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Abstract

Alzheimer’s disease (AD) takes a more aggressive course in women than men, with higher
prevalence and faster progression. Amnestic AD specifically targets the default mode network
(DMN), which subserves short-term memory; past research shows relative hyperconnectivity in
the posterior DMN in aging women. Higher reliance on this network during memory tasks may
contribute to women’s elevated AD risk. Here, we applied connectome-based predictive
modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human
Connectome Project-Aging (HCP-A) dataset (n=579). We sought to characterize sex-based
predictors of memory performance in aging, with particular attention to the DMN. Models were
evaluated using cross-validation both across the whole group and for each sex separately. Whole-
group models predicted short-term memory performance with accuracies ranging from p=0.21-
0.45. The best-performing models were derived from an associative memory task-based scan.
Sex-specific models revealed significant differences in connectome-based predictors for men and
women. DMN activity contributed more to predicted memory scores in women, while within-
and between- visual network activity contributed more to predicted memory scores in men.
While men showed more segregation of visual networks, women showed more segregation of the
DMN. We demonstrate that women and men recruit different circuitry when performing memory
tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry.
These findings are consistent with the hypothesis that women draw more heavily upon the DMN
for recollective memory, potentially contributing to women'’s elevated risk of AD.
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1 Introduction

In addition to outnumbering men with Alzheimer’s disease (AD) by 2:1 (‘2022 Alzheimer’s
disease facts and figures’, 2022), women with AD face faster accumulation of pathology and
more severe illness with the same pathologic burden (Barnes et al., 2005; Buckley et al., 2018;
Edwards et al., 2021). AD specifically targets the default mode network (DMN), which
subserves short-term memory (Greicius et al., 2004; Sheline ef al., 2010; Mormino et al., 2011;
Brier et al., 2012). Yet, sex differences in the DMN over the course of aging, which may provide
important clues to women’s higher vulnerability to AD, are poorly understood.

Prior research assessing sex differences in the aging brain has demonstrated that healthy aging
women show lower segregation of functional networks (i.e., more cross-hemispheric/-module
connections) (Ingalhalikar et al., 2014). Women have relatively higher DMN connectivity
overall (Biswal et al., 2010; for the Women’s Brain Project and the Alzheimer Precision
Medicine Initiative ef al., 2018; Ritchie ef al., 2018), and demonstrate higher connectivity than
men in posterior DMN nodes, which relates to short-term memory performance (Ficek-Tani et
al., In press).

Prediction-based approaches, in which models are built on training data and tested on unseen
data, can help increase generalizability and reproducibility of findings (Yarkoni and Westfall,
2017; Scheinost et al., 2019; Poldrack, Huckins and Varoquaux, 2020; Marek et al., 2022;
Yarkoni, 2022), and have the potential to generate useful biomarkers (Gabrieli, Ghosh and
Whitfield-Gabrieli, 2015; Rosenberg, Casey and Holmes, 2018).

In this work, we use a predictive modeling-based approach to robustly characterize sex
differences in the aging functional connectome. We used connectome-based predictive modeling
(CPM) to predict short-term memory performance scores in a large dataset of healthy adults aged
36-100. We hypothesized that (a) predictive edges would vary substantially between men and
women, (b) predictors would especially feature the DMN, with women relying more on within-
DMN edges for memory task performance, and (c) women would show decreased network
segregation than do men.

2 Methods
2.1 Participants

The data used were collected from participants enrolled in the Human Connectome Project-
Aging (HCP-A) study (Bookheimer et al., 2019). Imaging data were from the 1.0 release of the
HCP-A dataset, while the neurobehavioral data were from the 2.0 release. Imaging data consisted
of 689 healthy subjects aged 36 to 100 from four data collection sites. See Bookheimer et al.
(2019) for full exclusion criteria. As described previously (Ficek-Tani et al., In press), we
implemented additional exclusion criteria based on motion (see below for details), missing data,
and anatomical abnormalities. After exclusion, the remaining sample size was n=579 (330
female; 249 male).

Participants were well-matched in age, race, ethnicity, years of education, and handedness, but
women outnumbered and outperformed men in global cognitive function (Montreal Cognitive

Assessment), in-scanner memory task performance (FaceName task), and verbal learning (Rey
Auditory Verbal Learning Test) (Table 1). Participants self-identified their sex at birth as male
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or female. While an “Other” option for sex was offered by the HCP-A study, no participants
chose this option; gender identity was not assessed.

Female subjects Male subjects p-value
Total number of 330 (57%) 249 (43%) N/A
participants
Age 56.94 (14.03) 58.20 (14.13) 0.284
Race American Indian/Alaska Native: [American Indian/Alaska Native: | 0.167
1 1
Asian: 19 Asian: 26
Black/African American: 53 Black/African American: 34
White: 231 White: 177
More than one race: 18 More than one race: 9
Unknown/Not reported: 8 Unknown/Not reported: 2
Ethnicity Hispanic or Latino: 36 Hispanic or Latino: 18 0.216
Not Hispanic or Latino: 293 Not Hispanic or Latino: 231
Unknown/Not reported: 1 Unknown/Not reported: 0
Years of 15.38 (1.76) 15.62 (1.82) 0.121
Education
Handedness Right: 283 Right: 197 0.100
Left: 21 Left: 21
Ambidextrous: 26 Ambidextrous: 31
MOCA Total 26.86 (2.24) 26.21 (2.56) 1.24E-3
(points out of 30)
FaceName Task 6.97 (2.72) 5.90 (2.96) 1.27E-5
Total (# face-name
pairs recalled, out
of 10)
RAVLT Sum of 48.22 (9.71) 44.06 (10.50) 1.44E-6
Trials 1-5 (# words
recalled, out of 75)
RAVLT Trial 6 (# 10.13 (2.99) 9.07 (3.31) 7.47E-5
words recalled,
out of 15)

Table 1. Demographics and selected neuropsychological assessment and in-scanner task scores
of HCP-A participants included in this study (Costa and McCrae, 1992; Nasreddine et al., 2005;
Bean, 2011; Bookheimer et al., 2019). T-tests or chi square tests were performed as appropriate,
excluding unknown/not reported values (Abbreviations: MOCA, Montreal Cognitive
Assessment; RAVLT, Rey Auditory Verbal Learning Test).

2.2 Imaging parameters

All subjects enrolled in HCP-A were scanned in a Siemens 3T Prisma scanner with 80mT/m
gradients and 32-channel head coil. In addition to acquiring four resting-state fMRI (rfMRI) and
three task-fMRI (tfMRI) scans per subject, structural MRI data (including one T1-weighted
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86  [T1w] scan) were also collected (Harms et al., 2018). In this study, we focus on the seven fMRI
87  scans.

88 A multi-echo MPRAGE sequence (refer to (Harms et al., 2018) for scanning parameter details)
89  was used for all T1w scans. A 2D multiband (MB) gradient-recalled echo (GRE) echo-planar
90 imaging (EPI) sequence (MBS, TR/TE = 800/37 ms, flip angle = 52°) was used for all fMRI

91  scans.

92  For each subject, four rfMRI scans consisting of 488 frames and lasting 6.5 minutes each (for a
93  total of 26 minutes) were acquired, during which participants were instructed to remain awake
94  while viewing a small white fixation cross in the center of a black background. The rfMRI scans
95  were split between two sessions that occurred on the same day, with each session including one
96  rfMRI with an anterior to posterior (AP) phase encoding direction and one rfMRI with a

97  posterior to anterior (PA) direction.

98  The HCP-A includes the following three fMRI tasks, which were all programmed in PsychoPy
99  (Peirce, 2007, 2008) and collected with PA phase encoding direction: Visuomotor (VisMotor),
100  Conditioned Approach Response Inhibition Task (“CARIT” Go/NoGo task), and FaceName
101  (Bookheimer et al., 2019). As below, we focus on the FaceName task scan both because of its
102 relevance to short-term memory performance and because models derived from this scan
103 outperform models derived from other scans. In the FaceName task, three blocks (encoding,
104  distractor, and recall blocks) are repeated twice for each set of faces, totaling to a single, 276-
105  second run. See (Harms et al., 2018) for full details on the HCP-A structural and functional MRI
106  imaging parameters, and see (Bookheimer et al., 2019) for full details on tfMRI task
107  administration.

108 2.3  Image preprocessing

109  The preprocessing approach has been described elsewhere (Greene et al., 2018; Horien et al.,
110 2019). MPRAGE scans were skullstripped with optiBET (Lutkenhoff et al., 2014) and

111  nonlinearly registered to the MNI template in Biolmage Suite (BIS) (Joshi et al., 2011). BIS was
112 used to linearly register each participant’s mean functional scan to their own MPRAGE scan.
113 Participants were excluded from further analyses due to structural abnormalities after visually
114  inspecting skullstripped and registered data. Functional data were motion-corrected using SPMS;
115  participants whose scans showed maximum mean frame-to-frame displacement (FFD) above 0.3
116 ~mm were excluded to limit motion artifacts (Greene et al., 2018; Horien et al., 2018, 2019; Ju et
117  al., 2020). Using Wilcoxon rank sum tests, we determined no differences in mean FFD between
118  female and male subjects across all seven scan types (Supplementary Table 1). Linear,

119  quadratic, and cubic drift, a 24-parameter model of motion (Satterthwaite ez al., 2013), mean
120 cerebrospinal fluid signal, mean white matter signal, and global signal were regressed from the
121  data as described in (Ficek-Tani et al., In press).

122 2.4  Memory performance measures

123 Because we were interested in predictors of memory performance, we used performance on the
124 FaceName task and the Rey Auditory Verbal Learning Test (RAVLT) as outcomes for our

125  predictive models. For the FaceName task, participants were shown a total of 10 distinct faces,
126  resulting in a maximum FaceName-Total Recall (FN-TR) score of 10 correctly identified faces.
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127  We also assessed both the learning (L) and immediate recall (IR) metrics from the RAVLT

128  (Bean, 2011), a standard neuropsychological measure of declarative memory. In this assessment,
129  a 15-word list is read to the participant, who is then asked to verbally recall as many as possible,
130  five times. The total number of words recalled during this five-trial “learning period” sums to a
131 RAVLT-L (“learning”) score out of 75 words. After being read a separate (interference) list and
132 asked to recall it, the participant is read List A again, and the number of correctly-recalled words
133 in this sixth trial is collected as the RAVLT-IR (“immediate recall”’) score. RAVLT-IR is a

134 sensitive metric for early-stage AD (Estévez-Gonzélez et al., 2003).

135 2.5  Connectome-based predictive modeling

136  To predict memory performance using both rfMRI and tfMRI data from HCP-A, we used
137  connectome-based predictive modeling (CPM), the details of which are described elsewhere
138  (Shen et al., 2017).

139 In brief, connectivity matrices were constructed from each fMRI scan using the Shen 268-node
140  atlas (Shen et al., 2013). These matrices and the memory performance scores of each participant
141  were used to create our predictive models. Three subject groups were analyzed: all subjects,

142 female-only, and male-only. Edges from connectivity matrices for each subject per scan were
143 correlated to the three aforementioned memory performance measures, totaling to seven

144 connectivity matrices and three memory scores per subject (21 total correlated matrices). Motion
145  and age covariates were also included in the CPM analyses to account for in-scanner head

146  motion, age, and their interaction in our predictions, as previously done (Scheinost et al., 2021;
147  Dufford et al., 2022; Horien et al., 2022).

148  Using 5-fold cross validation, connectivity matrices and memory scores were divided into

149  independent training (subjects from four of the folds) and testing (subjects in left-out fold) sets.
150  Edge strength and memory were linearly related within the training set, and using a feature

151  selection threshold of p = 0.01, a consensus connectivity matrix including only the edges most
152  strongly positively or negatively correlated to memory was generated. Edge strengths in each

153  subject’s connectivity matrix corresponding to the consensus matrix were summed into a single-
154  subject connectivity value. A predictive model built using the linear relationship between the

155  single-subject connectivity values and memory score was applied to the subjects in the testing set
156  to generate memory performance predictions.

157 2.6  Model performance comparison

158  For all subject groups, Spearman’s correlation and root mean square error (defined as:
159  RMSE(predicted,observed) = v(I/n X(i=n(actual; — predicted;)?)) were used to compare the

160  similarity between predicted and observed memory scores to assess predictive model

161  performance. After performing 1000 iterations of each CPM analysis, we selected the median-
162  performing model to represent the model’s overall performance. To compare model

163  performances between female and male groups for each fMRI scan, we used Wilcoxon rank sum
164  tests.

165  We also tested our models against randomly permuted models by randomly shuffling participant
166  labels prior to attempting to predict memory scores. After performing 1000 iterations of this
167  permutation, we calculated the number of times the permuted predictive accuracy was greater
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than the median unpermuted prediction accuracy to generate a non-parametric p value, as done in
(Scheinost et al., 2021):

P = (#{rhonull = rhomedian})/looo s

where #{rho,, ;1 = Th0omeqian} indicates the number of permuted predictions numerically greater
than or equal to the median of the unpermuted predictions. We applied the Benjamini-Hochberg
procedure to these non-parametric p-values to control for multiple comparisons and correct for
21 tests for each of our three subject groups (Benjamini and Hochberg, 1995).

2.7 Inter-network significant-edge analyses

To visualize sex differences at the network level, we first split the aforementioned consensus
matrix into two binarized matrices (a “positive” matrix containing edge with significant positive
correlations to memory and the other “negative” matrix of edges with significant negative
correlations to memory) for each predictive model. Categorization of nodes by functional
network was determined using the 10-network parcellation of the Shen 268-node atlas (Horien et
al., 2022). In this network grouping, the medial frontal (MF) network also includes some
temporal and frontal nodes which often cluster with the DMN. Inter-network edges were defined
as the number of significant edges between each pair of networks normalized by the total number
of edges between the same network pair. As done in previous work, we defined edges as
“significant” if they appear in at least 2 out of 5 folds in 40% of 1000 iterations of CPM to
minimize noise while retaining meaningful connections (Rosenberg et al., 2016; Yip et al., 2019;
Horien et al., 2022). In addition to using heatmaps to visualize the inter-network edges of both
female and male groups separately, we subtracted male-group positive edges from female-group
positive edges (and the same with the negative edges) across corresponding matrix cells to
evaluate the inter-network sex differences.

2.8 Intra-network significant-edge analyses

Intra-network analyses were performed similarly to inter-network analyses above. Edges from
binarized positively and negatively correlated connectivity matrices were summed across the 5
folds and 1000 iterations to generate a single value for each edge. These values were then used to
generate the intra-DMN edge heatmap, with values ranging from -5000 (maximum negatively
correlated) to 5000 (maximum positively correlated value). To evaluate differences in the “top-
performing” nodes according to sex, individual edge values were summed across each row from
the matrices and divided by 2 to account for the symmetric nature of the matrix, generating a
summed vector (SV).

2.9  Network segregation analyses

We evaluated network segregation, a measure of the relative strength of within-network
connections to between-network connections, using a novel association ratio metric. We defined
the association ratio as the weighted sum of all edges within the network of interest, normalized
by the weighted sum of all edges between this network and the whole set of regions of interest.
Higher association ratio is therefore indicative of higher network segregation. To compare
network segregation levels between sexes, we calculated and compared (using two-sample t-
tests) the association ratio for certain networks of interest in women and men for each scan type.
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208  Benjamini-Hochberg correction (see above) was applied to correct for 7 significance tests (for
209  each model) across the 4 networks.

210  2.10 Data and code availability

211  Data from the HCP-A study are openly available (https:/www.humanconnectome.org/study/hcp-
212 lifespan-aging/data-releases). Image preprocessing was performed using BiolmageSuite, a

213 publicly-available software (https://medicine.yale.edu/bioimaging/suite/). Scripts for running
214  CPM are available through GitHub (https://github.com/YaleMRRC/CPM). Other MATLAB

215  scripts for CPM analyses can be found at https://github.com/frederickslab/CPM_HCP-

216  A_sex_difference_study. Custom MATLAB colormap palettes were derived from ColorBrewer
217  (http://colorbrewer.org/; Brewer, 2022).

218 3 Results
219 3.1  Model performance comparison

220  Please see Supplementary Results for details on model comparisons, including comparisons
221  between models derived separately for each sex. Briefly, we trained and cross-validated models
222 using functional connectivity data from all 7 scans to predict memory performance scores.

223 Whole-group models robustly predicted all memory measures, with accuracies ranging from

224  Spearman’s rho = 0.21 (RMSE = 3.34, p<0.0001) to rho = 0.45 (RMSE = 2.67, p<0.0001) across
225  all models (Supplementary Figure 2). Models using the FaceName tfMRI scan consistently
226  outperformed all other models; we therefore proceeded with models from this scan for the

227  remaining analyses.

228 3.2 Inter-network significant-edge analyses

229  Visualizations of inter-network edges (number of significant edges normalized by network size)
230  across all FaceName tfMRI models revealed differences in key edges predicting memory score
231  for each sex. In particular, edges within the DMN and visual (visual I [VI], visual II [VII], and
232 visual association areas [VAs]) networks showed the largest differences (Figure 1,

233 Supplementary Figure 6). Given previous work showing measures of declarative verbal

234  memory (including RAVLT metrics) can be predicted from the gray matter density of DMN
235  structures, and because lower RAVLT-IR scores are associated with preclinical AD, we

236  concentrated on the RAVLT-IR predictors derived from FaceName tfMRI models (Estévez-
237  Gonzélez et al., 2003; Moradi et al., 2017). In addition to visualizing the inter-network edges of
238  females and males separately, we subtracted male-group edges from female-group edges across
239  corresponding heatmap cells to evaluate inter-network differences between the sexes (Figure 1).
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Figure 1. Positive and negative matrices from the RAVLT-IR-predicting model showing inter-
network connections (number of significant edges normalized by network size for each network
pair) for female and male subjects, as well as the difference between both sexes (derived by
subtracting male inter-network edges from female inter-network edges). Both sexes show
positive predictors in the intra-DMN edges. Female subjects show more positive predictors in the
intra-VI-network edges relative to male subjects, while male subjects show more positive
predictors in the intra- and inter-visual (VII and VAs)-network edges relative to female subjects.
Negative predictors of both sexes relied on edges between DMN and visual networks; however,
male subjects’ negative predictors relied more on edges between the MF and VII networks than
those of female subjects (Abbreviations: F, female; M, male; MF, medial frontal; FP, fronto-
parietal; DMN, default mode network; Mot, motor; VI, visual I; VII, visual II; VAs, visual
association areas; SAL, limbic; SC, basal ganglia; CBL, cerebellum; RAVLT-IR, RAVLT-
Immediate Recall).

Both sexes show positive predictors with intra-DMN edges, with female scores predicting intra-
DMN connectivity more strongly than those of males. Female positive predictors also relied
more strongly on intra-VI edges than those of males, while male positive predictors relied more
strongly on the intra- and inter-network connectivity of the VII and VAs networks relative to
those of females. Both sexes displayed negative predictors with edges between DMN and visual
networks; however, males show more negative predictors with edges between the MF and VII
networks, as well as between the DMN and VII networks, relative to females.

33 Intra-network significant-edge analyses
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Given the preferential contribution of intra-DMN edges to the female models, we examined all
intra-DMN edges and evaluated their strengths in male and female models. To do so, we
generated a heatmap of intra-DMN edges (Figure 2). In the RAVLT-IR model, we found that
edges from more posterior DMN nodes were preferentially increased in females as opposed to
males. This trend held true for the RAVLT-L model and FN-TR models (Supplementary
Figure 7). Negatively correlated edges negligibly contributed to both male and female models
(Figure 2, Supplementary Figure 7). Both sexes displayed strong connections in the left
posterior cingulate cortex (L PCC) and precuneus, known hubs of the DMN.

To summarize node-level differences, we summed the number of edges associated with each
node and found consistent female preference for activity of the right posterior inferior parietal
lobe (R pIPL) and left anterior medial prefrontal cortex (L amPFC)/paracingulate cortex (Figure
2). The R pIPL was consistently and preferentially elevated in all female models analyzed
(Supplementary Figure 7). This analysis demonstrates differential edge- and node-level
contributions to male and female models.
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279  edge counts). Red indicates higher female counts and blue indicates higher male counts for each
280  edge (Abbreviations: RAVLT-IR, RAVLT-Immediate Recall; L, left; R, right; dmPFC,
281  dorsomedial prefrontal cortex; MFG, middle frontal gyrus; AG, angular gyrus; aMPFC, anterior
282  medial prefrontal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobe;
283  PHG, parahippocampal gyrus; vimPFC, ventromedial prefrontal cortex; CC, corpus callosum;
284 SV, summed vector).
285 3.4 Network segregation analyses
286  We then evaluated and compared a metric of network segregation (see Methods, “Network
287  Segregation Analysis”) within the DMN and visual (VI, VII, VAs) networks between females
288  and males, given the strong brain-behavior correlations in these networks across all memory
289  performance outcomes. Our analysis demonstrated increased network segregation of the DMN in
290  females relative to males, and increased network segregation of VII and VAs in males relative to
291  females (Table 2). Additionally, these findings echoed our previous CPM analysis results in that
292  we also observed sex differences in neurobiological organization.
Scan Type | Default Mode Visual I (VI) Visual II (VII) |Visual Association
Network (DMN) Network Network Areas (VAs)
REST1 AP | 3.17 (0.0016) -1.32 (0.1879)F -9.02 (2.69E-18) | -4.32 (1.87E-05)
REST1 PA | 3.45 (0.0006) -0.40 (0.6920)F -7.79 (3.18E-14) -3.92 (0.0001)
REST2 AP | 1.21(0.2259)F -0.92 (0.3557)F -7.07 (4.42E-12) | -5.16 (3.47E-07)
REST2 PA | 2.04 (0.0419)F 0.07 (0.9425)F -6.38 (3.66E-10) -2.55(0.0111)
CARIT 2.57 (0.0104) 2.11 (0.0349)F -5.33 (1.40E-07) -0.54 (0.5864)7
FACENAME | 1.18 (0.2397)F 1.74 (0.0821)F -4.46 (9.71E-06) -1.03 (0.3017)7
VISMOTOR | 0.20 (0.8399)7 -0.47 (0.6360)7 -3.33(0.0009) -3.06 (0.0023)
293  Table 2. Network segregation differences between female and male subjects. Two-sample t-tests
294  comparing the association ratios for networks of interest between the sexes revealed increased
295  DMN segregation in female subjects and increased VII and VAs network segregation in male
296  subjects. Red indicates significantly higher network segregation in female subjects than male
297  subjects and blue indicates significantly higher network segregation in male subjects than female
298  subjects. We report these results as ‘t-statistic (p-value)’ in the table. T indicates the models that
299  did not survive correction for multiple comparisons.
300 4 Discussion
301  We use CPM to identify sex differences in the functional connectivity underlying memory
302  performance in a large sample of healthy aging adults. We provide evidence that distinct edges
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303  for men and women predict short-term verbal memory task performance, and that within-DMN
304  edges contribute more to memory scores in females than in males. Predictive edges for males, in
305  contrast, include more edges within and across visual sensory and association networks. In

306  contrast to prior literature suggesting globally decreased network segregation in older women
307  compared with men, we also show higher segregation of the DMN (but lower segregation of
308  visual sensory and association networks) in women.

309  These findings imply that when compared with males, females have a higher reliance upon

310  connections within the DMN, the intrinsic connectivity network targeted in AD, in performing
311  memory-related tasks. Increased DMN connectivity, particularly in posterior nodes, has been
312 associated with vulnerability to Alzheimer’s disease (Bookheimer et al., 2000; Filippini et al.,
313 2009; Sperling et al., 2009; Mormino et al., 2011; Schultz et al., 2017); increased connectivity in
314  preclinical AD settings is thought to represent the compensatory response of a network under
315  stress (Bondi et al., 2005; Filippini et al., 2009; Qi et al., 2010; Mormino et al., 2011), and

316  symptomatic disease is associated with progressive hypoconnectivity across the network

317  (Greicius et al., 2004; Sheline et al., 2010; Brier et al., 2012).

318  This study and our previous findings in the same dataset (Ficek-Tani et al., In press) converge on
319  an emerging narrative of increased connectivity and functional segregation of the DMN in aging
320  women. Women rely upon specific DMN edges for memory performance; connections between
321  the bilateral pIPL and the two greatest hubs of the DMN, the mPFC and the PCC/precuneus are
322 the strongest predictors. Our prior work suggests that women have relatively increased within-
323  DMN connectivity compared with men, particularly in posterior nodes and particularly during
324  perimenopausal decades (Ficek-Tani et al., In press). Reliance upon intra-DMN edges for

325  memory performance likely has its advantages: we and others have shown that DMN

326  connectivity, particularly between posterior nodes, correlates with memory task performance

327  (Fredericks et al., 2019; Natu et al., 2019; Kang et al., 2021; Vanneste et al., 2021; Ficek-Tani et
328  al., In press), and the literature consistently demonstrates that women outperform men across the
329 lifespan in tests of verbal episodic memory (Bleecker et al., 1988; Herlitz, Nilsson and Béckman,
330  1997; Golchert et al., 2019).

331  We also find relatively greater functional segregation of the DMN in women than in men.

332 Functional segregation (i.e., reliance on within- more than between-network connectivity to

333  perform a network-associated task) declines across the brain with aging, and is associated with
334  decreased performance on tests of attention and memory performance (Chan et al., 2014;

335  Geerligs et al., 2015; Ng et al., 2016). AD pathology is associated with decreased functional
336  segregation (Cassady et al., 2021), and prior work in this field has suggested that women show
337  decreased functional segregation over the course of aging and during memory task performance
338  specifically (Ingalhalikar et al., 2014; Rabipour et al., 2021; Subramaniapillai et al., 2022),

339  potentially relating to AD vulnerability (Rabipour ef al., 2021). We show that sex differences in
340  segregation are network-specific: women have relatively decreased segregation of visual sensory
341  and visual association networks, but increased DMN segregation relative to men.

342 5 Limitations and Future Directions

343  While the HCP-A dataset has many strengths, it has limitations. Specifically, while the dataset is
344  large and offers very high-quality neuroimaging and neuropsychological characterization, it is
345  cross-sectional, so we cannot assess for longitudinal effects. Second, amyloid biomarkers are not
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346  available for the participants, so we cannot examine the effect of preclinical AD on the measures
347  of interest.

348  Interms of our results, we identify specific edges within the brain connectome and within the
349  DMN in particular that contribute to memory performance in women specifically. The

350 translational impact of these findings will depend on future work investigating whether these

351  edges share a common gene expression pattern or other characteristic at the cellular level, which
352 could be leveraged towards a potential therapeutic target. Additionally, our analyses suggest that
353  edges between the visual sensory networks and the cerebellum may play an important role in

354  memory performance, particularly for women. Future analyses that parcellate the cerebellum will
355  be important for interpreting this finding, given that the cerebellum participates in many intrinsic
356  connectivity networks (Buckner et al., 2011).

357  Finally, our work addresses the impact of self-reported sex on network changes, but AD risk in
358  women also depends upon gender-based factors such as lack of access to activities which

359  promote cognitive reserve, such as cardiovascular exercise, occupational complexity, and

360  educational attainment (Mielke, Vemuri and Rocca, 2014). Additionally, the interplay of

361  assigned sex at birth and gender identity was not assessed due to a lack of the required

362  information in the HCP dataset. While we used self-identified sex to distinguish subjects, this
363  categorization may not capture the complex dynamics that may contribute to the sex differences
364  described above. Future work should seek to incorporate other variables, as has been recently
365  suggested regarding ovarian hormone status (Rocks, Cham and Kundakovic, 2022), and to

366  incorporate metrics of cognitive reserve.

367 6 Conclusion

368  In summary, this study makes three key contributions to our understanding of sex differences in
369  brain circuitry driving memory performance, which could have implications for women’s higher
370  vulnerability to AD. First, we found that women relied more on within-network DMN edges

371  (specifically bilateral posterior inferior parietal lobe and its connections to the major DMN hubs,
372 medial prefrontal cortex and posterior cingulate/precuneus) for memory task performance than
373  did men. Second, we determined that men’s memory task performance was predicted by edges
374  distributed more broadly both within and between visual sensory and visual association networks
375  and the medial frontal network. Finally, in contrast to prior literature which suggests increased
376  generalization of cognitive circuits in aging women, we show that women have relatively greater
377  functional segregation of the DMN than men during memory task performance.

378  This work adds to the growing literature suggesting that women rely more on the DMN than do
379  men both at rest and during memory task performance. At rest, women have relatively higher
380 DMN connectivity (Biswal ef al., 2010; Scheinost et al., 2015; Cavedo et al., 2018; Ritchie et
381  al., 2018; Ficek-Tani et al., In press), with higher posterior DMN connectivity particularly

382  during the menopausal decades (Ficek-Tani et al., In press); this increased connectivity

383  correlates with better performance on tests of short-term memory (Fredericks et al., 2019; Natu
384  etal,2019; Kang et al., 2021; Vanneste et al., 2021; Ficek-Tani et al., In press). This profile is
385  similar to individuals with preclinical (amyloid-f +) or elevated genetic risk (e.g. APOE-g4+) for
386  AD (Bookheimer et al., 2000; Filippini et al., 2009; Sperling et al., 2009; Mormino et al., 2011;
387  Schultz et al., 2017).
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388  We need to understand why AD has a more aggressive phenotype in women. Taken together this
389  work adds to a body of literature that suggests that women’s relative increased reliance on

390  within-DMN connectivity could lead to “overuse” and vulnerability of this network to pathology
391  over time. Future work examining the common cellular features of the nodes composing

392  women’s strongest predictive edges have the potential to translate as therapeutic targets.
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