

Establishment of Bovine Trophoblast Stem Cells

Yinjuan Wang¹, Leqian Yu^{2, 3}, Jie Li^{4,5,6}, Linkai Zhu⁷, Hao Ming¹, Carlos Pinzon Arteaga², Hai-Xi Sun^{4,5,6}, Jun Wu^{2,8,9, #}, Zongliang Jiang^{1,7, #}

¹ School of Animal Sciences, AgCenter, Louisiana State University, LA 70803, USA.

² Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

³ Current affiliation: The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China

⁴ BGI-Shenzhen, Shenzhen 518083, Guangdong, China.

⁵ BGI-Beijing, Beijing, 102601, China.

⁶ College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

⁷ Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA.

⁸ Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

⁹ Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

24 **Abstract**

25 Here we report that a chemical cocktail (LCDM: hLIF, CHIR99021, DiM and MiH)
26 previously used for extended potential pluripotent stem cells enables the de novo derivation and
27 long-term culture of bovine trophoblast stem cells (TSCs). Bovine TSCs exhibit transcriptomic
28 and epigenetic features characteristic of trophectoderm cells from bovine embryos and retain
29 developmental potency to differentiate into mature trophoblast cells.

30

31 **Introduction**

32 Trophoblasts are specialized cells in the placenta that mediate maternal-fetal crosstalk
33 and are originated from the trophectoderm (TE) of the blastocyst. Pregnancy establishment in
34 cattle requires TE elongation, a unique process in ruminants prior to apposition, attachment, and
35 implantation [1]. Although proper placental development and function are pivotal for gestational
36 success and the failure of which often results in a range of adverse pregnancy outcomes [2-4],
37 there lacks *in vitro* models to study ruminant trophoblast development. Trophoblast stem cells
38 (TSCs) have been established from several rodent and primate species including mice [5],
39 humans [6], and nonhuman primates [7]. Despite several attempts [8-10], however, bona fide
40 bovine TSCs that withstand the rigor of long-term culture have yet to be derived.

41

42 **Results**

43 TE cells of bovine blastocysts retain the plasticity to generate ICM cells, and vice versa
44 [11, 12], which prompted us to test de novo derivation of bovine TSCs with different combinations
45 of basal media, growth factors and chemicals that were previously used for culturing pluripotent
46 stem cells (PSCs) (**Extended Data Table. 1**). We identified four conditions that could support
47 bovine blastocyst outgrowth for several passages on mouse embryonic fibroblasts (MEF) feeder
48 cells (**Fig. 1a, b and Extended Data Fig. 1a**). Interestingly, an extended pluripotent stem cell
49 (EPSC) culture condition, LCDM (hLIF, CHIR99021, DiM and MiH) [13], was most effective to
50 support long term passage (more than 70 passages at the time of writing) of bovine TSC-like cells
51 (bTSC-LCs) from blastocyst outgrowth. Removing each of hLIF, CHIR99021, DiM and MiH failed
52 to maintain the morphology and self-renew of bTSC-LCs (data not shown). bTSC-LCs could also
53 be maintained feeder-free on Matrigel in the presence of MEF-conditioned LCDM medium (**Fig.**
54 **1b**). Further characterization revealed that: 1) bTSC-LCs maintained stable colony morphology
55 and a normal diploid number of chromosomes (60) after long-term *in vitro* culture (**Fig. 1b and**
56 **Extended Data Fig. 1b**). 2) bTSC-LCs highly expressed TE-related transcription factors (TFs)
57 (CDX2, SFN, ELF3, GATA3, ASCL2, GATA2 and ETS2) (**Extended Data Fig. 1c**). 3) Similar to
58 TE cells in bovine blastocysts, at the protein level, bTSC-LCs expressed CDX2, GATA3 and KRT8
59 but not SOX2 (**Fig. 1c and Extended Data Fig. 1d**). 4) The majority of bTSC-LCs were found
60 GATA3+ (**Fig. 1d**). Collectively, these results demonstrate that the LCDM medium supports de
61 novo derivation and long-term self-renewal of bTSC-LCs.

62

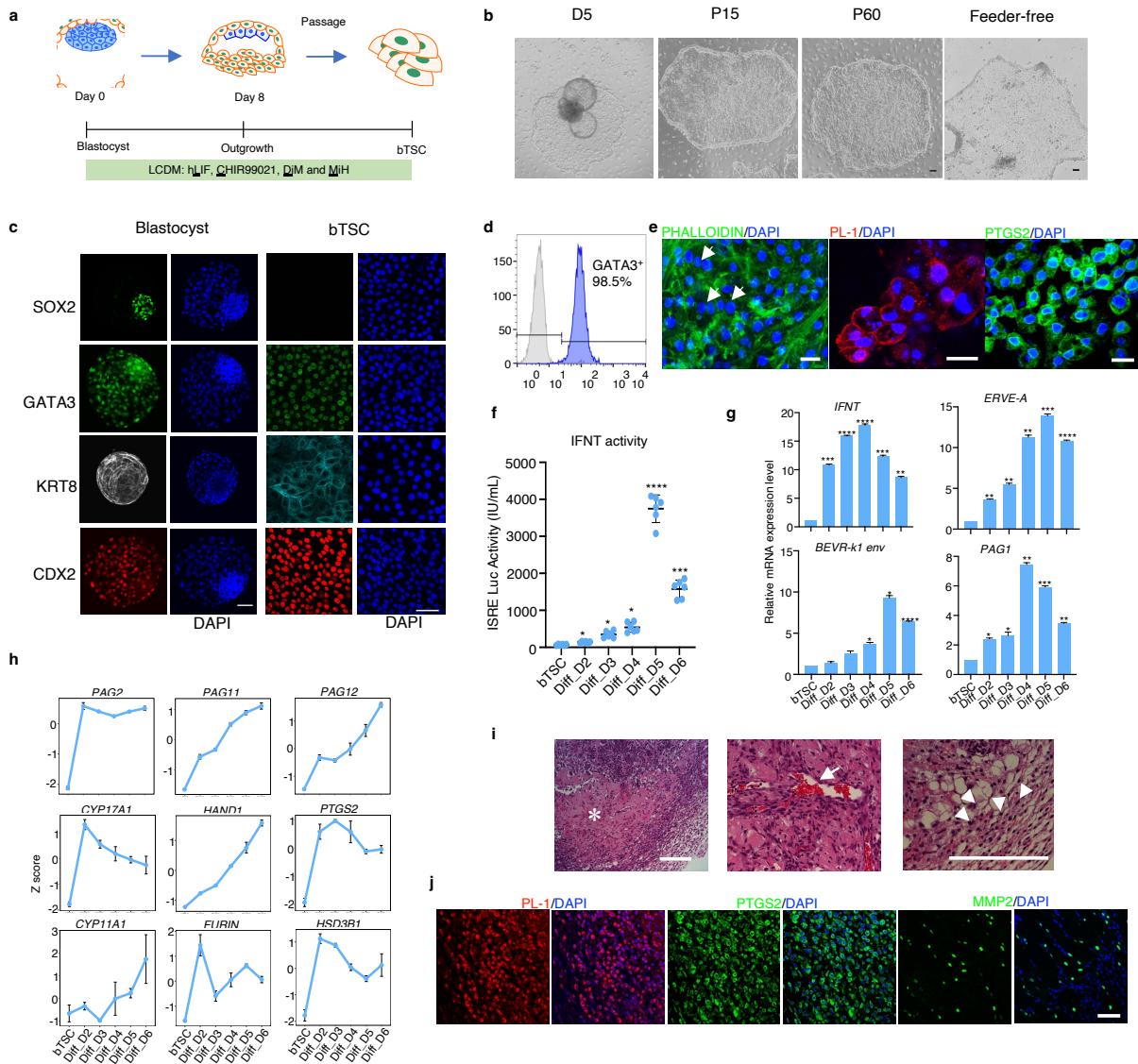
63 We next assessed the differentiation potential of bTSC-LCs *in vitro*. We found a condition
64 containing forskolin, Y27632 and 4% knockout serum replacement (KSR) enabled the
65 differentiation of bTSC-LCs into bi-nucleated cells, which expressed trophoblast markers PTGS2
66 and placental lactogen 1 (PL-1) (**Fig. 1e and Extended Data Fig. 1e, f, g**). In ruminants, interferon
67 tau (IFNT) produced by mature trophoblast cells is known as a signal for maternal recognition of

68 pregnancy [14]. By using a luciferase-based IFN stimulatory response element (ISRE) assay [15],
69 we found IFNT production significantly increased upon differentiation of bTSC-LCs and peaked
70 around day 5 (**Fig. 1f**). qRT-PCR analysis further showed that the expression of *IFNT* and mature
71 trophoblast markers (*BEVR-k1 env*, *bEPVE-A* [16] and pregnancy associated glycoproteins 1
72 (*PAG1*) [17]) were significantly upregulated following bTSC-LCs differentiation (**Fig. 1g**). We
73 performed RNA-sequencing (RNA-seq) across six timepoints during bTSC-LCs differentiation
74 and found bTSC-LCs transitioned through an intermediate stage on day 2 before further
75 differentiation into more mature trophoblast cells between days 3-6 (**Extended Data Fig. 2a**). As
76 expected, RNA-seq analysis showed that PAG family genes (*PAG2*, *PAG11* and *PAG12*) and
77 well-known bovine placental markers (*CYP11A1*, *CYP17A1*, *FURIN*, *HAND1*, *PTGS2* and
78 *HSD3B1*) [17-19] were upregulated during differentiation (**Fig. 1h**). Differentiated trophoblasts
79 (day 4) had an up-regulation of genes with their gene ontology (GO) terms related to
80 morphogenesis, cell migration, and locomotion (**Extended Data Fig. 2b**), suggesting the
81 presence of invasive trophoblast cells. In addition, differentiated trophoblast cells expressed a
82 number of genes involved in signaling pathways such as ECM-receptor interaction, TNF, IL-17,
83 and MAPK signaling (**Extended Data Fig. 2c**), which is consistent with the increase of these
84 signaling activities during implantation and placental development in ruminants and humans [20-
85 22].

86
87 We also determined the differentiation potential of bTSC-LCs by subcutaneously injecting
88 them into NOD-SCID mice. By day 9, the injected bTSC-LCs formed ~0.5 cm lesions (**Extended**
89 **Data Fig. 2d**). Immunohistological analysis revealed that the central area of the lesions was
90 necrotic, and the lesions contained blood-filled lacunae-like structures (**Fig. 1i**), similar to the
91 lesions formed by mouse [23] and human TSCs [6]. Binucleated cells were identified in the
92 peripheral regions of the lesions and expressed PL-1 and PTGS2, suggesting trophoblast
93 maturation (**Fig. 1i and j**). We also identified MMP2 (a key factor for trophoblast-endometrial
94 epithelia crosstalk and remodeling of endometrial matrices [24]) positive cells at the margins of
95 the lesions (**Fig. 1j**). Together, these data demonstrate that bTSC-LCs can generate mature
96 trophoblast cells *in vitro* and *in vivo*, and hereafter we refer them as bTSCs.

97
98 We compared the transcriptomes of bTSCs with those from early placental cell types at
99 two different developmental stages: TE of pre-implantation blastocysts (D7_TE) and day 14
100 embryos (Day 14_TE) [25], and two types of pluripotent stem cells: bovine expanded potential
101 stem cells (bEPSCs) [26] and bovine primed ESCs (bESCs) [27] (**Fig. 2a**). Principal component
102 analysis placed bTSCs in between day 7_TE and day 14_TE, and away from bESC and bEPSCs
103 (**Fig. 2a**). Additional transcriptomic comparisons of TSCs and ESCs among cattle [27], humans
104 [6, 28] and mice [29, 30] confirmed the lineage identity of bTSCs (**Fig. 2b**). bTSCs highly
105 expressed two pluripotency markers *LIN28A* and *SALL4* (**Fig. 2c**), and trophoblast markers *KRT7*,
106 *TEAD3*, *ELF3*, *CDX2*, and *TFAP2A*, which is in contrast with TE cells of early embryos (**Fig. 2c**).
107 In addition, bTSC transcriptomes were enriched with GO terms including intracellular transport
108 and metabolic process (**Extended Data Fig. 3a**) when compared to D7_TE and D14_TE, and
109 hippo signaling pathway, lysosome and tight junction when compared to bESCs and bEPSCs
110 (**Extended Data Fig. 3b**). Of note, signaling pathways including focal adhesion and HIF-1 were
111 also uniquely enriched in bTSCs (**Fig. 2d**).

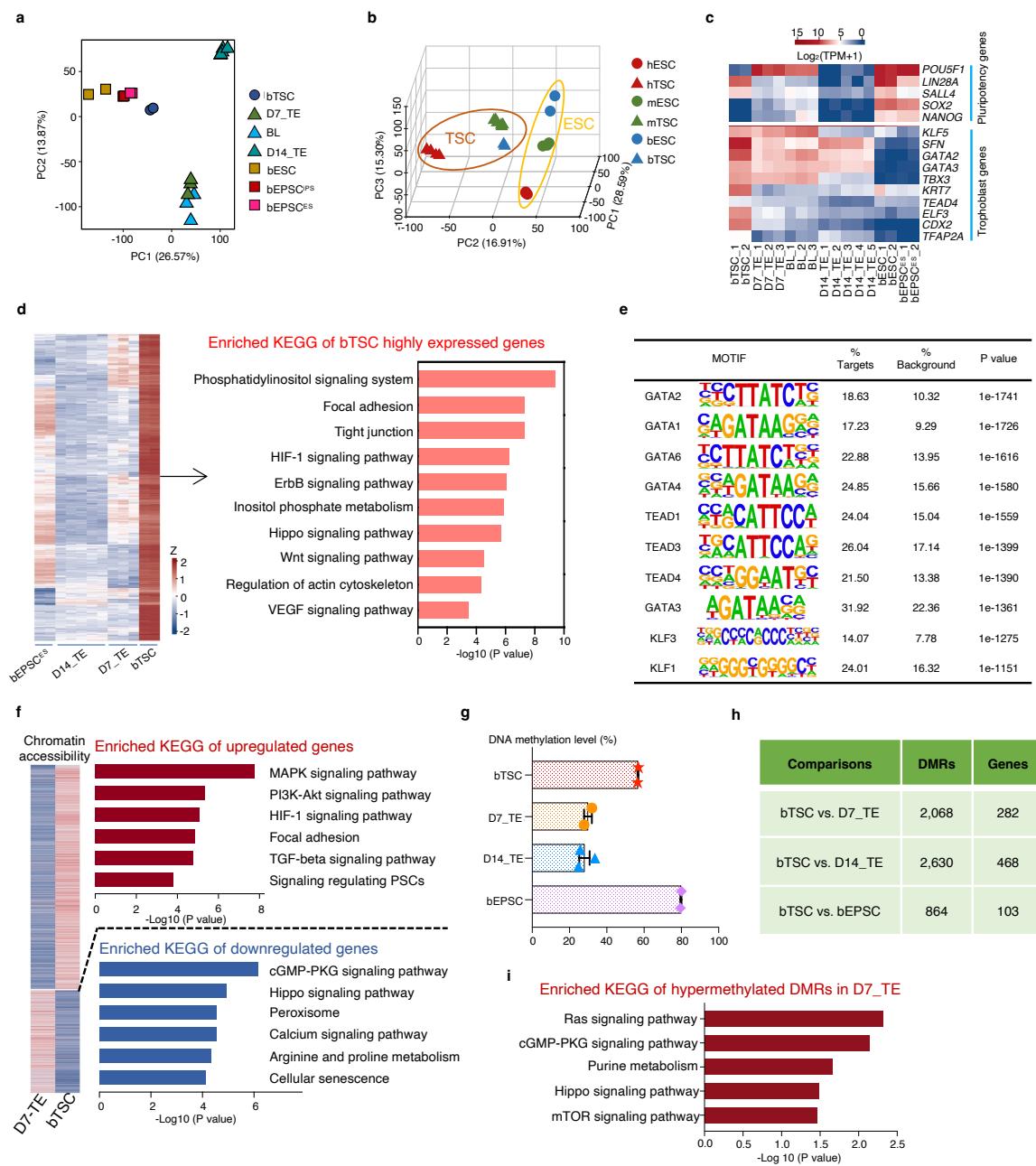
112


113 We also revealed epigenomic features of bTSCs by ATAC-seq and whole genome bisulfite
114 sequencing (WGBS) analyses. We confirmed that trophoblast TFs were among top enriched
115 binding motifs in bTSCs (**Fig. 2e**). Analysis of differential enrichment of ATAC-seq peaks between
116 bTSCs and D7_TE/D14_TE further confirmed the overrepresentation of focal adhesion and HIF-
117 1 signaling pathway in bTSCs (**Fig. 2f, and Extended Data Fig. 3c**). WGBS analysis showed
118 that the overall methylation level of bTSCs (56.75%) were much higher than that of D7_TE
119 (29.90%) and D14_TE (28.03%), but lower than that of bEPSCs [26] (79.80%) (**Fig. 2g**). This is
120 in line with the higher levels of DNA methyltransferases (*DNMT1*, *DNMT3A* and *DNMT3B*) in
121 bTSCs and bEPSCs (**Extended Data Fig. 3d**). We were able to identify differentially methylated
122 regions (DMRs) between bTSCs and D7_TE/D14_TE (**Fig. 2h**). Of note, hypomethylated regions
123 in bTSCs included genes that were involved in Ras, cGMP-PKG, calcium signaling and purine
124 metabolism (**Fig. 2i and Extended Data Fig. 3e**). Together, our RNA-seq, ATAC-seq and WGBS
125 analyses provided comprehensive transcriptome and epigenome profiles of bTSCs and shed
126 lights on the molecular features during the earliest steps of placenta development in bovine.
127

128

Conclusion

129 In this study, we demonstrated that an EPSC culture condition (LCDM) could support de
130 novo derivation of stable bovine TSCs from blastocysts. LCDM-derived bovine TSCs showed the
131 capacity to self-renew long-term in culture while retained the potential to differentiate into mature
132 trophoblast cells. Comprehensive transcriptome and epigenome analyses of bovine TSCs and
133 TEs revealed the molecular features during bovine early placenta development and predicted key
134 regulators of bovine trophoblast differentiation, filling a gap and adding invaluable information of
135 placenta development of an ungulate species. The bovine TSCs established in this study not only
136 serves a model to study the unique placentation process in the ruminants and early pregnancy
137 failure, but also enables the first generation of blastocyst-like structures (blastoids) from a large
138 livestock species (Arteaga et al., manuscript co-submitted).


Fig. 1

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Fig. 1. Derivation and characterization of bovine TSC. **a**, Illustration of the derivation of bovine TSC from blastocyst. **b**, Bright field images of the outgrowths of blastocysts and typical morphologies of bovine TSC on feeder or feeder-free. D5: outgrowth after 5 days culture; P15: passage 15; P60: passage 60. Scale bar: 100 μ m. **c**, Immunostaining for epiblast marker SOX2, and trophoblast marker (GATA3, KRT8 and CDX2) in bovine Day 7 IVF blastocysts and bTSC. (Scale bar: 50 μ m). **d**, Flow cytometry quantification of GATA3 positive cell population in bTSC. **e**, Immunostaining for bovine mature trophoblast markers (PL-1 and PTGS2) in differentiated-bTSC (P55). Scale bar: 25 μ m. **f**, IFNT activity secreted by bTSC and trophoblast cells differentiated from bTSC from Day 2 to Day 6 (n=6). IFNT: interferon tau. **g**, Expression levels of *IFNT*, *ERVE-A*, *BEVR-k1 env* and *PAG1* during *in vitro* differentiation. **h**, Expression dynamics of mature trophoblast cell marker genes (*PAG1*, *PAG11*, *PAG12*, *CYP17A1*, *HAND1*, *PTGS2*, *CYP11A1*, *FURIN* and *HSD3B1*) during bTSC *in vitro* differentiation. **i**, H&E staining analysis of bovine TSC-derived lesion. Asterisk: necrotic area; Arrow: blood-filled lacunae; Arrowhead: binucleate cells. Scale bar: 200 μ m. **j**, Immunostaining for mature trophoblast markers (PL-1, PTGS2) and trophoblast-endometrial regulator (MMP2) in TS-derived lesion. Scale bar: 75 μ m.

Fig. 2

Fig 2. Transcriptomic and epigenomic features of bovine TSC. **a**, PCA analysis of transcriptomes of bTSC, trophectoderm of day 7 IVF blastocyst (D7_TE), and day 14 embryos (D14_TE), day 7 IVF blastocyst (BL), bovine expanded potential stem cells (bEPSCs) and bovine primed ESCs (bESCs). **b**, PCA analysis of transcriptomes of ESC and TSC from three species, human, mouse, and bovine. **c**, Expression pattern of trophoblast and pluripotency marker genes in bTSC, D7_TE, BL, D14_TE, bESC and bEPSC. **d**, Heatmap showing highly specifically expressed genes in bTSC (left panel), and their enriched KEGG pathways (right panel). **e**, Motif enrichment analysis of ATAC-seq peaks from bTSC. **f**, Pathways enriched in genes with more accessible or closed chromatin in bTSC compared to D7_TE. **g**, Average genome-wide DNA methylation levels of bTSC, D7_TE, D14_TE and bEPSC (bTSC, D7_TE and bEPSC: $n=2$; D14_TE: $n=3$). **h**, The total number of identified differentially methylated regions (DMRs) and their

168 annotated genes between bTSCs and D7_TE or D14_TE. **i**, Enriched pathways associated with
169 genes annotated from hypomethylated DMRs in bTSC compared to D7_TE.

170 **References**

171 1. Spencer, T.E., N. Forde, and P. Lonergan, *Insights into conceptus elongation and*
172 *establishment of pregnancy in ruminants*. Reprod Fertil Dev, 2016. **29**(1): p. 84-100.

173 2. Sigdel, A., R.S. Bisinotto, and F. Peñagaricano, *Genes and pathways associated with*
174 *pregnancy loss in dairy cattle*. Sci Rep, 2021. **11**(1): p. 13329.

175 3. Gao, G., et al., *Transcriptome-wide analysis of the SCNT bovine abnormal placenta*
176 *during mid- to late gestation*. Sci Rep, 2019. **9**(1): p. 20035.

177 4. Davies, C.J., et al., *Major histocompatibility antigen expression on the bovine placenta:*
178 *its relationship to abnormal pregnancies and retained placenta*. Anim Reprod Sci, 2004.
179 **82-83**: p. 267-80.

180 5. Tanaka, S., et al., *Promotion of trophoblast stem cell proliferation by FGF4*. Science,
181 1998. **282**(5396): p. 2072-5.

182 6. Okae, H., et al., *Derivation of Human Trophoblast Stem Cells*. Cell Stem Cell, 2018.
183 **22**(1): p. 50-63.e6.

184 7. Matsumoto, S., et al., *Establishment of macaque trophoblast stem cell lines derived from*
185 *cynomolgus monkey blastocysts*. Scientific reports, 2020. **10**(1): p. 1-15.

186 8. Talbot, N.C., et al., *Bovine blastocyst-derived trophectoderm and endoderm cell cultures:*
187 *interferon tau and transferrin expression as respective in vitro markers*. Biol Reprod,
188 2000. **62**(2): p. 235-47.

189 9. Shimada, A., et al., *Isolation and characterization of a bovine blastocyst-derived*
190 *trophoblastic cell line, BT-1: development of a culture system in the absence of feeder*
191 *cell*. Placenta, 2001. **22**(7): p. 652-62.

192 10. Pillai, V.V., et al., *Physiological profile of undifferentiated bovine blastocyst-derived*
193 *trophoblasts*. Biol Open, 2019. **8**(5).

194 11. Berg, D.K., et al., *Trophectoderm lineage determination in cattle*. Dev Cell, 2011. **20**(2):
195 p. 244-55.

196 12. Kohri, N., et al., *Trophectoderm regeneration to support full-term development in the*
197 *inner cell mass isolated from bovine blastocyst*. J Biol Chem, 2019. **294**(50): p. 19209-
198 19223.

199 13. Yang, Y., et al., *Derivation of Pluripotent Stem Cells with In Vivo Embryonic and*
200 *Extraembryonic Potency*. Cell, 2017. **169**(2): p. 243-257.e25.

201 14. Bazer, F.W., G. Wu, and G.A. Johnson, *Pregnancy recognition signals in mammals: the*
202 *roles of interferons and estrogens*. Animal Reproduction (AR), 2018. **14**(1): p. 7-29.

203 15. McCoski, S.R., et al., *Validation of an interferon stimulatory response element reporter*
204 *gene assay for quantifying type I interferons*. Domest Anim Endocrinol, 2014. **47**: p. 22-
205 6.

206 16. Koshi, K., et al., *Bovine trophoblastic cell differentiation and binucleation involves*
207 *enhanced endogenous retrovirus element expression*. Reprod Biol Endocrinol, 2012. **10**:
208 p. 41.

209 17. Mamo, S., et al., *RNA sequencing reveals novel gene clusters in bovine conceptuses*
210 *associated with maternal recognition of pregnancy and implantation*. Biol Reprod, 2011.
211 **85**(6): p. 1143-51.

212 18. Polei, M., et al., *Trophoblast cell differentiation in the bovine placenta: differentially*
213 *expressed genes between uninucleate trophoblast cells and trophoblast giant cells are*
214 *involved in the composition and remodeling of the extracellular matrix and O-glycan*
215 *biosynthesis*. BMC Mol Cell Biol, 2020. **21**(1): p. 1.

216 19. Brooks, K., G. Burns, and T.E. Spencer, *Conceptus elongation in ruminants: roles of*
217 *progesterone, prostaglandin, interferon tau and cortisol*. J Anim Sci Biotechnol, 2014.
218 **5**(1): p. 53.

219 20. Luo, N., et al., *Screening Candidate Genes Regulating Placental Development from*
220 *Trophoblast Transcriptome at Early Pregnancy in Dazu Black Goats (Capra hircus)*.
221 *Animals* (Basel), 2021. **11**(7).

222 21. You, Y., et al., *TNF- α Regulated Endometrial Stroma Secretome Promotes Trophoblast*
223 *Invasion*. Front Immunol, 2021. **12**: p. 737401.

224 22. Li, W., et al., *Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from*
225 *cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-*
226 *NFKB and MAPK1/3 pathway*. Biol Reprod, 2010. **83**(3): p. 481-7.

227 23. Kibschull, M., et al., *Connexin31-deficient trophoblast stem cells: a model to analyze the*
228 *role of gap junction communication in mouse placental development*. Dev Biol, 2004.
229 **273**(1): p. 63-75.

230 24. Kizaki, K., et al., *Gelatinase (MMP-2 and -9) expression profiles during gestation in the*
231 *bovine endometrium*. Reproductive Biology and Endocrinology, 2008. **6**(1): p. 1-11.

232 25. Gutierrez-Castillo, E., et al., *Effect of vitrification on global gene expression dynamics of*
233 *bovine elongating embryos*. Reproduction, Fertility and Development. **33**(5): p. 338-348.

234 26. Zhao, L., et al., *Establishment of bovine expanded potential stem cells*. Proc Natl Acad
235 *Sci U S A*, 2021. **118**(15).

236 27. Boliotti, Y.S., et al., *Efficient derivation of stable primed pluripotent embryonic stem*
237 *cells from bovine blastocysts*. Proc Natl Acad Sci U S A, 2018. **115**(9): p. 2090-2095.

238 28. Takashima, Y., et al., *Resetting transcription factor control circuitry toward ground-state*
239 *pluripotency in human*. Cell, 2014. **158**(6): p. 1254-1269.

240 29. Buecker, C., et al., *Reorganization of enhancer patterns in transition from naive to*
241 *primed pluripotency*. Cell stem cell, 2014. **14**(6): p. 838-853.

242 30. Sun, S., et al., *Maintenance of mouse trophoblast stem cells in KSR-based medium allows*
243 *conventional 3D culture*. Journal of Reproduction and Development, 2021: p. 2020-119.

244 31. Ming, H., et al., *The landscape of accessible chromatin in bovine oocytes and early*
245 *embryos*. Epigenetics, 2021. **16**(3): p. 300-312.

246 32. Patro, R., et al., *Salmon provides fast and bias-aware quantification of transcript*
247 *expression*. Nature methods, 2017. **14**(4): p. 417-419.

248 33. Robinson, M.D., D.J. McCarthy, and G.K. Smyth, *edgeR: a Bioconductor package for*
249 *differential expression analysis of digital gene expression data*. bioinformatics, 2010.
250 **26**(1): p. 139-140.

251 34. Huang, D.W., B.T. Sherman, and R.A. Lempicki, *Bioinformatics enrichment tools: paths*
252 *toward the comprehensive functional analysis of large gene lists*. Nucleic acids research,
253 2009. **37**(1): p. 1-13.

254 35. Jiang, Z., et al., *DNA methylomes of bovine gametes and in vivo produced*
255 *preimplantation embryos*. Biology of reproduction, 2018. **99**(5): p. 949-959.

256 36. Duan, J.E., et al., *Methylome dynamics of bovine gametes and in vivo early embryos*.
257 *Frontiers in genetics*, 2019. **10**: p. 512.

258

259

260 **Materials and Methods**

261

262 **Bovine IVF embryo production**

263 The IVF embryos used in this study were produced as previously described [31]. Briefly, bovine
264 cumulus-oocyte complexes (COCs) were aspirated from selected follicles of slaughterhouse
265 ovaries. BO-IVM medium (IVF Bioscience) was used for oocyte in vitro maturation. IVF was
266 performed using cryopreserved semen from a Holstein bull with proven fertility. Embryos were
267 then washed and cultured in BO-IVC medium (IVF Bioscience) at 38.5°C with 6% CO₂. Day 7
268 blastocysts were collected with the zona pellucida removed and were processed for TSC
269 derivation.

270

271 **Bovine day 14 elongated embryo production**

272 Day 14 elongated embryo were collected from Holsten cows as previously described [31]. Briefly,
273 superovulation was achieved using five doses of intramuscular injections of FSH beginning five
274 days after insertion of a Controlled Intra-vaginal Drug Release (CIDR) device. Two doses of
275 prostaglandin F2 alpha were given along with the last two FSH treatments, followed by CIDR
276 removal. Standing estrus (Day 0) was seen approximately 48h post-prostaglandin injection.
277 GnRH was then administered at estrus. Each cow was inseminated 12- and 24-hours post-
278 standing heat. Elongated embryos were collected by routine non-surgical uterine flushing on day
279 14 (D14).

280

281 **Derivation and culture of bovine TSCs**

282 Each blastocyst was placed in a separate well of a 12-well plate that was seeded with mitomycin
283 C-treated mouse embryonic fibroblast (MEF) cells. The embryos were cultured in bovine TSC
284 medium containing DMEM: F12 (Gibco) and Neurobasal medium (Gibco) (1:1), 0.5x N2-
285 supplement (Gibco), 0.5x B27-supplement (Gibco), 1x NEAA (Gibco), 1x GlutaMAX (Gibco), 0.1
286 mM 2-mercaptoethanol (Gibco), 0.1% BSA (MP biomedicals), 10 ng/mL LIF (Peprotech, 300-05),
287 3 µM CHIR99021 (Sigma, SML1046), 2 µM Dimethinedene maleate (DiM) (Tocris, 1425) and 2
288 µM Minocycline hydrochloride (MiH) (Santa cruz, sc-203339). All the cells were cultured at 38.5 °C
289 and 5% CO₂. After 48 hours of plating, the unattached embryos were pressed against to the
290 bottom of the plates with needles under microscope. The culture medium was changed daily. At
291 day 7 or 8, outgrowths were dissociated by Dispase (STEMCELL Technologies) for 5-10 mins at
292 38.5 °C, followed by twice washes with DMEM/F12. bTSC were passaged mechanically under a
293 microscope. For optimal survival rate, 10 µM Rho-associated protein kinase (ROCK) inhibitor Y-
294 27632 (Tocris, 1254) was added to the culture medium for 24 hours.

295 Once established, bTSCs were passaged every 6 days at a 1:6 split ratio using Accutase
296 (Gibco, A1110501). Each well of bTSCs was dissociated by 1 mL Accutase for 5 mins at 38.5 °C,
297 the same volume of bTSCs medium was used to dilute Accutase for neutralizing the reaction.
298 bTSCs were cryopreserved by ProFreeze Freezing medium (Lonza, 12-769E) according to the
299 manufacturer's instructions.

300 For feeder free condition, bTSCs cultured on feeder cells were passaged to Matrigel
301 (Corning, 354234)-coated plates using MEF-conditioned-bTSC-medium (MEF-bTSC).

302

303 **Differentiation of bovine TSCs**

304 Bovine TSCs were grown to 80-90% confluence in the bTSCs medium and dissociated with
305 TrypLE (Gibco, 12605-010) for 15 min at 38.5 °C. Then, bTSCs were seeded in a 6-well plate
306 which was coated with 2.5 µg/mL Col IV (Corning, 354233) at a density of 1 - 1.5 × 10⁵ cells per
307 well and cultured in 2 mL differentiation medium containing DMEM: F12 and Neurobasal medium
308 (1:1), with 0.5x N2-supplement, 0.5x B27-supplement, 1x NEAA, 1x GlutaMAX, 0.1 mM 2-
309 mercaptoethanol, 0.1% BSA, 2.5 µM Y27632, 2 µM Forskolin (Sigma, F3917) and 4% KSR
310 (Invitrogen, 10828028). The medium was changed every two days.
311

312 **Immunofluorescence analysis**

313 Cells or blastocysts were fixed in 4% paraformaldehyde (PFA) for 20 min at room temperature,
314 and then rinsed in wash buffer (0.1% Triton X-100 and 0.1% polyvinyl pyrrolidone in PBS) for
315 three times. Following fixation, cells were permeabilized with 1% Triton X-100 in PBS for 30 min
316 and then rinsed with wash buffer. Cells were then transferred to blocking buffer (0.1% Triton X-
317 100, 1% BSA and 0.1 M glycine) for 2 hours at room temperature. Subsequently, the cells were
318 incubated with the primary antibodies overnight at 4 °C. The primary antibodies used in this
319 experiment include anti-SOX2 (Biogenex, an833), anti-CDX2 (Biogenex, MU392A; 1:200), anti-
320 GATA3 (Cellsignaling, D13C9; 1:200), and anti-KRT8 (Origene, BP5075; 1:300). For secondary
321 antibody incubation, the cells were incubated with Fluor 488- or 555- or 647-conjugated
322 secondary antibodies 1 hour at room temperature. ProLong Diamond Antifade (DAPI included)
323 was used to stain nuclei. The images were taken with a fluorescence confocal microscope (Leica).
324 Paraffin sections were deparaffinized and then boiled in sodium citrate buffer (pH 6.0) for 20 min
325 for antigen retrieval. Sections were blocked in 5% goat serum in TBST for 1 hour and incubated
326 with primary antibodies at 4 °C overnight. The primary antibodies used in this experiment including
327 anti-MMP2 (Cellsignaling, 40994; 1:200), anti-PL-1(Santa Cruz, sc-376436; 1:200) and anti-
328 PTGS2 (Sigma, SAB2500267; 1:100-1:200). Then, the sections were incubated with
329 fluorescence-conjugated secondary antibodies for one hour at room temperature. Nuclei were
330 stained with DAPI (Invitrogen, D1306).
331

332 **Quantitative real-time PCR**

333 Total RNA was extracted from cells using RNeasy Micro Kit (Qiagen) according to the
334 manufacturer's protocol. First-strand cDNA was synthesized using the iScript cDNA Synthesis Kit
335 (BIO-RAD). The qRT-PCR was performed using SYBR Green PCR Master Mix (BIO-RAD) with
336 specific primers (Extended Data Tab. 2). Data were analyzed using the BIO-RAD software
337 provided with the instrument. The relative gene expression values were calculated using the
338 $\Delta\Delta CT$ method and normalized to internal control GAPDH.
339

340 **IFNT activity analysis**

341 IFNT activity was measured by an established IFN stimulatory response element-reporter assay
342 [24]. Briefly, 5 - 10 × 10⁵ Madin-Darby bovine kidney cells (MDBK) that are stably transduced with
343 an ISRE-Luc reporter were plated into a well of 96-well polystyrene plates with opaque walls and
344 optically clear bottoms (Corning) and cultured in MDBK growth medium (high glucose DMEM, 10%
345 FBS and 1% Pen/Strep) at 37°C for 4 hours. After removal of MDBK growth medium, 50 µL of
346 sample or standard (Recombinant human IFN- α , IFNA: Millipore, IF007) were added. The
347 standard curve was generated by a 1:3 serial dilution of IFNA. Cells were incubated at 37°C for

348 16 hours, then 50 μ L One-Glow Luciferase reagent (Promega Corp; E6120) were added into each
349 well, with a final volume of 100 μ L. After mixture at a shaker platform for 10 minutes, the
350 measurement was performed in a plate reader.

351

352 **TSCs lesion assay**

353 bTSCs cells were grown to about 80% confluence in the bTSCs medium and dissociated with
354 TrypLE. 5×10^6 bovine TS cells were resuspended in 200 μ L 1:1 of bTSC medium and Matrigel,
355 and subcutaneously injected into 6-month-old non-obese diabetic (NOD)-severe combined
356 immunodeficiency (SCID) mice. Lesions were collected at day 7 and 9, fixed in 4% PFA overnight
357 at 4 °C for analysis.

358

359 **Karyotyping assay**

360 bTSCs were incubated with bTSC medium containing 1 mL KaryoMAX colcemid solution (Gibco,
361 15212012) at 38.5 °C for 4-5 hours. Cells were then dissociated using 1 mL Trypsin (Gibco,
362 25200-056) at 38.5 °C and centrifuged at 300 \times g for 5 min. The cells were resuspended in 1mL
363 PBS solution and centrifuged at 400 \times g for 2 min. The supernatant was aspirated and 500 μ L
364 0.56% KCl was added to resuspend the cells. The cells were incubated for 15 min, then
365 centrifuged at 400 \times g for 2 min. 1 mL cold fresh Carnoy's fixative (3:1 methanol: acetic acid) was
366 added to resuspend the cells, followed by a 10 min incubation on ice. After centrifuge, 200 μ L
367 Carnoy's fixative was added to resuspend the cells. Cells were dropped on the clean slides and
368 air dried and soaked in a solution (1:25 of Giemsa stain (Sigma, GS500): deionized water) for 9
369 min. Slides were rinsed with deionized water and air dried. The images were taken by Leica DM6B
370 at 1000 \times magnification under oil immersion.

371

372 **RNA sequencing analysis**

373 Total RNA of bovine TSCs was extracted using RNeasy Micro Kit (Qiagen). Trophectoderm from
374 day 7 blastocyst was isolated by placing embryos in a Petri dish with phosphate-buffered saline
375 and performing microsurgery using a microblade under a microscope. The RNA-seq libraries were
376 generated by using the Smart-seq2 v4 kit with minor modification from manufacturer's instructions.
377 Briefly, mRNA was captured and amplified with the Smart-seq2 v4 kit (Clontech). After AMPure
378 XP beads purification, amplified RNAs were quality checked by using Agilent High Sensitivity
379 D5000 kit (Agilent Technologies). High-quality amplified RNAs were subject to library preparation
380 (Nextera XT DNA Library Preparation Kit; Illumina) and multiplexed by Nextera XT Indexes
381 (Illumina). After purification of library with AMPure XP beads (Beckman Coulter), the
382 concentration of sequencing libraries was determined by using Qubit dsDNA HS Assay Kit (Life
383 Technologies). The size of sequencing libraries was determined by means of High Sensitivity
384 D5000 Assay in at Tapestation 4200 system (Agilent). Pooled indexed libraries were then
385 sequenced on the Illumina NovaSeq platform with 150-bp paired-end reads.

386 The Salmon tool [32] was applied to quantify the gene expression profile from the raw
387 sequencing data, by using the Ensembl bovine genome annotation (ARS-UCD1.2). Transcript per
388 million reads (TPM) was used as the unit of gene expression. The edgeR tool [33] was applied to
389 identify differentially expressed genes. The TMM algorithm implemented in the edgeR package
390 was used to perform normalization of the read counts and estimation of the effective library sizes.
391 Differential expression analysis was performed by the likelihood ratio test implemented in the

392 edgeR package. All the conventional statistical analyses were performed based on the R platform.
393 The “cor.test” function was used to perform Spearman’s rank correlation test. Principal component
394 analysis (PCA) on the gene expression profile was performed by using the “dudi.pca” function
395 within the package “ade4”. All the heatmaps were plotted by the “heatmap.2” function within the
396 package “gplots”. The gene ontology and pathway analysis were performed by means of the
397 David tool [34].

398 In total, we sequenced two replicates of bTSCs, trophoblasts differentiated at day 2, 3, 4,
399 5 and 6, three replicates of whole blastocysts and day 7 trophectoderm cells selected from the
400 same batch used for bTSCs derivation. The RNA-seq datasets of bovine day 14 trophectoderm
401 [25], ESCs [27] and EPSCs [26] were downloaded from previous publications, respectively.
402

403 **ATAC-seq analysis**

404 The ATAC-seq libraries from fresh cells were prepared as previously described [31]. Shortly, cells
405 or embryos were lysed on ice, then incubated with the Tn5 transposase (TDE1, Illumina) and
406 fragmentation buffer. Fragmented DNA was purified using MinElute Reaction Cleanup Kit
407 (Qiagen). The ATAC-seq libraries were amplified by Illumina TrueSeq primers and multiplexed by
408 index primers. Finally, high quality indexed libraries were then pooled together and sequenced on
409 Illumina NovaSeq platform with 150-bp paired-end reads.

410 The ATACseq analysis was followed our established analysis pipeline [31]. All quality
411 assessed ATAC-seq reads were aligned to the bovine reference genome using Bowtie 2.3 with
412 following options: –very-sensitive -X 2000 –no-mixed –no-discordant. Alignments resulted from
413 PCR duplicates or locations in mitochondria were excluded. Only unique alignments within each
414 sample were retained for subsequent analysis. ATAC-seq peaks were called separately for each
415 sample by MACS2 with following options: –keep-dup all –nolambda –nomodel. The ATAC-seq
416 bigwig files were generated using bamcoverage from deeptools. The ATAC-seq signals were
417 visualised in the Integrative Genome Viewer genome browser. The annotations of genomic
418 features, including transcription start sites, transcription end sites (TES), promoters, CDS, introns,
419 5' UTR, 3' UTR and intergenic regions were downloaded from UCSC genome browser. The
420 enrichment of transcriptional factor motifs in peaks was evaluated using HOMER
421 (<http://homer.ucsd.edu/homer/motif/>). For downstream analysis, we normalised the read counts
422 by computing counts scaled by the number of sequenced fragments multiplied by one million
423 (CPM).

424

425 **Whole genome bisulfite sequencing (WGBS) analysis**

426 WGBS libraries were prepared using the TruSeq DNA Methylation Library Preparation Kit
427 (Illumina). Briefly, genomic DNA was isolated using the DNeasy Blood & Tissue Kit (Qiagen)
428 according to the manufacturer’s guide. Then, approximately 500 ng DNA were bisulfite treated
429 using EZ DNA Methylation Kit (Zymo Research). Bisulfite-converted DNA was end-repaired, dA-
430 tailed, and ligated with adapters following instructions of the TruSeq DNA Methylation Library
431 Preparation Kit. Finally, high quality indexed libraries were then pooled and sequenced on Illumina
432 NovaSeq platform with 150-bp paired-end reads.

433 WGBS data analysis was followed our established analysis pipelines [35, 36]. Briefly,
434 WGBS raw data were removed first 12-bp at the 5' end of both pairs, and reads with adapters
435 and low-quality bases by using TrimGalore-0.4.3. The trimmed sequences were mapped to the

436 bovine genome (ARS-UCD1.2) using Bismark. Uniquely mapped reads were then removed PCR
437 duplicated reads and non-converted reads using deduplicate_bismark and filter_non_conversion.
438 For avoiding the sequencing bias, only reads with 10x coverage was used in the downstream
439 analysis. Methylation of each CpG site was calculated and methylation DNA methylation of each
440 sample was calculated by averaging the consecutive genomic window of 300-bp tiles' methylation.
441 Differentially methylated regions (DMRs) were defined as common 300-bp tiles between two
442 compared groups, which methylation levels $\geq 75\%$ in one group, while $\leq 25\%$ in another, and were
443 significantly different by Fisher's exact test (P-value ≤ 0.05 , FDR ≤ 0.05). Hyper- and hypo-
444 methylated tiles were those with DNA methylation levels $\geq 75\%$ and $\leq 25\%$, respectively. The
445 gene ontology and pathway analysis were performed by means of the David tool [34].
446

447 **Data availability**

448 The raw FASTQ files and normalized read accounts per gene are available at Gene
449 Expression Omnibus (GEO) (<https://www.ncbi.nlm.nih.gov/geo/>) under the accession number
450 GSE2209252534.

451 **Author contributions**

452 Y.W. and Z.J. conceptualized the idea and designed the research. Y.W. performed most of the
453 experiments. L.Y. helped with TSC medium optimization and performed the TSC lesion assay.
454 J.L., L.Z., H.M., Y.W., and H.S. performed genomic analysis. L. Z., H.M., and Y.W. performed
455 embryo collection experiments. C.P.A. helped with TSC characterizations. Y.W., J.W., and Z.J.
456 interpreted data and assembled the results. J.W. and Z.J. supervised the study. Y.W., J.W., and
457 Z.J. wrote the manuscripts with inputs from all authors.

458 **Acknowledgements**

459 This work was supported by the NIH Eunice Kennedy Shriver National Institute of Child Health
460 and Human Development (R01HD102533) and USDA National Institute of Food and Agriculture
461 (2019-67016-29863). J.W. is a New York Stem Cell Foundation–Robertson Investigator and
462 Virginia Murchison Linthicum Scholar in Medical Research and funded by CPRIT (RR170076),
463 NIH (GM138565-01A1 and OD028763), and Welch (854671).

464 **Conflict of interests**

465 Z.J. and Y.W are co-inventors on US provisional patent application 63/413,798 relating to the
466 bovine trophoblast stem cells and uses thereof.

467 **Extended Data Tables**

468 Table 1. Culture medias

469 Table 2. Primer lists

470 **Extended Data Figures**

471 **Extended Data Fig 1.** **a**, Representative images of the outgrowths of blastocysts after 7 days
472 culture (top row) and cells after 3 passages (P3) (bottom row) in C9, C10 and C11 medium. Scale
473 bar: 100 μ m. **b**, Karyotyping of bTSC at passage 15 and 45, respectively. **c**, RT-PCR analysis of
474 bovine trophoblast marker genes (*CDX2*, *SFN*, *ELF5*, *GATA3*, *ASCL2*, *GATA2*, and *ETS2*) in
475 bovine TSC. *GAPDH* serves as control. BEF: bovine embryonic fibroblast; bESC: bovine
476 embryonic stem cells. **d**, Immunostaining for epiblast marker *SOX2*, and trophoblast marker
477 (*GATA3*, *KRT8*, *CDX2*) in bTSC at passage 10 (P10) and passage 55 (P55) (Scale bar: 50 μ m).
478 **e**, Bright field image of differentiated-TSC. Scale bar: 50 μ m. **f**, Representative immunostaining
479 images showing binucleation in differentiated-bTSC (P27). Scale bar: 100 μ m. **g**, Representative
480 immunostaining of mature trophoblast markers (*PTGS2* and *PL-1*) in differentiated-bTSC (P27).
481 Scale bar: 75 μ m.

482 **Extended Data Fig 2.** **a**, PCA analysis of transcriptomes of bTSC and differentiated-TSC at day
483 2, 3, 4, 5, and 6. **b**, Top 10 enriched gene ontology (GO) terms in Diff_D4 trophoblast compared
484 with bTSC. **c**, Gene set enrichment analysis (GSEA) of bTSC and Diff_D4 trophoblast cells.
485 Green line shows enrichment profile. Vertical black bars show where genes from a given gene
486 set are located. **d**, NOD-SCID mice with tumor formed after bTSCs were injected (Top row).
487 Tumors removed from mice after 9 days injection (Bottom row).

494 **Extended Data Fig 3. a**, Top 5 enriched and depleted GO terms in bTSC compared to D7_TE or
495 D14_TE. **b**, GSEA analysis of transcriptomes between bTSC and bESC and bEPSC^{ES}. Genes
496 with Hippo signaling pathway, lysosome and Tight junction were upregulated in bTSC. **c**,
497 Pathways enriched in genes with more accessible or closed chromatin in bTSC compared to
498 D14_TE. **d**, Expression levels of DNA methyltransferase (*DNMT1*, *DNMT3A*, and *DNMT3B*) in
499 bTSC, D7_TE, D14_TE and bEPSC. **e**, Enriched pathways associated with genes annotated from
500 hypomethylated DMRs in bTSC compared to D14_TE.

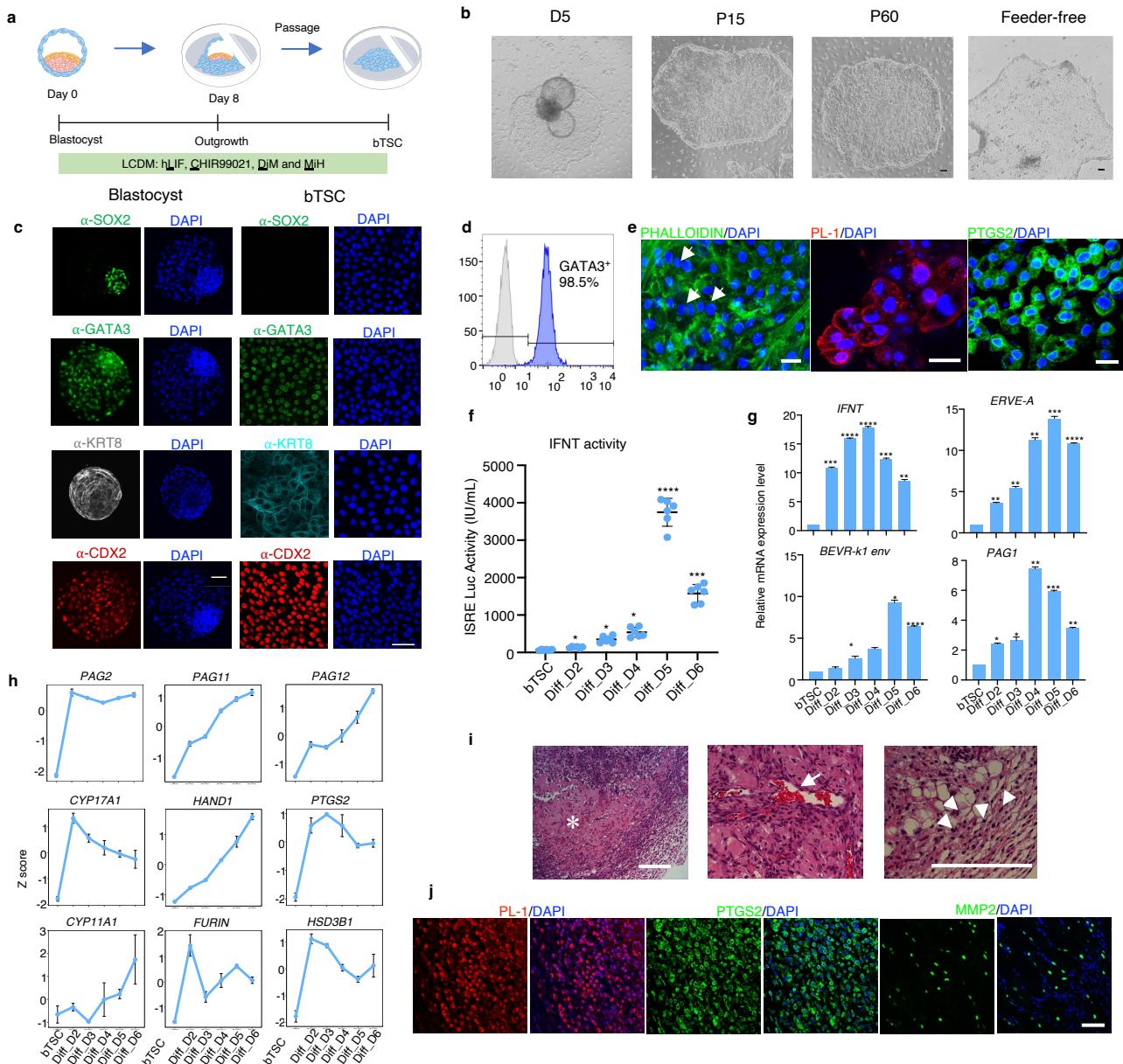
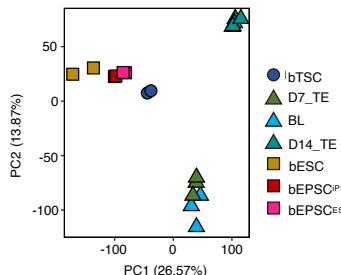
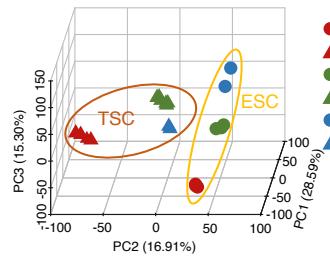
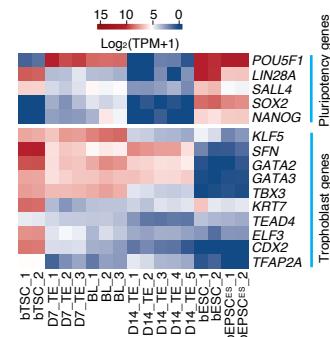
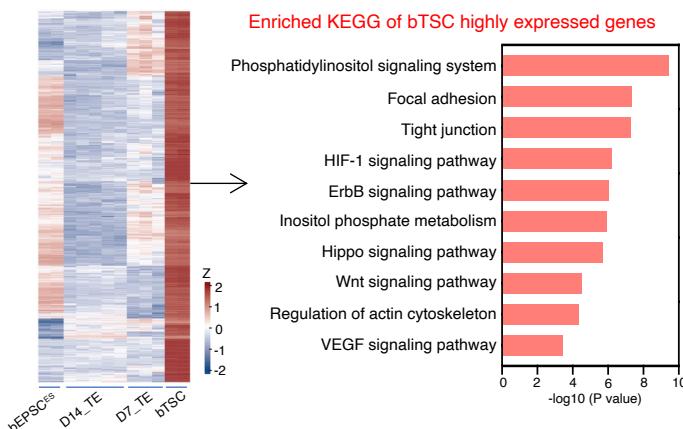
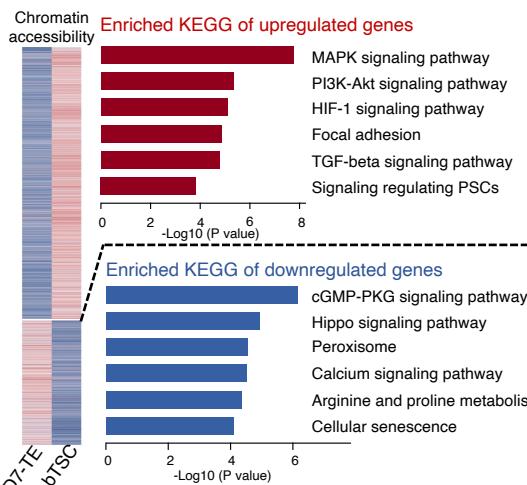



Fig. 1

Fig. 2

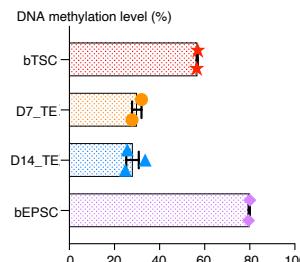

a


b

1

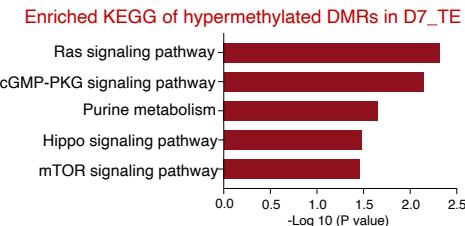


d

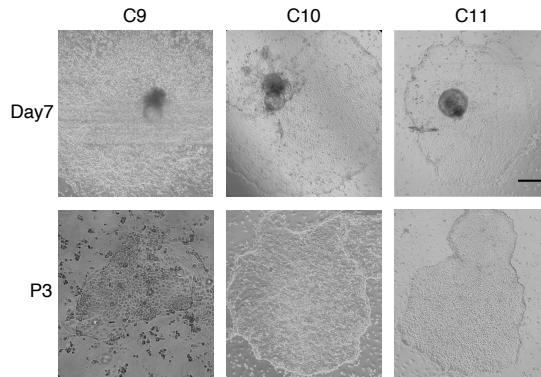


e

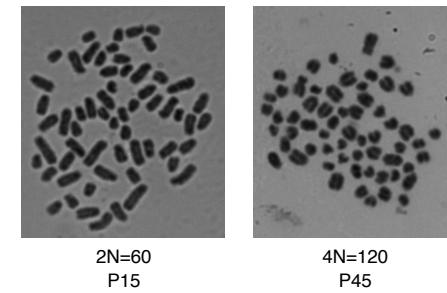
f



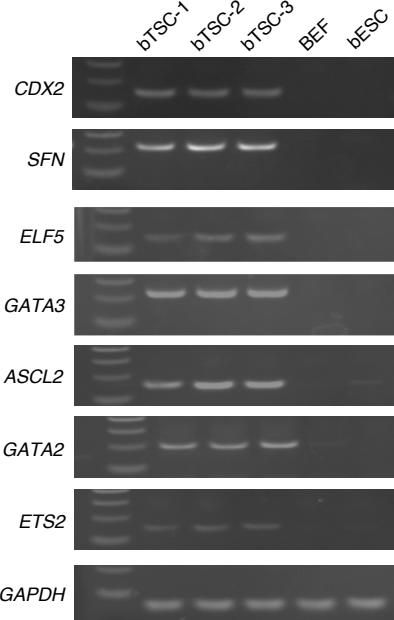
9

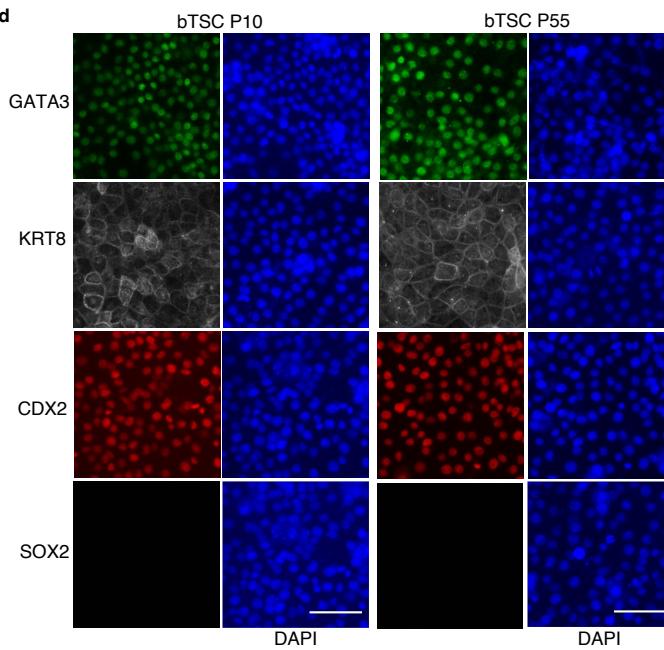

Comparisons	DMRs	Genes
bTSC vs. D7_TE	2068	282
bTSC vs. D14_TE	2630	468
bTSC vs. bEPSC	864	103

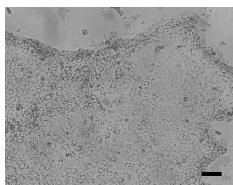
i

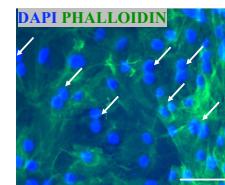


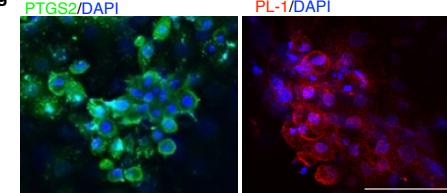
Extended Data Fig. 1


a

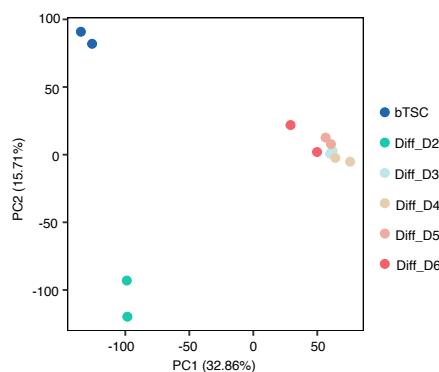

b


c

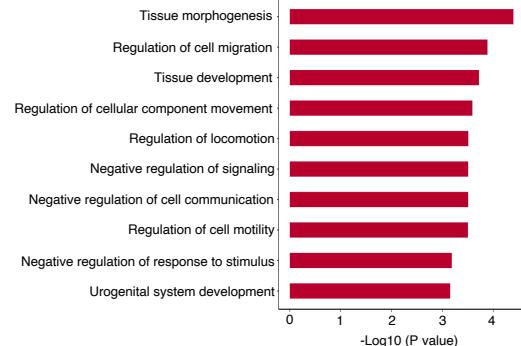

d


e

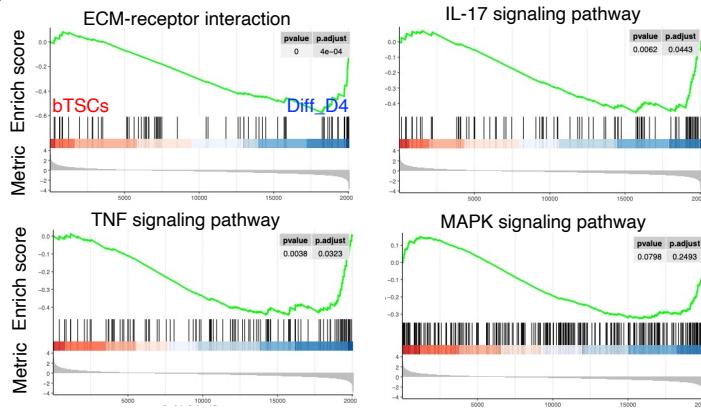
f



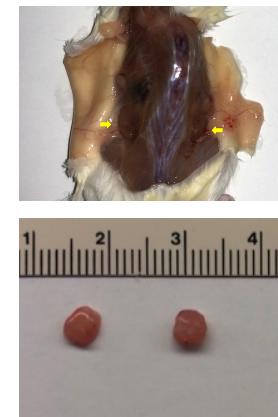
g


Extended Data Figure 2

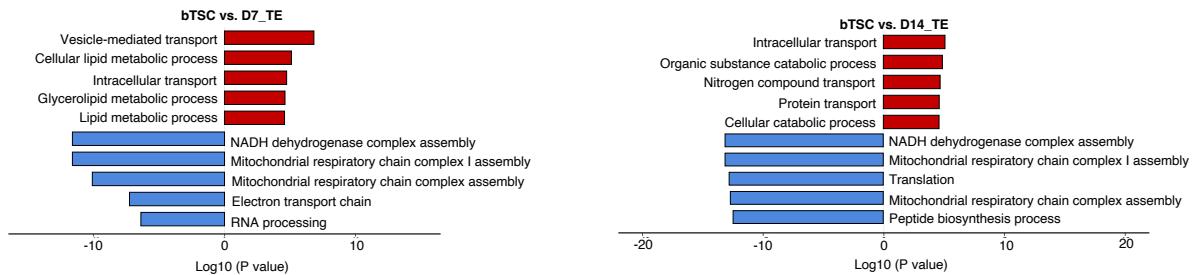
a



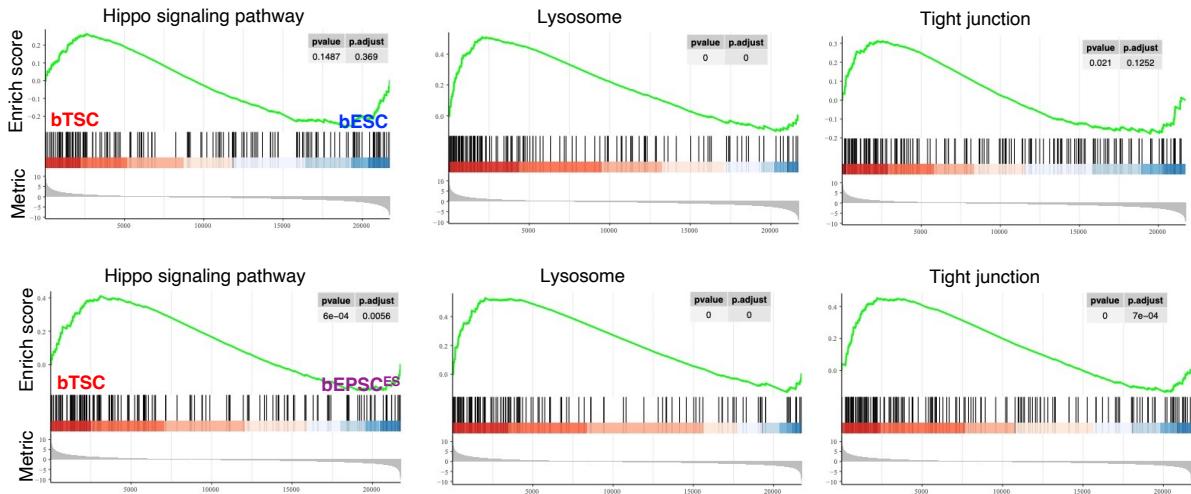
b


Enriched GO terms of upregulated genes in Diff_D4

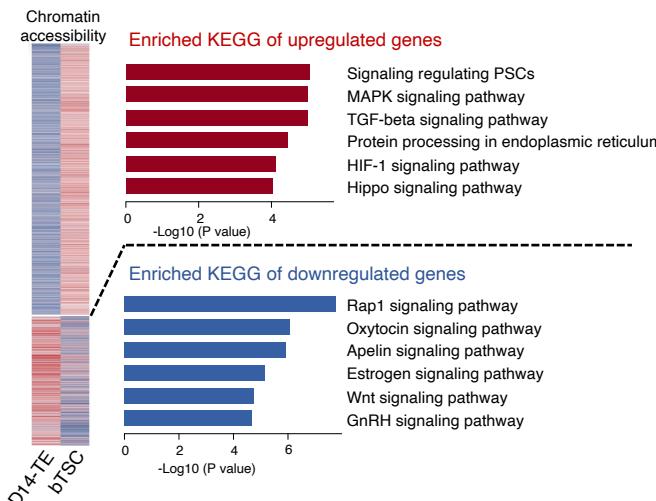
c

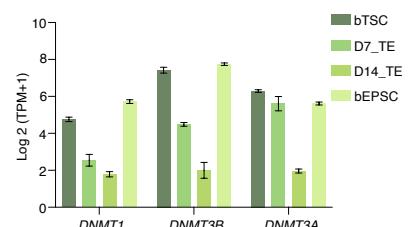


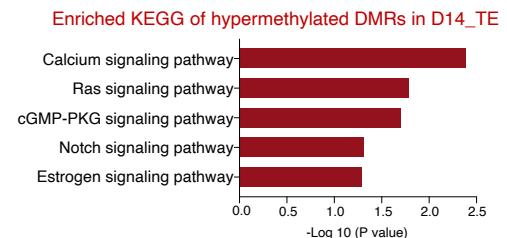
d



Extended Data Figure 3


a


b


c

d

e

Extended Data Table. 1

		C1 [37]	C2	C3 [38]	C4	C5	C6	C7 [5]	C8 [13]	C9	C10	C11 [39]	
Basal mediums	N2B27	✓		✓	✓	✓	✓		✓	✓	✓	✓	
	mTeSR		✓										
	RPMI1640							✓					
FBS or KSR	FBS (%)							20					
	KSR (10%)									10	10		
Factors	TGF- β 1	✓	✓										
	LIF	✓	✓	✓	✓	✓	✓		✓	✓	✓		
	bFGF	✓	✓			✓	✓			✓	✓	✓	
	FGF4							✓					
	Heparin							✓					
Small molecule	WNT	CHIR99021	✓	✓	✓	✓	✓		✓	✓	✓	✓	
	MEK1/ MEK2	PD0325901	✓	✓								✓	
	JNK	SP600125	✓	✓				✓					
	MAPK	SB203580	✓	✓				✓					
	FGFR1	SU5402			✓	✓	✓						
	MEK	PD184352			✓	✓	✓						
	TGF- β	ActivinA				✓	✓			✓	✓	✓	
	muscarinic M2/ histamine H1	DiM							✓				
	MMP	MiH								✓			
Outgrowth rate (%)			0 (0/3)	0 (0/3)	0 (0/3)	0 (0/3)	20 (1/5)	0 (0/3)	0 (0/3)	89.3 (25/28)	58.3 (7/12)	66.7 (8/12)	53.3 (8/15)

C: combination; DiM: Dimethinedene maleate; MiH: Minocycline hydrochloride.

Extended Data Table. 2

Gene name	Forward (5'-3')	Reverse (5'-3')
<i>GAPDH</i>	GCCATCAATGACCCCTTCAT	TGCCGTGGGTGGAATCA
<i>PAG1</i>	TCCACTTCCGGCTTACCAA	CCTTCATTCTCCCAGATCCAT
<i>ERVE-A</i>	GGATCTGACGGGAGACACAAA	CACCAATCCGGGAATCTTCA
<i>BERV-K1 env</i>	GGAAATCACCGGGATGTCCT	GGAGAGGAGGCGCTTACCTG
<i>IFNT</i>	GCCCTGGTGCTGGTCAGCTA	CATCTTAGTCAGCGAGAGTC
<i>CDX2</i>	AAGACAAATACCGGGTCGTG	CTGCGGTTCTGAAACCAAAT
<i>SFN</i>	CACCCAGAACCTGACCACTT	GCAGACATGCTTCCCTCTC
<i>ELF5</i>	CGAACAAAGCCTCCAGAGTT	TCCTTGTCACATCTTC
<i>GATA3</i>	CCACCTACCCACCATACTGTC	CGGTTCTGTCCGTTCATCTT
<i>ASCL2</i>	ACCCAAGGCTAGTGTGCAAG	CGTCGTATAAGCCCTCTC
<i>GATA2</i>	CTACAGCAGTGGCTCTTCC	GTTCTGCCGTTCATCTTGT
<i>ETS2</i>	TGTGCCAGCAGTTACAGAG	TGCTCCTTTGAAGCCACT