

1 **Metal-driven anaerobic oxidation of methane as an important**
2 **methane sink in methanic cold seep sediments**

3 Xi Xiao^{1, 2, 3}, Min Luo⁴, Chuwen Zhang⁵, Tingting Zhang^{1, 2, 3},
4 Xiuran Yin^{6, 7}, Xuemin Wu^{1, 2, 3}, Jing Zhao^{1, 2, 3}, Jun Tao¹,
5 Zongheng Chen², Qianyong Liang^{1, 2, 3 *}, Xiyang Dong^{5 *}

6 ¹ National Engineering Research Center of Gas Hydrate Exploration and Development,
7 Guangzhou 510075, China

8 ² Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources,
9 Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 510075,
10 China

11 ³ Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
12 Guangzhou 511458, China

13 ⁴ Shanghai Engineering Research Center of Hadal Science and Technology, College of
14 Marine Sciences, Shanghai Ocean University, Shanghai 201306, China

15 ⁵ Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography,
16 Ministry of Natural Resources, Xiamen, 361005, China

17 ⁶ Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany

18 ⁷ MARUM, Center for Marine Environmental Sciences, University of Bremen,
19 Bremen, Germany

20

21 * Correspondence can be addressed to: Qianyong Liang (tomlqy@163.com); Xiyang
22 Dong (dongxiyang@tio.org.cn).

23 Abstract

24 Anaerobic oxidation of methane (AOM) coupled with reduction of metal oxides is
25 supposed to be a globally important bioprocess in marine sediments. However, the
26 responsible microorganisms and their contributions to methane budget are not clear
27 in deep sea cold seep sediments. Here, we combined geochemistry, muti-omics and
28 numerical modeling to study metal-dependent AOM in methanic cold seep
29 sediments in the northern continental slope of the South China Sea. Geochemical
30 data based on methane concentrations, carbon stable isotope, solid-phase sediment
31 analysis and pore water measurements indicate the occurrence of anaerobic methane
32 oxidation coupled to metal oxides reduction in the methanic zone. The 16S rRNA
33 gene amplicons and transcripts, along with metagenomic and metatranscriptomic
34 data suggest that diverse ANME groups actively mediated methane oxidation in the
35 methanic zone either independently or in syntropy with e.g. ETH-SRB1 as
36 potential metal reducers. Modeling results suggest that the estimated rates of
37 methane consumption via Fe-AOM and Mn-AOM were both $0.3 \mu\text{mol cm}^{-2} \text{ yr}^{-1}$,
38 which account for ~3% of total CH_4 removal in sediments. Overall, our results
39 highlight metal-driven anaerobic oxidation of methane as an important methane sink
40 in methanic cold seep sediments.

41 **Introduction**

42 Marine cold seeps are not only an indicator of gas hydrate reservoirs, but also an
43 important methane source to the oceans, which has a significant impact on the global
44 carbon cycle and climate change¹. It is estimated that 0.02 Gt methane is consumed
45 annually in the sediment with an additional 0.02 Gt methane releasing annually into
46 the overlying ocean by seafloor cold seeps². Thus, the production and consumption
47 of methane is a key component of the carbon cycle for cold seeps³. Anaerobic
48 oxidation of methane (AOM) driven by microbial communities, plays a key role in
49 decreasing methane emissions to the atmosphere⁴. Anaerobic methanotrophic
50 archaea (ANME) mediate this process through the coupling of methane oxidation to
51 the reduction of nitrite, nitrate, manganese/iron oxides, and sulfate⁵⁻⁸. Sulfate-driven
52 AOM (S-AOM) by assemblages of ANME and sulfate-reducing bacteria (SRB)^{6, 9} is
53 regarded as the major process for methane sink within cold seep sediments, reaching
54 highest activities within the sulfate-methane transition zone (SMTZ)¹⁰.

55 Early studies show that methane oxidation possibly coupled with metal oxidation
56 can still occur at a considerable rate in the methanic zone below the SMTZ when
57 sulfate has been completely depleted or at very low levels¹¹. A range of efforts have
58 been undertaken to demonstrate the occurrence of metal oxides-driven AOM (Metal-
59 AOM, including high-valence iron/manganese oxides)^{5, 12, 13}. This microbial process
60 is mediated by ANME through the reverse methanogenesis pathway, typically in
61 syntropy with dissimilatory iron/manganese reducing bacteria^{5, 14}. Investigations of
62 enrichment cultures have also revealed that ANME-2a, ANME-2c, and ANME-2d
63 can perform AOM coupled to the extracellular dissimilatory reduction of iron and
64 manganese oxides independently using e.g. a unique set of multiheme cytochromes
65 (MHCs)^{12, 13, 15-17}.

66 The activity rates of Fe-AOM are efficiently estimated by incubation experiments or
67 geochemical modeling, but rarely for Mn-AOM (**Table 1**)¹⁸⁻²⁵. Microbial culture
68 experiments from the Eel River Basin seep have found that manganese oxides can
69 drive AOM as electron acceptors more efficiently than ferrihydrite⁵. However,
70 microorganisms involved in the coupling between AOM and metal reduction in
71 marine environments are still largely unknown, especially for manganese reduction²⁶.
72 The contribution of Mn-AOM for CH₄ removal in situ marine environments is still
73 fully identified, neither. Without in-depth understanding of the role of Metal-AOM
74 in the biogeochemical cycle, the contribution of metal reduction to the global carbon
75 cycle, especially the methane sink, is likely to be undervalued²⁷.

76 Haima cold seep was firstly discovered as an active cold seep in the Qiongdongnan
77 basin on the northwest slope of the South China Sea by the dives of a remotely
78 operated vehicle named as Haima in 2015 (**Figure S1a**)²⁸. A large number of
79 findings have since been emerging about the biogeochemistry of cold-seep
80 carbonates, benthos and sediments in Haima cold seep²⁹⁻³². Massive amounts of
81 terrigenous metal oxides are supplied into the continental slope of the South China
82 Sea from rivers³³. Consequently, iron/manganese-containing minerals are part of the
83 major components in the sediments of this region with high-flux methane seeps,
84 rendering it be such a natural laboratory to investigate the role of metal oxides in
85 methane cycle.

86 In this study, combining geochemical and microbial analyses of the Haima cold seep
87 sediments, we aimed to (1) reveal the occurrence of Metal-AOM in the methanic
88 zone; (2) identify microorganisms involved in the Metal-AOM and their key
89 mechanisms; (3) estimate the contribution of removal of methane by Fe/Mn-AOM.
90 Our findings provide insights into the coupling mechanism between iron/manganese
91 reduction and AOM as well as the role of Metal-AOM in the biogeochemical cycle.

92 **Results and Discussions**

93 **Geochemical data indicate anaerobic methane oxidation in the methanic zone**

94 At a water depth of 1375 m, a 4.3-meter-long piston core was retrieved from the
95 Haima cold seep in the South China Sea, where a gas chimney and bubble plumes
96 were observed indicative of ongoing seepage activities (**Figure S1b-d**). Massive gas
97 hydrates were also found at 347-352 cm below the seafloor (cmbfs) and 420 cmbfs
98 (**Figure S1e-g**). Methane (CH₄) was the dominant seeping hydrocarbon gas (0.13-
99 919.57 μ M), along with ethane (C₂H₆) being detected (0.07-3.96 μ M) below 130-
100 140 cmbfs (**Table S1**). Based on methane and sulfate profiles (**Figure 1a and Table**
101 **S1**), our sediment core samples were categorized into three biogeochemical zones³⁴,
102³⁵: sulfate reduction zone (surface-130 cmbfs), sulfate-methane transition zone
103 (~130-250 cmbfs), and methanic zone (250-430 cmbfs).

104 In the methanic zone, methane concentrations fluctuated between 53 μ M and 920
105 μ M. A notable decrease was observed from 781 μ M at 210-220 cmbfs to 53 μ M at
106 350 cmbfs, with the enrichment of the stable carbon isotope ratios ($\delta^{13}\text{C}$) in residual
107 CH₄ from $-68.77\text{\textperthousand}$ to $-64.33\text{\textperthousand}$ (**Table S1**), pointing to occurrence of biological
108 unitization of methane²⁵. In accordance with this, the dissolved inorganic carbon
109 (DIC) values increased from 250-260 cmbfs (10.38 mM) to 330-340 cmbfs (17.27
110 mM; **Figure 1b**), as also evidenced by the increase in total alkalinity³⁶ from 16.01
111 mM to 28.94 mM (**Table S1**). The measured $\delta^{13}\text{C}_{\text{DIC}}$ values ($<-42.30\text{\textperthousand}$; **Figure 1b**)
112 were much more ¹³C-depleted than that of typical marine organic matters ($\sim-20\text{\textperthousand}$)
113 in this sea area³⁷. This confirms that DIC increase was caused by microbial methane
114 oxidation rather than microbial degradation of other organic matters. Additionally,
115 low concentration profiles of phosphate (PO₄³⁻) and ammonium (NH₄⁺), lower than
116 41.65 μ M and 56.72 μ M respectively (**Table S1**) also support that organic matter

117 degradation was not the main reason for increased DIC concentrations in these
118 sediment samples³⁸.

119 **Diverse ANME actively mediated methane oxidation in the methanic zone**

120 Anaerobic methanotrophs are assigned to three distinct clades (ANME-1 with
121 subgroups a and b, ANME-2 with subgroups a, b, c and d, and ANME-3) within the
122 phylum Halobacteriota³⁹. To identify potential ANME clades in the methanic zone,
123 we performed DNA and RNA sequencing of sediment samples. Taxonomy
124 classifications of archaeal 16S rRNA gene amplicons indicate that ANME accounted
125 for 69~87% of the whole archaeal community in the methanic zone (**Figure 2a and**
126 **Table S2**). These ANME populations are phylogenetically diverse, including
127 ANME-1a (up to 80% at 320-330 cmbsf), ANME-1b (up to 24% at 420-430 cmbsf),
128 ANME-2c (up to 16% at 280-290 cmbsf) and ANME-3 (up to 68% at 360-370
129 cmbsf). Relative abundances of 16S rRNA transcripts suggest that ANME-1a (up to
130 54% at 320-330 cmbsf), ANME-3 (up to 84% at 360-370 cmbsf), ANME-2c (up to
131 63% at 280-290 cmbsf), and ANME-1b (up to 19% at 400-410 cmbsf) were the
132 dominant and active players for AOM occurring in the methanic zone (**Figure 2b**
133 **and Table S2**).

134 Metagenomic assembly and binning yielded 17 metagenome-assembled genomes
135 (MAGs) taxonomically affiliated with methane-metabolizing lineages that either
136 produce or consume methane (**Table S3**). Among them, nine harbor sequences
137 encoding the catalytic subunit of methyl-coenzyme M reductases (McrA)⁴⁰ involved
138 in methyl reduction during methane oxidation (**Figure 2c and Table S4**). They
139 belong to clades of ANME-1 (n=3) and ANME-2 (n=4). Additionally, S11_12_1 and
140 S11_6_17 belonging to *Methanosaerinaeae* were predicted to have the capability to
141 perform the methanogenesis pathway. MAGs for ANME-3 lineages were not
142 recovered despite its highly relative abundance based on 16S rRNA genes and

143 transcripts (**Table S2**). Based on read mapping (**Table S3**), species represented by
144 ANME-1 (i.e., Ca. *Methanophagales*⁴¹) S11_3_46 (0.4-7.7 % of the whole microbial
145 community) and S11_6_2 (0.4-7.3%) were observed to be the most abundant in the
146 methanic zone, followed by S11_10_20 (0.1-1.2%) and S11_8_35 (0.1-0.6%) from
147 ANME-2c (Ca. *Methanogaster*^{39, 40}). Metatranscriptomic analyses (**Table S5**)
148 showed that three ANME-1 genomes (Co_S11_862, S11_3_46 and S11_6_2) highly
149 expressed *mcrA* genes in methanic zone (up to 4382 TPM at 400-410 cmbsf). The
150 transcripts of *mcrB* genes from ANME-1 (Co_S11_862) and ANME 2c (S11_12_8)
151 genomes also had high expression levels (up to 2378 TPM at 400-410 cmbsf). These
152 results further suggest that ANME populations were actively responsible for the
153 observed anaerobic methane oxidation in the methanic zone.

154 **Methane oxidation is coupled to metal oxides reduction in the methanic zone**

155 In the methanogenic zone, dissolved ferrous iron (Fe^{2+}) and manganese (Mn^{2+})
156 concentrations in pore water were found to reach up to 148 μM at 370-380 cmbsf
157 and as high as 2289 μM at 330-340 cmbsf, respectively (**Figure 1c and Table S1**).
158 The Spearman correlations (**Figure 3a**) results further show that Fe^{2+} and Mn^{2+}
159 concentrations have a strong positive covariance with CH_4 ($\rho = 0.874$ and 0.699,
160 respectively), DIC ($\rho = 0.891$ and 0.818, respectively); Fe^{2+} has a strong negative
161 relationship with $\delta^{13}\text{C}_{\text{DIC}}$ ($\rho = -0.655$; $p < 0.05$). These data indicate that the high
162 amounts of dissolved Fe^{2+} and Mn^{2+} are associated with the fluctuation of methane
163 concentrations in methanic zone^{15, 42}. Correspondingly, the solid-phase sediment
164 analysis revealed richer $\text{Fe}_2\text{O}_3^{\text{T}}$ (3.17–3.74%) and MnO_2^{T} (0.06%) in the methanic
165 zone than those of the SMTZ ($\text{Fe}_2\text{O}_3^{\text{T}}$: 2.31-3.60%; MnO_2^{T} : 0.04%) (**Figure 1d and**
166 **Table S6**). The reactive iron minerals, including carbonate-associated iron (Fe_{carb} ; up
167 to 1.16%), amorphous iron (oxyhydr)oxides (Fe_{ox1} ; up to 1.19%) and magnetite iron
168 (Fe_{mag} ; up to 0.61%), were detected with the higher contents in the methanic zone
169 (**Figure 1e-1g and Table S7**). Therefore, these data implied sufficient supplies of

170 reactive Fe-oxides and the occurrence of Fe authigenic minerals as the products of
171 iron reduction⁴³. Similar to that of iron, total manganese (MnO_2^T) is also elevated
172 from 0.04% in the SMTZ to 0.06% in the methanogenic zone (**Figure 1d and Table**
173 **S6**). Given the elevated MnO_2^T and extremely high dissolved Mn^{2+} (up to 2289 μM),
174 the contribution of manganese reduction to AOM cannot be ignored in this seep.
175 Overall, porewater and solid-phase profiles support metal-driven methane oxidation
176 in methanic sediments.

177 **Potential microorganisms involved in dissimilatory metal reduction**

178 For in-depth understanding of Fe(III)/Mn(IV)-dependent AOM in Haima cold seep,
179 it is critical to identify the indigenous microorganisms responsible for this process.
180 Members in different ANME clades are suggested to mediate metal-driven AOM by
181 extracellular electron transfer (EET) to Mn(IV)/Fe(III) (oxyhydr)oxides or metal-
182 reducing partners. In iron-reducer *Geobacter sulfurreducens*, the process of EET is
183 carried out via MHCs during metal reduction^{44 26}. For ANME-2d from freshwater
184 Fe-AOM enrichment, a set of MHCs for extracellular dissimilatory Fe(III) reduction
185 were highly expressed^{12, 45, 46}. Here, all analyzed ANME genomes were found to
186 contain the genes encoding several c-type and periplasmic cytochromes (**Table S8**).
187 Among all ANME genomes, three MAGs, S11_2_24 and S11_6_25, belonging to
188 ANME-2c, also encode S-layer-associated multi-heme c-type cytochromes,
189 implying a role of ANME-2c archaea with an S-layer protein in conducting electron
190 derived from reverse methanogenesis shuttling from the archaeal membrane to the
191 outside of the cell⁴⁶. S11_12_8 and S11_6_25 affiliated with the family ANME-2c,
192 also encode outer membrane cytochrome Z (*omcZ*) gene (**Table S9**) which plays an
193 important role in Fe(III) reduction⁴⁷. Furthermore, S11_12_8 not only actively
194 expressed at zone C with the maximum of MAG's abundance and TPM values with
195 *mcrB* gene, but also had the significantly positive relation with the CH_4 ($\rho=0.790$,
196 $p<0.01$), Fe^{2+} ($\rho=0.734, p<0.01$), Mn^{2+} ($\rho=0.601, p<0.05$; **Figure 3b**).

197 Gene encoding decaheme c-type cytochrome (*mtrC*), was present in S11_6_22 and
198 Co_S11_566 affiliated with ETH-SRB1 from the order *Desulfobacterales* (**Table**
199 **S5**). The two MAGs (S11_6_22 and Co_S11_566) have the higher abundance in the
200 methanic zone (Mean: 0.20% and 0.12%) than the SMTZ (Mean: 0.18% and 0.07%;
201 **Table S3**). Besides, spearman's correlation results (**Figure 3b**) show that
202 Co_S11_566 closely related with concentrations of Fe^{2+} ($\rho=0.699$) and Mn^{2+} ($\rho=0.$
203 650). Thus, ETH-SRB1 probably act as the role of metal reducing bacteria in the
204 methanic zone. We also found the presence of hypothetical proteins attributed to
205 porins, cytochrome *c* binding motif sites (CxxCH) and Geobacter-related gene
206 markers (*omc*) for iron reduction in Co_S11_933 (**Table S9**), belonging to
207 Zixibacteria, which was reported with pathways of either oxidation or reduction of
208 ferric/ferrous iron and arsenate/arenite and nitrate/nitrite⁴⁸. Co_S11_933 also
209 displayed a higher abundance in the methanic zone (0.03~0.06%) than in other
210 zones (**Table S3**).

211 **Contribution of Metal-AOM to methane consumption**

212 Geochemical observations and microbiological analyses support that Fe and Mn
213 oxides reduction is coupled to methane oxidation in the methanic zone. We then
214 used numerical modeling to predict their contributions to methane consumption.
215 Constrained by the measured porewater data and Fe leaching experiments (**Figure 1**;
216 **Tables S1, S6 and S7**), the results of the reaction-transport modeling predict the
217 model-derived rates for Fe-AOM of up $\sim 0.02 \mu\text{mol CH}_4 \text{ cm}^{-3} \text{ d}^{-1}$ in the methanic
218 zone (**Figure 4 and Table 1**). These rates are more than 20 times as big as the
219 estimated potential Fe-AOM rates from in situ marine methanic sediments with
220 much higher Fe^{2+} concentration (180~800 μM)²⁰⁻²³ (**Table 1**), but much lower than
221 those derived from stimulated microbial communities in laboratory incubation
222 studies^{5, 24, 25, 49}.

223 As Mn speciation data were not available, we used the diffusive Mn^{2+} flux
224 calculated based on the quasi-linear concentration gradient at the depth interval of
225 ~250 cm and 350 cm to represent the rate of Mn-AOM. Based on the porewater
226 profiles, our estimated diffusive flux for Mn^{2+} is $1.276 \mu\text{mol cm}^{-2} \text{ yr}^{-1}$. Thus, taking
227 into account that only one molecule of CH_4 is needed to reduce four molecule of
228 MnO_2 , CH_4 removal by Mn-AOM is estimated to $0.319 \mu\text{mol CH}_4 \text{ cm}^{-2} \text{ yr}^{-1}$ ¹⁹. This
229 is a minimum estimate as the potential Mn^{2+} consumption by authigenic minerals is
230 not taken into account. Depth-integrated rates of Fe-AOM and Mn-AOM are both
231 $0.3 \mu\text{mol cm}^{-2} \text{ yr}^{-1}$ in the methanic zone, which are considerably lower than S-AOM
232 rate ($\sim 20 \mu\text{mol cm}^{-2} \text{ yr}^{-1}$) and account for ~1.5% of total CH_4 removal by microbial
233 metabolism, respectively (Table 1). The high S-AOM rate is caused by methane
234 bubble dissolution while its upward-ascending and enhanced sulfate supply from
235 seawater due to bubble irrigation. The estimated depth-integrated rate of Fe-AOM in
236 the Haima seep falls within the range of those reported in different environments
237 globally²⁰⁻²³. These data from Haima cold seep provide the first in situ evidence for
238 quantitatively significant manganese-dependent AOM in marine sediments. Given
239 an apparent elevated sedimentary manganese content in the methanic zone (from
240 0.04% to 0.06%) and high concentration of dissolved Mn^{2+} (up to $2289 \mu\text{M}$), the
241 contribution for Mn-AOM consumed by authigenic minerals could have been
242 underestimated.

243

244 **Conclusions**

245 Methane oxidation occurs in methanic zones driven by sedimentary microbial
246 communities is an important mechanism that controls natural emissions of methane
247 from the gas hydrate-bearing area. It happens mainly due to the presence of
248 alternative electron acceptors other than sulfate to react with methane. Abundant

249 Fe/Mn-(oxyhydr)oxides preserved in the SCS shelf sediments might be migrated
250 into the study region due to the rapid increase of anomalous subsidence towards the
251 deep water areas in the Qiongdongnan basins (**Figure 5**). Therefore, high amounts
252 of buried reactive Fe(III)/Mn(IV) minerals seem to be an important available
253 electron acceptors for AOM in the methanic zone of the Haima methane seep,
254 accompanying by the generation of highly alkaline, extremely $\delta^{13}\text{C}_{\text{DIC}}$ -depleted and
255 Fe(II)/Mn(II)-enriched pore waters, abundant Fe–Mn carbonates, along with
256 authigenic magnetite by microbial iron/manganese reduction. In methanic sediments,
257 abundant active ANME groups (ANME-1 and ANME-2c), and potential
258 dissimilatory iron reducers (e.g. ETH-SRB1) are potentially involved in Metal-
259 AOM *in situ*. Mechanistically, the apparent ability of ANME-2c to oxidize methane
260 via the release of single electrons in this study should also be able to respire solid
261 electron acceptors directly via extracellular metal reduction, which would confirm
262 the presence of previously reported methane oxidation coupled to insoluble
263 Fe(III)/Mn(IV) reduction. It is estimated that Metal-AOM at least contributes 3%
264 CH₄ removal from methanic sediments to the seep. Overall, Metal-AOM could
265 significantly impact the biogeochemical cycles in consuming CH₄ in modern marine
266 sediments.

267

268 **Materials and methods**

269 **Sampling and geochemical analyses**

270 Sediment core HM-S11 with the length of 430 cm was obtained by a gravity piston
271 sampler at the ROV1 site of Haima cold seeps²⁸ (**Figure S1**) during the
272 Haiyangdizhi10 cruise in June 2019 by the Guangzhou Marine Geological Survey,
273 China Geological Survey.

274 The pore water was extracted from each sediment segment with the interval of 40
275 cm except the top 60 cm (20-cm interval) on board at room temperature by a
276 vacuum apparatus. The concentrations of Fe^{2+} and Mn^{2+} in pore water were
277 immediately on board determined by UV/Vis spectrophotometer (Beijing Purkinje,
278 China) using the 1,10-phenanthroline colorimetric method and potassium periodate
279 oxidation spectrophotometry, respectively. Sulfate concentrations were measured by
280 an ICS-1100 ion chromatography (Thermofisher, USA) with an analytical error of
281 $\pm 1\%$. The $\delta^{13}\text{C}_{\text{DIC}}$ values in pore water were analyzed by a multiflow-isotope ratio
282 mass spectrometer (Thermofisher, Delta V Advantage, USA), with an analytical
283 error of $\pm 0.2\%$. The concentrations of PO_4^{3-} and NH_4^+ were photometrically
284 measured on board using a UV-Vis spectrophotometer (Hitachi U5100, Hitachi
285 Limited, Tokyo, Japan) with an analytical error of $\pm 3.0\%$. Porosity was determined
286 from the weight loss before and after freeze-drying of the wet sediments³⁷ using a
287 cutting ring with the volume of 5 ml on board, assuming a density of the porewater
288 of 1.0 g cm^{-3} .

289 The $\text{C}_1\text{--C}_3$ concentrations of the headspace gas samples were determined using an
290 Agilent 6850 gas chromatograph (Thermo, USA) with a Porapark Q column. The
291 detection limit for all gases is 10 ppb , and the quantification limit is 30 ppb . The
292 $\delta^{13}\text{C}$ values of the methane were measured using gas chromatography-isotope ratio-
293 mass spectrometry (GC-IR-MS; Thermo, USA), and are reported relative to the
294 Vienna PeeDee Belemnite standard (V-PDB), with an analytical error of $\pm 0.5\%$.

295 The major element composition of sediments was determined by an iCAP 7200
296 Inductively Coupled Plasma (ICP) Optical Emission Spectrometry (OES) (Thermo,
297 USA). The content of different iron phase mineral components was determined by
298 Infinite M200Pro multifunction enzyme marker (TECAN, USA) with a sequential
299 extraction method⁵⁰, and measured at the light absorption wavelength of 510 nm.

300 The accuracy and repeatability of the absorption wavelength of the instrument are <
301 ± 0.5 nm ($\lambda > 315$ nm).

302 **DNA and RNA extraction**

303 Total genomic DNA and RNA of each sample was extracted using Soil DNA Kit and
304 Soil RNA Mini Kit (Omega Bio-Tek Inc., Norcross, GA) according to the
305 manufacturer's instructions, respectively. DNA concentration and purity were
306 measured by TBS-380 (Turner Biosystems, CA, USA) and Nanodrop ND-2000
307 (Thermo Fisher Scientific, Waltham, USA), respectively. DNA extract quality, RNA
308 degradation and contamination were monitored on 1% agarose gels. RNA quantity
309 was measured using Qubit 2.0 (Thermo Fisher Scientific, MA, USA) and Nanodrop
310 One (Thermo Fisher Scientific, MA, USA) at the same time. RNA integrity was
311 accurately detected using the Agilent 2100 system (Agilent Technologies, Waldbronn,
312 Germany).

313 **Amplicon analysis of 16S rRNA genes and transcripts**

314 The DNA and RNA for each sample were amplified in triplicate using primers
315 338F/806R for bacteria and Arch344F/Arch915R for archaea. Their PCR products
316 were pooled and purified. The same amount of the PCR product from each sample
317 was mixed to construct a sequencing library. High-throughput sequencing was
318 carried out on the Illumina MiSeq sequencing platform using PE300 chemical at
319 Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China).

320 After demultiplexing, the resulting sequences were merged with FLASH (v1.2.11)⁵¹
321 and quality filtered with fastp (v0.19.6)⁵². Then the high-quality sequences were de-
322 noised using DADA2⁵³ plugin in the Qiime2 (v2020.2)⁵⁴ pipeline with
323 recommended parameters, which obtains single nucleotide resolution based on error
324 profiles within samples. DADA2 denoised sequences are usually called amplicon

325 sequence variants (ASVs). To minimize the effects of sequencing depth on alpha and
326 beta diversity measure, the number of sequences from each sample was rarefied to
327 4000, which still yielded an average Good's coverage of 97.90%. Taxonomic
328 assignment of ASVs was performed using the Blast consensus taxonomy classifier
329 implemented in Qiime2 and the SILVA 16S rRNA database (v138).

330 **Metagenomic sequencing**

331 DNA extract was fragmented to an average size of about 400 bp using Covaris
332 M220 (Gene Company Limited, China) for paired-end library construction. Paired-
333 end library was constructed using NEXTFLEX® Rapid DNA-Seq (Bioo Scientific,
334 Austin, TX, USA). Adapters containing the full complement of sequencing primer
335 hybridization sites were ligated to the blunt-end of fragments. Paired-end
336 sequencing was performed on Illumina NovaSeq (Illumina Inc., San Diego, CA,
337 USA) at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China) using
338 NovaSeq Reagent Kits according to the manufacturer's instructions
339 (www.illumina.com).

340 **Assembly and binning of metagenomes**

341 Raw reads derived from the 13 metagenome libraries were quality-controlled by
342 clipping off primers and adapters then filtering out artefacts and low-quality reads
343 using Read_QC module within the metaWRAP pipeline v1.3.2⁵⁵. Filtered reads
344 were individually assembled using SPAdes v3.13.0 (metaSPAdes mode, default
345 parameters, for samples S11_2-3, S11_8-10, S11_12-13)⁵⁶ or MEGAHIT v1.1.3
346 (default parameters, for samples S11_1, S11_4-7, S11_11)⁵⁷. Additionally, all
347 samples were co-assembled using MEGAHIT v1.2.9 (--kmin_1pass --k-min 31).
348 Each assembly was binned using the binning module within the metaWRAP pipeline
349 v1.3.2 (--metabat2 --maxbin2 --concoct for individual assembly; --metabat2 for co-

350 assembly). For each assembly except S11_10, the three bin sets (one for co-
351 assembly) were then consolidated into a final bin set with the bin_refinement
352 module of metaWRAP pipeline v1.3.2 (-c 50 -x 10). For S11_10, bin sets were
353 consolidated into a final bin set with DAS Tool v1.1.2 (default parameters)⁵⁸. Finally,
354 638 bins were obtained from the 14 assemblies. They were then combined and
355 dereplicated using dRep v 2.6.2 (-comp 50 -con 10 -sa 0.95 --S_algorithm fastANI)
356 at 95% average nucleotide identity clustering (species level)⁵⁹. After dereplication, a
357 total of 351 dereplicated MAGs were obtained. Each bin was taxonomically
358 assigned according to the Genome Taxonomy Database (GTDB) version r207 using
359 GTDB-tk v2.0.0⁶⁰.

360 MAGs were annotated with FeGenie v2.0 and METABOLIC v4.0^{61, 62}. CoverM
361 v0.5.0 “genome” (<https://github.com/wwood/CoverM>) was used to obtain relative
362 abundance of each genome (parameters: –min-read-percent-identity 0.95 –min-read-
363 aligned-percent 0.75 –trim-min 0.10 –trim-max 0.90). For *mcrA* phylogenetic
364 analyses, amino acid sequences were aligned with MUSCLE algorithm⁶³ (-maxiters
365 16) and the maximum-likelihood phylogenetic tree was constructed in MEGA X⁶⁴.

366 Metatranscriptomic sequencing

367 Whole mRNASeq libraries were generated by Guangdong Magigene Biotechnology
368 Co.,Ltd. (Guangzhou, China) using NEB Next[®] Ultra[™] Nondirectional RNA
369 Library Prep Kit for Illumina[®] (New England Biolabs, MA, USA) following
370 manufacturer’s recommendations. Briefly, the bacterial and archaeal 16S rRNA
371 transcripts in total RNA samples were reduced by Ribo-zero rRNA Removal Kit.
372 Fragmentation was carried out using NEB Next First Strand Synthesis Reaction
373 Buffer. The first strand cDNA was synthesized using random hexamer primer and
374 M-MuLV Reverse Transcriptase (RNase H), and the second strand cDNA synthesis
375 was subsequently performed using DNA Polymerase I and RNase H. Remaining

376 overhangs were converted into blunt ends via exonuclease/polymerase activities.
377 After adenylation of 3' ends of DNA fragments, NEB Next Adaptor with hairpin
378 loop structure were ligated to prepare for hybridization. In order to select cDNA
379 fragments of preferentially 150~200 bp in length, the fragments were selected with
380 AMPure XP beads (Beckman Coulter, Beverly, USA). Then PCR was performed
381 with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X)
382 Primer. At last, PCR products were purified with AMPure XP beads and library
383 insert size was assessed on the Agilent 2100 system (Agilent Technologies,
384 Waldbronn, Germany). The clustering of the index-coded samples was performed on
385 a cBot Cluster Generation System. After cluster generation, the library was
386 sequenced on an Illumina Hiseq Xten platform and 150 bp paired-end reads were
387 generated.

388 **Metatranscriptomic analysis**

389 Raw metatranscriptomic reads were quality filtered using Read_QC module within
390 the metaWRAP pipeline v1.3.2⁵⁵. Paired-end reads were merged using PEAR v0.9.8
391⁶⁵. The reads corresponding to ribosomal RNAs were removed using SortMeRNA
392 v4.2.0⁶⁶. Subsequently, mRNA reads were mapped to the predicted protein-coding
393 genes from MAGs using Salmon v1.5.0 in mapping-based mode (parameters: -
394 validateMappings -meta)⁶⁷. The expression level for each gene was normalized to
395 transcript per million (TPM).

396 **Numerical modeling**

397 A one-dimensional, reaction-transport model^{22, 68} was applied to simulate two solid
398 phases (reactive Fe oxides and Fe carbonate) and six dissolved species (SO₄²⁻, CH₄,
399 DIC, Ca²⁺, Mg²⁺, and Fe²⁺). The reactions and their kinetic rate expressions
400 considered in the model are listed in **Table S1**. Net reaction terms for all species and

401 model parameters are listed in **Tables S11 and S12**, respectively. Detailed model
402 construction can be found in Supplementary Materials.

403 **Flux calculations**

404 Diffusive fluxes J ($\mu\text{mol cm}^{-2} \text{ yr}^{-1}$) of dissolved Mn^{2+} in the methanic zone were
405 calculated using its pore water concentration gradients according to Fick's first law
406 of diffusion. The algorithms are detailly described in Supplementary Materials.

407 **Statistical analysis**

408 The Spearman's linear correlation among the geochemical parameters and microbial
409 abundances of the subsamples was analyzed using the R package Vegan⁶⁹ via
410 RStudio (Ver. 1.3.1093).

411 **Data availability**

412 All metagenomes and metatranscriptomes are available at the Sequence Read
413 Archive under BioProject accession number PRJNA738468. Amplicon data were
414 deposited in Figshare (<https://doi.org/10.6084/m9.figshare.21696296.v1>).

415 **References**

- 416 1. Suess, E. Marine cold seeps and their manifestations: geological control,
417 biogeochemical criteria and environmental conditions. *Int J Earth Sci* **103**,
418 1889-1916 (2014).
- 419 2. Boetius, A. & Wenzhöfer, F. Seafloor oxygen consumption fuelled by
420 methane from cold seeps. *Nat Geoscience* **6**, 725-734 (2013).
- 421 3. Yan, Z., Joshi, P., Gorski, C.A. & Ferry, J.G. A biochemical framework for
422 anaerobic oxidation of methane driven by Fe(III)-dependent respiration. *Nat
423 Commun* **9**, 1642 (2018).
- 424 4. Oni, O.E. & Friedrich, M.W. Metal Oxide Reduction Linked to Anaerobic
425 Methane Oxidation. *Trends Microbiol* **25**, 88-90 (2017).
- 426 5. Beal, E.J., House, C.H. & Orphan, V.J. Manganese- and iron-dependent
427 marine methane oxidation. *Science* **325**, 184-187 (2009).

428 6. Boetius, A. et al. A marine microbial consortium apparently mediating
429 anaerobic oxidation of methane. *Nature* **407**, 623-626 (2000).

430 7. Haroon, M.F. et al. Anaerobic oxidation of methane coupled to nitrate
431 reduction in a novel archaeal lineage. *Nature* **500**, 567-570 (2013).

432 8. Hu, B.L. et al. Evidence for nitrite-dependent anaerobic methane oxidation
433 as a previously overlooked microbial methane sink in wetlands. *Proc Natl
434 Acad Sci U S A* **111**, 4495-4500 (2014).

435 9. Orphan, V.J., House, C.H., Hinrichs, K.U., McKeegan, K.D. & DeLong, E.F.
436 Methane-consuming archaea revealed by directly coupled isotopic and
437 phylogenetic analysis. *Science* **293**, 484-487 (2001).

438 10. Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an
439 unknown process. *Annu Rev Microbiol* **63**, 311-334 (2009).

440 11. He, Z. et al. Microbiological and environmental significance of metal-
441 dependent anaerobic oxidation of methane. *Sci Total Environ* **610-611**, 759-
442 768 (2018).

443 12. Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of
444 methane to Fe(III) reduction. *ISME J* **12**, 1929-1939 (2018).

445 13. Leu, A.O. et al. Anaerobic methane oxidation coupled to manganese
446 reduction by members of the Methanoperedenaceae. *ISME J* **14**, 1030-1041
447 (2020).

448 14. Fu, L. et al. Iron reduction in the DAMO/*Shewanella oneidensis* MR-1
449 coculture system and the fate of Fe(II). *Water Res* **88**, 808-815 (2016).

450 15. Ettwig, K.F. et al. Archaea catalyze iron-dependent anaerobic oxidation of
451 methane. *Proc Natl Acad Sci U S A* **113**, 12792-12796 (2016).

452 16. Liu, W. et al. Reduction of methane emissions from manganese-rich
453 constructed wetlands: Role of manganese-dependent anaerobic methane
454 oxidation. *Chem Eng J* **387**, 123402 (2020).

455 17. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E. & Orphan, V.J.
456 Artificial electron acceptors decouple archaeal methane oxidation from
457 sulfate reduction. *Science* **351**, 703-707 (2016).

458 18. Aromokeye, D.A. et al. Rates and Microbial Players of Iron-Driven
459 Anaerobic Oxidation of Methane in Methanic Marine Sediments. *Front
460 Microbiol* **10**, 3041 (2019).

461 19. Egger, M. et al. Iron-mediated anaerobic oxidation of methane in brackish
462 coastal sediments. *Environ Sci Technol* **49**, 277-283 (2015).

463 20. Egger, M. et al. Anaerobic oxidation of methane alters sediment records of
464 sulfur, iron and phosphorus in the Black Sea. *Biogeosciences* **13**, 5333-5355
465 (2016).

466 21. Egger, M. et al. Iron oxide reduction in methane-rich deep Baltic Sea
467 sediments. *Geochim Cosmochim Acta* **207**, 256-276 (2017).

468 22. Luo, M. et al. Impact of iron release by volcanic ash alteration on carbon
469 cycling in sediments of the northern Hikurangi margin. *Earth Planet Sci Lett*
470 **541**, 116288 (2020).

471 23. Rooze, J., Egger, M., Tsandev, I. & Slomp, C.P. Iron-dependent anaerobic
472 oxidation of methane in coastal surface sediments: Potential controls and
473 impact. *Limnol Oceanogr* **61**, S267-S282 (2016).

474 24. Segarra, K.E.A., Comerford, C., Slaughter, J. & Joye, S.B. Impact of
475 electron acceptor availability on the anaerobic oxidation of methane in
476 coastal freshwater and brackish wetland sediments. *Geochim Cosmochim
477 Acta* **115**, 15-30 (2013).

478 25. Sivan, O. et al. Geochemical evidence for iron-mediated anaerobic oxidation
479 of methane. *Limnol Oceanogr* **56**, 1536-1544 (2011).

480 26. Liang, L., Wang, Y., Sivan, O. & Wang, F. Metal-dependent anaerobic
481 methane oxidation in marine sediment: Insights from marine settings and
482 other systems. *Sci China Life Sci* **62**, 1287-1295 (2019).

483 27. Nixon, S.L., Bonsall, E. & Cockell, C.S. Limitations of microbial iron
484 reduction under extreme conditions. *FEMS Microbiol Rev* **46** (2022).

485 28. Liang, Q. et al. Authigenic carbonates from newly discovered active cold
486 seeps on the northwestern slope of the South China Sea: Constraints on fluid
487 sources, formation environments, and seepage dynamics. *Deep Sea Res Part
488 I Oceanogr Res Pap* **124**, 31-41 (2017).

489 29. Feng, D. et al. The stable isotope fingerprint of chemosymbiosis in the shell
490 organic matrix of seep-dwelling bivalves. *Chem Geol* **479**, 241-250 (2018).

491 30. Feng, J. et al. A Quantitative Assessment of Methane-Derived Carbon
492 Cycling at the Cold Seeps in the Northwestern South China Sea. *Minerals* **10**,
493 256 (2020).

494 31. Niu, M., Fan, X., Zhuang, G., Liang, Q. & Wang, F. Methane-metabolizing
495 microbial communities in sediments of the Haima cold seep area, northwest
496 slope of the South China Sea. *FEMS Microbiol Ecol* **93** (2017).

497 32. Zhuang, G.C. et al. Biogeochemistry, microbial activity, and diversity in
498 surface and subsurface deep-sea sediments of South China Sea. *Limnol
499 Oceanogr* **64**, 2252-2270 (2019).

500 33. Xiao, X. et al. Petrographical and Geochemical Signatures Linked to Fe/Mn
501 Reduction in Subsurface Marine Sediments from the Hydrate-Bearing Area,
502 Dongsha, the South China Sea. *Minerals* **9**, 624 (2019).

503 34. Borowski, W.S., Paull, C.K. & Ussler, W. Global and local variations of
504 interstitial sulfate gradients in deep-water, continental margin sediments:
505 Sensitivity to underlying methane and gas hydrates. *Mar Geol* **159**, 131-154
506 (1999).

507 35. Starnawski, P. et al. Microbial community assembly and evolution in
508 subseafloor sediment. *Proc Natl Acad Sci U S A* **114**, 2940-2945 (2017).

509 36. Chen, Y. et al. Biomineralization mediated by anaerobic methane-consuming
510 cell consortia. *Scientific reports* **4**, 5696 (2014).

511 37. Feng, J. et al. Methane Source and Turnover in the Shallow Sediments to the
512 West of Haima Cold Seeps on the Northwestern Slope of the South China
513 Sea. *Geofluids* **2019**, 1-18 (2019).

514 38. Sisma-Ventura, G. et al. Cold seeps alter the near-bottom biogeochemistry in
515 the ultraoligotrophic Southeastern Mediterranean Sea. *Deep Sea Res Part I
516 Oceanogr Res Pap* **183**, 103744 (2022).

517 39. Chadwick, G.L. et al. Comparative genomics reveals electron transfer and
518 syntrophic mechanisms differentiating methanotrophic and methanogenic
519 archaea. *PLoS Biol* **20**, e3001508 (2022).

520 40. Garcia, P.S., Gribaldo, S. & Borrel, G. Diversity and Evolution of Methane-
521 Related Pathways in Archaea. *Annu Rev Microbiol* **76**, 727-755 (2022).

522 41. Laso-Pérez, R. et al. Evolutionary diversification of methanotrophic Ca.
523 Methanophagales (ANME-1) and their expansive Virome. *bioRxiv*,
524 2022.2007.2004.498658 (2022).

525 42. Riedinger, N. et al. An inorganic geochemical argument for coupled
526 anaerobic oxidation of methane and iron reduction in marine sediments.
527 *Geobiology* **12**, 172-181 (2014).

528 43. Oni, O. et al. Distinct microbial populations are tightly linked to the profile
529 of dissolved iron in the methanic sediments of the Helgoland mud area,
530 North Sea. *Front Microbiol* **6**, 365 (2015).

531 44. Mehta, T., Coppi, M.V., Childers, S.E. & Lovley, D.R. Outer membrane c-
532 type cytochromes required for Fe(III) and Mn(IV) oxide reduction in
533 *Geobacter sulfurreducens*. *Applied and environmental microbiology* **71**,
534 8634-8641 (2005).

535 45. Chen, L. et al. Anaerobic methane oxidation linked to Fe(III) reduction in a
536 *Candidatus Methanoperedens*-enriched consortium from the cold Zoige
537 wetland at Tibetan Plateau. *Environmental microbiology* **24**, 614-625 (2022).

538 46. McGlynn, S.E., Chadwick, G.L., Kempes, C.P. & Orphan, V.J. Single cell
539 activity reveals direct electron transfer in methanotrophic consortia. *Nature*
540 **526**, 531-535 (2015).

541 47. Casar, C.P., Momper, L.M., Kruger, B.R. & Osburn, M.R. Iron-Fueled Life
542 in the Continental Subsurface: Deep Mine Microbial Observatory, South
543 Dakota, USA. *Applied and environmental microbiology* **87**, e0083221 (2021).

544 48. Castelle, C.J. & Banfield, J.F. Major New Microbial Groups Expand
545 Diversity and Alter our Understanding of the Tree of Life. *Cell* **172**, 1181-
546 1197 (2018).

547 49. Zhang, T. et al. Active Anaerobic Archaeal Methanotrophs in Recently
548 Emerged Cold Seeps of Northern South China Sea. *Front Microbiol* **11**,
549 612135 (2020).

550 50. Poulton, S.W. & Canfield, D.E. Development of a sequential extraction
551 procedure for iron: implications for iron partitioning in continentally derived
552 particulates. *Chem Geol* **214**, 209-221 (2005).

553 51. Magoc, T. & Salzberg, S.L. FLASH: fast length adjustment of short reads to
554 improve genome assemblies. *Bioinformatics* **27**, 2957-2963 (2011).

555 52. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ
556 preprocessor. *Bioinformatics* **34**, i884-i890 (2018).

557 53. Callahan, B.J. et al. DADA2: High-resolution sample inference from
558 Illumina amplicon data. *Nat Methods* **13**, 581-583 (2016).

559 54. Bolyen, E. et al. Reproducible, interactive, scalable and extensible
560 microbiome data science using QIIME 2. *Nature biotechnology* **37**, 852-857
561 (2019).

562 55. Uritskiy, G.V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline
563 for genome-resolved metagenomic data analysis. *Microbiome* **6**, 158 (2018).

564 56. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P.A. metaSPAdes: a
565 new versatile metagenomic assembler. *Genome research* **27**, 824-834 (2017).

566 57. Li, D., Liu, C.M., Luo, R., Sadakane, K. & Lam, T.W. MEGAHIT: an ultra-
567 fast single-node solution for large and complex metagenomics assembly via
568 succinct de Bruijn graph. *Bioinformatics* **31**, 1674-1676 (2015).

569 58. Sieber, C.M.K. et al. Recovery of genomes from metagenomes via a
570 dereplication, aggregation and scoring strategy. *Nat Microbiol* **3**, 836-843
571 (2018).

572 59. Olm, M.R., Brown, C.T., Brooks, B. & Banfield, J.F. dRep: a tool for fast
573 and accurate genomic comparisons that enables improved genome recovery
574 from metagenomes through de-replication. *ISME J* **11**, 2864-2868 (2017).

575 60. Chaumeil, P.A., Mussig, A.J., Hugenholtz, P. & Parks, D.H. GTDB-Tk: a
576 toolkit to classify genomes with the Genome Taxonomy Database.
577 *Bioinformatics* **36**, 1925-1927 (2019).

578 61. Garber, A.I. et al. FeGenie: A Comprehensive Tool for the Identification of
579 Iron Genes and Iron Gene Neighborhoods in Genome and Metagenome
580 Assemblies. *Front Microbiol* **11**, 37 (2020).

581 62. Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial
582 genomes for functional traits, metabolism, biogeochemistry, and community-
583 scale functional networks. *Microbiome* **10**, 33 (2022).

584 63. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and
585 high throughput. *Nucleic acids research* **32**, 1792-1797 (2004).

586 64. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X:
587 Molecular Evolutionary Genetics Analysis across Computing Platforms. *Mol
588 Biol Evol* **35**, 1547-1549 (2018).

589 65. Zhang, J., Kober, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate
590 Illumina Paired-End reAd mergeR. *Bioinformatics* **30**, 614-620 (2014).

591 66. Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering
592 of ribosomal RNAs in metatranscriptomic data. *Bioinformatics* **28**, 3211-
593 3217 (2012).

594 67. Patro, R., Duggal, G., Love, M.I., Irizarry, R.A. & Kingsford, C. Salmon
595 provides fast and bias-aware quantification of transcript expression. *Nat
596 Methods* **14**, 417-419 (2017).

597 68. Luo, M. et al. A quantitative assessment of methane cycling in Hikurangi
598 Margin sediments (New Zealand) using geophysical imaging and
599 biogeochemical modeling. *Geochem Geophys* **17**, 4817-4835 (2016).

600 69. Dixon, P. VEGAN, a package of R functions for community ecology. *J Veg
601 Sci* **14**, 927-930 (2003).

602

603 **Acknowledgements**

604 This work was supported by the Guangdong Basic and Applied Basic Research
605 Foundation (No. 2019B030302004, 20201910240000691), and the National Natural
606 Science Foundation of China (No. 41906076, 41806074, 41730528), the Marine
607 Geological Survey Program of China Geological Survey (DD20221706). The
608 authors express their sincere gratitude to the crews and participates of the
609 Haiyangdizhi10 for assistance in collecting, processing, and shipping the samples.

610 **Author contributions**

611 QL and XD designed the study. XX, TZ, and XW performed porewater and
612 sediment sampling, geochemical analyses. ML performed geochemical modeling
613 estimates. XD and XX processed metagenome, metatranscriptome data analyses. JT
614 and ZC provided the picture of seafloor observations. XW and JZ interpreted
615 geophysical data. XX and TZ conducted amplicon sequencing and microbial
616 diversity analyses. XX, XD, and ML wrote the manuscript. QL, CZ, and XY
617 modified the manuscript. All authors reviewed the results and approved the
618 submitted manuscript.

619 **Competing interests**

620 The authors declare no conflict of interest.

621

622

623 **Figure legends**

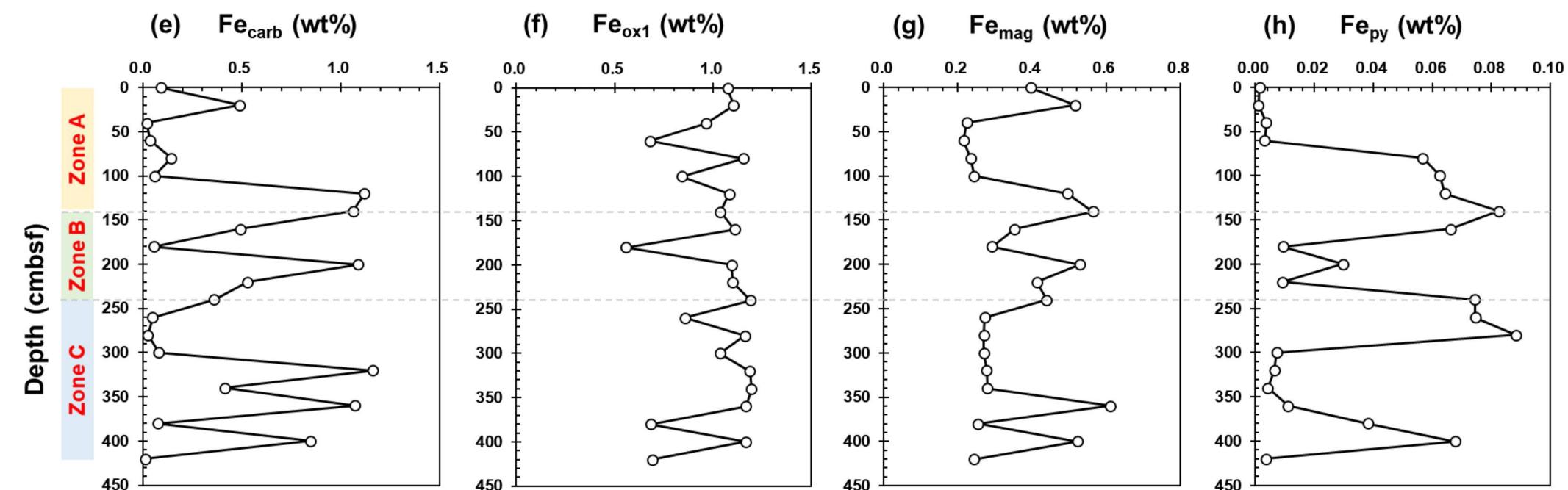
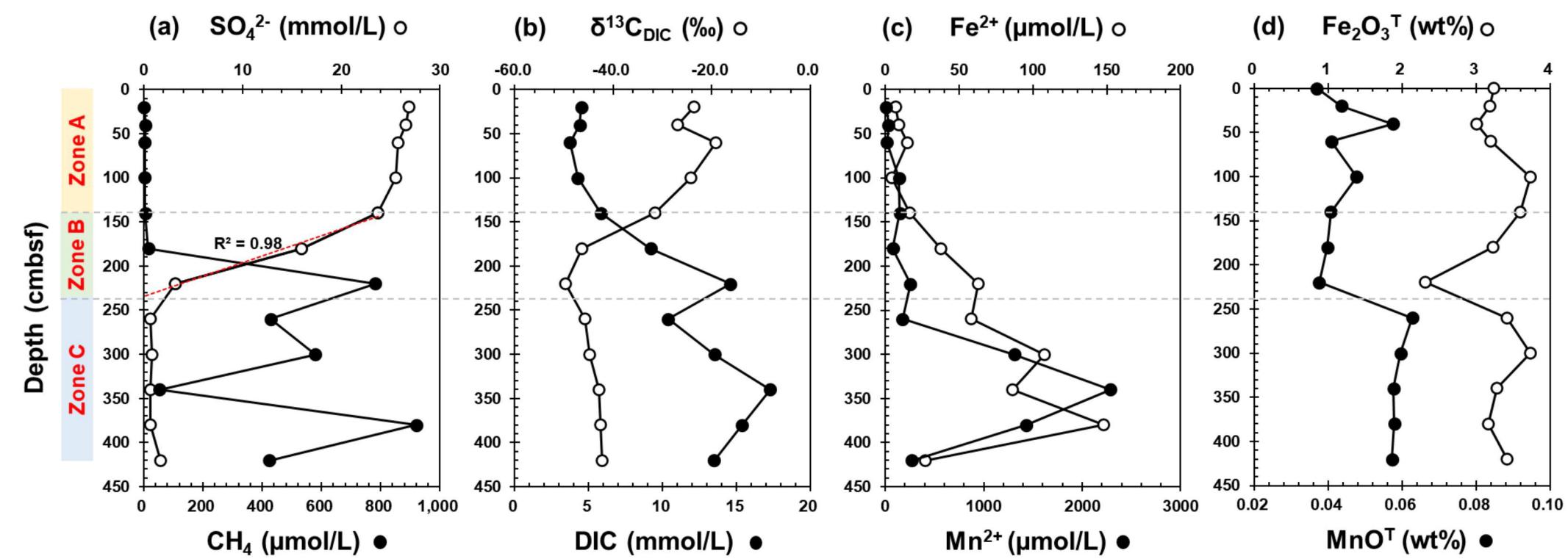
624 **Figure 1 Geochemical profiles of the sediment core HM-S11 in the Haima seep.**

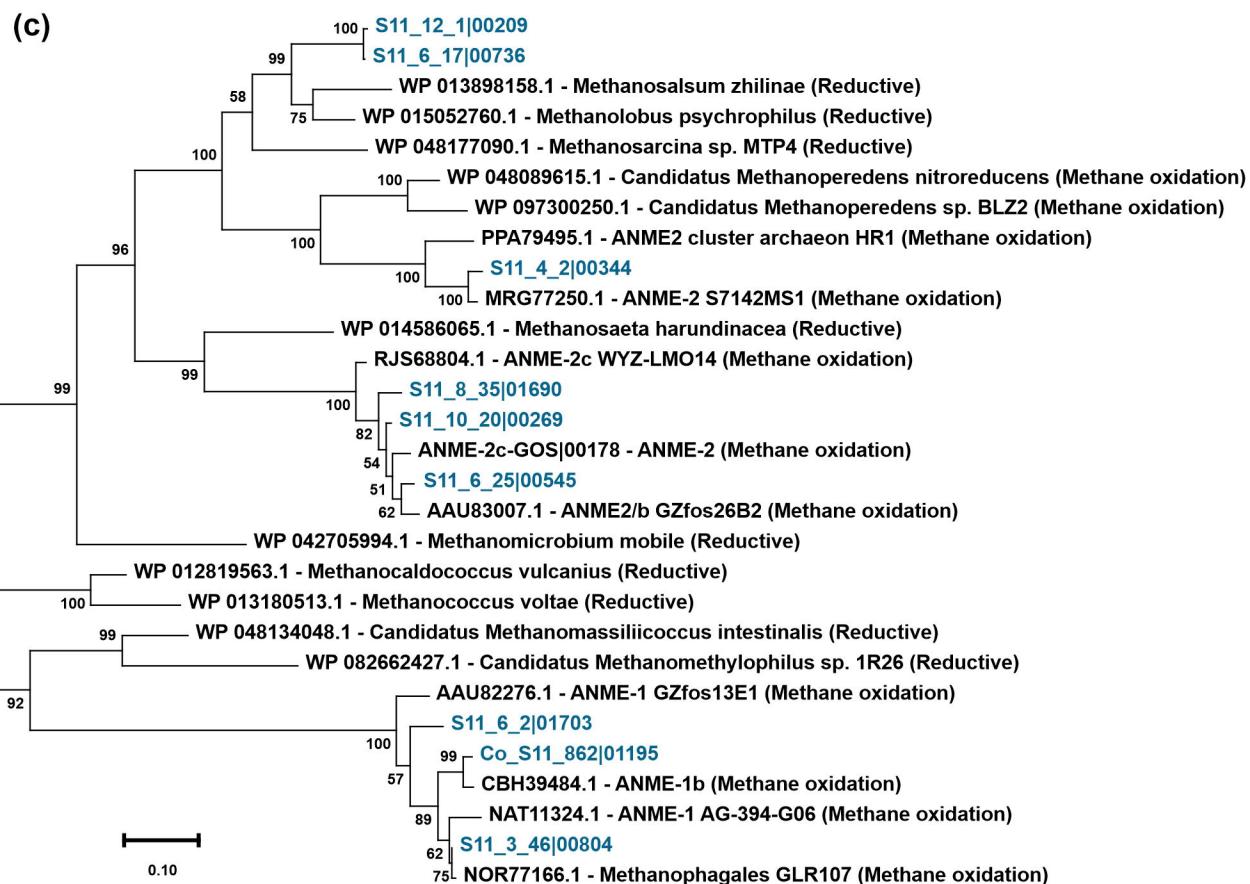
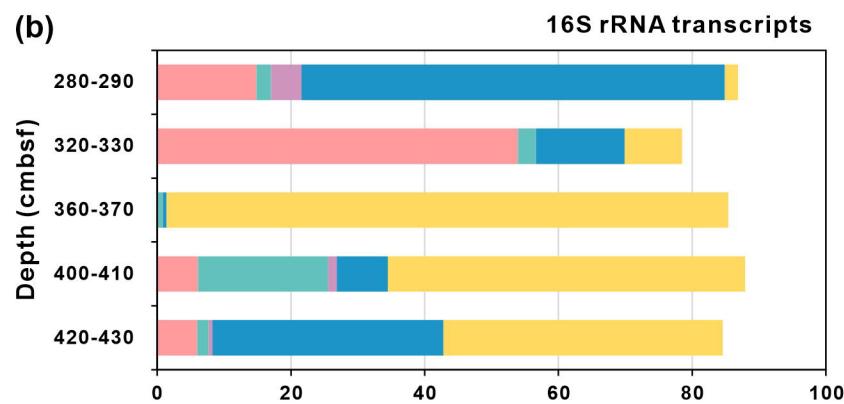
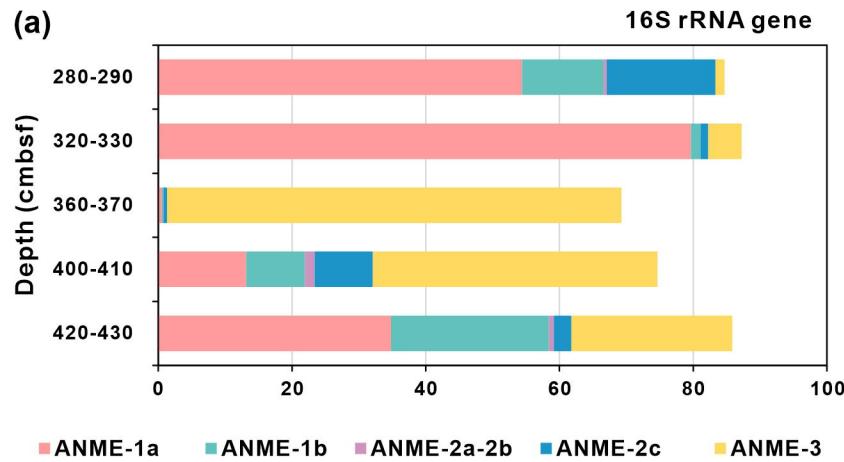
625 (a) Profiles of methane (CH_4) and sulfate (SO_4^{2-}) contents in porewater; (b)
626 Concentrations of dissolved inorganic carbon (DIC) and stable carbon isotope ratios
627 $\delta^{13}\text{C}_{\text{DIC}}$ in porewater; (c) Concentrations of dissolved Fe^{2+} and Mn^{2+} in porewater; (d)
628 Contents of $\text{Fe}_2\text{O}_3^{\text{T}}$ and MnO_2^{T} in sediments; (e~h) Sequential extraction of iron
629 minerals in sediments. Fe_{carb} = carbonate-associated Fe; Fe_{ox1} = amorphous iron
630 (oxyhydr)oxides; Fe_{mag} = magnetite Fe; Fe_{py} = pyrite Fe. Zones A, B and C are
631 suggested as the sulfate zone, the sulfate-methane transition zone, and the methanic
632 zone.

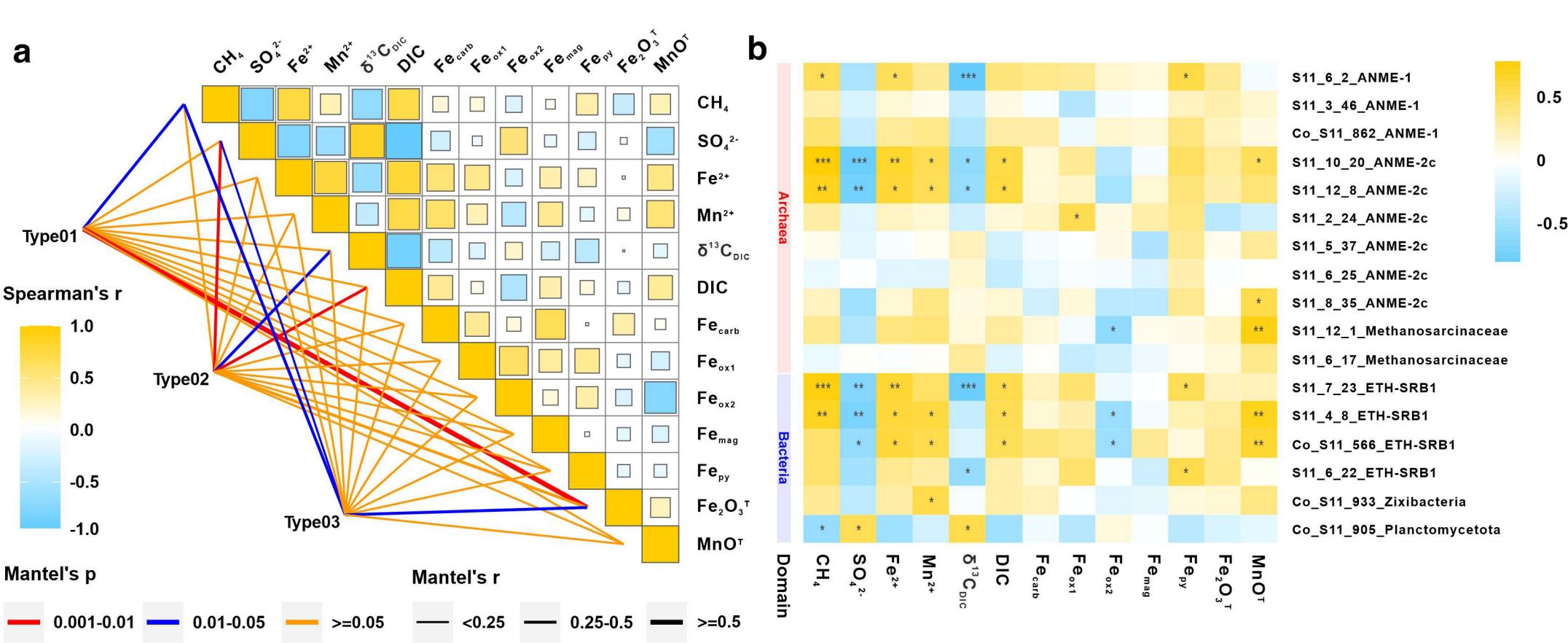
633 **Figure 2 Relative abundances and phylogenetic tree of ANMEs.**

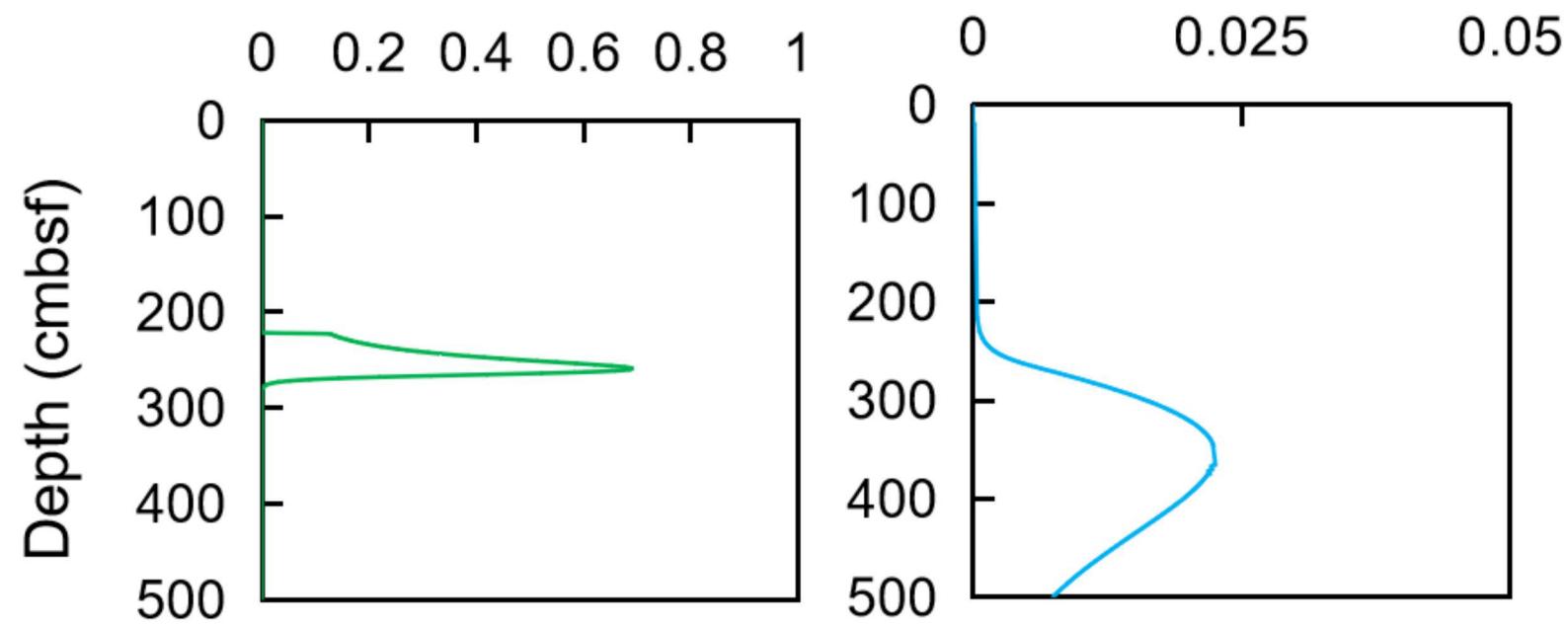
634 Relative abundances of ANME based on (a) 16S rRNA genes and (b) 16S rRNA
635 transcripts in the methanic zone. (c) Maximum-likelihood phylogenetic tree of *mcra*
636 sequences.

637 **Figure 3 Spearman correlations of sediments in the core HM-S11.** (a) Spearman
638 correlation coefficients between depth-wise distribution of geochemical parameters;
639 (b) Correlation between geochemical parameters and abundances of MAGs belong
640 to ANMEs and metal reduction bacteria. The stars symbolize p values of correlation.
641 *** means $p < 0.001$; ** means $p < 0.01$; *means $p < 0.05$.



642 **Figure 4 Modeled reaction rate profiles of S-AOM (green), and Fe-AOM (blue).**




643 **Figure 5 Model for AOM and methanogenesis in cold-seep marine sediments.**


644 **Table 1 | Summary of the estimated rates of S-AOM, Fe-AOM and Mn-AOM in sediments from various freshwater and marine**
 645 **environments**


Ecosystem	Environment	In situ concentration ($\mu\text{mol/L}$)		Model-derived rates ($\mu\text{mol CH}_4 \text{ cm}^{-3} \text{ yr}^{-1}$)			Depth-integrated rates ($\mu\text{mol CH}_4 \text{ cm}^{-2} \text{ yr}^{-1}$)			The fraction in total CH_4 oxidation			Method	References
		Fe^{2+}	Mn^{2+}	S-AOM	Fe-AOM	Mn-AOM	S-AOM	Fe-AOM	Mn-AOM	S-AOM	Fe-AOM	Mn-AOM		
Marine	Haima cold seep	148	2289	0.66	0.02	N.A.	20.05	0.31	0.32	97%	1.5%	1.5%	Modeling	This study
	Hikurangi margin	184	N.A.	0.48	0.0005	N.A.	3	0.4	N.A.	88%	12%	N.A.	Modeling	Luo et al., 2020
	Black Sea	800	23	0.07	1.46E-05	N.A.	5.9	0.04	N.A.	99%	0.70%	N.A.	Modeling	Egger et al., 2016a
	Baltic Sea	600	N.A.	0.27	0.0011	N.A.	8.8	2.5	N.A.	78%	22%	N.A.	Modeling	Egger et al., 2017
	Bothnian Sea	1830	N.A.	N.A.	N.A.	N.A.	78.7	8	N.A.	90%	9%	N.A.	Modeling	Rooze et al., 2016
				6.94E-04	1.32	N.A.	58.38	1.63	N.A.	97%	3%	N.A.	$^{13}\text{CH}_4$ /Modeling	Egger et al., 2015
	Jiaolong cold seep	27	N.A.	328.57	13.87	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	$^{14}\text{CH}_4$	Li et al., 2020
	North Sea	380	40	2.04	0.03	N.A.	N.A.	N.A.	N.A.	98%	2%	N.A.	$^{14}\text{CH}_4$	Aromokeye et al., 2020
	Eel River Basin seep	N.A.	N.A.	52	6	14	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	$^{13}\text{CH}_4$	Beal et al., 2009
Freshwater	Lake Kinneret	70	N.A.	N.A.	1.26	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	$^{13}\text{CH}_4$	Sivan et al., 2011
	Dover Bluff salt marsh	30	80	2.41	1.42	0.876	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	$^{14}\text{CH}_4$	Segarra et al., 2013
	Hammersmith Creek River	500	400	5.66	4.5	1.314	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	$^{14}\text{CH}_4$	

646 Modeling: Geochemical modeling estimates; $^{13}\text{CH}_4$: $^{13}\text{CH}_4$ incubations; $^{14}\text{CH}_4$: $^{14}\text{CH}_4$ incubations; N.A., not available.

