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ABSTRACT 

Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae have produced 

the largest, richest and most systematic phenotypic description of any organism. Such an 

achievement was enabled by the development of highly scalable phenotypic assays and 

construction of the yeast knock-out (YKO) collection, comprising ~5,000 isogenic strains each 

deleted for exactly one open reading frame. Systematic screening of the YKO collection led to 

~500 publications describing ~14,500 phenotypes capturing nearly every aspect of yeast biology. 

Yet, integrative analyses of this rich data source have been virtually impossible due to the lack of 

a central repository and consistent meta-data annotations. Here, we describe the aggregation, 

harmonization and analysis of all published phenotypic screens of the YKO collection, which we 

refer to as the Yeast Phenome (www.yeastphenome.org). To demonstrate the power of data 

integration and illustrate how much it facilitates the generation of testable hypotheses, we present 

three discoveries uniquely enabled by Yeast Phenome. First, we use the variation in the number 

of phenotypes per gene to identify tryptophan homeostasis as a central point of vulnerability to a 

wide range of chemical compounds, including FDA-approved drugs. Second, using phenotypic 

profiles as a tool for predicting gene function, we identify and validate the role of YHR045W as a 

novel regulator of ergosterol biosynthesis and DNA damage response, and YGL117W as a new 

member of the aromatic amino acid biosynthesis pathway. Finally, we describe a surprising 

exponential relationship between phenotypic similarity and intergenic distance in both yeast and 

human genomes. This relationship, which stretches as far as 380 kb in yeast and 100 Mb in 

humans, suggests that gene positions are optimized for function to a much greater extent than 

appreciated previously. Overall, we show that Yeast Phenome enables systematic enquiries into 

the nature of gene-gene and gene-phenotype relationships and is an important new resource for 

systems biology.  
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INTRODUCTION  

 

Connecting genotypes to phenotypes is essential for understanding the molecular architecture of 

complex traits and developing successful therapies against aging and disease. The assembly of 

large human cohorts, coupled with deep phenotyping and advanced computational analysis, is 

enabling great progress towards uncovering genome-wide phenotypic associations in natural 

human populations (1). However, inferring causal gene-trait relationships from these associations 

remains a challenge due to the complexity of human genetics, physiology, socio-economic 

structure and environmental exposures. An orthogonal approach to map genes to phenotypes has 

long been available through model organisms that allow systematic gene-by-gene perturbations 

in isogenic backgrounds and carefully controlled experimental environments. 

 

The budding yeast Saccharomyces cerevisiae has pioneered the systematic phenotypic analysis 

of gene perturbations (2). In 2002, a consortium of laboratories released the yeast knock-out 

(YKO) collection, which provided a complete set of isogenic strains each deleted for exactly one 

open reading frame (ORF) (3). This collection, along with progress in automation and 

parallelization, enabled rapid, affordable and comprehensive loss-of-function screens that 

examined nearly every aspect of yeast biology that could be measured on a large scale. However, 

the results of these screens remained physically scattered and disorganized, thus preventing 

systematic analysis and integration. In the absence of a central repository and consistent meta-

data annotations, it has been impossible to know exactly which experiments have been done, 

how they compare to one another, and what information they contribute to our global 

understanding of yeast as a complex biological system. Here, we address this problem and 

describe Yeast Phenome, a data library that aggregates and annotates all published screens of the 

YKO collection. Currently, Yeast Phenome contains ~43 million causal gene-to-phenotype links, 

which represents the largest, richest and most systematic phenotypic description of any 

organism. To encourage exploration, download and analysis, we have made all data and meta-

data available at www.yeastphenome.org. 

 

The aggregation and harmonization of YKO data in Yeast Phenome provides a unique dataset 

that enables discoveries that could not be made with any single experiment in isolation. To 
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demonstrate its value, we provide several examples of Yeast Phenome data analysis and describe 

three key findings, ranging from gene-level to system-level observations. First, we analyze the 

variation in the number of phenotypes per gene and find that tryptophan biosynthesis is an 

exceptional metabolic pathway that is required for resistance to over 1,000 different chemical 

compounds. Second, we show that a multidimensional phenotypic profile, i.e. the set of all 

known phenotypes associated with a gene, is a strong predictor of gene function that 

complements and reinforces other genomic datasets. Using phenotypic profiles as predictive 

tools, we identify and validate the roles of two uncharacterized ORFs (YHR045W and 

YGL117W). Finally, we uncover an unexpected relationship between phenotypic profile 

similarity and intergenic distance, which potentially reflects the functional architecture of yeast 

and human genomes. Overall, we show that data curation is a powerful approach for generating 

new datasets and identifying general patterns that are not apparent on a smaller scale.  
 

 

RESULTS 

 

Building a data library of knock-out phenotypic screens 

 

The YKO is a collection of ~5,000 yeast strains where every ORF is individually deleted and 

replaced by a selectable marker linked to an ORF-specific molecular barcode in a common 

genetic background (fig. S1A–B). An exhaustive survey of the literature (Materials & Methods) 

showed that, between November 2000 and May 2022, 366 research groups published 531 

studies, each describing the systematic testing of at least 1,000 haploid or homozygous diploid 

YKO mutants for one or more phenotypes under one or more experimental conditions (Fig. 1A). 

To examine the wealth of information concealed in these data, we curated the 531 publications 

and assembled a comprehensive compendium of 14,495 knock-out screens (Fig. 1A). We 

developed standard vocabularies to annotate and cross-reference 6,731 phenotypes and 7,536 

experimental environments associated with the screens, and devised a reproducible 

computational pipeline for extracting, formatting and normalizing data from each publication 

(fig. S1B; Materials & Methods). Through close collaboration with 149 yeast researchers, we 
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recovered 413 novel screens (3% of the total) corresponding to extended and, typically, more 

quantitative versions of previously published screens (Materials & Methods).  

 

The Yeast Phenome data library is experimentally and biologically diverse (Fig. 1A). The most 

tested phenotype (53% of all screens) is cell growth measured by colony size, optical density in 

liquid culture, relative barcode abundance in pools and several other metrics (Fig. 1A, blue). 

Because it is relatively easy to measure, growth of ~5,000 knock-out mutants has been tested in 

7,536 different environments, most of which (96%) involved a chemical compound of known or 

unknown mode-of-action (Fig. 1A). For ~1,500 knock-out mutants (~30% of the YKO 

collection), growth measurements are supplemented by mRNA expression levels of 6,112 genes, 

representing the second most common phenotype in Yeast Phenome (42% of all screens; Fig. 1A, 

yellow). Despite being measured primarily in a single unperturbed environment (4), these 

genome-wide expression profiles of knock-out mutants provide a large and diverse set of 

molecular biomarkers that may act upstream of other phenotypes, including response to chemical 

treatments. The remaining 5% of screens in Yeast Phenome are a mosaic of 670 phenotypes that 

describe the state of the genome, proteome and metabolome of knock-out mutants, along with 

morphological parameters and other cellular phenotypes, such as protein localization and 

intracellular pH (Fig. 1A, red). These phenotypes are generally measured using advanced 

technologies (e.g., mass spectrometry, next-generation sequencing, high-resolution microscopy), 

complex reporter systems and, sometimes, longitudinal sampling, which probe yeast biology in 

greater detail but are limited in throughput (on average, 5.7 screens per publication). As such, 

they create many small but valuable datasets that are scattered throughout the literature and have 

never been examined in the context of other datasets. The inclusion of these data in Yeast 

Phenome creates the first opportunity to make novel insights based on their integration.  

 

To facilitate the analysis and interpretation of diverse Yeast Phenome data, we implemented 

several conventions and normalizations (Materials & Methods). Most importantly, since different 

phenotypes followed dramatically different distributions but were consistently unimodal, we 

used the mode as a reference to normalize each screen using a modified z-score transformation 

(Fig. 1B, Materials & Methods). As a result, all phenotypic values reported in Yeast Phenome 

can be universally interpreted as standardized deviations from the most typical mutant, which, 
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assuming extreme phenotypes are rare, is also likely to resemble the wild-type strain. Both 

original and transformed data, which we refer to as normalized phenotypic values (NPVs), are 

available at www.yeastphenome.org. 

 

Yeast Phenome data are reproducible and provide unique information about gene function 

 

Thanks to its size and meta-data annotations, Yeast Phenome provides an opportunity to 

investigate the quality of YKO data and test their robustness to common sources of experimental 

noise. For example, we can easily identify and compare independent screens that examined the 

same phenotype under similar experimental conditions, and therefore assess the biological 

reproducibility of the phenotype. To demonstrate this point, we compared 8 independent screens 

of respiratory metabolism (i.e., growth on glycerol) and found that, on average, 71% of 

respiration-deficient mutants identified in any one screen were reproduced in at least 5 of the 8 

replicates (note S1; fig. 2A). The similarity of the 8 screens was nearly complete (cosine ρ = 

0.994 ± 0.003, mean ± std. dev.) when, instead of a gene-by-gene overlap, we compared the 

screens’ enrichment profiles across the genetic interaction similarity network using Spatial 

Analysis of Functional Enrichment (SAFE) (5) (note S1; fig. 2B).  

 

Another potential source of experimental noise in YKO data are secondary mutations (i.e., 

“suppressors”) that arise spontaneously as adaptations to gene loss and may interfere with the 

correct assignment of genes to functions. To measure the impact of such strain evolution, we 

compared different versions of the YKO collection, as well as strains with and without evidence 

of secondary mutations (note S2; fig. S3). We found that secondary mutations increase the 

relative risk of incorrect gene-to-function assignment by no more than 3% and, therefore, are 

unlikely to impede the use and interpretation of YKO data (note S2). 

 

High quality knock-out phenotypes provide strong experimental evidence of gene function and 

have long been exploited to identify key players in major biological pathways. A 

multidimensional phenotypic profile, i.e., a vector of binary or quantitative phenotypic values 

associated with a given gene, is even more powerful at predicting gene function because it 

enables more robust comparisons of known and unknown genes, and facilitates transfers of 
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knowledge through “guilt-by-association” (6–10). We asked how well gene function can be 

predicted by phenotypic profiles assembled in Yeast Phenome relative to other sources of 

functional information, such as gene expression, genetic interactions and protein-protein 

interactions (Materials & Methods). In each dataset, we ranked all gene pairs by their profile 

similarity and performed a precision-recall analysis using membership in the same functional 

group (a protein complex, a biochemical pathway, or a moderately specific Gene Ontology 

biological process term) as ground truth for a functional relationship (Materials & Methods). We 

found that profile similarity in each dataset is comparably predictive of a functional relationship 

(area under the precision-recall curve, AUPR = 0.424–0.477; fig. S4A). However, different types 

of functional relationships are better predicted by different types of biological data (fig. S4B). 

For example, genes acting in the same biochemical pathway are best predicted by co-expression 

profiles (AUPR = 0.258), whereas shared membership in the same protein complex is best 

predicted by similar knock-out phenotypes (AUPR = 0.429). Despite a consistent performance 

overall, we observed little redundancy between data types such that genes correlated in one 

dataset were largely uncorrelated in others (fig. S4C). We conclude that each data type provides 

independent functional information that should be regarded as complementary and analyzed in 

an integrative manner. 

 

Yeast Phenome enables novel biological discoveries 

 

Normalized phenotypic values (NPVs), which express a mutant’s phenotype as a standardized 

deviation from the most typical mutant in the corresponding phenotypic screen, allow us to 

compare phenotypes across different experiments and identify genes having the greatest impact 

on cell physiology. We found that virtually all genes have at least one strong phenotype in Yeast 

Phenome (|NPV| > 3), supporting earlier predictions that no gene is truly dispensable (8). Despite 

this common baseline, the gene-specific phenotype rate, defined as the fraction of screens in 

which a gene shows a strong phenotype (|NPV| > 3), is highly variable, ranging from ~0% to 

31% (mean = 1.8%, median = 0.6%; Fig. 2A). As expected, genes with many phenotypes (top 

decile, phenotype rate > 4.5%) are more likely to lack a paralogue (odds ratio OR = 2.9, p-value 

= 6 x 10–10), be conserved in higher organisms (OR = 2.7, p-value = 3.8 x 10–13) and be 

annotated to multiple biological processes (OR = 7.4, p-value = 4.6 x 10–33) than genes with few 
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phenotypes (bottom decile, phenotype rate < 0.3%). Phenotype rate is also not uniformly 

distributed across biological processes: genes involved in intracellular trafficking (e.g., intra-

Golgi, Golgi-to-endosome and Golgi-to-vacuole transport), pH regulation (e.g., vacuole 

organization and acidification), lipid metabolism (e.g., ergosterol biosynthesis), transcription, 

and chromatin remodeling have more phenotypes than expected by random chance (fig. S5A). In 

contrast, metabolic functions (e.g., transmembrane transport and metabolism of carbohydrates, 

metal ions and nitrogen compounds) are generally depleted for phenotypes (fig. S5B). 
 

Tryptophan biosynthesis is essential for resistance to many chemical perturbations 

 

Even though knock-out mutants of most metabolic genes have few phenotypes, we found that 

biosynthesis of aromatic amino acids is a striking exception and presents one of the highest 

phenotype rates of all biological processes (fig. S5A). The three aromatic amino acids 

(tryptophan, tyrosine and phenylalanine) are synthesized from a common precursor, chorismate, 

via three separate pathways (fig. S6A). However, only genes involved in the biosynthesis of 

chorismate (ARO1–4) and tryptophan (TRP1–5) have high phenotype rates (on average, 6.5% 

and 12.5%, respectively, a 3.8–7.3-fold increase over the mean of all genes; Fig. 2B), whereas 

tyrosine and phenylalanine biosynthesis genes (ARO7–9, TYR1, PHA2) are close to average 

(1.7%). The phenotype rates of trp∆ and aro∆ mutants are the second and third highest among 

187 biochemical pathways encoded in the yeast genome, following only ergosterol biosynthesis 

(Fig. 2B). Furthermore, trp∆ and aro∆ phenotypic profiles are the most highly correlated (cosine 

ρ = 0.60 ± 0.15 for trp∆ mutants, mean ± std. dev.; n = 10 pairs; Fig. 2B), indicating that their 

phenotypes are likely biologically meaningful and not caused by experimental noise.  

 

As expected, trp∆/aro∆ mutants share phenotypes such as the inability to grow on tryptophan-

limited media (Fig. 2C, Trp–, Trp– Tyr– Phe–), at low temperature or under high hydrostatic 

pressure (Fig. 2C, ºC/Pa). Both of these latter conditions are associated with the downregulation 

of the main tryptophan permease Tat2 and consequent repression of tryptophan uptake (11). 

Interestingly, the vast majority (99%) of trp∆ and aro∆ phenotypes are sensitivities to 1,138 

chemical compounds (NPV < –2), consistent with prior identification of TRP1–5 and ARO1–2 as 

multidrug resistance genes (8). The sensitivity of trp∆/aro∆ mutants suggests that these 1,138 
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compounds modulate tryptophan uptake or metabolism through a direct or indirect mechanism 

(see Discussion).  

 

Although many compounds causing trp∆/aro∆ sensitivity are not easily identifiable because they 

lack a publicly available name or chemical structure, others are well known chemicals with 

extensive evidence for a role in tryptophan homeostasis in yeast, rats and other organisms. 

Examples of such known chemicals are haloperidol, rotenone and paraquat. Haloperidol is an 

FDA-approved anti-psychotic medication prescribed for the treatment of schizophrenia, Tourette 

syndrome, bipolar disorder and substance abuse. Long-term haloperidol usage can cause patients 

to develop tardive dyskinesia (TD), a syndrome of involuntary repetitive body movements such 

as twitching, shaking and grimacing (12). Such movements are greatly reduced by the dietary 

supplementation of tryptophan in haloperidol-induced rat models of TD (13). Rotenone and 

paraquat are broad-spectrum pesticides that target the electron transfer chain (ETC) and cause 

oxidative damage. Chronic exposure to both chemicals has been linked to the development of 

Parkinson’s disease (PD) in mice, rats and humans (14). In a manner similar to haloperidol, 

dietary tryptophan improves the impaired motor functions in rotenone-induced rat models of PD 

(15). The benefits of tryptophan in animals exposed to haloperidol, rotenone and paraquat, along 

with the sensitivity of yeast trp∆/aro∆ mutants to all 3 compounds (Fig. 2C, Haloperidol, 

ETC/PD), lead us to speculate that these and, potentially, many other trp∆/aro∆ chemicals limit 

the availability of tryptophan in the human nervous system. 

 

Environmental conditions and chemicals causing trp∆/aro∆ sensitivity do not impact the growth 

of other mutants defective in amino acid biosynthesis (e.g., arginine, lysine, threonine; Fig. 2C, 

d–f). These treatments therefore appear to specifically mimic tryptophan depletion, rather than a 

general state of amino acid starvation. In wild-type yeast, the availability of all amino acids, 

including tryptophan, is monitored by the general amino acid control (GAAC) pathway, which 

senses the accumulation of uncharged tRNAs and upregulates the expression of biosynthetic 

genes (16). Interestingly, GAAC mutants (gcn2∆, gcn3∆, gcn4∆ and gcn20∆) are sensitive to 

only ~38% of the conditions that cause trp∆/aro∆ sensitivity (Fig. 2C, c; fig. S6B), suggesting 

that, under these conditions, the concentration of tryptophanyl-tRNA molecules is indeed 

decreased and GAAC is required to activate a proper response. In the remaining ~62% of 
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trp∆/aro∆ conditions, a functional GAAC is not required for survival, suggesting that tRNA 

charging is not affected, but that other tryptophan-derived molecules may be limiting (see 

Discussion). 

 

Overall, the tryptophan biosynthesis pathway appears to be uniquely important for resistance to a 

wide variety of chemical stresses, some of which may result in decreased tRNA charging. While 

the specific mechanism for these effects remains unknown, we speculate that trp∆/aro∆ 

compounds may disrupt the composition and/or fluidity of the plasma membrane, therefore 

impacting the function of membrane-bound tryptophan permeases (see Discussion). 
 

Phenotypic profiles organize genes into functional domains 

 

As shown above, phenotypic profiles are powerful tools for identifying functionally similar 

genes and transfer knowledge through “guilt-by-association” (fig. S4). To gain a global view of 

gene-gene relationships uncovered by phenotypic similarity, we selected 1,586 genes showing a 

strong phenotype (|NPV| > 3) in at least 1% of screens and projected the genes on a 2D plane 

such that their relative distances reflected their phenotypic similarities (Fig. 3A; Materials & 

Methods). The resulting phenotypic similarity map, annotated with SAFE (5), showed that, 

similar to pair-wise genetic interactions (17, 18), knock-out phenotypes organize genes into 

distinct yet closely connected domains, each enriched for one or more biological processes (Fig. 

3A; Materials & Methods).  

 

Importantly, the phenotypic similarity map not only groups genes in a way that reflects their 

shared function, but also provides a key for interpreting novel or poorly understood phenotypes. 

For example, the map can be annotated with the chemogenomic profile of an unknown 

compound to determine which biological processes are required for sensitivity or resistance to 

the chemical (Fig. 3B). SAFE analysis of one such compound, number 4292 in (7), shows that 

mutants in protein glycosylation, sorting and degradation pathways are sensitive to the chemical, 

whereas mutants in cytoplasmic and mitochondrial translation are relatively resistant (Fig. 3B). 

Importantly, the enrichment profile of compound 4292 is a near mirror image of a fluorescent 

reporter-based screen for unfolded protein response (UPR) (Fig. 3C) that measures the activation 
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of Hac1-regulated genes in response to the accumulation of misfolded proteins in the 

endoplasmic reticulum (19). While the name, molecular target or chemical structure of 

compound 4292 is not publicly available, the reverse similarity of its enrichment profile to UPR 

(Pearson R = –0.84, p-value ~ 0) strongly suggests that compound 4292 impairs protein quality 

control or folding.  
 

Phenotypic profiles enable annotation of uncharacterized ORFs 

 

The ability of phenotypic profiles to organize genes by function provides an opportunity to 

validate uncharacterized ORFs and assign novel gene functions. The Saccharomyces Genome 

Database (SGD) estimates that 688 yeast ORFs (~10% of the genome) are currently 

uncharacterized, meaning that they are likely to produce a protein, as suggested by their 

conservation in other species, but no such protein product has been experimentally verified in S. 

cerevisiae yet (20). Out of the 688 uncharacterized ORFs, 527 ORFs (77%) have at least 10 

strong phenotypes in Yeast Phenome (|NPV| > 3) and 46 have robust phenotypic profiles that are 

predictive of function (phenotype rate > 1%, similarity to a verified ORF 𝜌 > 0.17; Fig. 3D, table 

S3). We found that the top similarities of the uncharacterized ORFs and their positioning on the 

phenotypic similarity map are highly consistent with preliminary evidence from independent 

high-throughput experiments, whenever such evidence is available in the literature. For example, 

MRX1/YER077C, which appears to encode a protein localized to mitochondria (21) and 

interacting with the mitochondrial organization of gene expression (MIOREX) complexes (22), 

was most similar to members of the mitochondrial translation machinery and positioned on the 

map accordingly (Fig. 3D). Another uncharacterized ORF, YML037C, mapped next to APL2, 

APL4, APM2, APS1 and other members of the AP-1 clathrin-associated adaptor complex (Fig. 

3D). This map position is consistent with fluorescence microscopy experiments showing that 

YML037C co-localizes with clathrin-coated vesicles (21). To encourage functional annotations of 

these and other uncharacterized ORFs, as well as verified ORFs without a known function, the 

Yeast Phenome website provides a set of tools to explore shared phenotypes, verify the mutants’ 

genomic sequences, and connect to the wealth of information available in other databases 

(www.yeastphenome.org). As a demonstration of the predictive power of phenotypic similarity, 
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we closely examined two of the uncharacterized ORFs with the highest phenotypic similarity to a 

verified ORF and tested their predicted functions experimentally.   

 

The first ORF is YHR045W, a putative protein of unknown function. Among all mutants in Yeast 

Phenome, yhr045w∆ shows the strongest phenotypic similarity to dap1∆ (cosine ρ = 0.59 ± 0.07; 

Fig. 4A) and localizes next to it on the phenotypic similarity map (Fig. 3D). DAP1 encodes a 

heme-binding protein that regulates ergosterol biosynthesis and DNA damage response (23). One 

of the phenotypes shared by dap1∆ and yhr045w∆ is sensitivity to hydroxyurea, an inhibitor of 

DNA synthesis: both mutants are among the top 15 hits in ~50% of all genome-wide 

hydroxyurea screens published to date (Fig. 4A, fig. S8A). We experimentally confirmed the 

sensitivity of dap1∆ and yhr045w∆ to hydroxyurea (Fig. 4B). We also examined the dap1∆ 

yhr045w∆ double mutant and found that the two genes are epistatic to one another, showing 

nearly identical degree of sensitivity to hydroxyurea alone and in combination (Fig. 4B). 

Furthermore, Dap1 is one of only five known physical interactors of Yhr045w (Fig. 4C). 

 

Dap1 is thought to regulate ergosterol biosynthesis by stabilizing Erg11, a member of the 

cytochrome P450 family that catalyzes the demethylation of lanosterol, an essential intermediate 

in the ergosterol pathway (24). The ability of Dap1 to stabilize Erg11 depends on Dap1’s ability 

to bind heme, an iron-containing complex that serves as a cofactor in numerous cellular 

reactions, including Erg11’s demethylation activity (24). Consistent with their potential joint role 

in heme binding and Erg11 stabilization, Yeast Phenome data shows that dap1∆ and yhr045w∆ 

are both sensitive to iron depletion and Erg11 inhibition via chemical compounds such as 

fluconazole and itraconazole (Fig. 4A, D). In addition, large-scale genetic interaction screens 

have shown that dap1∆ and yhr045w∆ are both synthetic lethal with a temperature-sensitive 

erg11 mutation (18, 25), although the overall genetic interaction profiles of dap1∆ and 

yhr045w∆ are not significantly correlated (cosine ρ = 0.03 ± 0.11). While the connection 

between ergosterol biosynthesis and DNA damage is not fully understood, the addition of 

exogenous heme is able to suppress dap1∆ and yhr045w∆ sensitivity to DNA damage (Fig. 4D), 

potentially because excess heme availability bypasses a Dap1-Yhr045w requirement for Erg11 

stabilization. Consistent with this hypothesis, overexpression of Erg11 also suppresses dap1∆ 

and yhr045w∆ sensitivity to DNA damage and Erg11 inhibitors (Fig. 4D).  
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To confirm that the phenotypes observed for yhr045w∆ are indeed caused by the lack of 

Yhr045w, we verified its correct genomic sequence in the Saccharomyces cerevisiae Genome 

Variation database (26) and complemented its phenotypes with an intact plasmid-borne 

YHR045W (fig. S8B). Taken together, evidence from Yeast Phenome, genetic interaction and 

protein-protein interaction data, as well as our validation experiments, suggests that Yhr045w 

acts in cooperation with Dap1 in regulating DNA damage response and ergosterol biosynthesis. 

To reflect this joint function, we suggest that YHR045W be named DRP1 for “Dap1-related 

protein 1”. 
 

Phenotypic profiles enable dissection of complex pathways 

 

The second ORF we chose to characterize is YGL117W, a putative protein of unknown function 

whose phenotypic profile is highly similar to aro3∆ (cosine ρ = 0.62 ± 0.04; Fig. 2C; Fig. 3D; 

Fig. 4E). ARO3 encodes a 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase, 

which catalyzes the first step of the chorismate biosynthesis pathway, ultimately producing 

tryptophan, tyrosine and phenylalanine (fig. S6A). The phenotypic profile of ygl117w∆ is as 

similar to trp∆/aro∆ mutants as they are to one another (Fig. 2C; fig. S7A), strongly suggesting 

that Ygl117w is a newly identified member or regulator of the pathway. Consistent with this 

hypothesis, and similar to other amino acid biosynthesis genes, YGL117W is upregulated 

following GCN4 induction (27) and upon amino acid starvation and rapamycin treatment in a 

GCN4-dependent manner (28). Furthermore, the promoter of YGL117W contains a Gcn4 control 

response element (GCRE), which is bound by Gcn4 in vivo (29). 

 

We used the Saccharomyces cerevisiae Genome Variation database (26) to verify that ygl117w∆ 

mutants in YKO are indeed mutated for YGL117W. Furthermore, we experimentally confirmed 

that, just like aro3∆ and all trp∆ mutants (but not aro4∆, see below), the growth of ygl117w∆ is 

impaired in tryptophan-limited conditions (Trp–; Fig. 4F) and rescued by the expression of a 

plasmid-borne YGL117W (fig. S7B). Interestingly, despite sharing most other phenotypes with 

the trp∆ mutants, aro3∆ and ygl117w∆ are different from the rest of the pathway in that they can 

grow when all three aromatic amino acids are missing concurrently (Trp– Tyr– Phe–; Fig. 2C; 
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Fig. 4F). Such difference in growth between Trp– and Trp– Tyr– Phe– media is expected for 

aro3∆, due to Aro3 having functional redundancy with Aro4 (another DAHP synthase) and the 

feedback inhibition of Aro4 by tyrosine (fig. S6A). However, aro4∆ does not mirror this 

behavior: despite the ability of phenylalanine to inhibit Aro3 activity in vitro, aro4∆ exhibits 

normal growth in Trp– Phe+ conditions (Fig. 4F) (30). One possibility is that Ygl117w negatively 

regulates the feedback inhibition of Aro3 by phenylalanine in vivo and allows aro4∆ to maintain 

DAHP synthesis in Trp– Phe+ conditions (fig. S7C). Overall, to reflect the involvement of 

Ygl117w in the aromatic amino acid biosynthesis pathway, we propose this gene be named 

ARO5. 
 

Relationship between phenotypic similarity and intergenic distance 

 

Typically, knock-out phenotypes are attributed exclusively to the deleted gene and interpreted as 

a reflection of its lost function. However, due to the compact nature of the yeast genome (median 

intergenic distance = 364 bp, n = 5,864), the deletion of one gene can inadvertently disrupt the 

accessibility and/or regulation of a neighboring non-overlapping gene. These unintended 

perturbations, sometimes called neighboring gene effects (NGEs) (8, 31–36), are problematic 

because they can cause changes in expression and/or localization of nearby proteins, and 

potentially contaminate knock-out experiments with incorrect gene-to-phenotype links. For 

example, in assigning a new function to YHR045W, we verified that yhr045w∆ phenotypes were 

complemented by YHR045W but not YHR042W/NCP1, a nearby NADP-cytochrome P450 

reductase that is also involved in ergosterol biosynthesis and could be indirectly affected by the 

deletion of YHR045W (fig. S8B). While our data indicate that no such perturbation occurs and 

yhr045w∆ phenotypes are indeed due to the loss of YHR045W, numerous anecdotal examples of 

true NGEs have been reported in the literature (note S3). 

 

To systematically measure the extent to which NGEs impact knock-out phenotypes, we used 

Yeast Phenome data to examine the relationship between phenotypic similarity and intergenic 

distance for ~782,000 gene pairs located on the same chromosome (Materials & Methods). We 

found that, consistent with potential NGEs, the phenotypic similarity of immediately adjacent 

genes was significantly higher than that of all other non-overlapping gene pairs (average cosine r 
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= 0.07 vs 0.02, respectively; Kolmogorov-Smirnov test p-value = 1.5 x 10–248; fig. S8C). 

However, to our surprise, excess phenotypic similarity was not limited to adjacent genes: 

proximal non-adjacent genes, i.e., those located on the same chromosome but not immediately 

next to one another, also shared significantly more phenotypes than expected (KS test p-value ~ 

0.0; fig. S8C). A direct comparison of phenotypic similarity and intergenic distance showed a 

strong exponential relationship such that, for gene pairs located within ~380 kb of one another, 

closer proximity corresponded to higher phenotypic similarity, and vice versa (Pearson R = –

0.96, p-value = 2.8 x 10–283; Fig. 5A). The same trend was observed independently for each 

chromosome (fig. S9), as well as for multiple unrelated subsets of the Yeast Phenome dataset 

(fig. S10).  

 

We asked whether the higher phenotypic similarity between proximal genes can be explained by 

altered gene expression as would be predicted by NGEs (32–35). We examined whole-genome 

transcriptional profiles for ~1,500 knock-out mutants (4) and found that genes immediately 

adjacent to a knock-out are 12 times more likely to change in expression than genes located 

farther away (0.9% vs 0.08%, respectively; absolute log mutant/wildtype ratio |M| > 1.7, p-value 

< 0.05; 𝜒2	p-value = 8.3 x 10–19). Most adjacent genes (76%) are downregulated, and, like 

phenotypic similarity, the magnitude of the effect shows an exponential relationship with 

chromosomal proximity (Fig. 5B). However, the range of this relationship is much shorter than 

that observed for phenotypic similarity: on average, only genes located within 1 kb from a 

knock-out are affected and 92% of these genes are immediately adjacent to the knock-out (Fig. 

5B). Such a difference in range between phenotypic similarity and expression effects (380 kb vs 

1 kb; Fig. 5A–B) indicates that, while NGEs may be responsible for increased phenotypic 

similarity among immediately adjacent gene pairs, the phenotypic similarity of proximal non-

adjacent genes is likely driven by other factors. One possibility is that this phenotypic similarity 

reflects a closer functional relationship. 

 

Several studies in yeast and other organisms have reported evidence for chromosomal co-

localization of functionally related genes. In yeast, for example, genes that are co-expressed (37) 

or co-regulated by the same transcription factor (38), as well as genes encoding members of the 

same protein complex (39) or metabolic pathway (40), are more likely to be located nearby on 
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the same chromosome than expected by random chance. To assess the extent to which our 

observations reflect these known trends, we repeated our analysis after excluding ~186,000 gene 

pairs with existing evidence of functional co-clustering, as well as paralogous genes arisen from 

an ancient whole-genome duplication event (Materials & Methods). Interestingly, the 

exponential decay of phenotypic similarity as a function of intergenic distance was unaffected 

(fig. S11A), indicating that chromosomal location and biological function have a much stronger 

connection than previously appreciated.  

 

To confirm that our observations are not due to structural changes in the genome caused by gene 

deletions, we repeated our analysis in native, unperturbed genomes using co-expression across 

multiple experimental conditions as a measure of functional similarity (41). In agreement with 

previous reports (37), we observed that nearby genes are more co-expressed than genes located 

farther away or on different chromosomes (fig. S11B). In addition, in a manner consistent with 

phenotypic similarity, average co-expression decayed exponentially as a function of intergenic 

distance but affected a much shorter range (up to 10.8 kb, fig. S11B). Similar results were 

obtained using gene expression measurements obtained via microarray and RNAseq technologies 

(data not shown).  

 

Finally, we asked whether the relationship between intergenic distance and phenotypic similarity 

is specific to yeast or is conserved in other organisms. The Cancer Dependency Map Project 

(DepMap) aims to uncover genetic vulnerabilities in human cancers by systematically 

inactivating genes in a panel of cancer cell lines and measuring the effect of each gene on cell 

fitness (42–44). Numerous reports have demonstrated that genes sharing similar fitness profiles 

across cancer cell lines are also likely to share a common function (45–51). We examined the 

similarity of fitness profiles for ~8 million human gene pairs located on the same chromosome 

and observed the same exponential relationship with intergenic distance as in yeast (R = –0.93, 

p-value ~ 0.0; Fig. 5C). This relationship, which extends as far as 100 Mb, strongly suggests that, 

despite differences in genome size, compactness, complexity and perturbation technologies, 

yeast and human genomes share one fundamental property: genes are not randomly distributed 

across the genome but positioned relative to one another in a way that reflects their function.  
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DISCUSSION 

 

It is commonly assumed that the limiting factor for understanding a biological system is the lack 

of data or, in some cases, the lack of the right data. Baker’s yeast Saccharomyces cerevisiae is a 

great example of how inaccurate this assumption might be: online repositories and the literature 

are overflowing with data, yet our understanding of the yeast cell as a complete system is still in 

its infancy. One reason for such a discrepancy between expectation and reality is that data alone 

are not sufficient to generate knowledge. To be useful, data must generate hypotheses and, to do 

so, data must be discoverable, understandable and, most importantly, usable in the context of 

other types of data (52). Yeast Phenome was created to empower integration and re-usability of 

systematic phenotypic screens of the yeast knock-out collection and fuel the generation of 

testable hypotheses. By aggregating, annotating and harmonizing all available YKO 

experiments, we have produced an essential dataset for scientists interested in connecting 

genotypes to phenotypes, predicting gene function, identifying drug targets, understanding the 

functional principles of genome organization, testing causal inference methods, and answering 

many other outstanding questions in the systems biology of yeast and other organisms. 

 

Yeast Phenome incorporates and considerably extends all previous efforts to aggregate yeast 

knock-out data (8, 53–57). In its size, scope and depth of information, Yeast Phenome rivals 

many human biobanks that aim to facilitate integrative analyses of human biology by linking 

genomes, phenomes and environomes for hundreds of thousands of individuals worldwide (1). 

However, unlike natural populations, where the effect of a variant on gene function must be 

predicted from sequence and its contribution to a phenotype must be inferred from statistical 

associations, a knock-out screen provides a direct measurement of every gene’s causal effect on 

a phenotype. While in our current work we focused on complete loss-of-function phenotypes, 

data libraries similar to Yeast Phenome can be created for phenotypes caused by partial loss-of-

function, gain-of-function, dosage-modulating and point mutations for which genome-wide 

collections are already available (58–65). As part of our aggregation and annotation efforts, we 

assembled 7,011 screens of the yeast heterozygous diploid knock-out collection, which capture 

gene dosage and haploinsufficiency effects on an unprecedented scale. Due to the need to 
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interpret haploinsufficient phenotypes differently from those of loss-of-function mutations, we 

omitted heterozygous diploid screens from our analyses but are making the dataset available for 

download and investigation (www.yeastphenome.org; note S4).  

 

We have shown that Yeast Phenome promotes novel hypotheses and a better understanding of 

cellular biology. One of the advances enabled by Yeast Phenome is the discovery that over 1,000 

chemical compounds, including several FDA-approved drugs, limit the intracellular abundance 

of tryptophan (Fig. 2). While TRP and ARO genes have been previously linked to multidrug 

resistance in yeast (8), the diversity of Yeast Phenome data provides unprecedented insight into a 

possible mechanism and its relevance to other organisms. It would be tempting to speculate that 

the compounds eliciting trpD/aroD sensitivity bind and inactivate one or both tryptophan 

permeases (Tat1 and Tat2), therefore inhibiting tryptophan uptake and making the cell dependent 

on its biosynthesis. However, the chemical structures of trpD/aroD compounds are vastly diverse 

and their known modes-of-action range from rotenone (a mitochondrial complex I inhibitor) and 

clotrimazole (an ergosterol biosynthesis inhibitor) to ibuprofen (a non-steroid anti-inflammatory 

drug) and dehydroepiandrosterone (a human hormone precursor). Such diversity is inconsistent 

with a direct biochemical interaction with a tryptophan permease or any other protein. A more 

likely scenario is an indirect effect whereby chemical compounds interfere with tryptophan 

uptake by changing the structure, composition or fluidity of the plasma membrane. In support of 

this hypothesis, ibuprofen has been shown to electrostatically adsorb and then hydrophobically 

insert into phospholipid bilayers in a dose-dependent manner in vitro (66). Physical perturbations 

that cause trpD/aroD sensitivity (low temperature and high hydrostatic pressure; Fig. 2C) are also 

known to affect membrane fluidity (67). Furthermore, most trpD/aroD mutants are synthetic 

lethal with erg2–6D mutants (18) which are defective in the production of ergosterol, a primary 

component of yeast membranes and a regulator of membrane fluidity. 

 

The plasma membrane hosts numerous biomolecules, including sensors, transporters and 

enzymes, whose function is sensitive to changes in membrane fluidity (68). Therefore, it is 

currently unclear why, relative to all other bioprocesses, tryptophan uptake would be so 

prominently impacted by membrane perturbations. It is possible that the cell is uniquely sensitive 

to small changes in tryptophan abundance because tryptophan is the largest, rarest and most 
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energetically expensive of all amino acids (69). Furthermore, tryptophan is the only source of de 

novo NAD+ synthesis and may indirectly regulate many metabolic reactions (69). In higher 

organisms, including humans, tryptophan is the precursor of important neuroactive molecules 

such as serotonin, melatonin, kynurenine, xanthurenic acid and quinolinic acid (69), and has 

been implicated in modulating the ability of tumor cells to evade immune surveillance (70). 

Since human cells are unable to synthesize tryptophan and rely completely on dietary intake, the 

intracellular availability of tryptophan is determined entirely by the regulation of its transport 

across membranes. The identification of ~1,000 chemical compounds that may impact such 

transport will likely be useful in the investigation of neurological diseases and immuno-

oncology.  

 

Another discovery enabled by Yeast Phenome is the exponential relationship between 

phenotypic similarity and physical proximity among genes located on the same chromosome 

(Fig. 5). This relationship strongly suggests that genes are not randomly scattered throughout the 

genome but tend to organize by function. Evidence of co-clustering gene groups has long been 

available in yeast and other organisms (37, 71–73). For example, the major histocompatibility 

complex (MHC) comprises 20–100 related genes located in the same chromosomal region in 

most vertebrates (74). Our analyses of Yeast Phenome and human DepMap data indicate that this 

phenomenon is not limited to isolated blocks of functionally similar genes, such as the MHC 

complex. We show that the relationship between gene position and function is much more 

continuous and long-ranging than previously appreciated (380 kb and 100 Mb in yeast and 

human genomes, respectively). 

 

One possible explanation for the pervasive genomic co-localization of functionally related genes 

is the need to efficiently store and access genetic information within the cell nucleus. Given the 

complexity of DNA packaging and the energetic costs likely associated with selective access to 

specific DNA regions, it may not be surprising the genes often accessed together are positioned 

nearby. Another possible explanation is that physical proximity among functionally related genes 

has evolutionary advantages for maintaining favorable combinations of alleles. It has been 

proposed that, when two alleles share a genetic interaction (i.e., their joint effect on fitness is 

greater than the sum of their individual effects), natural selection should act to preserve the 
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successful haplotype and suppress recombination between the two loci (73, 75). Given that 

functionally related genes are strongly enriched for genetic interactions (17, 18), it is possible 

that their relative genomic positions are under selective pressure to reduce recombination rate 

and enhance genetic linkage by minimizing physical distance. 

 

A recurrent theme that emerged from our analyses is the importance of examining phenotypic 

profiles in addition to individual gene-phenotype pairings. A phenotypic profile, intended either 

as a set of phenotypes associated with a gene or as a set of genes associated with a phenotype, is 

a powerful tool for investigating a biological system because it is quantitative, comprehensive, 

and robust to noise. This global perspective is often missed by studies that focus on 

characterizing only the strongest hits from a loss-of-function screen or, in a largely similar 

manner, only the most statistically significant variants from a genome-wide association study 

(GWAS). It is becoming increasingly clear that great value can be derived from examining all 

genetic variation linked to a trait and all traits linked to a genetic variant, regardless of their 

significance against an arbitrary threshold.  
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Fig. 1: Yeast Phenome (www.yeastphenome.org) is a data library of published genome-

scale screens of the yeast knock-out (YKO) collection. (A) Yeast Phenome can be thought of 

as a data matrix where each row is a knock-out mutant and each column is a phenotypic screen. 

The matrix contains phenotypic values obtained by extracting data from 531 papers published by 

366 research labs. The phenotypes tested by the screens and the experimental 

conditions/environments, in which the phenotypes were tested (e.g., chemical compounds, pH, 

temperature, growth media), were annotated using standard vocabularies. Three major classes of 

phenotypes (cell growth, gene expression and other) are highlighted in blue, yellow and pink, 

respectively. Grey represents unmeasured data because gene expression profiles were tested for 

only ~1,500 knock-out mutants. (B) To facilitate analysis and interpretation, raw phenotypic 

values (i.e., those released in the publication) were normalized using a modified z-score 

transformation which uses the mode (instead of the mean) and standard deviation from the mode 

to shift and scale the data. 

 

Fig. 2: Tryptophan biosynthesis is essential for resistance to a wide range of chemical 

compounds. (A) Distribution of phenotype rates for all genes in Yeast Phenome. (B) The 

biosynthesis of tryptophan and its precursor chorismate are 2 of the top 3 biochemical pathways 

with the highest phenotype rate. (C) Mutants involved in the biosynthesis of tryptophan (trp1–5) 

and chorismate (aro1–4), but not other amino acids, share sensitivity to tryptophan-depleted 

media, low temperature, high pressure and a wide range of chemical compounds. The heatmap 
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shows NPVs for a set of mutants (columns) in a sample of screens (rows). Mutants (columns) are 

organized by pathway and include: (a) biosynthesis of chorismate and tryptophan; (b) 

biosynthesis of tyrosine and phenylalanine, (c) the general amino acid control (GAAC) pathway, 

(d) biosynthesis of arginine, (e) biosynthesis of lysine, (f) biosynthesis of threonine. Screens 

(rows) are organized by tested condition and include growth in: tryptophan-limited media (Trp–), 

media limited for multiple amino acids, including tryptophan, tyrosine, and phenylalanine (Trp– 

Tyr– Phe–), exposure to low temperature and high pressure (ºC/Pa), exposure to haloperidol 

(Haloperidol), exposure to rotenone and paraquat (ETC/PD), exposure to human hormones 

(Hormones), exposure to other chemical compounds (Other). 

 

Fig. 3: Phenotypic profiles organize genes by function, help interpret novel screens and 

validate uncharacterized ORFs. (A) A phenotypic similarity map was generated by applying 

UMAP to the phenotypic profiles of 1,586 genes with >1% phenotype rate. The map, where 

genes with similar phenotypes are placed closer than genes with dissimilar phenotypes, was 

annotated using SAFE with GO Slim biological process terms. Nodes (genes) are colored based 

on the GO term with the highest enrichment in their local neighborhoods. The regions with the 

strongest enrichments are labeled with the corresponding GO terms. (B–C) SAFE was used to 

annotate the map with NPVs from a chemical genomic screen of the unknown chemical 

compound 4292 (B) and a reporter screen for unfolded protein response (UPR) (C). Nodes 

(genes) are colored based on the average NPV in their local neighborhood relative to random 

expectation. (D) The phenotypic similarity map shows the distribution of uncharacterized ORFs 

and suggests hypotheses about their potential functions. Red nodes correspond to 43 

uncharacterized ORFs (phenotype rate > 1%, similarity to a verified ORF 𝜌 > 0.17). Pink nodes 

correspond to verified ORFs with strong phenotypic similarity to uncharacterized ORFs.  

 

Fig. 4: Functional validation of YHR045W and YGL117W. (A) The similarity of the 

phenotypic profiles of yhr045wΔ and dap1Δ is shown as a scatter plot of their NPVs. Every grey 

point corresponds to 1 phenotypic screen. Colored crosses highlight phenotypes suggestive of the 

genes’ shared function. (B) Similar to dap1Δ, yhr045wΔ is sensitive to DNA damaging agents 

hydroxyurea and methyl methanesulfonate (MMS). The sensitivity of the dap1Δ yhr045wΔ 

double mutant is identical to that of the two single mutants, suggesting that Dap1 and Yhr045w 
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are epistatic to one another. (C) Dap1 is one of five known physical interactors of Yhr045w. (D) 

The sensitivity of dap1Δ and yhr045wΔ to hydroxyurea and fluconazole is suppressed by the 

overexpression of ERG11. The sensitivity of dap1Δ and yhr045wΔ to hydroxyurea is suppressed 

by heme supplementation. (E) The similarity of the phenotypic profiles of ygl117wΔ and aro3Δ 

is shown as a scatter plot of their NPVs. Every grey point corresponds to 1 phenotypic screen. 

Colored crosses highlight phenotypes suggestive of the genes’ shared function. (F) The growth 

of ygl117w∆ is severely impaired in tryptophan-limited conditions (SC–Trp) relative to complete 

media (SC) but is restored in the absence of all 3 aromatic amino (SC–Trp–Tyr–Phe). 

 

Fig. 5: Phenotypic similarity is exponentially related to chromosomal proximity in yeast 

and human genomes. (A) In the yeast genome, the average similarity of phenotypic profiles 

decays exponentially as a function of intergenic distance. Gene pairs located on the same 

chromosome were grouped by intergenic distance. In each group, the average intergenic distance 

and average phenotypic similarity were computed and plotted on the x and y-axis, respectively. 

(B) The effect of the knock-out on the expression of nearby genes explains only a small portion 

of the relationship between intergenic distance and phenotypic similarity. For each knocked-out 

gene, genes located on the same chromosome were grouped by their distance from the knock-

out. In each group, the average distance and average change in gene expression in the knock-out 

strain were computed and plotted on the x and y-axis, respectively. (C) Similar to yeast, the 

human genome also displays an exponential relationship between intergenic distance and 

phenotypic similarity. The analysis was done as described in (A). Phenotypic similarity was 

estimated by comparing gene effects on fitness across ~1,000 cancer cell lines, as measured by 

genome-wide RNAi and CRISPR loss-of-function screens.  
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