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Abstract1

Understanding the mechanisms underlining forage production and its biomass nutritive quality at the omics level is2

crucial for boosting the output of high-quality dry matter per unit of land. Despite the advent of multiple omics inte-3

gration for the study of biological systems in major crops, investigations on forage species are still scarce. Therefore,4

this study aimed to combine multi-omics from grass hybrids by prioritizing omic features based on the reconstruction5

of interacting networks and assessing their relevance in explaining economically important phenotypes. Transcrip-6

tomic and NMR-based metabolomic data were used for sparse estimation via the fused graphical lasso, followed by7

modularity-based gene expression and metabolite-metabolite network reconstruction, node hub identification, omic-8

phenotype association via pairwise fitting of a multivariate genomic model, and machine learning-based prediction9

study. Analyses were jointly performed across two data sets composed of family pools of hybrid ryegrass (Lolium10

perenne × L. multiflorum) and Festulolium loliaceum (L. perenne × Festuca pratensis), whose phenotypes were11

recorded for eight traits in field trials across two European countries in 2020/21. Our results suggest substantial12

changes in gene co-expression and metabolite-metabolite network topologies as a result of genetic perturbation by13

hybridizing L. perenne with another species within the genus relative to across genera. However, conserved hub genes14

and hub metabolomic features were detected between pedigree classes, some of which were highly heritable and dis-15

played one or more significant edges with agronomic traits in a weighted omics-phenotype network. In spite of tagging16

relevant biological molecules as, for example, the light-induced rice 1 (LIR1 ), hub features were not necessarily better17

explanatory variables for omics-assisted prediction than features stochastically sampled. The use of the graphical18

lasso method for network reconstruction and identification of biological targets is discussed with an emphasis on19

forage grass breeding.20

Keywords: Graphical lasso, metabolome, multi-trait mixed model, network science, polyploid, transcriptome.21

Background22

Forage grasses cover large portions of agricultural land worldwide, efficiently converting enormous amounts of23

natural resources into macronutrients used primarily for feed. Their relevance can be recognized by the extent24

of the network of researchers and breeding organizations devoted to maximizing production efficiency. This25

Abbreviations: ADF, acid detergent fiber; ADL, acid deterged lignin; BIC, Bayesian information criterion; BLUE, best
linear unbiased estimator, DMDig, dry matter digestibility; DMY, dry matter yield; FDR, false discovery rate; FL, Festulolium
loliaceum; GBS, genotyping-by-sequence; GO, gene ontology; GRM, genomic relationship matrix; HR, hybrid ryegrass; IQR,
interquartile range; JGL, joint graphical lasso; LRT, log-likelihood ratio test; MAF, minor allele frequency; NDF, neutral
deterged fiber; NDFD, digestible NDF; NIR, near-infrared spectroscopy; NMR, nuclear magnetic resonance; OOB, out-of-the-
bag accuracy, PC, principal component; Prot, protein; REML, restricted maximum likelihood; RNA-seq, RNA sequencing; SNP,
single nucleotide polymorphism; WSC, water-soluble carbohydrate.
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has been largely achieved by conventional breeding techniques aiming to explore genetic variation not only26

within but also across species and genera over the last decades. As biotechnology surged, breeders advanced27

in experimenting with hybridizations across species and genera, leading to the release of successful varieties28

of polyploid hybrid ryegrass (L. perenne × L. multiflorum) and Festulolium loliaceum (L. perenne × F.29

pratensis), for example. As high-throughput sequencing platforms reduced genotyping costs, genomics be-30

gan to play a significant role across grass breeding programs, reshaping breeding pipelines aiming at the31

optimization of resource allocation mainly via genome-wide selection (Keep et al. 2020; Arojju et al. 2020;32

Fè et al. 2015). Recently, the complex problem of predicting phenotypes and finding candidate biological33

molecules associated with it can also be supported not only by marker information at the DNA level but34

also via transcriptomics (Pignon et al. 2021) and metabolomics (Wen et al. 2014), leading to a holistic view35

of the phenomena controlling the expression of economically important traits.36

Improving existing weaknesses of elite genetic materials or simply unlocking genetic variability for breeding37

exploitation are processes that benefited by leveraging hybridization across genera and species within a genus.38

In spite of being predominantly diploid (2n = 2x = 14), L. perenne, L. multiflorum, and F. pratensis can39

also be found as or induced to tetraploid states, which is essential for amphidiploid production. However,40

genomic instability is often reported and a shift to the ryegrass genome over generations can happen in41

crosses with fescues (Kopecký et al. 2017; Akiyama et al. 2012). Additionally, homeolog expression bias42

and expression level dominance can be observed in such allopolyploids (Glombik et al. 2021). Collectively,43

these phenomena may lead to distinct interactomes when hybridizations are performed across species, which44

can be analyzed through network reconstruction by leveraging high throughput omics data and appropriate45

statistical methods. Using RNA-seq data, (Hu et al. 2017) reported network topologies of allopolyploid cotton46

resembling more to one of the diploid species representing a progenitor besides a substantial domestication47

impact on the coexpression. Additional studies on expression modifications in allopolyploids remain scarce.48

Adding extra layers of biological information also means increasing data dimensionality (n ≪ p problem).49

Reliable inferences in high dimensions require specific statistical procedures and an in-depth understanding50

of the underlining phenomena. Among the methods proposed for the analysis of high dimensional omics51

data (Bersanelli et al. 2016), the reconstruction and analysis of regulatory networks offer the possibility to52

prioritize omic features (Naserkheil et al. 2022), significantly reducing the searching space for downstream53

analyses. Organizing omic features in interacting networks can be seen as an approximation of the true54

existent interconnected biological system that reads the information encoded on the genome and ends with a55

functional organism. Reconstructed networks hold biological meaningful topological properties, for example,56

the presence of modules that might cluster nodes (omic features) performing specific biological functions (Li57

et al. 2015) and the existence of highly connected nodes. These hub nodes arise as biological networks are58

assumed to be scale-free, meaning that node degrees are power-law distributed (Pereira-Leal et al. 2004) and,59

therefore, few highly connected nodes are expected. The presence of these disproportionally connected hub60

nodes is an important topological property of networks as it may represent key genes/metabolites associated61

with biological pathways. Thus, it would be of special interest to investigate the extent to which hub omic62

features can be significantly linked to biomass yield and other economically important phenotypes of fodder63

grasses. Researchers have found hub genes affecting biomass accumulation in other families of plants, for64

example, in Ulmus pumila L. (Chen et al. 2021) and Arabidopsis thaliana (Liu et al. 2021). That being65

stated, one needs to first estimate the network to be able to explore its topological properties and this can66

be accomplished by leveraging graph theory and probability for modeling and representation of complex67

biological problems as probabilistic graphical models (Li et al. 2015).68

Omics data as a graphical model is based on the estimation of conditionally independent relationships across69

random variables in a multivariate setting. Learning a graphic in high-dimension requires dealing with a70

situation where the number of unknown parameters exceeds the sample size. In this case, ℓ1-penalization has71

been one of the main techniques used to make sparse inference in a Gaussian Markov random field (Friedman72

et al. 2007), yielding a sparse structured precision matrix
∑−1

which, in turn, can be converted into an73

undirected network and further analyzed for its topological properties. This approach has been applied to74

the study of gene expression (Shahdoust et al. 2019; Wu et al. 2013) and metabolomic (Liu et al. 2022)75
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data in humans, with few examples in plants (Li and Jackson 2015; Kapoor et al. 2021; e Lima et al.76

2018; Bartzis et al. 2017). With a selected set of candidate features recovered from gene co-expression and77

metabolic networks, one can perform omic-phenotype integration. The simple correlation-based integration78

method of omic variables and phenotypes is widely used, with examples in maize (Zhang et al. 2019) and for79

the forage species E. sibiricus (Zheng et al. 2022). However, more robust approaches based on multivariate80

multi-level models have also been applied (de Steenhuijsen et al. 2016; Nantongo et al. 2021), showing better81

properties (Bo et al. 2014). Finding significant associations of genes and metabolites with dry matter yield82

and nutritive quality traits in fooder grasses could reveal potential targets for quantitative trait dissection83

studies, improve the omics-assisted selection of elite families, and shed light on regulatory processes of key84

traits. Additionally, given the fact that a large part of the above-ground biomass is harvested in forage grasses,85

it can be hypothesized that randomly sampled hub features are more likely to be linked to a phenotype of86

interest compared to, for example, grain crops.87

The inherent properties of an organism’s interactome, especially the power-law distribution of interactions,88

give plasticity in face of random disturbances. However, interferences on hub nodes may lead to severe product89

alterations (Crombach and Hogeweg 2008), making them targets for genetic studies. Additionally, hub genes90

appear to be associated with a variety of biological processes (Tahmasebi et al. 2019; Hollender et al. 2014;91

Zheng et al. 2022; Hu et al. 2017) and had been mentioned as potential targets for the molecular breeding of92

forage species (Yan et al. 2022). In the present study, we consider the problem of reconstructing the interplay93

among biomolecules and narrowing down high-dimensional omics data to fewer hub features to further test94

their association with quantitative traits evaluated in family pools of allopolyploid grasses. Furthermore,95

having significantly associated hubs would confirm the relevance of these interacting biomolecules, which96

could be targeted for molecular biology studies and marker-assisted breeding. Our objective is, therefore,97

to prioritize omic features in forage grasses by sparse estimation via undirected graphical models, filter the98

relevant ones, and expand on their biological functions for biomass accumulation.99

Methods100

Plant material and phenotypes101

Interspecific hybridization of L. perenne × L. multiflorum (hybrid ryegrass) and intergeneric crosses of L.102

perenne × F. pratensis (Festulolium loliaceum), all in tetraploidy forms (2n = 4× = 28), were performed as103

two connected (by L. perenne parents) sparse diallels in the summer of 2017 at the DLF Seeds A/S research104

station, Store Heddinge - Denmark. Single plants used as parents were extracted from commercial varieties105

of L. perenne, L. multiflorum, and F. pratensis. A total of 79 and 65 allotetraploid families of hybrid ryegrass106

and Festulolium loliaceum, respectively, were obtained out of several attempts. Hybrid ryegrass (referred to107

hereinafter as HR) families were obtained after crossing 31 L. perenne parents with 79 L. multiflorum in a108

sparse diallel design. For the pedigree class F. loliaceum (referred to hereinafter as FL), 24 L. perenne pa-109

rents out of the 31 from the HR diallel were crossed with four F. pratensis parents. A sufficient quantity of110

seeds of F3 families was obtained after two rounds of multiplication. The field trials were carried out in the111

autumn of 2020 at two testing sites: i) Denmark (55° 17′ 52′′ N, 12° 24′ 58′′ E) and ii) the Czech Republic112

(49° 40′ 59′′ N, 17° 58′ 05′′ E). Families from the HR pedigree class were sown in Denmark in plots of 12.5113

m2 with two replicates while families of the FL pedigree class were sown in the Czech Republic in plots of 6.25114

m2, also with two replicates. At each location, entries were assigned to plots arranged in five smaller trials115

in a randomized complete block design with ∼16 entries each. Alongside the described steps, seeds from F2116

families were sown in a greenhouse environment in 2019 at Aarhus University, Research Center Flakkebjerg.117

One gram of seeds from each family was sown in pots 10 cm in diameter aiming at 120 to 150 emerging118

individual plants. The total above-ground biomass was harvested as one bulk per family, flash-frozen using119

liquid nitrogen to stop metabolism, and placed in a -80°C freezer. Frozen tissue ground into a fine powder120

with liquid nitrogen was used for RNA isolation and sequencing after a quality check. In addition, aliquots121

weighing 300 mg from ground tissue were freeze-dried for NMR-based metabolomic profiling.122

We collected phenotypes for eight traits at four-time points in Denmark and three-time points in the Czech123
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Republic across the Spring, Summer, and Autumn of the 2021 production year. The following traits were124

assessed: moisture-corrected dry matter yield standardized by plot size (DMY, g m-2), acid-detergent fiber125

(ADF), acid-deterged lignin (ADL), dry matter digestibility (DMDig), neutral deterged fiber (NDF), diges-126

tible NDF (NDFD), protein (Prot), and water-soluble carbohydrates (WSC). All nutritive quality traits are127

expressed as a percentage of DMY, except for NDFD, which is a percentage of NDF. Nutritive quality traits128

were obtained via a near-infrared (NIR) spectrometer onboard the plot combine harvester. Raw NIR data129

had previously been calibrated and is yearly updated with new wet chemistry analysis, a routine procedure130

in the breeding company.131

Multi-omics data132

Gene expression via RNA sequencing133

RNASeq libraries were prepared and sequenced at the Beijing Genomics Institute (BGI Hong Kong) using134

the BGISEQ-500RS sequencing platform technology in 100nt paired-end (PE100) mode. Paired-end reads135

(20 to 25M sequences per sample) were mapped to pseudo-chromosomes and scaffolds of the Lolium 2.6.1136

reference genome (Nagy et al. 2022) using the splice-aware aligner HISAT2 (Kim et al. 2019). Alignments were137

processed by StringTie (Pertea et al. 2015) for transcript reconstruction and gene expression quantification.138

Normalized read count values in fragments per kilobase of transcript per million (FPKM) were collected for139

139,004 transcripts annotated on the Lolium 2.6.1 reference genome. A filter was applied to the expression140

profile matrix to get rid of transcripts with expression values very low/equal to zero. The threshold for141

transcription was set to 0.5 median FPKM across all samples, yielding the final filtered gene expression142

matrix with 18,499 transcripts.143

RNASeq-based genetic variants144

Variant calling was performed from RNA-seq merged BAM-format alignments using the Bayesian genetic145

variant detector Freebayes (Garrison and Marth 2012). The initial single-nucleotide polymorphism (SNP)146

calling resulted in 1,689,206 variants. After retaining only biallelic markers, we filtered variants by the147

following criteria: i) a maximum missing proportion of 50% at each locus, ii) a minimum mapping quality148

of 20, iii) a minimum read coverage of five reads per variant position, and iv) minor allele frequency (MAF)149

greater than 0.05. The final set of SNPs comprises 89,862 variants that were used for downstream analyses.150

NMR-based metabolomic data151

The metabolomic profiling by proton nuclear magnetic resonance spectroscopy (1H-NMR) was carried out at152

the Natural Products Laboratory (The Netherlands). Following the sample preparation and spectra acquisi-153

tion with a 600 MHz Bruker AVANCE III spectrometer (Bruker BioSpin GmbH, Germany), the raw NMR154

data were processed using the software package NMRProcFlow (Jacob et al. 2017). After chemical shift ca-155

libration and normalization, metabolomic fingerprinting yielded a total of 556 bins with non-zero intensities156

(referred to hereafter as NMR variables) for 144 plant samples by applying an adaptive Intelligent Binning157

[AI-Binning, (Meyer et al. 2008)] algorithm. A tab-separated file with samples on rows, NMR variables on158

columns, and cell-wise intensity values was generated for downstream analysis.159

Statistical analysis160

Prior exploratory analysis revealed considerable differences between the omics data from the HR class com-161

pared to FL class samples. Therefore, downstream analyses were performed considering each of the two162

classes as distinct but related across layers of omics data. Additionally, this decision was supported by the163

fact that phenotypes were assessed in different locations, lacking connectedness. Later, these data sets were164

merged for an omic-assisted prediction study.165

Allele frequency-based genomic kernel166

The genomic relationship matrix (GRM), which gives the realized genetic similarities among any pair of167

individuals, was computed for SNP data sets of sizes p× n equal to 85,283×79 for the HR and 75,299×65168

for FL data sets after individually re-filtering by MAF, depth, and missing rate using the same thresholds169

as described before. The GRM was then used for downstream omics feature corrections due to populati-170

on stratification and multivariate mixed model analysis. The GRM based on pooled DNA was calculated171
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using (VanRaden 2008) method 2 adapted to use allele frequencies instead of discrete genotype calls. First, a172

column-centered matrix M was computed as M = {fj − f j}, with j indexing SNP markers, fj representing a173

vector of alternative allele frequencies for SNP j, and {. . .} represents a matrix built up with column vectors.174

The matrix G can then be obtained as shown in Eq. 1.175

G =
MM′

1
n

∑m
i=1 p̂j (1− p̂j)

(1)

where n is the ploidy of the breeding material, m is the number of markers, and p̂j represents the frequency176

at jth locus simply obtained by taking the column means of the M matrix. As outbred full-sib F2 families of177

tetraploid plants, the genotype of a family can be described as octoploid (Ashraf et al. 2014). Therefore, the178

realized relatedness is obtained by scaling the plain genomic relationship matrix from the cross product of M179

by the expected SNP variances, yielding a kernel that is analogous to the traditional numerator relationship180

matrix, also known as the A matrix. Finally, a diagonal correction was applied to G considering ploidy181

number and coverage depth as proposed by (Cericola et al. 2018).182

Adjustment for population stratification183

The impute file for the analysis of gene expression data consisted of two subsets of 4,767 features times184

the number of samples of each pedigree class. The reduced set of genes was obtained after further filtering185

out transcripts with more than 50% of samples having zero reads and retaining positions with at least 10186

or more samples having 10 or more reads. Additionally, a filter on the expressional variance of non-zero187

elements was performed, selecting features ranked in the top 50th percentile as the variation for genes in the188

bottom may be largely due to non-biological noise. Finally, we retained only features common to both data189

sets followed by the addition of a pseudo count to the expression matrix, which was subsequently log(2)-190

transformed [log2(x+1)]. The input file for the analysis of NMR data consisted of two subsets of 556 NMR191

variables for each pedigree class. NMR features were mean-centered and variable intensities were addressed192

via Pareto scaling, which uses the square root of the standard deviation to reduce the relative importance193

of high-variance features across the spectrum without much disturbance to the data structure.194

Population stratification was detected in an unsupervised manner via the multivariate statistical technique195

of principal component analysis and corrected via regression modeling. We empirically retained coordinates196

of the top 10 eigenvectors of each k pedigree class to regress out population stratification as well as possible197

batch effects among samples. Therefore, the transcriptomic and metabolomic data sets were feature-wise198

corrected by incorporating principal component scores in the linear model of the form described in Eq. 2.199

yi = µ+
P∑

p=1

(
xPC
ip βp

)
+ εi (2)

where, yi represents the response variable i (omic feature); xPC
ip is the entry-specific coordinates of the pth200

principal component, with p = 1...P where P is equal to 10, βp is the fixed regression coefficients adjusting201

for population stratification, and εi is the residual which was retained to reconstruct the full corrected omics202

data sets for network estimation.203

Joint graphical lasso analysis for inverse covariance estimation204

A joint graphical lasso (JGL) method was used for estimation in a scenario of double-related Gaussian205

graphical models. The two-class problem of high dimensional features was present in the data set due to206

the available inter-species/genus crosses. One can expect similar graphical models between the two classes207

as parents were shared among crosses between them, but also some nuances once the involved species have208

substantial differences regarding phenotypic traits. Therefore, the joint graphical lasso proposed by (Danaher209

et al. 2014) can handle this situation by estimating two graphical models, one for each pedigree class,210

and borrowing information across classes. For each pedigree class k (k = 1, 2), let a data matrix X(k)
211

represent column-centered data with p omic features, and X(k) ∼ N
(
µ(k),Σ(k)

)
, where Σ(k) is a positive212

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521625doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521625
http://creativecommons.org/licenses/by-nc-nd/4.0/


definite p × p covariance matrix of the omic features. The inverse of Σ(k) is the precision matrix Θ(k)
213

representing the network structure of omic features. By applying an ℓ1-penalty on Θ(k) the network is214

made sparse, where elements will be 0 for conditionally independent pairs of features given the remaining215

variables. The sparsity condition allows learning graphics even in small sample sizes. The fused graphical216

lasso formulation in which Θ(k) are estimated by maximizing the penalized form of the likelihood function217

for the two classes is shown in Eq. 3.218

maximize
{Θ}

{
2∑

k=1

nk

(
log det Θ(k) − trace

(
S(k)Θ(k)

))
− P ({Θ})

}
(3)

where P ({Θ}) is as follows:219

P ({Θ}) = λ1

2∑
k=1

∑
i ̸=j

∣∣θkij∣∣− λ2

∑
h<k

∑
i,j

∣∣θhij − θkij
∣∣ (4)

here, S(k) is the empirical covariance matrix of omics features calculated as S(k) = n−1X(k)X(k)T . The220

optimization problem is here solved by the alternating direction method of multipliers (ADMM) algorithm.221

The solution to the problem of n ≪ p in the joint graphical lasso model is based on a penalized log-likelihood222

approach. In addition, as can be seen in Eq. 4, running JGL requires tuning two nonnegative parameters (λ1223

and λ2). The λ1 penalty controls the degree of sparsity while λ2 determines network similarity. If λ2 is zero224

(i.e., no penalty is imposed) then Θ(k)are independent and no information is shared between them. To select225

the proper hyperparameters, we used a goodness-of-fit approach where a grid search was performed to select226

values that minimize the Bayesian information criterion [BIC] (Schwarz 1978) specified in Eq. 5 (Augugliaro227

et al. 2016), yielding values that balance model likelihood and complexity.228

BIC(λ1, λ2) =

2∑
k=1

nk

{
tr(S(k)Θ̂(k))− log det Θ̂(k)

}
+ log nk

∑
i≤j

1{Θ̂k
ij ̸=0}

 (5)

In order to reduce the computational burden, a dense search was performed over λ1 for each fixed value229

of λ2 and a quick search for the former parameter for each fixed value of λ1 as suggested by (Danaher et230

al. 2014). For the metabolomic data set, a uniform log spaced grid starting from 0.01 to 20 with a size231

equal to 30 was defined for λ1 whereas a simple sequence equally spaced from 0 to 0.5 (size of 15) was232

defined for λ2. The same grid search space was defined for transcriptomic data, however, smaller sizes of 15233

for λ1 and 10 for λ2 were specified. After selecting the proper hyperparameter values, we run JGL for each234

omics data set producing four precision matrices Θ(k). From these matrices, one can compute the partial235

correlation between pairs of dependent features as corrij|V\{i,j} = −θij/
√
θiiθjj . The joint graphical lasso236

method implemented in the R package JGL (Danaher et al. 2014) was used for network estimation.237

Network reconstruction, candidate modules, and hub identification238

Network analyses aiming for complexity reduction were performed in order to prioritize candidate genes and239

metabolomic features for further integration with phenotypes of interest. Initially, each precision matrixΘ(k)
240

was converted into a symmetric (graph is undirected) 0-1 matrix of dimensions equal to p× p, referred to as241

the adjacency matrix A(k) for each k data set following the definition:242

A
(k)
ij =

{
1 if Θ

(k)
ij ̸= 0, i ̸= j;

0 otherwise
(6)
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Four adjacency matrices A were obtained and from them, we created graphic objects using the R package243

igraph (Csardi and Nepusz 2006). Initially, a graph is denoted as G = (V,E) in which each node v ∈ V244

represents a biomolecule in this study, whereas each edge e = (vi, vj) ∈ E refers to the interaction between245

pairs of nodes vi and vj . Each graph was organized in modules (communities) via a multi-level modularity246

optimization algorithm (Blondel et al. 2008), forcing highly connected edges to cluster in modules that247

are sparsely connected among them. In other words, more edges occur within identified modules than the248

quantity expected at random. The community structure is essential for finding hub nodes that are more249

likely to be involved in different biological processes.250

Hub features were identified intramodule via maximum Kleinberg’s hub centrality score, which is the principal251

eigenvector of A(k) ·
(
A(k)

)T
(Kleinberg 1999). By using the hub scores, one can identify the most influential252

features in the network and explore the biological function of these interacting biomolecules. Therefore, we253

selected the top five hub features per module and kept only those intersecting across data sets to maximize254

the probability of selecting true/conserved hubs of genes and metabolites.255

REML variance components and heritability256

Single omic features were analyzed by fitting a linear mixed model of the form: y = 1µ + Zu + e, where y257

is the response vector (normalized gene expression values or total area of the bin from the bucketed NMR258

spectrum), 1 is a vector of ones linking observations to the constant µ, u ∼ N(0,Gσ2
u), and e ∼ N(0, Iσ2

e) are259

vectors of the random additive genetic with covariance structure G (Equation 1) and independent (identity260

matrix I as covariance structure) residual effects, respectively. Z is the design matrix assigning observations261

of omic features to the respective F2 family. The genomic heritability was calculated as h2
g = σ2

u/(σ
2
u + σ2

e),262

where h2
g measures the proportion of the variance attributed to allele substitution effects captured by the263

genomewide markers relative to the total variance.264

Phenotypic variance within location was partitioned into the terms defined by the linear mixed model265

displayed in Equation 7:266

y = Xβ + Zu+
∑11

i=1
Sis+ e (7)

where, y, β, u, s, and e represent the vectors of the response variable, fixed trial-block effect, random additive267

genetic effect following u ∼ N(0,Gσ2
u), random spatial effect following s ∼ N(0, Iσ2

s), and random residual268

effect assumed e ∼ N(0, Iσ2
e), respectively. Matrices G and I are as defined before. Design matrices X, Z,269

and S link observations of the response variable to the specific model effect. The spatial effect is a sliding270

window accounting for 10 neighboring plots in addition to the target experimental unit and works by scanning271

the field for spatial variation not accounted for by the prior trial design. Genomic heritability was calculated272

as: h2
g = σ2

u/(σ
2
u + 11σ2

s + σ2
e). Variance components and heritabilities for eight phenotypic traits can be273

found in the supplemental Table S1. Finally, the parameter σ2
u was multiplied by the average diagonal of the274

GRM in both heritability equations presented before.275

Phenotypes and omics integration via pairwise fitting of mixed models276

The raw phenotypic data were analyzed alongside hub omic features in a multitrait genome-wide fashion via277

linear mixed models to investigate pair-wise additive genetic correlations. The bivariate model (Eq. 8 and 9)278

was fitted lm times, combining l hub nodes and m phenotypic traits, for each data set, yielding correlations279

used to describe the existence of a significant association between the concentration of selected biological280

molecules and economically important phenotypes.281

yOMEl
= X1βOMEl

+X2bOMEl
+ ZuOMEl

+ eOMEl
(8)

yPHEm
= X1βPHEm

+X2bPHEm
+ ZuPHEm

+
∑11

i=1
SisPHEm

+ ePHEm
(9)
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where yOMEl
and yPHEm are vectors of expression/intensities of hub omic features and records of phenoty-282

pic traits, respectively; βOMEl
contains the fixed general mean effect while βPHEm also contains the fixed283

effect of block within trial; vectors bOMEl
and bPHEm

contains fixed regression coefficients estimated by284

regressing response variables on principal components’ dimensional scores calculated from the genomic ker-285

nel; uOMEl
and uPHEm

are vectors of families’ additive genetic effect; sPHEm
is the vector of random spatial286

effect with sPHEm
∼ N

(
0, Iσ2

sPHEm

)
; and eOMEl

and ePHEm
are vectors of random residuals for expressi-287

on/intensity of hub omic feature l and phenotypic trait m, respectively. For incidence matrices X linking288

fixed effects to response variables, the general mean was the only fixed effect for submodel 8, thus X1 = 1.289

Matrices X2 contain scores of the top three principal components computed from the G matrix (Eq. 1) ins-290

tead of 1’s and 0’s, aiming at further accounting for population structure to avoid false-positive associations.291

The selection of the appropriate number of PC’s followed an empirical evaluation of the changes in response292

variables’ heritabilities as they were added. The matrix Z is the corresponding incidence matrix of additive293

family effects. Finally, the series of matrices Si link the random spatial effect to the surrounding plots and294

work as a sliding window (cross-shaped format) mapping the field for microenvironmental variations missed295

by the blocking design. The joint covariance structure of the remaining random terms was assumed as follows:296

[
uOMEl

uPHEm

]
∼ N

(
0, G ⊗

[
σ2
uOMEl

σuOMEl
uPHEm

σuOMEl
uPHEm

σ2
uPHEm

])
(10)

and297

[
eOMEl

ePHEm

]
∼ N

(
0, I ⊗

[
σ2
eOMEl

0

0 σ2
ePHEm

])
(11)

where I represents an identity matrix and ⊗ is the Kronecker product. Besides the scores of the first three298

principal components, here G also accounts for the whole-genomic relationship structure of the population.299

Covariances between response vectors were set to non-existent for residual genetic and error random effects.300

For hypothesis testing, we also ran a constrained version of the bivariate model, setting the additive genetic301

covariance between submodels 8 and 9 (Eq. 10) to zero (σuOMEl
uPHEm

= σuOMEl
uPHEm

= 0). The significance302

of the additive genetic correlations was tested by comparing the constrained and unconstrained models via303

a one-tailed log-likelihood ratio test (LRT) with 0.5 degrees of freedom (Gilmour et al. 2015; Self and304

Liang 1987). Multiple testing correction was performed for coefficients across traits within omic features305

via Benjamini-Hochberg false discovery rate (FDR) (Benjamini and Hochberg 1995) procedure at alpha306

equals 0.05 aiming to control for type I error.307

The lm additive genetic correlations estimated by fitting the full bivariate model for each data set we-308

re retained along with the p-values and FDR-based significant associations and used for constructing the309

omics-phenotype weighted network graph. A visualization of the network was produced using the software310

Cytoscape 3.9.1 (Shannon et al. 2003), weighing edges by the magnitude of the trait-omic associations.311

Gene ontology enrichment analysis312

Transcript protein sequences were subjected to local InterPro analysis using InterProScan v5.28-67.0 (Jones313

et al. 2014). Predictive information concerning conserved protein domains, signal peptides, transmembrane314

domains, and gene ontology (GO) data was acquired from 14 member databases of InterPro. Per trans-315

cript, non-redundant GO information was collected from InterPro outputs using custom scripts. GO-term316

enrichment analysis was carried out using the Python library GOATOOLS (Klopfenstein et al. 2018) by317

intersecting the GO-term list of the full perennial ryegrass transcriptome, the GO-term subset of expressed318

genes, and the GO-term lists of filtered transcript sets (study lists). Significant enrichment was declared via319

Fisher Exact Test, corrected for false discovery rate (Benjamini and Hochberg 1995).320

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521625doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Omics-assisted prediction321

Starting from the centered M matrix of SNP markers defined before, missing allele frequencies were imputed322

by chained random forest. This method was selected after comparing the ability in predicting missing allele323

frequencies against the weighted K-nearest neighbors (KNN) method via cross-validation. The imputations324

were performed for each pedigree class separately using the R package missRanger (Mayer 2021). The miss-325

Ranger function ran using the arguments num.trees equal to 100, sample.fraction equal to 0.1, max.depth of326

6, and extratrees for the splitrule argument. The imputation was performed by looping over one chromosome327

at a time within clusters of SNPs created by running a complete-linkage clustering algorithm with k = 30328

as the desired number of groups.329

We used the best linear unbiased estimator (BLUE) of entries as response variables in the prediction study.330

The adjusted phenotypes were obtained by rearranging the terms and refitting the submodel in Eq. 9 with331

families as a fixed effect and no PC scores were included. BLUEs within locations were mean-centered to332

remove differential environmental effects followed by the merging of phenotypes and predictors from HR333

and FL data sets. The unsupervised machine learning algorithm random forest was used as the engine334

for the prediction study. Models were fitted using the ‘ranger’ R package (Wright and Ziegler 2017) with335

the hyperparameters minimum node size and a number of randomly drawn candidate features set to five336

and ⌊
√
n⌋, respectively, where n is the number of variables. Therefore, the random forest model was fitted on337

the combined data sets, setting the number of decision trees to 2,000. Training out-of-the-bag accuracy (OOB338

accuracy) was reported as a performance metric. Finally, variable importance was computed via permutation.339

Three prediction scenarios were studied. First, we selected a subset of SNPs tagging common hub genes340

across data sets, the common hub genes, and the common hub NMR variables as three sets of regressors.341

The second scenario consisted of stochastically sampling 20x sets of 30 genes (then SNPs within these genes)342

and 32 NMR variables aiming to compare the prediction power contained in hub nodes with randomly343

sampled features. In the last scenario, we used all common SNPs, genes, and NMR variables as regressors.344

Besides comparing prediction accuracy with the previous scenarios, here we can assess a common prediction345

task where the goal is to evaluate the closeness of predicted and observed values using all available predictor346

variables.347

Statistical computing and data visualization348

Large-scale computations were performed in the GenomeDK high-performance computing facility located349

at Aarhus University, Denmark. Mixed model analyses were fitted using DMU package version 6 (Madsen350

and Jensen 2013). Modular network visualizations were produced using the R package NetBioV (Tripathi351

et al. 2014) with the Fruchterman-Reingold layout algorithm to arrange nodes in each module. Finally,352

miscellaneous plots wore drawn employing the ggplot2 R package (Wickham 2016).353

Results354

Genetic similarity among family pools and omics heritability355

We constructed a genomic relationship matrix (GRM) for the L. perenne × L. multiflorum (hybrid rye-356

grass; HR pedigree class) using 85,283 SNPs and a GRM for the intergeneric crosses of L. perenne × F.357

pratensis (Festulolium loliaceum; FL pedigree class) using 75,299 SNPs (Figure 1 A and B, respectively).358

The average genomic relationship was close to zero as expected due to the centering of allele frequencies359

in both data sets (-0.0178 and -0.024 for hybrid ryegrass and F. loliaceum, respectively) but with substan-360

tially more variation found in the FL data set (off-diagonal standard deviation equal to 0.21 compared to361

0.15 in the HR class). In addition, GRM heatmaps are substantially populated with negative relationships,362

meaning that many pairs of individuals were less related than the average genomic relationship. Also, the363

GRMs revealed biparental combinations that substantially deviated from the expected offspring composition364

of bi-parental crosses of single-plant parents, suggested by the presence of blocks of high genomic relation-365

ships (>1.0) among families, especially for the FL data set (Figure 1B). For instance, the 4×4 block on the366

top-left side of Figure 1B holds highly related families that share the same pollen receptor parent crossed367
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with different F. pratensis genotypes. As the diallel design was not accounted for, downstream analyses we-368

re performed controlling for population stratification due to replicated parents in the crossing scheme using369

principal component (PC) scores as covariates. The first 10 PCs of the GRM matrices explained a cumulative370

percentage of variation equal to 75% and 82% for HR and FL data sets, respectively. Additionally, adjusted371

means on the right-hand side of Figure 1 reveal blocks of families with similar trait-specific performance as372

they were hierarchically clustered by IBS-based measurement of relatedness.373
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Figure 1: Allele frequency-based genomic relationship matrix (GRM) for 79 families of hybrid ryegrass [HR]
(A) and 65 families of Festulolium loliaceum [FL] (B). Heatmap depictions of GRMs are annotated with best
linear unbiased estimators (BLUEs) for dry matter yield (DMY) and each of the seven nutritive quality traits:
ADF - acid detergent fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF: -neutral
detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates. Partially
surrounding dendrograms were produced using Euclidean as the distance measure and the agglomerative
complete-linkage method to build the hierarchy of clusters.

The GRMs displayed in Figure 1 were also used in a linear mixed model to estimate the genomic heritability374

of NMR variables and gene expression entities. The density plots of the heritabilities for both pedigree classes375

are displayed in Figure 2. For the HR class, median heritabilities of 0.047 and 0.122 with an interquartile376
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range (IQR) of 0.177 and 0.311 were observed for NMR variables and gene expression, respectively. For377

the FL class, we observed median heritability of 0.162 and 0.165 with IQR of 0.273 and 0.295 for NMR378

variables and gene expression, respectively. Distributions are positively skewed and a higher quantity of high379

heritable variables can be detected for gene expression data in comparison to NMR variables. Additionally,380

the figure suggests a slightly higher proportion of more heritable features measured on samples from the FL381

class, especially for metabolomic data. Finally, subfigures 5B and 5C reveal the similarity in heritability382

between pedigree classes according to the spectrum and genomic position, respectively. Overall, there is a383

high correspondence between classes for regions displaying high and low heritability.384

Figure 2: Density plots displaying the SNP-based genomic heritability distribution of NMR variables (A)
and gene expression (C) from family pools of two pedigree classes (HR: hybrid ryegrass and FL: Festulolium
loliaceum). The genomic heritability of NMR variables is displayed along the spectrum for both pedigree
classes in B and subfigure D displays the genomic heritability of gene expression data along genomic position
across chromosomes also for both pedigree classes.

Hyperparameter tuning of joint graphical lasso385

The search for the appropriate values of λ1 and λ2 that returned the smallest Bayesian information criterion386

(BIC) was computationally intensive as the model was fitted for all combinations of the penalties defined in387

the grid search, requiring several days of CPU time for joint graphical lasso (JGL) model of transcriptomic388

data but only using few wall time hours by taking advantage of multi-core processing. A total of 939389

connected nodes were estimated for gene expression. Within data sets, four sparse subnetworks and 4,038390

edges were obtained for HR whereas five sparse subnetworks and 2,182 edges were identified for the FL class391

given the tunning parameters selected via BIC (Figure 3). Additionally, 462 edges were found to be shared392

by the two pedigree crossing classes. For the next omic layer, all 556 nodes (NMR variables) were connected,393

one sparse network on each pedigree class was estimated, 7,757 and 4,789 edges were available for HR and394

FL data sets, respectivelly, and 2.371 common interactions shared by all classes.395
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Figure 3: Grid searching of hyperparameters for graphical lasso model selection with ℓ1 regularization.
A and C shows the Bayesian information criterion (BIC) as a function of the second (λ2) penalty for
transcriptomic and metabolomic data sets, respectively. B and D are heatmaps displaying the complete grid
search for the values of the tuning parameters λ1 and λ2 that minimize BIC, yielding parsimonious models
for transcriptomic and metabolomics data sets, respectively.

For the gene expression data, λ2 was optimized at λ2 = 0. This implies different networks for each pedigree396

class with a different arrangement of non-zero positions for the gene expression data. On the other hand, for397

NMR data, the best combination of λ1 and λ2 that minimized the BIC found a small non-zero value for λ2,398

implying a small level of similarity on the sparsity pattern across precision matrices for NMR data. Overall399

and across omic layers, the hybridization process generated substantial differences between pedigree classes400

and it seems to be better captured at the gene expression level.401

Exploring lasso penalized precision matrices and network topologies402

We detected 14 candidate modules for gene expression and 10 modules for metabolomic for the HR class403

(Figure 4). In the FL data sets, it was estimated 16 modules for gene expression and also 10 modules404

for metabolomics data. The modularity view of the gene-to-gene and metabolite-to-metabolite networks405

reveals the power-law distribution of node connections, where few vertices are highly connected whereas the406

majority has only one or few connecting edges. The organization of network structure based on modularity407

optimization allowed for the selection of intramodular hub nodes that are more likely to be involved in408

different biological pathways. Out of 70 hubs extracted from HR transcriptomic data (Figure 4A) and 80409

from FL transcriptomic data (Figure 4C), 30 genes (hubs) were conserved. These high-degree genes are410

located across all seven chromosomes, varying from two hubs on chromosome three up to 10 on chromosome411

two. Also, the degree of the hub gene set ranged from 34 to 182 edges. For metabolomic data, we found 32412

conserved hub nodes (Figure 4, B and D), all localized in one half of the NMR spectrum and with degrees413
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ranging from 52 to 357 edges.414

Figure 4: Abstract modularity view of the gene co-expression and metabolite networks constructed from
gene expression data (A and C) and nuclear magnetic resonance (NMR) spectroscopy (B and D) for two
data sets (A and B is the HR data set; C and D is the FL data set). Both node color and size reflect the
hub score, i.e., the principal eigenvector of A · t (A) matrix operation, where A is the adjacency matrix of
each graph. The color range goes from red for low-degree nodes to blue for highly connected ones. Edges
between modules were collapsed and the width refers to the number of connections shared between any two
modules. Venn diagrams show the overlap among sets of top hub features from each data set.

Integrative omics415

The pairwise fitting of the multivariate genomic model revealed 21 significant edges between traits and omic416

hub features after FDR correction (Figure 5). The multi-trait model was fitted 496 times but failed to417

converge in 54 cases, possibly due to the variance component being close to zero. Therefore, five traits418

displayed at least one significant edge with hub features in both pedigree classes. More edges can be seen on419

the left side of the omics-phenotype network relative to the right side, which can be explained by the higher420

heritability across traits in the FL data set (Supplemental Table S1) as well as overall higher heritability of421
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genomic features (Figure 2). Additionally, significant connections were found for six out of 30 hub genes and422

four out of 32 hub NMR variables. Three (hubs 16, 18, and 21) out of the six genes are located distantly423

apart on chromosome four whereas the remaining hubs 3, 7, and 22 are located on chromosomes one, two,424

and five, respectively. Genomic heritabilities of hubs displaying significant edges were considerably higher425

compared to the full feature space, with median h2 twice as large. A closer look reveals a consistent pattern426

regarding the direction of the associations. Hub features positively or negatively associated with fiber content427

traits are also positively or negatively associated, respectively, to dry matter yield. The same holds true428

for protein content and digestibility traits, where associated hub features are inversely connected to fiber429

content. Additionally, the majority of hubs associated with phenotypes have more than one significant430

edge computed from independent analysis and, therefore, confirms the reliability of the estimated omics-431

phenotype network. We also fitted hub features as covariates in submodel 9 and computed the z-scores and432

associated p-values, which overall confirmed the results displayed in Figure 5 (data not shown). Finally, no433

hub feature had significant edges with traits from both pedigree classes, which can suggest steady genetic434

differences between classes and/or a lack of power to detect these shared genomic-based associations.435

37

47

35

45

26

41

25

40

18

32

13

31

12

30

9

29

4

28

DMY_FL
27

WSC_HR

24

54

23

Prot_HR

22

43

21

NDFD_HR

19

NDF_HR

17

48

16

34

11

DMDig_HR

7ADL_HR

6ADF_HR

5

62

3

WSC_FL

61

2

Prot_FL

60

DMY_HR

14

59

1

NDF_FL

58

DMDig_FL

57

46

56

ADL_FL

55

36

51

ADF_FL

50

52

49

Genes

NMR
comp.

Figure 5: Weighted network linking hub omic features to phenotypes collected from family pools of two
fodder grass pedigree classes (HR [hybrid ryegrass] data set on the left side and FL [F. loliaceum] data set
on the right side). Edges represent the additive genetic correlation between omic features and traits and
were built by the pair-wise fitting of a multivariate genomic model. Stronger edges in a gradient from red
(negative) to blue (positive) colors represent false discovery rate corrected significant correlations at alpha
0.05. Highlighted omic nodes show at least one significant edge. DMY - dry matter yield; ADF - acid
detergent fiber; ADL - acid detergent lignin; DMDig - digestible dry matter; NDF: -neutral detergent fiber;
NDFD - digestible NDF; Prot - protein; and WSC - water-soluble carbohydrates.
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Gene-set enrichment analysis revealed four gene ontology (GO) terms enriched in the set of 30 hub genes436

displayed in Figure 5. Overrepresented GO terms were GO:0019438 (aromatic compound biosynthetic pro-437

cess), GO:0018130 (heterocycle biosynthetic process), GO:1901362 (organic cyclic compound biosynthetic438

process), and GO:0044271 (cellular nitrogen compound biosynthetic process). Bivariate mixed model anal-439

ysis revealed significant genetic correlations between the expression of gene hubs 18 and 21 and dry matter440

yield. While hub gene 18 codes for the atpF gene (synthase subunit b, chloroplastic) and is associated441

with energy production (GO:0015986 - proton motive force-driven ATP synthesis), the blast of biological442

sequences revealed a putative unclassified retrotransposon protein originating from hub gene 21.443

Omics-assisted predictions444

Using gene expression data as an independent variable performed similarly to SNP-based marker predictions,445

except for digestibility, protein, and neutral detergent fiber (Figure 6). Despite the overall poor prediction446

performance across traits obtained when using NMR features as independent variables, the information447

contained in this omic layer is useful for protein content prediction, with correlations above 0.4. Prediction448

accuracy using only hub genes was compared with a second scenario where samples of the same size were449

drawn from the whole predictor space aiming to check whether hub features carry asymmetrically more450

(or less) information for prediction purposes. Overall, hub NMR variables appear to be more predictive of451

nutritive quality traits than random samples of metabolomic features. On the other hand, results suggest452

a weaker relationship between observed and predicted quality parameters using hub genes as regressors.453

Finally, using the whole set of available predictors yields predominantly higher accuracies across traits.454
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Figure 6: Random forest-based prediction accuracy computed for eight forage grass traits as a function of
predictors encompassing three omic layers (DNA: SNP-based markers, RNA: gene expression via RNA-seq,
and NMR: variables representing bucketed NMR spectra) and three predictor set configurations as indicated
by the color gradient. The standard errors for the mean accuracy of sampled features are depicted in blue
color. DMY - dry matter yield; ADF - acid detergent fiber; ADL - acid detergent lignin; DMDig - digestible
dry matter; NDF: -neutral detergent fiber; NDFD - digestible NDF; Prot - protein; and WSC - water-soluble
carbohydrates.
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Discussion455

The study elaborated here explores a network-based approach to combine multi-omic data arising from456

an n ≪ p scenario, inferring associations between biomarker candidates with dry matter yield and nutritive457

quality traits of polyploid forage grass families. This was accomplished by using a joint graphical lasso model458

with a fused penalty for network reconstruction, followed by topological property extraction and integration459

via multivariate mixed modeling. Further, a machine learning-based prediction scheme was explored to460

verify the extent of information available in hubs and in the whole feature space for predicting agronomically461

important phenotypes. The plant material consisted of family pools of inter-specific and- generic grass462

hybrids from two connected diallels. Crossing different pasture species/genera is not a trivial task; obstacles463

can emerge. Firstly, out of all initially planned crosses, only a subset generated viable seeds, impacting464

the sample size. Also, seeds were not abundant for many of the crosses, requiring an additional year of465

multiplication. Secondly, extraneous offspring patterns were detected, prompting a question of whether466

normal parental contributions were formed for some of the F2 families. This inquiry remained unanswered467

in this manuscript given the complexity of the genetic material (family pools), SNPs called from RNA-seq468

data, and the unavailability of parental genotypes. Despite the self-incompatibility (SI) ensuring cross-469

pollination in perennial ryegrass (Cropano et al. 2021), four to eight percent of self-fertilization has been470

reported (Arcioni and Mariotti 1983; Deniz and Dogru 2007). This, in addition to the low success rate of471

inter-specific and- generic hybridization, might have caused the deviated genomic state of offspring families472

for crosses that produced a small number of seeds. We did not use the parental information from the473

diallel structure in the network construction but removed it by regression to control for the kinship among474

individuals across analyses, a crucial action to avoid spurious results in network reconstruction. Due to the475

genetic design, correlation among samples is expected, which can lead to the detection of co-expression among476

features as a result of shared chromosomal segments. Additionally, confounding artifacts not controlled for477

can affect groups of genes and NMR variables, which can lead to the detection of spurious correlations.478

We fitted population structure as covariates by using principal component scores derived from the genetic479

markers covering the whole genome aiming to alleviate the non-independence among samples, which has been480

shown to reduce false network discoveries efficiently (Parsana et al. 2019). An extra layer of precaution to481

avoid the effect of false-positive edges was deployed by retaining only common hub features between pedigree482

classes.483

The gene co-expression and metabolic networks as the ones we reconstructed in this study (Figure 4) using484

RNA-seq and NMR variables, respectively, can contain interesting topological properties e.g., the existence485

of highly connected nodes and the organization of nodes in modules (Li et al. 2015). We explored these486

two properties aiming to select, across pedigree classes, conserved hubs extracted at a rate of five per487

module, therefore, increasing the likelihood of sampling hubs associated with diverse biological processes.488

Our approach to selecting and associating these features with phenotypic traits is altogether different from the489

conventional method, which consists of performing a simple correlation-based gene co-expression network490

analysis followed by thresholding to find modules that can then be summarized into a synthetic (eigen)491

gene for association with external sample traits (Langfelder and Horvath 2008). As highlighted by other492

authors (Huynh-Thu and Sanguinetti 2018; Jiang et al. 2019), this correlation-based approach cannot493

distinguish between linear relationships due to directly dependent nodes and those arising from confounding494

nodes, which might create spurious edges in the graph and, consequently, misleading clustering. In contrast,495

Gaussian graphical models, as used here, are based on the precision (inverse variance) matrix and express496

conditional dependence between pairs of features given all the other variables in the data set (Danaher et al.497

2014) which, therefore, avoids declaring an edge when no causal relationship exists. Regarding the presence498

and distribution of edges across reconstructed networks, the proportion of undirected edges given the total499

available nodes was much higher for the NMR -based metabolic network relative to the gene expression500

graph. This is a consequence of the lack of independence among bins closely located across the NMR501

spectrum. Indeed, an average autocorrelation across samples revealed significant spikes up to lag 12 (data502
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not shown). Therefore, a proper feature selection algorithm for spectral data can be implemented to deal503

with the existence of autocorrelation.504

Picturing a biological regulatory cascade, hub genes are usually regulatory factors located upstream, whereas505

genes represented by low-degree nodes are located on the other end (Zeng et al. 2022). They can be associated506

with biological processes from which several others are dependent, yielding the commonly observed power-507

law degree distribution. The presence of a limited amount of important hub genes, however, does not508

necessarily imply a simple genetic architecture, because the regulation of the hub gene expression is typically509

highly polygenic. Investigating putative hubs can reveal important genes as, for example, the cold-regulated510

gene Lolium perenne LIR1 (LpLIR1 ) (Ciannamea et al. 2007) represented by the hub gene coded as 22 in511

Figure 5, which is located at chr5:155166187-155167265 in the L. perenne genome and appears to act in the512

photoperiodic regulation of flowering. Another example is hub 7, which represents the PDX1.1 gene, involved513

in the biosynthesis of vitamin B6 and protection against stresses (Liu et al. 2022). Overexpression of PDX514

proteins was shown to increase seed size and biomass in Arabidopsis (Raschke et al. 2011). For metabolite-515

metabolite networks, high-degree nodes may represent signaling molecules or molecules engaged in many516

reactions. The content and diversity of such molecules have been shown to be shaped by domestication as517

well as due to crop improvement (Alseekh et al. 2021). Improving biomass output per area is the ultimate518

breeding goal in a forage breeding program and also implies selection pressure for stress endurance due to519

animal grazing or mechanical harvesting. In this sense, secondary metabolites are well-known for their role520

in the plant’s response to external disturbances as herbivory (Degenhardt Jorg 2009). In more general,521

significant associations can be detected between metabolites and agronomic traits (Turner et al. 2016) and522

the whole NMR spectrum can be used for metabolomic-assisted prediction (Guo et al. 2022). That being523

stated, genetic selection for elite grasses might be linked to an altered profile of metabolites, leveraging their524

usefulness as markers for selection or for prediction purposes. Indeed, great chemical diversity is available525

in perennial ryegrass (Subbaraj et al. 2019), not only adding another layer of information for omics-assisted526

breeding but also enabling target improvement of varieties with a specific profile of key metabolites.527

Together, significant additive genetic correlations between omic features and phenotypic traits displayed in528

Figure 5 and the presence of over-represented gene ontology (GO) terms in the hub gene set supports the529

evidence that these features hold fundamental biological properties. We further assessed the predictive power530

available in the sets of gene and metabolite hubs. This was accomplished by merging the HR and FL data531

sets for trait prediction aiming to increase the sample size, which even though still below the appropriate size532

for genomic selection was counterbalanced by a high signal-to-noise ratio given the diallel structure which533

is expected to boost information for model learning (see Figure 1). Splitting between training and testing534

sets would reduce the sample size for training. Therefore, we used the ensemble learning method of random535

forest with all samples and reported the out-of-bag (OOB) accuracy as a prediction performance metric,536

eliminating the need to set aside a test set (Breiman 2001). Despite the crossing scheme, eigenvectors from537

marker data did not reveal large dissimilarity between pedigree classes (Supplemental Figure S1), therefore538

allowing for the joint analysis. Also, random forest is not very sensitive to hyperparameter tunning (Probst et539

al. 2019), making it a good option for the designed prediction setup. This can be attested by the magnitude540

of predictions displayed in Figure 6. Prediction accuracy for dry matter yield was reported in other studies at541

0.31 using diploid ryegrass synthetic populations (Pembleton et al. 2018), 0.34 using tetraploid ryegrass (Guo542

et al. 2018), and 0.5 investigating diploid perennial ryegrass (Arojju et al. 2020). Here, we report values543

of prediction accuracy of dry matter yield that approximate 0.5 (Figure 6) using both SNP-markers and544

gene expression, despite the lower sample size but helped by high relatedness among samples, an important545

component in genomic selection (Edwards et al. 2019). Also for dry matter yield, surprisingly the most546

heritable trait (Supplemental Table S1), the set of hub genes and SNPs markers tagging them seem more547

predictive than features sampled at random. For the remaining traits, mixed results were observed which548

can be an artifact due to sample size, low heritability, or population structure. Additionally, the signal549

might be dependent on the genetic background and disappeared as we merged the two data sets for the550

prediction study. Heritability is an important parameter driving prediction accuracy. If it is low, the error551

variance will be higher, leading to difficulties in estimating the effect of genome segments accurately (van der552
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Werf 2013), especially if the sample size is not sufficiently large. Small values of heritability were primarily553

observed for quality traits (supplemental Table S1), which explains the lack of predictive power of the model554

for digestibility, water-soluble carbohydrates, and digestible NDF, for example. The NIR-based quality555

parameters are obtained from calibrated models using data of chemical analysis from samples of standard556

breeding materials and might not translate well into curves of inter-generic and- species hybrids, explaining557

the lower heritability.558

Given that plant tissues were sampled once from pools of seedlings grown in a greenhouse environment at559

the F2 generation for transcriptomic and metabolomic analyses, the information carried by the recorded560

features represents a snapshot of the complex interactome at that particular condition in space, time, and561

random mating generation. This information was learned by the model and translated into higher prediction562

accuracy for protein and digestibility, despite the fact that phenotypes were recorded in later growth stages563

and in another generation of random mating. Across omic layers, the results also showed that using all564

available features is almost always a better choice for increased prediction accuracy. Besides more main565

effects being captured, the random forest model can capture feature-feature interactions (Yao et al. 2013)566

as long as the marginal effects are large enough to cause a tree split, therefore, accounting for some of the567

existing epistasis. Therefore, the existence of significant edges displayed in Figure 5 and the magnitude of the568

prediction accuracies presented in Figure 6 reveals a strong link between field-based phenotypes and heritable569

omic features assessed from young seedlings in a controlled environment. Altogether, this information brings570

the question of whether phenotypes from seedlings grown for DNA sampling could be recorded through a571

low-cost NIR-based method and used to improve the accuracy of genomic selection models, a subject worthy572

of consideration in future research.573

The use of multi-omics in plant breeding-related studies is becoming more popular due to decreasing in cost574

per data point as a result of modern high-throughput technologies. This has been allowing researchers to575

reconstruct complex biological networks for inference and mining. Out of the many topological properties576

that can be retrieved from an interaction network, hub features showing many putative links have been577

shown to play important biological roles in plants (Tahmasebi et al. 2019). Our study reveals that narrowing578

down the high-dimensional feature space generated by high-throughput omic analysis to fewer entities by579

leveraging properties of the graphical theory can reveal important biomolecules for molecular studies and580

breeding. Additionally, dimensionality reduction can substantially boost detection power by alleviating the581

multiple testing problem. Further investigations of candidate features may help elucidate biological processes582

underlying the expression of phenotypic traits and serve as markers for omics-assisted selection in breeding583

programs. Even though we did not perform compound identification from the NMR data, this is a feasible584

task and may reveal metabolites playing important roles in biomass yield and nutritional quality.585

Conclusion586

The scientific community has seen a sharp increase in publications exploring the usefulness of biological587

network reconstruction based on high throughput omics data since the 2000s, but studies with forage species588

remain scarce. Here, we have explored the usefulness of topological properties of gene co-expression and589

metabolic networks in explaining the phenotypic variance of eight traits assessed in family pools of inter-590

specific and -generic grass hybrids. Network topology estimated via fused graphical lasso revealed profound591

network differences between pedigree classes, but a set of 30 high-degree hub genes and 32 hub NMR variables592

remained conserved across classes given the selection criteria, out of which 10 hubs were found as candidate593

biomolecules significantly associated with the expression of agronomic phenotypes. Gene set enrichment594

analysis and weighted omics-phenotype network estimation suggested that sets of hubs are likely to contain595

essential features modulating interactomes and the expression of economically important phenotypes.596
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Figure S1: Scatter plot displaying scores of the first two principal components (PCs) from the PC analysis
of the combined (hybrid ryegrass plus Festulolium loliaceum samples) genomic relationship matrix. The
number of samples is equal to 144. An overlaying scree plot shows the variance explained by the first five
PCs.
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Supplemental tables824

Table S1: Restricted maximum likelihood (REML) estimation of variance components from two field trials
comprising different pedigree classes of forage grasses: HR - hybrid ryegrass and FL - Festulolium loliaceum.
Ped.
class

Variance
component

Traits1

DMY ADF ADL DMDig NDF NDFD Prot WSC

HR
σ2
u 2181.088 0.125 0.002 0.135 0.278 1.451 0.186 0.000

S.E. 1054.606 0.073 0.002 0.086 0.174 0.741 0.113 0.368

FL
σ2
u 7353.689 0.260 0.018 0.148 0.590 0.000 0.034 0.194

S.E. 3090.586 0.128 0.011 0.281 0.277 0.540 0.046 0.162

HR
σ2
f 0.000 0.000 0.000 0.031 0.029 0.000 0.000 0.269

S.E. 892.753 0.075 0.002 0.099 0.183 0.859 0.117 0.587

FL
σ2
f 0.000 0.000 0.000 0.374 0.102 0.704 0.071 0.000

S.E. 1760.040 0.099 0.008 0.441 0.186 0.976 0.066 0.200

HR
σ2
s 183.365 0.206 0.007 0.222 0.527 0.253 0.377 1.530

S.E. 721.615 0.106 0.003 0.136 0.263 0.547 0.193 0.810

FL
σ2
s 4431.405 0.443 0.000 0.000 0.402 0.228 0.039 1.835

S.E. 2338.886 0.194 0.008 0.443 0.254 0.927 0.056 0.599

HR
σ2
e 4821.160 0.388 0.010 0.512 0.925 4.189 0.561 3.242

S.E. 986.994 0.085 0.002 0.115 0.210 0.722 0.139 0.740

FL
σ2
e 5939.760 0.361 0.046 2.400 0.728 5.799 0.319 0.659

S.E. 1618.810 0.114 0.010 0.528 0.202 1.225 0.073 0.286

HR
µ 1312.640 23.420 2.110 88.937 42.872 71.172 14.143 10.986

S.E. 20.718 0.301 0.051 0.326 0.477 0.626 0.391 0.824

HR
µ 1204.610 26.757 2.912 85.493 46.501 70.291 11.720 12.422

S.E. 50.153 0.442 0.084 0.603 0.517 0.942 0.255 0.782

HR h2 0.304 0.174 0.126 0.150 0.158 0.246 0.165 0.000
FL h2 0.415 0.244 0.288 0.051 0.324 0.000 0.074 0.072

1DMY: dry matter yield; ADF: acid detergent fiber; ADL: acid detergent lignin; DMDig: digestible dry matter; NDF: neutral
detergent fiber; NDFD: digestible NDF; Prot: protein; and WSC: water-soluble carbohydrate. σ2

u, σ2
f , σ2

s , and σ2
e are the

genomic variance, variance due to uncorrelated family effects, spatial variance, and residual variance, respectively. S.E. is the
asymptotic standard error and h2 is the genomic heritability.
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