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 2 

Abstract 14 

Alzheimer’s disease (AD) takes a more aggressive course in women than men, with higher 15 
prevalence and faster progression. Amnestic AD specifically targets the default mode network 16 
(DMN), which subserves short-term memory; past research shows relative hyperconnectivity in 17 
the posterior DMN in aging women. Higher reliance on this network during memory tasks may 18 
contribute to women’s elevated AD risk. Here, we applied connectome-based predictive 19 
modeling (CPM), a robust linear machine-learning approach, to the Lifespan Human 20 
Connectome Project-Aging (HCP-A) dataset (n=579). We sought to characterize sex-based 21 
predictors of memory performance in aging, with particular attention to the DMN. Models were 22 
evaluated using cross-validation both across the whole group and for each sex separately. Whole-23 
group models predicted short-term memory performance with accuracies ranging from ρ=0.21-24 
0.45. The best-performing models were derived from an associative memory task-based scan. 25 
Sex-specific models revealed significant differences in connectome-based predictors for men and 26 
women. DMN activity contributed more to predicted memory scores in women, while within- 27 
and between- visual network activity contributed more to predicted memory scores in men. 28 
While men showed more segregation of visual networks, women showed more segregation of the 29 
DMN. We demonstrate that women and men recruit different circuitry when performing memory 30 
tasks, with women relying more on intra-DMN activity and men relying more on visual circuitry. 31 
These findings are consistent with the hypothesis that women draw more heavily upon the DMN 32 
for recollective memory, potentially contributing to women’s elevated risk of AD.   33 
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1 Introduction 34 

In addition to outnumbering men with Alzheimer’s disease (AD) by 2:1 (‘2022 Alzheimer’s 35 
disease facts and figures’, 2022), women with AD face faster accumulation of pathology and 36 
more severe illness with the same pathologic burden (Barnes et al., 2005; Buckley et al., 2018; 37 
Edwards et al., 2021). AD specifically targets the default mode network (DMN), which 38 
subserves short-term memory (Greicius et al., 2004; Sheline et al., 2010; Mormino et al., 2011; 39 
Brier et al., 2012). Yet, sex differences in the DMN over the course of aging, which may provide 40 
important clues to women’s higher vulnerability to AD, are poorly understood.  41 

Prior research assessing sex differences in the aging brain has demonstrated that healthy aging 42 
women show lower segregation of functional networks (i.e., more cross-hemispheric/-module 43 
connections) (Ingalhalikar et al., 2014). Women have relatively higher DMN connectivity 44 
overall (Biswal et al., 2010; for the Women’s Brain Project and the Alzheimer Precision 45 
Medicine Initiative et al., 2018; Ritchie et al., 2018), and demonstrate higher connectivity than 46 
men in posterior DMN nodes, which relates to short-term memory performance (Ficek-Tani et 47 
al., In press).  48 

Prediction-based approaches, in which models are built on training data and tested on unseen 49 
data, can help increase generalizability and reproducibility of findings (Yarkoni and Westfall, 50 
2017; Scheinost et al., 2019; Poldrack, Huckins and Varoquaux, 2020; Marek et al., 2022; 51 
Yarkoni, 2022), and have the potential to generate useful biomarkers (Gabrieli, Ghosh and 52 
Whitfield-Gabrieli, 2015; Rosenberg, Casey and Holmes, 2018). 53 

In this work, we use a predictive modeling-based approach to robustly characterize sex 54 
differences in the aging functional connectome. We used connectome-based predictive modeling 55 
(CPM) to predict short-term memory performance scores in a large dataset of healthy adults aged 56 
36-100. We hypothesized that (a) predictive edges would vary substantially between men and 57 
women, (b) predictors would especially feature the DMN, with women relying more on within-58 
DMN edges for memory task performance, and (c) women would show decreased network 59 
segregation than do men. 60 

2 Methods 61 

2.1 Participants 62 

The data used were collected from participants enrolled in the Human Connectome Project-63 
Aging (HCP-A) study (Bookheimer et al., 2019). Imaging data were from the 1.0 release of the 64 
HCP-A dataset, while the neurobehavioral data were from the 2.0 release. Imaging data consisted 65 
of 689 healthy subjects aged 36 to 100 from four data collection sites. See Bookheimer et al. 66 
(2019) for full exclusion criteria. As described previously (Ficek-Tani et al., In press), we 67 
implemented additional exclusion criteria based on motion (see below for details), missing data, 68 
and anatomical abnormalities. After exclusion, the remaining sample size was n=579 (330 69 
female; 249 male).  70 

Participants were well-matched in age, race, ethnicity, years of education, and handedness, but 71 
women outnumbered and outperformed men in global cognitive function (Montreal Cognitive 72 
Assessment), in-scanner memory task performance (FaceName task), and verbal learning (Rey 73 
Auditory Verbal Learning Test) (Table 1). Participants self-identified their sex at birth as male 74 
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or female. While an “Other” option for sex was offered by the HCP-A study, no participants 75 
chose this option; gender identity was not assessed. 76 

  Female subjects Male subjects p-value 
Total number of 
participants 

330 (57%) 249 (43%) N/A 

Age 56.94 (14.03) 58.20 (14.13) 0.284 
Race American Indian/Alaska Native: 

1 
Asian: 19 
Black/African American: 53 
White: 231 
More than one race: 18 
Unknown/Not reported: 8 

American Indian/Alaska Native: 
1 
Asian: 26 
Black/African American: 34 
White: 177 
More than one race: 9 
Unknown/Not reported: 2 

0.167 

Ethnicity Hispanic or Latino: 36 
Not Hispanic or Latino: 293 
Unknown/Not reported: 1 

Hispanic or Latino: 18 
Not Hispanic or Latino: 231 
Unknown/Not reported: 0 

0.216 

Years of 
Education 

15.38 (1.76) 15.62 (1.82) 0.121 

Handedness Right: 283 
Left: 21 
Ambidextrous: 26 

Right: 197 
Left: 21 
Ambidextrous: 31 

0.100 

MOCA Total 
(points out of 30) 

26.86 (2.24) 26.21 (2.56) 1.24E-3 

FaceName Task 
Total (# face-name 
pairs recalled, out 
of 10) 

6.97 (2.72) 5.90 (2.96) 1.27E-5 

RAVLT Sum of 
Trials 1-5 (# words 
recalled, out of 75) 

48.22 (9.71) 44.06 (10.50) 1.44E-6 

RAVLT Trial 6 (# 
words recalled, 
out of 15) 

10.13 (2.99) 9.07 (3.31) 7.47E-5 

Table 1. Demographics and selected neuropsychological assessment and in-scanner task scores 77 
of HCP-A participants included in this study (Costa and McCrae, 1992; Nasreddine et al., 2005; 78 
Bean, 2011; Bookheimer et al., 2019). T-tests or chi square tests were performed as appropriate, 79 
excluding unknown/not reported values (Abbreviations: MOCA, Montreal Cognitive 80 
Assessment; RAVLT, Rey Auditory Verbal Learning Test). 81 

2.2 Imaging parameters 82 

All subjects enrolled in HCP-A were scanned in a Siemens 3T Prisma scanner with 80mT/m 83 
gradients and 32-channel head coil. In addition to acquiring four resting-state fMRI (rfMRI) and 84 
three task-fMRI (tfMRI) scans per subject, structural MRI data (including one T1-weighted 85 
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[T1w] scan) were also collected (Harms et al., 2018). In this study, we focus on the seven fMRI 86 
scans.  87 

A multi-echo MPRAGE sequence (refer to (Harms et al., 2018) for scanning parameter details) 88 
was used for all T1w scans. A 2D multiband (MB) gradient-recalled echo (GRE) echo-planar 89 
imaging (EPI) sequence (MB8, TR/TE = 800/37 ms, flip angle = 52˚) was used for all fMRI 90 
scans.  91 

For each subject, four rfMRI scans consisting of 488 frames and lasting 6.5 minutes each (for a 92 
total of 26 minutes) were acquired, during which participants were instructed to remain awake 93 
while viewing a small white fixation cross in the center of a black background. The rfMRI scans 94 
were split between two sessions that occurred on the same day, with each session including one 95 
rfMRI with an anterior to posterior (AP) phase encoding direction and one rfMRI with a 96 
posterior to anterior (PA) direction.  97 

The HCP-A includes the following three fMRI tasks, which were all programmed in PsychoPy 98 
(Peirce, 2007, 2008) and collected with PA phase encoding direction: Visuomotor (VisMotor), 99 
Conditioned Approach Response Inhibition Task (“CARIT” Go/NoGo task), and FaceName 100 
(Bookheimer et al., 2019). As below, we focus on the FaceName task scan both because of its 101 
relevance to short-term memory performance and because models derived from this scan 102 
outperform models derived from other scans. In the FaceName task, three blocks (encoding, 103 
distractor, and recall blocks) are repeated twice for each set of faces, totaling to a single, 276-104 
second run. See (Harms et al., 2018) for full details on the HCP-A structural and functional MRI 105 
imaging parameters, and see (Bookheimer et al., 2019) for full details on tfMRI task 106 
administration. 107 

2.3 Image preprocessing 108 

The preprocessing approach has been described elsewhere (Greene et al., 2018; Horien et al., 109 
2019). MPRAGE scans were skullstripped with optiBET (Lutkenhoff et al., 2014) and 110 
nonlinearly registered to the MNI template in BioImage Suite (BIS) (Joshi et al., 2011). BIS was 111 
used to linearly register each participant’s mean functional scan to their own MPRAGE scan. 112 
Participants were excluded from further analyses due to structural abnormalities after visually 113 
inspecting skullstripped and registered data. Functional data were motion-corrected using SPM8; 114 
participants whose scans showed maximum mean frame-to-frame displacement (FFD) above 0.3 115 
mm were excluded to limit motion artifacts (Greene et al., 2018; Horien et al., 2018, 2019; Ju et 116 
al., 2020). Using Wilcoxon rank sum tests, we determined no differences in mean FFD between 117 
female and male subjects across all seven scan types (Supplementary Table 1). Linear, 118 
quadratic, and cubic drift, a 24-parameter model of motion (Satterthwaite et al., 2013), mean 119 
cerebrospinal fluid signal, mean white matter signal, and global signal were regressed from the 120 
data as described in (Ficek-Tani et al., In press). 121 

2.4 Memory performance measures 122 

Because we were interested in predictors of memory performance, we used performance on the 123 
FaceName task and the Rey Auditory Verbal Learning Test (RAVLT) as outcomes for our 124 
predictive models. For the FaceName task, participants were shown a total of 10 distinct faces, 125 
resulting in a maximum FaceName-Total Recall (FN-TR) score of 10 correctly identified faces. 126 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521314doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

We also assessed both the learning (L) and immediate recall (IR) metrics from the RAVLT 127 
(Bean, 2011), a standard neuropsychological measure of declarative memory. In this assessment, 128 
a 15-word list is read to the participant, who is then asked to verbally recall as many as possible, 129 
five times. The total number of words recalled during this five-trial “learning period” sums to a 130 
RAVLT-L (“learning”) score out of 75 words. After being read a separate (interference) list and 131 
asked to recall it, the participant is read List A again, and the number of correctly-recalled words 132 
in this sixth trial is collected as the RAVLT-IR (“immediate recall”) score. RAVLT-IR is a 133 
sensitive metric for early-stage AD (Estévez-González et al., 2003). 134 

2.5 Connectome-based predictive modeling 135 

To predict memory performance using both rfMRI and tfMRI data from HCP-A, we used 136 
connectome-based predictive modeling (CPM), the details of which are described elsewhere 137 
(Shen et al., 2017).  138 

In brief, connectivity matrices were constructed from each fMRI scan using the Shen 268-node 139 
atlas (Shen et al., 2013). These matrices and the memory performance scores of each participant 140 
were used to create our predictive models. Three subject groups were analyzed: all subjects, 141 
female-only, and male-only. Edges from connectivity matrices for each subject per scan were 142 
correlated to the three aforementioned memory performance measures, totaling to seven 143 
connectivity matrices and three memory scores per subject (21 total correlated matrices). Motion 144 
and age covariates were also included in the CPM analyses to account for in-scanner head 145 
motion, age, and their interaction in our predictions, as previously done (Scheinost et al., 2021; 146 
Dufford et al., 2022; Horien et al., 2022).  147 

Using 5-fold cross validation, connectivity matrices and memory scores were divided into 148 
independent training (subjects from four of the folds) and testing (subjects in left-out fold) sets. 149 
Edge strength and memory were linearly related within the training set, and using a feature 150 
selection threshold of p = 0.01, a consensus connectivity matrix including only the edges most 151 
strongly positively or negatively correlated to memory was generated. Edge strengths in each 152 
subject’s connectivity matrix corresponding to the consensus matrix were summed into a single-153 
subject connectivity value. A predictive model built using the linear relationship between the 154 
single-subject connectivity values and memory score was applied to the subjects in the testing set 155 
to generate memory performance predictions.  156 

2.6 Model performance comparison 157 

For all subject groups, Spearman’s correlation and root mean square error (defined as: 158 
RMSE(predicted,observed) = √(1/𝑛∑ (𝑎𝑐𝑡𝑢𝑎𝑙! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑!)"#

(!%1) )) were used to compare the 159 
similarity between predicted and observed memory scores to assess predictive model 160 
performance. After performing 1000 iterations of each CPM analysis, we selected the median-161 
performing model to represent the model’s overall performance. To compare model 162 
performances between female and male groups for each fMRI scan, we used Wilcoxon rank sum 163 
tests. 164 

We also tested our models against randomly permuted models by randomly shuffling participant 165 
labels prior to attempting to predict memory scores. After performing 1000 iterations of this 166 
permutation, we calculated the number of times the permuted predictive accuracy was greater 167 
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 7 

than the median unpermuted prediction accuracy to generate a non-parametric p value, as done in 168 
(Scheinost et al., 2021): 169 

𝑃 = (#{𝑟ℎ𝑜#'(( ≥ 𝑟ℎ𝑜)*+!,#})/1000 , 170 

where #{𝑟ℎ𝑜#'(( ≥ 𝑟ℎ𝑜)*+!,#}	indicates the number of permuted predictions numerically greater 171 
than or equal to the median of the unpermuted predictions. We applied the Benjamini-Hochberg 172 
procedure to these non-parametric p-values to control for multiple comparisons and correct for 173 
21 tests for each of our three subject groups (Benjamini and Hochberg, 1995). 174 

2.7 Inter-network significant-edge analyses 175 

To visualize sex differences at the network level, we first split the aforementioned consensus 176 
matrix into two binarized matrices (a “positive” matrix containing edge with significant positive 177 
correlations to memory and the other “negative” matrix of edges with significant negative 178 
correlations to memory) for each predictive model. Categorization of nodes by functional 179 
network was determined using the 10-network parcellation of the Shen 268-node atlas (Horien et 180 
al., 2022). In this network grouping, the medial frontal (MF) network also includes some 181 
temporal and frontal nodes which often cluster with the DMN. Inter-network edges were defined 182 
as the number of significant edges between each pair of networks normalized by the total number 183 
of edges between the same network pair. As done in previous work, we defined edges as 184 
“significant” if they appear in at least 2 out of 5 folds in 40% of 1000 iterations of CPM to 185 
minimize noise while retaining meaningful connections (Rosenberg et al., 2016; Yip et al., 2019; 186 
Horien et al., 2022). In addition to using heatmaps to visualize the inter-network edges of both 187 
female and male groups separately, we subtracted male-group positive edges from female-group 188 
positive edges (and the same with the negative edges) across corresponding matrix cells to 189 
evaluate the inter-network sex differences.  190 

2.8 Intra-network significant-edge analyses 191 

Intra-network analyses were performed similarly to inter-network analyses above.  Edges from 192 
binarized positively and negatively correlated connectivity matrices were summed across the 5 193 
folds and 1000 iterations to generate a single value for each edge. These values were then used to 194 
generate the intra-DMN edge heatmap, with values ranging from -5000 (maximum negatively 195 
correlated) to 5000 (maximum positively correlated value). To evaluate differences in the “top-196 
performing” nodes according to sex, individual edge values were summed across each row from 197 
the matrices and divided by 2 to account for the symmetric nature of the matrix, generating a 198 
summed vector (SV). 199 

2.9 Network segregation analyses 200 

We evaluated network segregation, a measure of the relative strength of within-network 201 
connections to between-network connections, using a novel association ratio metric. We defined 202 
the association ratio as the weighted sum of all edges within the network of interest, normalized 203 
by the weighted sum of all edges between this network and the whole set of regions of interest. 204 
Higher association ratio is therefore indicative of higher network segregation. To compare 205 
network segregation levels between sexes, we calculated and compared (using two-sample t-206 
tests) the association ratio for certain networks of interest in women and men for each scan type. 207 
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 8 

Benjamini-Hochberg correction (see above) was applied to correct for 7 significance tests (for 208 
each model) across the 4 networks. 209 

2.10 Data and code availability 210 

Data from the HCP-A study are openly available (https://www.humanconnectome.org/study/hcp-211 
lifespan-aging/data-releases). Image preprocessing was performed using BioImageSuite, a 212 
publicly-available software (https://medicine.yale.edu/bioimaging/suite/). Scripts for running 213 
CPM are available through GitHub (https://github.com/YaleMRRC/CPM). Other MATLAB 214 
scripts for CPM analyses can be found at https://github.com/frederickslab/CPM_HCP-215 
A_sex_difference_study. Custom MATLAB colormap palettes were derived from ColorBrewer 216 
(http://colorbrewer.org/; Brewer, 2022). 217 

3 Results 218 

3.1 Model performance comparison 219 

Please see Supplementary Results for details on model comparisons, including comparisons 220 
between models derived separately for each sex. Briefly, we trained and cross-validated models 221 
using functional connectivity data from all 7 scans to predict memory performance scores. 222 
Whole-group models robustly predicted all memory measures, with accuracies ranging from 223 
Spearman’s rho = 0.21 (RMSE = 3.34, p<0.0001) to rho = 0.45 (RMSE = 2.67, p<0.0001) across 224 
all models (Supplementary Figure 2). Models using the FaceName tfMRI scan consistently 225 
outperformed all other models; we therefore proceeded with models from this scan for the 226 
remaining analyses. 227 

3.2 Inter-network significant-edge analyses 228 

Visualizations of inter-network edges (number of significant edges normalized by network size) 229 
across all FaceName tfMRI models revealed differences in key edges predicting memory score 230 
for each sex. In particular, edges within the DMN and visual (visual I [VI], visual II [VII], and 231 
visual association areas [VAs]) networks showed the largest differences (Figure 1, 232 
Supplementary Figure 6). Given previous work showing measures of declarative verbal 233 
memory (including RAVLT metrics) can be predicted from the gray matter density of DMN 234 
structures, and because lower RAVLT-IR scores are associated with preclinical AD, we 235 
concentrated on the RAVLT-IR predictors derived from FaceName tfMRI models (Estévez-236 
González et al., 2003; Moradi et al., 2017). In addition to visualizing the inter-network edges of 237 
females and males separately, we subtracted male-group edges from female-group edges across 238 
corresponding heatmap cells to evaluate inter-network differences between the sexes (Figure 1).  239 
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 240 

Figure 1. Positive and negative matrices from the RAVLT-IR-predicting model showing inter-241 
network connections (number of significant edges normalized by network size for each network 242 
pair) for female and male subjects, as well as the difference between both sexes (derived by 243 
subtracting male inter-network edges from female inter-network edges). Both sexes show 244 
positive predictors in the intra-DMN edges. Female subjects show more positive predictors in the 245 
intra-VI-network edges relative to male subjects, while male subjects show more positive 246 
predictors in the intra- and inter-visual (VII and VAs)-network edges relative to female subjects. 247 
Negative predictors of both sexes relied on edges between DMN and visual networks; however, 248 
male subjects’ negative predictors relied more on edges between the MF and VII networks than 249 
those of female subjects (Abbreviations: F, female; M, male; MF, medial frontal; FP, fronto-250 
parietal; DMN, default mode network; Mot, motor; VI, visual I; VII, visual II; VAs, visual 251 
association areas; SAL, limbic; SC, basal ganglia; CBL, cerebellum; RAVLT-IR, RAVLT-252 
Immediate Recall). 253 

Both sexes show positive predictors with intra-DMN edges, with female scores predicting intra-254 
DMN connectivity more strongly than those of males. Female positive predictors also relied 255 
more strongly on intra-VI edges than those of males, while male positive predictors relied more 256 
strongly on the intra- and inter-network connectivity of the VII and VAs networks relative to 257 
those of females. Both sexes displayed negative predictors with edges between DMN and visual 258 
networks; however, males show more negative predictors with edges between the MF and VII 259 
networks, as well as between the DMN and VII networks, relative to females.  260 

3.3 Intra-network significant-edge analyses 261 
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Given the preferential contribution of intra-DMN edges to the female models, we examined all 262 
intra-DMN edges and evaluated their strengths in male and female models. To do so, we 263 
generated a heatmap of intra-DMN edges (Figure 2). In the RAVLT-IR model, we found that 264 
edges from more posterior DMN nodes were preferentially increased in females as opposed to 265 
males. This trend held true for the RAVLT-L model and FN-TR models (Supplementary 266 
Figure 7). Negatively correlated edges negligibly contributed to both male and female models 267 
(Figure 2, Supplementary Figure 7). Both sexes displayed strong connections in the left 268 
posterior cingulate cortex (L PCC) and precuneus, known hubs of the DMN.  269 

To summarize node-level differences, we summed the number of edges associated with each 270 
node and found consistent female preference for activity of the right posterior inferior parietal 271 
lobe (R pIPL) and left anterior medial prefrontal cortex (L amPFC)/paracingulate cortex (Figure 272 
2). The R pIPL was consistently and preferentially elevated in all female models analyzed 273 
(Supplementary Figure 7). This analysis demonstrates differential edge- and node-level 274 
contributions to male and female models.  275 

 276 

Figure 2. Intra-DMN connectivity differences between males and females. Intra-DMN edge 277 
counts from the RAVLT-IR models were calculated and plotted as a heat map (female - male 278 
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edge counts). Red indicates higher female counts and blue indicates higher male counts for each 279 
edge (Abbreviations: RAVLT-IR, RAVLT-Immediate Recall; L, left; R, right; dmPFC, 280 
dorsomedial prefrontal cortex; MFG, middle frontal gyrus; AG, angular gyrus; aMPFC, anterior 281 
medial prefrontal cortex; PCC, posterior cingulate cortex; pIPL, posterior inferior parietal lobe; 282 
PHG, parahippocampal gyrus; vmPFC, ventromedial prefrontal cortex; CC, corpus callosum; 283 
SV, summed vector). 284 

3.4 Network segregation analyses 285 

We then evaluated and compared a metric of network segregation (see Methods, “Network 286 
Segregation Analysis”) within the DMN and visual (VI, VII, VAs) networks between females 287 
and males, given the strong brain-behavior correlations in these networks across all memory 288 
performance outcomes. Our analysis demonstrated increased network segregation of the DMN in 289 
females relative to males, and increased network segregation of VII and VAs in males relative to 290 
females (Table 2). Additionally, these findings echoed our previous CPM analysis results in that 291 
we also observed sex differences in neurobiological organization.  292 

Scan Type Default Mode 
Network (DMN) 

Visual I (VI) 
Network 

Visual II (VII) 
Network 

Visual Association 
Areas (VAs) 

REST1_AP 3.17 (0.0016) -1.32 (0.1879)† -9.02 (2.69E-18) -4.32 (1.87E-05) 

REST1_PA 3.45 (0.0006) -0.40 (0.6920)† -7.79 (3.18E-14) -3.92 (0.0001) 

REST2_AP 1.21 (0.2259)† -0.92 (0.3557)† -7.07 (4.42E-12) -5.16 (3.47E-07) 

REST2_PA 2.04 (0.0419)† 0.07 (0.9425)† -6.38 (3.66E-10) -2.55 (0.0111) 

CARIT 2.57 (0.0104) 2.11 (0.0349)† -5.33 (1.40E-07) -0.54 (0.5864)† 

FACENAME 1.18 (0.2397)† 1.74 (0.0821)† -4.46 (9.71E-06) -1.03 (0.3017)† 

VISMOTOR 0.20 (0.8399)† -0.47 (0.6360)† -3.33 (0.0009) -3.06 (0.0023) 

Table 2. Network segregation differences between female and male subjects. Two-sample t-tests 293 
comparing the association ratios for networks of interest between the sexes revealed increased 294 
DMN segregation in female subjects and increased VII and VAs network segregation in male 295 
subjects. Red indicates significantly higher network segregation in female subjects than male 296 
subjects and blue indicates significantly higher network segregation in male subjects than female 297 
subjects. We report these results as ‘t-statistic (p-value)’ in the table. † indicates the models that 298 
did not survive correction for multiple comparisons. 299 

4 Discussion 300 

We use CPM to identify sex differences in the functional connectivity underlying memory 301 
performance in a large sample of healthy aging adults. We provide evidence that distinct edges 302 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.21.521314doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.21.521314
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

for men and women predict short-term verbal memory task performance, and that within-DMN 303 
edges contribute more to memory scores in females than in males. Predictive edges for males, in 304 
contrast, include more edges within and across visual sensory and association networks. In 305 
contrast to prior literature suggesting globally decreased network segregation in older women 306 
compared with men, we also show higher segregation of the DMN (but lower segregation of 307 
visual sensory and association networks) in women.  308 

These findings imply that when compared with males, females have a higher reliance upon 309 
connections within the DMN, the intrinsic connectivity network targeted in AD, in performing 310 
memory-related tasks. Increased DMN connectivity, particularly in posterior nodes, has been 311 
associated with vulnerability to Alzheimer’s disease (Bookheimer et al., 2000; Filippini et al., 312 
2009; Sperling et al., 2009; Mormino et al., 2011; Schultz et al., 2017); increased connectivity in 313 
preclinical AD settings is thought to represent the compensatory response of a network under 314 
stress (Bondi et al., 2005; Filippini et al., 2009; Qi et al., 2010; Mormino et al., 2011), and 315 
symptomatic disease is associated with progressive hypoconnectivity across the network 316 
(Greicius et al., 2004; Sheline et al., 2010; Brier et al., 2012).  317 

This study and our previous findings in the same dataset (Ficek-Tani et al., In press) converge on 318 
an emerging narrative of increased connectivity and functional segregation of the DMN in aging 319 
women. Women rely upon specific DMN edges for memory performance; connections between 320 
the bilateral pIPL and the two greatest hubs of the DMN, the mPFC and the PCC/precuneus are 321 
the strongest predictors. Our prior work suggests that women have relatively increased within-322 
DMN connectivity compared with men, particularly in posterior nodes and particularly during 323 
perimenopausal decades (Ficek-Tani et al., In press). Reliance upon intra-DMN edges for 324 
memory performance likely has its advantages: we and others have shown that DMN 325 
connectivity, particularly between posterior nodes, correlates with memory task performance 326 
(Fredericks et al., 2019; Natu et al., 2019; Kang et al., 2021; Vanneste et al., 2021; Ficek-Tani et 327 
al., In press), and the literature consistently demonstrates that women outperform men across the 328 
lifespan in tests of verbal episodic memory (Bleecker et al., 1988; Herlitz, Nilsson and Bäckman, 329 
1997; Golchert et al., 2019). 330 

We also find relatively greater functional segregation of the DMN in women than in men. 331 
Functional segregation (i.e., reliance on within- more than between-network connectivity to 332 
perform a network-associated task) declines across the brain with aging, and is associated with 333 
decreased performance on tests of attention and memory performance (Chan et al., 2014; 334 
Geerligs et al., 2015; Ng et al., 2016). AD pathology is associated with decreased functional 335 
segregation (Cassady et al., 2021), and prior work in this field has suggested that women show 336 
decreased functional segregation over the course of aging and during memory task performance 337 
specifically (Ingalhalikar et al., 2014; Rabipour et al., 2021; Subramaniapillai et al., 2022), 338 
potentially relating to AD vulnerability (Rabipour et al., 2021). We show that sex differences in 339 
segregation are network-specific: women have relatively decreased segregation of visual sensory 340 
and visual association networks, but increased DMN segregation relative to men. 341 

5 Limitations and Future Directions 342 

While the HCP-A dataset has many strengths, it has limitations. Specifically, while the dataset is 343 
large and offers very high-quality neuroimaging and neuropsychological characterization, it is 344 
cross-sectional, so we cannot assess for longitudinal effects. Second, amyloid biomarkers are not 345 
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available for the participants, so we cannot examine the effect of preclinical AD on the measures 346 
of interest.  347 

In terms of our results, we identify specific edges within the brain connectome and within the 348 
DMN in particular that contribute to memory performance in women specifically. The 349 
translational impact of these findings will depend on future work investigating whether these 350 
edges share a common gene expression pattern or other characteristic at the cellular level, which 351 
could be leveraged towards a potential therapeutic target. Additionally, our analyses suggest that 352 
edges between the visual sensory networks and the cerebellum may play an important role in 353 
memory performance, particularly for women. Future analyses that parcellate the cerebellum will 354 
be important for interpreting this finding, given that the cerebellum participates in many intrinsic 355 
connectivity networks (Buckner et al., 2011). 356 

Finally, our work addresses the impact of self-reported sex on network changes, but AD risk in 357 
women also depends upon gender-based factors such as lack of access to activities which 358 
promote cognitive reserve, such as cardiovascular exercise, occupational complexity, and 359 
educational attainment (Mielke, Vemuri and Rocca, 2014). Additionally, the interplay of 360 
assigned sex at birth and gender identity was not assessed due to a lack of the required 361 
information in the HCP dataset. While we used self-identified sex to distinguish subjects, this 362 
categorization may not capture the complex dynamics that may contribute to the sex differences 363 
described above. Future work should seek to incorporate other variables, as has been recently 364 
suggested regarding ovarian hormone status (Rocks, Cham and Kundakovic, 2022), and to 365 
incorporate metrics of cognitive reserve.  366 

6 Conclusion 367 

In summary, this study makes three key contributions to our understanding of sex differences in 368 
brain circuitry driving memory performance, which could have implications for women’s higher 369 
vulnerability to AD. First, we found that women relied more on within-network DMN edges 370 
(specifically bilateral posterior inferior parietal lobe and its connections to the major DMN hubs, 371 
medial prefrontal cortex and posterior cingulate/precuneus) for memory task performance than 372 
did men. Second, we determined that men’s memory task performance was predicted by edges 373 
distributed more broadly both within and between visual sensory and visual association networks 374 
and the medial frontal network. Finally, in contrast to prior literature which suggests increased 375 
generalization of cognitive circuits in aging women, we show that women have relatively greater 376 
functional segregation of the DMN than men during memory task performance. 377 

This work adds to the growing literature suggesting that women rely more on the DMN than do 378 
men both at rest and during memory task performance. At rest, women have relatively higher 379 
DMN connectivity (Biswal et al., 2010; Scheinost et al., 2015; Cavedo et al., 2018; Ritchie et 380 
al., 2018; Ficek-Tani et al., In press), with higher posterior DMN connectivity particularly 381 
during the menopausal decades (Ficek-Tani et al., In press); this increased connectivity 382 
correlates with better performance on tests of short-term memory (Fredericks et al., 2019; Natu 383 
et al., 2019; Kang et al., 2021; Vanneste et al., 2021; Ficek-Tani et al., In press). This profile is 384 
similar to individuals with preclinical (amyloid-β +) or elevated genetic risk (e.g. APOE-ε4+) for 385 
AD (Bookheimer et al., 2000; Filippini et al., 2009; Sperling et al., 2009; Mormino et al., 2011; 386 
Schultz et al., 2017).  387 
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We need to understand why AD has a more aggressive phenotype in women. Taken together this 388 
work adds to a body of literature that suggests that women’s relative increased reliance on 389 
within-DMN connectivity could lead to “overuse” and vulnerability of this network to pathology 390 
over time. Future work examining the common cellular features of the nodes composing 391 
women’s strongest predictive edges have the potential to translate as therapeutic targets.  392 
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