

1 **Single-cell Sequencing Highlights Heterogeneity and Malignant Progression in**
2 **Actinic Keratosis and Cutaneous Squamous Cell Carcinoma**

3

4 Dan-Dan Zou^{1,8#}, Ya-Zhou Sun^{2,9,10#}, Xin-Jie Li², Wen-Juan Wu¹, Dan Xu¹, Yu-Tong He²,
5 Jue Qi¹, Ying Tu¹, Yang Tang¹, Yun-Hua Tu¹, Xiao-Li Wang³, Xing Li⁴, Feng-Yan Lu⁵,
6 Ling Huang⁶, Heng Long⁷, Li He^{1*}, Xin Li^{2,11*}

7

8 1 Department of Dermatology, First Affiliated Hospital of Kunming Medical University,
9 Kunming, Yunnan 650032, P.R. China.

10 2 School of Medical, Shenzhen Campus of Sun Yat-sen University, Guangdong 518107,
11 P.R. China.

12 3 Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai
13 200003, P.R. China.

14 4 Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture,
15 Chuxiong, Yunnan 675000, P.R. China.

16 5 Qujing Affiliated Hospital of Kunming Medical University and Department of
17 Dermatology, The First People's Hospital of Qujing, Qujing 655000, Yunnan, P.R. China.

18 6 Department of Dermatology, First Affiliated Hospital of Dali University, Dali, Yunnan
19 671000, P.R. China.

20 7 Wenshan Zhuang and Miao Autonomous Prefecture Dermatology Clinic, Wenshan
21 Zhuang and Miao Autonomous Prefecture Specialist Hospital of Dermatology, Wenshan,
22 Yunnan 663099, P.R. China.

23 8 Department of Dermatology, the Affiliated Hospital of Kunming University of Science
24 and Technology, the First People's Hospital of Yunnan Province, Kunming, Yunnan
25 650032, P.R. China.

26 9 Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen
27 518107, P.R. China.

28 10 Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University,
29 Shenzhen 518107, P.R. China.

30 11 Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh
31 Affiliated Hospital of Sun Yat-sen University, Guangdong 518107, P.R. China.

32

33 [#]These authors contributed equally to this work

34 *Corresponding authors: drheli2662@126.com (L.H.), lixin253@mail.sysu.edu.cn (X.L.)

35

36 **Abstract**

37 Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the
38 keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To
39 comprehensively delineate the underlying mechanisms for the whole progression from
40 normal skin to AK to invasive cSCC, we performed single-cell RNA-seq (scRNA-seq) to
41 acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK,
42 squamous cell carcinoma in situ (SCCIS), cSCC and their matched normal tissues,
43 covering comprehensive clinical courses of cSCC. We identified diverse cell types,
44 including important subtypes with different gene expression profiles and functions in major
45 keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with
46 differential proliferative and migration potential. Differentially expressed genes (DEGs)
47 analysis screened out multiple key driver genes including transcription factors (TFs) along
48 AK to cSCC progression. Immunohistochemistry (IHC) / immunofluorescence (IF)
49 experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression
50 changes of these genes. The functional experiments confirmed the important roles of these
51 genes in regulating cell proliferation, apoptosis, migration and invasion in cSCC tumor.
52 Furthermore, we comprehensively described the tumor microenvironment (TME)
53 landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis
54 for immunotherapy. Together, our findings provide a valuable resource for deciphering the
55 progression from AK to cSCC and identifying potential targets for anticancer treatment of
56 cSCC.

57 **Keywords:** Single-cell transcriptome, Actinic keratosis, Cutaneous squamous cell
58 carcinoma, Keratinocyte, Tumor microenvironment

59 **Introduction**

60 Invasive cutaneous squamous cell carcinoma (cSCC) is the second most common skin
61 malignancy accounting for 20% of keratinocyte carcinomas and the fatality rate is also
62 second to melanoma [1]. The morbidity of cSCC is steadily increasing, posing a significant
63 threat to public health. The most important cause of cSCC is ultraviolet (UV) irradiation
64 from sunlight [2]. The occurrence of UV-induced cSCC is a multi-stage process, and its
65 progression is usually slow [3]. Early detection, diagnosis and treatment are very important
66 for patients with cSCC in the progressive multi-step process. The most significant risk
67 factor for cSCC is actinic keratosis (AK), a precancerous lesion developed from the
68 damage effects of chronical UV radiation, which has an extremely high incidence in the
69 elderly. Up to 65% to 97% of cSCCs are reported to originate in lesions previously
70 diagnosed as AKs [4]. The two diseases have a lot in common in terms of etiology,
71 pathogenesis and genetic characteristics [5]. However, it is difficult to predict whether
72 early precancerous lesions will further develop into invasive tumors [6]. Even though
73 significant mutations of important genes closely related to cSCC were also detected in AK
74 [7], most AK with these mutations did not transform into cSCC. Therefore, there is an
75 urgent research need to define the critical molecular biomarkers and origin cancerous cells
76 driving AK progress to cSCC, which will contribute to the prevention, early diagnosis, and
77 effective treatment of cSCC.

78 At the same time, the occurrence, development, invasion and metastasis of tumors are
79 closely related to the tumor microenvironment (TME) [8]. The TME includes immune and
80 inflammatory cells, fibroblasts, microvessels and biomolecules infiltrated therein around
81 tumor cells [9]. During the growth process, tumor cells interact with these cells and

82 extracellular stroma, forming a special TME, affecting the production of chemokines,
83 growth factors and proteolytic enzymes, and promoting tumor proliferation, angiogenesis,
84 invasion and metastasis [10]. Recently, numerous studies have showed complex cellular
85 communication network between tumor cells and TME in many types of cancer including
86 cSCC [11]. Thus, the analysis of cell-cell communication in TME of cSCC will help us to
87 understand the potential mechanisms during the progression from AK to cSCC in depth
88 and develop new immunotherapy strategy for cSCC.

89 However, due to the complex tumor heterogeneity and high mutation load of cSCC
90 [12], it is more difficult to identify the driving genes for the occurrence and development
91 of cSCC. Although a number of cSCC related genes have been identified, the results in
92 different studies vary greatly [7, 13]. In addition, due to limitations of technologies, the
93 previous results based on bulk sequencing generally include a mixture of various cells,
94 which may cover up key characteristic changes in tumor development [14]. Single-cell
95 RNA sequencing (scRNA-seq) technology provides a powerful tool for obtaining
96 transcriptome characteristics at the single-cell resolution level. It can not only reveal the
97 heterogeneity of tumor cells and the progress of tumor development, but also reveal the
98 intercellular communication between tumor cells and their TME [15]. Recently, single-
99 cell sequencing technology has been applied in the studies of skin diseases, including skin
100 aging, psoriasis and cSCC [16-18]. However, characterization of the initiation and
101 progression of cSCC, especially the key transformation from AK to cSCC is still lacking.

102 In this study, we used scRNA-seq technology to analyze 138,982 cells from 13
103 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC and
104 their matched normal tissues, covering comprehensive clinical courses of cSCC, filling the

105 current blank of single-cell profiling of these diseases. Using this unique resource, we
106 identified key cell subpopulations that may play an important role in the development from
107 AK to cSCC. Importantly, we identified the early malignant cell subpopulation in SCCIS
108 and comprehensively analyzed the characteristics related to the malignant status of these
109 cells. Based on the identification of key cell subpopulations, we screened out key candidate
110 genes of each important step in the transformation from normal skin to cSCC. The
111 functional experiment verified that these key genes may play important driving roles in
112 tumorigenesis. In addition, we described the TME landscape and cell-cell crosstalk of
113 poorly-differentiated cSCC in details and identified important signaling pathways related
114 to tumor progression. Together, our comprehensive analysis deeply revealed the whole
115 malignant progression from normal skin to cSCC, and uncovered the heterogeneity of
116 cSCC tumors, providing insights into understanding of cSCC initiation and progression
117 and new therapeutic treatment development.

118
119 **Results**

120 **Single-cell transcriptome profiling identified different subgroups of keratinocytes in**
121 **human skin**

122 We generated single-cell RNA-seq profiles of 13 samples from 6 patients presenting for
123 surgical resection using the 10x Genomics Chromium platform. All these samples included
124 3 AK samples, 1 SCCIS tumor sample, 3 cSCC tumor samples (low-risk and high-risk)
125 without any treatment and patient-matched 6 normal skin samples, which almost cover all
126 clinical stages from AK to cSCC (Fig. 1, A and B; Table S1).

127 We first explored the cellular composition of normal skin. After integration and initial
128 quality control, we acquired single-cell transcriptomes in total of 57,610 cells from all six

129 normal skin samples. Based on identified variably expressed genes across all normal skin
130 cells, uniform manifold approximation and projection (UMAP) clustering identified 9 main
131 clusters. Combining references with CellMarker [19], Panglao DB [20], Mouse Cell Atlas
132 [21] and ImmGen [22] databases, we annotated each cell population based on their specific
133 markers, including basal cells (COL17A1, KRT5, KRT14), spinous cells (KRT1, KRT10),
134 granular cells (FLG, LOR), proliferating keratinocytes (Pro KCs) (MKI67, TOP2A),
135 follicular cells (KRT6B, KRT17, SFRP1), Langerhans cells (CD207, CD1A), T cells
136 (CD3D, PTPRC), melanocytes (PMEL, TYRP1) and fibroblasts (DCN, COL1A1) (Fig. 1,
137 C and D).

138 Notably, we identified different subtypes of basal, spinous and follicular cells. UMAP
139 analysis classified the keratinocytes into undifferentiated epidermal cells encompassing
140 two subgroups of basal cells (Basal1 and Basal2) and Pro KCs, differentiated keratinocytes
141 encompassing two spinous subpopulations (Spinous1 and Spinous2) and terminally
142 differentiated cells (Granular) (Fig. 1C). Compared to Basal1, the expression levels of
143 stemness markers (COL17A1, TP63, ITGB1, ITGA3) were decreased while inflammatory
144 response genes (KRT16, S100A8, S100A9) were increased in Basal2 (Fig. 1, D and E).
145 Functional gene ontology (GO) enrichment analysis of highly expressed genes of Basal1
146 and Basal2 subpopulations suggested that Basal1 were closely related to hemidesmosomes
147 formation, while Basal2 were related to cell differentiation, migration and inflammatory
148 response (Fig. 1F). Thus, we inferred that Basal1 were most likely the quiescent basal cells
149 adhering to the basement membrane, which may represent epidermal stem cells. And
150 Basal2 were cells that have finished proliferation to form the spinous layer for directional
151 differentiation. In two subgroups of spinous cells, Spinous1 were associated with epidermal

152 development, differentiation, and keratinization, while Spinous2 were associated with
153 oxidative phosphorylation, neutrophil degranulation, and immune response (Fig. 1F).
154 Compared with Spinous1, Spinous2 highly expressed small proline rich region proteins
155 (SPRRs) encoding genes, such as SPRR1B, SPRR2D and SPRR2E (Fig. 1, D and E), which
156 are involved in the formation of keratinocyte envelope [23]. Meanwhile, Spinous2 also
157 highly expressed the cysteine protease inhibitor M/E (CST6), suggesting that Spinous2
158 subgroup was a well-differentiated upper spinous layer [24]. Follicular cells were also
159 divided into two groups (Follicular1 and Follicular2). The functional enrichment of
160 Follicular1 suggested that they were related to skin development and differentiation, while
161 Follicular2 showed high levels of genes related to WNT signaling pathway (SFRP1, FRZB
162 and DKK3) (Fig. 1, D and E). WNT signaling pathway plays a decisive role in regulating
163 the functions of hair follicle stem cells, and inhibition of WNT signaling pathway can
164 maintain the proliferation and inhibit the differentiation of stem cells [25]. Thus, the
165 Follicular2 may represent outer bulge cells, which have been shown to secrete WNT
166 inhibitors, influencing differentiation of the inner bulge.

167 In sum, we identified different subgroups in major types of keratinocytes including
168 basal, spinous and follicular cells. The identification of these subgroups is important to
169 understand the function and mechanisms of keratinocytes in human skin in depth and
170 investigate the origin of cancer cells in the progression from normal skin to cSCC.

171

172 **Identification of potential key driver genes from normal skin to AK**

173 To identify the potential drivers for AK, we first performed integration on all AK samples
174 and patient- and site-matched normal samples. UMAP analysis of keratinocytes from AK

175 and its corresponding normal skin samples showed that all AK and normal samples
176 clustering were driven predominantly by cell type rather than patient. For all three AK
177 samples in this study, the proportion of cell types of each sample was almost the same (Fig.
178 2A). These similar cell-type proportion suggested the low individual heterogeneity of AK
179 samples.

180 Compared to normal group, there was no significant difference in the proportion of
181 basal cells and Pro KCs in AK group (Fig. 2B). This inferred that the proliferation and
182 differentiation degree of keratinocytes in AK was not significantly different from that in
183 normal samples. However, the proportion of spinous cells was slightly lower, and the
184 proportion of follicular cells was slightly higher. It may be related to local epidermal
185 atrophy in AK samples.

186 To further explore the mechanism of AK at the cell subpopulation level, we identified
187 differentially expressed genes (DEGs) in major cell types of keratinocytes, especially cells
188 with proliferation ability such as basal cells and Pro KCs between AK and normal. 549,
189 305 and 434 significantly up-regulated DEGs were identified in Basal1, Basal2 and Pro
190 KCs subpopulations, respectively (Table S2-S4). GO enrichment analysis showed that it
191 was mainly enriched in the terms associated with epidermal development, oxidative stress
192 response, RNA metabolism, cell cycle, cytoskeleton, response to growth factors, etc. (Fig.
193 2C). An analysis between AK-related up-regulated DEGs and genes from the DisGeNET
194 database [26] which collected genes and variants associated to human diseases revealed
195 the high correlation of these genes and skin diseases such as dermatologic disorders,
196 dermatitis, atopic, ichthyoses, acanthosis, etc. (Fig. S1A-C).

197 Combined with differential gene expression and functional enrichment analysis, we
198 screened out a group of important candidate genes that may be closely related to AK
199 occurrence and development (Fig. 2D and Fig. S1D, Table S5). Among the important
200 candidate genes, some genes have been reported in previous studies showing close
201 relationship with AK or related skin diseases. For example, CDKN2A is well known to
202 take an important role in cSCC, and the latest study also found its mutation in AK [13, 27].
203 In our study, CDKN2A expression was increased in Basal1 and Basal2 subpopulations in
204 AK stage, suggesting that CDKN2A may play a key role in the development of AK (Fig.
205 S1D). For those genes that have not been reported, we selected seven candidate genes and
206 verified their protein expression levels in an independent cohort including 20 pairs of facial
207 AK and normal skin samples by immunofluorescence (IF). The results showed that the
208 expression of ALDH3A1 and IGFBP2 was significantly upregulated in AK tissues and
209 specifically mainly accumulated at the atypical keratinocytes of the epidermis (Fig. 2, E
210 and F).

211 Acetaldehyde dehydrogenase 3A1 (ALDH3A1), as an important member of the
212 acetaldehyde dehydrogenase superfamily, plays an important role in the occurrence and
213 development of malignant tumors. DEG analysis showed ALDH3A1 was expressed in
214 almost all keratinocytes and highly expressed especially in Basal1 cells of AK samples
215 (Fig. 2D). Immunofluorescence experiment showed ALDH3A1 protein expression levels
216 were significantly increased in 85% (17/20) AK tissues (Fig. 2, E and F). Previous study
217 verified that ALDH3A1 could resist DNA damage caused by oxidative stress and
218 genotoxicity in corneal epithelial cells to maintain epithelial homeostasis [28]. It suggested
219 that ALDH3A1 might also participate in the DNA damage response in AK caused by UV

220 irradiation. Recent study also found that ALDH3A1 could act as a prognostic biomarker
221 and inhibit the epithelial mesenchymal transition (EMT) of oral squamous cell carcinoma
222 (OSCC) through IL-6/STAT3 signaling pathway, further indicating its important role in
223 SCC tumors [29].

224 Insulin-like growth factor binding protein 2 (IGFBP2), plays an important role in cell
225 proliferation, differentiation, apoptosis and EMT. The high expression of IGFBP2 is
226 significantly correlated with the malignant progression and prognosis of melanoma [30]
227 and other tumors. In our study, IGFBP2 was specially highly expressed in Basal1 and
228 Basal2 cells of AK samples (Fig. 2D). Immunofluorescence experiment showed IGFBP2
229 protein expression levels were significantly increased in 75% (15/20) AK tissues (Fig. 2,
230 E and F). The up-regulation of IGFBP2 was also reported in both murine and human basal
231 cell carcinoma (BCC), which promoted BCC development by mediating epidermal
232 progenitor cell expansion via Hedgehog (Hh) signaling pathway [31]. It inferred that in
233 AK development, IGFBP2 might also take an important role in promotion via related
234 signaling pathways.

235 Collectively, these results indicated that from normal skin to AK, a lot of genes have
236 changed expression. Especially, the basal cells specific up-regulated molecules ALDH3A1
237 and IGFBP2 likely contribute to the development of AK and may be the key driver genes
238 in the process from photoaged skin to AK.

239

240 **Monotonically changed DEGs play important roles in the progression of AK to**
241 **SCCIS**

242 The individual P2 with both AK and SCCIS is a typical model to investigate the
243 mechanisms of development from AK to SCCIS. We first integrated AK sample, SCCIS
244 sample and normal adjacent skin sample from P2. As the epidermal parts were not
245 separated from the dermal parts in SCCIS sample, it contained more non-keratinized cells
246 including endothelial cells, T cells, vascular smooth muscle cells (VSMC), fibroblasts, etc.
247 (Fig. 3A). The expression of cell proliferation and differentiation marker genes showed
248 that the proportion of basal, Pro KC and terminally differentiated cells (Fig. 3A). Notably,
249 the proportion of basal cells in SCCIS significantly increased compared with normal and
250 AK samples, suggesting their specificity in SCCIS (Fig. 3B).

251 To identify DEGs that monotonically increased during the process from normal skin
252 to AK and SCCIS, which could be associated with the transformation from precancerous
253 lesions to cancer, we first obtained AK up-regulated genes compared to normal, and SCCIS
254 up-regulated genes compared to AK respectively in basal subpopulation, then got the
255 overlap of these two gene sets. There are 21 overlapped up-regulated genes (Fig. 3C and
256 Table S6), most of them were reported to have important functions in skin disease including
257 cSCC. For example, the growth-controlling transcription factor Kruppel Like Factor 6
258 (KLF6) is an important contributor for epidermal decline and aging (Fig. 3D) [16]. The
259 activator protein-1 (AP-1) family transcription factor subunit gene FOS Like 1 (FOSL1) is
260 considered to be the potential driver of transformation from SCCIS to cSCC and is
261 selectively highly expressed at the frontier of invasion in cSCC tumor cells (Fig. 3D) [32].
262 Another AP-1 family transcription factor subunit JunD Proto-Oncogene (JUND) can
263 regulate cell proliferation, differentiation and apoptosis. It has been proposed to protect
264 cells from p53-dependent senescence and apoptosis [33]. These data indicated that the

265 constant up-regulation of these key growth-controlling transcription factors may play
266 important roles in the process of AK to SCCIS. In addition, the ubiquitin binding protein
267 Sequestosome 1 (SQSTM1) is involved in cell signal transduction, oxidative stress and
268 autophagy. It was verified that SQSTM1 participated UV-induced decreased skin
269 autophagy, and promoted the growth and progression of skin tumors through COX-2 [34].
270 The Ras Homolog Family Member B (RHOB) is a key regulator of UVB response. UVB-
271 induced RHOB overexpression is involved in the initiation of cSCC by promoting the
272 survival of keratinocytes with DNA damage mutations [35]. All of these findings suggested
273 that these monotonically up-regulated genes are potential key drivers from precancerous
274 lesion to carcinoma in situ during the development of cSCC, which may become potential
275 targets for the prevention and treatment of cSCC.

276 In addition, we also investigated the monotonically down-regulated DEGs in this
277 individual (Fig. S2A and Table S7). Although the number of these genes is also small,
278 many of them showed strong associations with skin disorder or cancer, especially with
279 cancer suppression. For instance, DNA Damage Inducible Transcript 4 (DDIT4) regulates
280 apoptosis in response to DNA damage via its effect on mammalian target of rapamycin
281 complex 1 (mTORC1) activity [36]. It is associated with skin atrophy [37]. The S100A
282 family member S100A14 can regulate cell survival and apoptosis by modulating TP53
283 expression [38]. Levels of S100A14 have been found to be lower in cancerous tissue and
284 associated with metastasis suggesting a tumor suppressor function [39]. Enolase 1 (ENO1)
285 has been shown to bind to the c-myc promoter and function as a tumor suppressor [40].
286 Besides, the SPRR family member SPRR2A also showed constant downregulation. Recent
287 study has identified it as a noninvasive biomarker in gastric cancer [41]. Considering it is

288 the component of cornified keratinocyte cell envelope and a well-known keratinocyte
289 terminal differentiation marker [42], we have reason to speculate the constant
290 downregulation of SPRR2A indicating cancerization and increased invasiveness during the
291 development from AK to SCCIS.

292 Although the underlying mechanisms of these genes in carcinogenesis need further
293 functional studies, all the above data provided abundant evidences that these monotonically
294 up-regulated and down-regulated DEGs act synergistically and play key driving roles in
295 the formation of SCCIS from AK.

296

297 **Identification of malignant basal subpopulation in SCCIS**

298 The increased proportion of basal cells in SCCIS hinted that they might be the crucial cell
299 types in carcinomatous change of AK, thus we first investigated the characteristics of these
300 cells. GO enrichment analysis showed that signature genes of basal cells in SCCIS were
301 closely related to the biological processes of cell proliferation, morphological change,
302 migration, cell connection and extracellular matrix, suggesting their invasive behavior (Fig.
303 4A). To define malignant cells, we calculated large-scale chromosomal copy umber
304 variation (CNV) in each cell type of keratinocytes based on averaged expression patterns
305 across intervals of the genome. We found that a subgroup of basal cells in SCCIS exhibited
306 remarkably higher CNV levels than other basal cells (Fig. 4B). UMAP analysis of retrieved
307 basal cells showed basal cells in SCCIS were divided into two major subgroups and basal
308 cells with higher CNV levels were almost enriched in one subgroup (Fig. 4C). We further
309 performed pseudotime analysis of these basal cells by selecting the subcluster with higher-
310 expressed stem cell marker (COL17A1, TP63) as root cells. The result showed that basal

311 cells of SCCIS differentiated into significantly distinct two subgroups, confirming that the
312 distribution of the two subpopulations of basal cells was consistent with trajectory of
313 differentiation (Fig. 4D and Fig. S2B).

314 The presence of these two different subpopulations of basal cells in SCCIS prompted
315 us that they had different malignant status. We named the basal cells in SCCIS with higher
316 CNV levels as Basal-SCCIS-tumor cells and the subgroup with lower CNV levels as Basal-
317 SCCIS-normal cells. We next focused on the gene expression patterns in these two
318 subpopulations and identified a total of 238 up-regulated genes in Basal-SCCIS-tumor cells
319 (Fig. 4E and Table S8). GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
320 enrichment analysis revealed that these genes were mainly associated with neutrophil
321 degranulation, protein folding, keratosis, hemidesmosome assembly, cell proliferation,
322 apoptotic signaling pathway, hemopoiesis, myeloid cell differentiation, stress response and
323 cell junction organization (Fig. 4F). Notably, in Basal-SCCIS-tumor cells, DNA damage
324 response related replication genes (PCNA, MCM7) were significantly up-regulated (Fig.
325 4G). Especially MCM7 is required for S-phase checkpoint activation upon UV-induced
326 damage, which indicated the Basal-SCCIS-tumor cells were malignant cells from AK
327 induced by UV-damage. In addition, a large number of heat shock protein (HSP) related
328 genes (HSPA1A/B, HSP90AA1, HSPA6) were highly expressed in Basal-SCCIS-tumor
329 cells, as well as activated keratin genes (KRT6A/B/C, KRT16, KRT17, KRT19) and S100
330 family genes (S100A7, S100A8, S100A9) (Fig. 4, H and I). HSPs play a role in tumor-
331 related biological processes such as cell proliferation, apoptosis, invasion, tumor cell
332 stemness, angiogenesis, glycolysis, hypoxia and inflammation. The HSP family is
333 considered as a promising target for anticancer therapy. UV irradiation can induce

334 keratinocyte injury and significant upregulation of heat shock proteins of *in vitro* skin
335 model [43], which was consistent with our results (Fig. 4I). Previous studies have
336 recognized that activated keratins are key early barrier alarmins, and the upregulation of
337 these genes are involved in the alteration of proliferation, cell adhesion, migration, and
338 inflammatory characteristics of keratocytes, leading to hyperproliferation and innate
339 immune activation of keratocytes in response to epidermal barrier disruption [44]. The
340 S100A family members were also reported to be significantly up-regulated in skin
341 disorders or epithelial skin tumors. They participate in the immunoreactivity of keratocytes
342 and have a potential utility as biomarkers for cancerous malignances [45]. Taken together,
343 Basal-SCCIS-tumor cells with high CNV level may be highly invasive. As malignant cells,
344 they may migrate and invade the dermis, and develop into invasive cSCC by promoting
345 the proliferation ability of cells and the degradation of extracellular matrix to destroy the
346 basement membrane.

347

348 **Basal-SCCIS-tumor specific genes were closely associated with progression from**
349 **SCCIS to cSCC**

350 Besides those genes were already reported closely related to cancerous malignances of
351 SCCIS, we identified a group of candidate genes in the up-regulated genes in Basal-SCCIS-
352 tumor subgroup that are closely related to tumor development. Combing with the single-
353 cell transcriptomic data from invasive cSCC samples, we further screened out the candidate
354 genes that were not only highly expressed in SCCIS samples, but also highly expressed in
355 important keratinocytes in cSCC tumor samples, which play an important role in the
356 progression of SCCIS to invasive cSCC (Fig. 4J and Fig. S2C, Table S9). These candidate

357 genes were validated by immunohistochemistry (IHC) in an independent set of samples,
358 including 15 normal skin tissues, 15 SCCIS tissues, and 60 invasive cSCC tissues (36 well-
359 differentiated cSCC samples, 24 moderately-differentiated/poorly-differentiated cSCC
360 samples), all of which were obtained from the faces of elderly patients.

361 Among them, MAGE family member A4 (MAGEA4) was found to be strongly
362 positive in most SCCIS (73.33%) and invasive cSCC (76.67%). There was not significant
363 difference of the expression between the well-differentiated cSCC group and moderately-
364 differentiated/poorly-differentiated cSCC group (Fig. 4, K and I). MAGEA4 has been
365 proven to inhibit p53-dependent apoptosis in cancer cells, enhance aggressivity of tumor
366 cells, and induce cellular and humoral immune responses [46]. It was found to be highly
367 expressed in melanoma, pancreatic cancer, lung cancer and esophageal squamous cell
368 carcinoma [47]. Considering its potential utility as an indicator for malignancies of SCCIS
369 tumor cells, we also performed immunofluorescence co-localization of COL17A1, PCNA
370 and MAGEA4 in SCCIS tissues to investigate stemness and proliferative state of tumor
371 cells. We found that in MAGEA4+ tumor cells of SCCIS, the stem cell marker COL17A1
372 and the proliferation marker PCNA were significantly increased compared with the
373 adjacent tissues (Fig. S2D). However, there was significant individual heterogeneity in the
374 expression of MAGEA4, and it was completely negatively expressed in some SCCIS and
375 cSCC samples (Fig. 4, K and I). This inferred that MAGEA4 might become a promising
376 new biomarker and target for the different subtypes of SCCIS with different invasive state.

377 In addition, tumor-related gene Integrin Submit Alpha 6 (ITGA6) was also
378 significantly overexpressed in Basal-SCCIS-tumor cells. The immunohistochemistry
379 results showed that ITGA6 only scattered expression in the basal layer of the normal skin

380 tissue and was up-regulated in SCCIS ($P < 0.05$) and invasive cSCC ($P < 0.001$), as well
381 as being expressed at a higher level in invasive cSCC than in SCCIS ($P < 0.001$, Fig. 4K).
382 We observed moderate to strong cytoplasmic and membranous positivity of ITGA6 in
383 tumor cells. ITGA6 expression can indicate the progenitor potential of mesenchymal stem
384 cells (MSC) [48]. Recent studies have reported that high ITGA6 expression enhances
385 invasion and tumor-initiating cell activities in metastatic breast cancer (MBC) [49],
386 providing evidence for the value of ITGA6 as cancer stem cell marker.

387 To further confirm the important role of MAGEA4 and ITGA6 in the development
388 from SCCIS to cSCC, we performed functional experiment in human immortalized
389 keratinocytes (HaCaT) and cSCC cell lines (A431, SCL-I, SCL-II). We first investigated
390 the expression levels of MAGEA4 and ITGA6 in these cell lines and observed that
391 the expression of MAGEA4 mRNA was extremely high in A431 cells, but not detectable
392 in SCL-I and SCL-II cells (Fig. S3A), which is consistent with the immunohistochemical
393 results observed in our clinical samples and Muehleisen et al [50]. We silenced
394 the expression of MAGEA4 gene in A431 cells by siRNA (Fig. S3B), and the results
395 showed that the proliferation, migration, invasive ability of A431 cells was significantly
396 reduced ($P < 0.01$), while the apoptosis rate was increased ($P < 0.01$, Fig. S3C). The
397 silencing of ITGA6 also significantly reduced the ability of proliferation, migration and
398 invasion in the three cSCC cell lines ($P < 0.01$, Fig. S3, B, D, F and G), while apoptosis
399 was significantly increased ($P < 0.01$, Fig. S3E). It is suggested that MAGEA4 and ITGA6
400 had a potential carcinogenic role in the progression of SCCIS to cSCC by regulating cell
401 stemness, proliferation, apoptosis and extracellular matrix degradation.

403 **CNV scores positively correlated with malignant degrees of cSCC**

404 To deeply investigate the genesis and key drivers of cSCC, we first integrated all three

405 cSCC tumors and patient- and site-matched normal skin (Fig. 5A). These three individuals

406 represent different malignant degrees of cSCC (Table S1). The cell-type proportion

407 analysis and the expression of cell proliferation and differentiation marker genes reflected

408 significant difference between tumor and normal samples (Fig. 5, B and C). There are more

409 basal cells in tumor samples than in normal skin, which indicated the loss of terminal

410 differentiation in tumor basal cells (Fig. 5, A-C). To define malignant cells, we identified

411 large-scale CNV of keratinocytes based on averaged expression patterns across intervals

412 of the genome. Keratinocytes in normal samples were set as reference cells. The presence

413 of CNV in cSCC samples suggests that these cells may be tumor cells in squamous cell

414 carcinoma samples. These tumor cells were mainly derived from Basal, Pro KCs,

415 Follicular2 cells and a small number of Spinous cells (Fig. S4A). Then we compared the

416 CNV landscapes among three patients. Poorly-differentiated cSCC individual exhibited

417 remarkably higher CNV levels in most types of keratinocytes (Fig. S4B). In contrast, well-

418 differentiated individual displayed low CNV scores (Fig. S4C), while moderately-

419 differentiated individual had moderate CNV levels (Fig. S4D). This indicated that there

420 was significant heterogeneity among different cSCC individuals and the CNV levels of

421 individuals could reflect their malignant status.

422

423 **Identification and functional characterization of key genes associated with cSCC**

424 In order to understand the gene expression profile characteristics of invasive cSCC, we

425 identified and analyzed gene function enrichment of significantly up-regulated DEGs in

426 important cell subpopulations of cSCC compared to normal skin tissues. 778, 1044, 1159
427 and 760 significantly up-regulated DEGs were identified among Basal1, Basal2, Pro KCs,
428 and Follicular2 cell subpopulations, respectively (Table S10-13). GO analysis was mainly
429 concentrated in various tumor-related biological processes such as cell morphological
430 change and adhesion, signaling pathway regulation, apoptosis and angiogenesis, as well as
431 processes related to immunity including antigen processing and presentation, myeloid cell
432 differentiation, and negative regulation of immune response, etc. (Fig. S5A). There were
433 888 and 247 significantly up-regulated DEGs in Spinous1 and Spinous2 cell
434 subpopulations, respectively (Table S14-15). In addition to the biological process similar
435 to basal cells, GO enrichment analysis showed that DEGs were mainly enriched in the
436 regulation of programmed death, ATP metabolism and the production of type I interferon
437 (Fig. S5A). Based on above differential gene expression and functional enrichment analysis,
438 we identified a group of important candidate genes that may be closely related to tumor
439 genesis and development in cSCC including CD74, CDKN2A, COL17A1, JUND, MMP1,
440 BST2, LGALS1, IFITM3, ISG15, IFI6, FTH1, LAMA3, LAMC2, SAT1 and so on (Fig.
441 S5B).

442 To verify the expression of those potential key genes with important functions in
443 cSCC, we first performed immunohistochemistry experiment of these genes with
444 significant differences in independent cohort including 30 cases of facial cSCC (15 well-
445 differentiated cSCC samples and 15 moderately-differentiated/poorly-differentiated cSCC
446 samples) and 15 cases of para-cancer normal skin tissues. Among them, 3 out of 8 genes
447 were verified that they had significantly higher expression in cSCC group compared to
448 normal group (Table S16). It was found that the protein expression levels of Galectin 1

449 (LGALS1), Interferon Induce Transmembrane Protein 3 (IFITM3) and Ferritin Heavy
450 Chain 1 (FTH1) genes were significantly increased in cSCC (Fig. 5D). As a key promoter
451 of angiogenesis and fibrosis, LGALS1 inhibits tumor immune response and is highly
452 expressed in melanoma and head and neck cancer [51]. In this study, LGALS1 showed
453 moderate to strong cytoplasmic and nuclear immunoreactivity in most well-differentiated
454 and poorly-differentiated cSCC tumor cells, and some of them were weak staining, while
455 para-cancer normal skin epidermal keratinocytes were almost negative. The LGALS1
456 expression in the tumor groups was significantly higher than that in the normal group ($P <$
457 0.001), but there was no statistical significance between the well-differentiated and poorly-
458 differentiated cSCC groups (Fig. 5D). IFITM3 is an interferon-stimulating response related
459 gene, which is related to cell proliferation, cell cycle regulation, autophagy, inflammation,
460 EMT and many other processes. FTH1 is associated with iron metabolism, and may be
461 involved in the protection of DNA from oxidative damage as well as in the regulation of
462 inflammation, and tumor immune microenvironment. Although IFITM3 and FTH1 showed
463 to moderate cytoplasmic/membranous immunoreactivity in basal cells in normal tissues,
464 keratinocytes above basal showed almost negative expression. In poorly-differentiated
465 cSCC, IFITM3 and FTH1 showed moderate to strong cytoplasmic, membranous
466 immunoreactivity and a small number of nuclear staining. Medium to strong staining can
467 also be seen at the leading edge or poor differentiated keratinocytes of the well-
468 differentiated cSCC, while the expression is negative/weakly positive in the differentiated
469 keratinocytes and the central keratinized areas of tumors (Fig. 5D). Overall, the expression
470 of IFITM3 and FTH1 in poorly-differentiated cSCC was significantly higher than that of
471 normal group ($P < 0.001$) and well-differentiated group ($P < 0.05$) (Fig. 5D). We also

472 verified the mRNA expression levels of LGALS1, IFITM3, FTH1 in human immortalized
473 keratinocytes (HaCaT) and human cSCC cell lines (A431, SCL-I, SCL-II). The results
474 showed that these genes were significantly overexpressed in at least 2 human cSCC cell
475 lines compared to HaCaT (Fig. 5E). Besides, although the Bone Marrow Stromal Cell
476 Antigen 2 (BST2) and Spermine N1-Acetyltransferase 1 (SAT1) genes showed weak
477 immunoreactivity in normal skin tissues and there were no statistically significant
478 differences between cSCC and normal group (Fig. S6A), the mRNA expression levels of
479 BST2 and SAT1 were significantly overexpressed in human cSCC cell lines compared to
480 HaCaT (Fig. S6B).

481 To investigate the effects of LGALS1, IFITM3, FTH1, BST2 and SAT1 on the
482 proliferation of human cSCC cells, the human cSCC cell lines A431, SCL-I, and SCL-II
483 were transfected with small interfering RNA (siRNA) targeting these genes (Fig. 6A and
484 Fig. S6C). The results showed that the silencing of LGALS1, IFITM3, FTH1, BST2 and
485 SAT1 genes all inhibited the proliferation of the three human cSCC cells to varying degrees
486 (Fig. 6B and Fig. S6D). These results suggested that LGALS1, IFITM3, FTH1, BST2 and
487 SAT1 could regulate cell proliferation in cSCC. Then, Annexin V-FITC/propidium iodide
488 (PI) staining and flow cytometry (FCM) was applied to quantify the effect of genes on
489 apoptosis in human cSCC cells. The results showed that the gene silencing significantly
490 increased the apoptosis rate of A431, SCL-I and SCL-II tumor cells ($P < 0.01$) (Fig. 6C
491 and Fig. S6E). These results suggest that the up-regulation of LGALS1, IFITM3, FTH1,
492 BST2 and SAT1 in cSCC may inhibit the apoptosis of tumor cells.

493 The effect of gene interference on the migration ability of human cSCC cells was
494 detected by cell scratch assay. The results showed that after knocking down LGALS1,

495 IFITM3, BST2 and SAT1, the migration distances of A431, SCL-I and SCL-II tumor cells
496 were reduced after 72 h of scratching compared with the control group ($P < 0.01$), the tumor
497 cells migration ability was decreased, while there was no significant difference with FTH1
498 in any tumor cells ($P > 0.05$) (Fig. 6D and Fig. S6F). These results suggest that up-
499 regulation of LGALS1, IFITM3, BST2 and SAT1 may promote tumor cell migration
500 ability in cSCC, whereas FTH1 has no great effect on this. Transwell invasion assay was
501 used to detect the effect of gene interference on the invasion ability. The results showed
502 that LGALS1, IFITM3, FTH1, BST2 and SAT1 gene silencing significantly reduced the
503 invasion ability of A431, SCL-I and SCL-II (Fig. 6E and Fig. S6G). All these results
504 suggested that LGALS1, IFITM3, FTH1, BST2 and SAT1 may take an important role in
505 cSCC by regulating the processes of cell proliferation, apoptosis, migration and invasion.

506

507 **The tumor micro-environment (TME) landscape of cSCC**

508 The progression of AK to cSCC is not only cancerization of keratinocytes, but also closely
509 related to changes in skin microenvironment [10]. Long-term UVB irradiation can cause
510 epidermal cell damage, while UVA can reach dermis and cause activation and oxidative
511 damage of various cells in dermis [52]. For example, Langerhans may have disorders in
512 cell number, migration ability, phenotypic changes and antigen presentation ability [52].
513 In addition, studies have confirmed fibroblast activation and expression of macrophage
514 proteinases in the matrix, as well as loss of collagen XV and XVIII from the dermal
515 basement membrane are early events in the progression of cSCC [10]. In order to
516 understand the influence of tumor microenvironment on the occurrence and development

517 of cSCC, we analyzed the non-keratinocytes lymphocytes, fibroblasts and dendritic cells
518 and their cell communications in poorly-differentiated cSCC individual.

519 Tumor infiltrating lymphocytes are the main components of tumor microenvironment,
520 especially T lymphocytes play an important role in immune response to tumor antigens.
521 We identified eight lymphocyte subpopulations by re-clustering, including regulatory T
522 cells (Treg), naive CD8+ T cells (CD8_Tnaive), CD8+ effector T cells (CD8_Teff),
523 exhausted CD8+ T cells (CD8_Tex), CD4+ T cells (CD4_T), naive CD4 + T cells
524 (CD4_Tnaive), CD4- CD8- naive T cells (DNT) and natural killer cells (NK) (Fig. 7A).
525 Besides regulatory T cells, the exhausted CD8+ T subpopulation accounted for a
526 considerable proportion. The exhausted CD8+ T cells have higher expression of inhibitory
527 receptors, and the effector function is significantly reduced or lost, which may be one of
528 the main factors of immune dysfunction. Ji et al. combined single-cell transcriptome with
529 spatial transcriptome, and found that this group of cells were mainly located at the edge of
530 inflammatory response and in immune cell clusters in cSCC [53].

531 Cancer-associated fibroblasts (CAFs) are one of the most important members of tumor
532 microenvironment, interacting with tumor cells and playing an important role in the
533 occurrence and development of tumor [54]. CAFs can secrete a variety of growth factors,
534 cytokines and extracellular matrix proteins to promote tumor cell invasion and metastasis.
535 In this study, we identified three subpopulations of CAFs including canonical_Fib,
536 vascular_Fib and Endothelial (Fig. 7A). The expression levels of PDGFRA in
537 canonical_Fib were higher than those in other subgroups (Fig. 7B). PDGFRA encodes
538 platelet-derived growth factor receptor α , a cell surface receptor tyrosine kinase, which is
539 activated by binding to the corresponding ligand PDGF and regulates cell division and

540 proliferation. Abnormal gene activation of PDGFRA can lead to tumorigenesis and
541 promote tumor angiogenesis, as well as induce macrophage migration to participate in
542 immune regulation [55]. Vascular_Fib has a characteristic high expression of
543 apolipoprotein APOE and COL18A1, which may be closely related to oxidative stress,
544 inflammation and aging (Fig. 7B). Previous studies have found that tumor vascular
545 endothelial cells can be transformed into CAFs under the regulation of TGF- β [56], and
546 fibroblasts can also be transformed into vascular endothelial cells [57].

547 Dendritic cells (DCs) are important antigen presenting cells (APCs) in skin tissues,
548 which play a key role in initiating, regulating and maintaining immune response [58]. DCs
549 mainly contain Langerhans cells and dermal dendritic cells (DDCs). In general, epidermal
550 Langerhans are immature, with weak antigen presentation capabilities. The mature DCs
551 have enhanced antigen presentation capabilities, which can migrate to local lymph nodes
552 to stimulate lymphocytes and activate immune responses [59]. Therefore, DCs play an
553 important role in clearing skin tumor cells and preventing skin infections. In the tumor
554 environment, the differentiation, development and maturation of DCs are interfered, which
555 may help tumor cells evade immune surveillance[60]. In this study, six DC subpopulations
556 were identified in poorly-differentiated cSCC individual (Fig. 7A). Among them, the stable
557 monocyte derived DCs (Mo-DC) had characteristic high expression of CD14 and
558 CLEC10A (Fig. 7B). The cluster with high expression of LAMP3 and CCR7 was identified
559 as mature myeloid DCs (mmDC). It is a mature form of conventional dendritic cells, which
560 has the potential to migrate from tumor to lymph node and can interact with a variety of T
561 lymphocytes. Langerhans cells (LC) overexpressed CD1A, CD1C and CD207. In addition,
562 we found that the expression level of IDO1 in Langerhans of poorly differentiated cSCC

563 samples was significantly higher than that in normal skin samples (Fig. 7B). IDO1 is a
564 classical tolerogenic mediator which not only engenders immune tolerance to tumor
565 antigens, inhibits T cell cytotoxic activity and promotes differentiation into Tregs, but also
566 acts in pathogenic inflammatory processes, may be a potential target for the development
567 of oncology therapeutic inhibitors [61]. The immature conventional type I dendritic cells
568 (cDC1) expressed unique C-type lectin receptor CLEC9A and chemokine receptor XCR
569 (Fig. 7B). They can cross-present antigen and promote anti-tumor immune response of
570 CD8+ T cells. Meanwhile, type II dendritic cells (cDC2) expressed CD163 and SIRPA.
571 Another cluster highly expressed CD68, and represent macrophages (Mac) (Fig. 7B).

572

573 **Cell-cell communication analysis revealed important signaling pathways related in**
574 **cSCC tumor**

575 To investigate the effect of TME on invasive cSCC, CellChat, a cell communication
576 analysis tool for single cell transcriptome data, was used to analyze the intercellular
577 interactions of cSCC samples based on gene expression data, ligand-receptor database
578 information and cell communication reference database (CellChatDB) [62]. It was found
579 that cell-to-cell interaction was significantly enhanced in poorly-differentiated cSCC, and
580 multiple interaction pathways were significantly active. The interactions between Basal1,
581 Basal2 and Pro KCs and other cells were significantly increased, suggesting that these cell
582 populations were the most important participants in cell crosstalk with TME during the
583 development of cSCC (Fig. 7, C-F). In non-keratinocytes, fibroblasts released the most
584 signal intensity, while CD8+ effector T cells received the most signal, canonical_Fib was
585 particularly active in interaction with other cells (Fig. 7, D and E).

586 Further analysis revealed that some classical cancer-related signaling pathways were
587 significantly altered in invasive cSCC (Fig. 7G). Basal cells can interact with various
588 immune cells through Laminin and TNF signaling pathways (Fig. 7, E, G-I). Laminin is an
589 important component of extracellular matrix (ECM), which is involved in basement
590 membrane skeleton formation, cell adhesion, growth, differentiation and migration [63].
591 Laminin signaling pathways have been proven to regulate the morphology, differentiation
592 and movement of a variety of cells including keratinocytes [64]. They also can participate
593 in signal transmission and promote tumor infiltration and metastasis [65]. In cSCC, the
594 expressions of ligand-receptors corresponding to Laminin signaling pathway were
595 significantly enhanced in keratinocytes, suggesting that laminin signaling pathway has
596 important significance for the occurrence and development of cSCC. The TNF family and
597 its receptors play key roles in a variety of immune and inflammatory process. It plays a
598 dual role in tumor, not only playing an immunomodulatory and tumor suppressive role, but
599 also promoting tumor immune escape by inducing inflammatory response, promoting
600 tumor cell survival, proliferation and EMT, regulating Treg and bone marrow derived
601 suppressor cells (MDSCs) [66]. In addition, cell interaction between Basal cells, Pro KCs
602 and Langerhans cells was enhanced through MHC-II and ICAM signaling pathway (Fig.
603 7, E, G-I). Studies have found that some tumor cells can play the role of antigen
604 presentation by upregulation of MHC-II expression on cell surface, inducing
605 differentiation and invasion of Tregs cells and participating in tumor genesis [67]. ICAM-
606 I and its ligands LFA-1, MAC-1 and CD18 interact to regulate antigen presentation and
607 migration or adhesion of various inflammatory cells [68]. These results suggested that these
608 cell subpopulations and related signaling pathways may play key roles in cSCC.

609

610 **Chromatin accessibility is associated with transcription factor activity**

611 To understand the chromatin accessibility and its role on regulation of gene expression in
612 invasive cSCC, we also performed scATAC-seq on tumor sample of poorly-differentiated
613 individual with scRNA-seq to generate paired, cell-type specific chromatin accessibility
614 and transcriptional profiles. We leveraged the annotated scRNA-seq dataset of tumor
615 sample to predict scATAC-seq cell types with Seurat using label transfer. Comparison
616 between scATAC-seq cell-type predictions and curated annotations of scRNA-seq dataset
617 indicated that all major cell types were present in both datasets (Fig. S7A). Then we
618 detected accessible chromatin regions and investigated differentially accessible chromatin
619 regions (DARs) between cell types (Table S17). The majority of DARs were located in a
620 promoter region within 1 kb of the nearest transcriptional start site, especially in Basal1
621 the proportion was more than 95% (Fig. S7B). Meanwhile, a lot of DARs were closely
622 associated with DEGs in their respective cell types and we could distinguish cell groups in
623 scATAC-seq dataset based on the state of DARs. For example, the ATAC peaks of KRT5
624 were increased in major keratinocytes. CD83 is one of the best markers for mature DCs
625 [69]. The coverage plot showed an increase in number and amplitude of ATAC peaks
626 within its promoter and gene body in DCs and Langerhans (Fig. S7C).

627 Given that many transcription factors may be key determinants in the development of
628 cSCC in our above results, we used chromVAR to infer transcription-factor associated
629 chromatin accessibility in scATAC-seq dataset of cSCC tumor. We observed that the cell
630 types also could be distinguished by transcription factor activities, suggesting these cell-
631 type-specific transcription factors could regulate chromatin accessibility. For example, as

632 well-known driver genes in cSCC, TP63 and TP53 were detected an enrichment of their
633 binding motifs within DAR in major keratinocytes (Fig. S7D and Table S18) that was
634 supported by increased chromatin accessibility and increased transcription in the scRNA-
635 seq of them. More importantly, similar patterns were seen for FOSL1, which were
636 identified as potential key driver transcription factors for the development of cSCC in our
637 above results (Fig. S7D and Table S18). In addition, predicted cis-regulatory chromatin
638 interactions by Cicero also showed a positive correlation between transcription factor
639 activity and expression on a global level (Fig. S7E). Meanwhile, the above key
640 transcription factors including TP63 and FOSL1 showed a positive correlation between
641 motif activity and expression, further supporting their important driving roles in the
642 development of cSCC as transcriptional activators (Fig. S7F and Table S19).

643

644 **Discussion**

645 The occurrence and development of tumor is an extremely complex process. Although
646 many studies have been carried out, the key mechanisms of the occurrence and
647 development of AK and cSCC are still elusive. In this study, the gene expression profile
648 information from 13 samples of 6 patients was obtained by single-cell transcriptomic
649 sequencing, covering all stages of cSCC development including normal skin, AK, SCCIS
650 and invasive cSCC, and 138,982 high-quality single cells were finally obtained for analysis.

651 The six normal skin tissues near the lesions were all from the exposed sites of elderly
652 individuals, showing obvious photoaging, but there were no obvious pathological changes
653 observed by visual inspection neither morphological abnormality of keratinocytes
654 observed by histopathology. Nine different main cell clusters were identified from normal

655 skin tissues and further subgroup analysis found different subtypes in basal, spinous and
656 follicular cells. There have been reports about the subgroups of epidermal cells in previous
657 studies [17, 18]. In our study, according to the expression of marker genes, Basal1
658 subgroup had high expression of the main components of hemidesmosomes COL17A1 and
659 stem cell marker genes, suggesting that Basal1 might be stationary Basal cells attached to
660 the basement membrane [70]. Although Basal2 subgroup had high expression of basal cell-
661 related markers, the expression of COL17A1 and stem cell-related genes was decreased,
662 suggesting they may be the basal cells that have finished division and are about to
663 directionally differentiate. The Pro KCs highly expressed MKI67 and also had basal cell
664 markers. They are transient amplifying cells (TAs) with strong proliferating ability, which
665 can leave from the basal layer after limited mitosis and enter the process of terminal
666 differentiation and migration [71]. Follicular cells can also be divided into Follicular1 and
667 Follicular2 subgroups. Follicular2 had higher expression of WNT pathway related
668 suppressor genes such as SFRP1, FRZB, and DKK3 than that of Follicular1. Cheng et al.
669 also identified these cells in human normal skin by single-cell sequencing technology and
670 speculated that these cells were stem cell groups in the protuberant of the outer root sheath
671 of hair follicles [18, 25].

672 Our results showed that the percentage of Basal cells in SCCIS increased significantly
673 compared with AK and normal samples. This was even more significant in cSCC,
674 especially in the Basal1 subpopulation with high expression of stem cell-related markers,
675 while Pro KCs only slightly increased. These results suggested that cell terminal
676 differentiation may be impaired during the development of cSCC, and that basal cells play
677 a more important role than Pro KCs.

678 Although the origin of cSCC has always been controversial, it is believed that basal
679 cells with rapid proliferation ability and differentiated keratinocytes may all be the origin
680 cells of cSCC [72]. However, there are other studies suggest that stem cells such as static
681 epidermal stem cells and hair follicle stem cells are the most important origin cells of cSCC
682 [73]. Morris et al. found that skin tumors came from stationary, 5-Fluorouracil-insensitive
683 epidermal stem cells rather than rapidly proliferating epidermal cells in mouse chemo-
684 carcinogenic model of cSCC [74]. Adriana et al. also found that epidermal stem cells were
685 the main origin cells of basal cell carcinoma, and proliferating epidermal cells mainly
686 caused benign proliferative skin lesions [75].

687 To identify the malignant keratinocytes in AK, SCCIS and cSCC, we performed CNV
688 analysis. Significant CNV differences were identified in cSCC samples, and the CNV
689 differences among the samples were significant, which was proportional to the
690 histopathological classification and risk grade, confirming the significant heterogeneity
691 among the cSCC samples. However, we did not identify obvious CNV in AK samples,
692 which may be related to the low proportion of malignant cells or the mild degree of
693 malignancy in AK samples. In SCCIS samples, we also identified some cells with CNV
694 differences, which may be the keratinocytes with early malignant transformation.
695 Identification of malignant cells from SCCIS and invasive cSCC showed that these cells
696 were mainly derived from stationary basal cells, some Pro KCs, Follicular2 cells and a
697 small number of spinous cells, again suggesting the importance of Basal cells. Therefore,
698 we focused on the characterization of these cells in SCCIS to understand the key events
699 that promote the progression of precancerous lesions or carcinoma in situ to invasive cSCC.
700 The characteristic marker genes of Basal cells of SCCIS were compared with normal and

701 AK Basal cells. Two subpopulations of Basal cells in SCCIS were identified based on CNV
702 scores and reclustering and Basal-SCCIS-tumor with higher CNV score were identified as
703 malignant cell group.

704 Ji et al. identified a group of tumor-specific keratinocyte (TSK) subgroups in
705 European cSCCs by using scRNA-seq and revealed their spatial distribution in
706 combination with spatial transcriptomics [53]. In this study, we did not identify identical
707 TSK cell subpopulations, which may be related to ethnic differences, different sample
708 sources, and significant heterogeneity between tumors. However, we found a unique
709 subpopulation in early stage of cancer with certain invasive characteristics in SCCIS and
710 successfully identified malignant cells with significant CNV in invasive cSCC, revealing
711 the heterogeneity of keratinocytes in different stages of AK and cSCC.

712 We compared the expression profiles of the same cell subpopulations during
713 progression of AK, SCCIS and cSCC and identified a group of important candidate genes
714 in each disease stage. ALDH3A1, IGFBP2, DYNC1H1, NFKBIZ and RND3 were
715 specifically highly expressed in AK. ALDH3A1 is a newly discovered tumor stem cell
716 marker in recent years. Overexpression of ALDH3A1 in melanoma and lung cancer not
717 only regulates tumor cell stemness and the process of EMT, but also promotes
718 inflammation through up-regulation of inflammatory factors such as COX2 and PGE2, and
719 enhances the expression of PD-L1 to affect immune escape [76]. In vitro studies have
720 confirmed that IGFBP2 is involved in regulating the proliferation, invasion and metastasis
721 of tumor cells. IGFBP2 secreted in melanoma activates the PI3K/Akt pathway to promote
722 tumor angiogenesis by binding to integrin α V β 3 [77]. However, the expression of

723 ALDH3A1 and IGFBP2 was not elevated in the three cSCC samples, suggesting that they
724 may play different regulatory roles in different stages of AK and cSCC.

725 It is of concern that two basal subgroups with different levels of CNV were identified
726 in SCCIS, and the expression of a large number of heat shock proteins was generally
727 increased in the Basal-SCCIS-tumor subgroup with higher level of CNV. Fernandez et al.
728 found that HSP70 was increased in the cytoplasm of keratinocytes in cSCC tissues arising
729 from AK and was positively correlated with dermal infiltration level [78]. It may be an
730 early potential marker of progression from AK to cSCC. The high expression of activated
731 keratin genes and S100 family genes also indicated the high invasiveness of Basal-SCCIS-
732 tumor subgroup, which had great potential to transform to invasive cSCC.

733 Among Basal-SCCIS-tumor subgroup specific genes, MAGEA4 was confirmed to be
734 strongly positive in most SCCIS and invasive cSCC by immunohistochemistry. These
735 results suggested that MAGEA4 may play a potential biomarker of new subtype in SCCIS
736 with more possibility into cSCC. In addition, ITGA6 and other tumor-related genes were
737 also significantly overexpressed in Basal-SCCIS-tumor. They may play an important role
738 in the progression of SCCIS to cSCC by regulating cell stemness, cell proliferation,
739 cytoskeleton and extracellular matrix degradation. We also identified a group of closely
740 related significantly up-regulated genes in cSCC. The function of genes that have received
741 little attention in the past was validated at the cellular level. Our functional experiments
742 found that LGALS1, IFITM3, FTH1, BST2 and SAT1 genes affected the proliferation,
743 apoptosis, migration and invasion of human cSCC.

744 In TME analysis of poorly-differentiated cSCC sample, we identified major
745 subpopulations of T lymphocytes, CAFs and DCs based on their specific markers. In cell

746 communication analysis, we found that the vascular_Fib subpopulation with high APOE
747 expression released high signal intensity and had the most active interaction with immune
748 cells, especially CD8+ effector T cells. APOE gene encodes apolipoprotein, which is not
749 only involved in lipid transport, storage and utilization, but also closely related to oxidative
750 stress, inflammation and aging. Solé-Boldo L et al. found that the functional enrichment of
751 these cells mainly focused on inflammatory response, wound healing, cell chemotaxis or
752 adhesion, angiogenesis, negative regulation of cell proliferation, etc. [79]. In six DC
753 subpopulations in cSCC, cDC1 has the most active interaction with other cells and is the
754 main participant in the occurrence and development of cSCC. In cell-cell communication
755 analysis, we observed significantly enhanced cell-to-cell interactions in cSCC tumor
756 sample. The increased interactions mainly enriched in Basal1 and Pro KCs with cells in
757 TME. In addition, we identified several crucial cancer-related signaling pathways in cSCC.
758 The activation of these signaling pathways may play important regulatory function in cSCC
759 tumor genesis and development.

760 In this study, we performed comprehensive analysis of scRNA-seq profiles in diverse
761 samples to simulate the classic carcinogenic process from photoaged skin to AK, then to
762 SCCIS, and finally to invasive cSCC. Especially we deeply analyzed the AK as
763 precancerous lesions and the SCCIS at the single-cell level and identified the key malignant
764 cell subpopulation, which is significantly important to investigate the transformation from
765 AK to cSCC. The results are significantly benefited to understand the occurrence and
766 development of cSCC.

767

768 **Materials and methods**

769 **cSCC and AK patient samples.**

770 cSCCs, AKs and patient-matched normal adjacent skin samples were collected during
771 surgical treatment at the Dermatology Department of the First Affiliated Hospital of
772 Kunming Medical University (Yunnan, China). All AK and cSCC samples were derived
773 from the UV-exposed areas from immunocompetent patients, and none of these patients
774 had received any treatment before surgery. These fresh resected biopsies were divided into
775 two parts: half of each sample was immediately dissociation into single cell suspension for
776 single-cell sequencing, and another half was formalin fixed for pathological grading and
777 immunohistochemical studies. Written informed consent for the samples was obtained
778 under protocols was approved by the Ethics Committee of the First Affiliated Hospital of
779 Kunming Medical University. Diagnosis of all samples was confirmed by at least two
780 independent pathologists. Histological grades of cSCC were performed according to
781 Broder's grading system and the risk classification was performed according to the 2019
782 European Association of Dermato-Oncology (EADO) guidelines. And we divided AK
783 lesions into three categories: AK I, AK II and AK III, based on the abnormal cells in the
784 percentage of intraepidermal neoplasia, as proposed by Röwert-Huber et al [80].

785 **Tissue dissociation.**

786 All fresh skin samples were gently washed in RPMI 1640 after removing crust,
787 subcutaneous fat and necrotic tissue with surgical scissors and cutting the tissue into small
788 pieces of 2–4 mm in a sterile tissue-culture dish. For tumor samples digestion was
789 performed using tumor dissociation kit for human (130-095-929, MACS Miltenyi Biotec),
790 mechanical dissociation using gentleMACSTM Dissociator running the gentleMACS
791 program h_tumor_01. In order to capture enough keratinocytes in AK samples for

792 subsequent research, we separate the epidermal tissue from the dermis and then dissociated
793 to single-cell suspensions by combining mechanical dissociation with enzymatic
794 degradation of the extracellular adhesion proteins using Epidermis Dissociation Kit for
795 Human (130-103-464, MACS Miltenyi Biotec). The dissociated cell suspension was
796 strained with a 40 μ m filter (BD Falcon), and treated with Red Blood Cell Lysis Solution
797 (130-103-183, MACS Miltenyi Biotec) and dead cell removal using the Dead Cell
798 Removal Kit (130-090-101, MACS Miltenyi Biotec) to confirm cell viability >85% with
799 trypan blue staining (Invitrogen). All samples were processed as per manufacturer's
800 instructions. Sorted cells were centrifuged and resuspended in PBS + 0.04% BSA (Gibco)
801 to a final cell concentration of 700-1200 cells/ μ L as determined by hemacytometer.

802 **10x scRNA-seq library preparation and sequencing.**

803 The single-cell capturing and downstream library constructions were performed using the
804 Chromium Single Cell 3' v3 (10x Genomics) library preparation kit according to the
805 manufacturer's protocol. Cellular suspensions were co-partitioned with barcoded gel beads
806 to generate single-cell gel bead-in-emulsion (GEM) and polyadenylated transcripts were
807 reverse-transcribed. Incubation of the GEMs produces barcoded, full-length cDNA from
808 poly-adenylated mRNA, and amplified via PCR to generate sufficient mass for library
809 construction. Then, the libraries were sequenced on NovaSeq6000 (Illumina).

810 **Nuclei isolation, 10x scATAC-seq library construction and sequencing**

811 The isolation, washing, and counting of nuclei suspensions were performed according to
812 the manufacturer's protocol (10x Genomics, CG000169). Briefly, 100,000 to 1,000,000
813 cells were centrifuged at 300 \times g for 5 min at 4°C, removed the supernatant, and 100 μ L
814 chilled lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM MgCl₂, 0.1% Tween-20 and

815 1% BSA) was added and incubated for 5 min on ice. Following lysis, nuclei were
816 resuspended in chilled Diluted Nuclei Buffer (10x Genomics; PN-2000153) at
817 approximately 5,000–7,000 nuclei/ μ L based on the starting number of cells and
818 immediately used to generate scATAC-seq libraries. scATAC-seq libraries were prepared
819 according to manufacturer protocol of Chromium Single Cell ATAC Library Kit (10x
820 Genomics, PN-1000087). Nuclei of cSCC cells were incubated by Tn5 transposable
821 enzymes (10x Genomics; 2000138) for 60 min at 37 °C to form DNA fragments. Then,
822 mononuclear GEMs with special 10x barcodes were generated using a microfluidic
823 platform (10x Genomics). Next, we collected single-cell GEMs and conducted linear
824 amplification in a C1000 Touch Thermal cycler. Emulsions were coalesced using the
825 Recovery Agent and cleaned up using Dynabeads. Indexed sequencing libraries were then
826 constructed, purified and sequenced on NovaSeq6000 (Illumina).

827 **Single cell RNA-seq data processing.**

828 Reads were processed using the Cell Ranger pipeline (3.1.0) with default and
829 recommended parameters. FASTQs generated from Illumina sequencing output were
830 aligned to the human reference genome GRCh38-3.0.0 were generated for each individual
831 sample by counting unique molecular identifiers (UMIs) and filtering non-cell associated
832 barcodes. Finally, we generated a gene-barcode matrix containing the barcoded cells and
833 gene expression counts. This output was then imported into the Seurat (4.0.5) R toolkit for
834 quality control and downstream analysis of our single cell RNA-seq data. All functions
835 were run with default parameters, unless specified otherwise. Low quality cells (< 200
836 genes/cell, < 3 cells/gene and > 10% mitochondrial genes) were excluded. Before

837 incorporating a sample into our merged dataset, we individually inspected the cells-by-
838 genes matrix of each as a Seurat object.

839 **Single cell ATAC-seq data processing.**

840 The chromatin accessibility analysis of scATAC-seq data referred to the pipeline by Muto et
841 al [81]. The gene activity matrix was log-normalized prior to label transfer with the
842 aggregated scRNA-seq Seurat object using canonical correlation analysis. Differential
843 chromatin accessibility between cell types was assessed with the Signac (1.4.0)
844 “FindMarkers” function. Genomic regions containing scATAC-seq peaks were annotated
845 with ChIPSeeker (1.26.2) and clusterProfiler (3.18.1) using the UCSC database on hg38.
846 Transcription factor activity was estimated using chromVAR (1.12.0) The positional
847 weight matrix was obtained from the JASPAR2018 database. Cis-coaccessibility networks
848 were predicted using Cicero (1.8.1)

849 **Identification of cell types and subtypes by nonlinear dimensional reduction.**

850 The Seurat package implemented in R was applied was applied to identify major cell types.
851 Highly variable genes were generated and used to perform PCA. Significant principal
852 components were determined using JackStraw analysis and visualization of heatmaps
853 focusing on PCs 1 to 20. PCs 1 to 10 were used for graph-based clustering (at res = 0.5 for
854 samples) to identify distinct groups of cells. These groups were projected onto UMAP
855 analysis run using previously computed principal components 1to 10. We characterized the
856 identities of cell types of these groups based on expression of known markers: basal cells
857 (COL17A1, KRT5, KRT14), spinous cells (KRT1, KRT10), granular cells (FLG, LOR),
858 proliferating keratinocytes (Pro KCs, MKI67, TOP2A), follicular cells (KRT6B, KRT17,
859 SFRP1), Langerhans cells (CD207, CD1A), T cells (CD3D, PTPRC), melanocytes (PMEL,

860 TYRP1) and fibroblasts (DCN, COL1A1). Sub-clustering of basal cells was further
861 performed with the same approach.

862 **Cluster markers identification.**

863 The cluster-specific marker genes were identified by running the FindConservedMarkers
864 function in the Seurat package to the normalized gene expression data. The differentially
865 expressed genes (DEG) were identified by the ‘find.markers’ function with default
866 parameters and filtered by $p_val_adj < 0.05$. Just in DEG analysis of Basal-SCCIS-tumor,
867 we used the parameter $avg_log2FC > 0.58$ and $p_val_adj < 0.05$ to further narrow down
868 the gene sets. We used Metascape (<http://metascape.org>) to perform biological process
869 enrichment analysis with the differentially expressed genes in each cluster or subpopulation.

870 **CNV estimation.**

871 Initial CNVs for each region were estimated by inferCNV (1.6.0) R package. The CNV of
872 total cell types were calculated by expression level from single-cell sequencing data for
873 each cell with -cutoff 0.1 and -noise_filter 0.1. In order to well study the CNV level in
874 keratinocytes for each tumor sample, we used the keratinocytes from patient-matched
875 normal adjacent skin as background.

876 **Constructing single cell trajectories in keratinocytes.**

877 The Monocle3 package (1.0.0) was used to analyze single cell trajectories in order to
878 discover the cell-state transitions. The UMI matrix was as input and variable genes
879 obtained from epidermal cell types were detected by Seurat to sort cells in pseudotime. The
880 subcluster of basal cells in SCCIS with higher-expressed stem cell marker (COL17A1,
881 TP63) was defined as root stated argument and aligned via the “ordercells” function.

882 ‘UMAP’ was applied to reduce dimensions and the visualization functions
883 “plot_cell_trajectory” were used to plot pseudotime trajectory.

884 **Haematoxylin and Eosin (H&E), Immunohistochemistry (IHC) and**
885 **immunofluorescence (IF) staining.**

886 For H&E, formalin-fixed, paraffin-embedded cSCCs, AKs and patient-matched normal
887 adjacent skin biopsies was cut at 4 microns and stained using hematoxylin and eosin (H&E).
888 For immunohistochemistry and IF staining was performed using DAB or DAPI and the
889 following primary antibodies: anti-ALDH3A1 mouse monoclonal antibody (Santa Cruz
890 Biotechnology), anti-BST2 rabbit polyclonal antibody (Proteintech), anti-FTH1 rabbit
891 polyclonal antibody (Zen-Bioscience), anti-LGALS1 rabbit polyclonal antibody (Zen-
892 Bioscience), anti-MAGEA4 rabbit monoclonal antibody (Cell Signaling Technology),
893 anti-IFITM3 rabbit polyclonal antibody (Zen-Bioscience), anti-IGFBP2 rabbit monoclonal
894 antibody (Abcam), anti-ITGA6 rabbit polyclonal antibody (Zen-Bioscience), anti-SAT1
895 rabbit polyclonal antibody (Bioss). Examination and photographic documentation were
896 performed using a digital slide scanner-PANNORAMIC 1000 (3DHISTECH, Hungary).
897 Histological sections were analyzed semiquantitatively. The staining intensity of
898 immunohistochemistry section was scored as 0 (negative), 1 (weak), 2 (medium) or 3
899 (strong). Extent of staining was scored as 0 (<5%), 1 (5–25%), 2 (26–50%), 3 (51–75%) and
900 4 (>75 %) according to the percentages of the positive staining areas in relation to the
901 whole carcinoma area. Scores for staining intensity and percentage positivity of cells were
902 then multiplied to generate the immunoreactivity score (IRS) for each case. The
903 immunofluorescence staining was analyzed with Image-ProPlus software 6.0. Integrated

904 option density (IOD) of interesting area (AOI) was measured and density mean (IOD/AOI)
905 were calculated as the semi-quantitative parameters.

906 **Cell culture, transfections.**

907 Human immortalized epidermal keratinocytes cell line (HaCaT cells) and human cSCC
908 cell line A431, SCL-I and SCL-II [82, 83] were used in this study and were obtained from
909 the American Type Culture Collection (ATCC) and Free University of Berlin.
910 Mycoplasma detection was carried out in cell lines using GMyc-PCR Mycoplasma Test
911 Kit (YEASEN, 40601ES20) to avoid mycoplasma contamination. The cells were cultured
912 in Dulbecco's modified Eagle's medium (DMEM, Gibico, USA) supplemented with 10%
913 fetal bovine serum (FBS, Gibico), and 1% penicillium-streptomycin (Gibico) in a 5% CO²
914 incubator at 37°C. Small interfering RNA (siRNA) transfections were carried out using
915 transfections reagent (INVI DNA RNA Transfections Reagent, Invigentech, USA) to
916 inquire into the influence of silencing gene expression by on cell growth, proliferation,
917 invasion and metastasis. The sequences of various siRNA oligonucleotides used in this
918 study were listed in Table S20. The transfection efficiency was confirmed by RT-PCR.

919 **Quantitative Real-Time PCR (qRT-PCR).**

920 To verify the expression and siRNA transfection efficiency of key genes in cSCC cells, the
921 mRNA expression levels of genes in A431, SCL-I and SCL-II cells were detected by qRT-
922 PCR. Primers were designed and listed in Table S21. Total RNA was extracted from cells
923 using TRIzol reagent (Invitrogen, Thermo Fisher Scientific, USA) and reverse transcribed
924 into cDNA using a FastKing-RT Reagent kit (Tiangen, Beijing, China) according to the
925 manufacturer's protocols. Quantitative RT-PCR was performed using SYBR Green Master

926 Mix (Tiangen, Beijing, China). The RNA expression level of target genes was evaluated
927 by $2^{-\Delta\Delta Ct}$.

928 **Cell-counting kit 8(CCK8) assay.**

929 CCK8 assay was employed for the evaluation of cell proliferation. The transfected cells
930 were seeded in a 96-well plate at a seeding density of 2000 cells/well (100 μ L). Next, 10 μ L
931 CCK8 reagent (Beyotime, Shanghai, China) was added to each well and incubated at 37°C.
932 Cell proliferation rate was assessed according to the optical density (OD) value (450 nm)
933 detected by Microplate reader (BioTek, USA) at 0 h, 24 h, 48 h and 72 h following the
934 instructions of manufacture.

935 **Annexin V and PI staining detects cell apoptosis.**

936 The apoptosis rate was evaluated using the Annexin V-FITC and propidium iodide (PI) kit
937 (Beyotime, Shanghai, China) following the manufacturer's protocols. A431, SCL-I and
938 SCL-II cells were transfected and suspended, and 5 μ l Annexin V-FITC and 10 μ l PI were
939 added to the cell suspension. After 20 minutes of incubation at room temperature in the
940 dark, the cells were analyzed by flow cytometry (FACS Cabibur; BD, CA, USA).

941 **Cell migration assay.**

942 A wound-healing assay was performed to test the migration ability of the cSCC cells after
943 transfection. Cells were grown to confluence in 6-well plates, and the wounds were made
944 in confluent monolayer cells using a sterilized 200 μ L pipette tips. The culture medium
945 was then removed, and the cells were washed with PBS and cultured with the indicated
946 treatment. Wound healing of different groups was detected at 0, 24, 48, and 72 hours within
947 the scraped lines, and representative fields were photographed at the different time points
948 to assess the migratory ability of the cells.

949 **Transwell invasion assays.**

950 The invasion ability of cSCC cells was evaluated by Transwell assays using Transwell
951 chambers (8 μ m pore size, Corning Costar, USA) precoated with Matrigel. After
952 transfection, 4×10^4 cSCC cells in the 200 μ L serum-free medium were added to the upper
953 chambers, DMEM with 10% FBS was added to the bottom chambers. After incubation at
954 37°C for 36 h, the cells invaded into the lower side of the inserts were fixed in 4%
955 paraformaldehyde and stained with 0.1% crystal violet. Then counted and photographed
956 under a microscope.

957 **TME analysis.**

958 On the basis of the general cell population, we extracted T cells、DC cells and stromal
959 cells individually for further subdivision. For subgroup cell clustering, cells of different
960 types were extracted separately and clustered by their respective parameters (T cells: 21
961 PCs, using resolution of 0.5 (CD8_T: 18 PCs, using resolution of 0.7; CD4_T: 20 PCs,
962 using resolution of 1); DC: 24 PCs, using resolution of 0.9; Fib: 26 PCs, using resolution
963 of 0.3). The annotations of cell identity on each subcluster were defined by the expression
964 of known marker genes. Inference of intercellular communications was conducted using
965 ‘CellChat’. The ligand-receptor interactions were all based on ‘CellChatDB’, a database of
966 literature-supported ligand-receptor interactions in both mouse and human. The majority
967 of ligand-receptor interactions in CellChatDB were manually curated on the basis of
968 KEGG (Kyoto Encyclopedia of Genes and Genomes) signaling pathway database. The
969 identification of major signals for specific cell groups and global communication patterns
970 was based on an unsupervised learning method non-negative matrix factorization.

971 **Statistical analysis.**

972 All experiments were performed in triplicate technical replicates, and all data are presented
973 as mean \pm standard deviation (SD). Differences among groups were analyzed using
974 Student's t test or one-way analysis of variance (ANOVA) for normally distributed data
975 and the Kruskal-Wallis test for non-normally distributed data. And $P < 0.05$ was considered
976 to be statistically significant.

977

978 **Acknowledgments**

979 The authors acknowledge the editors and reviewers for their positive and constructive
980 comments and suggestions related to this study.

981

982 **Author contributions**

983 L.H. and X.L. conceived and designed the study. D.Z., J.Q., Y.T., X.L., F.L., L.H., and
984 H.L. procured and processed tissue specimens. D.Z. prepared single-cell suspensions,
985 sequencing libraries and performed next-generation sequencing. Y.S., X.L., Y.H.
986 performed quality checks, data integration, and computational analyses. Y.S., D.Z., X.L.,
987 L.H., X.L., W.W. and D.X. analyzed and interpreted scRNA-seq data. D.Z. and X.W.
988 performed the IHC, IF staining and cytology experiments. Y.S., D.Z., X.L., X.L., L.H.,
989 W.W. and D.X. wrote and revised manuscript. All authors reviewed the results and
990 approved the final version of the manuscript.

991

992 **Declaration of interests**

993 The authors have no conflicts of interest to declare.

994

995 **Availability of data and materials**

996 The raw data and gene counts table are available from GEO under accession number
997 (GSE193304). All data needed to evaluate the conclusions in the paper are present in the
998 paper and/or the Supplementary Materials. Additional data related to this paper may be
999 requested from the authors.

1000

1001 **Ethical approval and consent to participate**

1002 The authors are accountable for all aspects of the work in ensuring that questions related
1003 to the accuracy or integrity of any part of the work are appropriately investigated and
1004 resolved. All procedures performed in this study involving human participants were in
1005 accordance with the *Declaration of Helsinki* (as revised in 2013). This study protocol was
1006 approved by the Ethics Committee of the First Affiliated Hospital of Kunming Medical
1007 University (Approval Number (2020)-L-29), and written informed consent was obtained
1008 from all patients.

1009

1010 **Funding**

1011 This work was supported by Yunnan Science and Technology Leading Talents Project
1012 (2017HA010), Yunnan Province Clinical Research Center for Skin Immune Diseases
1013 (2019ZF012), Yunnan Province Clinical Center for Skin Immune Diseases (ZX2019-03-
1014 02), Shenzhen Science and Technology Program (JCYJ20190807160011600 and
1015 JCYJ20210324124808023), China Postdoctoral Science Foundation (2020M683073),
1016 Guangzhou Science Technology Project (201904010007), Guangdong Provincial Key

1017 Laboratory of Digestive Cancer Research (2021B1212040006), and National Natural
1018 Science Foundation of China (81872299 and 82260517).

1019

1020 **References**

- 1021 1 Stratigos AJ, Garbe C, Dessinioti C, Lebbe C, Bataille V, Bastholt L *et al.* European interdisciplinary guideline on invasive squamous cell carcinoma of the
1022 skin: Part 1. epidemiology, diagnostics and prevention. *Eur J Cancer* 2020; 128:
1023 60-82.
- 1024
- 1025 2 Marks R, Rennie G, Selwood TS. Malignant transformation of solar keratoses to
1026 squamous cell carcinoma. *Lancet* 1988; 1: 795-797.
- 1027
- 1028 3 Boukamp P. Non-melanoma skin cancer: what drives tumor development and
1029 progression? *Carcinogenesis* 2005; 26: 1657-1667.
- 1030
- 1031 4 Röwert-Huber J, Patel MJ, Forschner T, Ulrich C, Eberle J, Kerl H *et al.* Actinic
1032 keratosis is an early in situ squamous cell carcinoma: a proposal for
1033 reclassification. *Br J Dermatol* 2007; 156 Suppl 3: 8-12.
- 1034
- 1035 5 Chitsazzadeh V, Coarfa C, Drummond JA, Nguyen T, Joseph A, Chilukuri S *et*
1036 *al.* Cross-species identification of genomic drivers of squamous cell carcinoma
1037 development across preneoplastic intermediates. *Nat Commun* 2016; 7: 12601.
- 1038
- 1039 6 Schmitz L, Oster-Schmidt C, Stockfleth E. Nonmelanoma skin cancer - from
1040 actinic keratosis to cutaneous squamous cell carcinoma. *J Dtsch Dermatol Ges*
1041 2018; 16: 1002-1013.
- 1042
- 1043 7 Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG *et al.* The
1044 genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine
1045 associated mutational signature. *Nat Commun* 2018; 9: 3667.
- 1046
- 1047 8 Parker TM, Gupta K, Palma AM, Yekelchyk M, Fisher PB, Grossman SR *et al.*
1048 Cell competition in intratumoral and tumor microenvironment interactions. *Embo
1049 j* 2021; 40: e107271.
- 1050
- 1051 9 da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-
1052 Branco P *et al.* Cellular Interactions in the Tumor Microenvironment: The Role of
1053 Secretome. *J Cancer* 2019; 10: 4574-4587.
- 1054
- 1055 10 Nissinen L, Farshchian M, Riihilä P, Kähäri VM. New perspectives on role of
1056 tumor microenvironment in progression of cutaneous squamous cell carcinoma.
1057 *Cell Tissue Res* 2016; 365: 691-702.
- 1058

- 1059
1060 11 Bauer C, Abdul Pari AA, Umansky V, Utikal J, Boukamp P, Augustin HG *et al.*
1061 T-lymphocyte profiles differ between keratoacanthomas and invasive squamous
1062 cell carcinomas of the human skin. *Cancer Immunol Immunother* 2018; 67: 1147-
1063 1157.
- 1064
1065 12 Sordillo JE, Kraft P, Wu AC, Asgari MM. Quantifying the Polygenic
1066 Contribution to Cutaneous Squamous Cell Carcinoma Risk. *J Invest Dermatol*
1067 2018; 138: 1507-1510.
- 1068
1069 13 Thomson J, Bewicke-Copley F, Anene CA, Gulati A, Nagano A, Purdie K *et al.*
1070 The Genomic Landscape of Actinic Keratosis. *J Invest Dermatol* 2021; 141:
1071 1664-1674.e1667.
- 1072
1073 14 Gupta RK, Kuznicki J. Biological and Medical Importance of Cellular
1074 Heterogeneity Deciphered by Single-Cell RNA Sequencing. *Cells* 2020; 9.
- 1075
1076 15 Shao X, Lu X, Liao J, Chen H, Fan X. New avenues for systematically inferring
1077 cell-cell communication: through single-cell transcriptomics data. *Protein Cell*
1078 2020; 11: 866-880.
- 1079
1080 16 Zou Z, Long X, Zhao Q, Zheng Y, Song M, Ma S *et al.* A Single-Cell
1081 Transcriptomic Atlas of Human Skin Aging. *Dev Cell* 2021; 56: 383-397.e388.
- 1082
1083 17 Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM *et al.* Multimodal
1084 Analysis of Composition and Spatial Architecture in Human Squamous Cell
1085 Carcinoma. *Cell* 2020; 182: 497-514.e422.
- 1086
1087 18 Cheng JB, Sedgewick AJ, Finnegan AI, Harirchian P, Lee J, Kwon S *et al.*
1088 Transcriptional Programming of Normal and Inflamed Human Epidermis at
1089 Single-Cell Resolution. *Cell Rep* 2018; 25: 871-883.
- 1090
1091 19 Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C *et al.* CellMarker: a manually
1092 curated resource of cell markers in human and mouse. *Nucleic Acids Res* 2019;
1093 47: D721-d728.
- 1094
1095 20 Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration
1096 of mouse and human single-cell RNA sequencing data. *Database (Oxford)* 2019;
1097 2019.
- 1098
1099 21 Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S *et al.* Mapping the Mouse Cell
1100 Atlas by Microwell-Seq. *Cell* 2018; 172: 1091-1107.e1017.
- 1101
1102 22 Heng TS, Painter MW. The Immunological Genome Project: networks of gene
1103 expression in immune cells. *Nat Immunol* 2008; 9: 1091-1094.
- 1104

- 1105 23 Carregaro F, Stefanini AC, Henrique T, Tajara EH. Study of small proline-rich
1106 proteins (SPRRs) in health and disease: a review of the literature. *Arch Dermatol
1107 Res* 2013; 305: 857-866.
- 1108
- 1109 24 Zeeuwen PL, Van Vlijmen-Willems IM, Jansen BJ, Sotiropoulou G, Curfs JH,
1110 Meis JF *et al.* Cystatin M/E expression is restricted to differentiated epidermal
1111 keratinocytes and sweat glands: a new skin-specific proteinase inhibitor that is a
1112 target for cross-linking by transglutaminase. *J Invest Dermatol* 2001; 116: 693-
1113 701.
- 1114
- 1115 25 Lim X, Tan SH, Yu KL, Lim SB, Nusse R. Axin2 marks quiescent hair follicle
1116 bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. *Proc
1117 Natl Acad Sci U S A* 2016; 113: E1498-1505.
- 1118
- 1119 26 Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J,
1120 Centeno E *et al.* DisGeNET: a comprehensive platform integrating information on
1121 human disease-associated genes and variants. *Nucleic Acids Res* 2017; 45: D833-
1122 d839.
- 1123
- 1124 27 Lazo de la Vega L, Bick N, Hu K, Rahrig SE, Silva CD, Matayoshi S *et al.*
1125 Invasive squamous cell carcinomas and precursor lesions on UV-exposed
1126 epithelia demonstrate concordant genomic complexity in driver genes. *Mod
1127 Pathol* 2020; 33: 2280-2294.
- 1128
- 1129 28 Voulgaridou GP, Tsochantaridis I, Tolkas C, Franco R, Giatromanolaki A,
1130 Panayiotidis MI *et al.* Aldehyde dehydrogenase 3A1 confers oxidative stress
1131 resistance accompanied by altered DNA damage response in human corneal
1132 epithelial cells. *Free Radic Biol Med* 2020; 150: 66-74.
- 1133
- 1134 29 Qu Y, He Y, Yang Y, Li S, An W, Li Z *et al.* ALDH3A1 acts as a prognostic
1135 biomarker and inhibits the epithelial mesenchymal transition of oral squamous
1136 cell carcinoma through IL-6/STAT3 signaling pathway. *J Cancer* 2020; 11: 2621-
1137 2631.
- 1138
- 1139 30 Li T, Zhang C, Zhao G, Zhang X, Hao M, Hassan S *et al.* IGFBP2 regulates PD-
1140 L1 expression by activating the EGFR-STAT3 signaling pathway in malignant
1141 melanoma. *Cancer Lett* 2020; 477: 19-30.
- 1142
- 1143 31 Villani RM, Adolphe C, Palmer J, Waters MJ, Wainwright BJ. Patched1 inhibits
1144 epidermal progenitor cell expansion and basal cell carcinoma formation by
1145 limiting Igfbp2 activity. *Cancer Prev Res (Phila)* 2010; 3: 1222-1234.
- 1146
- 1147 32 García-Díez I, Hernández-Muñoz I, Hernández-Ruiz E, Nonell L, Puigdecanet E,
1148 Bódalo-Torruella M *et al.* Transcriptome and cytogenetic profiling analysis of
1149 matched *in situ*/invasive cutaneous squamous cell carcinomas from
1150 immunocompetent patients. *Genes Chromosomes Cancer* 2019; 58: 164-174.

- 1151
1152 33 Weitzman JB, Fiette L, Matsuo K, Yaniv M. JunD protects cells from p53-
1153 dependent senescence and apoptosis. *Mol Cell* 2000; 6: 1109-1119.
- 1154
1155 34 Sample A, Zhao B, Qiang L, He YY. Adaptor protein p62 promotes skin tumor
1156 growth and metastasis and is induced by UVA radiation. *J Biol Chem* 2017; 292:
1157 14786-14795.
- 1158
1159 35 Meyer N, Peyret-Lacombe A, Canguilhem B, Médale-Giamarchi C, Mamouni K,
1160 Cristini A *et al.* RhoB promotes cancer initiation by protecting keratinocytes from
1161 UVB-induced apoptosis but limits tumor aggressiveness. *J Invest Dermatol* 2014;
1162 134: 203-212.
- 1163
1164 36 Ip WKE, Hoshi N, Shouval DS, Snapper S, Medzhitov R. Anti-inflammatory
1165 effect of IL-10 mediated by metabolic reprogramming of macrophages. *Science*
1166 2017; 356: 513-519.
- 1167
1168 37 Agarwal S, Mirzoeva S, Readhead B, Dudley JT, Budunova I. PI3K inhibitors
1169 protect against glucocorticoid-induced skin atrophy. *EBioMedicine* 2019; 41: 526-
1170 537.
- 1171
1172 38 Chen H, Yuan Y, Zhang C, Luo A, Ding F, Ma J *et al.* Involvement of S100A14
1173 protein in cell invasion by affecting expression and function of matrix
1174 metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation. *J Biol
1175 Chem* 2012; 287: 17109-17119.
- 1176
1177 39 Chen H, Yu D, Luo A, Tan W, Zhang C, Zhao D *et al.* Functional role of
1178 S100A14 genetic variants and their association with esophageal squamous cell
1179 carcinoma. *Cancer Res* 2009; 69: 3451-3457.
- 1180
1181 40 Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A. ENO1 gene product binds
1182 to the c-myc promoter and acts as a transcriptional repressor: relationship with
1183 Myc promoter-binding protein 1 (MBP-1). *FEBS Lett* 2000; 473: 47-52.
- 1184
1185 41 Xu X, Wei S, Chen Y, Yu D, Wang X, Dong X. Serum Small Proline-Rich
1186 Protein 2A (SPRR2A) Is a Noninvasive Biomarker in Gastric Cancer. *Dis
1187 Markers* 2020; 2020: 8493796.
- 1188
1189 42 Fischer DF, van Drunen CM, Winkler GS, van de Putte P, Backendorf C.
1190 Involvement of a nuclear matrix association region in the regulation of the
1191 SPRR2A keratinocyte terminal differentiation marker. *Nucleic Acids Res* 1998;
1192 26: 5288-5294.
- 1193
1194 43 Marionnet C, Pierrard C, Golebiewski C, Bernerd F. Diversity of biological
1195 effects induced by longwave UVA rays (UVA1) in reconstructed skin. *PLoS One*
1196 2014; 9: e105263.

- 1197
1198 44 Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-Critical Barrier Alarmin
1199 Molecules in Skin Wounds and Psoriasis. *Cells* 2019; 8.
- 1200
1201 45 Halawi A, Abbas O, Mahalingam M. S100 proteins and the skin: a review. *J Eur
1202 Acad Dermatol Venereol* 2014; 28: 405-414.
- 1203
1204 46 Coles CH, McMurran C, Lloyd A, Hock M, Hibbert L, Raman MCC *et al.* T cell
1205 receptor interactions with human leukocyte antigen govern indirect peptide
1206 selectivity for the cancer testis antigen MAGE-A4. *J Biol Chem* 2020; 295:
1207 11486-11494.
- 1208
1209 47 Tang WW, Liu ZH, Yang TX, Wang HJ, Cao XF. Upregulation of MAGEA4
1210 correlates with poor prognosis in patients with early stage of esophageal
1211 squamous cell carcinoma. *Onco Targets Ther* 2016; 9: 4289-4293.
- 1212
1213 48 Nieto-Nicolau N, de la Torre RM, Fariñas O, Savio A, Vilarrodon A, Casaroli-
1214 Marano RP. Extrinsic modulation of integrin α 6 and progenitor cell behavior in
1215 mesenchymal stem cells. *Stem Cell Res* 2020; 47: 101899.
- 1216
1217 49 Brooks DL, Schwab LP, Krutilina R, Parke DN, Sethuraman A, Hoogewijs D *et
1218 al.* ITGA6 is directly regulated by hypoxia-inducible factors and enriches for
1219 cancer stem cell activity and invasion in metastatic breast cancer models. *Mol
1220 Cancer* 2016; 15: 26.
- 1221
1222 50 Muehleisen B, Schaefer L, Dummer R, Burg G, Hofbauer GF. Cancer/testis
1223 antigen MAGE-A4 expression pattern differs in epithelial skin tumors of organ-
1224 transplant recipients and immunocompetent patients. *J Cutan Pathol* 2007; 34: 1-
1225 6.
- 1226
1227 51 Chawla S, Warren TA, Wockner LF, Lambie DL, Brown IS, Martin TP *et al.*
1228 Galectin-1 is associated with poor prognosis in patients with cutaneous head and
1229 neck cancer with perineural spread. *Cancer Immunol Immunother* 2016; 65: 213-
1230 222.
- 1231
1232 52 Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans
1233 cells in NB-UVB-induced immunosuppression. *Kobe J Med Sci* 2013; 59: E1-9.
- 1234
1235 53 Ji AL, Rubin AJ, Thrane K, Jiang S, Reynolds DL, Meyers RM *et al.* Multimodal
1236 Analysis of Composition and Spatial Architecture in Human Squamous Cell
1237 Carcinoma. *Cell* 2020; 182: 1661-1662.
- 1238
1239 54 Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM *et al.*
1240 A framework for advancing our understanding of cancer-associated fibroblasts.
1241 *Nat Rev Cancer* 2020; 20: 174-186.
- 1242

- 1243 55 Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts. *Biomark Res*
1244 2020; 8: 64.
- 1245
- 1246 56 Akatsu Y, Takahashi N, Yoshimatsu Y, Kimuro S, Muramatsu T, Katsura A *et al.*
1247 Fibroblast growth factor signals regulate transforming growth factor- β -induced
1248 endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1. *Mol*
1249 *Oncol* 2019; 13: 1706-1724.
- 1250
- 1251 57 Sayed N, Wong WT, Ospino F, Meng S, Lee J, Jha A *et al.* Transdifferentiation
1252 of human fibroblasts to endothelial cells: role of innate immunity. *Circulation*
1253 2015; 131: 300-309.
- 1254
- 1255 58 Kashem SW, Haniffa M, Kaplan DH. Antigen-Presenting Cells in the Skin. *Annu*
1256 *Rev Immunol* 2017; 35: 469-499.
- 1257
- 1258 59 Collin M, Milne P. Langerhans cell origin and regulation. *Curr Opin Hematol*
1259 2016; 23: 28-35.
- 1260
- 1261 60 Li R, Fang F, Jiang M, Wang C, Ma J, Kang W *et al.* STAT3 and NF- κ B are
1262 Simultaneously Suppressed in Dendritic Cells in Lung Cancer. *Sci Rep* 2017; 7:
1263 45395.
- 1264
- 1265 61 Davies J, Sirvent S, Vallejo A, Clayton K, Porter G, Stumpf P *et al.* Single cell
1266 transcriptomic analysis identifies Langerhans cells immunocompetency is critical
1267 for IDO1- dependent ability to induce tolerogenic T cells, 2019.
- 1268
- 1269 62 Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH *et al.* Inference
1270 and analysis of cell-cell communication using CellChat. *Nat Commun* 2021; 12:
1271 1088.
- 1272
- 1273 63 Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin
1274 receptors in epithelia. *Tissue Cell* 2019; 56: 71-78.
- 1275
- 1276 64 Yap L, Tay HG, Nguyen MTX, Tjin MS, Tryggvason K. Laminins in Cellular
1277 Differentiation. *Trends Cell Biol* 2019; 29: 987-1000.
- 1278
- 1279 65 Rousselle P, Scoazec JY. Laminin 332 in cancer: When the extracellular matrix
1280 turns signals from cell anchorage to cell movement. *Semin Cancer Biol* 2020; 62:
1281 149-165.
- 1282
- 1283 66 Sheng Y, Li F, Qin Z. TNF Receptor 2 Makes Tumor Necrosis Factor a Friend of
1284 Tumors. *Front Immunol* 2018; 9: 1170.
- 1285
- 1286 67 Chaoul N, Tang A, Desrues B, Oberkampf M, Fayolle C, Ladant D *et al.* Lack of
1287 MHC class II molecules favors CD8(+) T-cell infiltration into tumors associated
1288 with an increased control of tumor growth. *Oncoimmunology* 2018; 7: e1404213.

- 1289
1290 68 Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular
1291 responses in inflammation, injury resolution, and tumorigenesis. *J Leukoc Biol*
1292 2020; 108: 787-799.
- 1293
1294 69 Lechmann M, Berchtold S, Hauber J, Steinkasserer A. CD83 on dendritic cells:
1295 more than just a marker for maturation. *Trends Immunol* 2002; 23: 273-275.
- 1296
1297 70 Ghadially R. 25 years of epidermal stem cell research. *J Invest Dermatol* 2012;
1298 132: 797-810.
- 1299
1300 71 Eckert RL, Adhikary G, Balasubramanian S, Rorke EA, Vemuri MC, Boucher SE
1301 *et al.* Biochemistry of epidermal stem cells. *Biochim Biophys Acta* 2013; 1830:
1302 2427-2434.
- 1303
1304 72 Goldie SJ, Chincarini G, Darido C. Targeted Therapy Against the Cell of Origin
1305 in Cutaneous Squamous Cell Carcinoma. *Int J Mol Sci* 2019; 20.
- 1306
1307 73 Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse
1308 skin reactions and carcinogenesis from radiation. *Mutat Res Rev Mutat Res* 2016;
1309 770: 349-368.
- 1310
1311 74 Morris RJ, Coulter K, Tryson K, Steinberg SR. Evidence that cutaneous
1312 carcinogen-initiated epithelial cells from mice are quiescent rather than actively
1313 cycling. *Cancer Res* 1997; 57: 3436-3443.
- 1314
1315 75 Sánchez-Danés A, Hannezo E, Larsimont JC, Liagre M, Youssef KK, Simons BD
1316 *et al.* Defining the clonal dynamics leading to mouse skin tumour initiation.
1317 *Nature* 2016; 536: 298-303.
- 1318
1319 76 Terzuoli E, Bellan C, Aversa S, Ciccone V, Morbidelli L, Giachetti A *et al.*
1320 ALDH3A1 Overexpression in Melanoma and Lung Tumors Drives Cancer Stem
1321 Cell Expansion, Impairing Immune Surveillance through Enhanced PD-L1
1322 Output. *Cancers (Basel)* 2019; 11.
- 1323
1324 77 Zhao S, Wu L, Kuang Y, Su J, Luo Z, Wang Y *et al.* Downregulation of CD147
1325 induces malignant melanoma cell apoptosis via the regulation of IGFBP2
1326 expression. *Int J Oncol* 2018; 53: 2397-2408.
- 1327
1328 78 Fernández-Guarino M, Zamorano León JJ, López Farré AJ, González Morales
1329 ML, Sánchez Adrada AI, Barrio Garde J *et al.* Cytoplasmic Increase in Hsp70
1330 Protein: A Potential New Biomarker of Early Infiltration of Cutaneous Squamous
1331 Cell Carcinoma Arising from Actinic Keratosis. *Cancers (Basel)* 2020; 12.
- 1332

- 1333 79 Solé-Boldo L, Raddatz G, Schütz S, Mallm JP, Rippe K, Lonsdorf AS *et al.*
1334 Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast
1335 priming. *Commun Biol* 2020; 3: 188.
- 1336
- 1337 80 Werner RN, Stockfleth E, Connolly SM, Correia O, Erdmann R, Foley P *et al.*
1338 Evidence- and consensus-based (S3) Guidelines for the Treatment of Actinic
1339 Keratosis - International League of Dermatological Societies in cooperation with
1340 the European Dermatology Forum - Short version. *J Eur Acad Dermatol Venereol*
1341 2015; 29: 2069-2079.
- 1342
- 1343 81 Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS *et al.* Single cell
1344 transcriptional and chromatin accessibility profiling redefine cellular
1345 heterogeneity in the adult human kidney. *Nat Commun* 2021; 12: 2190.
- 1346
- 1347 82 Boukamp P, Tilgen W, Dzarlieva RT, Breitkreutz D, Haag D, Riehl RK *et al.*
1348 Phenotypic and genotypic characteristics of a cell line from a squamous cell
1349 carcinoma of human skin. *J Natl Cancer Inst* 1982; 68: 415-427.
- 1350
- 1351 83 Tilgen W, Boukamp P, Breitkreutz D, Dzarlieva RT, Engstner M, Haag D *et al.*
1352 Preservation of morphological, functional, and karyotypic traits during long-term
1353 culture and in vivo passage of two human skin squamous cell carcinomas. *Cancer*
1354 Res 1983; 43: 5995-6011.
- 1355
- 1356
- 1357

1358 **Figure legends**

1359 **Fig. 1 Single-cell transcriptome profiling identified different subgroups of**
1360 **keratinocytes in human normal skin. (A)** Flowchart overview of single-cell sequencing
1361 in human skin of actinic keratosis (AK), squamous cell carcinoma in situ (SCCIS) and
1362 cutaneous squamous cell carcinoma (cSCC) patients. **(B)** Hematoxylin and eosin staining
1363 (H&E) of skin biopsies from representative AK (100X & 250X), SCCIS (50X & 250X)
1364 and cSCC (50X & 250X). **(C)** Uniform manifold approximation and projection (UMAP)
1365 plot of human normal skin labeled by cell type and patient respectively. **(D)** Heatmap
1366 showing gene expression signatures of each cell type. **(E)** Violin plot displaying the
1367 expression of representative genes to identify subpopulations for each cell type. **(F)**
1368 Representative gene ontology (GO) terms of signature genes in different cell
1369 subpopulations. The color keys from yellow to red indicate the range of p value.

1370

1371 **Fig. 2 Identification of potential key genes driving normal skin to AK. (A)** UMAP of
1372 scRNA-seq cells and cell proportion from each AK patient labeled by cell type. **(B)** Cell
1373 proportion of all AK samples and patient-matched normal skin samples. **(C)** Heatmap of
1374 GO terms for up-regulated genes in Basal1, Basal2 and Pro KC subpopulations for AK
1375 versus normal skin. **(D)** Violin plots showing the different expression levels of ALDH3A1
1376 and IGFBP2 across cell types in AK and normal samples. **(E)** Left, immunofluorescence
1377 staining of ALDH3A1 and IGFBP2 in AK and normal skin groups. Scale bar, 100 μ m.
1378 Right, the mean optical density (IOD/Area) analyses of ALDH3A1 and IGFBP2 in AK and
1379 normal skin. n = 20 for each group. ***p < 0.001.

1380 **Fig. 3 Monotonically changed DEGs play important roles in the progression of AK to**
1381 **SCCIS. (A)** Left, UMAP of all cells from patient (P2) with both AK and SCCIS labeled
1382 by cell types; right, expression of basal, Pro KC and differentiated genes in all
1383 keratinocytes from P2. **(B)** Left, UMAP of all keratinocytes from P2 labeled by patient and
1384 cell type respectively; right, cell proportion of normal, AK and SCCIS samples in P2. **(C)**
1385 Overlap of up-regulated genes in basal cells from AK compared to normal and SCCIS
1386 compared to AK. **(D)** Violin plots showing the different expression levels of KLF6 and
1387 FOSL1 in normal, AK and SCCIS samples in P2.

1388

1389 **Fig. 4 Identification of malignant basal subpopulation in SCCIS. (A)** Representative
1390 GO terms for genes with specific expression in basal cell of SCCIS, AK and normal
1391 samples in P2 (upper) and up-regulated DEGs from AK versus normal, SCCIS versus
1392 normal, SCCIS versus AK respectively (lower). **(B)** Heatmap showing CNV levels of all
1393 keratinocytes from AK and SCCIS samples in P2. The keratinocytes from normal sample
1394 in P2 were defined as references. **(C)** UMAP of subgroups generated from basal cells in
1395 SCCIS sample showing basal cells with higher CNV level enriched in one subgroup; red
1396 dot representing basal cells with higher CNV level ($\text{cnv.score} > 81.5$). **(D)** Pseudotime
1397 analysis of basal cells in SCCIS was generated with Monocle3. **(E)** DEGs detected between
1398 Basal-SCCIS-tumor and Basal-SCCIS-normal. **(F)** Representative enriched Kyoto
1399 Encyclopedia of Genes and Genomes (KEGG) and GO terms in up-regulated genes
1400 ($\text{avg_log2FC} > 0.58$ and $\text{p_val_adj} < 0.05$). **(G)** Violin plots showing the expression level
1401 of representative DNA damage response marker genes in Basal-SCCIS-tumor and Basal-
1402 SCCIS-normal subgroups. **(H)** Chord plot showing the top up-regulated genes included in

1403 representative GO terms. **(I)** Violin plots showing the expression level of major members
1404 in HSP family across Basal-SCCIS-tumor and Basal-SCCIS-normal subgroups. **(J)** Violin
1405 plots showing the expression level of MAGEA4 and ITGA6 in Basal-SCCIS-tumor and
1406 Basal-SCCIS-normal subgroups. **(K)** Immunohistochemistry staining of MAGEA4 and
1407 ITGA6 in human skin of normal, SCCIS and cSCC samples.

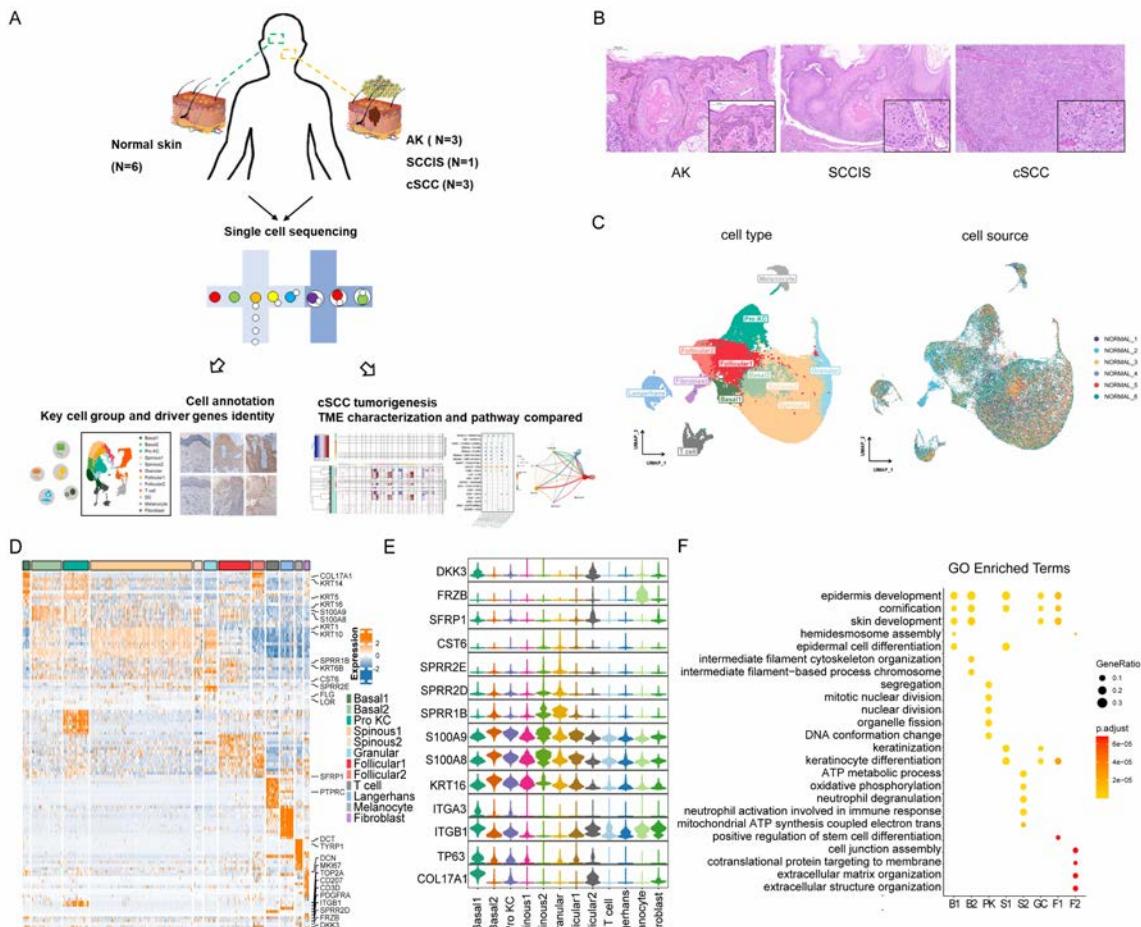
1408

1409 **Fig. 5 Identification of key genes associated with cSCC.** **(A)** UMAP of all cells from
1410 cSCC patients labeled by sample and cell type respectively. **(B)** Cell proportion of
1411 keratinocytes in cSCC and normal groups. **(C)** Expression of basal, Pro KC and
1412 differentiated genes in all keratinocytes of cSCC and normal groups. **(D)** Left,
1413 immunohistochemical staining of LGALS1, IFITM3 and FTH1 in normal skin (200X),
1414 well-differentiated cSCC (WD.cSCC) (50X & 250X) and moderately-
1415 differentiated/poorly-differentiated cSCC (MD/PD.cSCC) (50X & 250X). Scale bar, 200
1416 μ m & 50 μ m. Right, the immunoreactivity score (IRS) analyses of LGALS1, IFITM3 and
1417 FTH1 in normal skin, WD cSCC and MD/PD cSCC. n = 15 for each group. *p < 0.05; **p
1418 < 0.01; ***p < 0.001; ns, not significant. **(E)** The mRNA expression of LGALS1, IFITM3
1419 and FTH1 in human immortalized keratinocytes (HaCaT) and cSCC cell lines (A431, SCL-
1420 I, SCL-II). *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant.

1421

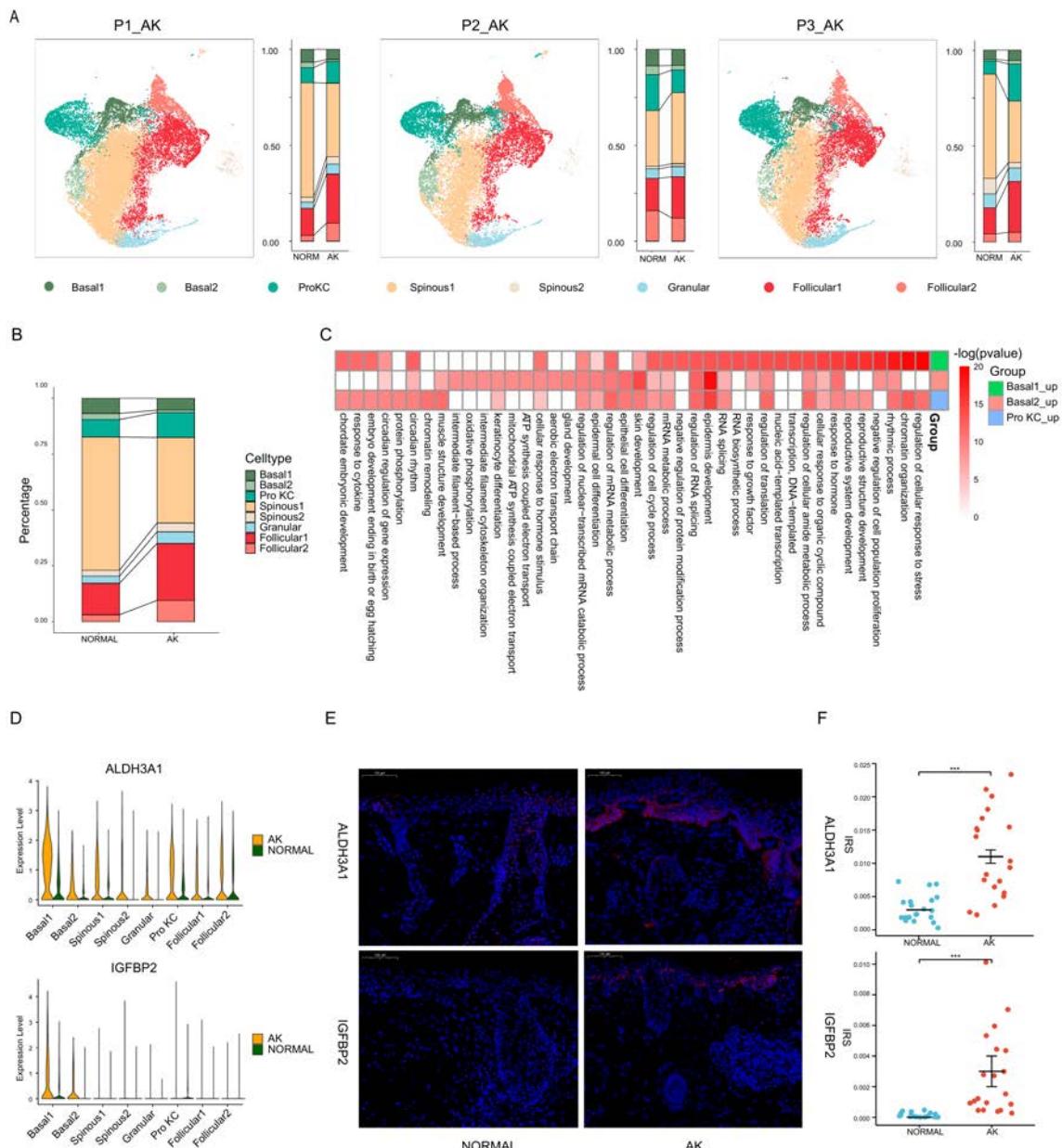
1422 **Fig. 6 Functional characterization of key genes associated with cSCC.** **(A)** Effect of
1423 siRNA on the expression of LGALS1, IFITM3 and FTH1 in A431, SCL-I and SCL-II
1424 determined by qRT-PCR. **(B)** Effect of LGALS1, IFITM3 and FTH1 on cSCC cell
1425 proliferation. The CCK-8 proliferation assay demonstrated a significant decrease in the

1426 proliferation of the si-LGALS1, si-IFITM3 and si-FTH1 groups compared with the si-NC
1427 group. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. **(C)** The effect of LGALS1,
1428 IFITM3 and FTH1 on cSCC cell apoptosis. Significant increase in the apoptosis of the si-
1429 LGALS1, si-IFITM3 and si-FTH1 groups compared with the si-NC group. *p < 0.05; **p
1430 < 0.01; ***p < 0.001; ns, not significant. **(D)** The scratch experiment showed that LGALS1
1431 and IFITM3 knockdown resulted in a shorter vertical migration distance compared with
1432 the control group after 72 h, while there was no significant change in the si-FTH1 group.
1433 *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. **(E)** Transwell assay showed that
1434 the invasion abilities of the si-LGALS1, si-IFITM3 and si-FTH1 groups significant
1435 decreased compared with the si-NC group. *p < 0.05; **p < 0.01; ***p < 0.001.

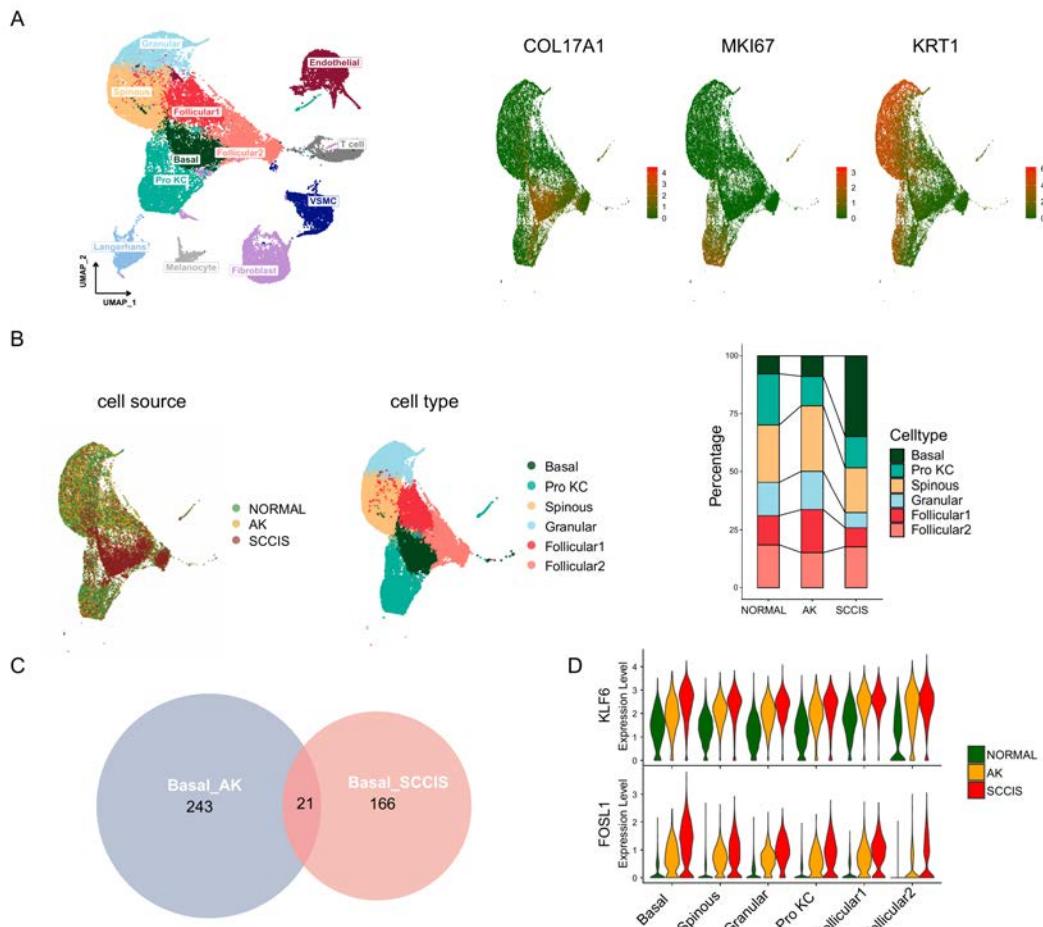

1436

1437 **Fig. 7 The analysis of cell-cell communication in TME of poorly-differentiated cSCC.**
1438 **(A)** Identification of TME cell subpopulations, including T cells, DC cells and stromal cells.
1439 **(B)** Two-layered complex heatmap of selected cell marker genes in each cell cluster. Left,
1440 mean expression of known lineage markers; right, expression map of known marker genes
1441 associated with each cell subset. The relative expression values are scaled and transformed
1442 to a scale from -2 to 2. **(C)** Circle network diagram of overall cell-cell interactions. Thicker
1443 edge line indicates a stronger signal. **(D)** Comparison of total incoming path weights vs
1444 total outgoing path weights across cell populations. **(E)** Heatmap showing the
1445 communication probability on certain signaling pathway level. The top heatmap shows the
1446 cell-cell interactions between KC cells and TME cells. The bottom shows the interaction
1447 between subpopulations of TME cells. **(F)** Comparison of total incoming path weights vs
1448 total outgoing path weights between normal and tumor samples across common cell

1449 populations. **(G)** Significant signaling pathways were ranked based on differences in the
1450 overall information flow within the inferred networks between normal and tumor samples.
1451 The signaling pathways colored orange are enriched in normal tissue, and pathways colored
1452 dark green were enriched in the tumor tissue. **(H)** Circle plot showing the inferred
1453 intercellular communication signaling strength network between normal and tumor
1454 samples in MHC-II, LAMININ and TNF pathway. **(I)** Comparison of the significant
1455 ligand-receptor pairs between normal and tumor skin. The top shows the contribution to
1456 the signaling from Langerhans to KC subpopulations. The bottom shows the contribution
1457 to the signaling from KC subpopulations to Langerhans. Dot color reflects communication
1458 probabilities and dot size represents computed p-values. Empty space means the
1459 communication probability is zero. p-values are computed from one-sided permutation test.

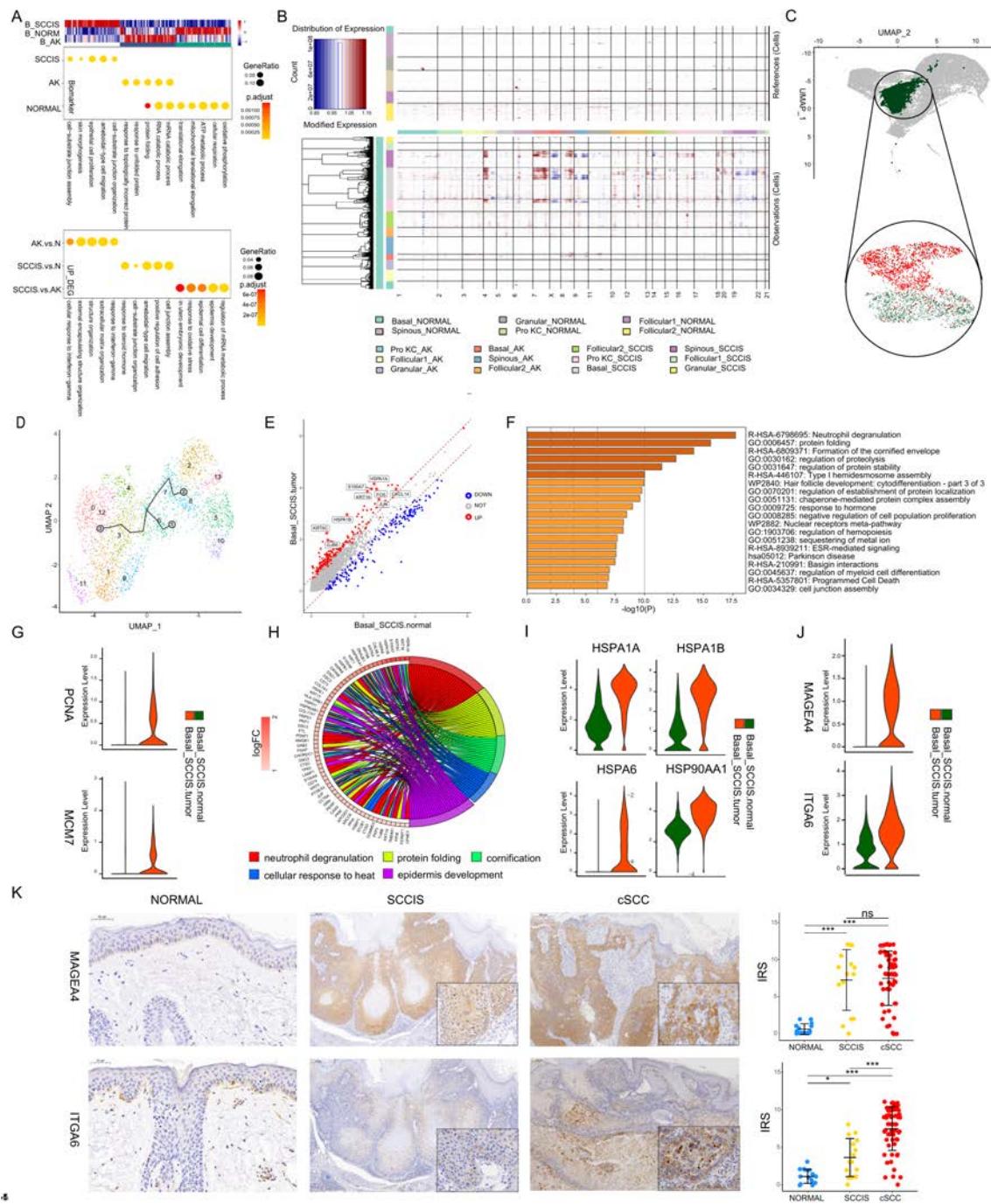

1460

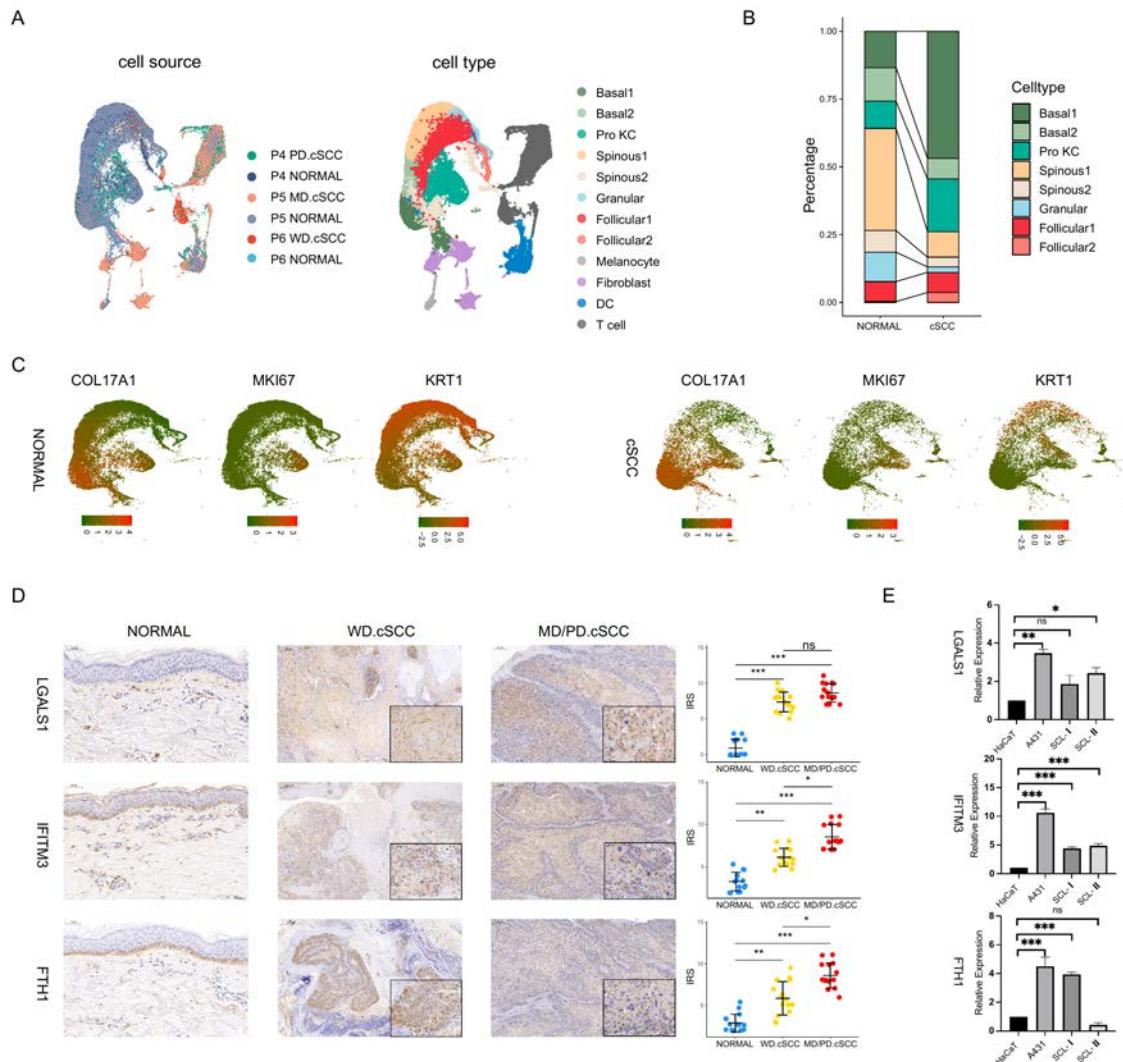
1461 **Fig. 1 Single-cell transcriptome profiling identified different subgroups of**
 1462 **keratinocytes in human normal skin.**

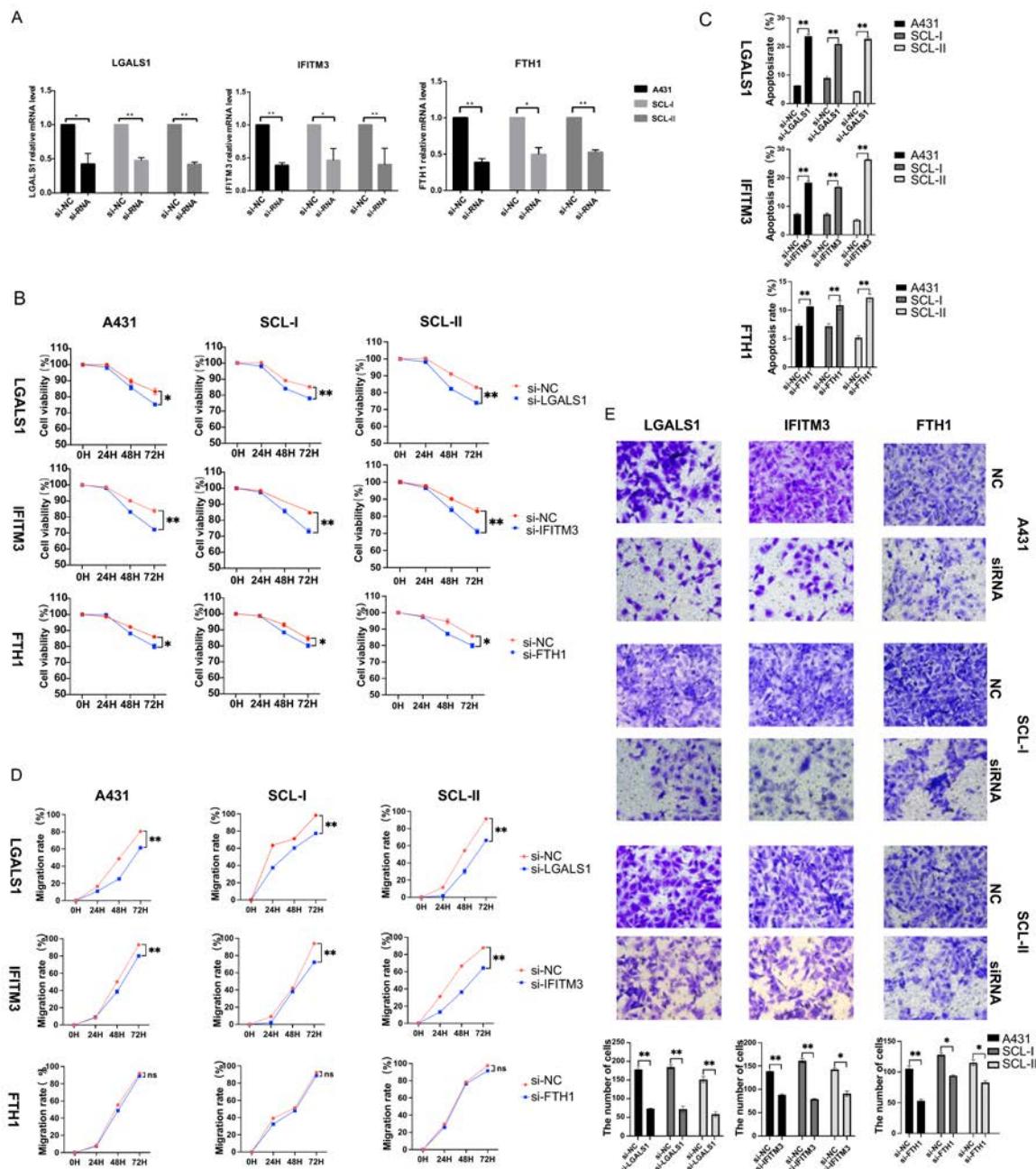


1463

1464


Fig. 2 Identification of potential key genes driving normal skin to AK.


1468 **Fig. 3 Monotonically changed DEGs play important roles in the progression of AK to**
 1469 **SCCIS.**



1470

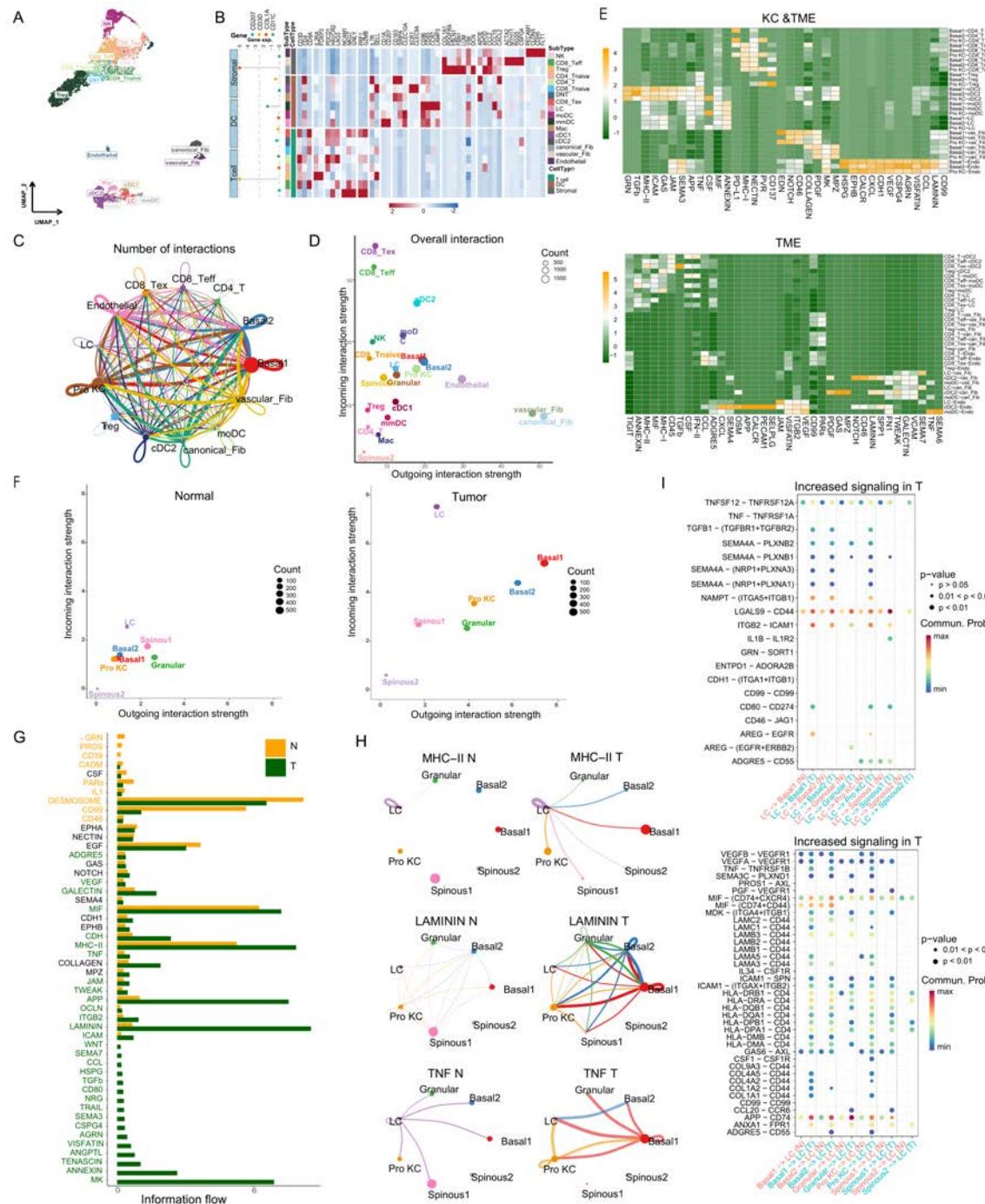

1471

Fig. 4 Identification of malignant basal subpopulation in SCCIS.

Fig. 5 Identification of key genes associated with cSCC.

Fig. 6 Functional characterization of key genes associated with cSCC.

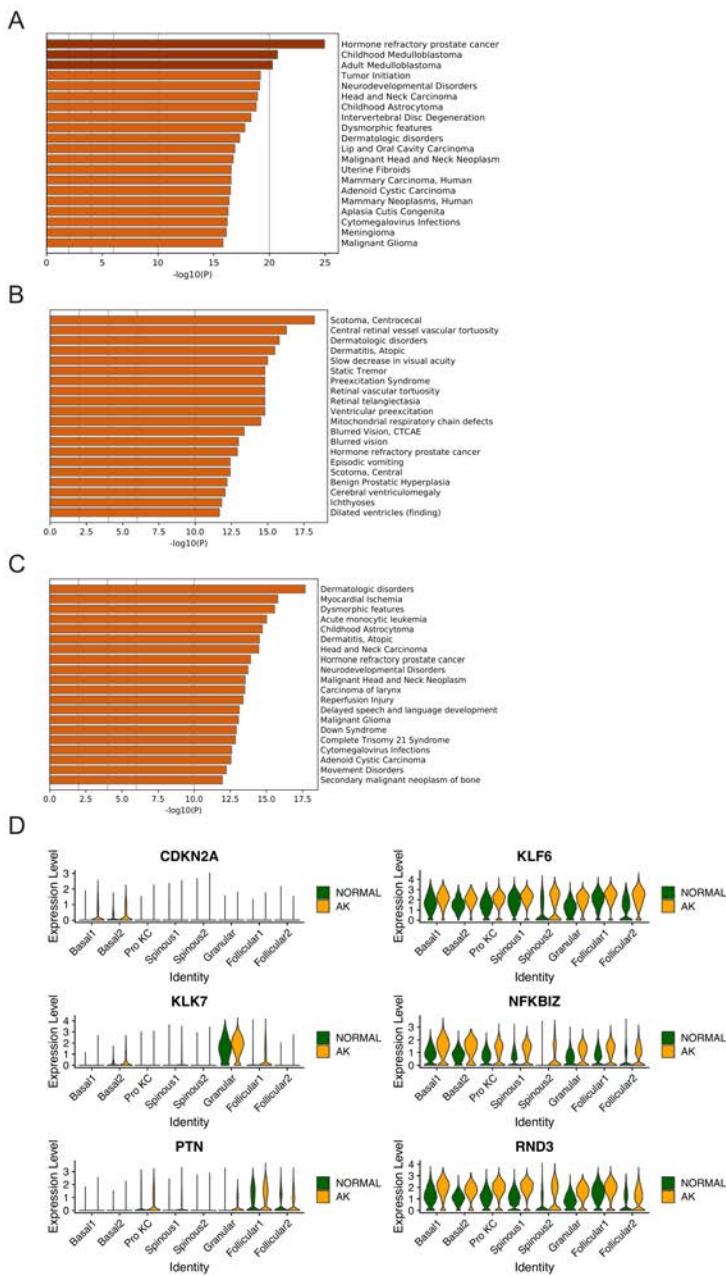
Fig. 7 The analysis of cell-cell communication in TME of poorly-differentiated

Supplementary Information for

Single-cell Sequencing Highlights Heterogeneity and Malignant Progression in Actinic Keratosis and Cutaneous Squamous Cell Carcinoma

Dan-Dan Zou[#], Ya-Zhou Sun[#], Xin-Jie Li, Wen-Juan Wu, Dan Xu, Yu-Tong He, Jue Qi, Ying Tu, Yang Tang, Yun-Hua Tu, Xiao-Li Wang, Xing Li, Feng-Yan Lu, Ling Huang, Heng Long, Li He*, Xin Li*

*Corresponding author. Email: drheli2662@126.com (L.H.), lixin253@mail.sysu.edu.cn (X.L.)


This PDF file includes:

Figs. S1 to S7
Legends for tables S1-S21

Other Supplementary Materials for this manuscript include the following:

Table S1 to S21

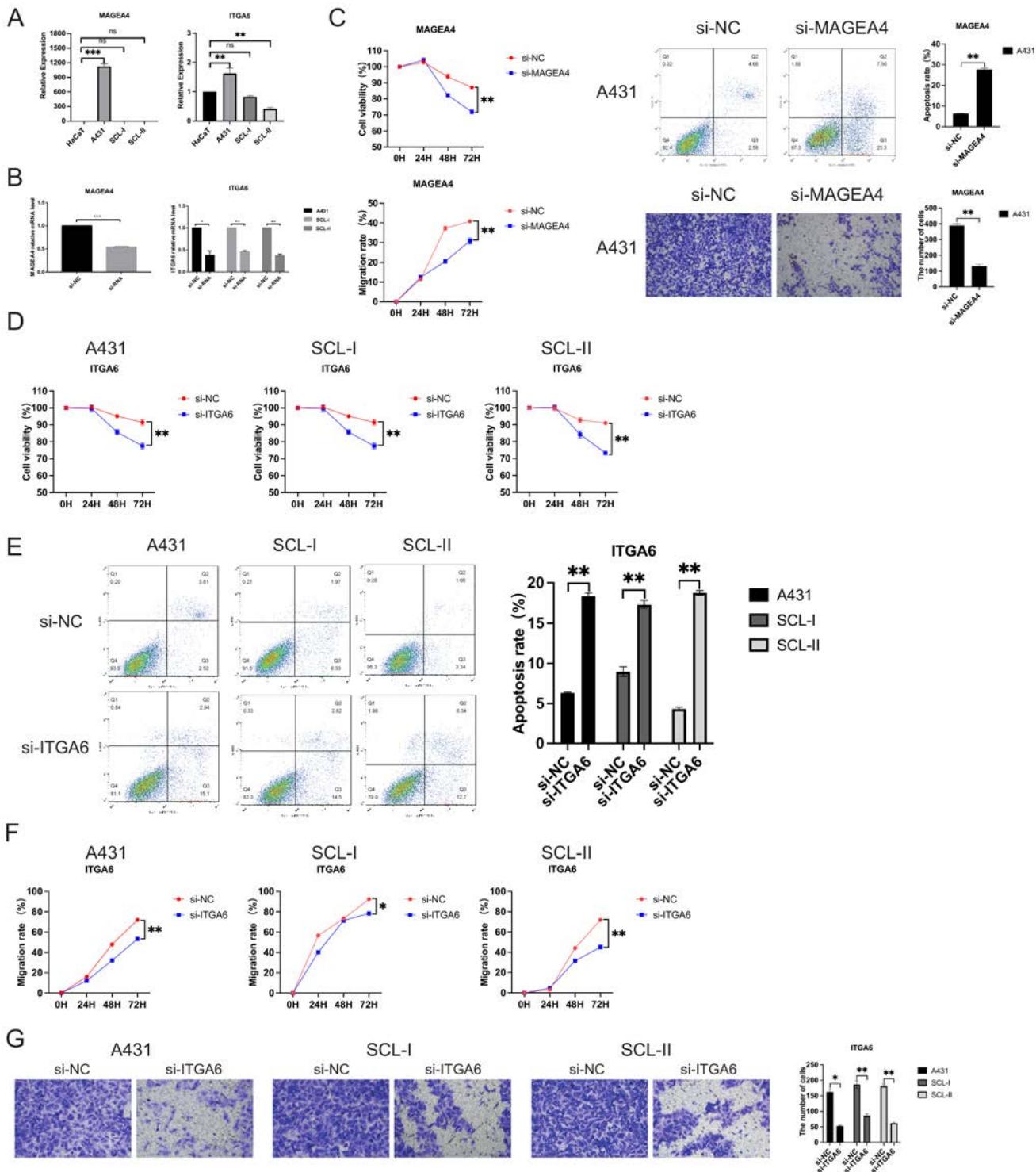

Supplementary Figures

Fig. S1. Identification of potential key driver genes from normal skin to AK. (A) The enriched disease terms of up-regulated DEGs in Basal1 between AK and normal groups based on DisGeNET database. (B) The enriched disease terms of up-regulated DEGs in Basal2 between AK and normal groups based on DisGeNET database. (C) The enriched disease terms of up-regulated DEGs in Pro KC between AK and normal groups based on DisGeNET database. (D) Violin plots showing the different expression levels of candidate genes in AK and normal samples.

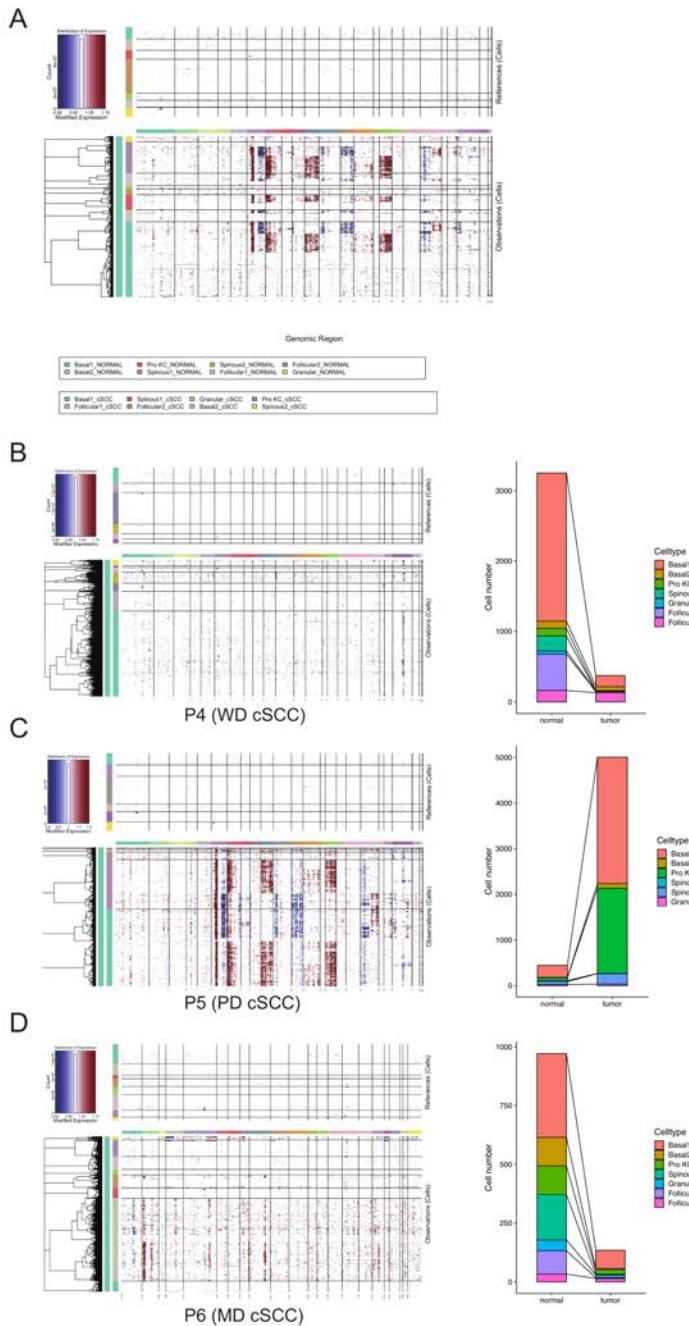


Fig. S2. The comprehensive analysis of the patient (P2) with both AK and SCCIS. (A) Overlap of down-regulated genes in basal cells from AK compared to normal and SCCIS compared to AK. (B) Left, UMAP of subgroups generated from basal cells in SCCIS sample labeled by Seurat clusters; middle and right, expression of stem cell marker (COL17A1, TP63) in basal cells in SCCIS sample. (C) Violin plots showing the different expression levels of candidate genes across all types of keratinocytes in P2, cSCC and normal groups. (D) Left, immunohistochemical staining showed the expression of MAGEA4 in SCCIS (left) was higher than that for para-cancer normal skin tissues (right). Scale bar, 200 μ m. Right, immunofluorescence staining for COL17A1 (green), PCNA (red) and MAGEA4 (pink) validates their co-expression in SCCIS. DAPI stains nuclei. Scale bar, 200 μ m. The representative views of co-staining were shown in the enlarged images at bottom left. Scale bar, 50 μ m.

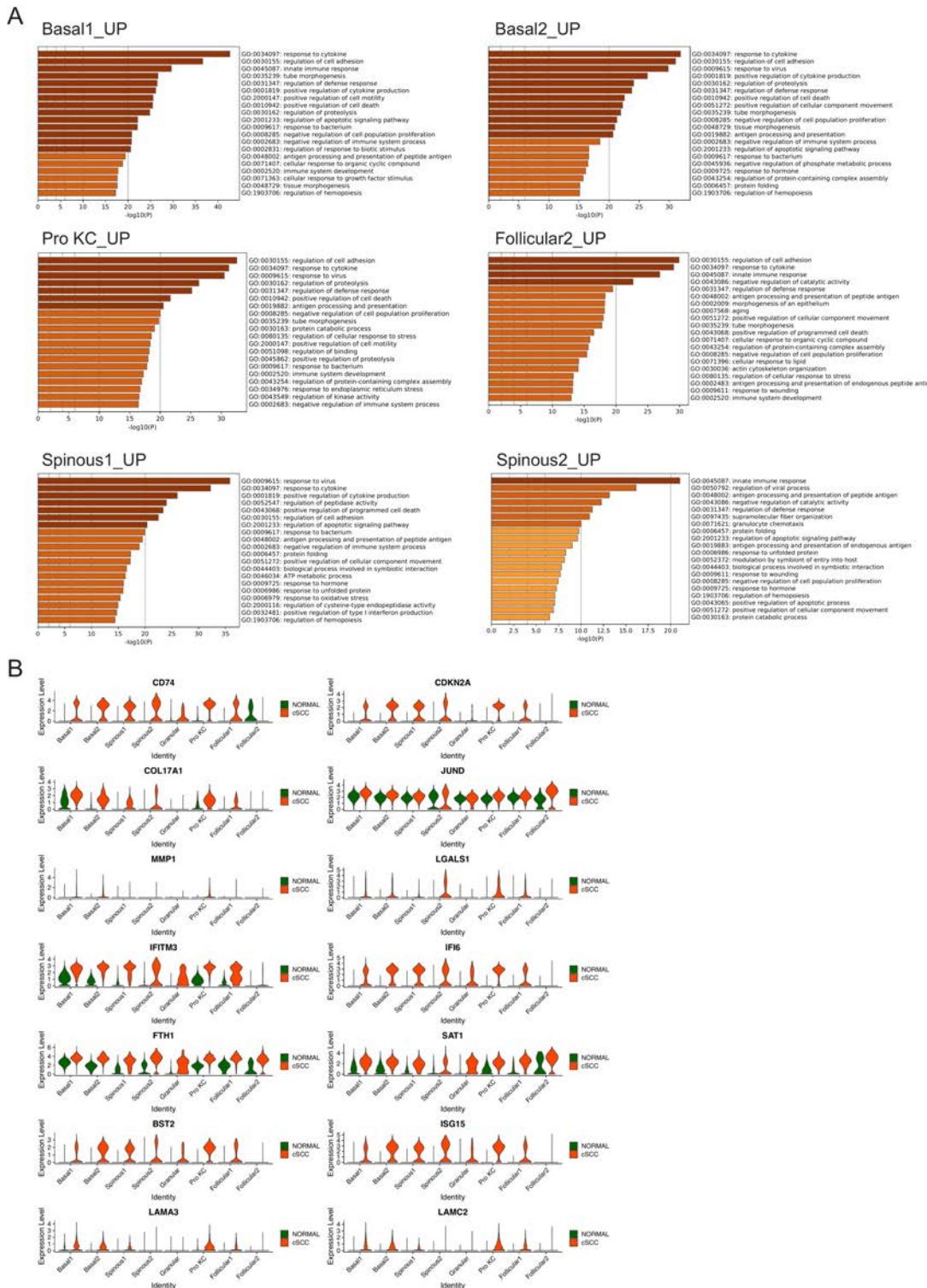
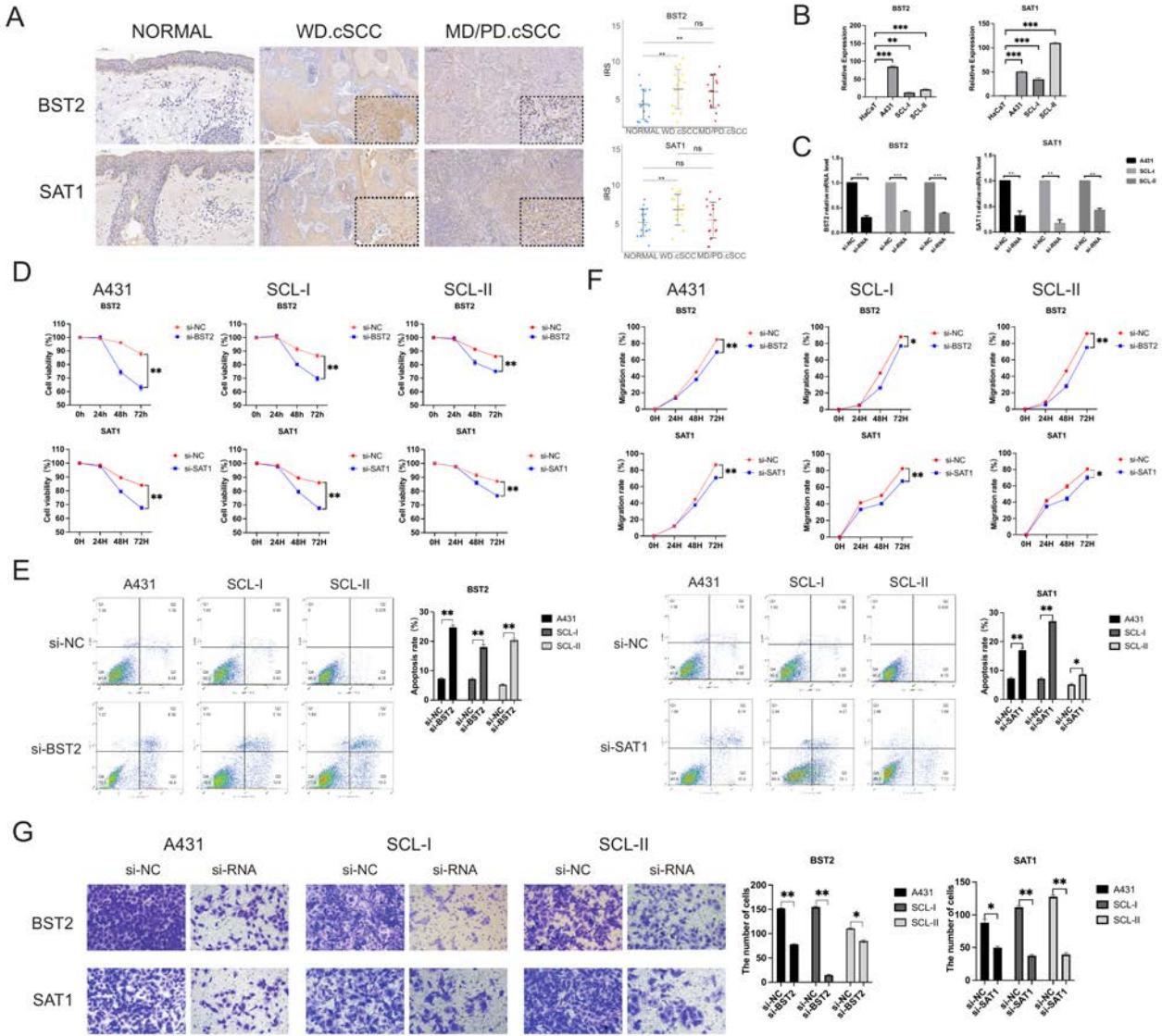


Fig. S3. Expression and functional characterization of MAGEA4 and ITGA6. (A) The mRNA expression of MAGEA4 and ITGA6 in human immortalized keratinocytes (HaCaT) and cSCC cell lines (A431, SCL-I, SCL-II). *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. (B) Effect of siRNA on the expression of MAGEA4 in A432 and ITGA6 in A431, SCL-I and SCL-II determined by qRT-PCR. (C) Functional experiment of MAGEA4 in A432. Upper, left, effect of MAGEA4 cSCC cell


proliferation by CCK-8 proliferation in A431; upper, right, the effect of MAGEA4 on cSCC cell apoptosis was measured by staining with Annexin V-FITC/PI, followed by FACS analysis. Lower, left, the scratch experiment showed that MAGEA4 knockdown resulted in a shorter vertical migration distance compared with the control group after 72 h; lower, right, transwell assay showed that the invasion abilities of the si-MAGEA4 groups significant decreased compared with the si-NC group. **p < 0.01. (D) Effect of ITGA6 on cSCC cell proliferation by CCK-8 proliferation assay in A431, SCL-I and SCL-II. *p < 0.05; **p < 0.01. (E) The effect of ITGA6 on cSCC cell apoptosis. **p < 0.01. (F) ITGA6 knockdown resulted in a shorter vertical migration distance compared with the control group after 72 h. *p < 0.05; **p < 0.01. (G) The invasion abilities of the si-ITGA6 groups significant decreased compared with the si-NC group. *p < 0.05; **p < 0.01.

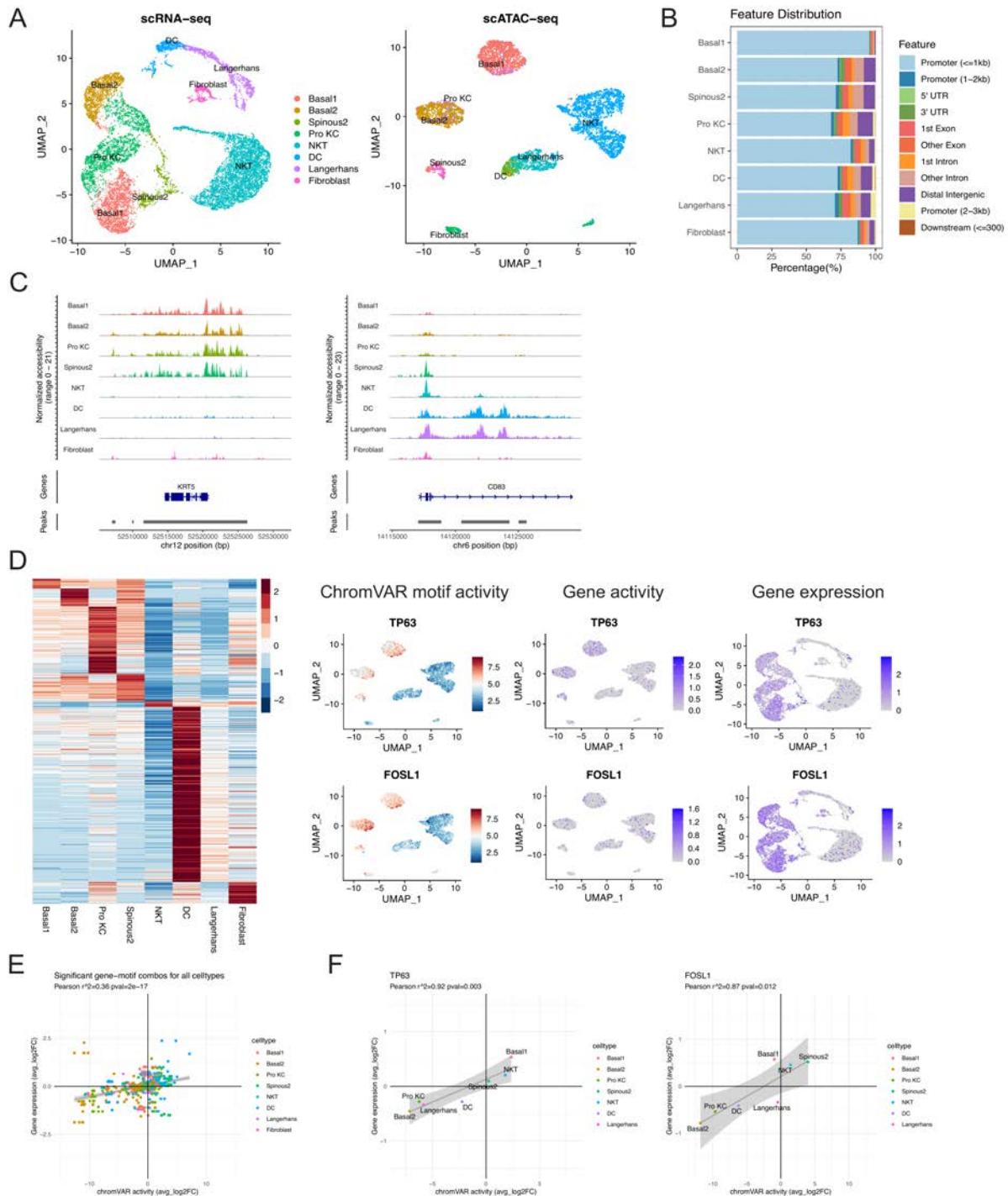

Fig. S4. CNV scores positively correlated with malignant degrees of cSCC. (A) Heatmap showing CNV levels of all keratinocytes from all cSCC samples. The keratinocytes from all patient-matched normal samples were defined as references. (B) Left, heatmap showing CNV levels of all keratinocytes from WD cSCC sample; right, the proportion of tumor and normal cells in WD cSCC sample defined by cnv.cut (probs = 0.99). (C) Left, heatmap showing CNV levels of all keratinocytes from PD cSCC sample; right, the proportion of tumor and normal cells in PD cSCC sample defined by cnv.cut (probs = 0.99). (D) Left, heatmap showing CNV levels of all keratinocytes from MD cSCC sample; right, the proportion of tumor and normal cells in MD cSCC sample defined by cnv.cut (probs = 0.99).

Fig. S5. Identification of key genes associated with cSCC. (A) The enriched GO terms of up-regulated DEGs in Basal1, Basal2, Pro KC, Follicular2, Spinous1 and Spinous2 between cSCC and normal groups. (B) Violin plots showing the different expression levels of candidate genes in cSCC and normal groups.

Fig. S6. Expression and functional characterization of BST2 and SAT1. (A) Left, immunohistochemical staining of BST2 and SAT1 in cSCC in normal skin (200X), WD cSCC (50X & 250X) and MD/PD cSCC (50X & 250X). Scale bar, 200 μ m & 50 μ m. Right, The immunoreactivity score (IRS) analyses of BST2 and SAT1 in normal skin, WD cSCC and MD/PD cSCC. n = 15 for each group. *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. (B) The mRNA expression of BST2 and SAT1 in human immortalized keratinocytes (HaCaT) and cSCC cell lines (A431, SCL-I, SCL-II). *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant. (C) Effect of siRNA on the expression of BST2 and SAT1 in A431, SCL-I and SCL-II determined by qRT-PCR. (D) Effect of BST2 and SAT1 on cSCC cell proliferation by CCK-8 proliferation assay in A431, SCL-I and SCL-II. **p < 0.01. (E) The effect of BST2 and SAT1 on cSCC cell apoptosis. **p < 0.01. (F) BST2 and SAT1 knockdown resulted in a shorter vertical migration distance compared with the control group after 72 h. *p < 0.05; **p < 0.01. (G) The invasion abilities of the si-ITGA6 groups significant decreased compared with the si-NC group. *p < 0.05; **p < 0.01.

Fig. S7. Chromatin accessibility is associated with transcription factor activity. (A) Left, UMAP of scRNA-seq dataset from PD cSCC sample labeled by cell type; right, UMAP plot of scATAC-seq dataset from PD cSCC sample after integration and label transfer with scRNA-seq data. (B) Bar plot of annotated differentially accessible region (DAR) location for each type. (C) Fragment coverage (frequency of Tn5 insertion) around the DAR on the gene KRT5 and CD83. (D) Left, Heatmap of average chromVAR motif activity for each cell type. The color scale represents a z-

score scaled by row. Right, UMAP plot displaying chromVAR motif activity, gene activity and gene expression of TP63 (upper) and FOSL1 (lower). The color scale for each plot represents a normalized log-fold-change for the respectively assay. (E) Cell-specific mean chromVAR motif activity from the JASPAR database was plotted against cell-specific average expression for the corresponding transcription factor for all cell types and transcription factors. (F) Mean chromVAR activity was plotted against average expression for TP63 (left) and FOSL1 (right). Significant correlation was assessed with Pearson's product moment correlation coefficient using the `cor.test` function in R.

See zip file

Table S1-S16 S19-S21.

Table S1: Clinical characteristic of patients and samples enrolled in single-cell sequencing. **Table S2:** The gene list of up-regulated DEGs in AK Basal1 subpopulation. **Table S3:** The gene list of up-regulated DEGs in AK Basal2 subpopulation. **Table S4:** The gene list of up-regulated DEGs in AK Pro KC subpopulation. **Table S5:** AK candidate driver genes and antibodies for IF. **Table S6:** The gene list of overlapped up-regulated DEGs in Basal subpopulation of P2 from AK vs normal and SCCIS vs AK.. **Table S7:** The gene list of overlapped down-regulated DEGs in Basal subpopulation of P2 from AK vs normal and SCCIS vs AK. **Table S8:** The gene list of up-regulated DEGs between Basal-SCCIS-tumor vs Basal-SCCIS-normal. **Table S9:** SCCIS candidate driver genes and antibodies for IHC. **Table S10:** The gene list of up-regulated DEGs in cSCC Basal1 subpopulation. **Table S11:** The gene list of up-regulated DEGs in cSCC Basal2 subpopulation. **Table S12:** The gene list of up-regulated DEGs in cSCC Pro KC subpopulation. **Table S13:** The gene list of up-regulated DEGs in cSCC Follicular2 subpopulation. **Table S14:** The gene list of up-regulated DEGs in cSCC Spinous1 subpopulation. **Table S15:** The gene list of up-regulated DEGs in cSCC Spinous2 subpopulation. **Table S16:** cSCC candidate driver genes and antibodies for IHC. **Table S19:** The correlation between chromVAR transcription factor activity with expression in scATAC-seq data. **Table S20:** The sequences of various siRNA oligonucleotides used in this study. **Table 21:** The primers of genes used for qRT-PCR.

Table S17. The differentially accessible chromatin regions between cell types of poorly-differentiated cSCC sample in scATAC-seq data.

Table S18. The chromVAR transcription factor activity between cell types of poorly-differentiated cSCC sample in scATAC-seq data.