber (Figure 6). Despite the overall poor prediction
w7 performance across traits obtained when using NMR features as independent variables, the information
ws  contained in this omic layer is useful for protein content prediction, with correlations above 0.4. Prediction
m9 accuracy using only hub genes was compared with a second scenario where samples of the same size were
w0 drawn from the whole predictor space aiming to check whether hub features carry asymmetrically more
w1 (or less) information for prediction purposes. Overall, hub NMR variables appear to be more predictive of
2 nutritive quality traits than random samples of metabolomic features. On the other hand, results suggest
3 a weaker relationship between observed and predicted quality parameters using hub genes as regressors.
sss Finally, using the whole set of available predictors yields predominantly higher accuracies across traits.
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Figure 6: Random forest-based prediction accuracy computed for eight forage grass traits as a function of
predictors encompassing three omic layers (DNA: SNP-based markers, RNA: gene expression via RNA-seq,
and NMR: variables representing bucketed NMR spectra) and three predictor set configurations as indicated
by the color gradient. The standard errors for the mean accuracy of sampled features are depicted in blue
color. DMY - dry matter yield; ADF - acid detergent fiber; ADL - acid detergent lignin; DMDig - digestible
dry matter; NDF: -neutral detergent fiber; NDFD - digestible NDF'; Prot - protein; and WSC - water-soluble
carbohydrates.
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= 1iscussion

s The study elaborated here explores a network-based approach to combine multi-omic data arising from
7 an n < p scenario, inferring associations between biomarker candidates with dry matter yield and nutritive
s quality traits of polyploid forage grass families. This was accomplished by using a joint graphical lasso model
w0 with a fused penalty for network reconstruction, followed by topological property extraction and integration
w0 via multivariate mixed modeling. Further, a machine learning-based prediction scheme was explored to
w1 verify the extent of information available in hubs and in the whole feature space for predicting agronomically
w2 important phenotypes. The plant material consisted of family pools of inter-specific and- generic grass
w3 hybrids from two connected diallels. Crossing different pasture species/genera is not a trivial task; obstacles
wa can emerge. Firstly, out of all initially planned crosses, only a subset generated viable seeds, impacting
w5 the sample size. Also, seeds were not abundant for many of the crosses, requiring an additional year of
ws multiplication. Secondly, extraneous offspring patterns were detected, prompting a question of whether
w7 normal parental contributions were formed for some of the Fy families. This inquiry remained unanswered
w8 in this manuscript given the complexity of the genetic material (family pools), SNPs called from RNA-seq
w0 data, and the unavailability of parental genotypes. Despite the self-incompatibility (SI) ensuring cross-
s pollination in perennial ryegrass (Cropano et al. 2021), four to eight percent of self-fertilization has been
am  reported (Arcioni and Mariotti 1983; Deniz and Dogru 2007). This, in addition to the low success rate of
a2 inter-specific and- generic hybridization, might have caused the deviated genomic state of offspring families
a3 for crosses that produced a small number of seeds. We did not use the parental information from the
aa diallel structure in the network construction but removed it by regression to control for the kinship among
w5 individuals across analyses, a crucial action to avoid spurious results in network reconstruction. Due to the
a  genetic design, correlation among samples is expected, which can lead to the detection of co-expression among
a7 features as a result of shared chromosomal segments. Additionally, confounding artifacts not controlled for
s can affect groups of genes and NMR variables, which can lead to the detection of spurious correlations.
a0 We fitted population structure as covariates by using principal component scores derived from the genetic
a0 markers covering the whole genome aiming to alleviate the non-independence among samples, which has been
w1 shown to reduce false network discoveries efficiently (Parsana et al. 2019). An extra layer of precaution to
w2 avoid the effect of false-positive edges was deployed by retaining only common hub features between pedigree
3 classes.

s« The gene co-expression and metabolic networks as the ones we reconstructed in this study (Figure 4) using
s RNA-seq and NMR variables, respectively, can contain interesting topological properties e.g., the existence
s of highly connected nodes and the organization of nodes in modules (Li et al. 2015). We explored these
w7 two properties aiming to select, across pedigree classes, conserved hubs extracted at a rate of five per
s module, therefore, increasing the likelihood of sampling hubs associated with diverse biological processes.
a0 Our approach to selecting and associating these features with phenotypic traits is altogether different from the
w0 conventional method, which consists of performing a simple correlation-based gene co-expression network
w1 analysis followed by thresholding to find modules that can then be summarized into a synthetic (eigen)
w2 gene for association with external sample traits (Langfelder and Horvath 2008). As highlighted by other
w03 authors (Huynh-Thu and Sanguinetti 2018; Jiang et al. 2019), this correlation-based approach cannot
ws  distinguish between linear relationships due to directly dependent nodes and those arising from confounding
a5 nodes, which might create spurious edges in the graph and, consequently, misleading clustering. In contrast,
w5 Gaussian graphical models, as used here, are based on the precision (inverse variance) matrix and express
w7 conditional dependence between pairs of features given all the other variables in the data set (Danaher et al.
w8 2014) which, therefore, avoids declaring an edge when no causal relationship exists. Regarding the presence
w0 and distribution of edges across reconstructed networks, the proportion of undirected edges given the total
so available nodes was much higher for the NMR -based metabolic network relative to the gene expression
s graph. This is a consequence of the lack of independence among bins closely located across the NMR
s spectrum. Indeed, an average autocorrelation across samples revealed significant spikes up to lag 12 (data
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s3 not shown). Therefore, a proper feature selection algorithm for spectral data can be implemented to deal
se  with the existence of autocorrelation.

ss  Picturing a biological regulatory cascade, hub genes are usually regulatory factors located upstream, whereas
sos  genes represented by low-degree nodes are located on the other end (Zeng et al. 2022). They can be associated
sor  with biological processes from which several others are dependent, yielding the commonly observed power-
ss  law degree distribution. The presence of a limited amount of important hub genes, however, does not
so0  necessarily imply a simple genetic architecture, because the regulation of the hub gene expression is typically
si0 highly polygenic. Investigating putative hubs can reveal important genes as, for example, the cold-regulated
su  gene Lolium perenne LIR1 (LpLIR1) (Ciannamea et al. 2007) represented by the hub gene coded as 22 in
sz Figure 5, which is located at chr5:155166187-155167265 in the L. perenne genome and appears to act in the
s photoperiodic regulation of flowering. Another example is hub 7, which represents the PDX1.1 gene, involved
sie in the biosynthesis of vitamin B6 and protection against stresses (Liu et al. 2022). Overexpression of PDX
sis proteins was shown to increase seed size and biomass in Arabidopsis (Raschke et al. 2011). For metabolite-
sic metabolite networks, high-degree nodes may represent signaling molecules or molecules engaged in many
si7 reactions. The content and diversity of such molecules have been shown to be shaped by domestication as
sis well as due to crop improvement (Alseekh et al. 2021). Improving biomass output per area is the ultimate
si9  breeding goal in a forage breeding program and also implies selection pressure for stress endurance due to
s0 animal grazing or mechanical harvesting. In this sense, secondary metabolites are well-known for their role
s2 in the plant’s response to external disturbances as herbivory (Degenhardt Jorg 2009). In more general,
s2  significant associations can be detected between metabolites and agronomic traits (Turner et al. 2016) and
s the whole NMR spectrum can be used for metabolomic-assisted prediction (Guo et al. 2022). That being
su  stated, genetic selection for elite grasses might be linked to an altered profile of metabolites, leveraging their
s usefulness as markers for selection or for prediction purposes. Indeed, great chemical diversity is available
s6  in perennial ryegrass (Subbaraj et al. 2019), not only adding another layer of information for omics-assisted
s7 - breeding but also enabling target improvement of varieties with a specific profile of key metabolites.

ss 'Together, significant additive genetic correlations between omic features and phenotypic traits displayed in
s0 Figure 5 and the presence of over-represented gene ontology (GO) terms in the hub gene set supports the
s evidence that these features hold fundamental biological properties. We further assessed the predictive power
s available in the sets of gene and metabolite hubs. This was accomplished by merging the HR and FL data
s sets for trait prediction aiming to increase the sample size, which even though still below the appropriate size
533 for genomic selection was counterbalanced by a high signal-to-noise ratio given the diallel structure which
s is expected to boost information for model learning (see Figure 1). Splitting between training and testing
s sets would reduce the sample size for training. Therefore, we used the ensemble learning method of random
35 forest with all samples and reported the out-of-bag (OOB) accuracy as a prediction performance metric,
s eliminating the need to set aside a test set (Breiman 2001). Despite the crossing scheme, eigenvectors from
s33  marker data did not reveal large dissimilarity between pedigree classes (Supplemental Figure S1), therefore
s allowing for the joint analysis. Also, random forest is not very sensitive to hyperparameter tunning (Probst et
s0 al. 2019), making it a good option for the designed prediction setup. This can be attested by the magnitude
sa of predictions displayed in Figure 6. Prediction accuracy for dry matter yield was reported in other studies at
s 0.31 using diploid ryegrass synthetic populations (Pembleton et al. 2018), 0.34 using tetraploid ryegrass (Guo
s3 et al. 2018), and 0.5 investigating diploid perennial ryegrass (Arojju et al. 2020). Here, we report values
sa  of prediction accuracy of dry matter yield that approximate 0.5 (Figure 6) using both SNP-markers and
s5  gene expression, despite the lower sample size but helped by high relatedness among samples, an important
s component in genomic selection (Edwards et al. 2019). Also for dry matter yield, surprisingly the most
s heritable trait (Supplemental Table S1), the set of hub genes and SNPs markers tagging them seem more
ss predictive than features sampled at random. For the remaining traits, mixed results were observed which
s9  can be an artifact due to sample size, low heritability, or population structure. Additionally, the signal
ss0  might be dependent on the genetic background and disappeared as we merged the two data sets for the
ss1 prediction study. Heritability is an important parameter driving prediction accuracy. If it is low, the error
s variance will be higher, leading to difficulties in estimating the effect of genome segments accurately (van der
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53 Werf 2013), especially if the sample size is not sufficiently large. Small values of heritability were primarily
s« observed for quality traits (supplemental Table S1), which explains the lack of predictive power of the model
55 for digestibility, water-soluble carbohydrates, and digestible NDF, for example. The NIR-based quality
56 parameters are obtained from calibrated models using data of chemical analysis from samples of standard
ss7  breeding materials and might not translate well into curves of inter-generic and- species hybrids, explaining
sss  the lower heritability.

s Given that plant tissues were sampled once from pools of seedlings grown in a greenhouse environment at
ss0o  the Fo generation for transcriptomic and metabolomic analyses, the information carried by the recorded
s features represents a snapshot of the complex interactome at that particular condition in space, time, and
s2  random mating generation. This information was learned by the model and translated into higher prediction
53 accuracy for protein and digestibility, despite the fact that phenotypes were recorded in later growth stages
sss  and in another generation of random mating. Across omic layers, the results also showed that using all
ss  available features is almost always a better choice for increased prediction accuracy. Besides more main
soo  effects being captured, the random forest model can capture feature-feature interactions (Yao et al. 2013)
s7  as long as the marginal effects are large enough to cause a tree split, therefore, accounting for some of the
s existing epistasis. Therefore, the existence of significant edges displayed in Figure 5 and the magnitude of the
seo  prediction accuracies presented in Figure 6 reveals a strong link between field-based phenotypes and heritable
s omic features assessed from young seedlings in a controlled environment. Altogether, this information brings
sn the question of whether phenotypes from seedlings grown for DNA sampling could be recorded through a
sz low-cost NIR-based method and used to improve the accuracy of genomic selection models, a subject worthy
s13  of consideration in future research.

s The use of multi-omics in plant breeding-related studies is becoming more popular due to decreasing in cost
s5 per data point as a result of modern high-throughput technologies. This has been allowing researchers to
s reconstruct complex biological networks for inference and mining. Out of the many topological properties
s7 that can be retrieved from an interaction network, hub features showing many putative links have been
ss  shown to play important biological roles in plants (Tahmasebi et al. 2019). Our study reveals that narrowing
s down the high-dimensional feature space generated by high-throughput omic analysis to fewer entities by
s leveraging properties of the graphical theory can reveal important biomolecules for molecular studies and
sei breeding. Additionally, dimensionality reduction can substantially boost detection power by alleviating the
s multiple testing problem. Further investigations of candidate features may help elucidate biological processes
s underlying the expression of phenotypic traits and serve as markers for omics-assisted selection in breeding
sea  programs. Even though we did not perform compound identification from the NMR data, this is a feasible
s task and may reveal metabolites playing important roles in biomass yield and nutritional quality.

= Conclusion

sy The scientific community has seen a sharp increase in publications exploring the usefulness of biological
sss network reconstruction based on high throughput omics data since the 2000s, but studies with forage species
ss0  remain scarce. Here, we have explored the usefulness of topological properties of gene co-expression and
s0  metabolic networks in explaining the phenotypic variance of eight traits assessed in family pools of inter-
s specific and -generic grass hybrids. Network topology estimated via fused graphical lasso revealed profound
se  network differences between pedigree classes, but a set of 30 high-degree hub genes and 32 hub NMR variables
ss  remained conserved across classes given the selection criteria, out of which 10 hubs were found as candidate
ses  biomolecules significantly associated with the expression of agronomic phenotypes. Gene set enrichment
ss  analysis and weighted omics-phenotype network estimation suggested that sets of hubs are likely to contain
sos  essential features modulating interactomes and the expression of economically important phenotypes.
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Figure S1: Scatter plot displaying scores of the first two principal components (PCs) from the PC analysis
of the combined (hybrid ryegrass plus Festulolium loliaceum samples) genomic relationship matrix. The
number of samples is equal to 144. An overlaying scree plot shows the variance explained by the first five
PCs.
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=« Supplemental tables

Table S1: Restricted maximum likelihood (REML) estimation of variance components from two field trials
comprising different pedigree classes of forage grasses: HR - hybrid ryegrass and FL - Festulolium loliaceum.

Ped. Variance Traits!
class component DMY ADF ADL DMDig NDF NDFD Prot WSC
HR o2 2181.088  0.125  0.002 0.135 0.278 1.451 0.186 0.000
S.E. 1054.606  0.073  0.002 0.086 0.174 0.741 0.113 0.368
FL o2 7353.689  0.260 0.018  0.148 0.590  0.000 0.034 0.194
S.E. 3090.586 0.128 0.011  0.281 0.277  0.540  0.046  0.162
HR 0]20 0.000 0.000  0.000 0.031 0.029 0.000 0.000 0.269
S.E. 892.753  0.075 0.002  0.099 0.183  0.859  0.117  0.587
FL 0]20 0.000 0.000  0.000 0.374 0.102 0.704 0.071 0.000
S.E. 1760.040  0.099 0.008  0.441 0.186  0.976  0.066  0.200
HR o2 183.365 0.206  0.007  0.222 0.527 0.253 0.377 1.530
S.E. 721.615 0.106  0.003 0.136 0.263 0.547 0.193 0.810
FL o? 4431.405 0.443 0.000  0.000 0.402  0.228 0.039 1.835
S.E. 2338.886  0.194 0.008  0.443 0.254  0.927  0.056  0.599
HR o2 4821.160  0.388  0.010 0.512 0.925 4.189 0.561 3.242
S.E. 986.994 0.085  0.002 0.115 0.210 0.722 0.139 0.740
FL o? 5939.760 0.361 0.046  2.400 0.728  5.799  0.319  0.659
S.E. 1618.810 0.114  0.010 0.528 0.202 1.225 0.073 0.286
HR " 1312.640 23.420 2.110 88.937 42872 71.172 14.143 10.986
S.E. 20.718 0.301  0.051 0.326 0.477 0.626 0.391 0.824
HR 7 1204.610 26.757 2.912 85493 46.501 70.291 11.720 12.422
S.E 50.153 0.442 0.084 0.603 0.517  0.942  0.255 0.782
HR h? 0.304 0.174 0.126  0.150 0.158  0.246  0.165  0.000
FL h? 0.415 0.244  0.288 0.051 0.324 0.000 0.074 0.072

IpMY: dry matter yield; ADF: acid detergent fiber; ADL: acid detergent lignin; DMDig: digestible dry matter; NDF: neutral
detergent fiber; NDFD: digestible NDF; Prot: protein; and WSC: water-soluble carbohydrate. o2, 0’;, 02, and o2 are the
genomic variance, variance due to uncorrelated family effects, spatial variance, and residual variance, respectively. S.E. is the

asymptotic standard error and h? is the genomic heritability.
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