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Abstract 

Social anxiety disorder (SAD) is a psychiatric disorder characterized by severe fear in social situations 

and avoidance of these. Multiple genetic as well as environmental factors contribute to the etiopathology 

of SAD. One of the main risk factors for SAD is stress, especially during early periods of life (early life 

adversity; ELA). ELA leads to structural and regulatory alterations contributing to disease vulnerability. 

This includes the dysregulation of the immune response. However, the molecular link between ELA and 

the risk for SAD in adulthood remain largely unclear. Evidence is emerging that long-lasting changes of 

gene expression patterns play an important role in the biological mechanisms linking ELA and SAD.  

Therefore, we performed a transcriptome study of SAD and ELA using RNA sequencing. Analyzing 

differential gene expression, 13 significantly differentially expressed genes (DEGs) were identified with 

respect to SAD whilst no significant differences in expression were identified with respect to ELA. The 

most significantly expressed gene was MAPK3 being upregulated in the SAD group compared to control 

individuals. In contrary, weighted gene co-expression network analyses (WGCNA) identified only 

modules significantly associated with ELA, not with SAD. Furthermore, analyzing interaction networks 

of the genes from the ELA-associated modules and the SAD-related MAPK3 ) revealed complex 

interactions of those genes. Gene functional enrichment analyses indicate a role of signal transduction 

pathways as well as inflammatory responses supporting an involvement of the immune system in the 

association of ELA and SAD.  
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In conclusion, we did not identify a direct molecular link between ELA and adult SAD by transcriptional 

changes. However, our data indicate an indirect association of ELA and SAD mediated by the interaction 

of genes involved in immune-related signal transduction. 

 

1. Introduction 

Anxiety disorders are common and highly comorbid with other psychiatric disorders [1]. A distinctive 

form is Social Anxiety Disorder (SAD) with an estimated worldwide lifetime prevalence of 4 % [2]. 

SAD is described by severe fear and avoidance behavior in social situations such as fear of being the 

center of attention or fear of negative social evaluation which can have a detrimental impact on daily life 

[3]. The etiology of SAD is influenced by genetic [4, 5] as well as environmental factors. One of the 

most relevant environmental influences is stress. Stressful experiences in critical periods of life, 

especially during childhood and adolescence, can lead to structural and regulatory alterations—such as 

disturbed programming of the hypothalamic-pituitary-adrenal (HPA) axis—contributing to disease 

vulnerability [6-8]. Furthermore, dysregulation of the—inflammatory—immune response through 

childhood stress exposure can affect brain development, cognition, stress reactivity and resilience and, 

hence, the risk for psychopathology later in life [9-12]. Early life adversity (ELA) therefore represents 

one of the main environmental factors contributing to an increased risk for SAD [13, 14]. However, the 

molecular link between an early stressor, such as adverse events during childhood, and the risk for SAD 

in adulthood remains unclear. 

Changes of gene expression patterns following ELA have been identified in different organisms [15-17]. 

In humans, monocytes of individuals exposed to early childhood maltreatment showed altered HPA axis 

responses to stress, evidenced by lower blood adreno-corticotropic hormone and cortisol levels. 

Moreover, the analysis of transcriptome-wide gene expression patterns in the same samples showed that 

stress-responsive transcripts were enriched for genes involved in cytokine- and inflammation-related 

pathways [18]. In addition, co-expression network analysis identified an association of ELA with 

inflammation-related pathways [19]. Furthermore, RNA sequencing (RNA-seq) in brain tissue revealed 

enrichment of differentially expressed genes in immune and GTPase function in individuals with a 

history of ELA as compared to control individuals without the experience of ELA [20]. 

Aberrant gene expression patterns of various genes, with some of them involved in the immune system, 

have also been identified in humans across different social environments such as social isolation or low 

socioeconomic status [21-23]. Moreover, the expression of genes involved in immune response as well 

as transcriptional regulation and cell proliferation has been shown to be sensitive to social regulation 

(more precisely, the level of loneliness, [24]). Therefore, not only ELA, but also acute social stress is 

likely to impact gene expression in humans as it has already been proven in mice, in which the vascular 

system and inflammatory pathways were mainly affected [25]. Furthermore, several studies have 

indicated an association between expression changes of diverse genes in mouse brain and social fear [26] 

as well as anxiety [27, 28]. In humans, an investigation of the blood transcriptome has suggested altered 

immune functions in generalized anxiety disorder [29]. In addition, expression differences of α-

endomannosidase (MANEA) are associated with SAD and panic disorder in human blood [30]. 

Moreover, RNA-seq [31] has identified higher ITM2B gene expression levels associated with higher 

anxiety scores in a cohort of 25 monozygotic (MZ) twins, which has been validated in a second cohort 

of 22 MZ twins [31].  

A molecular link between ELA and the sensitivity to social stress on the transcriptome level has been 

shown in mouse brain tissue, where distinct transcriptional patterns depending on ELA in socially 

stressed adult mice have been revealed: Several genes have been identified as differentially expressed in 

mice with ELA and social stress in adulthood compared to controls without ELA. Interestingly, their 
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gene expression levels have not been altered when exposed to either ELA or adult social stress alone 

[17]. However, in humans the association between transcriptional changes induced by ELA and adult 

SAD still remain elusive.  

In the current study we aimed to identify gene expression patterns associated with SAD, ELA and their 

interaction on a transcriptome-wide level. We performed RNA-seq in whole blood of individuals with 

SAD with high or low levels of ELA and control individuals with high or low levels of ELA, respectively, 

to explore gene expression differences and transcriptional networks. We identified genes differentially 

expressed in the context of SAD and clusters of co-expressed genes associated with emotional ELA. 

Those genes were shown to closely interact. Our results indicate an indirect molecular link between 

emotional ELA and SAD mediated by the interaction of genes involved in immune-related signal 

transduction. 
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2. Material and methods 

Study population 

In total, 160 participants of Caucasian descent between 19-50 years of age took part in the study. All 

participants were assessed using the Structured Clinical Interview for DSM-IV (SCID) and 70 

participants were found to be suffering from SAD as a primary diagnosis. The severity of social anxiety 

was evaluated using the Liebowitz Social Anxiety Scale (LSAS, [32]). ELA was assessed using the 

Childhood Trauma Questionnaire (CTQ) that measures five dimensions (further referred to as subscales) 

of maltreatment: emotional and physical neglect and emotional, physical and sexual abuse [33, 34]. 

Participants with at least a moderate score in one of the five categories were classified as participants 

with high levels of ELA [34, 35]. Thus, four groups emerged: 1) control participants without SAD and 

low levels of ELA (n=62), 2) control participants without SAD and high levels of ELA (n=27), 3) 

participants suffering from SAD with low levels of ELA (n=43), and 4) participants suffering from SAD 

with high levels of ELA (n=27). All participants gave written informed consent to the experimental 

procedure prior to inclusion in the study. The study was performed in accordance with the Declaration 

of Helsinki and approved by the University of Tübingen local ethics committee. 

RNA extraction, library preparation and sequencing 

Total RNA from whole blood stored in PAXgene Blood RNA tubes was extracted using the PaxGene 

Blood miRNA kit (Qiagen, Hilden, Germany). Quality of RNA was assessed using a Bioanalyzer 

(Agilent, Santa Clara, USA). Only samples with an RNA integrity number (RIN) of 7 and higher were 

used for sequencing library preparation. Libraries for 3′ RNA-seq were prepared using the 3′ method by 

Lexogen [36] as used in the NGS Competence Center Tübingen (NCCT) where both library preparation 

and sequencing in randomized batches was performed. First strand synthesis of polyA-tailed RNA from 

total RNA using oligo dT primers was followed by degradation of the RNA template, second strand 

synthesis with random primers containing 5′ Illumina-compatible linker sequences and amplification 

using random primers that add barcodes and cluster generation sequences [36]. The libraries were 

sequenced on the NCCT Nova sequencing platform at a depth of about 10 million reads with 100 bp in 

length.  

RNA-seq reads preprocessing 

Read preprocessing was performed using the Lexogen pipeline [37] implementing the bbduk tool from 

the BBTools suite (https://sourceforge.net/projects/bbmap/) for quality trimming and the STAR aligner 

[38] for mapping to the reference genome (vGRCh38.104). Principle component analysis (PCA) was 

used to detect sample outliers by DESeq2 [39]. The R package OUTRIDER [40] was used to identify 

gene count outliers that were excluded from further analyses (Table S1). 

To control for the effect of blood cell type composition variability on gene expression, blood cell type 

proportions were estimated using the granulator package in R using TPM (transcripts per million) 

normalized counts. Benchmarking in granulator was performed using reference cell type counts of a 

subset of the cohort (Fig. S1). The R package variancePartition [41] was used to calculate the variance 

explained by differential cell type composition and covariates. The package implements a linear mixed 

model method to characterize the contribution of selected variables to transcriptional variability. As 

deconvolution results showed a minor contribution of most cell types to the variance between the samples 

(Fig. S2), we used an adjustment approach of the gene counts to all cell type ratios resulting from the 

deconvolution approach based on a linear model adapted from Jones et al. [42] instead of using the cell 

type ratios as covariates in the later analyses. 

Data analyses 
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Demographic and Clinical Information: Normality of data was tested using Shapiro-Wilk test. The 

test revealed non-normal distributions for all variables (Table S2). Therefore, the comparison of the trait 

medians between the independent groups was performed using the Wilcoxon Mann-Whitney rank sum 

test.  

Differential Gene Expression (DGE): Differential gene expression analysis was performed using 

DESeq2 [39], which analyzes differences in gene expression based on a negative binomial generalized 

linear model. Genes with low counts were removed and only those with at least 20 counts in all samples 

were kept, as huge on/off changes were not expected due to the research question. A linear model with 

the factors of interest SAD, ELA and covariates age and sex was fitted. The false discovery rate (FDR) 

to adjust the p value to multiple correction) was set at 0.1. Results were filtered for differentially 

expressed (DE) genes with an absolute log2 fold-change larger than 0.3. 

Weighted Gene Co-expression Network Analysis (WGCNA): Scale-free co-expression networks were 

constructed using the R package WGCNA that defines modules using a dynamic tree-cutting algorithm 

based on hierarchical clustering of expression values (minimum module size = 100, cutting height = 

0.99). WGCNA was performed using filtered ( 20 counts per sample) and variance stabilized count data 

(generated from the read count matrix using DESeq2’s getVarianceStabilizedData function). The 

network was constructed at a soft power of 10 at which the scale-free topology fit index reached 0.9. The 

module eigenvalue was used to perform the correlation analysis with the variables (i.e. questionnaire 

scores of LSAS and its subcategories as well as CTQ and its subcategories; covariates age and sex) with 

each whole module. Modules additionally significantly correlating with sex and age were discarded from 

further analyses. 

Gene Functional Enrichment Analysis: Gene list functional enrichment analysis was performed using 

the R package gProfiler2 [43, 44] by using the Gene Ontology (GO) resource (vOBO 1.4, [45, 46]), the 

Kyoto Encyclopedia Genes and Genomes (KEGG) pathways database (v103.0, [47]) and Reactome 

database (v81, [48]). Terms with FDR-corrected p values of < 0.05 were considered significantly 

enriched within modules.  

Network Analysis and Visualization: MAPK3, the top hit of the DGE analysis, was imported into the 

online Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database v11.5 

(http://string-db.org; [49]) for known and predicted protein-protein interactions (ppi). We used the 

following conditions for network generation: medium confidence (0.4), maximum 50 interactors for the 

first shell and 10 for the second shell.  

The interactome of MAPK3 together with all genes of significant WGCNA modules (in total 1815) was 

generated using the STRING database (v11.5) starting with a full network (edges indicating both 

functional and physical protein associations) and then filtering for interaction scores > 0.9, thereby 

increasing confidence. For the final interactome, all direct neighbors of MAPK3 were selected. The 

interactome was visualized using Cytoscape (v3.9.1., [50]). 
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3. Results 

Demographic and Clinical Information 

Table 1 shows the sample characteristics with respect to the four groups emerging from the factors SAD 

and ELA in more detail. While there was neither a significant group difference in age (Wilcoxon, n = 159, 

W = 3370, p = 0.38) nor sex (Pearson’s Chi-square test, χ2 = 1.62, p = 0.20) with respect to SAD, 

significant differences in age (Wilcoxon test, n = 159, W = 3398, p = 0.040), but not sex (Pearson’s Chi-

square test, χ2 = 0.05, p = 0.82) emerged with respect to ELA. Additionally, Levene’s test revealed 

variance heterogeneity of the age data among the ELA groups (DF = 1, F = 14.814, p = 0.000). 

The total score of the CTQ of our cohort was not significantly different with respect to sex (Wilcoxon 

test, n = 159, W = 2373.5, p = 0.093), but it correlated positively with age (r = 0.117, p < 0.001). 

Nevertheless, we included age (in addition to sex) as covariate in the DGE analysis and tested each 

candidate gene expression count for correlation with age to exclude age effects on the expression of the 

respective gene (Fig. S3). For the total score of the LSAS, there was no significant difference with respect 

to sex (Wilcoxon test, n = 159, W = 3337, p = 0.068) and no correlation with age (r = -0.001, p = 0.83). 

Finally, there was a significant correlation between the total scores of the LSAS and CTQ (r = 0.104, 

p < 0.001). This correlation was mainly due to the highly significant correlation of the emotional CTQ 

subscales emotional abuse (r = 0.107, p < 0.001, n = 29) and neglect (r = 0.092, p < 0.001, n = 35) with 

the LSAS score (Fig. S4), whereas the other subscales of the CTQ did not or less significantly correlate 

with the LSAS total score (physical abuse: r = 0.018, p = 0.05; sexual abuse: r = 0.018, p = 0.06; physical 

neglect: r = 0.004, p = 0.010). Importantly, in our cohort we have eight cases of physical and five cases 

of sexual abuse only (Table S3), which needs to be kept in mind when interpreting the results.  

Differential Gene Expression with respect to SAD, but not ELA 

Investigating gene expression of all participants, visual inspection of the PCA revealed no obvious 

grouping of samples (Fig S5). This is in line with rather subtle gene expression changes that one may 

expect in blood in the context of mental disorders [51, 52]. Analyzing differential gene expression using 

DESeq2 [39], 13 significantly (FDR-corrected p ≤ 0.1) differentially expressed genes (DEGs) were 

identified which had a |l2fc| ≥ 0.3 with respect to SAD (Fig. 1A, Table S4), whilst no significant 

differences in expression were identified with respect to ELA (Table S5). 

Visualizing the count distribution of all SAD associated DEGs, eight of the candidates exhibited an 

expression pattern rather caused by extreme values (such as outliers) or other effects than being a true 

DEG (Fig. S6). Therefore, we excluded these genes from further analyses (marked in Table S4). The 

remaining DEGs include (in order of significance) MAPK3 (Mitogen-Activated Protein Kinase 3), 

ANAPC1 (Anaphase Promoting Complex Subunit 1), PFKL (Phosphofructokinase, Liver Type), 

FGFBP2 (Fibroblast Growth Factor Binding Protein 2) and AC008937.2 (long non-coding (lnc) RNA, 

Fig S7). The most significantly expressed gene MAPK3 (FDR-corrected p = 0.003, l2fc = 0.33) was 

upregulated in the SAD group compared to control individuals (Fig. 1B). Fig. 1B shows the counts of 

MAPK3 for each experimental group revealing that there is no ELA specific expression pattern within 

the SAD group. SAD groups with respect to ELA displayed an equally high MAPK3 count (SAD/ELA: 

adj. mean gene count = 132.59  44.71, SAD/no ELA: adj. mean gene count = 135.62  38.59), whereas 

the groups of individuals without SAD showed a significantly lower MAPK3 mean count, no matter 

whether ELA levels were high or low (no SAD/ELA: adj. mean gene count = 101.21  20.60, no SAD/no 

ELA: adj. mean gene count = 110.49  38.06). 

In addition to the comparison of ELA groups, the CTQ subscales were classified according to Bernstein 

and Fink [53], with a score moderate and higher indicating the respective trauma (Table S3). DGE 

analysis was carried out for each CTQ subscale (Table S5). Furthermore, we analyzed DGE in the SAD 
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group only with respect to ELA and each subscale as well as in the ELA group with respect to SAD to 

examine the potential transcriptomic association of ELA and SAD (Table S5). The subscale DGE 

analyses resulted in two genes differentially expressed in individuals with or without the experience of 

childhood sexual abuse in the entire cohort (Table S6) and 197 genes with respect to physical abuse 

within the SAD group only (Table S7). However, as there were only five cases of sexual abuse in the 

entire cohort and four cases of physical abuse in the SAD group only (Table S3), the DGE analysis in 

those subgroups has to be interpreted with caution. In summary, there were no relevant significant DEGs 

identified for ELA as well as the CTQ subscales neither in the entire cohort nor in the SAD group only. 

Gene Co-expression Clusters correlating with emotional ELA 

WGCNA uses a validated principle called guilt by association, which relies on the assumption that 

associated or interacting genes share expression patterns and are likely to function together. Therefore, 

WGCNA was performed on gene counts matching the same filters as for the DGE analysis and a soft 

threshold power of 10 to identify ELA and/or SAD specific gene co-expression (for more details on the 

analysis, see Fig. S8). We identified 11 gene co-expression modules correlating with any of the variables 

available for the cohort (Table S8) with sizes ranging from 73 to 1750 genes. 1559 genes were assigned 

as not correlated (module grey). 

Interestingly, whereas the DGE analysis revealed only associations of gene expression and SAD, the 

WGCNA resulted only in modules significantly correlated with ELA but not SAD or LSAS scores, 

respectively. In more detail, the modules red (Table S9), greenyellow (Table S10) and turquoise (Table 

S11) were significantly correlated with the ELA groups (turquoise), the subscales emotional abuse and 

emotional neglect as well as total CTQ score (red and greenyellow), respectively, but not with any of the 

non-disease-related variables (age, sex, size and weight, Table 2). None of the ELA co-expression cluster 

top hub genes (Table S12) overlapped with SAD DEGs. Furthermore, MAPK3 was found in the grey 

module containing the genes not correlated with any variable. The other relevant DEGs were found in 

the following co-expression modules: the green module that was not significantly correlated with any 

variable (Fig. S9) included ANAPC1 and FGFBP2. PFKL was found in the blue module which is 

associated with (amongst others) ELA, sex and size (Fig. S9). Finally, AC008937.2 was co-expressed 

with genes in the red module.  

Gene functional enrichment analysis reveals relevance of signal transduction pathways and 

immune system 

A protein-protein-interaction (ppi) network of MAPK3 was generated using the STRING database to 

find pathways in which co-expressed genes within ELA-specific WGCNA modules and MAPK3-

associated with SAD potentially interact. A functional enrichment analysis was performed to examine 

the enrichment of annotated terms within the three modules significantly correlating with ELA and/or 

the respective CTQ (sub-)scales modules (turquoise, red and greenyellow) and the MAPK3 ppi network. 

The MAPK3 ppi network was enriched mainly for MAPK signal transduction pathways and NTRK 

(neurotrophin receptor) signaling. The red and the turquoise WGCNA modules were enriched for cellular 

structural processes/compartments (Fig. 2A and B). The greenyellow co-expression cluster contained 

genes particularly involved in immune-related pathways (especially interleukin regulation and 

production) and JAK-STAT signaling (Fig. 2C). 

The enrichment analysis did not reveal any shared or overlapping pathways between the modules, which 

does not indicate a direct molecular mediation of ELA on adult SAD by one single process. 

Network Analysis identifies common Genes between SAD-related MAPK3 and ELA associated Co-

Expression Modules 
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The gene lists of each co-expression module correlating with ELA and/or CTQ (sub)scales, i.e. of the 

turquoise, red and greenyellow modules, were compared with the genes contained in the MAPK3 ppi 

network that plays a role in SAD to identify overlapping and thus potentially interacting genes. We 

identified PTPN7 (Tyrosine-protein phosphatase non-receptor type 7) as a gene present in the MAPK3 

ppi network and the red module (Table S13). PTPN7 is a member of the phosphatase family and a known 

negative regulator of MAPK signal cascade activation [54]. The turquoise module and the MAPK3 ppi 

network share a set of 20 genes (Table S13). Gene set enrichment analysis identified an involvement of 

most of those genes especially in signal transduction (MAPK, NTRK, neurotrophin, Fig. S10). The hub 

gene of the greenyellow module STAT3 (Signal transducer and activator of transcription 3) as well as 

RAF1 (RAF Proto-Oncogene Serine/Threonine-Protein Kinase) were also found in the MAPK3 ppi 

network (Table S13). RAF1 activation initiates a mitogen-activated protein kinase cascade and is in part 

regulated by cytokine signaling [55] and STAT3 mediates cellular responses to interleukins and other 

growth factors [56-62] as well as inflammatory responses by regulating differentiation of naive CD4+ T-

cells into T-helper Th17 or regulatory T-cells [63]. Therefore, both genes are involved in the immune 

response and are linked to the mitogen-activated signaling cascade [55, 64, 65], where MAPK3 plays a 

central role[55]. Therefore, an interaction of STAT3, RAF1 and MAPK3 in immune signaling is likely.  

To verify the interaction of MAPK3 and genes from the ELA-correlated modules, we used the STRING 

database to extract information on interaction scores of the 1815 genes (MAPK3 + genes from the three 

modules). After removing all genes with an interaction score ≤ 0.9 indicating the highest confidence, 51 

genes remained. We generated an interactome of those genes (Fig. 3). The interactome highlighted the 

interaction of MAPK3 and the beforementioned STAT3, RAF1 and PTPN7. However, the interactome 

also revealed complex interrelations between the genes with several to many interaction partners of each 

gene (Fig. 3). 

The functional enrichment of the gene list was performed by using the Reactome database only. This 

enabled focusing on interaction of the genes to form a biologically relevant network as the Reactome 

groups entities participating in reactions. The analysis revealed mainly enrichment of the genes in terms 

related to immune-related signaling (Fig. 4, Signaling by Receptor Tyrosine Kinase, Signaling by 

NTRKs, etc.). However, the most significantly enriched pathway was Signal Transduction (Fig. 4). 
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4. Discussion 

Transcriptome analyses have become highly relevant over recent years to investigate the molecular basis 

of psychiatric disorders. In particular, RNA-seq has been widely used to analyze psychiatric disorders 

and interrelations [66-68]. In the study presented here, we focused on social anxiety disorder and the 

molecular connection with a potential environmental trigger—early life adversity.  

DGE analysis revealed genes associated with SAD, with MAPK3 being the most significantly 

upregulated in individuals with SAD compared to control individuals. No DEGs were identified between 

individuals with and without a history of ELA. MAPK3 is a serine/threonine kinase which acts as an 

essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 

play an important role in the MAPK/ERK cascade (extracellular signal-regulated kinase-dependent 

cascade). Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological 

functions such as cell growth, adhesion, survival and differentiation through the regulation of 

transcription, translation and cytoskeletal rearrangements. The MAPK/ERK cascade also plays a role in 

initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by 

phosphorylating a number of transcription factors that, for example, promote breast cancer [69]. 

Interestingly, another finding was the differential expression of the lncRNA AC0008937.2 in the context 

of SAD, which—as an antisense lncRNA to MAP3K1—has a potentially regulative role [70] in the 

MAPK signaling cascade. Another important gene that in turn is regulated by MAPK signaling is the 

brain-derived neurotrophic factor (BDNF) [71, 72]. The neurotrophin BDNF is essential for dendritic 

development in peripheral and central nervous system and regulates dendritic growth [73]. Moreover, 

BDNF level changes in serum are associated with a variety of anxiety disorders [74, 75]. Furthermore, 

BDNF protein levels were shown to be reduced in brain tissue of rats with a history of ELA which were 

subsequently exposed to stress [76]. However, in our data derived from whole blood we did not identify 

a SAD-specific expression pattern of BDNF. MAPK3 may function as a transporter in blood to regulate 

the expression of BDNF in brain tissue which in turn may lead to altered structural brain plasticity playing 

a role in SAD. Therefore, the analysis of BDNF expression levels would be of interest in different brain 

areas in the context of SAD. MAPK3 expression might also be altered in the brain of patients as MAPK 

phosphorylation levels in the amygdala were directly associated with anxiety symptoms in a previous 

study [77]. The authors demonstrate that the rate of extracellular signal-related kinase phosphorylation 

in the amygdala is negatively and independently associated with anxiety symptoms [77]. These findings 

further support our results of an involvement of MAPK signaling in SAD. Nevertheless, as BDNF is 

associated with several mental disorders, MAPK3 differential expression may also not be restricted to 

social anxiety. An upregulation of MAPK-related genes is also found in Major Depressive Disorder 

(MDD, [78]) especially in cases with a history of ELA. Altered MAPK signaling involved in the 

development of mental disorders may be a result of stress on the mental or even cellular (e. g. infection) 

level. Indeed, early childhood adversities and infections are shown to severely affect the immune system 

resulting in an inflammatory phenotype and increase the risk for adult psychiatric disorders [9, 79]. 

Therefore, ELA might lead to molecular alterations mainly involved in inflammatory processes and those 

changes may induce an aberrant synaptic development in SAD transferred by MAPK signaling. 

Gene co-expression analysis revealed gene clusters significantly associated with the emotional aspects 

of ELA (emotional abuse and neglect). Although no direct link on the level of differential gene expression 

was identified, this is an interesting finding as social anxiety and especially the emotional forms of 

childhood maltreatment are shown to significantly correlate [80, 81], which is supported by our data as 

well (Fig. S3). Therefore, a connection of emotional ELA and adult SAD on the molecular level seems 

likely. The MAPK3 interaction network shared one gene, PTPN7, with the red co-expression module, 

that significantly correlated with the scores of the CTQ subscales emotional abuse and emotional neglect 

as well as the total CTQ score. PTPN7 is a member of the phosphatase family and specifically inactivates 
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MAPKs. Nothing is known about the regulation of PTPN7 in the context of ELA or SAD so far, although 

Schwieck et al. (2020) did not identify differential expression in MDD cases together with suicide risk 

and ELA history [78]. However, it acts as a regulator of MAPK signaling activity [82, 83]. The immune 

system is a plausible pathway how ELA could be molecularly involved in adult psychiatric disorders as 

ELA is known to cause inflammatory mimicking effects that are still measurable in adults, e.g. higher 

levels of typical markers of inflammation such as white blood cell count, circulating proinflammatory 

cytokine levels, and the acute phase molecule C-Reactive Protein (CRP) and lower NK cell activity [9, 

84]. Although we did not measure cytokine levels or lower NK cell activity, none of the mentioned 

marker genes associated with emotional neglect and/or abuse were differing in the context of ELA and/or 

SAD in our sample (data not shown). Nevertheless, PTPN7 may be a promising candidate connecting 

ELA, the immune response and MAPK signaling as a potential regulator of anxiety disorders. 

Furthermore, blood cell type ratios were estimated and gene counts were adjusted to the ratios reflecting 

the immune activity. However, cell type ratios did not differ with respect to ELA or SAD in our sample. 

The greenyellow co-expression module significantly correlated with emotional abuse and neglect in early 

childhood and was enriched for immune-related terms and JAK-STAT signaling. STAT3 and RAF1 were 

shared between this module and the MAPK3 ppi network. RAF1 is a known upstream regulator of MAPK 

signaling (Raf/MEK/ERK cascade, [85]). RAF1 expression increases upon infection, which is mediated 

by interleukin 2 (IL-2, [86]), whereas inhibition of RAF1 affects production of IL-6 and IL-8 in cultured 

human corneal epithelial cells [87]. STAT3—a transcription factor—regulates processes involved in 

inflammation and tumorigenesis by regulating cell proliferation, differentiation and metabolism [88]. 

STAT3 is a member of the JAK-STAT signaling pathway whose canonical mode is based on cytokine 

release followed by MAPK signaling activation [89]. In the non-canonical signaling pathway, 

unphosphorylated STATs are localized on heterochromatin in the nucleus in association with proteins 

regulating the maintenance of heterochromatin state [90]. Therefore, STAT3—like MAPK3 and RAF1, 

respectively—is involved in a complex crosstalk of signaling pathways and may be involved in 

epigenetic regulation of downstream processes. A STAT3 knockout in mice leads to reduced negative 

behavioral reactivity [91] Additionally, STAT3 is involved in alcohol withdrawal [92] and depressive 

symptoms in rats [93, 94]. Therefore, RAF1 and STAT3 are potential candidates connecting ELA, 

immune response and SAD. 

Gene set functional enrichment of the genes overlapping in the turquoise module, that significantly 

correlated with ELA, and the MAPK3 ppi network revealed mainly terms related to signal transduction 

pathways (i.e. MAPK and NTRK and neurotrophin signaling, Fig S10). Amongst others, NTRK signaling 

was enriched, pointing towards a role of those genes in BDNF-related processes. Moreover, the gene set 

enrichment of the MAPK3 interactome substantiates the role of NTRK signaling in the association of 

ELA and SAD. 

Summary and model 

As stated above, ELA is known to have an effect on neuronal structures by affecting the immune system 

(e. g. cytokine levels), which is linked to structural changes involved in the development of mental 

disorders. Our findings support this assumption on the molecular level: The gene set enrichment of the 

co-expression clusters revealed terms especially involved in the cellular structure, signal transduction 

and immune response. Genes co-expressed in clusters associated especially with emotional ELA are 

potential interactors of MAPK3, which is significantly differentially expressed in individuals suffering 

from SAD compared to controls. Especially STAT3, the hub gene of such a co-expression cluster, may 

be regulated by the emotional ELA-dependent release of interleukins like IL-6 [95, 96] and thus may be 

involved in the cell type-specific regulation of more growth factor and cytokine release [97-99] which 

for their part increase MAPK3 expression [100]. MAPK3 may be further involved in the expression of 

genes shaping synaptic plasticity, e.g. BDNF. 
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In a recent study of our group, the blood DNA methylome was analyzed in the same cohort presented 

here. Differentially methylated regions (DMRs) specifically associated with SAD, ELA, or the 

interaction of SAD and ELA were identified [101]. None of these regions were overlapping with the 

DEGs found in the current gene expression analyses. However, STAT3 is shown to interact with the 

DNA methyltransferase DNMT1 [102, 103]. Therefore, STAT3-directed DNA methylation is a possible 

step in the signal transduction cascade transferring ELA to SAD. In the study of Camilo et al. (2019), a 

gene network approach revealed a direct association of MAPK3 methylation and cocaine use disorder 

[104]. Therefore, in a follow-up study, we aim to conduct a multivariate machine learning-based analysis 

to integrate DNA methylation and gene expression data in the context of SAD following ELA.  

The approach presented here has several limitations: First, the expression of genes can vary between 

blood cell types and therefore, differential cell type composition can affect results. Immune responsive 

cell types are known to play a role in mental disorders such as anxiety-related MDD or panic disorder 

[105-107], which make them unsuitable for usage as covariate in statistical tests and DGE analysis. 

Therefore, we adjusted the gene expression data to the estimated cell type composition with the help of 

reference cell counts of a subset of our cohort and showed that the number of real counts and estimated 

ratios correlated for several relevant cell types (Fig. S1). Furthermore, we have to be aware of the fact 

that transcriptomic profiles are not only cell type- but also tissue-specific, and that we therefore cannot 

assume that the differences we observe in blood directly reflect the situation in brain (as mentioned for 

BDNF earlier). In psychiatric transcriptomics, we are faced with the problem, that the tissue of interest—

the brain—is not easily available for transcriptomic analyses in living individuals. However, we can 

assume that there is some overlap of genes expressed similar in blood and brain, as human whole blood 

tissue showed a significant similarity in gene expression to multiple brain tissues with a median 

correlation of 0.5 as revealed by microarray analysis [108]. Furthermore, rat brain and blood tissue more 

than half of the 29,215 genes analyzed by microarray were co-expressed [109]. Furthermore, age differed 

significantly between the groups with high and low levels of ELA. Age effects were not identified for 

the expression of the candidate genes (Fig. S3) and co-expression clusters correlating with age were 

excluded from further analyses. An approach in a larger cohort would be needed to decipher whether 

age-dependent gene expression has an effect on the results presented here. Moreover, the phosphorylation 

levels of MAPK3 and MAPK signaling (and therefore the activation of the signal transduction cascade) 

mark an important step in the signal cascade that should be included in future experiments to clarify 

whether gene product or phosphorylation abundance are the potential drivers behind the molecular 

development of SAD. 

In summary, by investigating gene expression in context of SAD and its relation to ELA on a 

transcriptome level, we were able to identify DEGs associated with SAD—with MAPK3 being the most 

significant DEG—as well as co-expression clusters correlating with ELA and/or its subclasses. 

Interestingly, functional enrichment of MAPK3 protein-protein interaction network and ELA associated 

gene co-expression modules pointed towards signal transduction pathways and the immune system. 

Additionally, shared genes are involved in JAK-STAT and ERK signaling as well as DNA methylation. 

Although a direct molecular link of ELA leading to adult SAD by gene expression changes was not 

identified, the data indicate an indirect relation of emotional ELA and SAD mediated by the interaction 

of genes involved in immune-related signal transduction. Further studies will be needed to replicate our 

findings in independent, larger cohorts and to investigate the potential effect of the immune responsive 

gene expression pattern caused by ELA on adult anxiety disorders in more detail.  
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Tables 

Table 1: Sample characteristics for the four groups emerging from the factors SAD and ELA. Mean 

± standard deviation. SAD = Social Anxiety Disorder, ELA = Early Life Adversity, LSAS = Liebowitz 

Social Anxiety Scale, CTQ = Childhood Trauma Questionnaire. 
 

group 
 

SAD no SAD 
 

high ELA low ELA high ELA low ELA 

n 27 43 27 62 

LSAS total score 75.8 ( 28.3) 68.9 ( 25.3) 23.6 ( 17.2) 14.8 ( 14.1) 

CTQ total score 56.6 ( 13.8) 32.7 ( 5.2) 48.5 ( 10.3) 29.7 ( 4.6) 

Sex ♀18 ♂9 ♀32 ♂11 ♀17 ♂10 ♀38 ♂24 

Age [years] 29 ( 8) 24 ( 6) 27 ( 8) 25 ( 3) 

 

 

Table 2: WGCNA module gene count and correlation coefficients for each variable. *** p ≤ 0.01, * 

p ≤ 0.05 

Modules n SAD ELA Age Sex Size Weight LSAS 

total 

CTQ 

emotional 

abuse 

CTQ 

physical 

abuse 

CTQ 

sexual 

abuse 

CTQ 

emotional 

neglect 

CTQ 

physical 

neglect 

CTQ  

total 

Turquoise 1750 -0.036 0.261*** 0.106 0.139 -0.090 -0.137 -0.059 0.156 -0.030 -0.080 0.146 0.098 0.111 

Green-

yellow 

73 -0.127 -0.284*** -0.092 0.065 -0.100 0.111 -0.088 -0.179* -0.130 0.018 -0.192* -0.173 -0.186* 

Red 105 -0.016 -0.295*** -0.123 -0.015 -0.046 0.071 -0.003 -0.211* -0.055 0.060 -0.205* -0.174* -0.184* 
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Figure legends 

 

Fig. 1: DGE analysis between SAD and control group. A Volcano plot displaying the significantly 

(FDR-corrected p ≥ 0.1) differentially (|l2fc| ≥ 0.3) expressed genes with down-regulated genes marked 

in blue and up-regulated genes marked in red. B The expression patterns of the most significantly 

differentially expressed gene MAPK3 displayed in gene counts with respect to SAD and ELA show 

increased gene counts in the SAD groups without an influence of ELA. Wilcoxon rank sum test was 

applied and p values were adjusted for multiple testing using Benjamini-Hochberg correction. Kruskal-

Wallis-Test additionally shows significantly different MAPK3 expression between the SAD/ no SAD 

(with respect to ELA) groups. 

 

Fig. 2: Gene functional enrichment of the A WGCNA module red, B WGCNA module greenyellow and 

C WGCNA module turquoise. Significance values are color-coded. Abbreviations indicate the database 

with G: KEGG database, BP: Biological process (GO term), CC: Cellular component (GO term) and 

MF: Molecular function (GO term). 

 

Fig. 3: Network visualization of the interactome of MAPK3 and the genes from the turquoise, red 

and greenyellow module. The nodes were colored by module, node size displays module membership 

score from WGCNA, the node sort and node transparency were set by STRING degree and the edge 

transparency was set by STRING score. 

 

Fig. 4: Gene functional enrichment of the MAPK3 interactome associated with genes of the 

turquoise, red and greenyellow module. Significance values are color-coded. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521187
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521187
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521187
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521187
http://creativecommons.org/licenses/by-nc-nd/4.0/


.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521187doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521187
http://creativecommons.org/licenses/by-nc-nd/4.0/

