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ABSTRACT

Genome-wide phenotypic screens in the budding yeast Saccharomyces cerevisiae have produced
the largest, richest and most systematic phenotypic description of any organism. Such an
achievement was enabled by the development of highly scalable phenotypic assays and
construction of the yeast knock-out (YKO) collection, comprising ~5,000 isogenic strains each
deleted for exactly one open reading frame. Systematic screening of the YKO collection led to
~500 publications describing ~14,500 phenotypes capturing nearly every aspect of yeast biology.
Yet, integrative analyses of this rich data source have been virtually impossible due to the lack of
a central repository and consistent meta-data annotations. Here, we describe the aggregation,
harmonization and analysis of all published phenotypic screens of the YKO collection, which we

refer to as the Yeast Phenome (www.yeastphenome.org). To demonstrate the power of data

integration and illustrate how much it facilitates the generation of testable hypotheses, we present
three discoveries uniquely enabled by Yeast Phenome. First, we use the variation in the number
of phenotypes per gene to identify tryptophan homeostasis as a central point of vulnerability to a
wide range of chemical compounds, including FDA-approved drugs. Second, using phenotypic
profiles as a tool for predicting gene function, we identify and validate the role of YHRO45W as a
novel regulator of ergosterol biosynthesis and DNA damage response, and YGLI17W as a new
member of the aromatic amino acid biosynthesis pathway. Finally, we describe a surprising
exponential relationship between phenotypic similarity and intergenic distance in both yeast and
human genomes. This relationship, which stretches as far as 380 kb in yeast and 100 Mb in
humans, suggests that gene positions are optimized for function to a much greater extent than
appreciated previously. Overall, we show that Yeast Phenome enables systematic enquiries into
the nature of gene-gene and gene-phenotype relationships and is an important new resource for

systems biology.
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INTRODUCTION

Connecting genotypes to phenotypes is essential for understanding the molecular architecture of
complex traits and developing successful therapies against aging and disease. The assembly of
large human cohorts, coupled with deep phenotyping and advanced computational analysis, is
enabling great progress towards uncovering genome-wide phenotypic associations in natural
human populations (/). However, inferring causal gene-trait relationships from these associations
remains a challenge due to the complexity of human genetics, physiology, socio-economic
structure and environmental exposures. An orthogonal approach to map genes to phenotypes has
long been available through model organisms that allow systematic gene-by-gene perturbations

in isogenic backgrounds and carefully controlled experimental environments.

The budding yeast Saccharomyces cerevisiae has pioneered the systematic phenotypic analysis
of gene perturbations (2). In 2002, a consortium of laboratories released the yeast knock-out
(YKO) collection, which provided a complete set of isogenic strains each deleted for exactly one
open reading frame (ORF) (3). This collection, along with progress in automation and
parallelization, enabled rapid, affordable and comprehensive loss-of-function screens that
examined nearly every aspect of yeast biology that could be measured on a large scale. However,
the results of these screens remained physically scattered and disorganized, thus preventing
systematic analysis and integration. In the absence of a central repository and consistent meta-
data annotations, it has been impossible to know exactly which experiments have been done,
how they compare to one another, and what information they contribute to our global
understanding of yeast as a complex biological system. Here, we address this problem and
describe Yeast Phenome, a data library that aggregates and annotates all published screens of the
YKO collection. Currently, Yeast Phenome contains ~43 million causal gene-to-phenotype links,
which represents the largest, richest and most systematic phenotypic description of any
organism. To encourage exploration, download and analysis, we have made all data and meta-

data available at www.yeastphenome.org.

The aggregation and harmonization of YKO data in Yeast Phenome provides a unique dataset

that enables discoveries that could not be made with any single experiment in isolation. To
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demonstrate its value, we provide several examples of Yeast Phenome data analysis and describe
three key findings, ranging from gene-level to system-level observations. First, we analyze the
variation in the number of phenotypes per gene and find that tryptophan biosynthesis is an
exceptional metabolic pathway that is required for resistance to over 1,000 different chemical
compounds. Second, we show that a multidimensional phenotypic profile, i.e. the set of all
known phenotypes associated with a gene, is a strong predictor of gene function that
complements and reinforces other genomic datasets. Using phenotypic profiles as predictive
tools, we identify and validate the roles of two uncharacterized ORFs (YHR045W and
YGL117W). Finally, we uncover an unexpected relationship between phenotypic profile
similarity and intergenic distance, which potentially reflects the functional architecture of yeast
and human genomes. Overall, we show that data curation is a powerful approach for generating

new datasets and identifying general patterns that are not apparent on a smaller scale.

RESULTS

Building a data library of knock-out phenotypic screens

The YKO is a collection of ~5,000 yeast strains where every ORF is individually deleted and
replaced by a selectable marker linked to an ORF-specific molecular barcode in a common
genetic background (fig. SIA-B). An exhaustive survey of the literature (Materials & Methods)
showed that, between November 2000 and May 2022, 366 research groups published 531
studies, each describing the systematic testing of at least 1,000 haploid or homozygous diploid
YKO mutants for one or more phenotypes under one or more experimental conditions (Fig. 1A).
To examine the wealth of information concealed in these data, we curated the 531 publications
and assembled a comprehensive compendium of 14,495 knock-out screens (Fig. 1A). We
developed standard vocabularies to annotate and cross-reference 6,731 phenotypes and 7,536
experimental environments associated with the screens, and devised a reproducible
computational pipeline for extracting, formatting and normalizing data from each publication

(fig. S1B; Materials & Methods). Through close collaboration with 149 yeast researchers, we
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recovered 413 novel screens (3% of the total) corresponding to extended and, typically, more

quantitative versions of previously published screens (Materials & Methods).

The Yeast Phenome data library is experimentally and biologically diverse (Fig. 1A). The most
tested phenotype (53% of all screens) is cell growth measured by colony size, optical density in
liquid culture, relative barcode abundance in pools and several other metrics (Fig. 1A, blue).
Because it is relatively easy to measure, growth of ~5,000 knock-out mutants has been tested in
7,536 different environments, most of which (96%) involved a chemical compound of known or
unknown mode-of-action (Fig. 1A). For ~1,500 knock-out mutants (~30% of the YKO
collection), growth measurements are supplemented by mRNA expression levels of 6,112 genes,
representing the second most common phenotype in Yeast Phenome (42% of all screens; Fig. 1A,
yellow). Despite being measured primarily in a single unperturbed environment (4), these
genome-wide expression profiles of knock-out mutants provide a large and diverse set of
molecular biomarkers that may act upstream of other phenotypes, including response to chemical
treatments. The remaining 5% of screens in Yeast Phenome are a mosaic of 670 phenotypes that
describe the state of the genome, proteome and metabolome of knock-out mutants, along with
morphological parameters and other cellular phenotypes, such as protein localization and
intracellular pH (Fig. 1A, red). These phenotypes are generally measured using advanced
technologies (e.g., mass spectrometry, next-generation sequencing, high-resolution microscopy),
complex reporter systems and, sometimes, longitudinal sampling, which probe yeast biology in
greater detail but are limited in throughput (on average, 5.7 screens per publication). As such,
they create many small but valuable datasets that are scattered throughout the literature and have
never been examined in the context of other datasets. The inclusion of these data in Yeast

Phenome creates the first opportunity to make novel insights based on their integration.

To facilitate the analysis and interpretation of diverse Yeast Phenome data, we implemented
several conventions and normalizations (Materials & Methods). Most importantly, since different
phenotypes followed dramatically different distributions but were consistently unimodal, we
used the mode as a reference to normalize each screen using a modified z-score transformation
(Fig. 1B, Materials & Methods). As a result, all phenotypic values reported in Yeast Phenome

can be universally interpreted as standardized deviations from the most typical mutant, which,
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assuming extreme phenotypes are rare, is also likely to resemble the wild-type strain. Both
original and transformed data, which we refer to as normalized phenotypic values (NPVs), are

available at www.yeastphenome.org.

Yeast Phenome data are reproducible and provide unique information about gene function

Thanks to its size and meta-data annotations, Yeast Phenome provides an opportunity to
investigate the quality of YKO data and test their robustness to common sources of experimental
noise. For example, we can easily identify and compare independent screens that examined the
same phenotype under similar experimental conditions, and therefore assess the biological
reproducibility of the phenotype. To demonstrate this point, we compared 8 independent screens
of respiratory metabolism (i.e., growth on glycerol) and found that, on average, 71% of
respiration-deficient mutants identified in any one screen were reproduced in at least 5 of the 8
replicates (note S1; fig. 2A). The similarity of the 8 screens was nearly complete (cosine p =
0.994 £+ 0.003, mean =+ std. dev.) when, instead of a gene-by-gene overlap, we compared the
screens’ enrichment profiles across the genetic interaction similarity network using Spatial

Analysis of Functional Enrichment (SAFE) (5) (note S1; fig. 2B).

Another potential source of experimental noise in YKO data are secondary mutations (i.e.,
“suppressors”) that arise spontaneously as adaptations to gene loss and may interfere with the
correct assignment of genes to functions. To measure the impact of such strain evolution, we
compared different versions of the YKO collection, as well as strains with and without evidence
of secondary mutations (note S2; fig. S3). We found that secondary mutations increase the
relative risk of incorrect gene-to-function assignment by no more than 3% and, therefore, are

unlikely to impede the use and interpretation of YKO data (note S2).

High quality knock-out phenotypes provide strong experimental evidence of gene function and
have long been exploited to identify key players in major biological pathways. A
multidimensional phenotypic profile, i.e., a vector of binary or quantitative phenotypic values
associated with a given gene, is even more powerful at predicting gene function because it

enables more robust comparisons of known and unknown genes, and facilitates transfers of
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knowledge through “guilt-by-association” (6—10). We asked how well gene function can be
predicted by phenotypic profiles assembled in Yeast Phenome relative to other sources of
functional information, such as gene expression, genetic interactions and protein-protein
interactions (Materials & Methods). In each dataset, we ranked all gene pairs by their profile
similarity and performed a precision-recall analysis using membership in the same functional
group (a protein complex, a biochemical pathway, or a moderately specific Gene Ontology
biological process term) as ground truth for a functional relationship (Materials & Methods). We
found that profile similarity in each dataset is comparably predictive of a functional relationship
(area under the precision-recall curve, AUPR = 0.424-0.477; fig. S4A). However, different types
of functional relationships are better predicted by different types of biological data (fig. S4B).
For example, genes acting in the same biochemical pathway are best predicted by co-expression
profiles (AUPR = 0.258), whereas shared membership in the same protein complex is best
predicted by similar knock-out phenotypes (AUPR = 0.429). Despite a consistent performance
overall, we observed little redundancy between data types such that genes correlated in one
dataset were largely uncorrelated in others (fig. S4C). We conclude that each data type provides
independent functional information that should be regarded as complementary and analyzed in

an integrative manner.

Yeast Phenome enables novel biological discoveries

Normalized phenotypic values (NPVs), which express a mutant’s phenotype as a standardized
deviation from the most typical mutant in the corresponding phenotypic screen, allow us to
compare phenotypes across different experiments and identify genes having the greatest impact
on cell physiology. We found that virtually all genes have at least one strong phenotype in Yeast
Phenome ([NPV| > 3), supporting earlier predictions that no gene is truly dispensable (§). Despite
this common baseline, the gene-specific phenotype rate, defined as the fraction of screens in
which a gene shows a strong phenotype (INPV| > 3), is highly variable, ranging from ~0% to
31% (mean = 1.8%, median = 0.6%; Fig. 2A). As expected, genes with many phenotypes (top
decile, phenotype rate > 4.5%) are more likely to lack a paralogue (odds ratio OR = 2.9, p-value
=6 x 10719), be conserved in higher organisms (OR = 2.7, p-value = 3.8 x 107!%) and be

annotated to multiple biological processes (OR = 7.4, p-value = 4.6 x 103) than genes with few
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phenotypes (bottom decile, phenotype rate < 0.3%). Phenotype rate is also not uniformly
distributed across biological processes: genes involved in intracellular trafficking (e.g., intra-
Golgi, Golgi-to-endosome and Golgi-to-vacuole transport), pH regulation (e.g., vacuole
organization and acidification), lipid metabolism (e.g., ergosterol biosynthesis), transcription,
and chromatin remodeling have more phenotypes than expected by random chance (fig. S5A). In
contrast, metabolic functions (e.g., transmembrane transport and metabolism of carbohydrates,

metal ions and nitrogen compounds) are generally depleted for phenotypes (fig. S5B).

Tryptophan biosynthesis is essential for resistance to many chemical perturbations

Even though knock-out mutants of most metabolic genes have few phenotypes, we found that
biosynthesis of aromatic amino acids is a striking exception and presents one of the highest
phenotype rates of all biological processes (fig. SSA). The three aromatic amino acids
(tryptophan, tyrosine and phenylalanine) are synthesized from a common precursor, chorismate,
via three separate pathways (fig. S6A). However, only genes involved in the biosynthesis of
chorismate (ARO1—4) and tryptophan (TRPI-5) have high phenotype rates (on average, 6.5%
and 12.5%, respectively, a 3.8—7.3-fold increase over the mean of all genes; Fig. 2B), whereas
tyrosine and phenylalanine biosynthesis genes (ARO7-9, TYRI, PHA?2) are close to average
(1.7%). The phenotype rates of trpA and aroA mutants are the second and third highest among
187 biochemical pathways encoded in the yeast genome, following only ergosterol biosynthesis
(Fig. 2B). Furthermore, trpA and aroA phenotypic profiles are the most highly correlated (cosine
p =10.60 £ 0.15 for trpA mutants, mean =+ std. dev.; n = 10 pairs; Fig. 2B), indicating that their

phenotypes are likely biologically meaningful and not caused by experimental noise.

As expected, trpA/aroA mutants share phenotypes such as the inability to grow on tryptophan-
limited media (Fig. 2C, Trp~, Trp~ Tyr™ Phe"), at low temperature or under high hydrostatic
pressure (Fig. 2C, °C/Pa). Both of these latter conditions are associated with the downregulation
of the main tryptophan permease Tat2 and consequent repression of tryptophan uptake (/7).
Interestingly, the vast majority (99%) of t7pA and aroA phenotypes are sensitivities to 1,138
chemical compounds (NPV < -2), consistent with prior identification of TRP/—5 and ARO1-2 as

multidrug resistance genes (8). The sensitivity of trpA/aroA mutants suggests that these 1,138
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compounds modulate tryptophan uptake or metabolism through a direct or indirect mechanism

(see Discussion).

Although many compounds causing trpA/aroA sensitivity are not easily identifiable because they
lack a publicly available name or chemical structure, others are well known chemicals with
extensive evidence for a role in tryptophan homeostasis in yeast, rats and other organisms.
Examples of such known chemicals are haloperidol, rotenone and paraquat. Haloperidol is an
FDA-approved anti-psychotic medication prescribed for the treatment of schizophrenia, Tourette
syndrome, bipolar disorder and substance abuse. Long-term haloperidol usage can cause patients
to develop tardive dyskinesia (TD), a syndrome of involuntary repetitive body movements such
as twitching, shaking and grimacing (/2). Such movements are greatly reduced by the dietary
supplementation of tryptophan in haloperidol-induced rat models of TD (/3). Rotenone and
paraquat are broad-spectrum pesticides that target the electron transfer chain (ETC) and cause
oxidative damage. Chronic exposure to both chemicals has been linked to the development of
Parkinson’s disease (PD) in mice, rats and humans (/4). In a manner similar to haloperidol,
dietary tryptophan improves the impaired motor functions in rotenone-induced rat models of PD
(15). The benefits of tryptophan in animals exposed to haloperidol, rotenone and paraquat, along
with the sensitivity of yeast trpA/aroA mutants to all 3 compounds (Fig. 2C, Haloperidol,
ETC/PD), lead us to speculate that these and, potentially, many other trpA/aroA chemicals limit

the availability of tryptophan in the human nervous system.

Environmental conditions and chemicals causing frpA/aroA sensitivity do not impact the growth
of other mutants defective in amino acid biosynthesis (e.g., arginine, lysine, threonine; Fig. 2C,
d—f). These treatments therefore appear to specifically mimic tryptophan depletion, rather than a
general state of amino acid starvation. In wild-type yeast, the availability of all amino acids,
including tryptophan, is monitored by the general amino acid control (GAAC) pathway, which
senses the accumulation of uncharged tRNAs and upregulates the expression of biosynthetic
genes (16). Interestingly, GAAC mutants (gcn2A, gen3A, gen4A and gen20A) are sensitive to
only ~38% of the conditions that cause trpA/aroA sensitivity (Fig. 2C, c; fig. S6B), suggesting
that, under these conditions, the concentration of tryptophanyl-tRNA molecules is indeed

decreased and GAAC is required to activate a proper response. In the remaining ~62% of
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trpA/aroA conditions, a functional GAAC is not required for survival, suggesting that tRNA
charging is not affected, but that other tryptophan-derived molecules may be limiting (see

Discussion).

Overall, the tryptophan biosynthesis pathway appears to be uniquely important for resistance to a
wide variety of chemical stresses, some of which may result in decreased tRNA charging. While
the specific mechanism for these effects remains unknown, we speculate that trpA/aroA
compounds may disrupt the composition and/or fluidity of the plasma membrane, therefore

impacting the function of membrane-bound tryptophan permeases (see Discussion).

Phenotypic profiles organize genes into functional domains

As shown above, phenotypic profiles are powerful tools for identifying functionally similar
genes and transfer knowledge through “guilt-by-association” (fig. S4). To gain a global view of
gene-gene relationships uncovered by phenotypic similarity, we selected 1,586 genes showing a
strong phenotype (|NPV| > 3) in at least 1% of screens and projected the genes on a 2D plane
such that their relative distances reflected their phenotypic similarities (Fig. 3A; Materials &
Methods). The resulting phenotypic similarity map, annotated with SAFE (5), showed that,
similar to pair-wise genetic interactions (/7, 18), knock-out phenotypes organize genes into
distinct yet closely connected domains, each enriched for one or more biological processes (Fig.

3A; Materials & Methods).

Importantly, the phenotypic similarity map not only groups genes in a way that reflects their
shared function, but also provides a key for interpreting novel or poorly understood phenotypes.
For example, the map can be annotated with the chemogenomic profile of an unknown
compound to determine which biological processes are required for sensitivity or resistance to
the chemical (Fig. 3B). SAFE analysis of one such compound, number 4292 in (7), shows that
mutants in protein glycosylation, sorting and degradation pathways are sensitive to the chemical,
whereas mutants in cytoplasmic and mitochondrial translation are relatively resistant (Fig. 3B).
Importantly, the enrichment profile of compound 4292 is a near mirror image of a fluorescent

reporter-based screen for unfolded protein response (UPR) (Fig. 3C) that measures the activation
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of Hacl-regulated genes in response to the accumulation of misfolded proteins in the
endoplasmic reticulum (/9). While the name, molecular target or chemical structure of
compound 4292 is not publicly available, the reverse similarity of its enrichment profile to UPR
(Pearson R =—0.84, p-value ~ 0) strongly suggests that compound 4292 impairs protein quality

control or folding.

Phenotypic profiles enable annotation of uncharacterized ORFs

The ability of phenotypic profiles to organize genes by function provides an opportunity to
validate uncharacterized ORFs and assign novel gene functions. The Saccharomyces Genome
Database (SGD) estimates that 688 yeast ORFs (~10% of the genome) are currently
uncharacterized, meaning that they are likely to produce a protein, as suggested by their
conservation in other species, but no such protein product has been experimentally verified in S.
cerevisiae yet (20). Out of the 688 uncharacterized ORFs, 527 ORFs (77%) have at least 10
strong phenotypes in Yeast Phenome (|NPV| > 3) and 46 have robust phenotypic profiles that are
predictive of function (phenotype rate > 1%, similarity to a verified ORF p > 0.17; Fig. 3D, table
S3). We found that the top similarities of the uncharacterized ORFs and their positioning on the
phenotypic similarity map are highly consistent with preliminary evidence from independent
high-throughput experiments, whenever such evidence is available in the literature. For example,
MRXI1/YER077C, which appears to encode a protein localized to mitochondria (2/) and
interacting with the mitochondrial organization of gene expression (MIOREX) complexes (22),
was most similar to members of the mitochondrial translation machinery and positioned on the
map accordingly (Fig. 3D). Another uncharacterized ORF, YML037C, mapped next to APL?2,
APL4, APM2, APSI and other members of the AP-1 clathrin-associated adaptor complex (Fig.
3D). This map position is consistent with fluorescence microscopy experiments showing that
YMLO37C co-localizes with clathrin-coated vesicles (27). To encourage functional annotations of
these and other uncharacterized ORFs, as well as verified ORFs without a known function, the
Yeast Phenome website provides a set of tools to explore shared phenotypes, verify the mutants’
genomic sequences, and connect to the wealth of information available in other databases

(www.yeastphenome.org). As a demonstration of the predictive power of phenotypic similarity,
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we closely examined two of the uncharacterized ORFs with the highest phenotypic similarity to a

verified ORF and tested their predicted functions experimentally.

The first ORF is YHR045W, a putative protein of unknown function. Among all mutants in Yeast
Phenome, yhr045wA shows the strongest phenotypic similarity to dapIA (cosine p = 0.59 + 0.07;
Fig. 4A) and localizes next to it on the phenotypic similarity map (Fig. 3D). DAPI encodes a
heme-binding protein that regulates ergosterol biosynthesis and DNA damage response (23). One
of the phenotypes shared by dapIA and yhr045wA is sensitivity to hydroxyurea, an inhibitor of
DNA synthesis: both mutants are among the top 15 hits in ~50% of all genome-wide
hydroxyurea screens published to date (Fig. 4A, fig. S8A). We experimentally confirmed the
sensitivity of dapIA and yhr(045wA to hydroxyurea (Fig. 4B). We also examined the dap /A
vhr045wA double mutant and found that the two genes are epistatic to one another, showing
nearly identical degree of sensitivity to hydroxyurea alone and in combination (Fig. 4B).

Furthermore, Dap1 is one of only five known physical interactors of Yhr045w (Fig. 4C).

Dapl is thought to regulate ergosterol biosynthesis by stabilizing Ergl1, a member of the
cytochrome P450 family that catalyzes the demethylation of lanosterol, an essential intermediate
in the ergosterol pathway (24). The ability of Dapl to stabilize Ergl1 depends on Dap1’s ability
to bind heme, an iron-containing complex that serves as a cofactor in numerous cellular
reactions, including Ergl 1’s demethylation activity (24). Consistent with their potential joint role
in heme binding and Ergl1 stabilization, Yeast Phenome data shows that dap /A and yhr045wA
are both sensitive to iron depletion and Ergl1 inhibition via chemical compounds such as
fluconazole and itraconazole (Fig. 4A, D). In addition, large-scale genetic interaction screens
have shown that dap IA and yhr045wA are both synthetic lethal with a temperature-sensitive
ergl [ mutation (18, 25), although the overall genetic interaction profiles of dap /A and
vhr045wA are not significantly correlated (cosine p = 0.03 = 0.11). While the connection
between ergosterol biosynthesis and DNA damage is not fully understood, the addition of
exogenous heme is able to suppress dap /A and yhr045wA sensitivity to DNA damage (Fig. 4D),
potentially because excess heme availability bypasses a Dap1-Yhr045w requirement for Ergl 1
stabilization. Consistent with this hypothesis, overexpression of Ergl1 also suppresses dapIA

and yhr045wA sensitivity to DNA damage and Ergl1 inhibitors (Fig. 4D).
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To confirm that the phenotypes observed for yhr045wA are indeed caused by the lack of
Yhr045w, we verified its correct genomic sequence in the Saccharomyces cerevisiae Genome
Variation database (26) and complemented its phenotypes with an intact plasmid-borne
YHRO045W (fig. S8B). Taken together, evidence from Yeast Phenome, genetic interaction and
protein-protein interaction data, as well as our validation experiments, suggests that Yhr045w
acts in cooperation with Dap] in regulating DNA damage response and ergosterol biosynthesis.
To reflect this joint function, we suggest that YHR045W be named DRPI for “Dapl-related

protein 1”.

Phenotypic profiles enable dissection of complex pathways

The second ORF we chose to characterize is YGLI17W, a putative protein of unknown function
whose phenotypic profile is highly similar to aro3A (cosine p = 0.62 + 0.04; Fig. 2C; Fig. 3D;
Fig. 4E). ARO3 encodes a 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase,
which catalyzes the first step of the chorismate biosynthesis pathway, ultimately producing
tryptophan, tyrosine and phenylalanine (fig. S6A). The phenotypic profile of ygl/l17wA is as
similar to trpA/aroA mutants as they are to one another (Fig. 2C; fig. S7A), strongly suggesting
that Ygl117w is a newly identified member or regulator of the pathway. Consistent with this
hypothesis, and similar to other amino acid biosynthesis genes, YGL117W is upregulated
following GCN4 induction (27) and upon amino acid starvation and rapamycin treatment in a
GCN4-dependent manner (28). Furthermore, the promoter of YGL117W contains a Gen4 control
response element (GCRE), which is bound by Gen4 in vivo (29).

We used the Saccharomyces cerevisiae Genome Variation database (26) to verify that ygll17wA
mutants in YKO are indeed mutated for YGL17W. Furthermore, we experimentally confirmed
that, just like aro3A and all trpA mutants (but not aro4A, see below), the growth of ygl/l17wA is
impaired in tryptophan-limited conditions (Trp~; Fig. 4F) and rescued by the expression of a
plasmid-borne YGL117W (fig. S7B). Interestingly, despite sharing most other phenotypes with
the rpA mutants, aro3A and ygl117wA are different from the rest of the pathway in that they can

grow when all three aromatic amino acids are missing concurrently (Trp~ Tyr~ Phe™; Fig. 2C;
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Fig. 4F). Such difference in growth between Trp~and Trp~ Tyr™ Phe™ media is expected for
aro3A, due to Aro3 having functional redundancy with Aro4 (another DAHP synthase) and the
feedback inhibition of Aro4 by tyrosine (fig. S6A). However, aro4A does not mirror this
behavior: despite the ability of phenylalanine to inhibit Aro3 activity in vitro, aro4A exhibits
normal growth in Trp~ Phe* conditions (Fig. 4F) (30). One possibility is that Ygl117w negatively
regulates the feedback inhibition of Aro3 by phenylalanine in vivo and allows aro4A to maintain
DAHP synthesis in Trp~ Phe” conditions (fig. S7C). Overall, to reflect the involvement of
Ygl117w in the aromatic amino acid biosynthesis pathway, we propose this gene be named

AROS.

Relationship between phenotypic similarity and intergenic distance

Typically, knock-out phenotypes are attributed exclusively to the deleted gene and interpreted as
a reflection of its lost function. However, due to the compact nature of the yeast genome (median
intergenic distance = 364 bp, n = 5,864), the deletion of one gene can inadvertently disrupt the
accessibility and/or regulation of a neighboring non-overlapping gene. These unintended
perturbations, sometimes called neighboring gene effects (NGEs) (8, 3/-36), are problematic
because they can cause changes in expression and/or localization of nearby proteins, and
potentially contaminate knock-out experiments with incorrect gene-to-phenotype links. For
example, in assigning a new function to YHR045W, we verified that yhr045wA phenotypes were
complemented by YHR045W but not YHR042W/NCP1, a nearby NADP-cytochrome P450
reductase that is also involved in ergosterol biosynthesis and could be indirectly affected by the
deletion of YHR045W (fig. S8B). While our data indicate that no such perturbation occurs and
vhr045wA phenotypes are indeed due to the loss of YHR045W, numerous anecdotal examples of
true NGEs have been reported in the literature (note S3).

To systematically measure the extent to which NGEs impact knock-out phenotypes, we used
Yeast Phenome data to examine the relationship between phenotypic similarity and intergenic
distance for ~782,000 gene pairs located on the same chromosome (Materials & Methods). We
found that, consistent with potential NGEs, the phenotypic similarity of immediately adjacent

genes was significantly higher than that of all other non-overlapping gene pairs (average cosine p
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=0.07 vs 0.02, respectively; Kolmogorov-Smirnov test p-value = 1.5 x 102%8; fig. S8C).
However, to our surprise, excess phenotypic similarity was not limited to adjacent genes:
proximal non-adjacent genes, i.e., those located on the same chromosome but not immediately
next to one another, also shared significantly more phenotypes than expected (KS test p-value ~
0.0; fig. S8C). A direct comparison of phenotypic similarity and intergenic distance showed a
strong exponential relationship such that, for gene pairs located within ~380 kb of one another,
closer proximity corresponded to higher phenotypic similarity, and vice versa (Pearson R = —
0.96, p-value = 2.8 x 1072%3; Fig. 5A). The same trend was observed independently for each
chromosome (fig. S9), as well as for multiple unrelated subsets of the Yeast Phenome dataset

(fig. S10).

We asked whether the higher phenotypic similarity between proximal genes can be explained by
altered gene expression as would be predicted by NGEs (32-35). We examined whole-genome
transcriptional profiles for ~1,500 knock-out mutants (4) and found that genes immediately
adjacent to a knock-out are 12 times more likely to change in expression than genes located
farther away (0.9% vs 0.08%, respectively; absolute log mutant/wildtype ratio |[M| > 1.7, p-value
<0.05; x? p-value = 8.3 x 107!°). Most adjacent genes (76%) are downregulated, and, like
phenotypic similarity, the magnitude of the effect shows an exponential relationship with
chromosomal proximity (Fig. 5B). However, the range of this relationship is much shorter than
that observed for phenotypic similarity: on average, only genes located within 1 kb from a
knock-out are affected and 92% of these genes are immediately adjacent to the knock-out (Fig.
5B). Such a difference in range between phenotypic similarity and expression effects (380 kb vs
1 kb; Fig. 5A-B) indicates that, while NGEs may be responsible for increased phenotypic
similarity among immediately adjacent gene pairs, the phenotypic similarity of proximal non-
adjacent genes is likely driven by other factors. One possibility is that this phenotypic similarity

reflects a closer functional relationship.

Several studies in yeast and other organisms have reported evidence for chromosomal co-
localization of functionally related genes. In yeast, for example, genes that are co-expressed (37)
or co-regulated by the same transcription factor (38), as well as genes encoding members of the

same protein complex (39) or metabolic pathway (40), are more likely to be located nearby on
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the same chromosome than expected by random chance. To assess the extent to which our
observations reflect these known trends, we repeated our analysis after excluding ~186,000 gene
pairs with existing evidence of functional co-clustering, as well as paralogous genes arisen from
an ancient whole-genome duplication event (Materials & Methods). Interestingly, the
exponential decay of phenotypic similarity as a function of intergenic distance was unaffected
(fig. SI1A), indicating that chromosomal location and biological function have a much stronger

connection than previously appreciated.

To confirm that our observations are not due to structural changes in the genome caused by gene
deletions, we repeated our analysis in native, unperturbed genomes using co-expression across
multiple experimental conditions as a measure of functional similarity (4/). In agreement with
previous reports (37), we observed that nearby genes are more co-expressed than genes located
farther away or on different chromosomes (fig. S11B). In addition, in a manner consistent with
phenotypic similarity, average co-expression decayed exponentially as a function of intergenic
distance but affected a much shorter range (up to 10.8 kb, fig. S11B). Similar results were
obtained using gene expression measurements obtained via microarray and RNAseq technologies

(data not shown).

Finally, we asked whether the relationship between intergenic distance and phenotypic similarity
is specific to yeast or is conserved in other organisms. The Cancer Dependency Map Project
(DepMap) aims to uncover genetic vulnerabilities in human cancers by systematically
inactivating genes in a panel of cancer cell lines and measuring the effect of each gene on cell
fitness (42—44). Numerous reports have demonstrated that genes sharing similar fitness profiles
across cancer cell lines are also likely to share a common function (45-5/). We examined the
similarity of fitness profiles for ~8 million human gene pairs located on the same chromosome
and observed the same exponential relationship with intergenic distance as in yeast (R =—0.93,
p-value ~ 0.0; Fig. 5C). This relationship, which extends as far as 100 Mb, strongly suggests that,
despite differences in genome size, compactness, complexity and perturbation technologies,
yeast and human genomes share one fundamental property: genes are not randomly distributed

across the genome but positioned relative to one another in a way that reflects their function.
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DISCUSSION

It is commonly assumed that the limiting factor for understanding a biological system is the lack
of data or, in some cases, the lack of the right data. Baker’s yeast Saccharomyces cerevisiae is a
great example of how inaccurate this assumption might be: online repositories and the literature
are overflowing with data, yet our understanding of the yeast cell as a complete system is still in
its infancy. One reason for such a discrepancy between expectation and reality is that data alone
are not sufficient to generate knowledge. To be useful, data must generate hypotheses and, to do
so, data must be discoverable, understandable and, most importantly, usable in the context of
other types of data (52). Yeast Phenome was created to empower integration and re-usability of
systematic phenotypic screens of the yeast knock-out collection and fuel the generation of
testable hypotheses. By aggregating, annotating and harmonizing all available YKO
experiments, we have produced an essential dataset for scientists interested in connecting
genotypes to phenotypes, predicting gene function, identifying drug targets, understanding the
functional principles of genome organization, testing causal inference methods, and answering

many other outstanding questions in the systems biology of yeast and other organisms.

Yeast Phenome incorporates and considerably extends all previous efforts to aggregate yeast
knock-out data (8, 53—57). In its size, scope and depth of information, Yeast Phenome rivals
many human biobanks that aim to facilitate integrative analyses of human biology by linking
genomes, phenomes and environomes for hundreds of thousands of individuals worldwide (7).
However, unlike natural populations, where the effect of a variant on gene function must be
predicted from sequence and its contribution to a phenotype must be inferred from statistical
associations, a knock-out screen provides a direct measurement of every gene’s causal effect on
a phenotype. While in our current work we focused on complete loss-of-function phenotypes,
data libraries similar to Yeast Phenome can be created for phenotypes caused by partial loss-of-
function, gain-of-function, dosage-modulating and point mutations for which genome-wide
collections are already available (58—65). As part of our aggregation and annotation efforts, we
assembled 7,011 screens of the yeast heterozygous diploid knock-out collection, which capture

gene dosage and haploinsufficiency effects on an unprecedented scale. Due to the need to
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interpret haploinsufficient phenotypes differently from those of loss-of-function mutations, we
omitted heterozygous diploid screens from our analyses but are making the dataset available for

download and investigation (www.yeastphenome.org; note S4).

We have shown that Yeast Phenome promotes novel hypotheses and a better understanding of
cellular biology. One of the advances enabled by Yeast Phenome is the discovery that over 1,000
chemical compounds, including several FDA-approved drugs, limit the intracellular abundance
of tryptophan (Fig. 2). While 7RP and ARO genes have been previously linked to multidrug
resistance in yeast (8), the diversity of Yeast Phenome data provides unprecedented insight into a
possible mechanism and its relevance to other organisms. It would be tempting to speculate that
the compounds eliciting trpA/aroA sensitivity bind and inactivate one or both tryptophan
permeases (Tatl and Tat2), therefore inhibiting tryptophan uptake and making the cell dependent
on its biosynthesis. However, the chemical structures of trpA/aroA compounds are vastly diverse
and their known modes-of-action range from rotenone (a mitochondrial complex I inhibitor) and
clotrimazole (an ergosterol biosynthesis inhibitor) to ibuprofen (a non-steroid anti-inflammatory
drug) and dehydroepiandrosterone (a human hormone precursor). Such diversity is inconsistent
with a direct biochemical interaction with a tryptophan permease or any other protein. A more
likely scenario is an indirect effect whereby chemical compounds interfere with tryptophan
uptake by changing the structure, composition or fluidity of the plasma membrane. In support of
this hypothesis, ibuprofen has been shown to electrostatically adsorb and then hydrophobically
insert into phospholipid bilayers in a dose-dependent manner in vitro (66). Physical perturbations
that cause trpA/aroA sensitivity (low temperature and high hydrostatic pressure; Fig. 2C) are also
known to affect membrane fluidity (67). Furthermore, most trpA/aroA mutants are synthetic
lethal with erg2—6A mutants (/8) which are defective in the production of ergosterol, a primary

component of yeast membranes and a regulator of membrane fluidity.

The plasma membrane hosts numerous biomolecules, including sensors, transporters and
enzymes, whose function is sensitive to changes in membrane fluidity (68). Therefore, it is
currently unclear why, relative to all other bioprocesses, tryptophan uptake would be so
prominently impacted by membrane perturbations. It is possible that the cell is uniquely sensitive

to small changes in tryptophan abundance because tryptophan is the largest, rarest and most
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energetically expensive of all amino acids (69). Furthermore, tryptophan is the only source of de
novo NAD+ synthesis and may indirectly regulate many metabolic reactions (69). In higher
organisms, including humans, tryptophan is the precursor of important neuroactive molecules
such as serotonin, melatonin, kynurenine, xanthurenic acid and quinolinic acid (69), and has
been implicated in modulating the ability of tumor cells to evade immune surveillance (70).
Since human cells are unable to synthesize tryptophan and rely completely on dietary intake, the
intracellular availability of tryptophan is determined entirely by the regulation of its transport
across membranes. The identification of ~1,000 chemical compounds that may impact such
transport will likely be useful in the investigation of neurological diseases and immuno-

oncology.

Another discovery enabled by Yeast Phenome is the exponential relationship between
phenotypic similarity and physical proximity among genes located on the same chromosome
(Fig. 5). This relationship strongly suggests that genes are not randomly scattered throughout the
genome but tend to organize by function. Evidence of co-clustering gene groups has long been
available in yeast and other organisms (37, 7/—-73). For example, the major histocompatibility
complex (MHC) comprises 20—100 related genes located in the same chromosomal region in
most vertebrates (74). Our analyses of Yeast Phenome and human DepMap data indicate that this
phenomenon is not limited to isolated blocks of functionally similar genes, such as the MHC
complex. We show that the relationship between gene position and function is much more
continuous and long-ranging than previously appreciated (380 kb and 100 Mb in yeast and

human genomes, respectively).

One possible explanation for the pervasive genomic co-localization of functionally related genes
is the need to efficiently store and access genetic information within the cell nucleus. Given the
complexity of DNA packaging and the energetic costs likely associated with selective access to
specific DNA regions, it may not be surprising the genes often accessed together are positioned
nearby. Another possible explanation is that physical proximity among functionally related genes
has evolutionary advantages for maintaining favorable combinations of alleles. It has been
proposed that, when two alleles share a genetic interaction (i.e., their joint effect on fitness is

greater than the sum of their individual effects), natural selection should act to preserve the
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successful haplotype and suppress recombination between the two loci (73, 75). Given that
functionally related genes are strongly enriched for genetic interactions (17, 18), it is possible
that their relative genomic positions are under selective pressure to reduce recombination rate

and enhance genetic linkage by minimizing physical distance.

A recurrent theme that emerged from our analyses is the importance of examining phenotypic
profiles in addition to individual gene-phenotype pairings. A phenotypic profile, intended either
as a set of phenotypes associated with a gene or as a set of genes associated with a phenotype, is
a powerful tool for investigating a biological system because it is quantitative, comprehensive,
and robust to noise. This global perspective is often missed by studies that focus on
characterizing only the strongest hits from a loss-of-function screen or, in a largely similar
manner, only the most statistically significant variants from a genome-wide association study
(GWAS). It is becoming increasingly clear that great value can be derived from examining all
genetic variation linked to a trait and all traits linked to a genetic variant, regardless of their

significance against an arbitrary threshold.
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Fig. 1: Yeast Phenome (www.yeastphenome.org) is a data library of published genome-

scale screens of the yeast knock-out (YKO) collection. (A) Yeast Phenome can be thought of
as a data matrix where each row is a knock-out mutant and each column is a phenotypic screen.
The matrix contains phenotypic values obtained by extracting data from 531 papers published by
366 research labs. The phenotypes tested by the screens and the experimental
conditions/environments, in which the phenotypes were tested (e.g., chemical compounds, pH,
temperature, growth media), were annotated using standard vocabularies. Three major classes of
phenotypes (cell growth, gene expression and other) are highlighted in blue, yellow and pink,
respectively. Grey represents unmeasured data because gene expression profiles were tested for
only ~1,500 knock-out mutants. (B) To facilitate analysis and interpretation, raw phenotypic
values (i.e., those released in the publication) were normalized using a modified z-score
transformation which uses the mode (instead of the mean) and standard deviation from the mode

to shift and scale the data.

Fig. 2: Tryptophan biosynthesis is essential for resistance to a wide range of chemical
compounds. (A) Distribution of phenotype rates for all genes in Yeast Phenome. (B) The
biosynthesis of tryptophan and its precursor chorismate are 2 of the top 3 biochemical pathways
with the highest phenotype rate. (C) Mutants involved in the biosynthesis of tryptophan (trp-5)
and chorismate (arol—4), but not other amino acids, share sensitivity to tryptophan-depleted

media, low temperature, high pressure and a wide range of chemical compounds. The heatmap
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shows NPVs for a set of mutants (columns) in a sample of screens (rows). Mutants (columns) are
organized by pathway and include: (a) biosynthesis of chorismate and tryptophan; (b)
biosynthesis of tyrosine and phenylalanine, (c) the general amino acid control (GAAC) pathway,
(d) biosynthesis of arginine, (e) biosynthesis of lysine, (f) biosynthesis of threonine. Screens
(rows) are organized by tested condition and include growth in: tryptophan-limited media (Trp"),
media limited for multiple amino acids, including tryptophan, tyrosine, and phenylalanine (Trp~
Tyr~ Phe"), exposure to low temperature and high pressure (°C/Pa), exposure to haloperidol
(Haloperidol), exposure to rotenone and paraquat (ETC/PD), exposure to human hormones

(Hormones), exposure to other chemical compounds (Other).

Fig. 3: Phenotypic profiles organize genes by function, help interpret novel screens and
validate uncharacterized ORFs. (A) A phenotypic similarity map was generated by applying
UMAP to the phenotypic profiles of 1,586 genes with >1% phenotype rate. The map, where
genes with similar phenotypes are placed closer than genes with dissimilar phenotypes, was
annotated using SAFE with GO Slim biological process terms. Nodes (genes) are colored based
on the GO term with the highest enrichment in their local neighborhoods. The regions with the
strongest enrichments are labeled with the corresponding GO terms. (B—C) SAFE was used to
annotate the map with NPVs from a chemical genomic screen of the unknown chemical
compound 4292 (B) and a reporter screen for unfolded protein response (UPR) (C). Nodes
(genes) are colored based on the average NPV in their local neighborhood relative to random
expectation. (D) The phenotypic similarity map shows the distribution of uncharacterized ORFs
and suggests hypotheses about their potential functions. Red nodes correspond to 43
uncharacterized ORFs (phenotype rate > 1%, similarity to a verified ORF p > 0.17). Pink nodes

correspond to verified ORFs with strong phenotypic similarity to uncharacterized ORFs.

Fig. 4: Functional validation of YHR045W and YGL117W. (A) The similarity of the
phenotypic profiles of yAr045wA and dapIA is shown as a scatter plot of their NPVs. Every grey
point corresponds to 1 phenotypic screen. Colored crosses highlight phenotypes suggestive of the
genes’ shared function. (B) Similar to dap A, yhr045wA is sensitive to DNA damaging agents
hydroxyurea and methyl methanesulfonate (MMS). The sensitivity of the dapIA yhrO045wA
double mutant is identical to that of the two single mutants, suggesting that Dapl and Yhr045w
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are epistatic to one another. (C) Dapl is one of five known physical interactors of Yhr045w. (D)
The sensitivity of dap A and yhr045wA to hydroxyurea and fluconazole is suppressed by the
overexpression of ERG 1. The sensitivity of dapIA and yhr045wA to hydroxyurea is suppressed
by heme supplementation. (E) The similarity of the phenotypic profiles of ygl/17wA and aro3A
is shown as a scatter plot of their NPVs. Every grey point corresponds to 1 phenotypic screen.
Colored crosses highlight phenotypes suggestive of the genes’ shared function. (F) The growth
of ygll17wA is severely impaired in tryptophan-limited conditions (SC—Trp) relative to complete
media (SC) but is restored in the absence of all 3 aromatic amino (SC—Trp—Tyr—Phe).

Fig. 5: Phenotypic similarity is exponentially related to chromosomal proximity in yeast
and human genomes. (A) In the yeast genome, the average similarity of phenotypic profiles
decays exponentially as a function of intergenic distance. Gene pairs located on the same
chromosome were grouped by intergenic distance. In each group, the average intergenic distance
and average phenotypic similarity were computed and plotted on the x and y-axis, respectively.
(B) The effect of the knock-out on the expression of nearby genes explains only a small portion
of the relationship between intergenic distance and phenotypic similarity. For each knocked-out
gene, genes located on the same chromosome were grouped by their distance from the knock-
out. In each group, the average distance and average change in gene expression in the knock-out
strain were computed and plotted on the x and y-axis, respectively. (C) Similar to yeast, the
human genome also displays an exponential relationship between intergenic distance and
phenotypic similarity. The analysis was done as described in (A). Phenotypic similarity was
estimated by comparing gene effects on fitness across ~1,000 cancer cell lines, as measured by

genome-wide RNAi and CRISPR loss-of-function screens.
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