

1 **Weight loss improves skeletal muscle mitochondrial energy efficiency**

2
3 Patrick J. Ferrara,^{1,2} Marisa J. Lang,^{1,2} Jordan M. Johnson,^{1,2} Shinya Watanabe,^{1,2} Kelsey L.
4 McLaughlin,^{3,4} J. Alan Maschek,^{1,2,5} Anthony R.P. Verkerke,^{1,2} Piyarat Siripoksup,¹ Amandine
5 Chaix,^{1,2,6} James E. Cox,^{1,5,7} Kelsey H. Fisher-Wellman,^{3,4} Katsuhiko Funai^{1,2,6,7}

6
7 ¹Diabetes & Metabolism Research Center, University of Utah

8 ²Department of Nutrition & Integrative Physiology, University of Utah

9 ³East Carolina Diabetes & Obesity Institute, East Carolina University

10 ⁴Department of Physiology, East Carolina University

11 ⁵Metabolomics Core Research Facility, University of Utah

12 ⁶Molecular Medicine Program, University of Utah

13 ⁷Department of Biochemistry, University of Utah

14
15 Correspondence to:

16 Katsuhiko Funai, Ph.D.

17 Diabetes & Metabolism Research Center

18 University of Utah

19 Phone: (801) 585-1781

20 Email: kfunai@utah.edu

21

22

23 **Abstract**

24 Weight loss is associated with a disproportionate decrease in whole-body energy expenditure
25 that may contribute to the heightened risk for weight-regain. Evidence suggests that this
26 energetic mismatch originates from lean tissue. Although this phenomenon is well documented,
27 the mechanisms have remained elusive. We hypothesized that increased mitochondrial energy
28 efficiency in skeletal muscle is associated with reduced expenditure under weight loss. Wildtype
29 male C57BL6/N mice were fed with high-fat diet for 10 wks, followed by a subset of mice that
30 were maintained on the obesogenic diet (OB) or switched to standard chow to promote weight
31 loss (WL) for additional 6 wks. Mitochondrial energy efficiency was evaluated using high-
32 resolution respirometry and fluorometry. Mass spectrometric analyses were employed to
33 describe the mitochondrial proteome and lipidome. Weight loss promoted ~50% increase in the
34 efficiency of oxidative phosphorylation (ATP produced per O₂ consumed, or P/O) in skeletal
35 muscle. However, weight loss did not appear to induce significant changes in mitochondrial
36 proteome, nor any changes in respiratory supercomplex formation. Instead, it accelerated the
37 remodeling of mitochondrial cardiolipin (CL) acyl-chains to increase tetralinoleoyl CL (TLCL)
38 content, a species of lipids thought to be functionally critical for the respiratory enzymes. We
39 further show that lowering TLCL by deleting the CL transacylase tafazzin was sufficient to
40 reduce skeletal muscle P/O and protect mice from diet-induced weight gain. These findings
41 implicate skeletal muscle mitochondrial efficiency as a novel mechanism by which weight loss
42 reduces energy expenditure in obesity.

43

44 **Keywords**

45 Energy efficiency, energy expenditure, mitochondria, oxidative phosphorylation, phospholipids,
46 weight loss

47

48 **Introduction**

49 Obesity imposes tremendous health risks but efforts to lose weight is often met with limited
50 success (1, 2). Many find weight loss achieved by weight loss regimens difficult to sustain. As
51 observed in multiple studies including that of the popular “The Biggest Loser” television show (3),
52 it has been postulated that weight loss is associated with an increase in energy efficiency,
53 promoting lower metabolic rate (4-7). These observations are found not only in human weight loss
54 but also in model organisms (8, 9). It is unclear what mechanisms contribute to reduced energy
55 expenditure in the weight-loss state.

56

57 Leibel and others demonstrate that weight loss is associated with a decrease in activity-
58 associated energy expenditure in addition to basal metabolic rate (10-13). Skeletal muscle work
59 efficiency appears to be the primary determinant of the disproportionate decline in 24 hr energy
60 expenditure following weight loss, with additional declines in resting energy expenditure (14).
61 Skeletal muscle contributes to the majority of increased energy expenditure induced during
62 physical activity. Previous studies have demonstrated that weight loss may alter skeletal muscle
63 mitochondrial respiration (15-18), though it is unclear if these changes reflect alteration in energy
64 efficiency. In this study we tested our hypothesis that weight loss must improve the efficiency of
65 skeletal muscle mitochondrial respiration.

66

67 **Results**

68 *Weight loss reduces whole-body energy expenditure*

69 Wildtype C57BL6/N mice were fed with a Western diet (Envigo, TD.88137) for 10 wks, followed
70 by a subset of mice that were maintained on the obesogenic diet (OB), while others were switched
71 to standard chow to promote weight loss (WL) for an additional 6 wks (Figure 1A). Another group
72 of mice were fed standard chow diet for 16 wks as a lean (LN) reference control group. This

73 strategy successfully and consistently produced groups of mice with divergent body weights and
74 adiposity without altering lean mass (Figure 1B-E).

75
76 To assess the energy utilization in these animals, indirect calorimetry experiments were
77 performed at wk 15. Total unnormalized VO_2 was substantially elevated in the OB group
78 compared to WL or LN group (Figure S1A&B). Correlation analyses indicated that lean mass
79 exhibited a substantially different relationship to total VO_2 in WL group compared to OB group
80 (Figure 1F, similar relationship with total body mass shown in Figure S1C), suggesting that the
81 lean mass differentially contributes to metabolic rate between OB and WL groups. Indeed, VO_2
82 normalized to lean mass were ~20% lower in WL compared to OB group (Figure 1G&H).
83 Spontaneous movement did not explain the differences in VO_2 (Figure S1D&E). There was no
84 relationship between spontaneous movement and VO_2 in any of the groups (Figure S1F),
85 suggesting that physical activity does not significantly contribute to 24 hr energy expenditure (19).
86 Respiratory exchange Ratio (RER) was significantly reduced in OB group compared to WL or LN
87 groups (Figure S1G&H), likely representing the lower carbohydrate composition of their diets.
88 Strikingly, among WL mice, there was a very strong positive correlation between VO_2 to %
89 decrease in body mass (Figure 1G), consistent with the notion that higher energy expenditure
90 contributes to weight loss.

91
92 *Weight loss increases skeletal muscle OXPHOS efficiency*
93 Thermogenesis in the brown adipose tissue substantially contributes to whole-body metabolic
94 rate in mice (20). Mitochondrial uncoupling driven by the uncoupling protein 1 (UCP1) resides at
95 the inner mitochondrial membrane to dissipate the proton gradient, driving mitochondrial
96 uncoupling and brown adipose thermogenesis. However, brown adipose tissues from LN, OB,
97 and WL groups did not look different, and had similar mitochondrial density and UCP1 content
98 (Figure S2A).

99

100 Previously, we found that the propensity for obesity may be affected by the energy efficiency of
101 sarco/endoplasmic reticulum Ca^{2+} -ATPase (SERCA) pump, a highly abundant ATPase that
102 contributes to ~30% of skeletal muscle energy expenditure (21, 22). However, SERCA energy
103 efficiency or abundance in skeletal muscle were not different among the groups (Figure 2A&B).
104 In contrast, weight loss induced a robust increase (~50%) in the efficiency of oxidative
105 phosphorylation (OXPHOS) quantified by ATP produced (energy OUT) per O_2 consumed (energy
106 IN) or “P/O” in skeletal muscle (Figure 2C). The increase in muscle P/O induced by weight loss
107 was exclusively due to a decrease in O_2 requirement (Figure S2B) without compromising the
108 capacity for ATP synthesis (Figure S2C). The increase in muscle OXPHOS efficiency was a
109 unique feature of weight loss, as P/O was not different between LN and OB groups.

110

111 *Weight loss does not alter skeletal muscle mitochondrial proteome*

112 Next, we explored the molecular mechanisms by which weight loss improves skeletal muscle
113 OXPHOS efficiency. Western blot analyses of OXPHOS subunits or citrate synthase did not
114 reveal differences in these proteins in whole tissue lysate (Figure S2D), suggesting these
115 interventions did not alter skeletal muscle mitochondrial content. Western blotting also did not
116 reveal differences in these OXPHOS subunits in isolated mitochondria (Figure 2D). To more
117 comprehensively understand how weight loss influences skeletal muscle OXPHOS enzymes, we
118 analyzed the mitochondrial proteome using mass spectrometry (23). However, weight loss did not
119 induce changes in any of the OXPHOS subunits (Figure 3A-E). In fact, there wasn't a single
120 mitochondrial protein whose abundance was statistically different between OB and WL group
121 (Figure 3F, comparisons with LN group in Figure S3A&B). Clustering analyses revealed no
122 pattern in the mitochondrial proteome (Figure S3C). We also quantified OXPHOS supercomplex
123 assembly, which also did not reveal any differences (Figure 3G).

124

125 *Weight loss alters skeletal muscle mitochondrial lipidome*

126 OXPHOS enzymes are imbedded in the phospholipid bilayer of the inner mitochondrial membrane
127 (24, 25). Indeed, energy-transducing steps of OXPHOS occurs in (electron transfer) and through
128 (proton transport) the lipid environment. Thus, we examined the mitochondrial lipidome in muscles
129 from LN, OB and WL mice (Figure 4A). Unlike the mitochondrial proteome, there were some
130 changes in the skeletal muscle mitochondrial lipidome induced by weight fluctuation. Importantly,
131 mitochondria from OB and WL groups demonstrated lower lipid-to-protein ratio compared to LN
132 group (Figure 4B), suggesting that muscle mitochondrial membranes become more protein-rich
133 with obesity and remain protein-rich in the weight-loss state. Such change would be predicted to
134 have complex biophysical consequences on OXPHOS dynamics. Unfortunately, it also makes it
135 difficult to interpret differences in mitochondrial lipid composition between LN and the other two
136 groups. For this reason, we decided to focus on the differences in mitochondrial lipidome between
137 the OB and WL groups (Figure S4A-G and Figure 4C). We felt that this is a justifiable strategy
138 given that P/O values were not different between LN and OB groups (Figure 2C), suggesting that
139 differences in mitochondrial membrane lipids between LN and OB is not sufficient to influence
140 OXPHOS efficiency.

141

142 Mitochondrial phosphatidylethanolamine (PE) was significantly reduced (Figure 4A and S4B) in
143 WL group compared to the OB group. Mitochondrial PE consists 25-40% of mitochondrial lipids
144 and is primarily synthesized by the phosphatidylserine decarboxylase (PSD) that resides in the
145 inner mitochondrial membrane (26). To determine whether reduction of mitochondrial PE
146 contributes to the increased muscle P/O, we performed lentivirus-mediated knockdown of PSD in
147 murine C2C12 myotubes (Figure S5A). However, PSD knockdown reduced, not increased,
148 mitochondrial P/O (Figure S5B). Thus, reduction in mitochondrial PE observed with weight loss
149 is unlikely to explain the increased P/O.

150

151 Weight loss also reduced mitochondrial cardiolipin (CL) in skeletal muscle (Figure 4C).
152 Mitochondrial CL consists 10-20% of mitochondrial lipids and is known to bind with high affinity to
153 OXPHOS enzymes and affect their functions (27). Previous studies suggest that CL may have an
154 impact on OXPHOS efficiency (28-30). CL consists of two phosphatidic acid moieties linked by a
155 central glycerol backbone. CL is almost exclusively localized in the inner mitochondrial membrane,
156 and is synthesized by a series of enzymes localized in the inner mitochondrial membrane
157 including CL synthase (CLS) and CL transacylation enzymes (Figure 4D) (27). For reasons that
158 are not completely understood, CL molecules generated by CLS with uneven acyl-chains are not
159 fully functional and referred as “nascent CL”. These nascent CL molecules are then transacylated
160 to become tetralinoleyl-CL (TLCL or 18:2/18:2/18:2/18:2-CL), a reaction primarily driven by CL
161 transacylase tafazzin (TAZ) (27, 29). TLCL is thought to be fully functional and referred as “mature
162 CL” (Figure 4D). Thus, we examined the mitochondrial CL portfolio between muscles from OB
163 and WL groups (Figure 4C). Strikingly, even though many of the CL species were lower in WL
164 compared to OB, TLCL was almost twice as highly abundant in WL compared to OB (Figure 4C
165 red asterisk and insert). Indeed, the ratio of TLCL to total CL was 2.2-fold greater in WL compared
166 to OB (Figure 4E). This increase in TLCL content was likely explained by a greater TAZ
167 expression in the WL compared to OB without altering the expression for other CL-synthesizing
168 enzymes (Figure 4F).

169

170 *Deficiency in CL remodeling is sufficient to reduce muscle OXPHOS efficiency*

171 We investigated whether TLCL influences OXPHOS efficiency to alter the propensity for weight
172 gain. For these experiments, we utilized mice with doxycycline-induced whole-body knockdown
173 of TAZ (TAZKD mice) compared to doxycycline fed wildtype littermates (Figure 5A). Previous
174 studies have shown that TAZKD mice exhibit greater energy expenditure and are protected from
175 diet-induced obesity (29, 31). Our observations recapitulated these findings (Figure 5B&C). We
176 then examined skeletal muscle tissues from these mice to study the role of CL remodeling in

177 OXPHOS efficiency. As expected, the intervention successfully reduced TAZ expression in
178 skeletal muscle (Figure 5D). We quantified the CL species from skeletal muscle mitochondria
179 using mass spectrometry (Figure 5E). Previous studies showed that virtually all CL species are
180 reduced in TAZKD mice (29, 32), suggesting that nascent CL maybe targeted for degradation
181 without the presence of mature CL. Nevertheless, TAZKD had a disproportionately greater effect
182 to reduce TLCL (Figure 5E, red asterisk) compared to other CL species, shown by a substantial
183 reduction in TLCL to total CL ratio (Figure 5F). The trace amount of TLCL present in these tissues
184 likely arose from alternate CL transacylases such as MLCLAT-1 and ALCAT-1 that are not highly
185 expressed in skeletal muscle. Importantly, we phenotyped skeletal muscle mitochondria from
186 wildtype and TAZKD mice with high-resolution respirometry and fluorometry. Consistent with
187 previous findings, TAZ deletion reduced the capacity for mitochondrial respiration and ATP
188 production (Figure 5G) (29). However, TAZ deletion had a disproportionately greater effect to
189 reduce ATP production than O₂ consumption, which consequently reduced P/O ratio (Figure 4G).
190 Together, these observations indicate that TAZ deletion is sufficient to reduce skeletal muscle
191 OXPHOS efficiency. In turn, these findings suggest that accelerated CL remodeling in weight loss
192 state may explain the greater OXPHOS efficiency in skeletal muscle.

193

194 **Discussion**

195 Weight loss reduces whole-body energy expenditure that likely promotes weight regain (4-7). In
196 the current study, we report that weight loss in overweight mice increases skeletal muscle
197 OXPHOS efficiency concomitant to a decrease in whole-body energy expenditure. As one of the
198 organs with large contributions to resting and non-resting energy expenditures, improved skeletal
199 muscle energy efficiency would be predicted to explain a substantial component of a reduction in
200 metabolic rate that occurs with weight loss (33-35). These findings are consistent with previous
201 reports that weight loss is associated with a decrease in activity-associated energy expenditure
202 in addition to basal metabolic rate (10-13).

203

204 Skeletal muscle OXPHOS efficiency was increased by ~50% with weight loss. This is a striking
205 increase in energy efficiency that would be predicted to lower muscle energy expenditure,
206 requiring 50% more work to expend equivalent calories. Nevertheless, the increase in OXPHOS
207 efficiency did not coincide with changes in abundance of OXPHOS subunits. Indeed, there was
208 not a single mitochondrial protein whose abundance was significantly affected with weight loss.
209 Instead, weight loss had a more substantial effect on the lipidomic landscape of skeletal muscle
210 mitochondria. One of these changes was an increase in the concentration of mitochondrial TLCL.

211

212 We then demonstrated that genetically-induced deficiency in TLCL biosynthesis was sufficient to
213 promote muscle OXPHOS inefficiency and protect mice from diet-induced obesity. These results
214 are consistent with the notion that increased TLCL may contribute to increased OXPHOS
215 efficiency and reduced energy expenditure with weight loss. There are a few caveats to these
216 results pertaining to the use of the TAZKD mice. First, deletion of TAZ is not specific to muscle,
217 so we cannot rule out the possibility that reduced muscle OXPHOS efficiency in these mice could
218 occur indirectly through other tissue. We are currently in a process of developing mice with
219 skeletal muscle-specific knockout of TAZ though these studies are beyond the scope of the
220 current manuscript. Second, doxycycline is known to influence mitochondrial function (36) making
221 this system not ideal for studying bioenergetics. Nevertheless, we treated WT littermates also with
222 doxycycline to control to the best of our abilities. Third, TAZ knockdown lowered the content of all
223 CL species including TLCL, even though TLCL was reduced disproportionately more compared
224 to others. Last but not least, we did not test whether TAZ knockdown would make mice resistant
225 to weight loss-induced reduction in energy expenditure and an increase in muscle OXPHOS
226 efficiency. We plan on performing these experiments as well as the studies on propensity for
227 weight regain in mice with muscle-specific knockout of TAZ.

228

229 Findings from this study should not be interpreted to mean that all interventions that promote
230 weight loss increases skeletal muscle OXPHOS efficiency. First, the current study is limited to
231 observations in overweight mice with diet-induced obesity. The results might not be applicable to
232 weight loss in other states. Second, because OB and WL mice were fed diet with different
233 compositions, we cannot rule out the possibility that some of the effects we have observed is not
234 necessarily driven by the effects of weight loss per se. In the WL group, switching to standard
235 chow promptly induced weight loss during the first 2 wks, followed by a 4-wk period of steady
236 body mass. In contrast, OB group continued to gain weight between wks 10 and 16. Third, we did
237 not quantify energy efficiency during muscle contraction, and some evidence suggests a
238 disconnect between P/O and muscle contractile efficiency (37). Last but not least, the current
239 study was performed in room temperature. It would be important to study how these findings are
240 recapitulated in thermoneutrality. It is important to interpret our findings in the context of these
241 caveats.

242
243 In summary, weight loss promotes an increase in skeletal muscle OXPHOS efficiency that likely
244 contributes to reduced whole-body energy expenditure. Weight loss also coincided with increased
245 mitochondrial TLCL, and deficiency of TLCL was sufficient to reduce muscle OXPHOS efficiency
246 and make mice more resistant to weight gain. We interpret these findings to propose that weight
247 loss accelerates CL remodeling in skeletal muscle to improve OXPHOS efficiency and lower
248 whole-body energy expenditure (Figure 5H). We speculate that such decrease in metabolic rate
249 arose from a tremendous evolutionary pressure to conserve energy in states of energy deprivation.
250 In our age, these adaptive responses likely strongly contribute to increased propensity for a
251 rebound in adiposity.

252 **Materials and methods**

253 *Animals and Diet Intervention*

254 Male C57BL/6NCrl (Charles River: 027) mice were used for the weight loss study. At 10 weeks
255 of age mice were either maintained on standard chow diet (SCD; Envigo 2920X) or fed high fat
256 diet (42% calories from fat; HFD; Envigo: TD88137). After 10 weeks of HFD feeding a subset of
257 mice were switched back to SCD while the others continued HFD feeding for another 6 weeks.
258 Heterozygous TAZKD mice were obtained from the Jackson Laboratory (Stock number 014648).
259 TAZ knockdown was induced *in utero* by supplying 625 mg/kg doxycycline chow (Envigo,
260 TD.09628) as previously described (38). Briefly, female TAZKD mice were maintained on
261 doxycycline chow (625 mg/kg) at least 5 days before being mated with male wildtype mice. The
262 doxycycline diet was removed during the mating period, and following copulation, males were
263 removed and the doxycycline diet was reintroduced for the duration of gestation. Following
264 weaning all offspring were maintained on the doxycycline diet for the remainder of the study. For
265 all experiments, mice were provided access to food ad libitum, maintained on a 12-hour light/dark
266 cycle, and fasted for ~4 hours prior to terminal experiments. For terminal experiments mice were
267 given intraperitoneal injection of 80 mg/kg ketamine and 10 mg/kg xylazine, after which tissues
268 were harvested. All animals were randomized and no animals were excluded from the analyses.
269 All procedures were approved by the University of Utah Institutional Animal Care and Use
270 Committee.

271

272 *Metabolic Cage & Body Composition*

273 Whole mouse indirect calorimetry and body composition were measured as previously described
274 (21). Columbus Instruments Lab Monitoring Systems were used to measure VO₂, VCO₂,
275 respiratory exchange ratio (RER; VCO₂/VO₂), and activity. Mice were housed individually and
276 acclimated for at least 24 hr before data collections. Data from the final complete light/dark cycle

277 were used for analysis. Bruker Minispec NMR (Bruker, Germany) was used to determine
278 composition of fat and fat-free mass.

279

280 *Mitochondrial and Sarco/endoplasmic Reticulum Enrichment*

281 Gastrocnemius muscles were used to isolate fractions enriched in mitochondria or
282 sarco/endoplasmic reticulum (SR) as previously described (21, 29). For mitochondrial enrichment,
283 muscles were minced in mitochondrial isolation medium (300 mM sucrose, 10 mM HEPES, 1 mM
284 EGTA, and 1 mg/mL BSA) and subsequently homogenized using a Teflon-glass system.
285 Homogenates were then centrifuged at 800 x g for 10 min, after which the supernatant was taken
286 and centrifuged at 12,000 x g for 10 min. The resulting mitochondrial pellet was carefully
287 resuspended in mitochondrial isolation medium without BSA. For SR isolations, muscles were
288 homogenized [300 mM sucrose, 20 mM HEPES pH 7.4, Halt protease (78430)] and underwent
289 differential centrifugation (1,300 x g for 10 min, 20,000 x g for 20 min, 180,000 x g for 2 hr 15 min)
290 (39) to pellet an SR-enriched fraction, which was resuspended in SR isolation buffer.

291

292 *High-Resolution Respirometry and Fluorimetry*

293 Respiration in permeabilized muscle fiber bundles was performed as previously described (26,
294 29). Briefly, a small portion of freshly dissected red gastrocnemius muscle tissue was placed in
295 buffer X [7.23 mM K₂EGTA, 2.77 mM Ca K₂EGTA, 20 mM imidazole, 20 mM taurine, 5.7 mM ATP,
296 14.3 mM phosphocreatine, 6.56 mM MgCl₂.6H₂O, and 50 mM K-MES (pH 7.1)]. Fiber bundles
297 were separated and permeabilized for 30 min at 4°C with saponin (30 µg/mL) and immediately
298 washed in buffer Z [105 mM K-MES, 30 mM KCl, 10 mM K₂HPO₄, 5 mM MgCl₂ 6H₂O, BSA (0.5
299 mg/mL), and 1 mM EGTA (pH 7.4)] for 15 min. After washing, high-resolution respiration rates
300 were measured using an OROBOROS Oxygraph-2k. The muscle fibers were suspended in buffer
301 Z with 20 mM creatine monohydrate and 10 µM blebbistatin to inhibit myosin adenosine
302 triphosphatases during respiration measurements. Fiber bundles were added to the oxygraph

303 chambers containing assay buffer (105 mM MES potassium salt, 30 mM KCl, 10 mM K₂HPO₄, 5
304 mM MgCl₂, 0.5 mg/mL BSA). Respiration was measured in response to the following substrates:
305 0.5 mM malate, 5 mM pyruvate, 5 mM glutamate, 10 mM succinate, 1.5 µM FCCP. ATP
306 production was measured fluorometrically using a Horiba Fluoromax-4 (Horiba Scientific), by
307 enzymatically coupling ATP production to NADPH synthesis as previously described (40).
308 Respiration and ATP production were measured in the presence of 20, 200, and 2000 µM ADP.

309

310 *Sarco/Endoplasmic Reticulum ATPase Efficiency Assay*

311 Sarco/endoplasmic reticulum ATPase (SERCA) efficiency assays were performed as previously
312 described (21). SR-fraction was quantified using BCA protein assay (Pierce, 23225) and 10 µg of
313 SR protein was used in each replicate for SERCA-dependent Ca²⁺-uptake and ATPase activity
314 assay. SERCA-dependent Ca²⁺ uptake and ATPase activity assays were performed in buffer
315 containing 60 mM HEPES, 200 mM KCl, 15 mM MgCl₂, 10 mM NaN₃, 1 mM EGTA, and 0.005%
316 Triton-X at a pCa of 5.15 and with or without 15 µM thapsigargin. Free Ca²⁺ was determined using
317 Maxchelator Ca-Mg-ATP-EDTA Calculator using constants from the NIST database #46 v8 at
318 37°C, pH 7.3, and ionic constant of 0.25N (41). ATP SERCA-dependent measures were
319 calculated by taking the difference of values without thapsigargin to values with thapsigargin [Total
320 (without thapsigargin) – SERCA independent (with thapsigargin) = SERCA-dependent]. Ca²⁺
321 uptake assay buffer additionally contained 5 mM of (COOK)₂. ATPase activity assay buffer
322 additionally contained 10 mM PEP, 1.5 mM NADH, 2.4–4 units of pyruvate kinase/ 3.6–5.6 units
323 lactate dehydrogenases enzymes (Sigma, P0294).

324

325 Calcium uptake assays were performed as previously described (22). Reactions were started by
326 the addition of 4 mM ATP and ⁴⁵CaCl₂ (Perkin Elmer, NEZ013001MC) to assay buffer with sample.
327 After incubation for 15 minutes at 37°C with 300 RPM rotation, assay was quenched with the
328 addition of 150 mM KCl and 1 mM LaCl₃ and placed on ice. Samples were then filtered on to a

329 0.22 μ m PES membrane filter (Millipore, GPWP02500), rinsed 3 \times 5 mL PBS, and processed for
330 scintillation counting. SERCA ATPase activity assay (42) was performed on a 96-well plate reader.
331 The assay was initiated by the addition of 4 mM ATP and the absorbance at 340 nm was recorded
332 every 60 seconds for 30 minutes at 37°C. SERCA transport efficiency was determined by the ratio
333 of SERCA-dependent Ca^{2+} uptake to SERCA-dependent ATPase hydrolysis.

334

335 *Western Blot*

336 Western blots were performed as previously described (43). Protein homogenates were analyzed
337 for abundance of ryanodine receptor (RyR; Santa Cruz 13942), Sarco/Endoplasmic Reticulum
338 Calcium ATPase 1 (SERCA1; Abcam 2818), SERCA2 (Abcam 3625), Glyceraldehyde 3-
339 phosphate dehydrogenase (GAPDH: Cell Signal 2118), mitochondrial complexes I-V (Abcam
340 110413), citrate synthase (Abcam 96600), and uncoupling protein-1 (UCP1: Alpha Diagnostic
341 UCP11-A).

342

343 *Sample Preparation and nLC-MS/MS Label Free Proteomic Analysis*

344 Mitochondria were purified and subjected to label free proteomic screening as previously
345 described (44). Isolated mitochondria were lysed in Buffer D (8 M urea in 40 mM Tris, 30 mM
346 NaCl, 1 mM CaCl_2 , 1 \times cComplete ULTRA mini EDTA-free protease inhibitor tablet; pH = 8.0), as
347 described previously.(23) The samples were subjected to three freeze–thaw cycles, and
348 sonication with a probe sonicator in three 5 s bursts (Q Sonica #CL-188; amplitude of 30).
349 Samples were then centrifuged at 10,000 \times g for 10 min at 4°C. Protein concentration was
350 determined by BCA protein assay. Equal amounts of protein were reduced with 5 mM DTT at
351 37°C for 30 min, and then alkylated with 15 mM iodoacetamide at room temperature for 30 min
352 in the dark. Unreacted iodoacetamide was quenched with DTT up to 15 mM. Initial digestion was
353 performed with Lys C (ThermoFisher Cat# 90,307; 1:100 w:w; 2 μ g enzyme per 200 μ g protein)
354 for 4 h at 37°C. Following dilution to 1.5 M urea with 40 mM Tris (pH = 8.0), 30 mM NaCl, 1 mM

355 CaCl₂, samples were digested overnight with trypsin (Promega; Cat# V5113; 50:1 w/w,
356 protein:enzyme) at 37°C. Samples were acidified to 0.5% TFA and then centrifuged at 4000×g for
357 10 min at 4°C. Supernatant containing soluble peptides was desalted, as described previously
358 (23) and then eluate was frozen and lyophilized.

359

360 Final peptides were suspended in 0.1% formic acid, quantified (ThermoFisher Cat# 23,275), and
361 then diluted to a final concentration of 0.25 µg/µL. Samples were subjected to nLC-MS/MS
362 analysis using an UltiMate 3000 RSLC nano system (ThermoFisher) coupled to a Q Exactive Plus
363 Hybrid Quadrupole-Orbitrap mass spectrometer (ThermoFisher) via a nanoelectrospray
364 ionization source. For each injection, 4 µL (1 µg) of sample was first trapped on an Acclaim
365 PepMap 100 20 mm × 0.075 mm trapping column (ThermoFisher Cat# 164,535; 5 µL/min at 98/2
366 v/v water/acetonitrile with 0.1% formic acid). Analytical separation was then performed over a 95
367 min gradient (flow rate of 250nL/min) of 4–25% acetonitrile using a 2 µm EASY-Spray PepMap
368 RSLC C18 75 µm × 250 mm column (ThermoFisher Cat# ES802A) with a column temperature of
369 45°C. MS1 was performed at 70,000 resolution, with an AGC target of 3 × 10⁶ ions and a
370 maximum injection time (IT) of 100 ms. MS2 spectra were collected by data-dependent acquisition
371 (DDA) of the top 15 most abundant precursor ions with a charge greater than 1 per MS1 scan,
372 with dynamic exclusion enabled for 20 s. Precursor ions isolation window was 1.5 m/z and
373 normalized collision energy was 27. MS2 scans were performed at 17,500 resolution, maximum
374 IT of 50 ms, and AGC target of 1 × 10⁵ ions.

375

376 Proteome Discoverer 2.2 (PDv2.2) was used for raw data analysis, with default search
377 parameters including oxidation (15.995 Da on M) as a variable modification and carbamidomethyl
378 (57.021 Da on C) as a fixed modification. Data were searched against the Uniprot Mus musculus
379 reference proteome (Proteome ID: UP 000000589), as well as the mouse Mito Carta 2.0 database
380 (45). PSMs were filtered to a 1% FDR and grouped to unique peptides while maintaining a 1%

381 FDR at the peptide level. Peptides were grouped to proteins using the rules of strict parsimony
382 and proteins were filtered to 1% FDR. Peptide quantification was done using the MS1 precursor
383 intensity. Imputation was performed via low abundance resampling. Using only high confidence
384 master proteins, mitochondrial enrichment factor (MEF) was determined by comparing
385 mitochondrial protein abundance (i.e., proteins identified to be mitochondrial by cross-reference
386 with the MitoCarta 2.0 database) to total protein abundance.

387

388 *Mitochondrial Lipid Mass Spectrometry*

389 Lipids were extracted from mitochondrial enriched fractions as previously described (26) with
390 internal standards (Avanti Polar Lipids: 330707). Untargeted mass spectrometry was performed
391 (Agilent 6530 UHPLC-QTOF mass spectrometer) and analyzed in negative (lyso-PC, lyso-PE,
392 PC, PE, PS, PI, and PG) or positive (CL) modes. Lipid content reported is normalized to
393 mitochondrial protein content.

394

395 *Native PAGE*

396 Mitochondrial supercomplex analysis was performed as previously described (26). Isolated
397 mitochondria (100 µg) suspended in MIM were pelleted at 12,000 x g for 15 min and subsequently
398 solubilized in 20 µL sample buffer (4% digitonin, 1x native PAGE sample buffer) for 20 min on ice
399 and then centrifuged at 20,000 x g for 30 min at 4°C. 15 µL of the supernatant (75 µg) was
400 collected and placed into a new tube and mixed with 2 µL G-250 sample buffer additive. The
401 samples and standards were then loaded onto a native PAGE 3 to 12% Bis-Tris Gel (BN1001BOX,
402 Thermo Fisher Scientific), and electrophoresis was performed at 150 V for 3 hours on ice. The
403 gel was then placed in de-stain solution (20% methanol and 10% acetic acid) then shaken on an
404 orbital shaker for 10 min at room temperature. De-stain solution was discarded and fresh de-stain
405 solution was added before shaking for 60 min at room temperature. After incubation, the gel was
406 placed in de-staining solution and incubated overnight at 4°C on an orbital shaker.

407

408 *Cell Culture*

409 C2C12 myoblasts were grown [high glucose DMEM + 10% fetal bovine serum (FBS) + 100 µg/ml
410 of penicillin/streptomycin] and differentiated into myotubes [low glucose DMEM (1 g/L glucose, L-
411 glutamine, 110 mg/L sodium pyruvate) + 2% horse serum + 100 µg/ml of penicillin/streptomycin].
412 HEK 293T cells were maintained in high glucose DMEM + 10% FBS + 100 µg/ml of
413 penicillin/streptomycin. Lentivirus-mediated knockdown of PSD was performed as previously
414 described (26). Vectors were sourced from Sigma (St. Louis, MO) for shRNA for mouse PISD
415 (shPSD: TRCN0000115415), and Addgene (Cambridge, MA) for psPAX2 (ID #12260), pMD2.G
416 (ID #12259), and scrambled shRNA plasmid (SC: ID #1864).

417

418 *Quantitative PCR*

419 Samples were homogenized in TRIzol reagent (Life Technologies) to extract total RNA. One
420 microgram RNA was reverse-transcribed using an iScript cDNA synthesis kit (Bio-Rad). Reverse
421 transcription PCR (RT-PCR) was performed with the ViiA 7 Real-Time PCR System (Life
422 Technologies) using SYBR Green reagent (Life Technologies). All data were normalized to
423 ribosomal L32 gene expression and were normalized to the mean of the control group. Primers
424 were based on sequences in public databases.

425

426 *Statistics*

427 Statistical analysis was performed using GraphPad Prism 9 software. One-way ANOVA with
428 multiple comparisons, two-way ANOVA with Sidak multiple comparisons, Pearson correlation
429 analyses, or unpaired t-test were performed for group comparisons. Where multiple comparisons
430 were made, p-values between OB and WL groups or WT and TAZKD groups are shown in the
431 figures (see legends). Simple linear regressions were performed for correlation analysis. All data
432 are represented as mean ± SEM and statistical significance was set at P ≤ 0.05.

433 **Acknowledgments**

434 Author contributions: P.J.F, M.J.L, and K.F. designed the study. P.J.F., M.J.L., J.M.J., and S.W.
435 performed the mouse studies and performed mitochondrial phenotyping experiments. A.R.P.V.
436 performed the SERCA experiments. K.L.M and K.H.F-W performed the mitochondrial proteomic
437 analyses. J.A.M. and J.E.C. performed the mitochondrial lipidomic analyses. P.S. performed the
438 cell culture studies. P.J.F. and K.F. wrote the manuscript with edits from all authors.

439

440 Conflict of Interest: The authors declare that they have no competing interests.

441

442 Funding: This research is supported by NIH DK107397, DK127979, GM144613, AG074535,
443 AG067186 (to K.F.), AG065993 (to A.C.), DK091317 (to M.J.L.), Department of Defense
444 W81XWH-19-1-0213 (to K.H.F-W), American Heart Association 18PRE33960491 (to A.R.P.V.),
445 19PRE34380991 (to J.M.J.), and 915674 (P.S.), Larry H. & Gail Miller Family Foundation (to
446 P.J.F.). University of Utah Metabolomics Core Facility is supported by S10 OD016232, S10
447 OD021505, and U54 DK110858.

448 **References**

- 449 1. Weinsier, R. L., Nelson, K. M., Hensrud, D. D., Darnell, B. E., Hunter, G. R., and Schutz, Y. (1995) Metabolic predictors of obesity. Contribution of resting energy expenditure, thermic effect of food, and fuel utilization to four-year weight gain of post-obese and never-obese women. *J Clin Invest* **95**, 980-985
- 450 2. Hall, K. D., and Kahan, S. (2018) Maintenance of Lost Weight and Long-Term Management of Obesity. *Med Clin North Am* **102**, 183-197
- 451 3. Fothergill, E., Guo, J., Howard, L., Kerns, J. C., Knuth, N. D., Brychta, R., Chen, K. Y., Skarulis, M. C., Walter, M., Walter, P. J., and Hall, K. D. (2016) Persistent metabolic adaptation 6 years after "The Biggest Loser" competition. *Obesity (Silver Spring)* **24**, 1612-1619
- 452 4. Apfelbaum, M., Bostsarron, J., and Lacatis, D. (1971) Effect of caloric restriction and excessive caloric intake on energy expenditure. *Am J Clin Nutr* **24**, 1405-1409
- 453 5. Bray, G. A. (1969) Effect of caloric restriction on energy expenditure in obese patients. *Lancet* **2**, 397-398
- 454 6. Bessard, T., Schutz, Y., and Jequier, E. (1983) Energy expenditure and postprandial thermogenesis in obese women before and after weight loss. *Am J Clin Nutr* **38**, 680-693
- 455 7. Astrup, A., Gotzsche, P. C., van de Werken, K., Ranneries, C., Toustrup, S., Raben, A., and Buemann, B. (1999) Meta-analysis of resting metabolic rate in formerly obese subjects. *Am J Clin Nutr* **69**, 1117-1122
- 456 8. Ravussin, Y., Gutman, R., Diano, S., Shanabrough, M., Borok, E., Sarman, B., Lehmann, A., LeDuc, C. A., Rosenbaum, M., Horvath, T. L., and Leibel, R. L. (2011) Effects of chronic weight perturbation on energy homeostasis and brain structure in mice. *Am J Physiol Regul Integr Comp Physiol* **300**, R1352-1362
- 457 9. Levin, B. E., and Keesey, R. E. (1998) Defense of differing body weight set points in diet-induced obese and resistant rats. *Am J Physiol* **274**, R412-419
- 458 10. Leibel, R. L., Rosenbaum, M., and Hirsch, J. (1995) Changes in energy expenditure resulting from altered body weight. *N Engl J Med* **332**, 621-628
- 459 11. Levine, J. A., Eberhardt, N. L., and Jensen, M. D. (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. *Science* **283**, 212-214
- 460 12. Rosenbaum, M., Vandenne, K., Goldsmith, R., Simoneau, J. A., Heymsfield, S., Joannis, D. R., Hirsch, J., Murphy, E., Matthews, D., Segal, K. R., and Leibel, R. L. (2003) Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. *Am J Physiol Regul Integr Comp Physiol* **285**, R183-192
- 461 13. Goldsmith, R., Joannis, D. R., Gallagher, D., Pavlovich, K., Shamoon, E., Leibel, R. L., and Rosenbaum, M. (2010) Effects of experimental weight perturbation on skeletal muscle work efficiency, fuel utilization, and biochemistry in human subjects. *Am J Physiol Regul Integr Comp Physiol* **298**, R79-88
- 462 14. Baldwin, K. M., Joannis, D. R., Haddad, F., Goldsmith, R. L., Gallagher, D., Pavlovich, K. H., Shamoon, E. L., Leibel, R. L., and Rosenbaum, M. (2011) Effects of weight loss and leptin on skeletal muscle in human subjects. *Am J Physiol Regul Integr Comp Physiol* **301**, R1259-1266
- 463 15. Coen, P. M., Menshikova, E. V., Distefano, G., Zheng, D., Tanner, C. J., Standley, R. A., Helbling, N. L., Dubis, G. S., Ritov, V. B., Xie, H., Desimone, M. E., Smith, S. R., Stefanovic-Racic, M., Toledo, F. G., Houmard, J. A., and Goodpaster, B. H. (2015) Exercise and Weight Loss Improve Muscle Mitochondrial Respiration, Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. *Diabetes* **64**, 3737-3750
- 464 16. Rabol, R., Svendsen, P. F., Skovbro, M., Boushel, R., Haugaard, S. B., Schjerling, P., Schrauwen, P., Hesselink, M. K., Nilas, L., Madsbad, S., and Dela, F. (2009) Reduced

498 skeletal muscle mitochondrial respiration and improved glucose metabolism in
499 nondiabetic obese women during a very low calorie dietary intervention leading to rapid
500 weight loss. *Metabolism* **58**, 1145-1152

501 17. Menshikova, E. V., Ritov, V. B., Dube, J. J., Amati, F., Stefanovic-Racic, M., Toledo, F.
502 G. S., Coen, P. M., and Goodpaster, B. H. (2017) Calorie Restriction-induced Weight
503 Loss and Exercise Have Differential Effects on Skeletal Muscle Mitochondria Despite
504 Similar Effects on Insulin Sensitivity. *J Gerontol A Biol Sci Med Sci* **73**, 81-87

505 18. Toledo, F. G., Menshikova, E. V., Azuma, K., Radikova, Z., Kelley, C. A., Ritov, V. B.,
506 and Kelley, D. E. (2008) Mitochondrial capacity in skeletal muscle is not stimulated by
507 weight loss despite increases in insulin action and decreases in intramyocellular lipid
508 content. *Diabetes* **57**, 987-994

509 19. Virtue, S., Even, P., and Vidal-Puig, A. (2012) Below thermoneutrality, changes in
510 activity do not drive changes in total daily energy expenditure between groups of mice.
511 *Cell Metab* **16**, 665-671

512 20. Chouchani, E. T., Kazak, L., and Spiegelman, B. M. (2019) New Advances in Adaptive
513 Thermogenesis: UCP1 and Beyond. *Cell Metab* **29**, 27-37

514 21. Verkerke, A. R. P., Ferrara, P. J., Lin, C.-T., Johnson, J. M., Ryan, T. E., Maschek, J. A.,
515 Eshima, H., Paran, C. W., Laing, B. T., Siripoksup, P., Tippetts, T. S., Wentzler, E. J.,
516 Huang, H., Spangenburg, E. E., Brault, J. J., Villanueva, C. J., Summers, S. A., Holland,
517 W. L., Cox, J. E., Vance, D. E., Neufer, P. D., and Funai, K. (2019) Phospholipid
518 methylation regulates muscle metabolic rate through Ca²⁺ transport efficiency. *Nature
519 Metabolism* **1**, 876-885

520 22. Paran, C. W., Zou, K., Ferrara, P. J., Song, H., Turk, J., and Funai, K. (2015)
521 Lipogenesis mitigates dysregulated sarcoplasmic reticulum calcium uptake in muscular
522 dystrophy. *Biochim Biophys Acta* **1851**, 1530-1538

523 23. McLaughlin, K. L., Kew, K. A., McClung, J. M., and Fisher-Wellman, K. H. (2020)
524 Subcellular proteomics combined with bioenergetic phenotyping reveals protein
525 biomarkers of respiratory insufficiency in the setting of proofreading-deficient
526 mitochondrial polymerase. *Sci Rep* **10**, 3603

527 24. Heden, T. D., Neufer, P. D., and Funai, K. (2016) Looking Beyond Structure: Membrane
528 Phospholipids of Skeletal Muscle Mitochondria. *Trends Endocrinol Metab* **27**, 553-562

529 25. Funai, K., Summers, S. A., and Rutter, J. (2020) Reign in the membrane: How common
530 lipids govern mitochondrial function. *Curr Opin Cell Biol* **63**, 162-173

531 26. Heden, T. D., Johnson, J. M., Ferrara, P. J., Eshima, H., Verkerke, A. R. P., Wentzler, E.
532 J., Siripoksup, P., Narowski, T. M., Coleman, C. B., Lin, C. T., Ryan, T. E., Reidy, P. T.,
533 de Castro Bras, L. E., Karner, C. M., Burant, C. F., Maschek, J. A., Cox, J. E., Mashek,
534 D. G., Kardon, G., Boudina, S., Zeczycki, T. N., Rutter, J., Shaikh, S. R., Vance, J. E.,
535 Drummond, M. J., Neufer, P. D., and Funai, K. (2019) Mitochondrial PE potentiates
536 respiratory enzymes to amplify skeletal muscle aerobic capacity. *Science advances* **5**,
537 eaax8352

538 27. Pennington, E. R., Funai, K., Brown, D. A., and Shaikh, S. R. (2019) The role of
539 cardiolipin concentration and acyl chain composition on mitochondrial inner membrane
540 molecular organization and function. *Biochim Biophys Acta Mol Cell Biol Lipids* **1864**,
541 1039-1052

542 28. Zhang, M., Mileykovskaya, E., and Dowhan, W. (2002) Gluing the respiratory chain
543 together. Cardiolipin is required for supercomplex formation in the inner mitochondrial
544 membrane. *J Biol Chem* **277**, 43553-43556

545 29. Johnson, J. M., Ferrara, P. J., Verkerke, A. R. P., Coleman, C. B., Wentzler, E. J.,
546 Neufer, P. D., Kew, K. A., de Castro Bras, L. E., and Funai, K. (2018) Targeted
547 overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in
548 Barth syndrome. *Journal of molecular and cellular cardiology* **121**, 94-102

549 30. Prola, A., Blondelle, J., Vandestienne, A., Piquereau, J., Denis, R. G. P., Guyot, S.,
550 Chauvin, H., Mourier, A., Maurer, M., Henry, C., Khadhraoui, N., Gallerne, C., Molinie,
551 T., Courtin, G., Guillaud, L., Gressette, M., Solgadi, A., Dumont, F., Castel, J., Ternacle,
552 J., Demarquoy, J., Malgoyre, A., Koulmann, N., Derumeaux, G., Giraud, M. F., Joubert,
553 F., Veksler, V., Luquet, S., Relaix, F., Tiret, L., and Pilot-Storck, F. (2021) Cardiolipin
554 content controls mitochondrial coupling and energetic efficiency in muscle. *Science
advances* **7**

556 31. Cole, L. K., Mejia, E. M., Vandel, M., Sparagna, G. C., Claypool, S. M., Dyck-Chan, L.,
557 Klein, J., and Hatch, G. M. (2016) Impaired Cardiolipin Biosynthesis Prevents Hepatic
558 Steatosis and Diet-Induced Obesity. *Diabetes* **65**, 3289-3300

559 32. Soustek, M. S., Falk, D. J., Mah, C. S., Toth, M. J., Schlame, M., Lewin, A. S., and
560 Byrne, B. J. (2011) Characterization of a transgenic short hairpin RNA-induced murine
561 model of Tafazzin deficiency. *Hum Gene Ther* **22**, 865-871

562 33. Andersen, P., and Saltin, B. (1985) Maximal perfusion of skeletal muscle in man. *J
563 Physiol* **366**, 233-249

564 34. Funai, K., and Semenkovich, C. F. (2011) Skeletal muscle lipid flux: running water
565 carries no poison. *Am J Physiol Endocrinol Metab* **301**, E245-251

566 35. Zurlo, F., Larson, K., Bogardus, C., and Ravussin, E. (1990) Skeletal muscle metabolism
567 is a major determinant of resting energy expenditure. *J Clin Invest* **86**, 1423-1427

568 36. Moullan, N., Mouchiroud, L., Wang, X., Ryu, D., Williams, E. G., Mottis, A., Jovaisaite,
569 V., Frochaux, M. V., Quiros, P. M., Deplancke, B., Houtkooper, R. H., and Auwerx, J.
570 (2015) Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for
571 Caution in Biomedical Research. *Cell Rep* **10**, 1681-1691

572 37. Mogensen, M., Bagger, M., Pedersen, P. K., Fernstrom, M., and Sahlin, K. (2006)
573 Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not
574 to mitochondrial efficiency. *J Physiol* **571**, 669-681

575 38. Acehan, D., Vaz, F., Houtkooper, R. H., James, J., Moore, V., Tokunaga, C., Kulik, W.,
576 Wansapura, J., Toth, M. J., Strauss, A., and Khuchua, Z. (2011) Cardiac and skeletal
577 muscle defects in a mouse model of human Barth syndrome. *J Biol Chem* **286**, 899-908

578 39. Funai, K., Song, H., Yin, L., Lodhi, I. J., Wei, X., Yoshino, J., Coleman, T., and
579 Semenkovich, C. F. (2013) Muscle lipogenesis balances insulin sensitivity and strength
580 through calcium signaling. *J Clin Invest* **123**, 1229-1240

581 40. Lark, D. S., Torres, M. J., Lin, C. T., Ryan, T. E., Anderson, E. J., and Neufer, P. D.
582 (2016) Direct real-time quantification of mitochondrial oxidative phosphorylation
583 efficiency in permeabilized skeletal muscle myofibers. *Am J Physiol Cell Physiol* **311**,
584 C239-245

585 41. Bers, D. M., Patton, C. W., and Nuccitelli, R. (2010) A practical guide to the preparation
586 of Ca(2+) buffers. *Methods Cell Biol* **99**, 1-26

587 42. Simonides, W. S., and van Hardeveld, C. (1990) An assay for sarcoplasmic reticulum
588 Ca2(+)-ATPase activity in muscle homogenates. *Anal Biochem* **191**, 321-331

589 43. Heden, T. D., Ryan, T. E., Ferrara, P. J., Hickner, R. C., Brophy, P. M., Neufer, P. D.,
590 McClung, J. M., and Funai, K. (2017) Greater Oxidative Capacity in Primary Myotubes
591 from Endurance-trained Women. *Med Sci Sports Exerc* **49**, 2151-2157

592 44. McLaughlin, K. L., Hagen, J. T., Coalson, H. S., Nelson, M. A. M., Kew, K. A., Wooten,
593 A. R., and Fisher-Wellman, K. H. (2020) Novel approach to quantify mitochondrial
594 content and intrinsic bioenergetic efficiency across organs. *Sci Rep* **10**, 17599

595 45. Calvo, S. E., Clauer, K. R., and Mootha, V. K. (2016) MitoCarta2.0: an updated
596 inventory of mammalian mitochondrial proteins. *Nucleic Acids Res* **44**, D1251-1257

598 **Figure Legends**

599 **Figure 1: Weight loss promotes a decrease in whole-body energy expenditure.** (A) Feeding
600 timeline. LN: mice fed standard chow diet (SCD). OB: mice fed obesogenic high-fat diet (HFD).
601 WL: mice with weight loss induced by switching from HFD to SCD at wk 10. Ad lib fed for all mice.
602 (B) Body mass of LN, OB and WL mice over the 16-week diet intervention. (C) Body mass
603 immediately before terminal experiments. $n=18$ for LN, $n=16$ for OB, $n=19$ for WL for B and C.
604 (D&E) Body composition measured immediately before terminal experiments. $n=11$ for LN, $n=13$
605 for OB, $n=14$ for WL for both D and E. (F) Relationship between lean mass and total VO_2
606 (unnormalized) in LN, OB, and WL groups ($n=9$ for LN, $n=8$ for OB, $n=11$ for WL). (G&H) Whole-
607 body oxygen consumption normalized to lean mass ($n=9$ for LN, $n=8$ for OB, $n=11$ for WL) at wk
608 15. (I) Pearson correlation analyses of percent body weight loss to the oxygen consumption
609 among the WL group ($n=11$). All data are represented as mean \pm SEM. Two-way ANOVA with
610 Sidak multiple comparisons (B,D,G,H) or one-way ANOVA with multiple comparisons (C,E). p-
611 values indicate statistical significance between OB and WL groups.

612

613 **Figure 2: Weight loss improves OXPHOS efficiency in skeletal muscle.** (A) Rates of Ca^{2+}
614 uptake, SERCA ATP hydrolysis, and SERCA transport efficiency in skeletal muscle ($n=8$ for all
615 groups). (B) Representative western blots of proteins involved in Ca^{2+} transport. (C) Skeletal
616 muscle P/O ratio in fiber bundles isolated from gastrocnemius muscles ($n=6$ for LN, $n=8$ for OB,
617 $n=10$ for WL). P-values indicate statistical significance between OB and WL groups. (D)
618 Representative western blots of OXPHOS subunits and citrate synthase (CS) in isolated
619 mitochondria. One-way ANOVA with multiple comparisons (A) or two-way ANOVA with Sidak
620 multiple comparisons (C). p-values except in panel I indicate statistical significance between OB
621 and WL groups. p-value in panel I shows statistical significance for correlation. Data are
622 represented as mean \pm SEM.

623

624 **Figure 3: Weight loss does not alter skeletal muscle mitochondrial proteome. (A-E)**
625 Heatmap of abundance of OXPHOS subunits measured with mass spectrometry. (F) Volcano plot
626 of differentially abundant mitochondria proteins between OB and WL groups (significance
627 threshold shown with dotted red line). (G) Abundance of respiratory supercomplex formation in
628 isolated mitochondria.

629

630 **Figure 4: Weight loss accelerates skeletal muscle CL remodeling. (A)** Heatmap of relative
631 abundance of mitochondrial lipids. X-axis represents individual lipid species classified according
632 to lipid classes. Red asterisks indicate the main effect of weight loss (OB vs. WL). (B) Lipid-to-
633 protein ratio. $n=4$ for LN, $n=6$ for OB, $n=5$ for WL for A and B. (C) Abundance of individual CL
634 species in isolated mitochondria. TLCL is shown in red asterisk and separately as an insert ($n=6$
635 for OB, $n=5$ for WL). (D) Schematic of CL synthesis and remodeling that occurs in the inner
636 mitochondrial membrane. (E) TLCL to total CL ratio ($n=6$ for OB, $n=5$ for WL). (F) TAZ, CLS,
637 ALCAT1, and MLCLAT-1 mRNA levels in skeletal muscle ($n=5$ for OB, $n=4$ for WL). One-way
638 ANOVA with multiple comparisons (B), two-way ANOVA with Sidak multiple comparisons (C,F)
639 or unpaired t-test (E). All p-values except for those in panel B indicate statistical significance
640 between OB and WL groups. p-values in panel B show comparisons between LN and OB and LN
641 and WL. Data are represented as mean \pm SEM.

642

643 **Figure 5. TLCL deficiency reduces OXPHOS efficiency. (A)** Schematic of doxycycline
644 intervention in wildtype (WT) and TAZKD littermates. (B) Body mass of WT and TAZKD mice ($n=6$
645 for WT, $n=5$ for TAZKD). (C) Body composition of WT and TAZKD mice ($n=6$ for WT, $n=5$ for
646 TAZKD). (D) TAZ mRNA abundance in skeletal muscle from WT and TAZKD mice ($n=4$ for WT,
647 $n=6$ for TAZKD). (E) Abundance of individual CL species in isolated mitochondria ($n=5$ for both
648 groups). TLCL is shown in red asterisk. (F) TLCL to total CL ratio ($n=5$ for both groups). (G) Rates
649 for O₂ consumption, ATP production, and P/O ratio in skeletal muscles from WT and TAZKD mice

650 with 200 μ M of ADP ($n=6$ for WT, $n=8$ for TAZKD). (H) Proposed mechanism for how weight loss
651 improves OXPHOS efficiency. Two-way ANOVA with Sidak multiple comparisons (C,E) or
652 unpaired t-test (B,D,F,G). All p-values indicate statistical significance between WT and TAZKD
653 groups. Data are represented as mean \pm SEM.

654

Supplemental Figure S1. (A&B) Total VO₂ (unnormalized). (C) Relationship between body mass and total VO₂ (unnormalized). (D&E) Spontaneous movement. (F) Relationship between spontaneous movement to VO₂. (G&H) Respiratory exchange ratio (RER). $n=9$ for LN, $n=8$ for OB, $n=11$ for WL. All data are represented as mean \pm SEM. Two-way ANOVA with Sidak multiple comparisons (B). p-values indicate statistical significance between OB and WL groups.

Supplemental Figure S2. (A) Representative western blots for OXPHOS subunits and UCP1 in homogenates from brown adipose tissues. (B) Rates for oxygen consumption (JO₂). P-value indicates statistical difference between OB and WL groups. (C) Rates for ATP production (JATP). These numbers were used to derive Figure 2C. (D) Representative western blots for OXPHOS subunits and citrate synthase (CS) in total muscle homogenates. (E) Validation of mitochondrial enrichment in the mitochondrial fraction. Percoll gradient isolation was not performed to preserve mitochondrial function for high-resolution respirometry and fluorometry. Blotting for mitochondrial COXIV shows that even a short exposure produces strong immunoreactivity in isolated mitochondrial fraction when such band is barely visible in whole lysate with equal protein loading. Thus, the mitochondrial fraction is highly enriched in mitochondria. In contrast, the mitochondrial fraction also includes proteins from plasma membrane (Na⁺/K⁺-ATPase), endoplasmic reticulum (SERCA), and cytosol (p70) with comparable abundance to whole lysate. Comparable enrichment of total lysate and mitochondrial prep for these organelles is likely due to myofibrillar and extracellular matrix proteins that are highly abundant in whole lysate, making it relatively dilute with intracellular organelles per μ g of protein. All data are represented as mean \pm SEM. Two-way ANOVA with Sidak multiple comparisons (A,B). p-values indicate statistical significance between OB and WL groups.

Supplemental Figure S3. (A) Volcano plot of differentially abundant mitochondria proteins between LN and OB groups. (B) Volcano plot of differentially abundant mitochondria proteins between LN and WL groups. Significance threshold shown with dotted red line for both A and B. (C) Unsupervised clustering analyses of mitochondrial proteome between OB and WL groups.

Supplemental Figure S4. Skeletal muscle mitochondrial lipidomic analyses. (A) Phosphatidylcholine. (B) Phosphatidylethanolamine. (C) Phosphatidylinositol. (D) Phosphatidylserine. (E) Phosphatidylglycerol. (F) Lysophosphatidylcholine. (G) Lysophosphatidylethanolamine. $n=6$ for OB, $n=5$ for WL. All data are represented as mean \pm SEM. Two-way ANOVA with Sidak multiple comparisons.

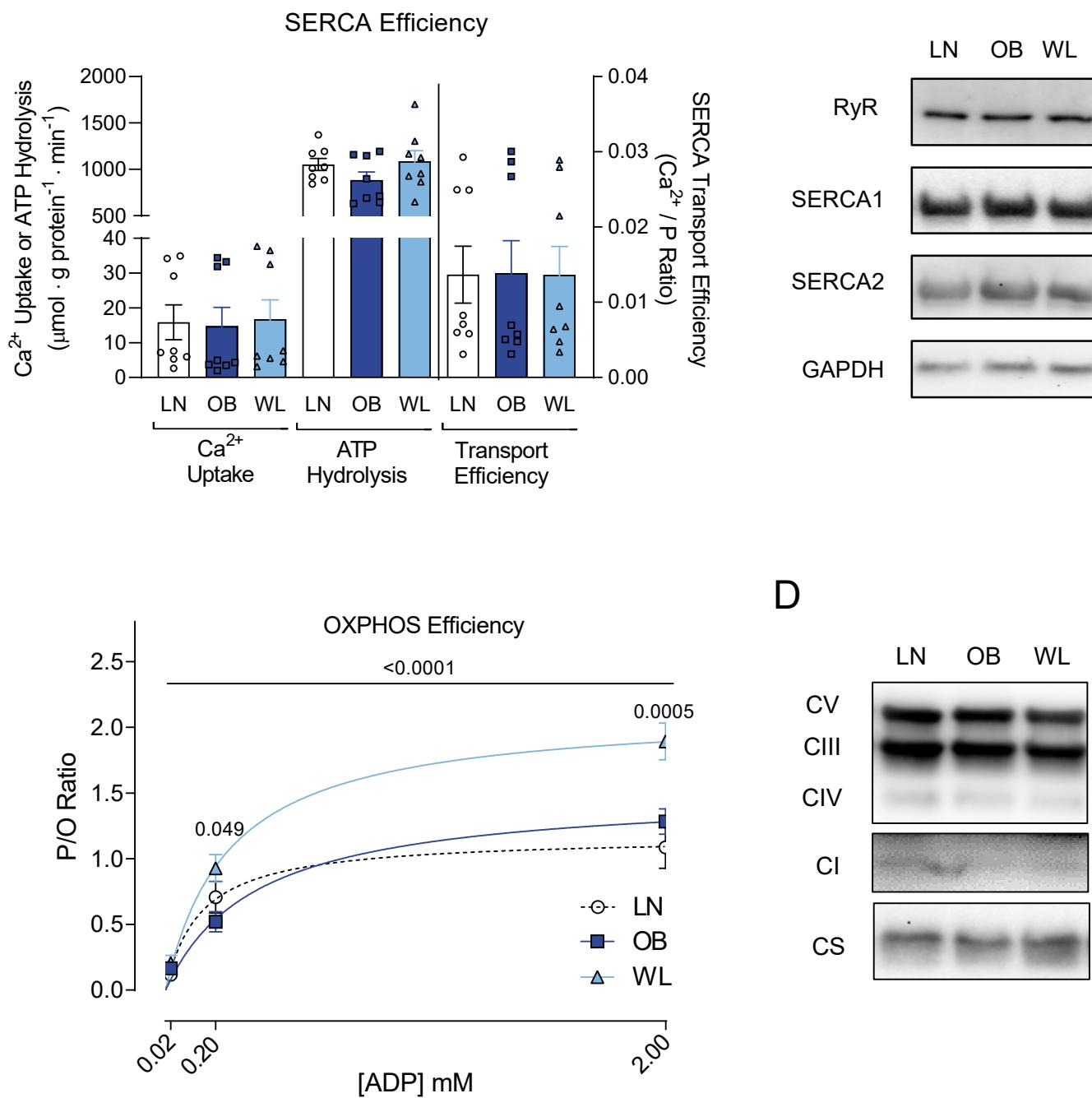

Supplemental Figure S5. (A) PSD mRNA levels from C2C12 myotubes treated with scrambled (SC) or shPSD (PSDKD). (B) Rates for O_2 consumption, ATP production, and P/O ratio in isolated mitochondria from SC or PSDKD C2C12 myotubes with 200 μ M of ADP ($n=8$ for SC, $n=6$ for PSDKD). All data are represented as mean \pm SEM. Unpaired t-test (A,B).

Figure 1
 bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 2

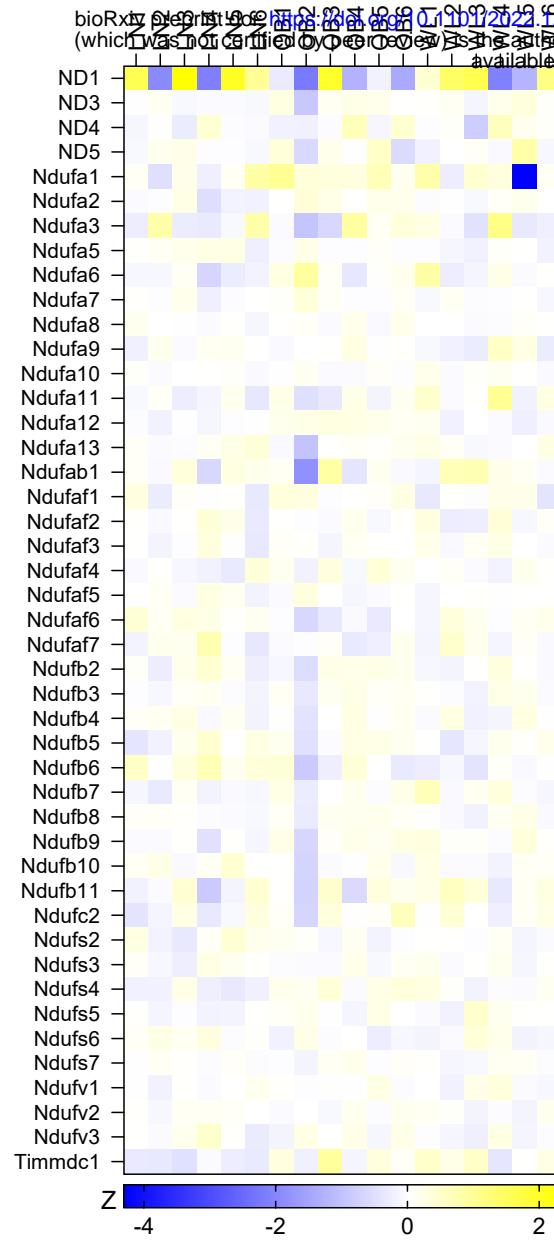
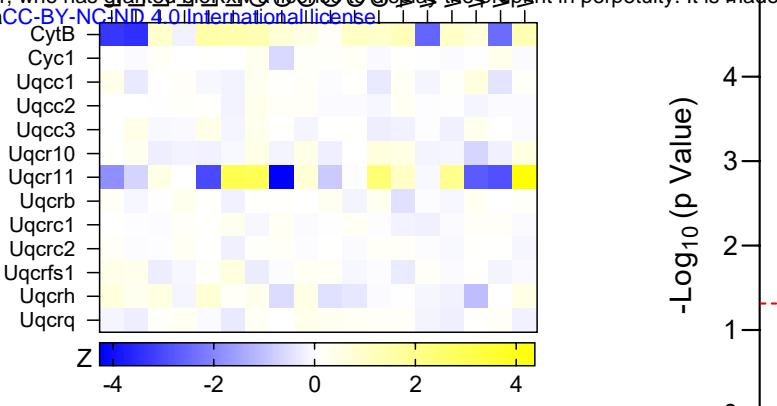
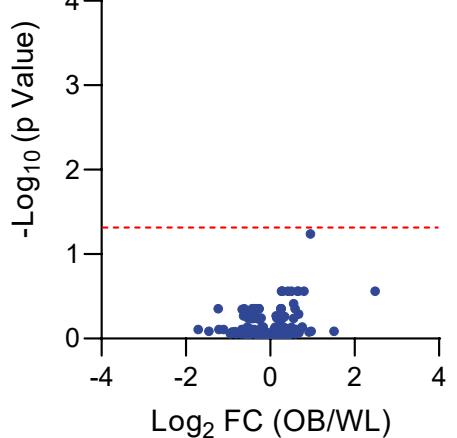

bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure 3

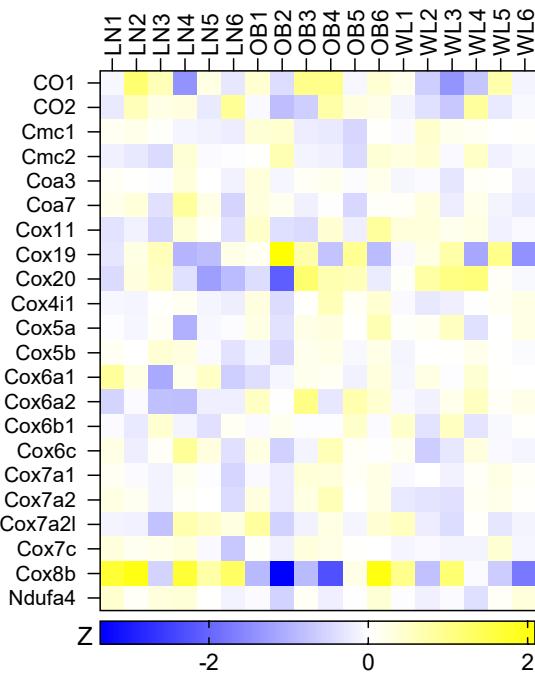

A

Complex I

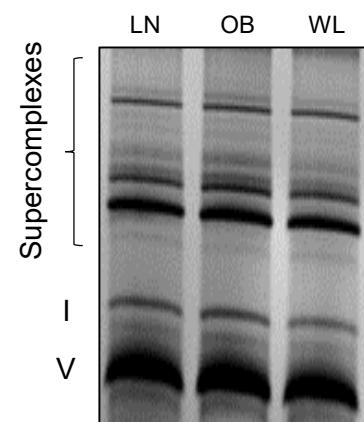


C

Complex III

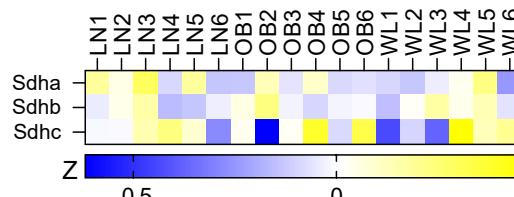


F

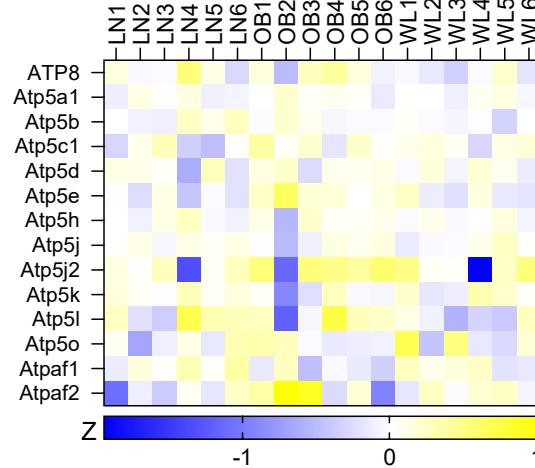


D

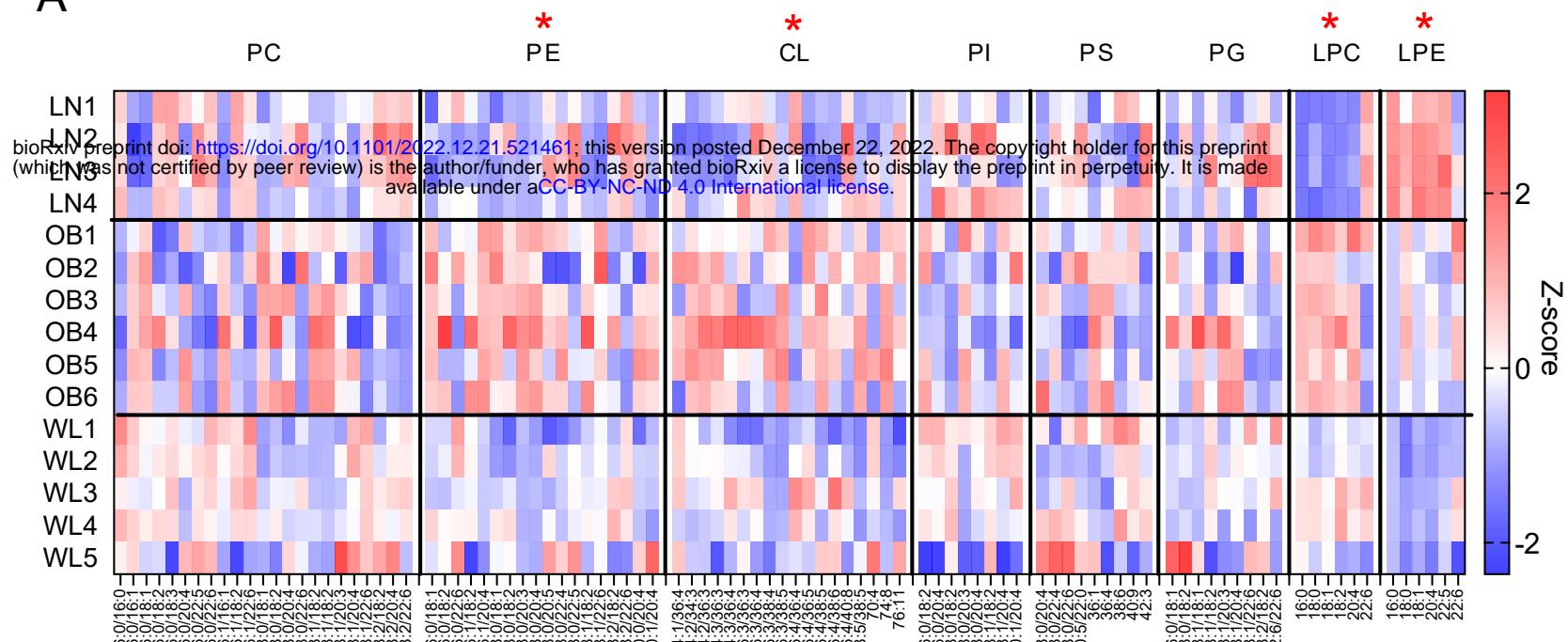
Complex IV



G


B

Complex II


E

Complex V

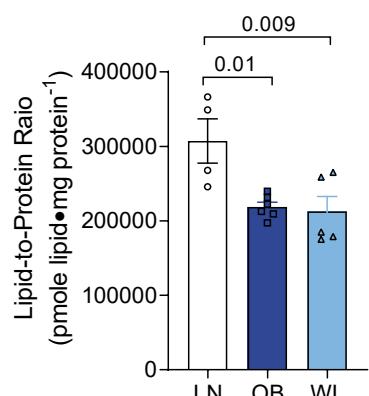
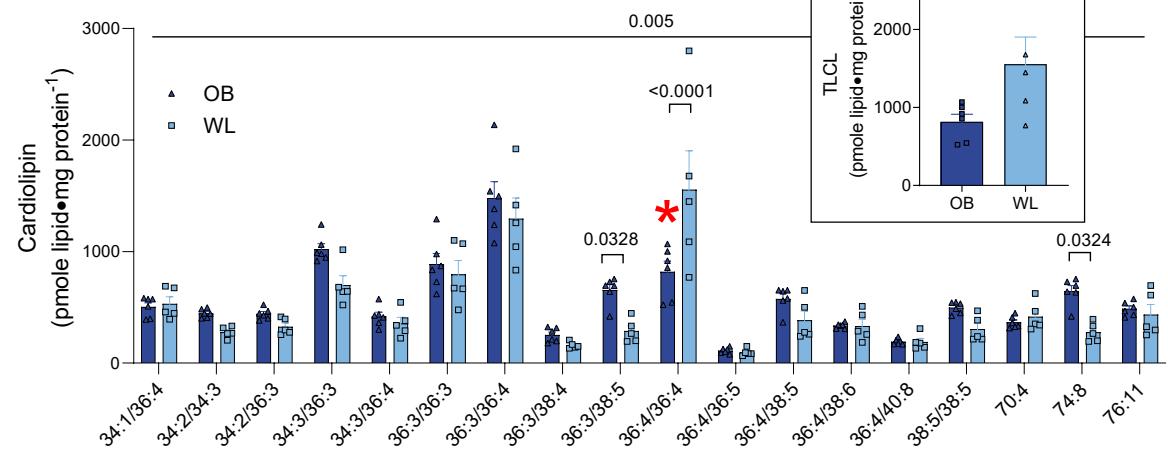
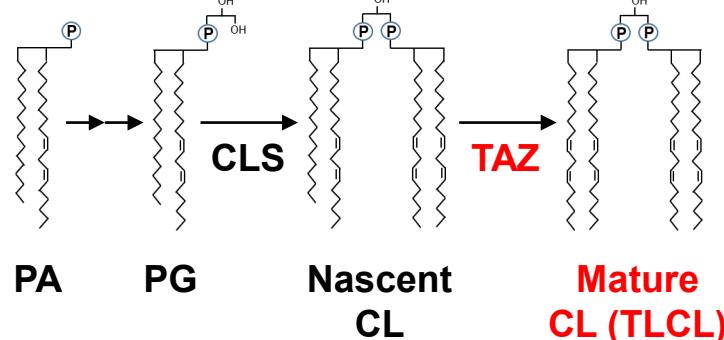
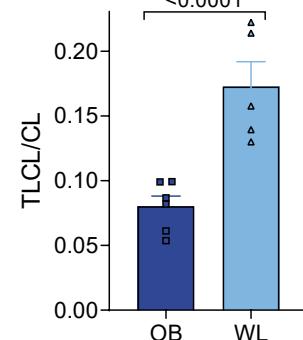
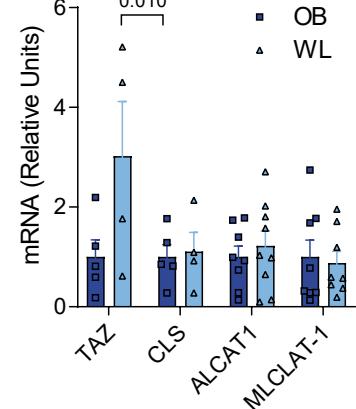


Figure 4

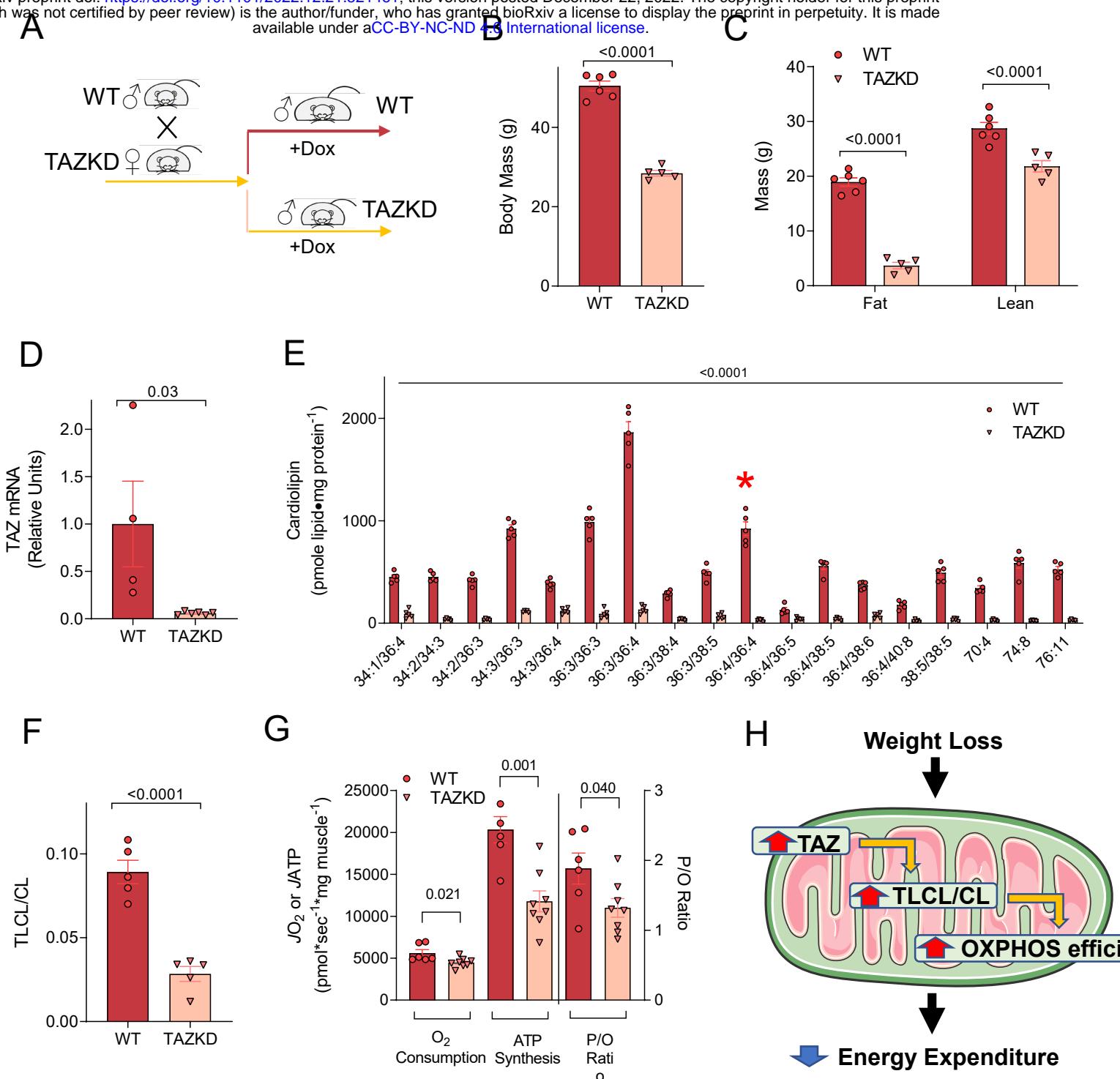

A


B

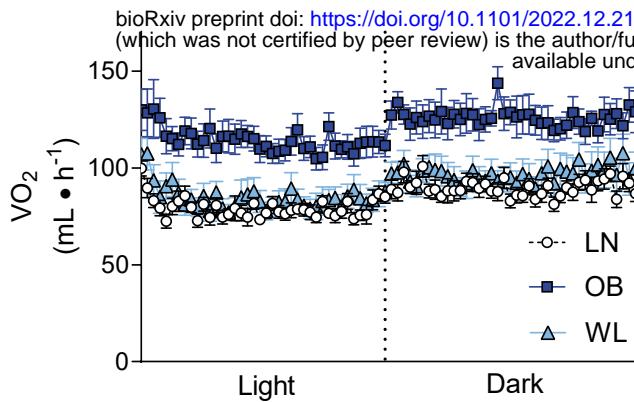

C


D

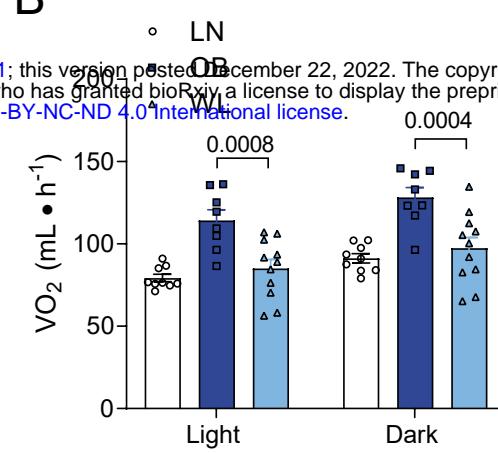
E



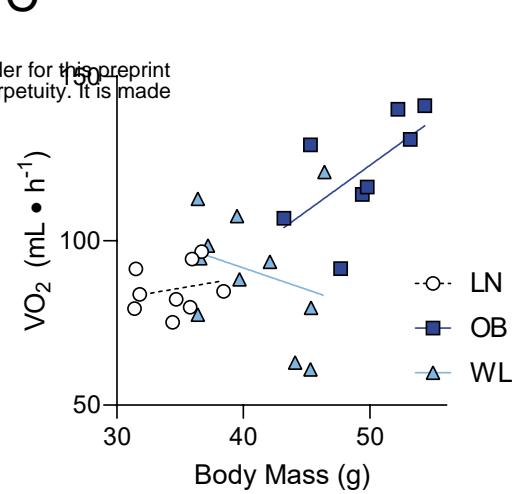
F

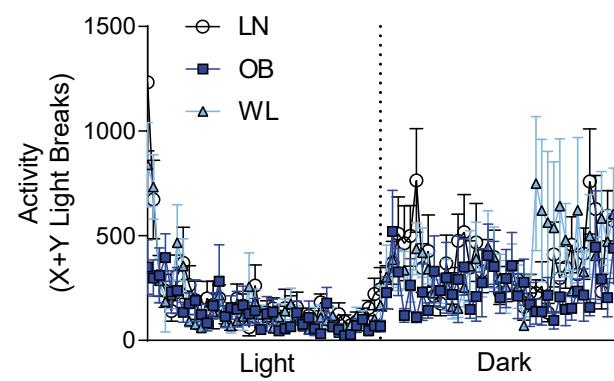

Figure 5

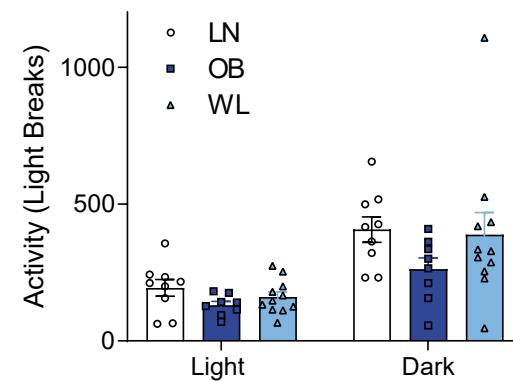
bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

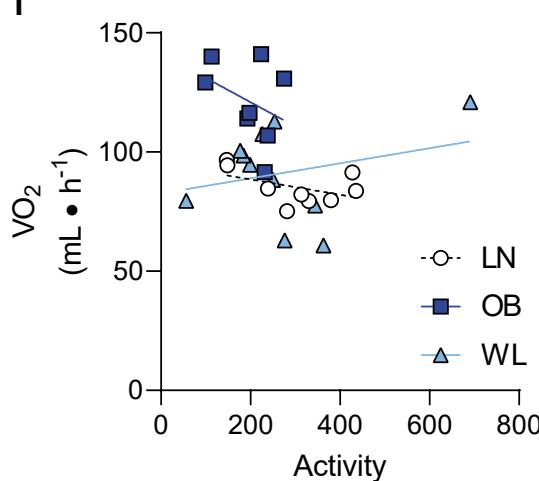


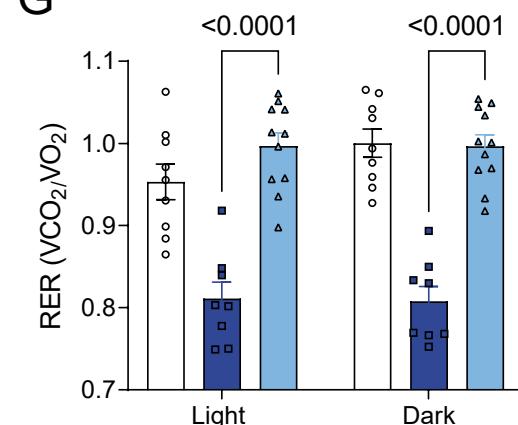
Supplemental Figure S1

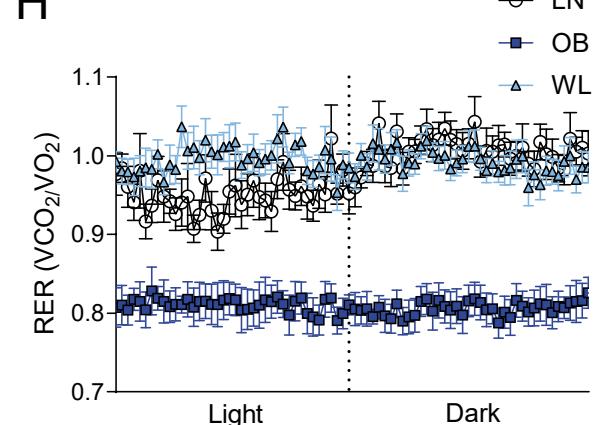

A


B

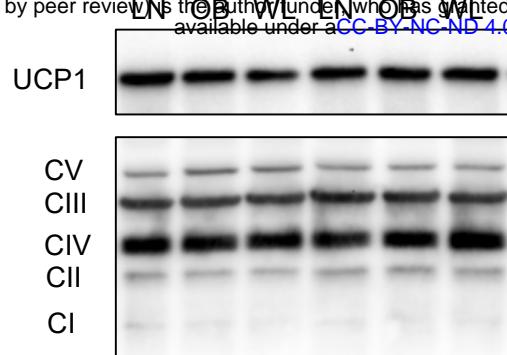

C

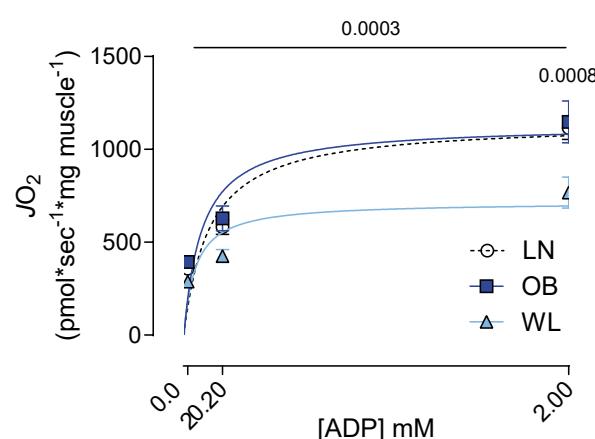

D


E

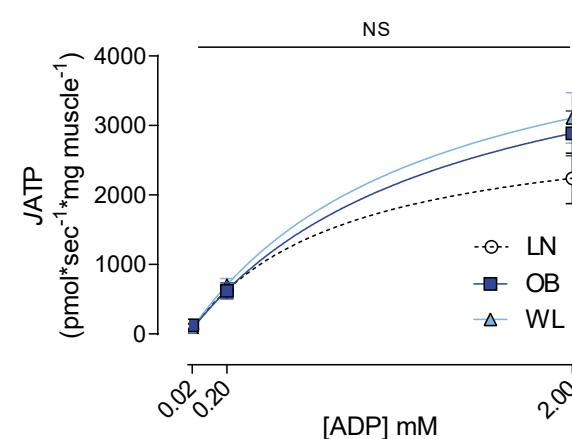

F

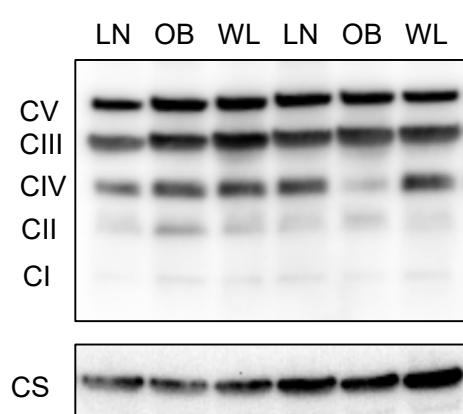
G

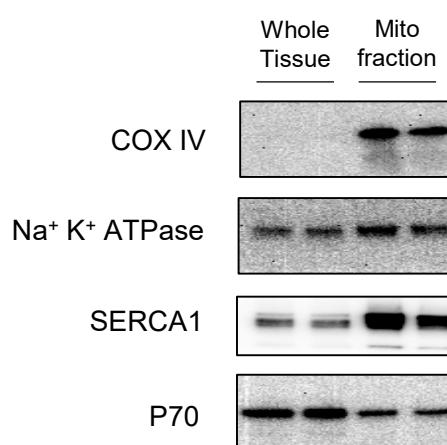

H


Supplemental Figure S2

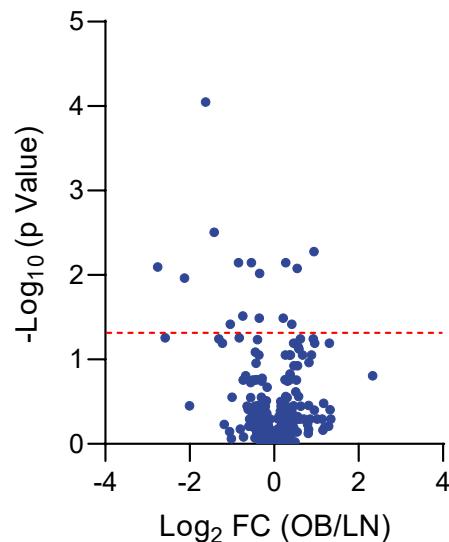
A

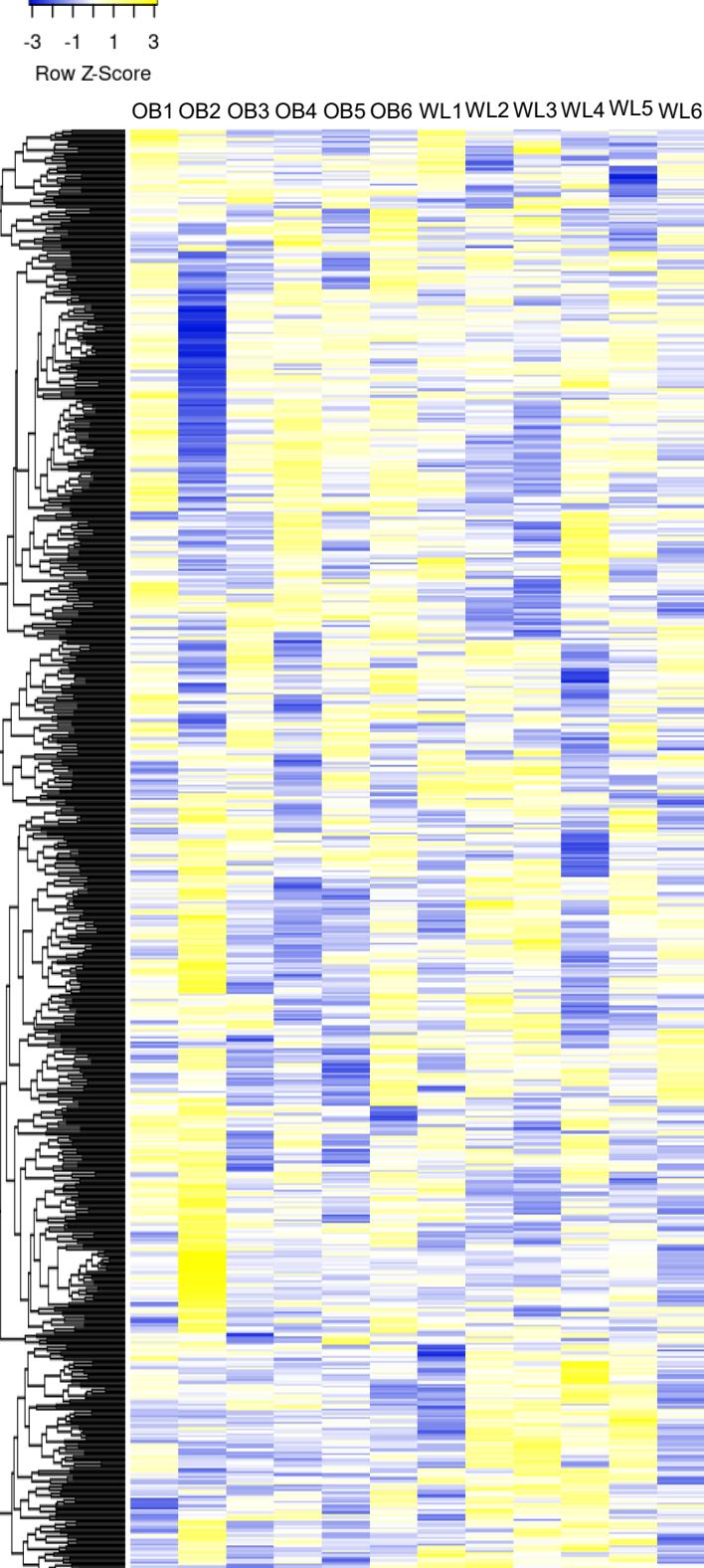

bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


B

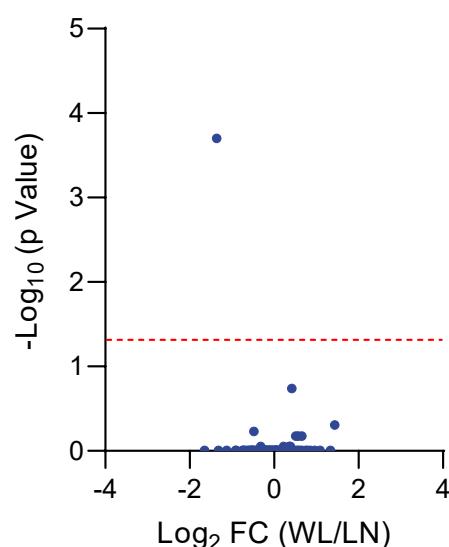

C

D

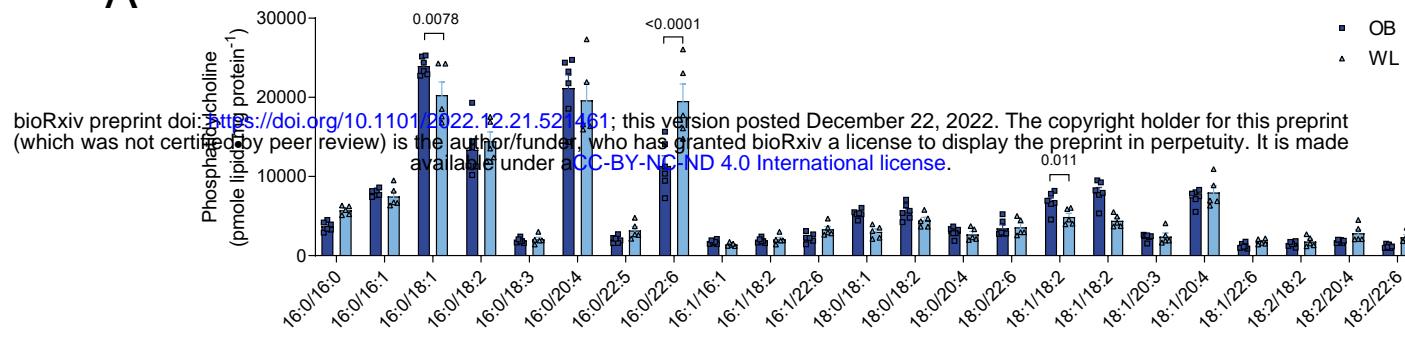

E


Supplemental Figure S3

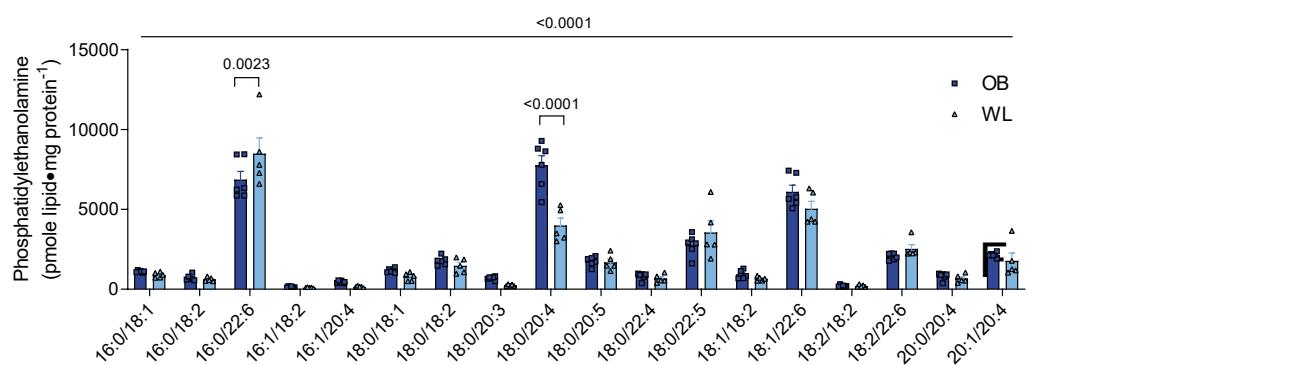
bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.


A

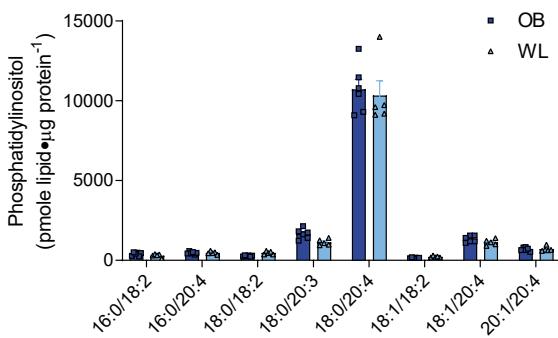
C

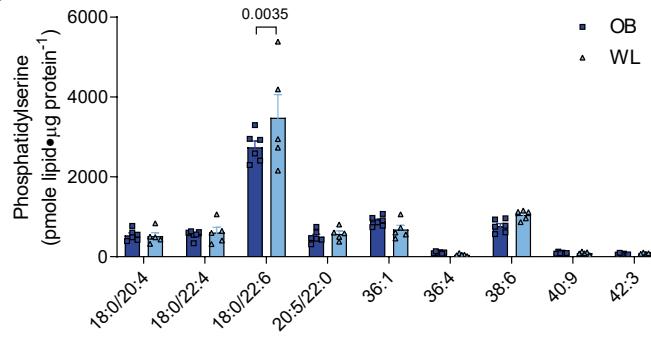


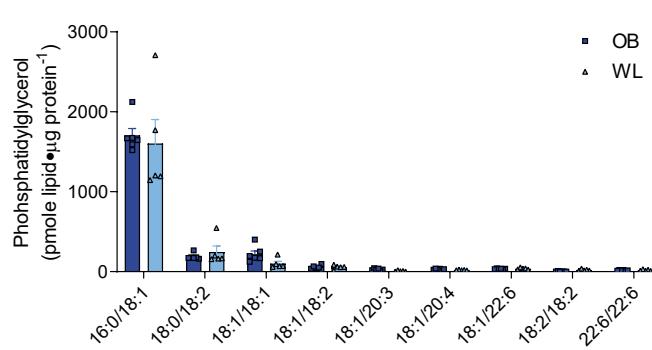
B

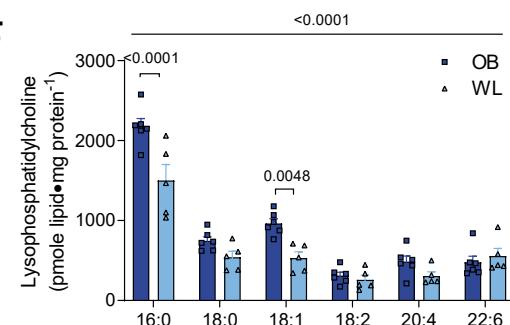


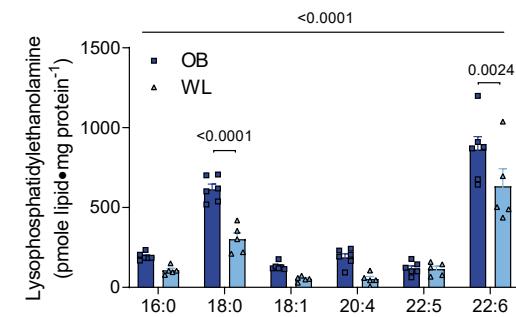
Supplemental Figure S4


A

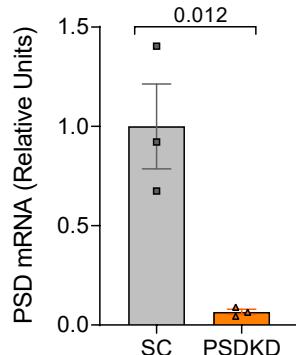

B

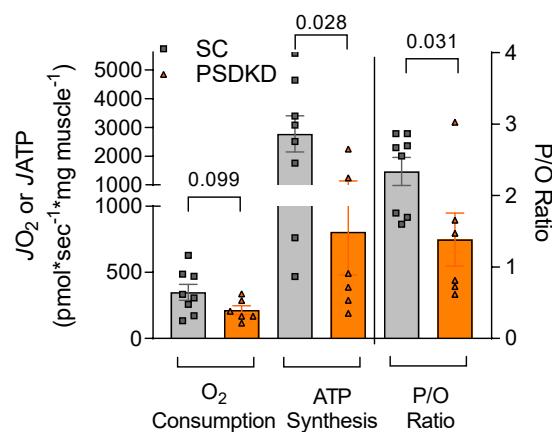

C


D


E

F


G


Supplemental Figure S5

bioRxiv preprint doi: <https://doi.org/10.1101/2022.12.21.521461>; this version posted December 22, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A

B

