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Abstract

CRAM is an efficient format to store high-throughput sequencing data and it has been widely adopted. We
thus plan to use CRAM for the Emirati Genome Program, which aims to sequence the genomes of ~1
million nationals in the United Arab Emirates using short- and long-read sequencing technologies (lllumina,
MGI and Oxford Nanopore Sequencing). We conducted a pilot study on the three technologies before start
using CRAM at scale. We found CRAM achieved 40-70% compression depending on the sequencing
platform. As expected, CRAM compression was data lossless and did not alter variant calls. In our cloud,
we observed compression speeds 0.7—-1.4 GB per minute, varying on the sequencing platform too. This
translates into ~1—2 hours using a single CPU to compress a ~30X human whole-genome sequencing
sample. Despite its wide use, we found little publicly available information about CRAM compression rate,
speed, losslessness and parallelization, especially across many sequencing platforms. This work will have
direct application for Emirati Genome Program and provide practical considerations for other large-scale
sequencing efforts.

Introduction

High-throughput sequencing (HTS) and the associated bioinformatics analysis results in several large files
(Supplementary Note 1 and Supplementary Table 1). As an example, storing all key files generated for a
human ~30X whole-genome sequencing (WGS) sample (i.e. raw format, FASTQ, BAM and gVCF) amounts
to ~200—900 gigabytes (GB) depending on the sequencing technology — this amounts to ~50-250 USD of
storage per year in AWS. This poses an infrastructure and cost challenge for large-scale genome
sequencing efforts such as the Emirati Genome Program (EGP). In EGP, we will sequence at ~30X all 1
million nationals in the United Arab Emirates (UAE). EGP started in 2021 and it is expected to be completed
by 2025. As of November 2022, we have sequenced the genomes of >250,000 EGP participants at ~30X
employing three HTS platforms (lllumina, MGI and Oxford Nanopore Technologies; the latter hereafter
referred to as “ONT”). To quantify the infrastructure and cost challenge, we estimate that a maximum of
~140 petabytes (PB) of storage would have been required to store raw and processed data for all ~250,000
genomes if those co-existed at the same time.

Therefore, a well-thought strategy on which files are stored in the long term to minimize the storage footprint
while meeting the project requirements is crucial. This is not only especially important for sequencing
projects with high volumes of samples. Besides, it is also for those in which re-analysis of the data is
expected and / or with contractual obligations to be able to deliver not only the genetic variants but also
some form of raw data (e.g. sequencing reads). Several well-known worldwide organizations and
sequencing projects have chosen a long-term storage of sequencing data in the form of CRAM files. Given
that, for EGP we advocated a strategy consisting in the long-term storage of only CRAM and (g)VCF files
(see Supplementary Note 1 for more details) upon successful completion of the pipeline and confirmation
that the target quality control (QC) metrics are met.

Before implementing such strategy, we conducted a proof-of-concept (POC) study using 30 genomes
sequenced on the three sequencing platforms in our G42 Healthcare’s Omics Center of Excellence
(INumina, MGI and ONT; 10 genomes per platform). In the POC, we assessed the feasibility, compression
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rate, data lossless, speed of the BAM-to-CRAM compression and optimal parallelization across the three
platforms. Here we present the results of that POC and expand with practical considerations for conducting
BAM-to-CRAM compression at scale as well as to directly generate CRAM files with existing analysis
pipelines. Besides, we discuss on the projected cost savings resulting from using CRAM, its limitations and
existing alternatives. To our knowledge, an exercise like this has not been published or made available to
the community. Therefore, we expect this work to be useful for sequencing projects concerned about
effectively minimizing the storage footprint with little or no impact on their analysis pipelines.

Results and Discussion

Our dataset consisted of 30 distinct human genomes sequenced on two short-read (lllumina and MGI) and
one long-read (ONT) sequencing technologies (10 genomes on each platform). We sequenced and
analyzed the 30 genomes as described in the Materials and Methods, resulting in 30 BAM files with per-
genome average coverage between 20 and 120X (Supplementary Table 2).

CRAM achieves 40-70% compression depending on sequencing platform

We first aimed to replicate in our sequencing and analysis setup the compression rates observed by
previous authors as well as to determine if those generalize across sequencing platforms. Specifically, we
converted each of the 30 BAM files into CRAM format using Samtools (Li et al., 2009) and, for each file, we
calculated the compression rate as the size of the file size reduction relative to the original BAM (see
Materials and Methods). We observed compression rates between 40% to 70%, varying depending on
the sequencing platform (Figure 1a). Such values are in the same range as previously reported for lllumina
data (Bonfield, 2022). Compression rates for short-read data (65.7% and 50.7% for lllumina and MG,
respectively) were higher compared to that of long-read ONT (39.6%). We hypothesize that the constant
read length nature of short-read data makes compression easier compared to the variable read length of
ONT. We think multiple factors can explain the differences in compression rate between the two short-read
fixed-length platforms. We initially speculated that the longer read length used in this POC for lllumina (150
bp) compared to MGI (100 bp) increases the compression rate of the former. However, we observed similar
compression rates (~50%) in 6 MGl samples sequenced each with both 100 and 150 bp flow-cells (data
not shown). lllumina versus MGl differences might be also partly explained by the longer FASTQ headers
we observed in MGl compared to lllumina (78 and 66—68 characters, respectively). Besides, the hard
trimming of reads we applied to MGl reads to remove sequencing adapters and low-quality ends leads to
some minimal variation in read length distribution. Such variation would not be present in soft-clipped reads
processed with DRAGEN, potentially contributing to a higher compression rate. Finally, we observed higher
duplication rates for lllumina data compared to PCR-free MGl data (data not shown), which may facilitate
compression of the former and hence its higher compression rate. We also observed that per-BAM
compression rate is independent of the input BAM size (Figure 1b), which simplifies estimating the file size
reduction that can be achieved with CRAM compression. Of note, we found quite remarkable that FASTQ
and BAM files generated from MGl data are both about two times larger than those generated from lllumina
and even ONT (Supplementary Table 1 and Supplementary Table 2). We wonder whether this is again due
to read length differences, similarly as seen for compression rate of lllumina versus MGl samples (Figure
1a), or intrinsic to the MGl sequencing technology. If MGl intrinsically yields to larger FASTQ and BAM files
as well as lower CRAM compression rates, it is worth considering the lower storage footprint of lllumina
compared to MGl.

CRAM compression is data lossless and does not alter variant calls

Because for each genome we had FASTQ, BAM and VCF files, we could confirm that converting from BAM
to CRAM did not alter sequencing data at different processing stages. Firstly, for each CRAM we
regenerated FASTQ files (one for each read of the pair) and determined three key QC metrics on these:
total number of sequenced gigabases (Gb), average sequencing read and average Q30 score. When
compared to the same QC metrics generated on the starting FASTQ files (i.e. prior to BAM generation
through alignment), we observed 100% similarity in all 30 genomes. Besides, we used the generated CRAM
files as input for variant calling. For each genome, the resulting VCF showed the same number of variants
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98 (even when broken into different types of variants, e.g. SNP, INDEL, etc.) and 100% concordance

99  compared to the VCF obtained from the original pipeline. Through this experiment we noted an important
100  consideration when re-generating FASTQ files from BAM or CRAM in paired-end sequencing samples. The
101 sequencing reads in each of the two resulting FASTQ files (one for each read of the pair) will be by default
102  sorted based on the genomic coordinates in the BAM or CRAM. This virtually always will result in read1
103  and read2 not being in the same order for exactly all pairs. As many aligners expect proper matching of
104 readl and read2, sorting by read name (e.g. with Samtools) before using the regenerated FASTQ files is
105  needed.

106  Optimization of BAM-to-CRAM conversion speed

107  Finally, we aimed to determine the speed at which we could convert BAM to CRAM format while optimizing
108  parallelization and efficiency. As baseline, we measured BAM-to-CRAM conversion speed for each sample,
109  defined as the number of GB compressed per minute using a single CPU (Linux machine with 64 vCPUs
110  and 256 GB). We observed a reverse trend across platforms (Figure 2) compared to the compression rate
111 values (Figure 1). Our explanation is that the higher the compression rate that is achieved, the more time
112 s required to achieve it and therefore the lower compression speed. Considering the observed platform-
113  specific BAM sizes (~75-125 GB) and compression speeds (0.7-1.4 GB / min), we estimate that
114  compressing the BAM file from a ~30X human genome takes approximately 1-2 hours using a single CPU.
115  We then repeated the BAM-to-CRAM compression with increasing number of CPUs and calculated the
116  acceleration relative to a single CPU as well the efficiency (see Materials and Methods). As shown in
117  Table 1, we observed a 4X increase in compression speed when using 4 CPUs instead of one, as expected
118  for a perfect parallelization efficiency. However, as more CPU per samples are used, efficiency decreases.
119  Of note, allocating 32-times more resources only results in completing the compression 9-times faster.
120  Altogether, we concluded that using 4 CPU per BAM file is optimal. Our estimates of the platform-specific
121 compression speed and optimal CPU allocation are useful to project time to completion of high volumes of
122 BAM files to be compressed.

123  Beyond this POC

124  Converting existing BAM files generated for EGP into CRAM will importantly reduce storage stress to our
125  cloud and save costs. As of November 2022, we estimate that EGP-generated BAM files alone occupy ~10
126  PB of our cloud storage. This is calculated from the split of EGP genomes across the three sequencing
127  platforms and a conservative (+25% buffer) BAM file size we observe per platform for a ~30X WGS (lllumina
128  and ONT: 75 GB; MGl: 150 GB) (Supplementary Table 1). We estimate the resulting CRAM will use instead
129 ~4 PB in our cloud (~58% storage footprint reduction), representing an annualized cost saving of ~1.2
130  million USD. We came up with some practical considerations for implementing CRAM compression for
131 thousands of BAM files. In the POC, we assessed CRAM data integrity by comparing both (i) key metrics
132 in the original FASTQ and that re-generated from the CRAM and (ii) variant calls generated from BAM and
133  CRAM. Such sanity checks are time consuming and hence impractical at scale. Instead, we argued that a
134 data lossless CRAM will have a Samtools flagstat file identical to that of the source BAM. Therefore, we
135  suggest requiring for identical Samtools flagstat between the original BAM and the generated CRAM on the
136 fly is an efficient and fast strategy to confirm CRAM compression was data lossless. Going forward, we
137  plan to directly generate CRAM files instead of compression from BAM files. The DRAGEN (lllumina, 2021)
138 and Sentieon software we use for lllumina and MGI data, respectively, can directly generate and read
139  CRAM files. Clair3 (Zheng et al., 2022), the variant caller we use for ONT data, cannot read CRAM yet so
140  we plan to convert BAM to CRAM once variant calling completes. In any case, CRAM has some limitations
141 and commercial solutions like PetaGene can achieve similar compression rates and easier functionality at
142  acost (Supplementary Note 1).

143
144  Materials and Methods
145 HTS data processing pipelines

146 lllumina
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147  The BCL file is the native output format of lllumina sequencing systems. We used on-premise lllumina
148  DRAGEN Bio-IT Platform 3.9 (lllumina, 2021) to de-multiplex and base-call BCL files into per-sample
149 FASTQ files. We also used lllumina DRAGEN Bio-IT Platform 3.9 to align reads in FASTQ files to the
150  GrCH38 human reference genome, post-alignment processing (sorting and marking duplicates; base
151 quality score recalibration), call genetic variants and generate summary statistics.

152 MGl

153  The CAL files is the native output of MGl sequencing systems. We used on-premise MGl Ztron server and
154  Zebra software to de-multiplex and base-call CAL files into per-sample FASTQ files. Such files were pushed
155  to G42 Cloud for initial QC assessment as well as trimming of sequencing adapters and low-quality ends
156  with fastp (v0.23.2) (Chenetal., 2018). We aligned the trimmed FASTQ files to the GRCh38 human
157  reference genome using the BWA-MEM algorithm (Li and Durbin, 2010) implemented in Sentieon
158  (sentieon-20211202). We used alignments in BAM format for marking duplicates, estimating effective
159  coverage and call SNP and INDEL variants using Sentieon as well (haplotype caller algorithm). We
160  converted the resulting gVCF into VCF an calculated key metrics for the SNP and INDEL calls.

161 ONT

162 P48 sequencing results in many Fast5 files for each sample, which we processed in G42 Cloud using an
163 in-house custom pipeline including ONT-recommended tools. Firstly, we base-called the Fast5 files with
164  ONT's proprietary tool "Guppy" [v4.4.1, v.6.1.3]. This resulted in as many FASTQ files as Fast5 files used
165  as input, which we merged to have a single FASTQ file per sample. On each sample we ran MinlONQC
166  (Lanfear et al., 2019) to perform the initial sequencing QC and check if the target total number of Gb was
167  achieved during the sequencing. We aligned FASTQ files to the GRCh38 human reference genome using
168  Minimap2 (Li, 2018) and we used Alfred (Rausch et al., 2019) to check the quality and alignment QC for
169  each EGP sample. The alignments generated by Minimap2 were stored in BAM format, which we later
170  converted into CRAM. We used the alignments (in CRAM format after converting from the BAM generated
171 by Minimap?2) to call SNP and INDELs as well as structural variants (SV) using Clair3 (Zheng et al., 2022)
172  and Sniffles2 (Sedlazeck et al., 2018), respectively. We used VariantQC (Yan et al., 2019) for performing
173  the quality checks on the variants called and reporting the statistics for each sample.

174
175  CRAM compression
176 Samtools and CRAM 3.1 specification

177  We used CRAM v3.1, an improvement of CRAM v3.0, which provides more reduction in file size.
178  Specifically, lllumina CRAM 3.1 is 7% to 15% smaller than the equivalent CRAM 3.0 and 50% to 70%
179  smaller than the original BAM file (Bonfield, 2022). We used Samtools (Li et al., 2009) v1.15 available in
180  GitHub for CRAM compression from BAM as well as for CRAM file manipulations. We chose the latest
181 version of such tool when we conducted the POC because it supported CRAM v3.1.

182 Compression rate

183  We defined compression rate as the ratio of size reduction relative to BAM size (or in general,
184  uncompressed data) (see Equation 1).

Compressed file size

185 compression rate = 100 — Equation (1)

Uncompressed file size

186

187 Data integrity and losslessness

188  The CRAM compression is lossless and allows restoring the original data without any loss of information.
189 Firstly, we assessed whether sequencing reads remained unaltered after CRAM compression from BAM.
190 By uncompressing CRAM files to FASTQ, we ran fastp (Chen et al., 2018) on the latter to determine key
191 QC metrics for each sample: (i) total number sequenced Gb, (ii) average sequencing read length, and (iii)
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192  average Q30 score. The three quality parameters are set to ensure lossless compression and validate
193  intact data of each sample. As a result, for all samples we had no loss in all the parameters. Secondly, we
194  wanted to confirm that CRAM compression did not change the genetic variant calls. Specifically, we
195  performed variant calling as described elsewhere in the manuscript using either the original BAM or the
196  post-compression CRAM file as input. We compared (i) the total number of SNPs, indels, multiallelic sites,
197  and multiallelic SNP sites as well as (ii) the genomic position and genotype concordance. We did the latter
198 by pairwise comparison of the VCF files with BCFtools (Danecek etal., 2021) and calculating the
199  concordance as the Jaccard index (Equation 2).

200

201 ]Mﬁ)=mn3h= 40 Bl Equation (2)
|[AUuB| |A|+|B|—|ANnB]|

202

203 Tools and command lines
204 BAM to CRAM command

205 samtools view -C -T ${referenceFile.fna} ${bamFile} -o ${outDir}/${sampleID}.cram -@
206 8

207

208 Data integrity check

209 bamFlagstat="md5sum <(samtools flagstat ${bamFile} -@ 8) | cut -f1 -d" "™
210 cramFlagstat="md5sum <(samtools flagstat ${cramFile} -@ 8) | cut -f1 -d" "™

211 if [[ "$bam" == "$cram" ]]

212  then

213 echo "matched flagstat for ${sampleID}"
214  else

215 echo "unmatched flagstat for ${sampleID}"
216

217  CRAMto FASTQ

218 samtools fastq --reference ${referencefFile.fna} -1 filel.Rl.fastq -2 file2.R2.fastq
219 ${cramFile.cram}

220 fastp -A -G -Q -L -w 1 -i filel.Rl.fastq -I file2.R2.fastq -h output_fastp.html
221

222  VCF files comparison

223 bcftools isec <A.vcf.gz> <B.vcf.gz> -p <dir>

224

225 Optimizing resources

226  Optimal speed (Equation 3) of compressing BAM to CRAM is achieved by parallelizing the compression
227  process and determining the optimal computing resources utilization. To determine the optimal number of
228  CPUs per sample, we calculated the acceleration of multiple threads relative to one thread using Equation
229 4 and the efficiency of utilization using Equation 5. We generated the results in the previous sections by
230 using 1 CPU to compress each sample. For 2 out of the 10 samples from each platform, we repeated CRAM
231 compression with increasing CPU threads 4, 8, 16, and 32 threads.
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232

033 Speed = Run time (min) Fouati 3
Peee = BAM file size (GB) quation (3)

234

235 Acceleration — Run time per GB E " 4
cceleration = Tetual Rum time quation (4)

236

Acceleration

237 Effeciency = number of CPUs

Equation (5)

238
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Figures
Figure 1. Compression rate across the three platforms.

(a) Compression rate distributions across platforms, with average values of 65.7% (lllumina), 50.7% (MGl)
and 39.6% (ONT). (b) No relationship between original BAM size (GB) and compression rate.

Figure 2. Compression speed across the three platforms.

(a) Compression speed distributions across platforms, with average values of 0.70 (lllumina), 0.97 (MGl)
and 1.41 (ONT) GB per minute. (b) Relationship between original BAM size (GB) and compression speed.

Tables

Table 1. Estimating optimal CPU usage for BAM-to-CRAM compression. Average speed,
acceleration and efficiency for different CPU threads based on 6 samples (2 from each sequencing
platform).

Parameter 4CPUs | 8CPUs | 16 CPUs | 32 CPUs
BAM-to-CRAM compression speed 3.85 714 9.09 9.09
(GB / min)

Acceleration relative to 1 CPU 4.05 7.30 9.00 9.06
Efficiency 1.01 0.91 0.56 0.28

Supplementary Information

Supplementary Table 1. File types and sizes generated across lllumina, MGl and ONT sequencing
platforms.

The table shows file sizes for ~30X WGS samples as an average across multiple EGP samples. For lllumina
and MGl those corresponded to 150- and 100-bp paired-end read lengths, respectively. To be conservative,
the FASTQ and BAM file size estimates in the table are increased by 25%. Likewise, we rounded up VCF
and gVCF to 1 and 10 GB, respectively. CRAM file size estimates are calculated by multiplying the BAM
file size in the table by the average compression rate obtained for each sequencing platform in this POC.

Sequencing Raw signal Sequencing Alignments Variant calls Variant calls
platform reads
lllumina BCL FASTQ BAM gVCF VCF
(50 GB?) (75 GB) (75 GB) (10 GB) (1 GB)
MGl CAL FASTQ BAM gVCF VCF
(150 GB") (150 GB) (150 GB) (10 GB) (1 GB)
ONT Fast5 FASTQ BAM gVCF VCF
(700 GB) (75 GB) (75 GB) (10 GB) (1 GB)

Calculated as BCL file size divided by the number of multiplexed samples.
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307

308 Supplementary Table 2. Sequencing throughput and BAM files sizes for the 30 genomes included
309 inthe POC.

310  “Supplementary Table 2.xIsx”
311
312  Supplementary Note 1. HTS file types and long-term storage strategy.

313  HTS raw and processed data consist of standard relatively large files (in the order of GB). Size-reduction
314  common practices exist for most of them and, yet, storing all file types is redundant and impractical. Here
315  we briefly describe such file types and size-reduction practices as well as we discuss on long-term file type
316  storage.

317 HTS raw and processed file formats in lllumina, MGl and ONT

318 Most sequencing technologies have a proprietary format to store the raw data generated by their
319  sequencing instruments. For instance, sequencing-by-synthesis technologies such lllumina and MGl use
320 image-based BCL and CAL files, respectively, to store data generated by their instruments. ONT relies on
321 the HDF5 format as the base for the Fast5 files storing the electrical signal generated by their long-read
322  sequencers. Through base-calling (commonly referred to as “primary analysis”), such technology-specific
323 file formats converge into the standard FASTQ format to store the read sequence and quality scores.
324 Likewise, the “secondary analysis”, which for many sequencing applications comprise alignment to a
325 reference sequence and variant calling, employ standard formats across platforms. For instance, alignment
326  software tools express alignments following the SAM format specifications (Li et al., 2009). Finally, variant
327  callers write genetic variants in VCF format (Danecek et al., 2011) (or the related gVCF format when
328 merging across multiple genomes is planned or for certain downstream tools). Due to the relatively large
329  size of the files above, common practices exist to reduce the storage footprint of such files. For instance,
330 FASTAQ files are preferably gzip-compressed, which, as a rule-of-thumb, reduces file size by 50%. Besides,
331 the .ORA format developed by lllumina is 5-times smaller relative to the original FASTQ. Alignments are
332 rarely stored in SAM format but written and read in its binary BAM format instead; furthermore, BAM files
333 can be compressed into CRAM format for an additional ~50% file size reduction relative to the former.
334 Finally, VCF files are typically “gzipped” when generated by variant callers and can be in its binary format
335  (“bcf”) for additional file size reduction, with both formats being accepted by most bioinformatics tools.
336  Despite the approaches above to reduce the size of each file type, storing all file types generated in the
337  analysis pipeline is redundant and, more importantly, may be impractical due to the tremendous storage
338  footprint (especially for large-scale sequencing projects and / or those required to store data for a long
339 time).

340 Thoughts on efficient long-term storage strategies
341 Platform-specific raw data (BCL, CAL and Fast5)

342  Raw data like BCL or CAL files are very rarely kept upon certain relatively short time or when key QC
343 metrics are passed, especially considering the relatively big size of such files and the fact that the base-
344  calling process is mature and little-changing for lllumina and MGl sequencing. Conversely, more difficult is
345  the decision of deleting ONT’s Fast5 files. For one, ONT’s sequencing technology as well as the base-
346  callers software tools and used deep learning models are more frequently evolving to catch up with the
347  lower error rates of other technologies like lllumina, MGI and PacBio. Such ongoing improvements not only
348  occur for the “canonical” base-calling (i.e. determination of DNA sequence) but for its capability to infer
349 multiple methylation changes (e.g. 5mC, 5hmC) from the electric signal in the Fast5 files, a key competitive
350 edge of ONT relative to those competitor technologies. Altogether, deleting the heavy Fast5 files (~700 GB
351 for a 30X human genome) is unavoidably accompanied by the fear of higher-accuracy and data for
352  additional methylation marks if kept.

353 Raw sequencing reads (FASTQ and .ORA)
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354  Some argue to keep FASTAQ files as long-term storage of sequencing data, some of the reasons being that
355 (i) itis closer to the raw data (e.g. no trimming of sequencing adapters and / or low-quality read ends), (ii)
356  re-alignment may be needed with improved aligners, and (ii) FASTQ files are the starting point for different
357  applications, i.e. not only alignment plus variant calling. In this regard, lllumina advocates for storing
358  sequencing reads in its .ORA format is smaller even compared to the CRAM format. This has some
359  disadvantages: (i) .ORA does not contain alignment information so the resource-consuming alignment step
360  will need to be repeated in most re-analyses; (ii) lllumina’s proprietary DRAGEN software is required to
361 read .ORA files, potentially creating vendor lock-in; (iii) analysis workflow may be complicated if .ORA files
362  are used for long-term storage in the cloud and any re-analysis needs to be done with on-premise DRAGEN
363  units.

364  Alignments (BAM and CRAM)

365  We see key advantages in using the alignments (BAM, CRAM) compared to the raw sequencing reads
366 (FASTQ, .ORA): (i) additional information derived from the alignment is available or can be calculated (e.g.
367  coverage); (ii) resource-consuming alignment process is not needed in the event some re-analysis on the
368 BAM is required; (iii) most aligners can use BAM format as input for re-alignment; and (iv) even for those
369  which do not, BAM can be converted to FASTQ or “piped” to any tool requiring FASTQ as input with tools
370  such as Samtools (Li et al., 2009). CRAM has limitations too. For instance, the reference FASTA used
371 during the compression is required to re-generate the BAM from the CRAM, which is moreover a time-
372  consuming task. Besides, not all tools which accept BAM can accept CRAM too and we think that BAM is
373  still the default preference for alignments by many, relatively limiting the spread of CRAM. PetaGene offers
374  acommercial solution that overcomes some of such limitations.

375 gVCF and VCF files

376  (g)VCF files are unlikely to be deleted because are the end point of the primary and secondary analysis,
377  are used for downstream analyses and are relatively light anyway.
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