

Running title: Carbon recapturing mechanisms in Brassicaceae

Brassicaceae display diverse photorespiratory carbon recapturing mechanisms

Urte Schlüter¹, Jacques W. Bouvier^{1,4}, Ricardo Guerreiro², Milena Malisic^{1,5}, Carina Kontny¹, Philipp Westhoff³, Benjamin Stich², Andreas P. M. Weber¹

¹ Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany

² Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany

³ Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany

⁴ Current address: Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK

⁵ Current address: Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany

Email addresses:

u.schlueter@hhu.de

jacques.bouvier@stx.ox.ac.uk

Ricardo.Guerreiro@hhu.de

mmalisic@mpipz.mpg.de

cakon101@uni-duesseldorf.de

Philipp.Westhoff@hhu.de

benjamin.stich@hhu.de

Andreas.Weber@uni-duesseldorf.de

Corresponding author:

Urte Schlüter

Email: u.schlueter@hhu.de

Phone: +49 211-81 14957

Date of submission: 22.12.2022

Word count abstract: 209

Word count main text: 11,125 (with M&M); 9,162 (without M&M)

Number of Figures: 8

Number of supplementary tables: 4

Number of Supplementary figures: 9

Abstract

Carbon concentrating mechanisms enhance the carboxylase efficiency of the central photosynthetic enzyme rubisco by providing supra-atmospheric concentrations of CO₂ in its surrounding. In the C₄ photosynthesis pathway, this is achieved by combinatory changes to leaf biochemistry and anatomy. Carbon concentration by the photorespiratory glycine shuttle requires fewer and less complex modifications. It could represent an early step during evolution from C₃ to C₄ photosynthesis and an inspiration for engineering approaches. Plants displaying CO₂ compensation points between 10 to 40 ppm are therefore often termed 'C₃–C₄ intermediates'. In the present study, we perform a physiological, biochemical and anatomical survey of a large number of Brassicaceae species to better understand the C₃–C₄ intermediate phenotype. Our phylogenetic analysis suggested that C₃–C₄ metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathways showed considerable variation between the species but also within species. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C₃–C₄ classified accessions indicating a crucial role of anatomical features for CO₂ concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual plant accessions, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of PEPC activities suggests that C₄-like shuttles have not evolved in the investigated Brassicaceae.

Keywords and abbreviations: carbon concentrating mechanisms, photorespiration, C₃–C₄ intermediacy, C₂ photosynthesis, photorespiratory glycine shuttle, Brassicaceae, CO₂ compensation point (CCP), bundle sheath (BS), mesophyll (M)

Highlight

Our physiological, biochemical and anatomical survey of Brassicaceae reveals multiple evolution of C₃–C₄ intermediacy connected to variation in photorespiratory carbon recapturing efficiency and a distinct C₃–C₄ bundle sheath anatomy.

1 **Introduction**

2
3 The majority of plant species on Earth, including many crops, employ C₃ photosynthesis. In
4 these plants, under the present environmental conditions, the central photosynthetic enzyme
5 rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) fixes approximately one
6 molecule of oxygen for every three molecules of CO₂ (Sharkey, 1988). Here, whilst the
7 carboxylase reaction of rubisco produces two molecules of 3-phosphoglycerate (3PGA) which
8 feeds into the Calvin-Benson-Bassham cycle (CBB), the oxygenase reaction produces 2-
9 phosphoglycolate (2PG). 2PG is a competitive inhibitor of some CBB enzymes (Flügel *et al.*,
10 2017) and hence must be rapidly removed. Further, carbon contained in 2PG must be recycled
11 into 3PGA to prevent depletion of CBB intermediates. These functions are fulfilled by the
12 photorespiratory pathway. Photorespiration consists of coordinated enzyme activities that are
13 located in different cellular compartments. In the plastids, 2PG is converted into glycolate
14 followed by oxidation and transamination in the peroxisome producing glycine. Glycine is
15 transported into the mitochondria and metabolised into serine by glycine decarboxylation.
16 Serine is finally converted into glycerate in the peroxisome and into 3PGA in the plastid. During
17 glycine decarboxylation, previously fixed carbon and nitrogen is converted into CO₂ and NH₃.
18 The re-fixation of carbon and nitrogen into organic forms, however, requires energy.
19 Therefore, photorespiration is often considered a wasteful process in terms of energy-,
20 carbon- and nitrogen-balance. Further, the affinity of rubisco for O₂ increases with rising
21 temperatures, in addition stomata closure during water shortages can lead to a drop in CO₂
22 concentrations inside the leaf. Thus, climate change could contribute to increased 2PG
23 production.

24

25 Possibilities to reduce photorespiratory losses that are being explored today include
26 increasing the capacity of the plant to recapture photorespiratory CO₂, modifying rubisco
27 kinetic properties and introducing carbon concentrating mechanisms to limit the oxygenase
28 reaction of rubisco by creating an CO₂ rich environment around the enzyme (Busch *et al.*,
29 2013). Better understanding of naturally occurring carbon concentration mechanisms will help
30 in the design of biotechnological approaches.

31

32 In C₃ species, photosynthesis and photorespiration mainly take place in the mesophyll (M) of
33 the leaves. Recapture of photorespiratory CO₂ can be facilitated by arrangement of a
34 continuous layer of plastids at the cell periphery next to the intercellular space. This
35 arrangement acts to block diffusion of CO₂ out of the cell because any CO₂ which would
36 otherwise escape would now need to pass through the plastids where it can be reassimilated
37 by rubisco (Sage and Sage, 2009; Busch *et al.*, 2013). In rice, rubisco containing extensions
38 (stromules) can increase the area of the plastidial barriers, preventing the efflux of CO₂
39 produced in the mitochondria (Sage and Sage, 2009). C₃ species like wheat and rice achieve
40 photorespiratory reassimilation rates of 24-38% (Busch *et al.*, 2013).

41

42 The number of chloroplasts in the C₃ bundle sheath (BS) varies between species (Leegood,
43 2008), but they tend to be smaller and fewer in number compared to the M. Contribution of
44 BS chloroplasts to leaf photosynthesis is considered to be small (Kinsman and Pyke, 1998;
45 Janacek *et al.*, 2009; Aubry *et al.*, 2014). Nevertheless, BS cells possess important roles in
46 leaf hydraulics, phloem loading, and intra-leaf signalling (Leegood, 2008; Lundgren *et al.*,

47 2014). In *Arabidopsis*, a cell specific translatome analysis indicated distinct roles for the BS
48 cells in sulphur metabolism and transport, as well as in glucosinolate and trehalose
49 metabolism (Aubry *et al.*, 2014). Enlargement of BS cells has initially been associated with
50 improved leaf hydraulics under water limiting conditions (Sage, 2004). Associated increases
51 in BS organelle numbers indicate enhanced photosynthetic and photorespiratory activity.
52 Centripetal arrangement of BS organelles helps to reduce loss of photorespiratory CO₂
53 (Muhandat *et al.*, 2011; Sage *et al.*, 2014). Such BS cells have also been labelled as “activated”
54 or “proto-Kranz” anatomy (Gowik and Westhoff, 2011; Sage *et al.*, 2014).

55

56 Further increases in BS CO₂ concentration are possible by shifting the glycine decarboxylation
57 step from the M to the BS (Monson *et al.*, 1984; Rawsthorne *et al.*, 1988a; Sage *et al.*, 2014).
58 This rearrangement forces photorespiratory glycine produced in the M to diffuse to the BS,
59 where the tissue-specific increase in glycine decarboxylation activity promotes an elevated
60 concentration of CO₂ around the BS rubisco and, thus, suppresses its oxygenase reaction. The
61 glycine decarboxylation step is realised by four proteins (GLDP, GLDH, GLDL, GLDT) which
62 combined, form the glycine decarboxylase complex (GDC) that operates in coordination with
63 the serine hydroxymethyltransferase (SHMT) (Douce *et al.*, 2001). BS localised activity of
64 glycine decarboxylation is mainly associated with cell specificity of the GLDP- protein
65 (Rawsthorne *et al.*, 1988a; Schulze *et al.*, 2013). The installation of a glycine shuttle is
66 accompanied by a further increase in organelle numbers in the BS. The majority of
67 mitochondria are therefore located between the centripetally arranged plastids and the vein
68 orientated cell wall (Sage *et al.*, 2014). Such combination of carbon supply by the glycine
69 shuttle and efficient CO₂ scavenging by adequate organelle arrangement improves the leaf
70 carbon conservation and can be measured as reduction in the carbon compensation point
71 (CCP or \square). Plants employing the photorespiratory glycine shuttle are often classified as C₂
72 species or C₃-C₄ intermediates of type I (Edwards and Ku, 1987; Sage *et al.*, 2014). Their CO₂
73 reassimilation capacity was estimated to be around 73 % in *M. arvensis* (Hunt *et al.*, 1987).

74

75 GDC activity is thought to be absent or considerably reduced in the M cells of well-developed
76 C₂ species, perhaps as a result of a loss-of-function mutation or insertion of a transposable
77 element early in C₂ evolution (Rawsthorne, 1992; Sage *et al.*, 2012; Adwy *et al.*, 2015).
78 Consistently, preferential BS localisation of GLDP has been observed in many well-developed
79 C₂ species, including, in the dicots *Moricandia* (Rawsthorne *et al.*, 1988a), *Flaveria* (Hylton *et*
80 *al.*, 1988), *Dipteraxis* (Ueno *et al.*, 2003), *Cleome* (Marshall *et al.*, 2007; Voznesenskaya *et*
81 *al.*, 2007), *Salsola* (Voznesenskaya *et al.*, 2001; Wen and Zhang, 2015; Schüssler *et al.*,
82 2017), *Brassica* (Ueno, 2011), *Euphorbia* (Sage *et al.*, 2011c), *Heliotropium* (Muhandat *et al.*,
83 2011), *Anticharis* (Khoshravesh *et al.*, 2012) and *Blepharis* (Fisher *et al.*, 2015), as well as the
84 monocots *Neurachne* (Christin *et al.*, 2012), *Alloteropsis* (Lundgren *et al.*, 2016) and
85 *Homolepis* (Khoshravesh *et al.*, 2016).

86

87 Assimilatory power of the BS can generally be further enhanced by decarboxylation of
88 additional metabolites. Transcripts of genes encoding decarboxylating enzymes for the C₄
89 metabolites aspartate and malate already preferentially accumulate in the C₃ BS (Aubry *et al.*,
90 2014). Organelle accumulation and enhancement of organellar metabolism in the BS could
91 increase the availability of such compounds. The glycine shuttle transports not only carbon
92 between M and BS, but also creates a nitrogen imbalance between these cells. For instance,

93 two glycine molecules are converted into one serine molecule while CO_2 , NH_3 and NADH are
94 released in the BS. As such, adjustment of leaf nitrogen metabolism in C_3 - C_4 intermediates
95 was proposed to occur by additional metabolite shuttling between M and BS cells (Mallmann
96 *et al.*, 2014). Energy metabolism of the BS also needs to be readjusted to the additional
97 amount of NH_3 fixation. Depending on light availability in the M and BS cells, plants operating
98 the glycine shuttle would need to adjust their photosynthetic pigment and protein distribution
99 (Johnson *et al.*, 2021). Shuttling of malate, aspartate, pyruvate, α -alanine, α -ketoglutarate and
100 glutamate could contribute to rebalancing of nitrogen and energy balances between the two
101 cell types (Mallmann *et al.*, 2014; Johnson *et al.*, 2021).

102

103 In the M cells, a rise in phosphoenolpyruvate carboxylase (PEPC) activity can contribute to
104 the provision of these shuttle metabolites. PEPC fixes carbon by catalysing the addition of
105 bicarbonate to phosphoenol/pyruvate forming the C_4 acid oxaloacetate that is usually quickly
106 converted into malate or aspartate. In contrast to rubisco, PEPC possesses higher substrate
107 specificity and affinity. Combined with the decarboxylation reactions in the BS, high PEPC
108 activity in the M cells can implement a carbon shuttle mechanism transporting C_4 metabolites
109 into the BS where CO_2 is released. Plants using the glycine- in combination with such C_4
110 shuttle have been identified mainly in the Asteraceae genus *Flaveria*. They are also termed
111 as C_2+C_4 or C_3 - C_4 type II species (Edwards and Ku, 1987; Sage *et al.*, 2014; Bellasio, 2017).

112

113 Additional anatomic rearrangements and consequent separation of the PEPC and rubisco
114 reactions into the M and BS cells finally support an efficient C_4 cycle (Taniguchi *et al.*, 2021).
115 In the M cells, CO_2 is converted into bicarbonate by carbonic anhydrase and is then fixed by
116 PEPC. The bound carbon diffuses into the BS mainly in the form of malate or aspartate.
117 Decarboxylation is then mediated by the NADP-malic enzyme in plastids, NAD-malic enzyme
118 in the mitochondria or phosphoenol/pyruvate carboxykinase in the cytosol. The cycle is
119 completed by diffusion of a C_3 metabolite back to the M cells where ATP is needed for PEP
120 regeneration by pyruvate phosphate dikinase. Plants with a strong C_4 shuttle, but which still
121 exhibit rubisco in the M are classified as C_4 -like (Moore *et al.*, 1989). In *bona fide* C_4 species,
122 all CO_2 is first assimilated by PEPC, with subsequent shuttling of the resulting C_4 acid to the
123 BS where CO_2 is then delivered to rubisco by a decarboxylase reaction. High CO_2 partial
124 pressure in the BS strongly represses the oxygenase reaction, the following photorespiratory
125 pathway and the concomitant loss of CO_2 and NH_3 . The division of photosynthetic reaction
126 between the two cell types however requires alterations of adjacent pathways, especially ATP
127 and NADPH budgets, CBB cycle, nitrogen metabolism and carbon storage (Brautigam *et al.*,
128 2011; Gowik *et al.*, 2011; Schlüter and Weber, 2020).

129

130 Efficiency of the C_4 shuttle also depends on anatomical features, especially the close
131 connection between M and BS cells. In the majority of C_4 species, the BS forms a tight cell
132 layer around the veins without direct exposure to the intercellular space (Sage *et al.*, 2014).
133 The proportion of M tissue is reduced to a second cell layer around the BS cells. The
134 interveinal distance in such Kranz anatomy is limited and C_4 species usually have high vein
135 densities. To prevent CO_2 leakage, BS cell walls are often thickened and high plasmodesmata
136 frequency at the interface between M and BS cells facilitate metabolite exchange (Danila *et*
137 *al.*, 2018).

138

139 Since CO₂ fixation in C₄ species can continue at lower internal CO₂ concentration (Ci) and
140 stomatal conductance, water use efficiency is improved compared to C₃ species. Operation of
141 rubisco under high CO₂ partial pressure allows high efficiency for the carboxylase reaction
142 with lower amounts of protein thus also improving the nitrogen use efficiency of C₄
143 photosynthesis.

144

145 C₄ photosynthesis evolved independently in more than 60 dicot and monocot lineages (Sage
146 *et al.*, 2011a) and it has been proposed that the path from C₃ to C₄ occurred through the
147 above-described stages. Such an evolutionary process is supported by data from groups of
148 closely related plants species which exhibit different CO₂ concentrating shuttles and BS
149 anatomy (Sage *et al.*, 2012). Further support comes from modelling approaches which predict
150 increased fitness by continuous optimisation steps between C₃ and C₄ (Heckmann *et al.*, 2013;
151 Mallmann *et al.*, 2014; Blätke and Bräutigam, 2019; Dunning *et al.*, 2019a). The order of
152 adjustments could have varied in the different lineages (Williams *et al.*, 2013), but installation
153 of the initial glycine shuttle seems to be crucial (Heckmann *et al.*, 2013; Blätke and Bräutigam,
154 2019). Depending on the preconditioning situation in the C₃ species, the evolution to C₄
155 occurred at different rates between plant lineages (Bräutigam and Gowik, 2016). Such
156 preconditions could be related to plants genetics or environmental pressures (Christin and
157 Osborne, 2014; Schlüter *et al.*, 2017). For many C₄ species, no close intermediate relatives
158 have been found thus far and this could indicate that evolution from C₃ to C₄ happened
159 relatively fast and smoothly in these lineages (Edwards, 2014). In *Alloteropsis semialata*, a
160 grass that includes C₃, C₄ and intermediate stages, only very few transcriptional changes could
161 be connected to the installation of a weak C₄ cycle (Dunning *et al.*, 2019a).

162

163 Most prominent among the glycine shuttle operating plants are the C₃-C₄ Brassicaceae
164 species, a large plant family that does not contain any C₄, but several C₃-C₄ intermediate
165 species (Apel *et al.*, 1997). The Brassicaceae include the model species *A. thaliana*, but also
166 important crop species such as canola or rapeseed (*Brassica napus*), cabbage (*Brassica
167 oleracea*), radish (*Raphanus sativus*), mustard (*Sinapis alba*) and the salad vegetable rocket
168 or arugula (*Eruca sativa*, *Diplotaxis tenuifolia*). With the exception of *D. tenuifolia*, these are
169 all C₃ species.

170

171 The carbon concentration system of the C₃-C₄ intermediate species could improve leaf carbon
172 economy during extreme weather periods that occur more frequently in the current climate
173 conditions (Bellasio and Farquhar, 2019; Lundgren, 2020). Attempts to engineer the highly
174 efficient C₄ carbon concentration metabolism into rice have shown that introduction of
175 numerous C₄ pathway genes is possible, but introduction of the according anatomy and
176 efficient integration of the C₄ biochemistry into the C₃ background is more challenging
177 (Ermakova *et al.*, 2020). Introduction of the less complex glycine shuttle could therefore be
178 easier to achieve (Lundgren, 2020). The Brassicaceae family contains multiple species
179 operating the photorespiratory glycine shuttle in close relationship to important crops (Schlüter
180 *et al.*, 2017). Detailed knowledge about the carbon concentration mechanisms existing in this
181 plant group can help to identify the necessary traits for such an engineering or breeding
182 approach.

183

184 In our study, we use the CCP to rank the species and accessions according to their carbon
185 concentration capacity. The survey includes 28 Brassicaceae species represented by 34
186 accessions and focusses on the Brassiceae tribe that evolved ~23 mya with centres of origin
187 and diversity in the circum-Mediterranean region (Arias and Pires, 2012). Beside important
188 crops species, this tribe includes all known C₃-C₄ Brassicaceae (Apel *et al.*, 1997; Schlüter *et*
189 *al.*, 2017). So far, C₃-C₄ related physiological, biochemical and anatomical traits have been
190 determined within a single origin or by comparison of few individual species. Here, our survey
191 of multiple C₃ and C₃-C₄ lineages allows us to better understand the variation in a total of 75
192 photosynthetic-related parameters within and between C₃ and C₃-C₄ species to elucidate the
193 characteristics which are distinctly associated with the C₃-C₄ photosynthesis. With this
194 approach, we aim to identify the traits essential for the operation of carbon concentrating
195 mechanisms within the Brassicaceae and this could guide future engineering approaches.
196 Furthermore, we will also learn about lineage specific developments of the C₃-C₄ pathways
197 and potential variation within the trait.

198
199 **Material and Methods**
200

201 *Plant cultivation*

202 The seeds were obtained from Botanical gardens, seed stock centres, and seed companies.
203 The complete list of plant accessions included: *Arabidopsis thaliana* (At), *Brassica gravinae*
204 (4 accessions, Bg1 to Bg4), *Brassica juncea* (Bj), *Brassica napus* (Bn), *Brassica nigra* (Bni),
205 *Brassica oleracea* (Bo), *Brassica rapa* (Br), *Brassica repanda* (Be), *Brassica tournefortii* (2
206 accessions, Bt1 and Bt2), *Carrichtera annua* (Ca), *Diplotaxis acris* (Da), *Diplotaxis erucoides*
207 (2 accessions, De1 and De2), *Diplotaxis harra* (Dh), *Diplotaxis muralis* (Dm), *Diplotaxis*
208 *tenuifolia* (Dt), *Diplotaxis tenuisiliqua* (Ds), *Diplotaxis viminea* (Dv), *Eruca sativa* (Es),
209 *Hirschfeldia incana* (2 accessions HIR1 and HIR3), *Moricandia arvensis* (Ma), *Moricandia*
210 *moricandioides* (Mm), *Moricandia nitens* (Mn), *Moricandia sinaica* (Msi), *Moricandia spinosa*
211 (Mp), *Moricandia suffruticosa* (Ms), *Raphanus raphanistrum* (Rr), *Raphanus sativus* (Rs) and
212 *Sinapis alba* (Sa). From the Cleomaceae, the C₄ species *Gynandropsis gynandra* (Gg) was
213 also included in the present study. A complete list of origins for these seed can be found in
214 Supplemental table S1.

215 Seeds were vapour sterilised by incubation in an exicator with a fresh mixture of 100ml 13%
216 Na-Hypochloride with 3 ml of 37% HCl for 2h. The sterilised seeds were then germinated on
217 plates containing 0.22% (w/v) Murashige Skoog medium, 50mM MES pH 5.7 and 0.8% (w/v)
218 Agar. After 7 to 10 days, the seedlings were transferred to pots containing a mixture of sand
219 and soil (Floraton 1 soil mixture, Floraguard, Germany) at a ratio of 1:2. All plants were firstly
220 cultivated in climate chambers (CLF Mobilux Growbanks, Germany) under 12h day conditions
221 with 23°C/20°C day/night temperatures and ~200 µmol s⁻¹ m⁻² light. After establishment in soil
222 (about two weeks), the plants were transferred to the greenhouse of the Heinrich Heine
223 University with a 16 h day/8 h night cycle. Natural light conditions in the greenhouse were
224 supplemented with metal halide lamps (400W, DH Licht, Germany) so that the plants received
225 between 250 to 400 µmol m⁻² s⁻¹. Minimum temperatures were adjusted to 21°C during the
226 night and 24°C during the day.

227
228 The initial main experiment was conducted between October 2018 and March 2019. Additional
229 accessions were studied after the same protocol and in the same greenhouse between July

230 and October 2020. As controls *G. gynandra*, *D. tenuifolia*, and *H. incana* (HIR3) were included
231 in both experiments. Gas exchange parameters obtained for these three species, especially
232 CO₂ compensation points (CCP) were stable across the experiments. Thus, results from both
233 experiments were considered comparable. Gas exchange was measured on the youngest
234 fully expanded rosette leaves before onset of flowering. After gas exchange measurements
235 were performed, plants were taken back to the greenhouse for two days. Following that, leaf
236 material was harvested for metabolite analysis (only experiment in 2018/2019), EA-IRMS
237 analysis, leaf vein determination and embedding for light microscopy. A third experiment was
238 conducted on plant accessions selected from the initial experiments in September to
239 November 2021 in the new greenhouses of the Heinrich-Heine University equipped with
240 natural light LED lamps using the same experimental design. Samples for protein and PEPC
241 assay at midday by snap freezing in liquid nitrogen. An additional leaf was used for
242 determination of specific leaf area (SLA).

243

244 *Phylogenetic tree*

245 Plants for genome sequencing were grown from the same seed stock in a climate chamber.
246 Linked read sequencing was performed by 10x Genomics and BGI, complemented by PacBio
247 and Nanopore long read sequencing for some species (Guerreiro *et al.*, 2023). Most
248 assemblies are linked read assemblies, some being scaffolded and gapfilled with the long
249 read data, while two assemblies are long read assemblies polished and scaffolded by linked
250 reads.

251

252 The assemblies are pseudohaploid, with alternative haplotype contigs having been removed
253 with Purge Haplotype (v1.1.0) (Roach *et al.*, 2018). The novel genome assemblies were
254 complemented with literature assemblies (Guerreiro *et al.*, 2023). Repeat regions were
255 identified for each assembly with Mite-hunter (Han and Wessler, 2010), genometools (v1.5.9),
256 LTRharvest (Ellinghaus *et al.*, 2008) and RepeatModeler (v1.0.11) (Smit *et al.*, 2015). Those
257 repeat regions were masked out of the assembly prior to gene annotation using RepeatMasker
258 (v4.0.9) (Smit *et al.*, 2015). Gene annotation was performed using Maker2 (Campbell *et al.*,
259 2014) and the same protein database for every genome (Guerreiro *et al.*, 2023). The predicted
260 proteomes of every species were filtered for Annotation Edit Distance (AED, (Eilbeck *et al.*,
261 2009)) values smaller than 0.5. Functional annotation was performed with AHRD in order to
262 remove Transposon related genes (Guerreiro *et al.*, 2023).

263

264 Finally, the filtered proteomes were fed into Orthofinder v2.5.1 (Emms and Kelly, 2015, 2019)
265 for orthology identification based on all vs all sequence BLASTp searches and MCL clustering
266 (Emms and Kelly, 2015). Multiple sequence alignments for identified orthogroups (HOGs)
267 were produced with MAFFT and used for creating gene trees with RaxML with
268 PROTGAMMALG substitution model. The gene trees of HOGs with single-copy genes for at
269 least 80% of species (102 HOGs) were fed to ASTRAL-pro (Zhang *et al.*, 2020) for the creation
270 of a species phylogeny with bootstrap values for each node.

271

272 *Photosynthetic gas exchange*

273 Gas exchange was measured on the youngest fully expanded rosette leaf about 6 to 10 weeks
274 after sowing and before the onset of flowering. The settings of the LI6800 (LI-COR Corporate,
275 USA) were as follows: flow of 300 µmol s⁻¹, fan speed of 10,0000 rpm, light intensity of 1500

276 $\mu\text{mol m}^{-2} \text{s}^{-1}$, leaf temperature of 25°C and VPD of 1.5 kPa. After adjustment of leaves to the
277 conditions in the leaf chamber, A-Ci curves were measured at reference atmospheric CO₂
278 concentrations of 400, 200, 100, 75, 50, 40, 30, 20, 10, 0, 400, 400, 600, 800, 1200, and 1600
279 ppm. In parallel, fluorescence parameters were determined for all CO₂ conditions. For the
280 experiment 2018/2019 the LI-6800 was equipped with a fluorescence head measuring Fv'/Fm'
281 and ETR at each CO₂ level.

282
283 For calculation of the CCP and the carboxylation efficiencies (CE = initial slope of A-Ci), a
284 minimum of four data points in the linear range close to the interception with the Ci axis were
285 used. Maximal assimilation was determined at CO₂ concentrations between 1200 to 1600
286 ppm. Assimilation (A), stomatal conductance (gsw), internal CO₂ concentration (Ci), water use
287 efficiency (WUE = A/gsw), and the ratio between internal and external CO₂ concentrations
288 (Ci/Ca) from the measurements at 400 ppm (ambient CO₂), 200 ppm, 100 ppm and 50 ppm
289 CO₂ were used for more detailed physiological analysis of the investigated plant accessions.
290

291 *Metabolite and element analysis*

292 After the gas exchange measurements, plants were allowed to readjust to greenhouse
293 condition before sampling for metabolite patterns. Leaves were snap frozen into liquid nitrogen
294 directly in the greenhouse in the late morning and stored at -80°C. The leaf samples then were
295 homogenized into a fine powder by grinding in liquid nitrogen. Soluble metabolites were
296 extracted in a 1.5 ml extraction solution consisting of water : methanol : chloroform in a 1:2.5:1
297 mixture following the method of Fiehn et al. (Fiehn et al., 2000). 30 μl of the supernatant was
298 dried completely in a vacuum concentrator and derivatized for GC-MS measurements (Gu,
299 2012). GC-MS measurements were performed as described by Shim et al. (Shim et al., 2020)
300 using a 5977B GC-MSD (both Agilent Technologies). Metabolites were identified via
301 MassHunter Qualitative (v b08.00, Agilent Technologies) by comparison of spectra to the
302 NIST14 Mass Spectral Library (<https://www.nist.gov/srd/nist-standard-reference-database-1a-v14>). A standard mixture containing all target compounds at a concentration of 5 μM was
303 processed in parallel to the samples as a response check and retention time reference. Peaks
304 were integrated using MassHunter Quantitative (v b08.00, Agilent Technologies). For relative
305 quantification, all metabolite peak areas were normalized to the corresponding fresh weight
306 used for extraction and to the peak area of the internal standard ribitol or
307 dimethylphenylalanine (Sigma-Aldrich). The same homogenised leaf material was used for
308 determination of $\delta^{13}\text{C}$ and CN ratios. After lyophilisation the material was analysed using an
309 Isoprime 100 isotope ratio mass spectrometer coupled to an ISOTOPE cube elemental
310 analyser (both from Elementar, Hanau, Germany) according to (Gowik et al., 2011). In most
311 cases, a minimum of four biological replicates per plant accessions were analysed.
312

313 *Vein density measurements*

314 Mature rosette leaves were used for vein density measurements. The leaf material was
315 cleared in an acetic acid: ethanol mix (1:3) overnight followed by staining of cell walls in 5%
316 safranin O in ethanol, and de-staining in 70% ethanol. Pictures were taken using a Nikon
317 eclipse Ti-U microscope equipped with a ProgRes MF camera from Jenoptik, Germany, at 4x
318 magnification. The vein density was analysed with ImageJ software. In most cases, six leaves
319 were analysed for vein density per line with a minimum of three pictures measured and
320 averaged per leaf.

322
323 *Specific leaf area (SLA)*
324 Whole mature rosette leaves were cut and their outlines were copied on checked paper. The
325 fresh weight (FW) was taken immediately after that. The dry weight (DW) was determined
326 after 48 h at 60°C. The leaf area was determined using ImageJ software. For calculation of
327 SLA, the area was divided by the dry weight.
328
329 *Analysis of leaf cross section*
330 For light microscopy, sections of ca. 1 x 2 mm were cut from the top third of mature rosette
331 leaves and immediately fixed in 2% paraformaldehyde, 2% glutaraldehyde, 0.1% Triton-X-100
332 in phosphate buffer saline (137 mM NaCl, 2.7mM KCl, 12mM H₂PO₄⁻/HPO₄²⁻, pH 7.4). Vacuum
333 was applied to the reaction tubes until all leaf sections sank to the bottom. The sections were
334 incubated in the primary fixation solution overnight followed by washing once with phosphate
335 buffer saline solution, pH 7.4, and twice with distilled H₂O. For post-fixation, the sections were
336 incubated in 1% OsO₄ for 45 min followed again by washing three times with distilled H₂O. A
337 dehydration series was performed ranging from 30% to 100% acetone, followed by incubation
338 in increasing proportions of Araldite resin until 100% Araldite was reached. The sections were
339 finally positioned into flat embedding moulds and polymerised at 65°C for at 48h.
340
341 After cutting, the leaf sections were stained with toluidine blue solution (0.5% toluidine blue,
342 0.5% methylene blue, 6% Na₂B₄O₇, 1% H₃BO₃) and studied under a light microscope (Zeiss
343 Axio Observer, Carl Zeiss, Germany). For quantitative analysis, pictures of at least three BS
344 per biological replicate were taken and analysed with ImageJ software. The following
345 parameter were determined per BS for quantitative analysis: cross section area of BS cell
346 (BS_cell_area), area of organelles orientated towards the vein (V_organelle_area), area of
347 organelles orientated towards intercellular space (ICS) and M (M_organelle_area). The
348 following parameter were calculated: percent of vein orientated organelle area per BS cell
349 area (percent_V_organelle), percent of organelles orientated towards ICS and M
350 (percent_M_organelles), the total organelle area per cell (V_organelle_area +
351 M_organelle_area = total_organelle_area) and the ratio between percent values for vein and
352 ICS/M orientated organelles. Furthermore, the leaf thickness was measured at the site of the
353 selected BS. Three representative cells were analysed per BS, and three BS were analysed
354 per plant.
355
356 *PEPC activity*
357 Total soluble proteins were extracted from the homogenised leaf material in 50mM Hepes-
358 KOH pH 7.5, 5mM MgCl₂, 2mM DTT, 1mM EDTA, 0.5% Triton-X-100. For the PEPC assay
359 10 µl of the extract were mixed with assay buffer consisting of 100mM Tricine-KOH pH 8.0,
360 5mM MgCl₂, 2mM DTT, 1mM KHCO₃, 0.2mM NADH, 5mM glucose-6-phosphate, 2U ml⁻¹
361 malate dehydrogenase in a microtiter plate. The reaction was started after addition of
362 phosphoenolpyruvate to a final concentration of 5mM in the assay. Protein content of the
363 solutions was determined with the BCA assay (Thermo Fischer Scientific).
364
365 *Statistical analysis*
366 Data analysis was performed using R (www.R-project.org). Statistical differences between the
367 measured parameters in the accessions were calculated by one-way ANOVA followed by

368 Tukey post-hoc test. Differences between parameters in C₃ and C₃-C₄ photosynthesis types
369 were determined by a two-tailed t-test (Supplemental figures S4, S5, S6). Geographical
370 distribution data was downloaded from the gbif.org website (August 2022), associated climate
371 data was retrieved from the WorlCLim version 2.1 database (WorldClim.org) using 10 min
372 resolution.

373

374

375 **Results**

376

377 **Assessment of CO₂ concentrating efficiency by measuring CO₂ compensation points**

378

379 The CCP is a measure of the internal leaf CO₂ level at which photosynthetic CO₂ fixation is
380 equal to the CO₂ release by photorespiration, day respiration and other catalytic processes
381 (i.e., the concentration at which net CO₂ assimilation is zero). In the present study, the CCP
382 was determined from A-Ci curves across a diverse range of 34 Brassicaceae accessions from
383 28 species to assess their carbon usage efficiency (Figure 1). The closest known C₄ relative
384 in the Cleomaceae, *G. gynandra*, was also included in the analysis for comparison.

385

386 When sorting all sampled plant accessions in the Brassicaceae according to their CCP, a
387 range of CCP values from 60 to 10 ppm was detected. The Cleomaceae C₄ species *G.*
388 *gynandra* with highly efficient CO₂ concentration showed CCP values < 10 ppm. Plants with
389 CCP values between 10 and 40 ppm are predicted to utilize less efficient CO₂ concentration,
390 such as the photorespiratory shuttle, and were hereby classified as C₃-C₄ intermediates. In
391 contrast, all accessions and species with a CCP >40 ppm were classified as C₃ species. This
392 grouping was supported by ANOVA with post-hoc Tukey HSD test (alpha = 0.05; Figure 1).
393 The same threshold values were also used in the survey by Krenzer et al. (Krenzer et al.,
394 1975).

395

396 In our study, *A. thaliana* exhibited the highest CCP of 60.1 ppm. Slightly lower CCPs between
397 45 and 60 ppm were observed for the C₃ species of the Brassiceae clade, including *Brassica*
398 *repanda*, *Diplotaxis acris*, *Carrichtera annua*, *Raphanus raphanistrum*, *Diplotaxis harra*, *Eruca*
399 *sativa*, *Moricandia moricandoides*, *Diplotaxis viminea*, *Brassica oleracea*, *Hirschfeldia*
400 *incana* accession HIR1, *Sinapis alba*, *Brassica rapa*, *Diplotaxis tenuisiliqua*, *Brassica*
401 *tournefortii*, *Brassica nigra*, *Brassica juncea*, *Brassica napus* and *Raphanus sativus*. In
402 comparison to these C₃ plants, a significant reduction in the CCPs was observed in 14
403 accessions classified in the present study as C₃-C₄ intermediates, these included *Hirschfeldia*
404 *incana* accession HIR3, four accessions of *Brassica gravinae*, *Diplotaxis muralis*, two
405 accessions of *Diplotaxis erucoides*, *Moricandia suffruticosa*, *Moricandia arvensis*, *Moricandia*
406 *sinaica*, *Moricandia nitens*, *Moricandia spinosa* and *Diplotaxis tenuifolia*.

407

408 Among the C₃-C₄ intermediates, the lowest CCP value of 12 ppm was measured in *D.*
409 *tenuifolia*. In contrast, the highest CCP value recorded among the C₃-C₄ intermediates at ~40
410 ppm was measured in *H. incana* (accession HIR3). Importantly, the identification of *H. incana*
411 HIR3 as a C₃-C₄ intermediate species which operates a CO₂ concentrating mechanism is
412 described here for the first time. Interestingly, another closely related *H. incana* accession
413 (HIR1) exhibited a CCP value within the range of C₃ species (Figure1). In all other species

414 different accessions were assigned to the same photosynthetic type. Altogether, the wide
415 range of CCPs among Brassicaceae and especially the C₃-C₄ intermediates indicates that the
416 underlying biochemical and anatomical mechanisms are not necessarily conserved in this
417 clade and could be connected to independent evolutionary origins.

418

419 ***Phylogeny suggests up to five independent origins of C₃-C₄ photosynthesis in the***
420 ***Brassicaceae***

421

422 The phylogenetic relationship among the plant species selected for this study was investigated
423 using sequence data from 102 orthogroups (Figure 2). When investigating the distribution of
424 species classified as C₃-C₄ intermediates based on CCP data, the tree reveals multiple origins
425 of CO₂ concentration mechanisms in the Brassicaceae. We note that the presented tree includes
426 only a small subset of species from the Brassicaceae group, though a recently published and
427 more densely sampled phylogenetic tree (Koch and Lemmel, 2019) supports these claims.

428

429 The phylogenetic positions of *B. gravinae*, the *H. incana* accession HIR3 and *D. erucoides* on
430 the tree suggest independent origins of C₃-C₄ features. Moreover, in the *Moricandia* group,
431 C₃-C₄ features are observed among the close relatives *M. arvensis*, *M. suffruticosa*, *M. nitens*,
432 *M. sinalica* and *M. spinosa*, but not the sister species *M. moricandioides* which is C₃. Thus, C₃-
433 C₄ most likely evolved once in this group, in a common ancestor preceding the speciation of
434 *M. arvensis*, *M. suffruticosa*, *M. nitens*, *M. sinalica* and *M. spinosa* but after diversification from
435 *M. moricandioides*. Finally, C₃-C₄ like CCPs were observed in *D. tenuifolia* and *D. muralis*.
436 Both of these respective species are closely related to the C₃ species *D. viminea*. *D. muralis*
437 is a natural hybrid between the C₃ parent *D. viminea* and the C₃-C₄ parent *D. tenuifolia*.
438 Therefore, the C₃-C₄ features in *D. muralis* are assumed to be inherited from *D. tenuifolia*
439 (Ueno *et al.*, 2006). In summary, our phylogenetic data indicate that C₃-C₄ features have
440 independently evolved up to five times in the Brassicaceae, in *B. gravinae*, in *D. erucoides*, in
441 *H. incana*, in the *Moricandia* group and in *D. tenuifolia* (subsequently inherited by hybridisation
442 in *D. muralis*).

443

444 ***Physiology of C₃, C₃-C₄ and C₄ leaves under different CO₂ concentration***

445

446 Efficiency of photosynthetic gas exchange in the different C₃ and C₃-C₄ Brassicaceae
447 accessions was assessed under ambient CO₂ (400 ppm) and saturating light (1500 µmol m⁻²
448 s⁻¹). Here, under ambient conditions, no association between photosynthesis type and net
449 assimilation could be observed (Figure 2 A). For instance, in C₃ plants, assimilation rates
450 under ambient CO₂ varied between 12.3 µmol m⁻² s⁻¹ (*A. thaliana*) and 28.1 µmol m⁻² s⁻¹ (*D.*
451 *tenuisiliqua*) (Figure 2A, Supplemental table S2), whilst among C₃-C₄ intermediates,
452 assimilation rates varied between 17.3 µmol m⁻² s⁻¹ (*B. gravinae* accession 2) and 26.8 µmol
453 m⁻² s⁻¹ (*D. erucoides* accession 1). Moreover, assimilation rates achieved in the C₄ species *G.*
454 *gynandra* of 23.7 µmol m⁻² s⁻¹ were similar to rates in non-C₄ plants. Thus, assimilatory
455 capacity under ambient CO₂ conditions appears to be species- or accession-specific, rather
456 than determined by plant photosynthetic machinery.

457

458 In contrast to the above, enhanced rates of assimilation were discovered in plants operating
459 a CO₂ concentrating mechanism under lower atmospheric CO₂ concentrations (Figure 3C, E,

460 Supplemental table S2). For instance, at pre-industrial levels of 200 ppm CO₂, the C₄ *G. gynandra* showed higher assimilatory capacity compared to any other C₃ or C₃-C₄ species (Figure 3C; Supplemental table S2). Further, this elevated assimilation rate observed in *G. gynandra* became even more pronounced under 100 ppm CO₂ (Figure 3E; Supplemental table S2). Interestingly, C₃-C₄ intermediate species tended to perform better than C₃ plants under sub-ambient CO₂ conditions (Figure 3C, E; Supplemental table S2). On average across all plants of each photosynthesis type, assimilation was significantly higher in the C₃-C₄ group compared to the C₃ group under CO₂ conditions of 200 ppm and below (t-test, p<0.05; Supplemental figure S4). Thus, although CO₂ concentrating mechanisms do not improve net assimilation under present atmospheric CO₂, they appear to be advantageous under former pre-industrial levels of CO₂.

471

472 In addition to the above, operating a CO₂ concentrating mechanism also yielded benefits in
473 terms of improved water-use efficiency (WUE; ratio between CO₂ assimilation and water
474 stomatal conductance). For example, under ambient 400 ppm CO₂, the WUE was significantly
475 higher in the C₄ species *G. gynandra* as compared to all other C₃ and C₃-C₄ species (Figure
476 3 B). On average, WUE did not differ between C₃ and C₃-C₄ accessions at 400 ppm CO₂.
477 However, C₃-C₄ plants were found to exhibit a significantly improved WUE at both 200 and
478 100 ppm CO₂ compared to C₃ species (t-test, p>0.05; Supplemental figure S4) recapitulating
479 the trend observed for assimilation rate. In addition, a strong negative correlation between
480 WUE and Ci was found across species at all atmospheric CO₂ concentrations (Supplemental
481 figure S1). Given that changes in stomatal conductance exhibited no photosynthesis type
482 specific pattern (Supplemental figure S4), this result suggests that higher WUE is achieved
483 across species in the Brassicaceae by CO₂ assimilation at lower internal CO₂ concentration
484 (Ci). Thus, C₃-C₄ species are able to operate at lower internal CO₂ concentrations than species
485 from the C₃ group.

486

487 Next, to determine the effect of C₃, C₃-C₄ and C₄ metabolism on the light reactions of
488 photosynthesis, chlorophyll fluorescence parameters were also measured. In general, a
489 positive correlation was found between net assimilation and electron transport rate (ETR), as
490 well between assimilation rate and effective quantum efficiency Fv'/Fm' (Supplemental Figure
491 S1). However, fluorescence parameters were less affected under reduced atmospheric CO₂
492 concentrations as compared to assimilation rate (Supplemental figure S1). For instance, no
493 correlation effect was observed between CCP and ETR or Fv'/Fm' under any CO₂
494 concentration (Figure 4 C, D). Though, it should be noted that it is possible that effects on the
495 light reactions would become obvious only after longer adjustment periods to changes in CO₂
496 environmental conditions which were not able to be accommodated in the current
497 experimental setup.

498

499 To further assess how different photosynthesis types are characterised by differences in leaf
500 physiological parameters, a principal component analysis (PCA) was performed. Since the
501 importance of carbon concentrating mechanisms becomes more obvious when CO₂ is limited,
502 gas exchange measurements at CO₂ concentrations of 200, 100 and 50 ppm were included
503 in this analysis in addition to those measured under ambient 400 ppm CO₂ (Figure 4 A, B). In
504 this PCA, the first principal component was found to explain 65.5% of the variation, and
505 separates the C₄ species *G. gynandra* from all other C₃ and C₃-C₄ plants. To a lesser extent,

506 the same component also separates C₃ and C₃-C₄ plants though these groups do overlap on
507 this axis (Figure 4 A, B). As expected from the above results, the first principal component is
508 driven by WUE, Ci, Ci/Ca ratio, CCP and carboxylation efficiency (CE). In contrast, the second
509 principal component, driven by stomatal conductance and assimilation at higher CO₂
510 concentrations, has no effect on separating plants across different photosynthesis types and
511 is driven by species-specific variation.

512
513 As CCP was used above to classify different photosynthesis types, correlations were
514 investigated between CCP values across species and all other measured leaf physiological
515 parameters. A strong positive correlation was observed between CCP and both Ci and Ci/Ca
516 ratio at low CO₂ concentrations, respectively (Figure 4 C, D). In contrast, a negative correlation
517 was found between CCP and both WUE and assimilation at low CO₂ (Figure 4 C, D). These
518 relationships were independently observed irrespective of whether the C₄ species *G. gynandra* was
519 included in the analysis or not. Conversely, carboxylation efficiency (CE = initial
520 slope of A-Ci curve) was negatively correlated with CCP only when the C₄ *G. gynandra* was
521 included in the analysis (Figure 4C). This indicates that CE was not influenced considerably
522 during the transition from C₃ to C₃-C₄, but only during transition from C₃-C₄ to C₄.
523
524

525 ***Metabolite profiles of leaves with different photosynthesis pathways***

526
527 To assess the identity of potential transport metabolites used in C₃-C₄ intermediates, leaf
528 primary metabolites of sampled species were also quantified and analysed by PCA (Figure 5
529 A, B). In this analysis, the first principal component explained 28.25% of variation and
530 distinguishes C₃/C₃-C₄ and C₄ leaf biochemistry. Mainly responsible for this separation are
531 high levels of α -alanine, α -ketoglutarate, aspartate, glycine, glutamate, pyruvate,
532 phenylalanine and γ -aminobutyric acid (GABA) in the C₄ *G. gynandra* compared to the C₃ and
533 C₃-C₄ background (Figures 5 B; Supplemental table S3). In contrast, the second principal
534 component sorts the majority of C₃ species (clustered to the top of this axis) from C₃-C₄
535 species (clustered to the bottom of this axis) (Figure 5 A, B). Here, on this axis, the C₃-C₄
536 plants tend to have higher levels of serine, branched amino acids and proline, whilst the C₃
537 species are characterised by higher levels of glucose, sucrose and myo-inositol.
538

539 Correlation analyses of CCP values with primary metabolite levels were also performed across
540 species (Figure 5 C, D, Supplemental figure S2). A negative correlation was observed
541 between CCP and the C₄ related metabolites α -alanine, α -ketoglutarate, aspartate, glutamate,
542 pyruvate (Figures 5, 6; Supplemental table S3). However, this relationship seems to be driven
543 by the strong accumulation of these metabolites in the C₄ species alone (Figure 5 C). To
544 identify metabolites that are potentially specific to C₃-C₄ photosynthesis, the correlation
545 analysis was repeated without the C₄ outgroup species. This resulted in the reduction of the
546 strength of all statistical associations. Specifically, only serine and glycine showed significant
547 negative correlations with CCP (Figure 5 D; Supplemental table S3). Thus, this suggests that
548 serine and glycine have a ubiquitous role in the glycine shuttle across all C₃-C₄ intermediates
549 in the Brassicaceae. Interestingly, however, glycine was the only metabolite that increased
550 between C₃ and C₃-C₄ species which was also high in the C₄ species (Figure 6 A;
551 Supplemental figures S2, S5). In contrast, serine was enhanced among C₃-C₄ species

552 compared to C₃ species, but was detected at a C₃ level in the C₄ *G. gynandra* (Figure 6 B; 553 Supplemental figures S2, S5). In the present study, glutamate, α -alanine, aspartate, pyruvate, 554 malate and α -ketoglutarate formerly predicted to be involved in nitrogen shuttling of C₃-C₄ 555 leaves (Mallmann *et al.*, 2014) were not associated with CCP (Figure 6). Instead, levels of 556 these metabolites were high in only some C₃-C₄ accessions. For instance, glutamate and 557 aspartate levels were relatively high in *M. arvensis*, *D. muralis* and *D. tenuifolia*, but not in the 558 other C₃-C₄ *Moricandia* species *M. nitens* and *M. suffruticosa* (Figure 6). In contrast, the two 559 *D. erucoides* accessions separated from the majority of other C₃-C₄ species in the PCA (Figure 560 5 A, B) showed relatively high levels of glycerate, glycolate and malate (Figure 6; 561 Supplemental table S3). In summary, the present results describe a general role of only 562 glycine and serine as predicted shuttle metabolites in C₃-C₄ biochemistry across all species. 563 However, individual biochemical adjustments are possibly active among different C₃-C₄ 564 lineages.

565

566

567 **Association of CCP with structural features of bundle sheath**

568

569 Given that leaf and BS cell architecture play an important role in underpinning CO₂ 570 concentrating mechanisms by enabling adequate metabolite transport between M and BS 571 tissue, we also sought to characterise the leaf anatomy of our Brassicaceae species. In the 572 present study, it was observed that vein density was highest in the C₄ *G. gynandra* compared 573 to all other species. However, no difference in vein density was observed between C₃ and C₃- 574 C₄ plant accessions (Figure 7 A). To determine whether differences in BS structure were 575 present between photosynthetic types, a representative subset of plant accessions were 576 studied in more detail by light microscopy (Supplemental figure S7). In this analysis, although 577 BS cross section area was high in the C₄ species as well as several C₃-C₄ species, it was not 578 found to be significantly different between C₃ and C₃-C₄ plants (Figure 7 B, Supplemental 579 figure S6). Moreover, within the BS cells, the areas occupied by plastids and other organelles 580 with either vein (inner half) or intercellular space (ICS)/M orientation (outer half) were 581 determined. Areas with ICS/M oriented organelles did not differ between C₃ and C₃-C₄ leaf 582 cross section (Figure 7E). In the C₄ leaf, none of the BS organelles faced the outer ICS/M 583 side. On the other hand, all plant accessions with a CCP below 40 ppm featured enhanced 584 organelle accumulation around the vein (Figure 7 H). This resulted in higher total organelle 585 area in the C₃-C₄ BS cells. Thus, organelle abundance and orientation likely played a decisive 586 role for the functioning of weak CO₂ concentrating mechanisms.

587

588 C₄ anatomy consists of just one layer of BS and M cells around the veins which limits the total 589 number of cell layers. In our study, the C₄ leaves of *G. gynandra* were comparably thin. 590 However, leaf thickness within the C₃ and C₃-C₄ groups showed species-specific variation. 591 For instance, independent of photosynthesis type, all *Moricandia* species possessed thick 592 succulent leaves. Values of SLA (specific leaf area = area per g dry weight) are usually greater 593 for C₄ than for C₃ leaves (Atkinson *et al.*, 2016), but no pronounced photosynthesis type 594 related differences in SLA could be observed in our study (Figure 7 I).

595

596 The C₄ pathway allows plants to fix CO₂ with lower nitrogen input. This means that typically, 597 C₄ plants have lower leaf nitrogen concentrations compared to C₃ species (Long, 1999; Craine 598 *et al.*, 2005; Gowik *et al.*, 2011). Interestingly, however, C₄ *G. gynandra* in our analysis had

599 surprisingly high leaf nitrogen concentrations and low leaf CN ratios (Figure 7 D). This result
600 could be influenced by the slow growth rate of this species in comparison with the majority of
601 Brassicaceae species in this study. However, leaf protein concentrations in this C₄ *G. gynandra* were low relative to the background of other species indicating C₄-specific
602 differences in N allocation (Figure 7 F). Interestingly, no difference in CN ratios or leaf protein
603 concentrations could be observed between the C₃ and C₃-C₄ species (Figure 7 D;
604 Supplemental figure S6).

606

607 Operation of the C₄ pathway required increased activity of PEPC, but allows reduction in
608 concentrations of rubisco and CBB cycle enzymes (Brautigam *et al.*, 2011; Gowik *et al.*, 2011).
609 In our study, PEPC activity was 8 to 20-fold higher in the C₄ *G. gynandra* leaves as compared
610 to the leaves of the C₃ and C₃-C₄ species (Figure 7 C, Supplemental table S4). PEPC activities
611 varied in the individual plant accessions, but were not significantly different between the C₃
612 and C₃-C₄ groups (Supplemental figure S6). Especially *E. sativa* and *M. moricandoides*
613 showed PEPC activities similar to the C₃-C₄ accessions *M. arvensis*, *M. suffruticosa* and *D. tenuifolia*
614 (Figure 8, Supplemental figure S6). These results emphasise the power of our multi-
615 species analysis that allows distinction between species and photosynthesis type related
616 variation.

617

618 Summarising the above-mentioned structural and leaf composition related parameters in a
619 PCA, the C₄ *G. gynandra* can be separated from the rest of the Brassicaceae plants (Figure
620 8 A, B). This was mainly driven by high values for □¹³C, vein density and vein orientated
621 organelles in the BS as well as low values for CCP and ICS/M orientated organelles in the BS
622 (Figure 8 A, B). C₃ and C₃-C₄ accessions separated along the same line, a combination of
623 PC1 and PC2, but an overlap between the two groups was nevertheless observed. Correlation
624 of the CCP to the selected components supported the importance of organelle accumulation
625 and orientation in the BS for the activity of the C₄ as well as the C₃-C₄ pathway (Figure 8 C,
626 D; Supplemental figure S2).

627

628

629 Discussion

630

631 Soon after the discovery of C₄ biochemistry (Hatch and Slack, 1966), *Mollugo verticillata* was
632 described as a species with features intermediate between ancestral C₃ and C₄
633 photosynthesis (Kennedy and Laetsch, 1974). Specifically, this species was characterised as
634 possessing a high number of plastids in the BS in addition to having photorespiratory rates
635 which were between typical values for C₃ and C₄ species (Kennedy and Laetsch, 1974).
636 Subsequently, this discovery was followed by an extensive screening experiment which
637 measured the CCP of 439 monocot and 335 dicot species (Krenzer *et al.*, 1975). In this
638 experiment, it was found that most species fell within two main groups, of CCPs above 40
639 ppm (C₃), and CCPs below 10 ppm (C₄), respectively. Only two species showed intermediate
640 CCP values between 10 and 40 ppm, the C₃-C₄ grass *Panicum milioides* and the C₃-C₄
641 Brassicaceae *Moricandia arvensis*. Following these observations, *M. arvensis* became one of
642 the first model plants for the investigation of the C₃-C₄ intermediate photosynthesis type
643 (Bauwe and Apel, 1979; Holaday and Chollet, 1983; Rawsthorne *et al.*, 1988a,b), sometimes
644 also referred to as the *Moricandia* syndrome. Since then, additional species with intermediate
645 photosynthesis features have also been discovered in the Brassicaceae including *M.*

646 *suffruticosa*, *M. sinaica*, *M. spinosa*, *M. nitens*, and *D. tenuifolia* (Hylton *et al.*, 1988; Apel *et*
647 *al.*, 1997). In this study, we describe the physiology, biochemistry and anatomy of 10 species
648 (14 accessions) of C₃-C₄ intermediates and 18 C₃ species (19 accession) from this family.
649

650 The results in the current study reveal that carbon concentrating mechanisms have evolved
651 up to five times independently in the Brassiceae tribe (Figures 1, 2), ranging from very efficient
652 C₃-C₄ photosynthesis in *D. tenuifolia* and the *Moricandia* genus (*M. suffruticosa*, *M. arvensis*,
653 *M. sinaica*, *M. nitens*, *M. spinosa*), to relatively weaker CO₂ concentrating mechanisms in *B.*
654 *gravinae*, *D. erucoides* and *H. incana* HIR3 accession. These observations are based on CCP
655 measurements combined with a phylogenetic tree inferred from genomic sequence data
656 across 102 orthogroups. Our study newly identified carbon concentrating mechanisms in an
657 accession of *H. inana* (HIR3) and, for the first time, investigated C₃-C₄ features in *D. erucoides*
658 in more detail.
659

660

661 **Brassicaceae display large variation in efficiency of the carbon conservation**
662 **mechanism**

663

664 Our survey of CO₂ concentration mechanisms in the Brassicaceae confirmed that
665 measurements of the CCP represent a valuable tool for the identification of C₃-C₄ intermediate
666 plant accessions. However, in contrast to the large screening study by Krenzer *et al.* (Krenzer
667 *et al.*, 1975), we observed gradual changes in the CO₂ concentrating capacity within the group
668 of potential C₃-C₄ intermediates that exhibit CCPs below 40 ppm. Our study therefore supports
669 models claiming that carbon concentrating mechanisms evolved in a smooth manner by
670 additive effects of small fitness gains (Heckmann *et al.*, 2013).
671

672 The lowest CCPs in the present investigation was measured in *D. tenuifolia* and the C₃-C₄
673 *Moricandia* species. Although various accessions of these species were used in different
674 studies (Hylton *et al.*, 1988; Rawsthorne *et al.*, 1988a; Apel *et al.*, 1997; Ueno *et al.*, 2003,
675 2006; Schlüter *et al.*, 2017), low CCPs seem to be a ubiquitous trait of these respective
676 species. Moreover, low CCPs in these species were supported by BS specific localisation of
677 the GLDP protein (Hylton *et al.*, 1988; Rawsthorne *et al.*, 1988a; Ueno *et al.*, 2003). Further,
678 especially in *D. tenuifolia*, CCP values were observed as very low and close to those typical
679 of C₄ species. However, PEPC and ¹³C measurements support the fact that C₃-C₄ *D. tenuifolia*
680 and *Moricandia* species do not operate a C₄ cycle.
681

682 Four accessions of *B. gravinae* were tested in the present study and all were found to exhibit
683 C₃-C₄-like CCP values, indicating stability of this trait in this species. This result is also
684 corroborated by a previous study which has observed GLDP localisation to the BS in this
685 species (Ueno, 2011). Moreover, although variation in the CCP of *D. erucoides* has been
686 previously reported (Apel *et al.*, 1997), both accessions of this species characterised in the
687 present study exhibited CCP values typical of C₃-C₄ plants.
688

689 Interestingly, our analysis included two different accessions of *H. incana*, of which HIR1
690 clustered with C₃ species while HIR3 showed a reduced CCP typical of a C₃-C₄ intermediate.
691 Variation in the CCP within different populations of the same species had been observed
692 before (Teese, 1995; Apel *et al.*, 1997; Lundgren *et al.*, 2016; Yorimitsu *et al.*, 2019). This

693 could be due to the manifestation of the C₃-C₄ phenotype in only some accessions within the
694 species. A recent publication investigating C₃-C₄ features in the Chenopodiaceae showed that
695 growth conditions, especially temperature and nitrogen supply, could considerably influence
696 the formation of the glycine shuttle in some species. The CCP was lowest under high
697 temperature and low nitrogen conditions, which was connected to accumulation of the GLDP
698 protein preferentially in the BS (Oono *et al.*, 2022). These results in combination with the
699 previous literature support that all species classified as C₃-C₄ intermediates in the present
700 study achieve high CO₂ assimilation efficiency exclusively using the photorespiratory glycine
701 shuttle. Our results also indicate that gradual and even facultative implementation of carbon
702 shuttles between the M and BS are possible and should be considered in future experiments.
703

704 In addition to the five independent evolutionary origins of C₃-C₄ in the Brassicaceae, *D. muralis*
705 appears to have inherited C₃-C₄ intermediacy as it is a tetraploid natural hybrid between the
706 C₃ species *D. viminea* and the strong glycine shuttle species *D. tenuifolia* (Eschmann-Grupe
707 *et al.*, 2003; Ueno *et al.*, 2006). In the majority of crossings between C₃ and C₃-C₄
708 Brassicaceae the physiology of the hybrids was closer to the C₃ parent (Rawsthorne *et al.*,
709 1998; Ueno *et al.*, 2003) and additional evolutionary adjustments might be necessary to further
710 optimise the efficiency of the glycine shuttle (Ueno *et al.*, 2003). As such, it has been
711 suggested that hybridisation events could play a major role in the acquisition of the carbon
712 concentrating mechanisms (Kadereit *et al.*, 2017). Further, in some grasses, lateral gene
713 transfer has been shown to support the rapid and successful establishment of the C₄ pathway
714 (Dunning *et al.*, 2019b). The contribution of such transfer mechanisms for carbon
715 concentrating mechanisms in the Brassicaceae can only be resolved by detailed genome
716 analysis. Such scenarios would nevertheless require donor species that are able to
717 successfully transfer essential features into the receiving genetic background.
718
719

720 **C₃-C₄ photosynthesis is associated with reduced Ci and enhanced WUE especially 721 under limiting CO₂**

722

723 In the Brassicaceae, the presence of C₃-C₄ metabolism did not translate into improved
724 photosynthetic assimilation under ambient environmental conditions (Figure 3). For instance,
725 across the Brassicaceae species analysed in the current study, assimilation rates appeared
726 to be genotype specific rather than related to photosynthesis type under ambient CO₂. This
727 lack of correlation between assimilation and photosynthesis type has also been previously
728 described in the Chenopodiaceae (Yorimitsu *et al.*, 2019).
729

730 Interestingly, however, C₃-C₄ species in the Brassicaceae adjusted leaf Ci to lower levels
731 compared to C₃ species in this clade. The difference between these photosynthesis types was
732 marginal under ambient conditions, but became more pronounced under CO₂ conditions of
733 200 ppm and lower (Figure 4 C, D). The ability to assimilate CO₂ at lower Ci translated into
734 higher WUE in the C₃-C₄ species compared to the C₃ species. This increase in WUE observed
735 was underpinned by enhanced assimilation, as stomatal conductance was similar among the
736 C₃ and C₃-C₄ species under all tested conditions (Figures 3 B, D, F). It should however be
737 noted that the differences observed for Ci and WUE between C₃ and C₃-C₄ were small in
738 comparison to the difference between all C₃ and C₃-C₄ species and C₄ *G. gynandra*, thus
739 underlining the superiority of the C₄ pathway as a CO₂ concentrating mechanism compared

740 to C₃-C₄ metabolism. Similar observations have been previously observed in *Heliotropium* and
741 *Flaveria*, in which C₃-C₄ species achieved WUE values between the C₃ and C₄ species with
742 this result also due to higher assimilation rather than modified conductance (Huxman and
743 Monson, 2003; Vogan *et al.*, 2007). These results support an advantage of the C₃-C₄ pathway
744 in high photorespiratory conditions which cause CO₂ restriction due to stomatal closure.

745

746 Although the C₃ species *M. moricandioides* appears to be geographically restricted to the
747 Southern Iberian Peninsula, the closely related C₃-C₄ species *M. arvensis* has spread into a
748 variety of habitats ranging from Great Britain to Tunisia (Lundgren and Christin, 2017; Perfectti
749 *et al.*, 2017); (Supplemental figure S8). Similarly, the C₃ species *D. viminea* grows mainly in
750 Southern Spain and France, whilst the closely related C₃-C₄ species *D. tenuifolia* and *D.*
751 *muralis* can also be found in colder and wetter more northern locations such as Scandinavia
752 and Scotland (Supplemental figure S8). Thus, in both of these respective lineages, the glycine
753 shuttle appears to be connected to an enlargement of the growth habitat but not necessarily
754 towards specific climatic preferences (Lundgren and Christin, 2017); (Supplemental figure
755 S9). For instance, *D. tenuifolia* often grows as an invasive species occupying sunny, harsh
756 and arid sites (Nicoletti *et al.*, 2007) in which water, nutrient and temperature conditions can
757 change rapidly. In competitive habitats, C₄ species have been shown to profit especially from
758 their ability for fast biomass accumulations under favourable conditions (Christin *et al.*, 2014;
759 Knapp *et al.*, 2020), and efficient conservation of photorespiratory CO₂ possibly contributed to
760 fast growth and establishment of C₃-C₄ species in marginal habitats.

761

762 Ecological studies which have investigated the adaptation of C₃-C₄ species to specific
763 environmental conditions are unfortunately still rare (Oono *et al.*, 2022). However, the present
764 results show that C₃-C₄ metabolism evolved in species from different habitats and in different
765 genetic backgrounds in the Brassiceae group and thus indicate benefits of this trait under a
766 wide range of conditions. Ecological preferences of the C₃-C₄ species are still dependent on
767 their C₃ ancestors (Lundgren and Christin, 2017), but installation of the glycine shuttle seems
768 to have broadened their niches. Furthermore, some C₃-C₄ species show high plasticity in leaf
769 morphological traits. *M. arvensis* leaves had lower CCPs and higher WUE under hotter and
770 more arid summer conditions than in milder spring climate (Gomez *et al.*, 2020). A similar
771 phenomenon was recently described for *Chenopodium album* where selected accessions
772 developed low CCPs under high temperature and low nitrogen conditions (Oono *et al.*, 2022).
773 C₃-C₄ species could generally be associated with harsh environments experiencing large
774 ranges of temperature and water availability, thereby possibly profiting from high
775 environmental flexibility of the trait.

776

777 Knowledge about the distribution of species with glycine shuttle metabolism is generally still
778 limited to studies among relatives of C₄ species. As such, very few larger surveys have been
779 performed which assess CCP across a broad range of plant species (Krenzer *et al.*, 1975;
780 Apel *et al.*, 1997). This is mainly due to the dependence on gas exchange equipment and
781 time-consuming measurements. It is therefore assumed that the frequency of species with
782 weaker carbon concentrating mechanisms is strongly underestimated (Sage *et al.*, 2011b;
783 Lundgren, 2020). Identification of CCPs characteristic to C₃-C₄ species in a *H. incana*
784 accession and recently in some *C. album* accessions (Yorimitsu *et al.*, 2019) support this
785 hypothesis. As such, faster methods for identification of C₃-C₄ intermediates could help to

786 close this knowledge gap. Here, our correlation analysis showed that measurements of
787 assimilation at low CO₂ are sufficient for detection of C₃-C₄ phenotype and would save
788 considerable time as appose to having to calculate CCP by measuring assimilation across a
789 range of CO₂ concentrations (Figure 4 D). For example, a very strong positive correlation in
790 the present results was found to exist between CCP and assimilation rate at 50 ppm CO₂
791 which is close to the CCP of C₃ species. High and significant negative correlation to CCP also
792 existed for WUE under CO₂ conditions of 200 ppm and below. As in our experiments
793 assimilation generally correlated positively with photosynthesis efficiency Fv'/Fm,
794 fluorescence combined with stomatal conductance measurements could possibly also be
795 used in a fast initial screening experiments for identification of C₃-C₄ intermediates in the
796 future.

797

798

799 ***Reduction in CCP correlates negatively with organelle accumulation and arrangement
800 in BS***

801

802 Although a gradual change in various physiological parameters was observed during transition
803 between C₃ and C₃-C₄ photosynthesis, more distinct changes were found in BS structural data.
804 For instance, all plants from the C₃-C₄ group possessed enhanced BS area occupied by
805 organelles in the centripetal position and a higher total organelle area per BS cell compared
806 to C₃ species (Figures 7, 8). This underlines the importance of anatomical features for carbon
807 recapturing mechanisms. A strong correlation between reduction in CCP and increased
808 organelle accumulation facing the vein in the BS was also previously observed in interspecific
809 hybrids between *D. tenuifolia* (C₃-C₄) and *R. sativus* (C₃) (Ueno *et al.*, 2003). The BS structural
810 features appeared to be genetically encoded and is inherited independently from the GLDP
811 localisation (Ueno *et al.*, 2003). Residual expression of the GLDP was also observed in M
812 cells of C₃-C₄ intermediate *Flaveria* species (Schulze *et al.*, 2013). This shows that structural
813 modifications can underpin an effective CCP without complete suppression of GLDP in the M
814 cells.

815

816 C₃-C₄ intermediates in our study contained several layers of M cells such that many do not
817 directly border BS cells. This would mean that complete absence of GDC activity in the M cells
818 would require transport of photorespiratory glycine through other M cell layers prior to entering
819 the BS for metabolism. However, accumulation of mitochondria in the BS might create a
820 glycine sink supporting glycine diffusion to the BS and partial reduction of M GLDP expression
821 would enforce this shuttle. TEM studies of centripetally localised organelles from C₃-C₄
822 Brassiceae (Ueno *et al.*, 2006; Schlüter *et al.*, 2017), Asteraceae (McKown and Dengler,
823 2007), Boraginaceae (Muhaidat *et al.*, 2011), Scrophulariaceae (Khoshravesh *et al.*, 2012),
824 Arthropogoninae (Khoshravesh *et al.*, 2016) and Chenopodiaceae (Yorimitsu *et al.*, 2019)
825 have shown a close arrangement of mitochondria and chloroplasts. Thus, BS ultrastructure
826 seems to play a major role in prevention of photorespiratory CO₂ and NH₃ loss and in
827 improvement of leaf carbon and possibly also nitrogen economy.

828

829 In contrast to the C₄ specie in our study, BS cells in C₃-C₄ Brassicaceae species exhibited
830 organelles facing the ICS and M cells (Figure 7, Supplemental figure S7). This amount of
831 ICS/M cell facing organelles decreased in C₃-C₄ species with higher carbon concentrating
832 efficiency. Our results suggest that accumulation of centripetal organelles and reduction of

833 peripheral organelles are not necessarily regulated by the same process. Additional structural
834 features of C₄ species such as enlarged BS cell area and higher vein density did not differ
835 between the tested C₃ and C₃-C₄ Brassicaceae species. Further, leaf thickness, SLA and
836 FW/DW ratios were also not different between the leaves of the C₃, C₃-C₄ and C₄ species
837 (Figure 7, Supplemental figure S3). Thus, despite leaf anatomy and BS architecture being
838 important requirements for evolution of carbon concentrating mechanisms (Christin *et al.*,
839 2013), modifications in leaf succulence parameters do not appear to be essential for efficient
840 photorespiratory carbon concentration in the Brassicaceae. Plasticity in morphological
841 parameters could also play a role in further evolution towards the C₄ leaf and thus be
842 connected to the absence of C₄ photosynthesis in this plant group (Schlüter *et al.*, 2017).
843

844 ***Brassicaceae C₃-C₄ metabolism had only minor influence on leaf steady-state***
845 ***metabolite patterns***

846
847 Organelle accumulation in the BS and shift of GDC activity to this tissue influences leaf
848 biochemistry (Rawsthorne, 1992; Schlüter *et al.*, 2017). For instance, a lack or reduction of
849 GDC activity in the M causes accumulation of photorespiratory glycine and its transport along
850 the concentration gradient to the BS where it is efficiently recaptured in the numerous BS
851 chloroplasts by rubisco. Similar mechanisms have evolved independently in different
852 phylogenetic backgrounds and uneven distribution of the GLDP protein has been confirmed
853 for numerous plant species (Schlüter and Weber, 2020). The GDC reaction, however, also
854 utilizes NADH and releases NH₃ alongside CO₂, further metabolic balancing between the two
855 cell types. Nevertheless, beyond GLDP localisation, not much is known about the cell specific
856 metabolism or the nature of additional metabolite shuttles in C₃-C₄ Brassicaceae.
857

858 If metabolite exchange between M and BS cells is realised by a concentration gradient, high
859 concentrations of these transported metabolite would be expected in the leaves (Leegood and
860 Von Caemmerer, 1989). Although, it should be noted that high metabolic flux and cell-specific
861 metabolite accumulation might mask these gradients in total leaf extracts. Our metabolite
862 analysis did not identify preferential metabolite shuttles operating across all C₃-C₄
863 Brassicaceae species. Steady-state glycine concentrations were generally enhanced in the
864 C₃-C₄ species compared to C₃ species, supporting the hypothesis that glycine is transported
865 from the M cells to the BS for decarboxylation. High glycine was, however, also found in leaves
866 of the C₃ *D. tenuisiliqua* and the C₄ species *G. gynandra* indicating that glycine accumulation
867 is not a distinct C₃-C₄ features (Figure 6A). Further uncertainty exists around the metabolites
868 transported back from BS to M for rebalancing of carbon, nitrogen and energy metabolism
869 (Borghi *et al.*, 2022). Beside glycine, serine accumulation also exhibited a negative correlation
870 with CCP values (Figure 5 D). This strongly supports the involvement of serine as a metabolite
871 transported back from the BS to the M cells (Rawsthorne, 1992; Mallmann *et al.*, 2014),
872 although variation in serine levels suggest that the contribution of serine transport could vary
873 between the different accessions.
874

875 Strong variation between the individual accessions also existed for other shuttle metabolite
876 candidates. Modelling approaches have previously predicted the involvement of glutamate, α -
877 ketoglutarate, α -alanine, pyruvate, aspartate and malate in shuttling processes for rebalancing
878 of nitrogen metabolism between M and BS (Mallmann *et al.*, 2014). Malate and aspartate

879 could also be involved in rebalancing of reducing power between the two cell types (Johnson
880 *et al.*, 2021). Contribution of glutamine/glutamate and asparagine/aspartate to intercellular
881 shuttles were suggested for the C₃-C₄ species *Flaveria anomala* (Borghi *et al.*, 2022). Here,
882 enhanced levels of these various metabolites could be observed in some, but not all C₃-C₄
883 accessions (Figure 6). For example, high concentrations of malate, aspartate and glutamate
884 were found in species displaying very low CCPs such as *M. arvensis* and *D. tenuifolia*.
885 Interestingly, the C₃-C₄ *Moricandia* species which supposedly share a single C₃-C₄
886 evolutionary origin also showed strong variation in the metabolite pattern. A similar absence
887 of main shuttle metabolites has also been described for C₃-C₄ *Flaveria* species (Borghi *et al.*,
888 2022). Our data generally support the hypothesis that multiple metabolites are transported
889 between M and BS (Schlüter *et al.*, 2017; Borghi *et al.*, 2022). The contribution of the different
890 metabolites could differ in the individual accessions depending on genetic as well as
891 environmental influences. Such a multitude of solutions indicates that metabolite and energy
892 balancing does not represent a limiting step during evolution of carbon concentrating
893 pathways.

894 To date, enzyme localisation studies have mostly focussed on the GLDP protein, and much
895 less is known about whether other reactions are shifted to the BS in C₃-C₄ species. In *M. arvensis*, other tested photorespiratory enzymes such as glycolate oxidase, serine
896 hydroxymethyl transferase and other subunits of the GDC complex were present in both cell
897 types (Morgan *et al.*, 1993). Enzyme activities in *M. arvensis* in M and BS enriched fractions
898 were also equally distributed for glyoxylate aminotransferases, glycolate oxidase and
899 hydroxypyruvate reductase (Rawsthorne *et al.*, 1988b) supporting the crucial role of uneven
900 distribution for glycine shuttle operation in *M. arvensis*. On the other hand, all GDC subunits
901 were preferentially expressed in the BS in C₃-C₄ *Flaveria* and *Panicum* species (Morgan *et al.*,
902 1993). Shifting of additional photorespiratory steps could considerably influence the metabolite
903 shuttles. In our study, some accessions, especially *D. erucoides* and *D. tenuifolia*, showed
904 high levels of glycolate and glycerate. Interestingly, intercellular transport of glycerate and
905 glycolate was predicted in a constraint-based modelling approach for weak carbon
906 concentrating mechanisms on the evolutionary path to C₄ photosynthesis (Blätke and
907 Bräutigam, 2019). Exchange of these metabolites between M and BS would reduce the need
908 for intercellular nitrogen recycling (Borghi *et al.*, 2022). Part of the photorespiratory metabolites
909 could also feed into additional pathways in the BS. It has been estimated that 1-5 % of the
910 photorespiratory glycine and about 30% serine can be metabolised outside the
911 photorespiratory cycle in processes such as protein biosynthesis (Busch *et al.*, 2018). The
912 high organelle accumulation would increase the demand for protein synthesis in the C₃-C₄ BS.
913 Furthermore, the BS is also responsible for loading of assimilation products into the phloem,
914 and part of the carbon and nitrogen transported into the BS by the glycine shuttle could support
915 metabolite export to the sink tissue of the plants.

916 In our study, none of the tested C₃-C₄ species showed significantly increased PEPC activity
917 or reduced ¹³C levels when compared to the C₃ group (Figure 7 C). Similarly, it has been
918 previously reported that there is no evidence for a C₄ cycle operating beside the glycine shuttle
919 in *M. arvensis* (Holaday and Chollet, 1983; Hunt *et al.*, 1987). Thus, despite the multiple origins
920 of C₃-C₄ photosynthesis in the Brassicaceae, no species appears to have evolved any
921 substantial C₄ biochemistry.

925 **Conclusions**

926

927 Our survey of the Brassicaceae family revealed gradual differences in the carbon
928 concentrating mechanisms which reached very low CCPs of around 12 ppm in *D. tenuifolia*.
929 Here, reduction in CCP was generally associated with organelle arrangement in the BS. Thus,
930 elucidation of regulatory mechanisms underlying organelle multiplication and arrangement in
931 the BS appear to be crucial for engineering an efficient glycine shuttle pathway into the leaf.
932

933

934 The situation in the Brassicaceae appears to be unique considering the fact that in this clade
935 the glycine shuttle has evolved multiple times despite no evidence of C₄ photosynthesis having
936 evolved in this plant family. All C₃-C₄ classified species belong to the Brassiceae tribe appear
937 to have lost one GLDP gene copy suggesting that this gene loss event has facilitated evolution
938 of the glycine shuttle (Schlüter *et al.*, 2017). Metabolite data indicated that glycine and serine
939 are involved in metabolite shuttling, but that additional individual shuttles could be active in
940 the different C₃-C₄ plant accessions. Our results suggest that multiple solutions for intercellular
941 metabolite balancing are possible. In the investigated accessions, carbon concentration by
942 recapturing of photorespiratory CO₂ seems to be a stable and independent fitness trait distinct
943 from C₄ photosynthesis in physiology, biochemistry and anatomy.

944

945 Carbon concentrating mechanisms have mainly been associated with hot and dry conditions
946 that promote photorespiration. However, the geographical distribution of the C₃-C₄ Brassiceae
947 species shows that this phenotype can enable tolerance of a broad range of habitats,
948 especially sites with fast changing temperature, water and nutrient conditions. Such metabolic
949 plasticity could also be advantageous in crop species challenged by climate changes. Crops
950 like *B. napus* or *B. oleaceae* are closely related to described C₃-C₄ species and would be
951 prime targets for transfer of this trait. Recent progress in sequencing the genomes of these
952 species and related species in the Brassicaceae (Guerreiro *et al.*, 2023) can help to identify
the molecular mechanisms behind BS specific C₃-C₄ architecture and biochemistry.

Supplementary material

Supplemental table S1: Origin of the seed material

Supplemental table S2: Physiological data measured with the Li-COR 6800 (average per accession, standard deviation, HSD group)

Supplemental table S3: Metabolite data from GCMS measurements (average per accession, standard deviation, HSD group)

Supplemental table S4: Data from light microscopy; EA-IRMS, and PEPC enzyme assay (average per accession, standard deviation, HSD group)

Supplemental figure S1: Heatmap Pearson correlation matrix for physiological gas exchange and fluorescence data

Supplemental figure S2: Heatmap Pearson correlation matrix for CO₂ compensation points and metabolite data from GC-MS analysis

Supplemental figure S3: Heatmap Pearson correlation matrix for CO₂ compensation point, structural parameters from light microscopy analysis, leaf composition data from EA-IRMS analysis and PEPC enzyme activity

Supplemental figure S4: Box Whisker plot for gas exchange and fluorescence data summarised per photosynthesis type

Supplemental figure S5: Box Whisker plot for metabolite data summarised per photosynthesis type

Supplemental figure S6: Box Whisker plot for structural and leaf composition data summarised per photosynthesis type

Supplemental figure S7: Micrographs of bundle sheath cross sections

Supplemental figure S8: Geographical distribution maps of selected Brassicaceae species in Europe/Northern Africa

Supplemental figure S9: Climate data associated with habitats of selected Brassicaceae species

Acknowledgment

The authors would like to thank the gardener team for looking after our plants in the HHU greenhouses. The technical assistance of Katrin Weber, Maria Graf, Elisabeth Klemp and Dominik Brilhaus in the metabolite analysis was also greatly appreciated. We are grateful to Stephanie Krey for assistance with DNA extraction and Perlina Lim for help during the setup of the microscopy experiments. Sebastian Triesch is thanked for his helpful comments on the manuscript.

Authors contributions

APMW, BS and US initiated and planned the experiments. US, JWB, MM and CK contributed data on plant physiology, biochemistry and structure. PW measured and analysed the plant metabolites. RG and BS provided sequence data and the phylogenetic tree. US wrote the manuscript. JWB, MM, RG, BS, PW and APMW edited the manuscript.

Conflict of interests

The authors declare no conflicts of interest.

Funding

This work was funded by the ERA-CAPS project “C4BREED” under Project ID WE 2231/20–1. It was further supported by the Cluster of Excellence for Plant Sciences (CEPLAS) under Germany’s Excellence Strategy EXC-2048/1 under project ID 390686111, the H2020 EU project “Gain4crops” and the CRC TRR 341 “Plant Ecological Genetics” grant by the German Research Foundation (DFG).

References

Adwy W, Laxa M, Peterhansel C. 2015. A simple mechanism for the establishment of C2-specific gene expression in Brassicaceae. *Plant Journal* **84**, 1231–1238.

Apel P, Horstmann C, Pfeffer M. 1997. The Moricandia syndrome in species of the Brassicaceae. *Photosynthetica* **33**, 205–215.

Arias T, Pires JC. 2012. A fully resolved chloroplast phylogeny of the brassica crops and wild relatives (Brassicaceae: Brassiceae): Novel clades and potential taxonomic implications. *Taxon* **61**, 980–988.

Atkinson RRL, Mockford EJ, Bennett C, Christin P, Spriggs EL, Freckleton RP, Thompson K, Rees M, Osborne CP. 2016. C4 photosynthesis boosts growth by altering physiology , allocation and size. *Nature Plants* **2**, 1–5.

Aubry S, Smith-Unna RD, Boursnell CM, Kopriva S, Hibberd JM. 2014. Transcript residency on ribosomes reveals a key role for the *Arabidopsis thaliana* bundle sheath in sulfur and glucosinolate metabolism. *Plant Journal* **78**, 659–673.

Bauwe H, Apel P. 1979. Biochemical Characterisation of Moricandia arvensis (L.) DC., a Species with Features Intermediate between C3 and C4 Photosynthesis, in Comparison with C3 Species Moricandia foetida Bourg. *Biochemie und Physiologie der Pflanzen* **174**, 251–254.

Bellasio C. 2017. A generalized stoichiometric model of C3, C2, C2+C4, and C4photosynthetic metabolism. *Journal of Experimental Botany* **68**, 269–282.

Bellasio C, Farquhar GD. 2019. A leaf-level biochemical model simulating the introduction of C2 and C4 photosynthesis in C3 rice: gains, losses and metabolite fluxes. *New Phytologist* **223**, 150–166.

Blätke M-A, Bräutigam A. 2019. Evolution of C4 photosynthesis predicted by constraint-based modelling. *eLife* **e49305**, 1–24.

Borghi GL, Arrivault S, Günther M, et al. 2022. Metabolic profiles in C3 , C3 – C4 intermediate , C4 -like , and C4 species in the genus *Flaveria*. *Journal of Experimental Botany* **73**, 1581–1601.

Bräutigam A, Gowik U. 2016. Photorespiration connects C3 and C4 photosynthesis. *Journal of Experimental Botany* **67**, 2953–2962.

Brautigam A, Kajala K, Wullenweber J, et al. 2011. An mRNA Blueprint for C4 Photosynthesis Derived from Comparative Transcriptomics of Closely Related C3 and C4 Species. *Plant Physiology* **155**, 142–156.

Busch FA, Sage TL, Cousins AB, Sage RF. 2013. C3 plants enhance rates of photosynthesis by reassimilating photorespired and respiration CO₂. *Plant, Cell and Environment* **36**, 200–212.

Busch FA, Sage RF, Farquhar GD. 2018. Plants increase CO₂ uptake by assimilating nitrogen via the photorespiratory pathway. *Nature Plants* **4**, 46–54.

Campbell MS, Law MY, Holt C, et al. 2014. MAKER-P: A Tool kit for the rapid creation, management, and quality control of plant genome annotations. *Plant Physiology* **164**, 513–524.

Christin P, Christin P, Osborne CP. 2014. The evolutionary ecology of C 4 plants. , 765–781.

Christin PA, Osborne CP. 2014. The evolutionary ecology of C 4 plants. *New Phytologist* **204**, 765–781.

Christin P-A, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodgkinson TR, Garrison LM, Vorontsova MS, Edwards EJ. 2013. Anatomical enablers and the evolution of C 4 photosynthesis in grasses. *Proceedings of the National Academy of Sciences* **110**, 1381–1386.

Christin PA, Wallace MJ, Clayton H, Edwards EJ, Furbank RT, Hattersley PW, Sage RF, MacFarlane TD, Ludwig M. 2012. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae. *Journal of Experimental Botany* **63**, 6297–6308.

Craine JM, Lee WG, J. BW, Williams RJ, Johnson LC. 2005. Environmetal constraints on a Global Relationship among Leaf and Root Traite of Grasses. *Ecology* **86**, 12–19.

Danila FR, Quick WP, White RG, Kelly S, Caemmerer S Von, Furbank RT. 2018. Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C 4 grasses. *Journal of Experimental Botany* **69**, 1135–1145.

Douce R, Bourguignon J, Neuburger M, Rébeillé F. 2001. The glycine decarboxylase system: A fascinating complex. *Trends in Plant Science* **6**, 167–176.

Dunning LT, Moreno-villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM. 2019a. Key changes in gene expression identified for different stages of C4 evolution in *Alloteropsis semialata*. *Journal of Experimental Botany* **70**, 3255–3268.

Dunning LT, Olofsson JK, Parisod C, et al. 2019b. Lateral transfers of large DNA fragments spread functional genes among grasses. *Proceedings of the National Academy of Sciences* **116**, 4416–4425.

Edwards EJ. 2014. The inevitability of C4 photosynthesis. *eLife* **2014**, 2–5.

Edwards GE, Ku MSB. 1987. Biochemistry of C3-C4 intermediates. In: Stumpf P., In: Conn E, eds. *The Biochemistry of Plants*. New York: Academic Press, 275–325.

Eilbeck K, Moore B, Holt C, Yandell M. 2009. Quantitative measures for the management and comparison of annotated genomes. *BMC Bioinformatics* **10**, 1–15.

Ellinghaus D, Kurtz S, Willhoefft U. 2008. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. *BMC Bioinformatics* **9**.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. *Genome Biology* **16**, 1–14.

Emms DM, Kelly S. 2019. OrthoFinder: Phylogenetic orthology inference for comparative genomics. *Genome Biology* **20**, 1–14.

Ermakova M, Danila FR, Furbank RT, Caemmerer S Von. 2020. On the road to C 4 rice : advances and perspectives. *The Plant Journal* **101**, 940–950.

Eschmann-Grupe G, Hurka H, Neuffer B. 2003. Species relationships within *Diplotaxis* (Brassicaceae) and the phylogenetic origin of *D. muralis*. *Plant Systematics* **243**, 13–29.

Fiehn O, Kopka J, Dörmann P, Altmann T, Trehewey RN, Willmitzer L. 2000. Metabolite profiling for plant functional genomics. *Nature Biotechnology* **18**, 1157–1161.

Fisher AE, McDade LA, Kiel CA, Khoshravesh R, Johnson MA, Stata M, Sage TL, Sage RF. 2015. Evolutionary History of *Blepharis* (Acanthaceae) and the Origin of C 4 Photosynthesis in Section *Acanthodium*. *International Journal of Plant Sciences* **176**, 770–790.

Flügel F, Timm S, Arrivault S, Florian A, Stitt M, Fernie AR, Bauwe H. 2017. The Photorespiratory Metabolite 2-Phosphoglycolate Regulates Photosynthesis and Starch Accumulation in *Arabidopsis*. *The Plant Cell* **29**, 2537–2551.

Gowik U, Bräutigam A, Weber KL, Weber APM, Westhoff P. 2011. Evolution of C 4 Photosynthesis in the Genus *Flaveria* : How Many and Which Genes Does It Take to Make C 4 ? *The Plant Cell* **23**, 2087–2105.

Gowik U, Westhoff P. 2011. The Path from C3 to C4 photosynthesis. *Plant Physiology* **155**, 56–63.

Gu Y. 2012. Multicomponent reactions in unconventional solvents: State of the art. *Green Chemistry* **14**, 2091–2128.

Guerreiro R, Bonthala VS, Schlüter U, Triesch S, Weber APM, Stich B. 2023. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassicaceae family. submitted.

Han Y, Wessler SR. 2010. MITE-Hunter: A program for discovering miniature inverted-repeat transposable elements from genomic sequences. *Nucleic Acids Research* **38**, 1–8.

Hatch MD, Slack CR. 1966. Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. *The Biochemical journal* **101**, 103–111.

Heckmann D, Schulze S, Denton A, Gowik U, Westhoff P, Weber APM, Lercher MJ. 2013. Predicting C4 photosynthesis evolution: Modular, individually adaptive steps on a

mount fuji fitness landscape. *Cell* **153**, 1579–1588.

Holaday AS, Chollet R. 1983. Photosynthetic / Photorespiratory Carbon Metabolism in the C3-C4 Intermediate Species , *Moricandia arvensis* and *Panicum milioides* . *Plant Physiology*, 740–745.

Hunt S, Smith AM, Woolhouse HW. 1987. Evidence for a light-dependent system for reassimilation of photorespiratory CO₂, which does not include a C4 cycle, in the C3-C4 intermediate species *Moricandia arvensis*. *Planta* **171**, 227–234.

Huxman TE, Monson RK. 2003. Stomatal responses of C 3 , C 3 -C 4 and C 4 *Flaveria* species to light and intercellular CO₂ concentration : implications for the evolution of stomatal behaviour. *Plant, Cell & Environment*, 313–322.

Hylton CM, Rawsthorne S, Smith AM, Jones DA, Woolhouse HW. 1988. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. *Planta* **175**, 452–459.

Janacek SH, Trenkamp S, Palmer B, et al. 2009. Photosynthesis in cells around veins of the C 3 plant *Arabidopsis thaliana* is important for both the shikimate pathway and leaf senescence as well as contributing to plant fitness. *The Plant Journal* **59**, 329–343.

Johnson JE, Field CB, Berry JA. 2021. The limiting factors and regulatory processes that control the environmental responses of - C 3 , - C 3 – C 4 intermediate , and - C 4 photosynthesis. *Oecologia* **197**, 841–866.

Kadereit G, Bohley K, Lauterbach M, Tefarikis DT, Kadereit JW. 2017. C3 – C4 intermediates may be of hybrid origin – a reminder. *New Phytologist* **215**, 70–76.

Kennedy RA, Laetsch WM. 1974. Plant Species Intermediate for C3, C4 Photosynthesis. *Science* **184**, 1087–1089.

Khoshravesh R, Akhani H, Sage TL, Nordenstam B, Sage RF. 2012. Phylogeny and photosynthetic pathway distribution in *Anticharis* Endl. (Scrophulariaceae). *Journal of Experimental Botany* **63**, 5645–5658.

Khoshravesh R, Stinson CR, Stata M, Busch FA, Sage RF, Ludwig M, Sage TL. 2016. C3 – C4 intermediacy in grasses : organelle enrichment and distribution ,glycine decarboxylase expression ,and the rise of C2 photosynthesis. *Journal of Experimental Botany* **67**, 3065–3078.

Kinsman EA, Pyke KA. 1998. Bundle sheath cells and cell-specific plastid development in *Arabidopsis* leaves. *Development* **125**, 1815–1822.

Knapp AK, Chen A, Griffin-nolan RJ, et al. 2020. Resolving the Dust Bowl paradox of grassland responses to extreme drought. *Proceedings of the National Academy of Sciences* **117**, 22249–22255.

Koch MA, Lemmel C. 2019. Zahora , a new monotypic genus from tribe Brassiceae (Brassicaceae) endemic to the Moroccan Sahara. *PhytoKeys* **135**, 119–131.

Krenzer EG, Moss DN, Crookston RK. 1975. Carbon Dioxide Compensation Points of Flowering Plants. *Plant Physiology* **56**, 194–206.

Leegood RC. 2008. Roles of the bundle sheath cells in leaves of C3 plants. *Journal of Experimental Botany* **59**, 1663–1673.

Leegood RC, Von Caemmerer S. 1989. Some relationships between contents of photosynthetic intermediates and the rate of photosynthetic carbon assimilation in leaves of *Zea mays* L. Richard. *Planta* **178**, 258–266.

Long SP. 1999. Environmetal Responses. In: Sage RF,, In: Monson RK, eds. C4 Plant. San Diego: Academic Press, 215–249.

Lundgren MR. 2020. C2 photosynthesis : a promising route towards crop improvement ? *New Phytologist* **228**, 1734–1740.

Lundgren MR, Christin P. 2017. Despite phylogenetic effects , C 3 – C 4 lineages bridge the ecological gap to C 4 photosynthesis. *Journal of Experimental Botany* **68**, 241–254.

Lundgren MR, Christin PA, Escobar EG, Ripley BS, Besnard G, Long CM, Hattersley PW, Ellis RP, Leegood RC, Osborne CP. 2016. Evolutionary implications of C 3 –C 4 intermediates in the grass *Alloteropsis semialata*. *Plant Cell and Environment* **39**, 1874–1885.

Lundgren MR, Osborne CP, Christin P. 2014. Deconstructing Kranz anatomy to understand C4 evolution. *Journal of Experimental Botany* **65**, 3357–3369.

Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U. 2014. The role of photorespiration during the evolution of C4 photosynthesis in the genus

Flaveria. *eLife* **2014**, e02478.

Marshall DM, Muhaidat R, Brown NJ, Liu Z, Stanley S, Griffiths H, Sage RF, Hibberd JM. 2007. Cleome, a genus closely related to *Arabidopsis*, contains species spanning a developmental progression from C3 to C4 photosynthesis. *Plant Journal* **51**, 886–896.

McKown AD, Dengler NG. 2007. Key Innovations in the Evolution of Kranz Anatomy and C4 vein Pattern in Flaveria (Asteraceae). *American Journal of Botany* **94**, 382–399.

Monson RK, Edwards GE, Ku MS. 1984. C3-C4 intermediate photosynthesis in plants. *Biosciences* **34**, 563–574.

Moore BD, Ku MSB, Edwards GE. 1989. Expression of C4-like photosynthesis in several species of Flaveria. *Plant, Cell & Environment* **12**, 541–549.

Morgan CL, Turner SR, Rawsthorne S. 1993. Coordination of the cell-specific distribution of the four subunits of glycine decarboxylase and of serine hydroxymethyltransferase in leaves of C3-C4 intermediate species from different genera. *Planta* **190**, 468–473.

Muhaidat R, Sage TL, Frohlich MW, Dengler NG, Sage RF. 2011. Characterization of C3-C4 intermediate species in the genus *Heliotropium* L. (Boraginaceae): Anatomy, ultrastructure and enzyme activity. *Plant, Cell and Environment* **34**, 1723–1736.

Nicoletti R, Raimo F, Miccio G. 2007. *Diplotaxis tenuifolia* : Biology , Production and Properties. *The European Journal of Plant Science and Technology* **1**, 36–43.

Ono J, Hatakeyama Y, Yabiku T, Ueno O. 2022. Effects of growth temperature and nitrogen nutrition on expression of C3–C4 intermediate traits in *Chenopodium album*. *Journal of Plant Research* **135**, 15–27.

Perfectti F, Gómez JM, Adela González-Megías4, Abdelaziz M, Lorite J. 2017. Molecular phylogeny and evolutionary history of *Moricandia* DC (Brassicaceae). *PeerJ* **2017**, 1–24.

Rawsthorne S. 1992. C3–C4 intermediate photosynthesis: linking physiology to gene expression. *The Plant Journal* **2**, 267–274.

Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. 1988a. Photorespiratory metabolism and immunogold localization of photorespiratory enzymes in leaves of C3 and C3-C4 intermediate species of *Moricandia*. *Planta* **173**, 298–308.

Rawsthorne S, Hylton CM, Smith AM, Woolhouse HW. 1988b. Distribution of photorespiratory enzymes between bundle-sheath and mesophyll cells in leaves of the C3-C4 intermediate species *Moricandia arvensis* (L .) DC. *Planta* **176**, 527–532.

Rawsthorne S, Morgan CL, O'Neill CM, Hylton CM, Jones DA, Frean ML. 1998. Cellular expression pattern of the glycine decarboxylase P protein in leaves of an intergeneric hybrid between the C3-C4 intermediate species *Moricandia nitens* and the C3 species *Brassica napus*. *Theoretical and Applied Genetics* **96**, 922–927.

Roach MJ, Schmidt S, Borneman AR. 2018. Purge Haplotigs: Synteny Reduction for Third-gen Diploid Genome Assemblies. *BMC Bioinformatics* **19**, 460.

Sage RF. 2004. The evolution of C 4 photosynthesis. *New Phytologist* **161**, 341–370.

Sage RF, Christin PA, Edwards EJ. 2011a. The C 4 plant lineages of planet Earth. *Journal of Experimental Botany* **62**, 3155–3169.

Sage RF, Christin PA, Edwards EJ. 2011b. The C4 plant lineages of planet Earth. *Journal of Experimental Botany* **62**, 3155–3169.

Sage RF, Khoshravesh R, Sage TL. 2014. From proto-Kranz to C4 Kranz: Building the bridge to C 4 photosynthesis. *Journal of Experimental Botany* **65**, 3341–3356.

Sage TL, Sage RF. 2009. The functional anatomy of rice leaves: Implications for refixation of photorespiratory CO₂ and efforts to engineer C4 photosynthesis into rice. *Plant and Cell Physiology* **50**, 756–772.

Sage RF, Sage TL, Kocacinar F. 2012. Photorespiration and the Evolution of C 4 Photosynthesis . *Annual Review of Plant Biology* **63**, 19–47.

Sage TL, Sage RF, Vogan PJ, Rahman B, Johnson DC, Oakley JC, Heckel MA. 2011c. The occurrence of C 2 photosynthesis in *Euphorbia* subgenus *Chamaesyce* (Euphorbiaceae). *Journal of Experimental Botany* **62**, 3183–3195.

Schlüter U, Bräutigam A, Gowik U, Melzer M, Christin PA, Kurz S, Mettler-Altmann T, Weber APM. 2017. Photosynthesis in C3-C4 intermediate *Moricandia* species. *Journal of Experimental Botany* **68**, 191–206.

Schlüter U, Weber AP. 2020. Regulation and Evolution of C4 Photosynthesis. *Annual Review of Plant Biology* **71**, 183–215.

Schulze S, Mallmann J, Burscheidt J, Koczor M, Streubel M, Bauwe H, Gowik U,

Westhoff P. 2013. Evolution of C4 Photosynthesis in the Genus *Flaveria*: Establishment of a Photorespiratory CO₂ Pump. *The Plant Cell* **25**, 2522–2535.

Schüssler C, Freitag H, Koteyeva N, Schmidt D, Edwards G, Voznesenskaya E, Kadereit G. 2017. Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). *Journal of Experimental Botany* **68**, 207–223.

Sharkey TD. 1988. Estimating the rate of photorespiration in leaves. *Physiologia Plantarum*, 147–152.

Shim SH, Lee SK, Lee DW, Brilhaus D, Wu G, Ko S, Lee CH, Weber APM, Jeon JS. 2020. Loss of Function of Rice Plastidic Glycolate/Glycerate Translocator 1 Impairs Photorespiration and Plant Growth. *Frontiers in Plant Science* **10**, 1–11.

Smit A, Hubley R, Green P. 2015. RepetMasker Open-3.0. <http://www.repeatmasker.org>.

Taniguchi YY, Gowik U, Kinoshita Y, Kishizaki R, Ono N, Yokota A, Westhoff P, Munekage YN. 2021. Dynamic changes of genome sizes and gradual gain of cell-specific distribution of C4 enzymes during C4 evolution in genus *Flaveria*. *Plant Genome* **14**, 1–14.

Teese P. 1995. Intraspecific variation for CO₂ compensation point and differential growth among variants in a C3-C4 intermediate plant. *Oecologia* **102**, 371–376.

Ueno O. 2011. Structural and biochemical characterization of the C 3-C 4 intermediate *Brassica* *gravinae* and relatives, with particular reference to cellular distribution of Rubisco. *Journal of Experimental Botany* **62**, 5347–5355.

Ueno O, Bang SW, Wada Y, Kondo A, Ishihara K, Kaneko Y, Matsuzawa Y. 2003. Structural and biochemical dissection of photorespiration in hybrids differing in genome constitution between *Diplotaxis tenuifolia* (C3-C4) and radish (C3). *Plant Physiology* **132**, 1550–1559.

Ueno O, Wada Y, Wakai M, Bang SW. 2006. Evidence from photosynthetic characteristics for the hybrid origin of *Diplotaxis muralis* from a C3-C4 intermediate and a C 3 species. *Plant Biology* **8**, 253–259.

Vogan PJ, Frohlich MW, Sage RF. 2007. The functional significance of C3-C4 intermediate traits in *Heliotropium* L. (Boraginaceae): Gas exchange perspectives. *Plant, Cell and Environment* **30**, 1337–1345.

Voznesenskaya E V., Artyusheva EG, Franceschi VR, Pyankov VI, Kuirats O, Ku MSB, Edwards GE. 2001. *Salsola arbusculiformis*, a C3-C4 intermediate in Salsoleae (Chenopodiaceae). *Annals of Botany* **88**, 337–348.

Voznesenskaya E V., Koteyeva NK, Chuong SDX, Ivanova AN, Barroca J, Craven LA, Edwards GE. 2007. Physiological, anatomical and biochemical characterisation of photosynthesis types in the genus *Cleome* (Cleomaceae). *Functional Plant Biology* **34**, 247–267.

Wen Z, Zhang M. 2015. *Salsola laricifolia*, another C3-C4 intermediate species in tribe Salsoleae s.l. (Chenopodiaceae). *Photosynthesis Research* **123**, 33–43.

Williams BP, Johnston IG, Covshoff S, Hibberd JM. 2013. Phenotypic landscape inference reveals multiple evolutionary paths to C4photosynthesis. *eLife* **2**, 1–19.

Yorimitsu Y, Kadosono A, Hatakeyama Y, Yabiku T, Ueno O. 2019. Transition from C3 to proto-Kranz to C3–C4 intermediate type in the genus *Chenopodium* (Chenopodiaceae). *Journal of Plant Research* **132**, 839–855.

Zhang C, Scornavacca C, Molloy EK, Mirarab S. 2020. ASTRAL-pro: Quartet-based species-tree inference despite paralogy. *Molecular Biology and Evolution* **37**, 3292–3307.

Figures

Figure 1. CO₂ compensation points in selected Brassicaceae species

CO₂ compensation points were measured in young, fully expanded leaves of greenhouse grown plants. The letters above each box indicate the statistical grouping determined by ANOVA followed by HSD post-hoc test with $\alpha=0.05$. The tested plant lines are colored according to photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in full in Material and Methods.

Figure 2. Phylogeny and photosynthesis types

The number on the nodes represents bootstrap values. Species abbreviations are given in brackets. Plant species and accessions are colored according to the photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red).

Figure 3. Net assimilations (A) and Water use efficiency (WUE) in under different CO₂ concentrations.

Assimilation (A, C, E) was determined in a CO₂ response curve. WUE (B, D, F) was calculated as ratio between assimilation (A) and stomatal conductance (gsw). Gas exchange parameters were measured under conditions of ambient CO₂ (A, B, 400 ppm) or reduced CO₂ concentrations (C, D, 200 ppm; E, F, 100 ppm). The accessions were sorted according to their CO₂ compensation points and colored according to the photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.

Figure 4. Principal component analysis (PCA) and correlations of the CO₂ compensation point (CCP) with selected gas exchange parameters.

Average values for the selected photosynthetic parameters determined under 50 to 400 ppm of CO₂ were used for the analysis. (A) Localization of the plant lines in the PCA, (B) PCA including parameter loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C₃ and C₃-C₄ lines. The tested plant lines were colored according to photosynthesis types as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods. The numbers after the parameter abbreviation indicate the CO₂ concentration in the outside the leaf in the measuring cuvette.

Figure 5. Principal component analysis (PCA) and correlations of the CO₂ compensation point (CCP) with specific metabolites.

Average values for the selected metabolites per line were used for the analysis. (A) Localization of the plant lines in the PCA, (B) PCA including metabolite loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C₃ and C₃-C₄ lines. The tested plant lines were colored according to photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.

Figure 6. Selected Metabolites in mature leaves

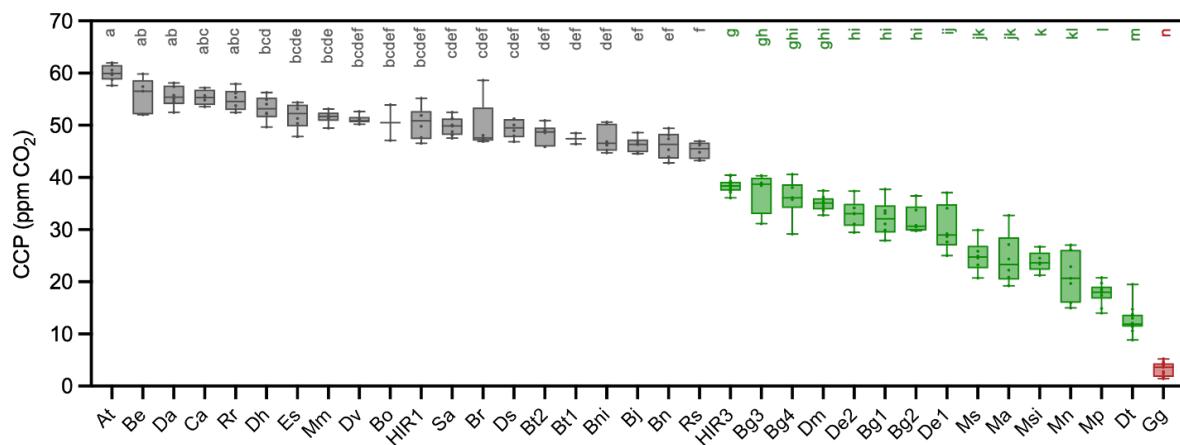
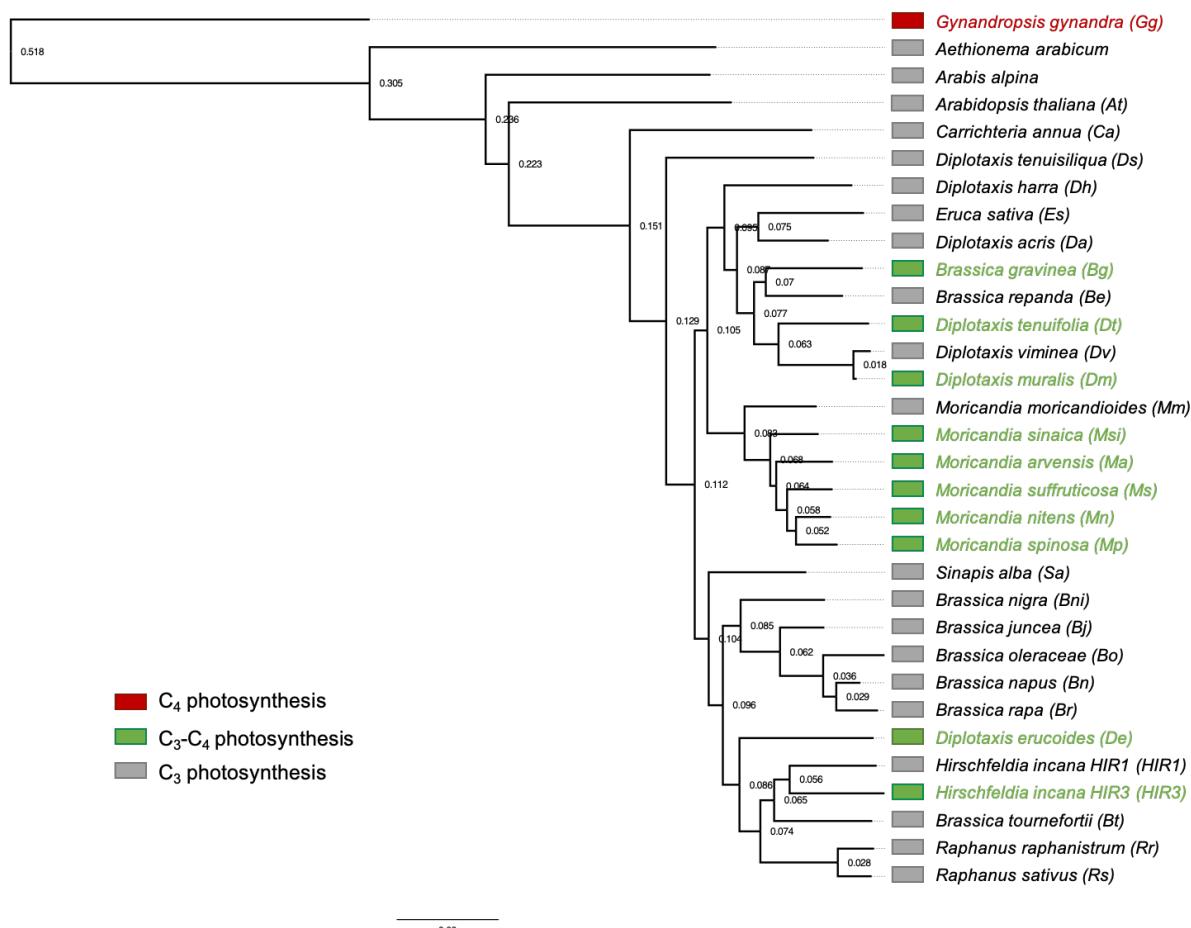
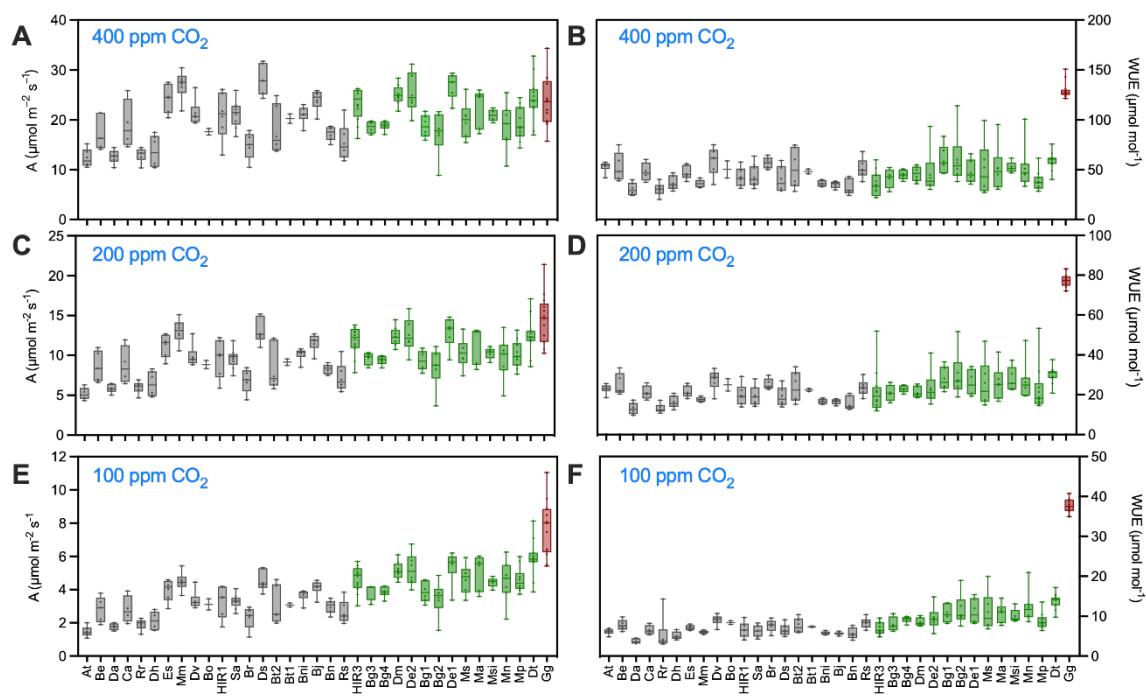

Relative amounts of glycine (A), serine (B), glycerate (C), malate (D), aspartate (E), glutamate (F), α -ketoglutarate (G), pyruvate and α -alanine in selected plant accessions. The accessions were sorted according to their CO₂ compensation point and colored by photosynthesis type (grey = C₃, green = C₃-C₄ and red = C₄). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.

Figure 7. Leaf structure and composition related parameters and PEPC activity

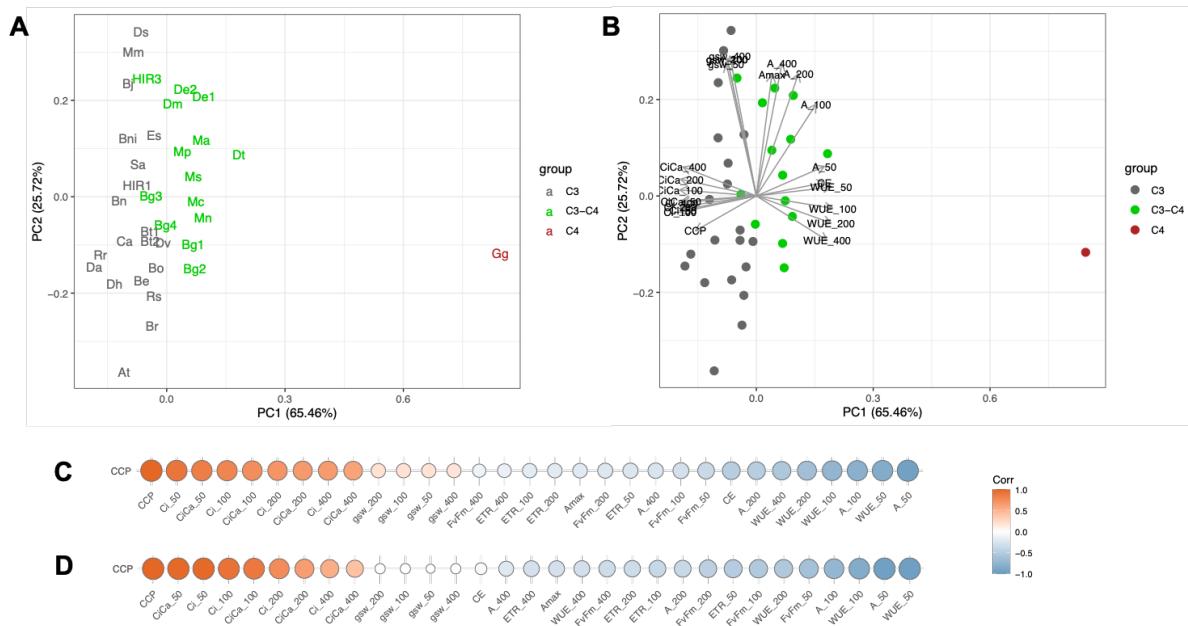
Mature leaves were used for determination of vein density (A), bundle sheath cell area in micrographs (B), PEPC activity (C), carbon to nitrogen ratio (D), area of bundle sheath organelles with vein orientation in micrographs (E), protein content (F), ^{13}C signature (G), area of bundle sheath organelles with orientation to intercellular space or mesophyll in micrographs (H), and specific leaf area (I). The accessions were sorted according to their CO_2 compensation point and colored to photosynthesis type (grey = C_3 , green = $\text{C}_3\text{-}\text{C}_4$ and red = C_4). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.


Figure 8. Principal component analysis (PCA) and correlation of the CO_2 compensation point (CCP) with leaf structural and compositional components.

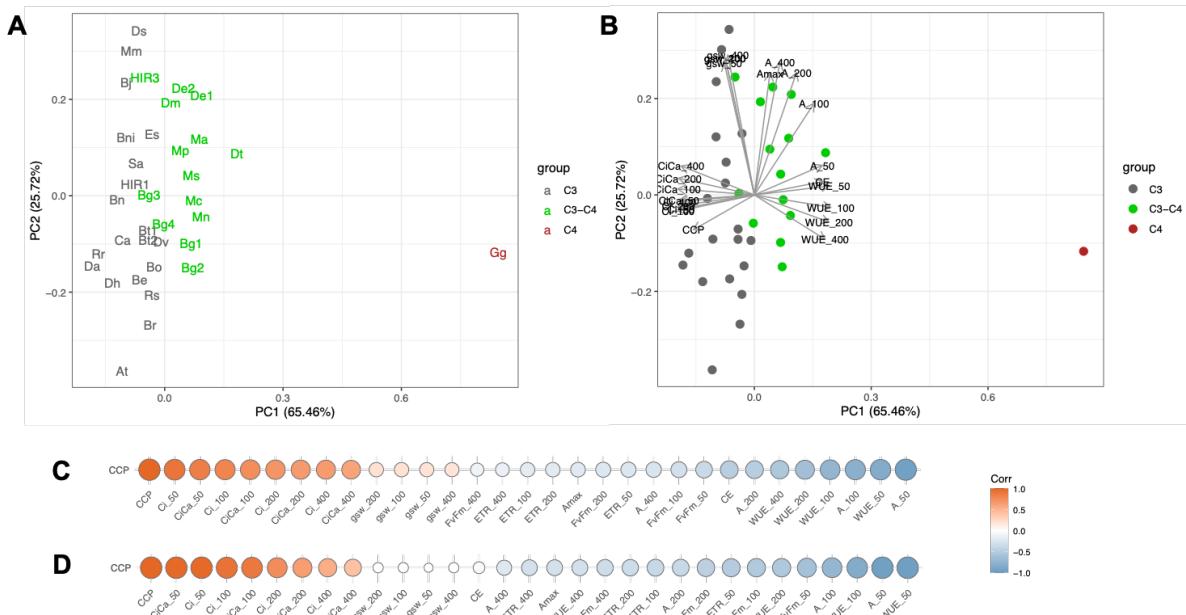
Average values for the selected parameters measured by EA-IRMS, analysis of leaf cross sections by light microscopy. (A) localization of the plant lines in the PCA, (B) PCA including parameter loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C_3 and $\text{C}_3\text{-}\text{C}_4$ lines. The tested plant lines were colored according to photosynthesis type as C_3 (grey), $\text{C}_3\text{-}\text{C}_4$ (green) and C_4 (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.


Figure 1. CO₂ compensation points in selected Brassicaceae species

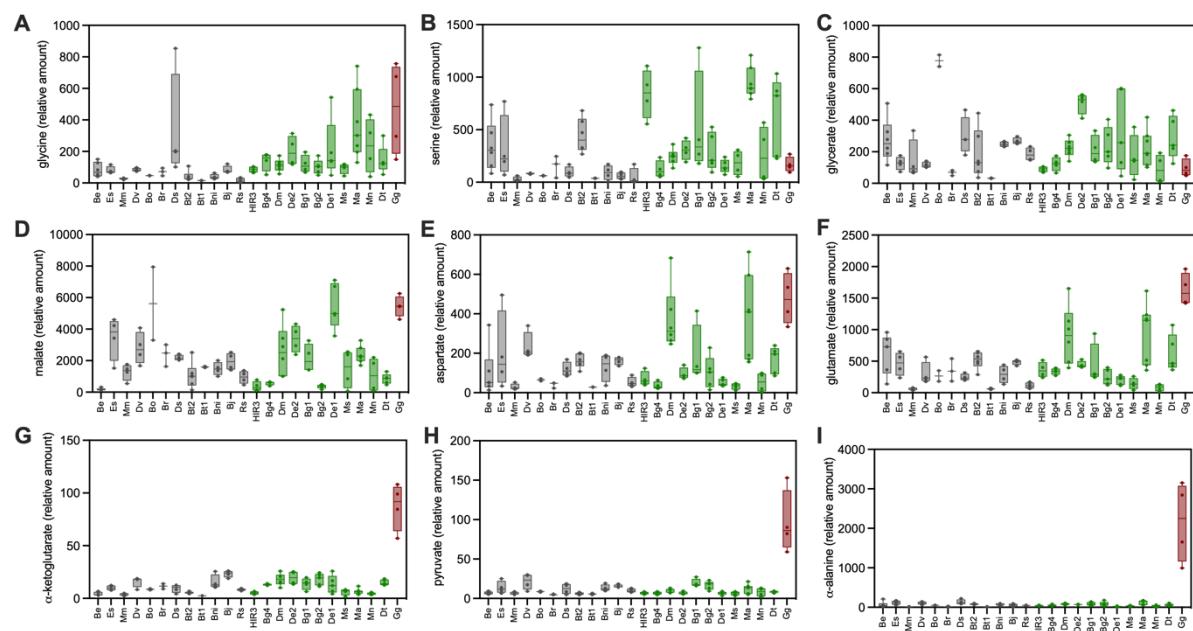
CO₂ compensation points were measured in young, fully expended leaves of greenhouse grown plants. The letters above each box indicate the statistical grouping determined by ANOVA followed by HSD post-hoc test with $\alpha=0.05$. The tested plant lines are colored according to photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in full in Material and Methods.


Figure 2. Phylogeny and photosynthesis types

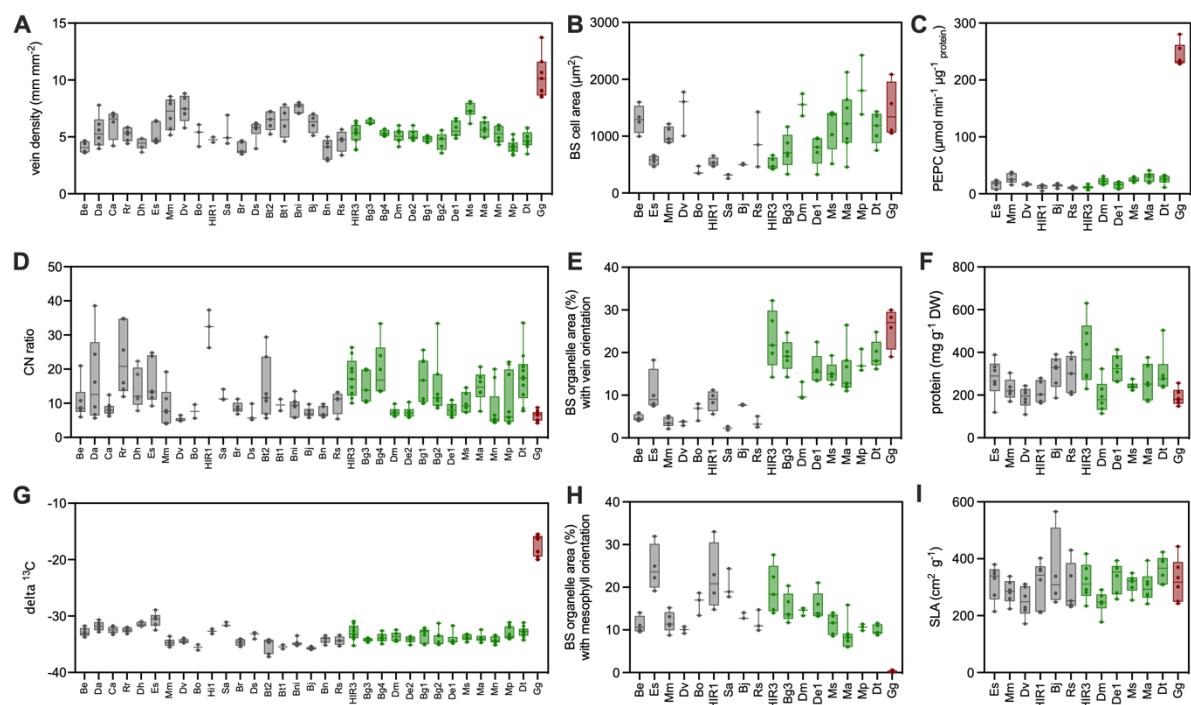
The number on the nodes represents bootstrap values. Species abbreviations are given in brackets. Plant species and accessions are colored according to the photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red).


Figure 3. Net assimilations (A) and Water use efficiency (WUE) in under different CO₂ concentrations.

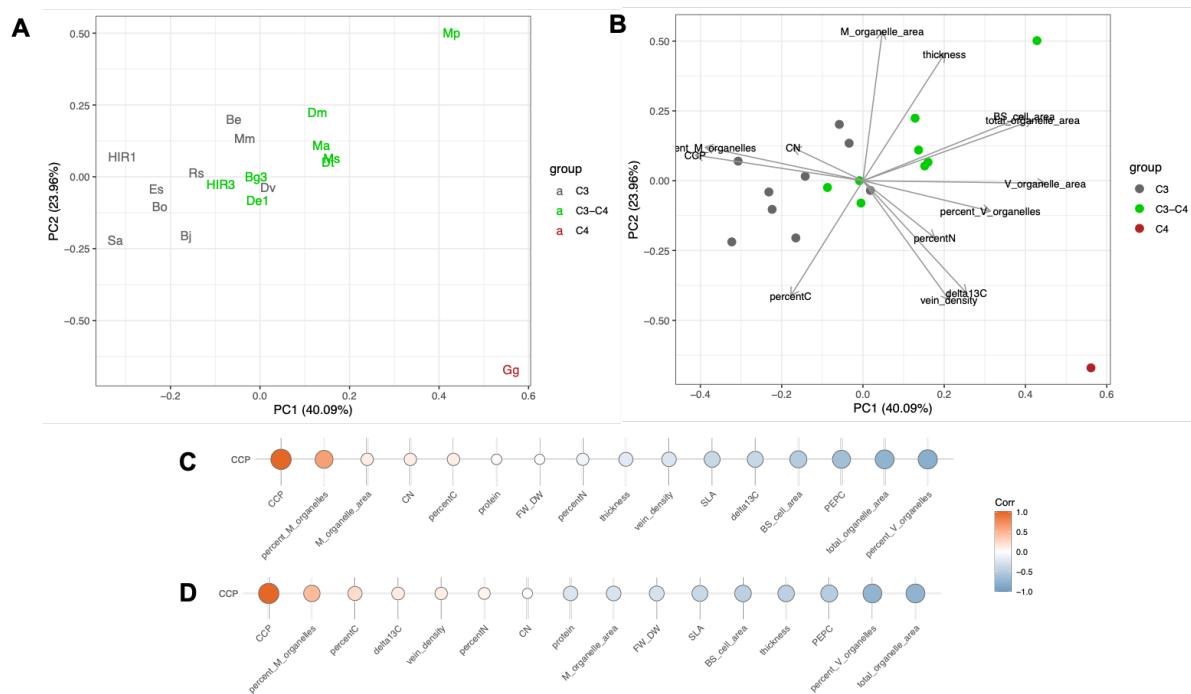
Assimilation (A, C, E) was determined in a CO_2 response curve. WUE (B, D, F) was calculated as ratio between assimilation (A) and stomatal conductance (gsw). Gas exchange parameters were measured under conditions of ambient CO_2 (A, B, 400 ppm) or reduced CO_2 concentrations (C, D, 200 ppm; E, F, 100 ppm). The accessions were sorted according to their CO_2 compensation points and colored according to the photosynthesis type as C_3 (grey), $\text{C}_3\text{-}\text{C}_4$ (green) and C_4 (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.


Figure 4. Principal component analysis (PCA) and correlations of the CO₂ compensation point (CCP) with selected gas exchange parameters.

Average values for the selected photosynthetic parameters determined under 50 to 400 ppm of CO₂ were used for the analysis. (A) Localization of the plant lines in the PCA, (B) PCA including parameter loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C₃ and C₃-C₄ lines. The tested plant lines were colored according to photosynthesis types as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods. The numbers after the parameter abbreviation indicate the CO₂ concentration in the outside the leaf in the measuring cuvette.


Figure 5. Principal component analysis (PCA) and correlations of the CO₂ compensation point (CCP) with specific metabolites.

Average values for the selected metabolites per line were used for the analysis. (A) Localization of the plant lines in the PCA, (B) PCA including metabolite loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C₃ and C₃-C₄ lines. The tested plant lines were colored according to photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.


Figure 6. Selected Metabolites in mature leaves

Relative amounts of glycine (A), serine (B), glycerate (C), malate (D), aspartate (E), glutamate (F), 2-ketoglutarate (G), pyruvate and 2-alanine in selected plant accessions. The accessions were sorted according to their CO₂ compensation point and colored by photosynthesis type (grey = C₃, green = C_{3-C₄} and red = C₄). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.

Figure 7. Leaf structure and composition related parameters and PEPC activity

Mature leaves were used for determination of vein density (A), bundle sheath cell area in micrographs (B), PEPC activity (C), carbon to nitrogen ratio (D), area of bundle sheath organelles with vein orientation in micrographs (E), protein content (F), ^{13}C signature (G), area of bundle sheath organelles with orientation to intercellular space or mesophyll in micrographs (H), and specific leaf area (I). The accessions were sorted according to their CO_2 compensation point and colored to photosynthesis type (grey = C₃, green = C₃-C₄ and red = C₄). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.

Figure 8. Principal component analysis (PCA) and correlation of the CO₂ compensation point (CCP) with leaf structural and compositional components.

Average values for the selected parameters measured by EA-IRMS, analysis of leaf cross sections by light microscopy. (A) localization of the plant lines in the PCA, (B) PCA including parameter loadings, (C) Pearson correlation coefficients demonstrated as heatmaps using all plant lines, (D) Pearson correlation coefficients demonstrated as heatmaps using only C₃ and C₃-C₄ lines. The tested plant lines were colored according to photosynthesis type as C₃ (grey), C₃-C₄ (green) and C₄ (red). Species and accessions have been abbreviated for legibility and are provided in Figure 2 and Material and Methods.