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Abstract 9 

CRAM is an efficient format to store high-throughput sequencing data and it has been widely adopted. We 10 
thus plan to use CRAM for the Emirati Genome Program, which aims to sequence the genomes of ~1 11 
million nationals in the United Arab Emirates using short- and long-read sequencing technologies (Illumina, 12 
MGI and Oxford Nanopore Sequencing). We conducted a pilot study on the three technologies before start 13 
using CRAM at scale. We found CRAM achieved 40–70% compression depending on the sequencing 14 
platform. As expected, CRAM compression was data lossless and did not alter variant calls. In our cloud, 15 
we observed compression speeds 0.7–1.4 GB per minute, varying on the sequencing platform too. This 16 
translates into ~1–2 hours using a single CPU to compress a ~30X human whole-genome sequencing 17 
sample. Despite its wide use, we found little publicly available information about CRAM compression rate, 18 
speed, losslessness and parallelization, especially across many sequencing platforms. This work will have 19 
direct application for Emirati Genome Program and provide practical considerations for other large-scale 20 
sequencing efforts. 21 
 22 

Introduction 23 

High-throughput sequencing (HTS) and the associated bioinformatics analysis results in several large files 24 
(Supplementary Note 1 and Supplementary Table 1). As an example, storing all key files generated for a 25 
human ~30X whole-genome sequencing (WGS) sample (i.e. raw format, FASTQ, BAM and gVCF) amounts 26 
to ~200–900 gigabytes (GB) depending on the sequencing technology – this amounts to ~50–250 USD of 27 
storage per year in AWS. This poses an infrastructure and cost challenge for large-scale genome 28 
sequencing efforts such as the Emirati Genome Program (EGP). In EGP, we will sequence at ~30X all 1 29 
million nationals in the United Arab Emirates (UAE). EGP started in 2021 and it is expected to be completed 30 
by 2025. As of November 2022, we have sequenced the genomes of >250,000 EGP participants at ~30X 31 
employing three HTS platforms (Illumina, MGI and Oxford Nanopore Technologies; the latter hereafter 32 
referred to as “ONT”). To quantify the infrastructure and cost challenge, we estimate that a maximum of 33 
~140 petabytes (PB) of storage would have been required to store raw and processed data for all ~250,000 34 
genomes if those co-existed at the same time. 35 
Therefore, a well-thought strategy on which files are stored in the long term to minimize the storage footprint 36 
while meeting the project requirements is crucial. This is not only especially important for sequencing 37 
projects with high volumes of samples. Besides, it is also for those in which re-analysis of the data is 38 
expected and / or with contractual obligations to be able to deliver not only the genetic variants but also 39 
some form of raw data (e.g. sequencing reads). Several well-known worldwide organizations and 40 
sequencing projects have chosen a long-term storage of sequencing data in the form of CRAM files. Given 41 
that, for EGP we advocated a strategy consisting in the long-term storage of only CRAM and (g)VCF files 42 
(see Supplementary Note 1 for more details) upon successful completion of the pipeline and confirmation 43 
that the target quality control (QC) metrics are met. 44 
Before implementing such strategy, we conducted a proof-of-concept (POC) study using 30 genomes 45 
sequenced on the three sequencing platforms in our G42 Healthcare’s Omics Center of Excellence 46 
(Illumina, MGI and ONT; 10 genomes per platform). In the POC, we assessed the feasibility, compression 47 
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rate, data lossless, speed of the BAM-to-CRAM compression and optimal parallelization across the three 48 
platforms. Here we present the results of that POC and expand with practical considerations for conducting 49 
BAM-to-CRAM compression at scale as well as to directly generate CRAM files with existing analysis 50 
pipelines. Besides, we discuss on the projected cost savings resulting from using CRAM, its limitations and 51 
existing alternatives. To our knowledge, an exercise like this has not been published or made available to 52 
the community. Therefore, we expect this work to be useful for sequencing projects concerned about 53 
effectively minimizing the storage footprint with little or no impact on their analysis pipelines. 54 
 55 

Results and Discussion 56 

Our dataset consisted of 30 distinct human genomes sequenced on two short-read (Illumina and MGI) and 57 
one long-read (ONT) sequencing technologies (10 genomes on each platform). We sequenced and 58 
analyzed the 30 genomes as described in the Materials and Methods, resulting in 30 BAM files with per-59 
genome average coverage between 20 and 120X (Supplementary Table 2).  60 
CRAM achieves 40–70% compression depending on sequencing platform 61 
We first aimed to replicate in our sequencing and analysis setup the compression rates observed by 62 
previous authors as well as to determine if those generalize across sequencing platforms. Specifically, we 63 
converted each of the 30 BAM files into CRAM format using Samtools (Li et al., 2009) and, for each file, we 64 
calculated the compression rate as the size of the file size reduction relative to the original BAM (see 65 
Materials and Methods). We observed compression rates between 40% to 70%, varying depending on 66 
the sequencing platform (Figure 1a). Such values are in the same range as previously reported for Illumina 67 
data (Bonfield, 2022). Compression rates for short-read data (65.7% and 50.7% for Illumina and MGI, 68 
respectively) were higher compared to that of long-read ONT (39.6%). We hypothesize that the constant 69 
read length nature of short-read data makes compression easier compared to the variable read length of 70 
ONT. We think multiple factors can explain the differences in compression rate between the two short-read 71 
fixed-length platforms. We initially speculated that the longer read length used in this POC for Illumina (150 72 
bp) compared to MGI (100 bp) increases the compression rate of the former. However, we observed similar 73 
compression rates (~50%) in 6 MGI samples sequenced each with both 100 and 150 bp flow-cells (data 74 
not shown). Illumina versus MGI differences might be also partly explained by the longer FASTQ headers 75 
we observed in MGI compared to Illumina (78 and 66–68 characters, respectively). Besides, the hard 76 
trimming of reads we applied to MGI reads to remove sequencing adapters and low-quality ends leads to 77 
some minimal variation in read length distribution. Such variation would not be present in soft-clipped reads 78 
processed with DRAGEN, potentially contributing to a higher compression rate. Finally, we observed higher 79 
duplication rates for Illumina data compared to PCR-free MGI data (data not shown), which may facilitate 80 
compression of the former and hence its higher compression rate. We also observed that per-BAM 81 
compression rate is independent of the input BAM size (Figure 1b), which simplifies estimating the file size 82 
reduction that can be achieved with CRAM compression. Of note, we found quite remarkable that FASTQ 83 
and BAM files generated from MGI data are both about two times larger than those generated from Illumina 84 
and even ONT (Supplementary Table 1 and Supplementary Table 2). We wonder whether this is again due 85 
to read length differences, similarly as seen for compression rate of Illumina versus MGI samples (Figure 86 
1a), or intrinsic to the MGI sequencing technology. If MGI intrinsically yields to larger FASTQ and BAM files 87 
as well as lower CRAM compression rates, it is worth considering the lower storage footprint of Illumina 88 
compared to MGI. 89 
CRAM compression is data lossless and does not alter variant calls 90 
Because for each genome we had FASTQ, BAM and VCF files, we could confirm that converting from BAM 91 
to CRAM did not alter sequencing data at different processing stages. Firstly, for each CRAM we 92 
regenerated FASTQ files (one for each read of the pair) and determined three key QC metrics on these: 93 
total number of sequenced gigabases (Gb), average sequencing read and average Q30 score. When 94 
compared to the same QC metrics generated on the starting FASTQ files (i.e. prior to BAM generation 95 
through alignment), we observed 100% similarity in all 30 genomes. Besides, we used the generated CRAM 96 
files as input for variant calling. For each genome, the resulting VCF showed the same number of variants 97 
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(even when broken into different types of variants, e.g. SNP, INDEL, etc.) and 100% concordance 98 
compared to the VCF obtained from the original pipeline. Through this experiment we noted an important 99 
consideration when re-generating FASTQ files from BAM or CRAM in paired-end sequencing samples. The 100 
sequencing reads in each of the two resulting FASTQ files (one for each read of the pair) will be by default 101 
sorted based on the genomic coordinates in the BAM or CRAM. This virtually always will result in read1 102 
and read2 not being in the same order for exactly all pairs. As many aligners expect proper matching of 103 
read1 and read2, sorting by read name (e.g. with Samtools) before using the regenerated FASTQ files is 104 
needed. 105 
Optimization of BAM-to-CRAM conversion speed 106 
Finally, we aimed to determine the speed at which we could convert BAM to CRAM format while optimizing 107 
parallelization and efficiency. As baseline, we measured BAM-to-CRAM conversion speed for each sample, 108 
defined as the number of GB compressed per minute using a single CPU (Linux machine with 64 vCPUs 109 
and 256 GB). We observed a reverse trend across platforms (Figure 2) compared to the compression rate 110 
values (Figure 1). Our explanation is that the higher the compression rate that is achieved, the more time 111 
is required to achieve it and therefore the lower compression speed. Considering the observed platform-112 
specific BAM sizes (~75–125 GB) and compression speeds (0.7–1.4 GB / min), we estimate that 113 
compressing the BAM file from a ~30X human genome takes approximately 1–2 hours using a single CPU. 114 
We then repeated the BAM-to-CRAM compression with increasing number of CPUs and calculated the 115 
acceleration relative to a single CPU as well the efficiency (see Materials and Methods). As shown in 116 
Table 1, we observed a 4X increase in compression speed when using 4 CPUs instead of one, as expected 117 
for a perfect parallelization efficiency. However, as more CPU per samples are used, efficiency decreases. 118 
Of note, allocating 32-times more resources only results in completing the compression 9-times faster. 119 
Altogether, we concluded that using 4 CPU per BAM file is optimal. Our estimates of the platform-specific 120 
compression speed and optimal CPU allocation are useful to project time to completion of high volumes of 121 
BAM files to be compressed. 122 
Beyond this POC 123 
Converting existing BAM files generated for EGP into CRAM will importantly reduce storage stress to our 124 
cloud and save costs. As of November 2022, we estimate that EGP-generated BAM files alone occupy ~10 125 
PB of our cloud storage. This is calculated from the split of EGP genomes across the three sequencing 126 
platforms and a conservative (+25% buffer) BAM file size we observe per platform for a ~30X WGS (Illumina 127 
and ONT: 75 GB; MGI: 150 GB) (Supplementary Table 1). We estimate the resulting CRAM will use instead 128 
~4 PB in our cloud (~58% storage footprint reduction), representing an annualized cost saving of ~1.2 129 
million USD. We came up with some practical considerations for implementing CRAM compression for 130 
thousands of BAM files. In the POC, we assessed CRAM data integrity by comparing both (i) key metrics 131 
in the original FASTQ and that re-generated from the CRAM and (ii) variant calls generated from BAM and 132 
CRAM. Such sanity checks are time consuming and hence impractical at scale. Instead, we argued that a 133 
data lossless CRAM will have a Samtools flagstat file identical to that of the source BAM. Therefore, we 134 
suggest requiring for identical Samtools flagstat between the original BAM and the generated CRAM on the 135 
fly is an efficient and fast strategy to confirm CRAM compression was data lossless. Going forward, we 136 
plan to directly generate CRAM files instead of compression from BAM files. The DRAGEN (Illumina, 2021) 137 
and Sentieon software we use for Illumina and MGI data, respectively, can directly generate and read 138 
CRAM files. Clair3 (Zheng et al., 2022), the variant caller we use for ONT data, cannot read CRAM yet so 139 
we plan to convert BAM to CRAM once variant calling completes. In any case, CRAM has some limitations 140 
and commercial solutions like PetaGene can achieve similar compression rates and easier functionality at 141 
a cost (Supplementary Note 1). 142 
 143 

Materials and Methods 144 

HTS data processing pipelines 145 

Illumina 146 
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The BCL file is the native output format of Illumina sequencing systems. We used on-premise Illumina 147 
DRAGEN Bio-IT Platform 3.9 (Illumina, 2021) to de-multiplex and base-call BCL files into per-sample 148 
FASTQ files. We also used Illumina DRAGEN Bio-IT Platform 3.9 to align reads in FASTQ files to the 149 
GrCH38 human reference genome, post-alignment processing (sorting and marking duplicates; base 150 
quality score recalibration), call genetic variants and generate summary statistics. 151 

MGI 152 

The CAL files is the native output of MGI sequencing systems. We used on-premise MGI Ztron server and 153 
Zebra software to de-multiplex and base-call CAL files into per-sample FASTQ files. Such files were pushed 154 
to G42 Cloud for initial QC assessment as well as trimming of sequencing adapters and low-quality ends 155 
with fastp (v0.23.2) (Chen et al., 2018). We aligned the trimmed FASTQ files to the GRCh38 human 156 
reference genome using the BWA-MEM algorithm (Li and Durbin, 2010) implemented in Sentieon 157 
(sentieon-20211202). We used alignments in BAM format for marking duplicates, estimating effective 158 
coverage and call SNP and INDEL variants using Sentieon as well (haplotype caller algorithm). We 159 
converted the resulting gVCF into VCF an calculated key metrics for the SNP and INDEL calls. 160 

ONT 161 

P48 sequencing results in many Fast5 files for each sample, which we processed in G42 Cloud using an 162 
in-house custom pipeline including ONT-recommended tools. Firstly, we base-called the Fast5 files with 163 
ONT's proprietary tool "Guppy" [v4.4.1, v.6.1.3]. This resulted in as many FASTQ files as Fast5 files used 164 
as input, which we merged to have a single FASTQ file per sample. On each sample we ran MinIONQC 165 
(Lanfear et al., 2019) to perform the initial sequencing QC and check if the target total number of Gb was 166 
achieved during the sequencing. We aligned FASTQ files to the GRCh38 human reference genome using 167 
Minimap2 (Li, 2018) and we used Alfred (Rausch et al., 2019) to check the quality and alignment QC for 168 
each EGP sample. The alignments generated by Minimap2 were stored in BAM format, which we later 169 
converted into CRAM. We used the alignments (in CRAM format after converting from the BAM generated 170 
by Minimap2) to call SNP and INDELs as well as structural variants (SV) using Clair3 (Zheng et al., 2022) 171 
and Sniffles2 (Sedlazeck et al., 2018), respectively. We used VariantQC (Yan et al., 2019) for performing 172 
the quality checks on the variants called and reporting the statistics for each sample. 173 
 174 
CRAM compression 175 

Samtools and CRAM 3.1 specification 176 

We used CRAM v3.1, an improvement of CRAM v3.0, which provides more reduction in file size. 177 
Specifically, Illumina CRAM 3.1 is 7% to 15% smaller than the equivalent CRAM 3.0 and 50% to 70% 178 
smaller than the original BAM file (Bonfield, 2022). We used Samtools (Li et al., 2009) v1.15 available in 179 
GitHub for CRAM compression from BAM as well as for CRAM file manipulations. We chose the latest 180 
version of such tool when we conducted the POC because it supported CRAM v3.1. 181 

Compression rate 182 

We defined compression rate as the ratio of size reduction relative to BAM size (or in general, 183 
uncompressed data) (see Equation 1). 184 

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑟𝑎𝑡𝑒 = 100 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑓𝑖𝑙𝑒	𝑠𝑖𝑧𝑒
𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑓𝑖𝑙𝑒	𝑠𝑖𝑧𝑒 	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(1) 185 

 186 

Data integrity and losslessness 187 

The CRAM compression is lossless and allows restoring the original data without any loss of information. 188 
Firstly, we assessed whether sequencing reads remained unaltered after CRAM compression from BAM. 189 
By uncompressing CRAM files to FASTQ, we ran fastp (Chen et al., 2018) on the latter to determine key 190 
QC metrics for each sample: (i) total number sequenced Gb, (ii) average sequencing read length, and (iii) 191 
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average Q30 score. The three quality parameters are set to ensure lossless compression and validate 192 
intact data of each sample. As a result, for all samples we had no loss in all the parameters. Secondly, we 193 
wanted to confirm that CRAM compression did not change the genetic variant calls. Specifically, we 194 
performed variant calling as described elsewhere in the manuscript using either the original BAM or the 195 
post-compression CRAM file as input. We compared (i) the total number of SNPs, indels, multiallelic sites, 196 
and multiallelic SNP sites as well as (ii) the genomic position and genotype concordance. We did the latter 197 
by pairwise comparison of the VCF files with BCFtools (Danecek et al., 2021) and calculating the 198 
concordance as the Jaccard index (Equation 2). 199 
 200 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| = 	

|𝐴 ∩ 𝐵|
|𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 			𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(2) 201 

 202 

Tools and command lines 203 

BAM to CRAM command 204 
samtools view -C -T ${referenceFile.fna} ${bamFile} -o ${outDir}/${sampleID}.cram -@ 205 
8 206 

 207 
Data integrity check 208 
bamFlagstat=`md5sum <(samtools flagstat ${bamFile} -@ 8) | cut -f1 -d" "` 209 
cramFlagstat=`md5sum <(samtools flagstat ${cramFile} -@ 8) | cut -f1 -d" "`  210 
if [[ "$bam" == "$cram" ]] 211 
then 212 
 echo "matched flagstat for ${sampleID}" 213 
else 214 
 echo "unmatched flagstat for ${sampleID}" 215 

 216 
CRAM to FASTQ 217 
samtools fastq --reference ${referenceFile.fna} -1 file1.R1.fastq -2 file2.R2.fastq 218 
${cramFile.cram} 219 
fastp -A -G -Q -L -w 1 -i file1.R1.fastq -I file2.R2.fastq -h output_fastp.html 220 
 221 

VCF files comparison 222 
bcftools isec <A.vcf.gz> <B.vcf.gz> -p <dir> 223 

 224 

Optimizing resources 225 

Optimal speed (Equation 3) of compressing BAM to CRAM is achieved by parallelizing the compression 226 
process and determining the optimal computing resources utilization. To determine the optimal number of 227 
CPUs per sample, we calculated the acceleration of multiple threads relative to one thread using Equation 228 
4 and the efficiency of utilization using Equation 5. We generated the results in the previous sections by 229 
using 1 CPU to compress each sample. For 2 out of the 10 samples from each platform, we repeated CRAM 230 
compression with increasing CPU threads 4, 8, 16, and 32 threads. 231 
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 232 

𝑆𝑝𝑒𝑒𝑑 =
𝑅𝑢𝑛	𝑡𝑖𝑚𝑒	(min)

𝐵𝐴𝑀	𝑓𝑖𝑙𝑒	𝑠𝑖𝑧𝑒	(𝐺𝐵) 															𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(3) 233 

 234 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑅𝑢𝑛	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝐺𝐵
𝐴𝑐𝑡𝑢𝑎𝑙	𝑅𝑢𝑛	𝑡𝑖𝑚𝑒 						𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(4) 235 

 236 

𝐸𝑓𝑓𝑒𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑃𝑈𝑠 								𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(5) 237 
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Figures 282 

Figure 1. Compression rate across the three platforms. 283 
(a) Compression rate distributions across platforms, with average values of 65.7% (Illumina), 50.7% (MGI) 284 
and 39.6% (ONT). (b) No relationship between original BAM size (GB) and compression rate. 285 

 286 

Figure 2. Compression speed across the three platforms.  287 

(a) Compression speed distributions across platforms, with average values of 0.70 (Illumina), 0.97 (MGI) 288 
and 1.41 (ONT) GB per minute. (b) Relationship between original BAM size (GB) and compression speed. 289 

 290 

Tables 291 

Table 1. Estimating optimal CPU usage for BAM-to-CRAM compression. Average speed, 292 
acceleration and efficiency for different CPU threads based on 6 samples (2 from each sequencing 293 
platform). 294 
 295 

Parameter 4 CPUs 8 CPUs 16 CPUs 32 CPUs 

BAM-to-CRAM compression speed 
(GB / min) 

3.85 7.14 9.09 9.09 

Acceleration relative to 1 CPU 4.05 7.30 9.00 9.06 

Efficiency 1.01 0.91 0.56 0.28 

 296 
 297 

Supplementary Information 298 

Supplementary Table 1. File types and sizes generated across Illumina, MGI and ONT sequencing 299 
platforms. 300 
The table shows file sizes for ~30X WGS samples as an average across multiple EGP samples. For Illumina 301 
and MGI those corresponded to 150- and 100-bp paired-end read lengths, respectively. To be conservative, 302 
the FASTQ and BAM file size estimates in the table are increased by 25%. Likewise, we rounded up VCF 303 
and gVCF to 1 and 10 GB, respectively. CRAM file size estimates are calculated by multiplying the BAM 304 
file size in the table by the average compression rate obtained for each sequencing platform in this POC. 305 

Sequencing 
platform 

Raw signal Sequencing 
reads 

Alignments Variant calls Variant calls 

Illumina BCL 

(50 GB1) 

FASTQ 

(75 GB) 

BAM 

(75 GB) 

gVCF 

(10 GB) 

VCF 

(1 GB) 

MGI CAL 
(150 GB1) 

FASTQ 
(150 GB) 

BAM 
(150 GB) 

gVCF 
(10 GB) 

VCF 
(1 GB) 

ONT Fast5 
(700 GB) 

FASTQ 
(75 GB) 

BAM 
(75 GB) 

gVCF 
(10 GB) 

VCF 
(1 GB) 

1Calculated as BCL file size divided by the number of multiplexed samples. 306 
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 307 
Supplementary Table 2. Sequencing throughput and BAM files sizes for the 30 genomes included 308 
in the POC. 309 
“Supplementary Table 2.xlsx” 310 
 311 
Supplementary Note 1. HTS file types and long-term storage strategy. 312 
HTS raw and processed data consist of standard relatively large files (in the order of GB). Size-reduction 313 
common practices exist for most of them and, yet, storing all file types is redundant and impractical. Here 314 
we briefly describe such file types and size-reduction practices as well as we discuss on long-term file type 315 
storage. 316 

HTS raw and processed file formats in Illumina, MGI and ONT 317 

Most sequencing technologies have a proprietary format to store the raw data generated by their 318 
sequencing instruments. For instance, sequencing-by-synthesis technologies such Illumina and MGI use 319 
image-based BCL and CAL files, respectively, to store data generated by their instruments. ONT relies on 320 
the HDF5 format as the base for the Fast5 files storing the electrical signal generated by their long-read 321 
sequencers. Through base-calling (commonly referred to as “primary analysis”), such technology-specific 322 
file formats converge into the standard FASTQ format to store the read sequence and quality scores. 323 
Likewise, the “secondary analysis”, which for many sequencing applications comprise alignment to a 324 
reference sequence and variant calling, employ standard formats across platforms. For instance, alignment 325 
software tools express alignments following the SAM format specifications (Li et al., 2009). Finally, variant 326 
callers write genetic variants in VCF format (Danecek et al., 2011) (or the related gVCF format when 327 
merging across multiple genomes is planned or for certain downstream tools). Due to the relatively large 328 
size of the files above, common practices exist to reduce the storage footprint of such files. For instance, 329 
FASTQ files are preferably gzip-compressed, which, as a rule-of-thumb, reduces file size by 50%. Besides, 330 
the .ORA format developed by Illumina is 5-times smaller relative to the original FASTQ. Alignments are 331 
rarely stored in SAM format but written and read in its binary BAM format instead; furthermore, BAM files 332 
can be compressed into CRAM format for an additional ~50% file size reduction relative to the former. 333 
Finally, VCF files are typically “gzipped” when generated by variant callers and can be in its binary format 334 
(“.bcf”) for additional file size reduction, with both formats being accepted by most bioinformatics tools. 335 
Despite the approaches above to reduce the size of each file type, storing all file types generated in the 336 
analysis pipeline is redundant and, more importantly, may be impractical due to the tremendous storage 337 
footprint (especially for large-scale sequencing projects and / or those required to store data for a long 338 
time). 339 

Thoughts on efficient long-term storage strategies 340 

Platform-specific raw data (BCL, CAL and Fast5) 341 
Raw data like BCL or CAL files are very rarely kept upon certain relatively short time or when key QC 342 
metrics are passed, especially considering the relatively big size of such files and the fact that the base-343 
calling process is mature and little-changing for Illumina and MGI sequencing. Conversely, more difficult is 344 
the decision of deleting ONT’s Fast5 files. For one, ONT’s sequencing technology as well as the base-345 
callers software tools and used deep learning models are more frequently evolving to catch up with the 346 
lower error rates of other technologies like Illumina, MGI and PacBio. Such ongoing improvements not only 347 
occur for the “canonical” base-calling (i.e. determination of DNA sequence) but for its capability to infer 348 
multiple methylation changes (e.g. 5mC, 5hmC) from the electric signal in the Fast5 files, a key competitive 349 
edge of ONT relative to those competitor technologies. Altogether, deleting the heavy Fast5 files (~700 GB 350 
for a 30X human genome) is unavoidably accompanied by the fear of higher-accuracy and data for 351 
additional methylation marks if kept. 352 
Raw sequencing reads (FASTQ and .ORA) 353 
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Some argue to keep FASTQ files as long-term storage of sequencing data, some of the reasons being that 354 
(i) it is closer to the raw data (e.g. no trimming of sequencing adapters and / or low-quality read ends), (ii) 355 
re-alignment may be needed with improved aligners, and (ii) FASTQ files are the starting point for different 356 
applications, i.e. not only alignment plus variant calling. In this regard, Illumina advocates for storing 357 
sequencing reads in its .ORA format is smaller even compared to the CRAM format. This has some 358 
disadvantages: (i) .ORA does not contain alignment information so the resource-consuming alignment step 359 
will need to be repeated in most re-analyses; (ii) Illumina’s proprietary DRAGEN software is required to 360 
read .ORA files, potentially creating vendor lock-in; (iii) analysis workflow may be complicated if .ORA files 361 
are used for long-term storage in the cloud and any re-analysis needs to be done with on-premise DRAGEN 362 
units. 363 
Alignments (BAM and CRAM) 364 
We see key advantages in using the alignments (BAM, CRAM) compared to the raw sequencing reads 365 
(FASTQ, .ORA): (i) additional information derived from the alignment is available or can be calculated (e.g. 366 
coverage); (ii) resource-consuming alignment process is not needed in the event some re-analysis on the 367 
BAM is required; (iii) most aligners can use BAM format as input for re-alignment; and (iv) even for those 368 
which do not, BAM can be converted to FASTQ or “piped” to any tool requiring FASTQ as input with tools 369 
such as Samtools (Li et al., 2009). CRAM has limitations too. For instance, the reference FASTA used 370 
during the compression is required to re-generate the BAM from the CRAM, which is moreover a time-371 
consuming task. Besides, not all tools which accept BAM can accept CRAM too and we think that BAM is 372 
still the default preference for alignments by many, relatively limiting the spread of CRAM. PetaGene offers 373 
a commercial solution that overcomes some of such limitations. 374 
gVCF and VCF files 375 
(g)VCF files are unlikely to be deleted because are the end point of the primary and secondary analysis, 376 
are used for downstream analyses and are relatively light anyway. 377 
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