

1 A pair of NLRs coordinately modulates NRC3-mediated ETI responses to 2 facilitate age-dependent immunity

3 Xiaohua Dong, Xiaoyan Zhang, Zhiyuan Yin, Jialu Li, Chuyan Xia, Weiye Pan,
4 Yaning Zhao, Maofeng Jing, Jinding Liu, Gan Ai*, Daolong Dou*

5

⁶ ¹ College of Plant Protection, Academy for Advanced Interdisciplinary Studies,
⁷ Nanjing Agricultural University, Nanjing 210095, China

⁸ * Corresponding author: Daolong Dou, Email: ddou@njau.edu.cn, Gan Ai,
⁹ Email: Ganai@njau.edu.cn

10

11 Running title: Paired NLRs regulate age-dependent immunity

12

13 Email addresses:

14 Xiaohua Dong, 2019202017@njau.edu.cn

15 Xiaoyan Zhang, 12119419@njau.edu.cn

16 Zhiyuan Yin, zyin@njau.edu.cn

17 Jialu Li, a13770938276@163.com

18 Chuyan Xia, chuyan79@icloud.com

19 Weiye Pan, 12117232@njau.edu.cn

20 Yaning Zhao, 2018116107@njau.edu.cn

21 Maofeng Jing, jingmf@njau.edu.cn

22 Jinding Liu, liujd@njau.edu.cn

23 Gan Ai, Ganai@njau.edu.cn

24 Daolong Dou, ddou@njau.edu

25

27 **Abstract**

28 Two NLRs (Nucleotide-binding and Leucine-rich repeat Receptors)
29 adjacent to each other on a locus, termed as paired NLRs, may act separately
30 for effector recognition and subsequent signaling activation to mediate
31 effector-triggered immunity (ETI) in many plants. However, it is largely
32 unknown about their distribution and functions in Solanaceae species, in which
33 NLR-Hs (Helpers NLR REQUIRED FOR CELL DEATHs) have been
34 extensively studied. Here, we identified paired NLRs in Solanaceae species
35 and found they harbor paired NLRs ranging from 6 to 100, which are
36 significantly negatively correlated with the numbers of NLR-Hs. *N.*
37 *benthamiana* has six paired NLRs, among which silencing of *NRCX* exhibits
38 phenotypes of dwarfism and accelerated senescence. Importantly,
39 *NRCX*-silencing phenotypes could be restored by simultaneously silencing its
40 head-to-head NLR pair, thus we named it as *NRCY*. *NRCX/Y* pair is specific in
41 Solanaceae species. *NRCY* contains non-canonical walker B and MHD motifs,
42 but could not induce autoactive cell death in *N. benthamiana*. Instead of that,
43 silencing *NRCY* impaired cell death triggered by *Sw5b-Nsm* and *NRC3^{D480V}*,
44 indicating *NRCY* is also an NLR modulator like *NRCX*. Furthermore, *NRCX*
45 suppression of *Sw5b-Nsm* and *NRC3*-mediated cell death is dependent on
46 *NRCY*. Remarkably, we found that *NRCX* and *NRCY* expressions were
47 induced during plant senescence, while *NRCY* was induced more than *NRCX*.
48 Accordingly, the plant resistance was stronger during maturation, indicated
49 *NRCX/Y* might be involved in age-dependent resistance. Our study reveals
50 one of the paired NLRs coordinately regulates ETI to facilitate age-dependent
51 immunity.

52 **Key words:** Paired NLR; NRC helpers; NLR modulator; Age-dependent
53 immunity

54

55 **Introduction**

56 Plants have evolved a sophisticated innate immune system to prevent infection
57 from diverse pathogens. PRRs in the cell surface trigger plant immunity by
58 recognizing conserved components of pathogens and hosts, known as the
59 pattern-triggered Immunity (PTI). Successfully adapted pathogens deliver
60 effectors to suppress defense responses including PTI. As a countermeasure,
61 plants have evolved a second layer of immunity involving NLRs
62 (Nucleotide-binding and Leucine-rich repeat Receptors), which recognizes
63 pathogen effectors and trigger effector-triggered Immunity (ETI) [1,2]. ETI
64 provides robust defense responses that are usually associated with cell death,
65 which is referred to be hypersensitive response (HR), at infection sites to
66 inhibit pathogen infection [3,4].

67 NLRs can function in pairs [5,6]. Paired NLRs are usually genetically
68 adjacent to each other in a ‘head-to-head’ fashion and physically interact with
69 each other [7,8]. For example, RGA4/RGA5 of rice locates in one locus in a
70 ‘head-to-head’ form, and they physically interact with each other through CC
71 domain regardless of the presence of effectors [9]. Usually, one of an NLR pair
72 is a sensor, which is specialized to recognize the pathogen and the other is
73 involved in initiating immune signaling (executor) [10]. Most executors are
74 auto-activated and overexpression of these executors causes autoactive cell
75 death *in planta* [10]. The autoactivity of executors can be suppressed by their
76 sensors and knocking-out sensors may lead to lesion mimic phenotypes in
77 plants [11,12]. The downstream signaling pathway of NLR pairs partially
78 involves helper NLRs (NLR-Hs), e.g. ADR1 and NRG1 [13], which may form
79 Ca²⁺-permeable cation channels to directly regulate cytoplasmic Ca²⁺ levels
80 and consequent cell death [14].

81 NLRs work not only in pairs, but also through a complex network
82 architecture [15]. Recently, a major clade of NLRs in Solanaceae plant species
83 was shown to form a comprehensive network. In this network, multiple helper
84 NLRs, known as NLR-Hs (Helpers NLR REQUIRED FOR CELL DEATHs), are
85 required by a large number of sensor NLRs that mediate resistance against

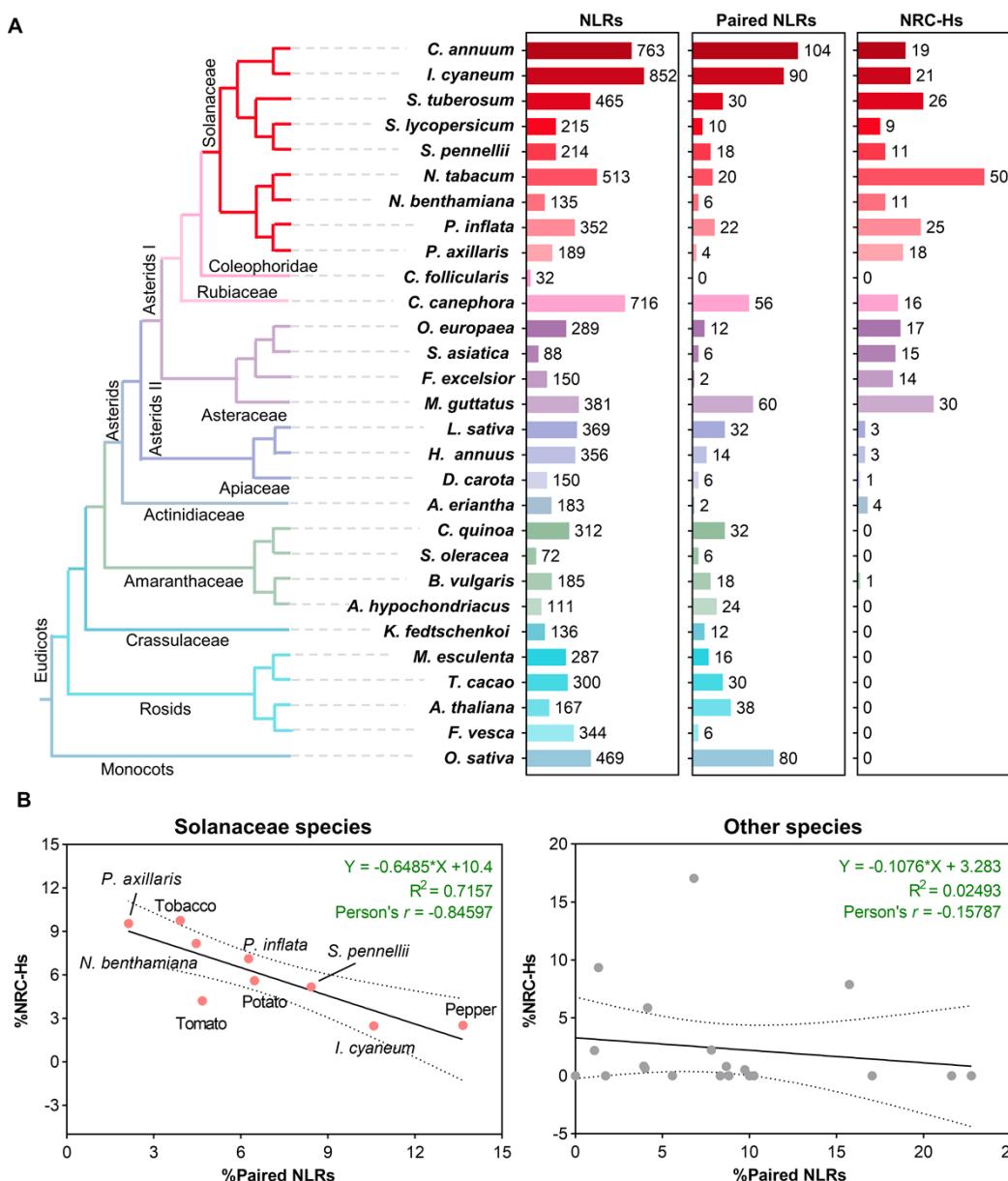
86 diverse pathogens [16]. For example, Sw5b, an NLR from *Solanum*
87 *lycopersicum*, could recognize Nsm from Tospoviruses and trigger a
88 NRC2/3-dependent HR [16,17]. Unlike typical paired NLRs, NRC-Hs are not
89 always clustered with sensor NLRs in plant genomes even though they are
90 evolutionarily related [16]. The current evolutionary model for the NRC network
91 is that it has evolved from a few genetically linked NLRs, as in the
92 Caryophyllales, through a massive expansion of sensors and a relatively
93 limited expansion of helpers, possibly to maintain the robustness of the
94 network against rapidly evolving pathogens [6,18].

95 NLRs share a basic protein architecture consisting of a variable N-terminal
96 domain, a central nucleotide-binding domain (NB-ARC), and a C-terminal
97 leucine-rich repeat domain (LRR) [19]. NB-ARC domains can be subdivided
98 into three subdomains: NB, ARC1 and ARC2 [19,20]. The NB subdomain
99 contains two major motifs, a P-loop motif required for nucleotide binding and
100 Walker B required for adenosine triphosphate (ATP) hydrolysis [21]. In addition,
101 there is also a nucleotide binding site MHD (methionine-histidine-aspartate)
102 motif on ARC2 [22]. Mutation in the NLR Walker B motif or MHD motif often
103 leads it to be auto-activated [23]. For example, the substitution of the
104 conserved second aspartate to glutamate will reduce ATP hydrolysis rates of
105 I-2 and lead it to autoactivation. Notably, the MHD motifs of many executor
106 NLRs are non-canonical, and are required for auto-activation [23]. For example,
107 the MHD motif of RGA4 is “TYG”, which is highly degenerated, differs from the
108 consensus MHD sequence. Changing the degenerated motif to canonical
109 MHD motif impairs the RGA4 autoactivity [9].

110 Age-dependent immunity is referred to the phenomenon that plant
111 resistance to pathogens gradually increases with plant age [24].
112 Age-dependent immunity extensively exists in different plants. For example, *N.*
113 *benthamiana* has age-dependent resistance against *P. infestans*, by which 35
114 days old plants have performed a completely resistance to *P. infestans* [25].
115 Recently, many molecular mechanisms behind age-dependent immunity have

116 been discovered. In *N. tabacum*, NLRs and sRNAs are reported to be
117 associated with age-dependent immunity. During the maturation process of
118 plants, NLRs expressions are increasing while small RNAs (sRNAs), which
119 served as the regulatory of NLRs, are gradually decreasing in the expression
120 [26]. The works provide a glimpse into mechanisms behind age-dependent
121 immunity. However, other genes involved in age-dependent immunity are
122 largely unknown.

123 It is proposed that functional specialization is a critical strategy in NLR
124 evolution to avoid being constrained by signaling activity during evolution [6].
125 NLR networks built by helper NLR, as well as paired NLRs, require more than
126 one NLR to mediate immune activity. We suspected that there may be
127 redundancy between the functions of paired NLRs and helper NLRs. In this
128 study, by analyzing the distribution of paired NLRs in Solanaceae species, we
129 found that the quantities of paired NLRs and NRC-Hs are negatively correlated.
130 We further used *N. benthamiana*, a model plant of Solanaceae, to evaluate the
131 paired NLRs functions. We found that *N. benthamiana* exhibited significant
132 dwarfing and senescence phenotypes when one of the six paired NLRs, *NRCX*,
133 was silenced. *N. benthamiana* knockout mutant *nrcx* confirmed that the
134 defense responses of *nrcx* are continuously activated. Interestingly, silencing
135 the head-to-head NLR of *NRCX*, *NRCY*, could restore the stunting and
136 senescence phenotype. *NRCY* is not a autoactive NLR but a positive
137 modulator of *NRC3*-mediated immunity. Finally, we observed a gradual
138 increase in *NRCX/NRCY* expressions as the leaves became senescent, where
139 *NRCY* is induced greatly more, implied that they play a role in age-dependent
140 resistance of *N. benthamiana*.


141

142 **Results**

143 **The quantities of paired NLRs and NRC-Hs are negatively correlated in**
144 **Solanaceae species**

145 To evaluate the distribution of paired NLRs and NRC-Hs in Solanaceae
146 species, we first used NLRtracker tool to identify all NLRs in 29 representative
147 plant species including nine Solanaceae species (**Fig 1A, S1 Fig**). Assembled
148 genome sizes of these organisms ranged from 89 Mb to 2,918 Mb, with
149 annotated protein counts ranging from 23,879 to 69,500 (**S2A Fig**). In total, we
150 identified 8,795 non-redundant NLR, ranging from 32 to 852 in each species
151 (**Fig 1A**). The number of NLRs identified in this study is highly similar to the
152 previous publication [27], supporting the robustness of our pipeline (**S2B Fig**).
153 Paired NLRs in all these species were identified based on searching NLRs in a
154 “head-to-head” fashion with enclosing no more than 2 non-NLR genes (**Fig 1A,**
155 **S1 Fig**) [28]. Helper NLRs (NRC-Hs) were identified through phylogenetic
156 assay (**Fig S1, S2 File**): the NLRs in the same clades with NRC2/3/4 were
157 considered as NRC-Hs [29] (**Fig 1A**).

158 We next investigated the correlation between the %Paired NLR
159 and %NRC-Hs through regression analysis. Interestingly, the %Paired NLRs
160 are negatively correlated with the %NRC-Hs in Solanaceae species (**Fig 1B**).
161 The slope of the linear fitting equation is -0.6485 with a high R square ($R^2 =$
162 0.7157). Furthermore, Pearson correlation analysis indicated a high negative
163 correlation between %Paired NLR and %NRC-Hs (Pearson's $r = -0.84597$) in
164 Solanaceae species. In contrast, no correlation between %Paired NLRs
165 and %NRC-Hs could be detected in other tested species ($R^2 = 0.02493$,
166 Pearson's $r = -0.15787$) (**Fig 1B**). We also identified NLRs in “head-tail” or
167 “tail-tail” fashion in Solanaceae species and found no correlation between
168 them with NRC-Hs could be detected (**S3A and S3B Figs**).
169

170
171 **Fig 1. The quantities of paired NLRs and NRC-Hs are negatively correlated in**
172 **Solanaceae species**

173 (A) Summary of predicted NLRs. The phylogeny of the 29 species is based on data from
174 the Taxonomy Database (<https://www.ncbi.nlm.nih.gov/taxonomy>). The counts of NLRs,
175 paired NLRs and NRCH-s in each species are shown in boxplots following the species
176 names. (B) Scatter plot of %Paired NLRs against %NRC-Hs. Black line represents the
177 linear trend, with dotted line representing the 95% confidence interval. Regression
178 equation (with its R square value) and Person correlation value is shown at top right.

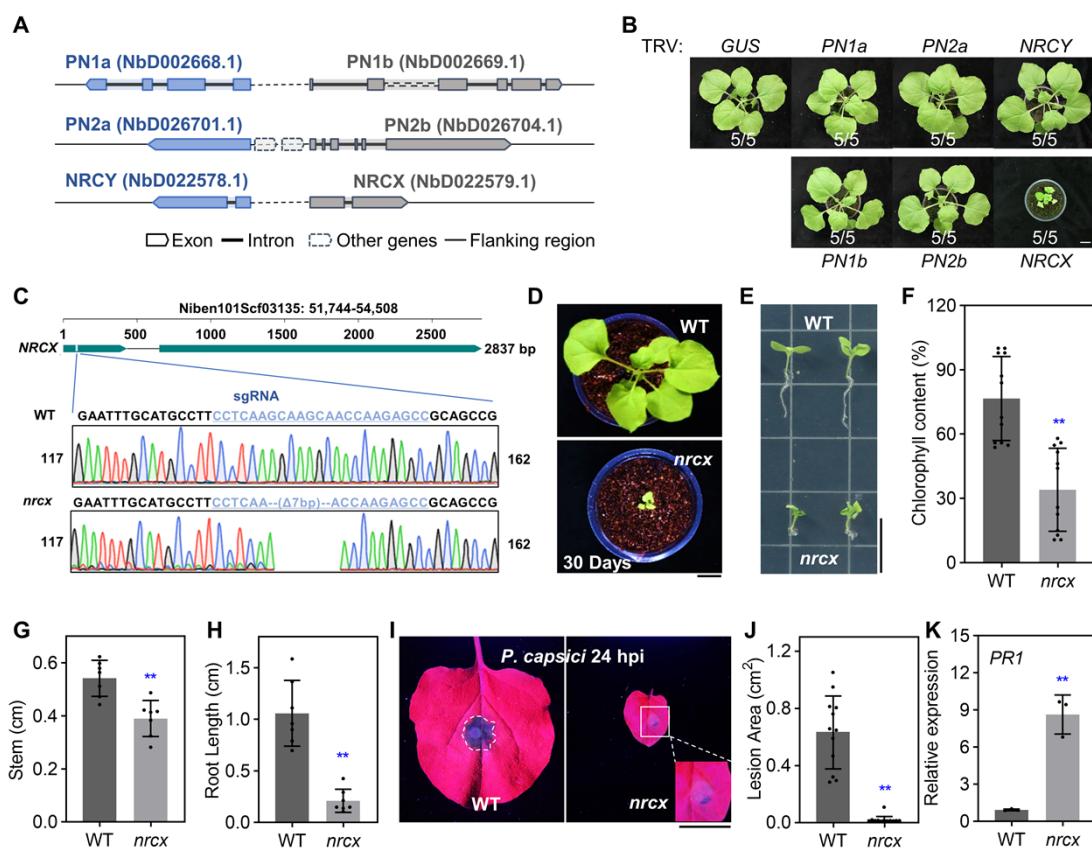
179
180 **Silencing NRCX leads to a dwarf and accelerated senescence phenotype**
181 **in *N. benthamiana***

182 The negative correlation between paired NLRs and NRC-Hs probably resulted

183 from the functional redundancy between them during evolution, which might
184 reduce the selection pressure on paired NLRs and result in loss of function or
185 even novel function. To test it, we used the *N. benthamiana* as a model. The *N.*
186 *benthamiana* only has 6 paired NLRs, which are paired NLR 1a/b (PN1a/b),
187 PN2a/b and PN3a/b (Fig 2A). To evaluate their functions, we silenced all 6
188 paired NLRs individually (Fig 2A). We observed a different phenotype only
189 when *PN3b* was silenced (Fig 2B). qRT-PCR analysis indicated that all the
190 paired NLRs were silenced successfully (S4A Fig).

191 We then focus on the function of *PN3b*. Further sequence analysis
192 indicated that *PN3b* is *NRCX*, an NLR modulator protein negatively regulates
193 *NRC2/3*-mediated immunity response identified in a parallel research [30]. In
194 addition to a dwarf phenotype (S4B Fig), silencing *NRCX* also made the plant
195 senescence accelerated (S4C and S4D Figs). The tobacco rattle virus
196 accumulation levels in *NRCX*-silenced plants were lower than those in control
197 lines, indicating that the dwarf phenotype is not resulted from
198 over-accumulated virus (S4E Fig).

199


200 **The senescence-accelerated and dwarf of *nrcx* mutant are spontaneous**

201 To further remove the possibility that such phenotype was caused by the
202 virus or off-target effect of VIGS technology, we used CRISPR/Cas9 system to
203 generate *NRCX* loss-of-function mutants. One small guide RNA (sgRNA) was
204 designed based on the unique sequence of *NRCX* (Fig 2C) and transformed
205 together with Cas9 and a kanamycin selection maker into *N. benthamiana*.
206 Nine independent transformants were selected using kanamycin. Among the
207 recovered lines, only one transformant containing a 7 bp deletion in the *NRCX*
208 locus was a homozygous *nrcx* mutant (Fig 2C), while the other transformants
209 were heterozygous or wild-type. No off-target effects were found in *NRCX*
210 homologues (S5A and S5B Figs). The development of *nrcx* mutants was
211 significantly arrested compared to that of the wild type (Fig 2D), suggesting
212 that loss-of-function of *NRCX*, rather than the virus and off-target effect of

213 VIGS technology, was responsible for the phenotypes.

214 To figure out whether the *nrcx* phenotypes are spontaneous or stimulated
215 by the microbiome in the soil, *nrcx* and wild-type plants were grown in
216 microbiome-free medium (Fig 2E). Compared with wild type, *nrcx* mutants had
217 a high degree of chlorosis and were smaller (Figs 2F-H), indicating that the
218 dwarfing and accelerated aging phenotype of *nrcx* is spontaneous. Importantly,
219 we found that *nrcx* mutants showed higher inhibition levels in the root than in
220 the stem (Figs 2G and 2H), indicating that NRCX plays a vital role in root
221 development, which is consistent with the report that NRCX is highly
222 accumulated in roots [30].

223

224

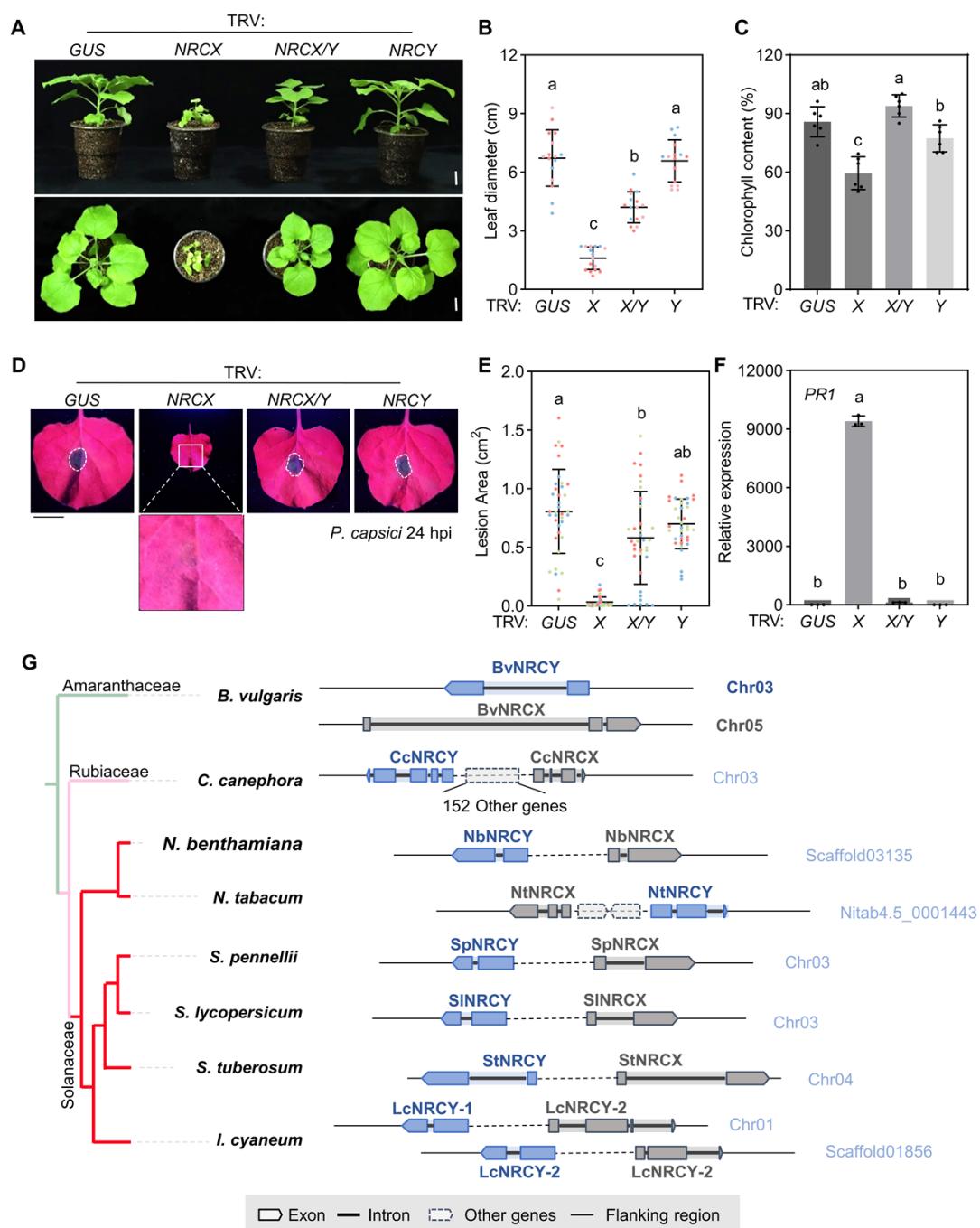
225 **Fig 2. Mutant of NRCX is senescence-accelerated, display growth defect and high**
226 **resistance level.**

227 (A) Schematic diagram of six paired NLRs in *N. benthamiana*. (B) The morphology of
228 plants silencing indicated genes. Two-week-old *N. benthamiana* plants were infiltrated
229 with *Agrobacterium* strains carrying tobacco rattle virus (TRV) VIGS constructs, and
230 photographs were taken 4 weeks after agroinfiltration. TRV:GUS (β -glucuronidase) was
231 used as a negative control. Bar = 2 cm. (C) Schematic diagram showing the deletion of

232 *NRCX* in *N. benthamiana*. The genomic region information of *NRCX* is shown above. The
233 gRNA used for CRISPR/Cas9 editing and DNA sequencing results are shown below. (D)
234 Phenotypes of wild type and *nrcx* knockout mutants grown in soil for 30 days. Bar = 2 cm.
235 (E) Phenotypes of wild type and *nrcx* mutant seedlings on sterile 1/2 MS medium for three
236 weeks. Bar = 1 cm. (F) Chlorophyll content in leaves of *N. benthamiana* wild type and *nrcx*
237 mutant. Asterisks indicate statistically significant differences with t test (mean \pm SD, n = 12,
238 ** P < 0.01), and asterisk in the following text indicates the same meaning. (G,H) Stem
239 length and root length statistics of wild type and *nrcx* grown on 1/2 MS medium for 3
240 weeks (mean \pm SD, n = 7). (I-J) Enhanced resistance in *nrcx* mutant. The photos were
241 taken at 24 hours after inoculation (hpi) under UV light. Bar = 2 Inoculated lesion areas
242 are show in (J) (mean \pm SD, n = 12). (K) Upregulation of *PR1* expression in *nrcx* mutant.
243 The indicated leaves were inoculated with *P. capsici* for 12 hours and the *PR1* expression
244 was tested (mean \pm SEM, n = 3).

245

246 **Defense response is activated in *nrcx* mutant**


247 Plant growth and resistance are often in a state of ebb and flow, the dwarf
248 and accelerated senescence phenotype may result from the persistent
249 activation of plant immunity [31-33]. *Phytophthora* inoculation assay indicated
250 that *nrcx* plants exhibited high levels of resistance to *P. capsici* (Figs 2I and 2J).
251 To test whether the defense response was activated in *nrcx* mutants, the *PR1*
252 (*Pathogenesis-related protein 1*) gene of wild-type and *nrcx* mutants were
253 tested separately, and *PR1* was up-regulated about ~10 fold in *nrcx* mutant
254 plants (Fig 2K). Collectively, these results suggest that defense responses are
255 continuously activated in *nrcx* plants.

256

257 **Simultaneously silencing *NRCY* restores the *NRCX*-silenced plants 258 phenotype**

259 Knocking-out one paired NLR may activate their conjugated NLR to
260 activate defense pathways and inhibit plant growth [34]. The head-to-head
261 NLR (*PN3a*) of *NRCX* is named after *NRCY* (*NLR-REQUIRED FOR CELL*
262 *DEATH Y*) (Fig 2A). *NRCY* and *NRCX* are tandemly linked in a head-to-head
263 manner on a scaffold with an intergenic region of 18,795 bp between them. We
264 assumed that, like other NLR pairs, *NRCX* silencing may activate *NRCY* and
265 subsequently induce plant defense responses. To verify this, we co-silencing

266 *NRCX* and *NRCY* in plants using one TRV vector where the gene fragments of
 267 *NRCX* and *NRCY* were tandemly cloned. Compared to TRV:*NRCX* plants,
 268 growth inhibition and accelerated senescence are significantly restored in
 269 TRV:*NRCX/Y* plants, even though TRV:*NRCX/Y* plants were still smaller than
 270 TRV:GUS (β -glucuronidase) plants (Figs 3A-C). qRT-PCR assays indicated
 271 that these genes had been successfully silenced (Figs S6A and S6B).

272

273 **Fig 3. Simultaneously silencing NRCY restores the NRCX-silenced plants**

274 **phenotype.**

275 (A) The morphology of *N. benthamiana* plants silencing indicated genes. TRV:GUS was
276 used as a negative control. Two-week-old *N. benthamiana* plants were infiltrated with
277 *Agrobacterium* strains carrying TRV constructs, and the photographs were taken 4 weeks
278 after agroinfiltration. Bar = 2 cm. (B) Leaf diameter of plants silencing indicated genes.
279 The fourth and fifth true leaves (counting from bottom to top) were harvested and the
280 average diameters were recorded. Three independent biological replicates were
281 performed and indicated by different colored dots (n = 16, lowercase letters indicate
282 significant differences tested between multiple groups by one-way ANOVA at P < 0.05).
283 (C) Chlorophyll contents of indicated leaves. The fourth true leaf (counting from bottom to
284 top) was taken from five plants silencing indicated genes at 6 weeks of age and the
285 chlorophyll contents were calculated (n = 6, lowercase letters indicate significant
286 differences tested between multiple groups by one-way ANOVA at P < 0.05). (D-E) *P.*
287 *capsici* inoculation phenotypes. Leaves of plants silencing indicated genes were detached
288 and inoculated with *P. capsici* and then incubated in a growth room at 25°C in darkness.
289 Bar = 2 cm. Lesion area was calculated and is shown at (E). Different colored dots
290 indicate different repetitions (n = 37, lowercase letters indicate significant differences
291 tested between multiple groups by one-way ANOVA at P < 0.05). (F) Relative *PR1* gene
292 expression levels. The indicated leaves were inoculated with *P. capsici* for 12 hours and
293 the *PR1* expression was tested (mean ± SEM, n = 3). (G) Schematic diagram of NRCX
294 and NRCY plant genomes.

295

296 We next tested whether the activated immunity in TRV:NRCX plants is
297 impaired in TRV:NRCX/Y. The enhanced resistance to *P. capsici* in
298 TRV:NRCX plants was partially restored in TRV:NRCX/Y (Figs 3D and 3E).
299 Similarly, the *PR1* expressions in NRCX/Y-silenced plants were significantly
300 lower than that in TRV:NRCX plants (Fig 3F). Collectively, these results
301 indicated that NRCY was a positive regulator of plant immunity and
302 senescence. And the dwarf and accelerated senescence phenotype of
303 NRCX-silenced plants is partially dependent on NRCY.

304

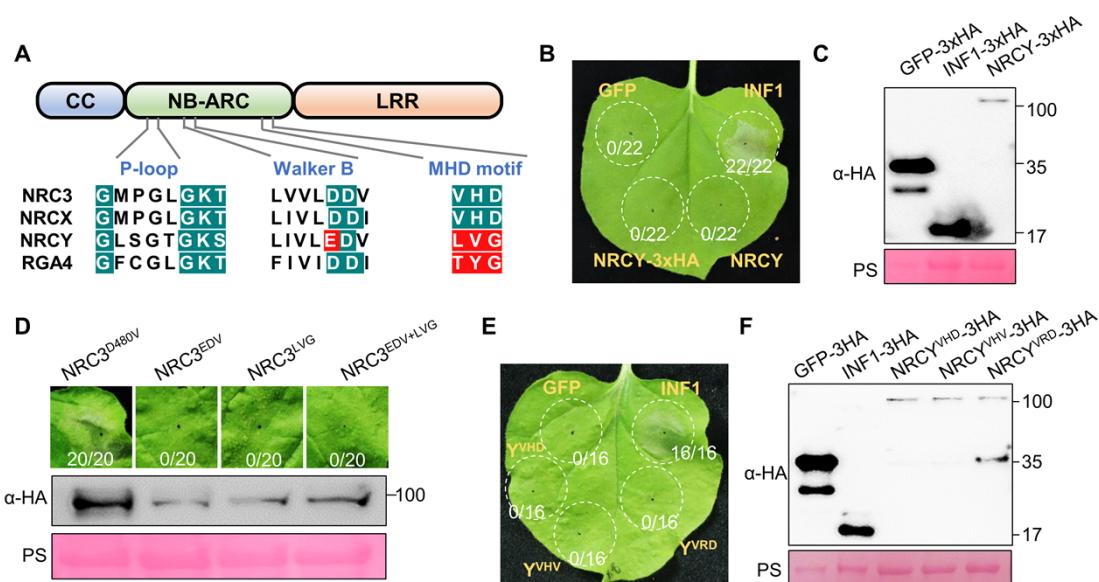
305 **NRCX/Y pair is specific in Solanaceae species**

306 We further tested whether the NRCX and NRCY conserved. According to
307 our phylogenetic assay (S7 Fig). NRCX homologs could be first discovered in
308 *B. vulgaris* during evolution and are specific in Asterids species, which is
309 consistent with the previous results [30]. Meanwhile, NRCY are conserved in
310 dicots (S7 Fig). We further analyzed the distribution of paired NRCX/Y by

311 analyzing whether they are tandemly located in one locus (no more than 2
312 other genes between them). In *B. vulgaris* (sugar beet), NRCX and NRCY
313 homologs are located in different chromosomes (Fig 3G). In *C. canephora*
314 (coffee), NRCX and NRCY are found in same chromosomes but separated by
315 152 other genes (Fig 3G). In contrast, NRCX/Y are adjacent to each other and
316 conserved in *N. tabacum*, *N. benthamiana*, *S. pennellii*, *S. lycopersicum*, *S.*
317 *tuberosum*, *I. cyaneum*, indicated that the paired NRCX/Y is specifically
318 encoded by Solanaceae species (Fig 3G).

319

320 **The walker B and MHD motifs of NRCY are non-canonical**


321 NRCY encoded an 881-aa CNL containing a CC domain, an NB-ARC
322 domain and an LRR domain. P-loop, walker B and MHD motifs within the
323 NB-ARC domain are important for NLR activation and mutations of critical
324 residues in these motifs may lead to NLR autoactivation [23]. Sequence
325 analysis indicated that the P-loop sequence of NRCY matches the consensus
326 sequence (GxxxxGK[T/S]) (Fig 4A). Interestingly, in the walker B motif of
327 NRCY, the conserved second aspartate is naturally substituted by glutamate
328 (Fig 4A), and this mutation was reported to result in reduced ATP hydrolysis
329 rates and autoactivation of I-2 [35]. Furthermore, the MHD motif of NRCY is
330 highly degenerated, with all three amino acids distinct from the consensus
331 MHD sequence (Fig 4A). Similarly, NLRs with the non-canonical MHD motif
332 also frequently induce cell death [23].

333 Phylogenetic assay showed that the walker B motif and MHD motif of all
334 NRCY homologs in Arabidopsis, kiwifruit and sugar beet and are canonical (S7
335 Fig). The non-canonical MHD motif emerged in partially NRCY homologs of
336 coffee, while non-canonical Walker B motif emerged in Solanaceae species
337 (S7 Fig), indicating that these two motifs might degenerate during the NLR
338 evolution in Solanaceae species.

339

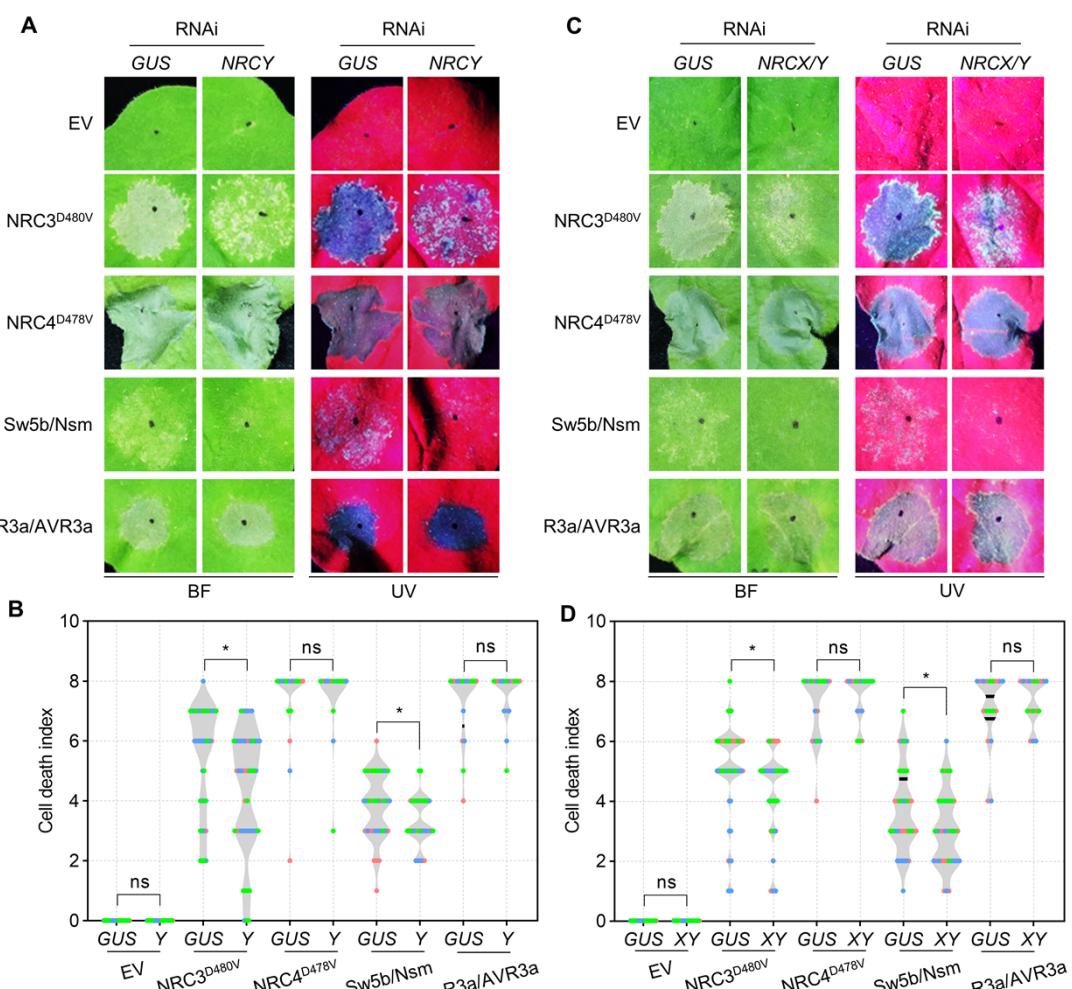
340 **NRCY does not induce autoactive cell death in *N. benthamiana***

341 Based on the non-canonical walker B and MHD motifs in NRCY, it is
342 assumed that NRCY is an automatically activated NLR. Transient expression
343 was performed on *N. benthamiana* to detect whether NRCY was self-activating
344 according to the phenomenon of cell death. Surprisingly, no cell death was
345 detected when expressing *NRCY* in leaves, regardless of whether the protein
346 was fused to a tag (Fig 4B). Western blot analysis indicated that *NRCY* was
347 expressed correctly (Fig 4C).

348 **Fig 4. NRCY does not induce HR in *N. benthamiana*.**
349 (A) P-loop, walker B and MHD motifs of indicated NLRs. The motif sequences of NRC3,
350 NRCX, NRCY and RGA4 are shown. Canonical residues in motifs are marked by blue
351 while non-canonical residues are marked by red. (B) The phenotype of leaves expressing
352 NRCY. GFP and INF1 were used as negative and positive controls for cell death,
353 respectively. (C) Protein accumulation of NRCY in *N. benthamiana*. Proteins were
354 extracted from leaves at 36 hours after the agroinfiltration. Indicated protein was detected
355 using HA antibody. Total protein loading was confirmed by Ponceau S staining. (D) Cell
356 death induced by the NRC3 mutants. NRC3^{D480V} is an autoactive NRC3 mutant. The
357 phenotypes of leaves expressing NRC3 with walker B motif of NRCY (NRC3^{EDV}), NRC3
358 with MHD motif of NRCY (NRC3^{LVG}) and NRC3 with both walker B and MHD motif of
359 NRCY (NRC3^{EDV+LVG}) are shown above. Accumulation of the NRC3 variant proteins is
360 shown below. (E) Phenotype of leaves expressing autoactive NRCY mutants. Photos
361 were taken at 5 days post infiltration. (F) Protein accumulation of NRCY autoactive
362 mutants. Total protein loading was confirmed by Ponceau S staining.

364 These results inspired us to investigate whether the walker B and MHD
365 motifs of NRCY are auto-activated mutants. The original walker B and MHD

367 motifs of NRC3 were replaced by the walker B and MHD motifs of NRCY.
368 NRC3 with walker B motif of NRCY (NRC3^{EDV}), NRC3 with MHD motif of
369 NRCY (NRC3^{LVG}) and NRC3 with both walker B and MHD motifs of NRCY
370 (NRC3^{EDV+LVG}) induced no cell death when overexpressed in *N. benthamiana*,
371 while NRC3^{D480V} triggered severe cell death (Fig 4D). The protein levels of
372 NRC3^{EDV}, NRC3^{LVG} and NRC3^{EDV+LVG} were lower than NRC3^{D480V}, but these
373 mutants were expressed correctly (Fig 4D). These results indicated that the
374 walker B and MHD motif of NRCY were not auto-activated mutants. Next, we
375 changed the mutated MHD motif of NRCY to typical auto-activating mutants
376 (NRCY^{VHV} and NRCY^{VRD}) and they also triggered no cell death (Figs 4E and
377 4F). These results suggest that, like NRCX [30], NRCY does not possess the
378 ability to induce cell death.


379

380 **Silencing NRCY impairs Nsm-Sw5b and NRC3-mediated cell death**

381 The observation that NRCY is a genetic suppressor of NRCX and is not
382 an auto-activated NLR leads us to ask whether NRCY is another NLR
383 modulator that regulates the function of NRC network. To test this, RNAi
384 technology was used to silence NRCY in *N. benthamiana* leaves (S6C Fig),
385 and Sw5b/Nsm, Avr3a/R3a, auto-activating mutants of NRC3 and NRC4 were
386 subsequently expressed. No differences in cell death mediated by NRC4
387 auto-activating mutants, Avr3a/R3a and INF1 was detected in NRCY-silencing
388 leaves (Fig 5A). However, NRCY-silencing led to impaired cell death induced
389 by NRC3^{D480V} and Nsm-Sw5b (Figs 5A and 5B), which indicated that NRCY is
390 a positive modulator of NRC3 function.

391 To characterize the genetic relationship between NRCX and NRCY,
392 NRCX and NRCY were co-silenced. Although silencing NRCX enhanced cell
393 death induced by NRC3^{D480V} and Nsm-Sw5b (S8A-C Figs) [30], co-silencing
394 NRCX and NRCY still inhibited the cell death, consistent with phenotypes in
395 plants silencing NRCY alone (Figs 5C and 5D). These results indicated that
396 the function of NRCX in regulating NRC3 is dependent on NRCY. Collectively,

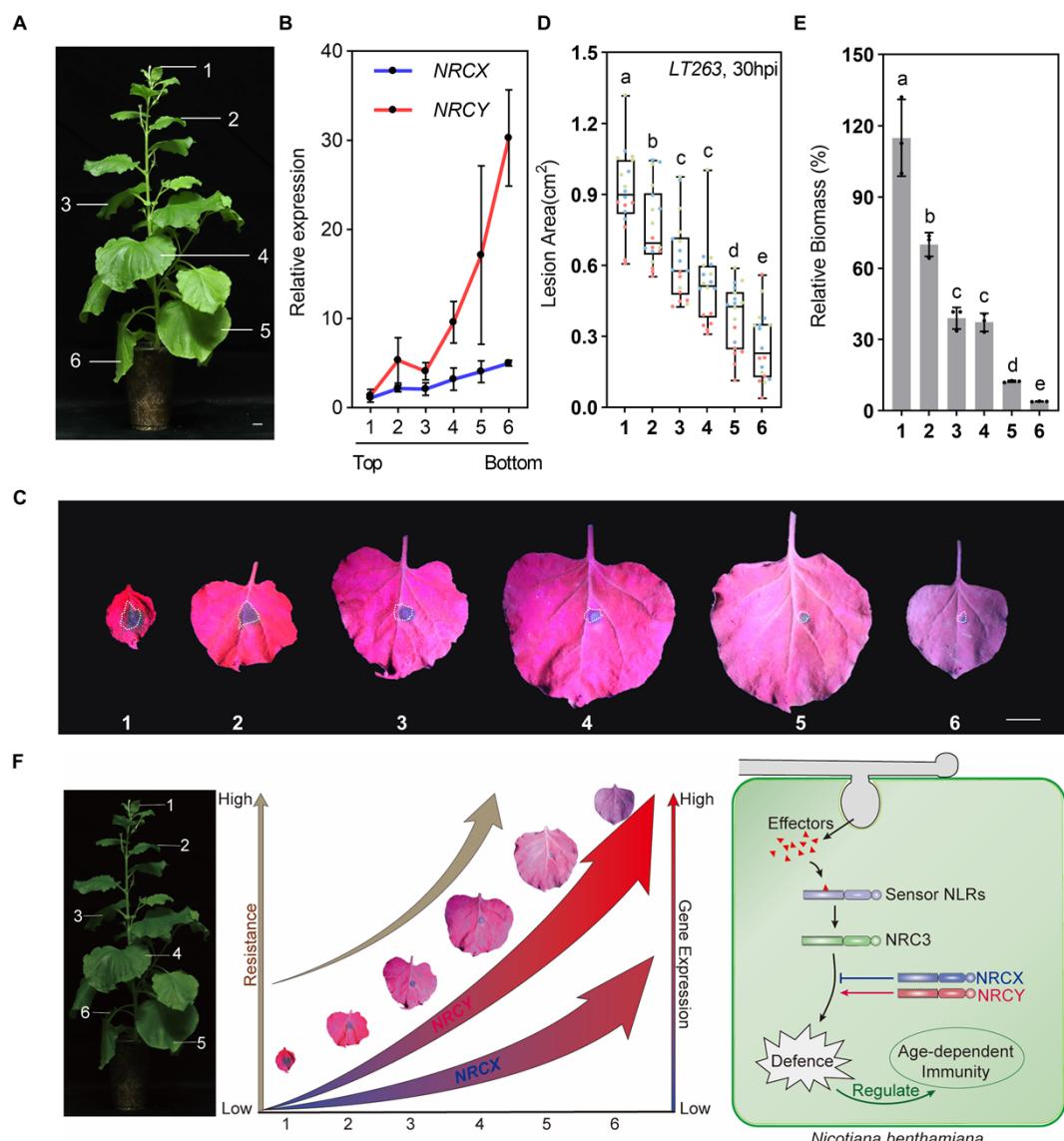
397 NRCX/Y are paired NLR modulators that coordinately regulate
398 NRC3-mediated immunity.

399
400 **Fig 5. Silencing NRCY impairs Nsm-Sw5b and NRC3-mediated cell death.**

401 (A-D) Hypersensitive response phenotypes in indicated leaves. Photos were taken at 5
402 days post infiltration and are shown (A,C). Violin plots in (B,D) showing the HR index
403 scored at 5 days post agroinfiltration. Three independent biological replicates were
404 performed and indicated by different colored dot. Asterisks indicate statistically significant
405 differences with *t* test ($n > 14$, $**P < 0.01$).

406

407 **Association occurs between CC domains of NRCY and NRCX**


408 Paired NLRs are adjacent to each other at the genome locus and often
409 display physical interactions [6,36]. As our data indicated that NRCX/Y is not a
410 typical NLR pair, it is interesting to test whether there is still a physical interplay
411 between NRCX and NRCY. However, we could not express full-length NRCX
412 protein in *N. benthamiana* correctly, so we did not investigate their association

413 using full length NRCX/Y. Instead of that, we test the association between their
414 domains via split-luciferase assays and yeast two-hybrid (Y2H) (**S9A Fig**). The
415 results indicated that the CC domains of NRCY and NRCX interact with each
416 other (**S9B and S9C Figs**).
417

418 ***NRCX* and *NRCY* are involved in age-dependent plant immunity**

419 Head-to-head NLR pairs are often transcribed at an equal rate to prevent
420 autoimmune triggered by the executors. As NRCX/Y are NLR modulators, we
421 asked whether the transcriptions of *NRCX* and *NRCY* are still synchronous.
422 Interestingly, when we analyzed the expression of *NRCX* and *NRCY* during
423 leaf senescence, we found that, although the expression of *NRCX* and *NRCY*
424 increased gradually during leaf senescence, their growth rates were different
425 (**Figs 7A and 7B**). *NRCX* was up-regulated 5-fold in mature leaves compared
426 to young leaves, whereas *NRCY* induced ~30-fold change (**Figs 7A and 7B**).

427 Age-dependent immunity is referred to the phenomenon that the plant
428 resistance to pathogens is gradually increases during plant maturation [24].
429 We tested the resistance of senescent leaves and young leaves to *P. capsici*,
430 and found the resistance increased gradually (**Figs 7C-E**). The high growth
431 rate of *NRCY* expression level and the relatively low growth rate of *NRCX*
432 expression level during leaf senescence indicated that the paired NLR
433 modulators may be involved in age-dependent immunity (**Fig 7F**).
434

435

436 **Figure 7. NRCX and NRCY are involved in age-dependent plant immunity.**

437 **(A,B) Upregulation of NRCX and NRCY during leaf senescence.** Leaf positions used
 438 to evaluate NRCX/Y expressions are labelled in (A). A total of 6 leaves in each positions
 439 were sampled for qRT-PCR assay. The relative expression levels of NRCX and NRCY in
 440 leave 1-6 are shown in (B) (mean \pm SEM, n = 3). Bar = 2 cm **(C-E) Age-dependent**
 441 **immunity of *N. benthamiana* to *P. capsici*.** Leaves from positions indicated in (A) were
 442 sample and inoculated with *P. capsici* mycelium. The photos were taken at 24 hpi (C).
 443 Lesion areas were calculated and are shown in (D). Three independent replicates were
 444 performed and labelled by different colors (mean \pm SD, n > 15, lowercase letters indicate
 445 significant differences tested between multiple groups by one-way ANOVA at $P < 0.05$).
 446 Relative biomass of *P. capsici* is shown in (E) (mean \pm SEM, n = 3, lowercase letters
 447 indicate significant differences tested between multiple groups by one-way ANOVA at $P <$
 448 0.05). (F) illustration of working model. The paired NLRs, NRCX/Y, coordinately modulate
 449 NRC3-dependent immunity and are involved in age-dependent immunity through different
 450 expression level during leave maturation.

451

452 **Discussion**

453 We identified the paired NLRs and NRC-Hs in the representative
454 Solanaceae species and found a negative correlation between their numbers,
455 suggestive of their potential redundant functions. Using a knock-down assay,
456 we found that *NRCX*-silenced *N. benthamiana* lines exhibited obvious
457 dwarfism and accelerated senescence, which could be restored when its
458 head-to-head NLR pair, *NRCY*, was silenced. Furthermore, we demonstrated
459 that *NRCX* and *NRCY* differently modulates NRC3-mediated immunity,
460 thereby coordinately regulating ETI response in *N. benthamiana*. Finally, we
461 found that *NRCX* and *NRCY* were up-regulated during plant senescence, while
462 the expression of *NRCY* was induced more than *NRCX*. Accordingly, plant
463 resistance was getting stronger throughout maturation, indicating NRCX/Y
464 might be involved in age-dependent resistance. Collectively, we propose that
465 the paired NLRs, NRCX/Y, are novel modulators in age-dependent immunity
466 by coordinately regulating NRC3-mediated immunity (Fig 7F).

467 Functional specialization is a vital event in NLR evolution that enhances
468 NLRs capacity to keep up with rapidly evolving pathogens without being
469 constrained by signaling activity [6]. In Solanaceae species, NRC-Hs and their
470 sensors expanded greatly [16]. The putative redundant function of NRC-Hs
471 and paired NLRs might reduce the selection pressure of paired NLRs. In this
472 study, we identified the paired NLRs in Solanaceae species and found a high
473 negative correlation between paired NLRs and NRC-Hs. Further silencing
474 experiments showed that, unlike a parallel work in rice, when one of the
475 putative NLR pairs was knocked out, the lesion-mimicking or dwarfing
476 phenotype was widespread [28]. Moreover, we found that *N. benthamiana*
477 exhibited significant dwarfing and senescence phenotypes only if *NRCX* was
478 silenced, which is consistent with the previously study [30]. Furthermore,
479 although NRCX/Y contain many feathers of typical paired NLR, they are NLR

480 modulators. These results might indicate that paired NLRs have degenerated
481 during NRC-Hs expansion in Solanaceae species. Interestingly, in pepper and
482 lochroma, the situation is reversed: %NRC-Hs is relative fewer and
483 the %paired NLRs are large in number, indicated that NLR pairs still function
484 majorly in ETI in the two species.

485 Paired NLRs work together to regulate immunity and usually play different
486 functions. One of them specifically recognizes effectors through specific
487 domains such as HAM (Heavy-Metal Associated domain) and WRKY, and the
488 other activates immune response including cell death [37-40]. However, the
489 NLR pair NRCX/Y found in this study acts more like immune modulators.
490 Neither NRCX nor NRCY has obtained an integrated domain that can
491 recognize effector structures like HAM and WRKY domain. Moreover, multiple
492 putative activating mutants of NRCX and NRCY could not induce the HR
493 response of *N. benthamiana* [30], indicating that the mode of action of NRCX
494 and NRCY is different from the traditionally considered paired NLRs. Instead of
495 that, the NRCX/Y modulate NRC3-dependent immunity. On the other hand,
496 NRCX/Y still maintain some typical feathers of NLR pair. Firstly, they located in
497 genome in a “head-to-head” fashion. Secondly, knocking out *NRCX* did induce
498 a dwarf phenotype, which is reminiscent of knocking out sensor NLR in a
499 typical NLR pair. Thirdly, paired NLRs usually interact with each other [9,40,41],
500 and we found their CC domains can form heterodimer. These indicated that
501 the NRCX/Y pair might be in a transitional stage with both original and novel
502 feathers.

503 The NB-ARC domain of NLRs acts as a molecular switch for ATP
504 hydrolysis, switching from the ‘off’ state of ADP binding to the ‘on’ state of
505 ATP-binding to activate downstream immune responses [21,42]. The walker B
506 motif (hhhDD/E) and MHD motif motifs are important for ATP hydrolysis and
507 ADP binding, respectively [22,43,44]. Mutation in the two motifs often results in
508 an autoactive phenotypes [45]. Although NRCY has a non-canonical walker B
509 (LIVLEDV) and MHD motif (LVG), it cannot induce cell death. The results

510 further supported that NRCY is more of a modulator than an executor.
511 Interestingly, we found the non-canonical motifs of NRCY emerged in coffee,
512 which is closely to the emergence of paired NRCX/Y specific in Solanaceae
513 species. It is speculated that NRCY might be degenerated from a functional
514 NLR and display a genetically linkage with NRCX after the split between
515 Solanaceae species and Coleophoridae species.

516 *NRCY*-silencing lead to impaired cell death induced by NRC3^{D480V} and
517 Nsm-Sw5b. Furthermore, co-silencing of NRCX and NRCY and NRCY alone
518 consistently both inhibited cell death, suggesting that NRCX regulation of
519 NRC3 function is dependent on NRCY. However, it remains unknown how
520 paired NLRs regulate NRC3-mediated cell death. Many NLRs induce cell
521 death by forming resistosomes. For example, CNLs are activated to form
522 pentamers with cation channels, while TNLs are activated to form tetramers
523 [46-49]. RNLs belong to helper NLR downstream of TNL immunity, which form
524 pentamers in calcium ion channels and finally induce immune responses such
525 as cell death in plants [14]. Recently, NRC2 from NRC-H clade oligomerizes
526 upon effector detection by its sensor NLR [50], indicating that NRC-Hs also
527 form resistosomes. A hypothesis is that NRCX/Y pair might regulate the
528 resistosome-forming process and thus effect the final cell death. It is
529 interesting to determine the mechanism how NRCX/Y regulating the function of
530 NRC-H proteins in the future.

531 Our data expands the current definition of NLR modulators. Two NLR
532 modulators, NRCX and NRG1C are reported and both of them are helper
533 NLRs [30,51]. NRCX belongs to NRC-H family. It contained all NRC-Hs
534 feathers including the MADA motif in N terminal. However, NRCX does not
535 induce cell death but acts as a modulator [30]. Overexpression of NRG1C
536 suppresses autoimmunity of NRG1A, *snc1* and *chs3-2D*, without affecting
537 *chs1*, *chs2* autoimmunity and RPS2-and RPS4-mediated immunity [14].
538 Intriguingly, unlike NRCX, NRG1C is a truncated NLR that lacking the whole
539 N-terminal CC_R domain and is therefore unlikely to execute the hypersensitive

540 cell death [51]. Here we show that NRCY, which is the conjugated NLR pair of
541 NRCX, is also an NLR modulator. Furthermore, the suppression of NRCX in
542 NRC3 is dependent on NRCY, indicating that NRCX and NRCY are paired
543 NLR modulators.

544 In eukaryotic genomes, there are approximately 10% of genes are
545 arranged in a head-to-head orientation. These head-to-head orientation often
546 tend to be genes that should be transcribed at equal rates for gene products,
547 suggesting a pattern of shared regulatory regions [52]. For example,
548 co-expression from a head-to-head cluster has been observed for the SOC3–
549 CHS1–TN2 NLR cluster in Arabidopsis, in which the gene products do interact
550 [53,54]. A genome-wide analysis using microarray data for other Arabidopsis
551 head-to-head paired NLRs further supports the co-expression pattern of paired
552 NLRs [53]. In this study, we also observed a common tendency shared by
553 NRCX/Y expressions. In humans, there have even been bidirectional
554 promoters found for paired genes [55]. Although so far no NLRs have been
555 shown to possess bidirectional promoters in plant, it is a potential reason for
556 the co-expression of *NRCX* and *NRCY*. Interestingly, *NRCY* is up-regulated
557 greatly more during leave senescence. We hypothesize that it is probably due
558 to that *NRCY* is not auto-active and thus releases the selection pressure on
559 restricting *NRCY* transcription during evolution. The mechanism behind should
560 be studied in the future. Additionally, the difference in expression pattern could
561 be used as a clue to identify novel paired NLR modulators.

562 High immunity level often antagonizes normal plant growth so that
563 age-dependent immunity is a high-efficient strategy for the plant to balance this
564 fitness cost. *N. benthamiana* is reported to have age-dependent resistance
565 against *P. infestans* [25]. Here we showed the difference in resistance
566 between senescent and young leaves on a plant. The senescent leaves are
567 nearly resistant to *P. capsici*, while the young leaves are susceptive (Fig 7C-E).
568 The age-dependent immunity is reported to be related to NLRs in the
569 transcripts level. In *Nicotiana tabacum*, NLRs expression gradually increases

570 with plants matured to form age-dependent immunity [26]. In this study, the
571 expression of *NRCX* and *NRCY* also increased gradually during leaf
572 senescence. Furthermore, the growth rate of *NRCY* expression was higher
573 than that of *NRCX* (Fig 7A). These data combined with the findings that
574 *NRCX/Y* are paired NLR modulators, together suggested *NRCX/Y* are
575 involved in age-dependent immunity. In young tissues, where *NRCY* is less
576 accumulated, it will facilitate plant development, while in mature tissues, highly
577 induced *NRCY* improves plant resistance to pathogens.

578 Collectively, our findings show the negative correlation between paired
579 NLRs and NRC-Hs in Solanaceae species. It highlights a previously neglected
580 co-evolution between NRC-Hs and paired NLRs in Solanaceae species. It also
581 shows the importance of novel role of paired NLRs as modulators in ETI and
582 other biological processes such as in age-dependent immunity.

583

584 **Methods**

585 **Identification of NLRs, paired NLRs and NRC-Hs**

586 To identify NLRs, protein sequences from 29 plants were used as input for
587 NLRtracker software [56]. The proteins containing NB-ARC (N) domain
588 predicted by NLRtrack are NLRs. Paired NLRs in all these species were
589 identified based on searching NLRs in a “head-to-head” fashion with enclosing
590 no more than 2 non-NLR genes. Helper NLRs (NRC-Hs) were identified
591 through phylogenetic assay: the NLRs in the same clades with NRC2/3/4 were
592 considered as NRC-Hs.

593 **Growth Conditions of *Nicotiana benthamiana***

594 *N. benthamiana* plants used in this study were grown in the greenhouse at
595 a temperature of 25°C under a 16-h light/8-h dark photoperiod and 60%
596 relative humidity. The VIGS-treated *N. benthamiana* plants used in this study
597 were grown in a 22°C greenhouse under a 16-h light/8-h dark photoperiod and
598 60% relative humidity.

599 **Virus-induced gene silencing (VIGS)**

600 VIGS experiments were carried out in *N. benthamiana* as previously
601 described [57]. The binary constructs pTRV2 were transformed into
602 *Agrobacterium* strain GV3101-pMP90. One days before the *Agrobacterium*
603 infiltration, the constructs were incubated at 30°C and 220 rpm for 24 hours.
604 *Agrobacterium* were collected by centrifugation at 4000 rpm for 4 min, washed
605 and re-suspended in infiltration buffer [10 mM MgCl₂, 10 mM MES (pH 5.7)
606 and 200 µM acetosyringone], the OD₆₀₀ was adjusted to 0.3. Two-week-old *N.*
607 *benthamiana* plants were infiltrated with a suspension of *Agrobacterium*
608 carrying TRV RNA1 and TRV RNA2 in a 1:1 ratio.

609 **Transient gene expression and cell death assays**

610 The binary expression plasmids were transferred by electroporation into
611 *Agrobacterium* strain GV3101. Four-weeks old *N. benthamiana* were used for
612 transient expression by *Agrobacterium*. The *Agrobacterium* suspension was
613 configured in the same way as in the VIGS experiment above.

614 To perform RNAi experiments in *N. benthamiana* leaves, *Agrobacterium*
615 carrying RNAi plasmids were injected (OD₆₀₀=0.2) into leaves one day before
616 transient expression of other genes. The OD₆₀₀ of the target gene was
617 adjusted to 0.6. The cell death phenotype was scored and photos were taken
618 7-days post *Agrobacterium* infiltration (dpi). HR scores were modified as from
619 0 (no visible necrosis) to 8 (fully confluent necrosis) (S8C Fig).

620 **Plasmid constructions**

621 All plasmids and primers for the recombinant constructs used in this work
622 are listed in **S1 File**. NRCX and NRCY was amplified from *N. benthamiana*
623 cDNA and cloned into different vectors such as pCambia1300-3xHA and
624 pCambia1300-3xFlag. Sequences of primers used in cloning of NRCX, NRCY,
625 NRCY variants and NRC3 variants are listed in **S1 File**. Functional analyses of
626 NRCY and NRC3 were performed with untagged variants, while C-terminally
627 HA or Flag tagged variants showed consistent results with untagged variants
628 in complementation assays.

629 **Measurement of Chorophyll Contents**

630 The chlorophyll content of the fourth true leaf (counted from bottom to top)
631 of each *N. benthamiana* plant was determined using a SPAD Chlorophyll
632 Meter (SPAD-YA, Huoerd). Each leaf was evenly divided into 4 spots, and the
633 average value of the 4 measurements (SPAD Unit) represents a single data
634 point. At least four individual leaves of each treatment are measured, and three
635 biological replicates were performed.

636 **RT-qPCR analysis**

637 Plant total RNA was extracted using an RNA-simple Total RNA Kit
638 (Tiangen Biotech Co., Ltd., Beijing, China). DNA contamination in the RNA
639 sample was removed by 4xgDNA wiper (Vazyme Biotech Co., Ltd., Nanjing,
640 China). 1 μ g of each RNA sample was subject to first strand cDNA synthesis
641 using the HiScript II Q RT SuperMix for qPCR (Vazyme Biotech Co., Ltd.,
642 Nanjing, China). Real-time PCR was performed on an ABI Prism 7500 Fast
643 Real-Time PCR System using the SYBR Premix Ex Taq kit (Takara Bio Inc.,
644 Shiga, Japan) according to the instructions. Gene expression levels were
645 normalized to the expression of *NbEF1a*, which is stably expressed reference
646 gene in *N. benthamiana*. The primers used in the RT-PCR are listed in [S1 File](#).

647 ***P. capsici* culture conditions and inoculation assays**

648 The *P. capsici* strain *LT263* used in this study was cultured and maintained
649 at 25°C in the dark on 10% (v/v) V8 agar plates. The steps of inoculation
650 experiment were as follows: mycelium blocks were placed on the back of the
651 leaves, and 0.1% tween 20 was added at the intersection of mycelium blocks
652 and leaves. After fully moisturizing, the mycelium blocks were placed in a 25°C
653 incubator in darkness for 24 to 36 hours. incubated in an incubator at 25°C for
654 24 to 36 well moisturized and then incubated in a 25°C incubator for 24 to 36
655 hours, photos were taken under ultraviolet light, and the damaged area was
656 measured by Image J software.

657 **Determination of biomass of *Phytophthora capsicum***

658 Diseased leaves of the same quality after inoculation with *Phytophthora*

659 *capsicum* should be taken, and samples should include all diseased spots.
660 The internal reference genes of *Phytophthora capsicum* and the internal
661 reference genes of *N. benthamiana* were used as the biomass representative
662 genes of *Phytophthora capsicum* and *N. benthamiana* respectively. The
663 biomass of *P. capsicum* in *N. benthamiana* was detected according to the
664 expression levels of these two quantitative reference genes.

665 **Cultivation of *N. benthamiana* seedlings on 1/2 MS medium**

666 Put 60 tobacco seeds into a 1.5 mL EP tube, sterilize with 75% ethanol for
667 30 s, and wash 3 times with sterile water. Then disinfect with 2.5% sodium
668 hypochlorite for 8 minutes and rinse with sterile water 6 times. Seeds were
669 evenly distributed on 1/2 MS medium (0.8% agar powder, pH 5.7). The
670 medium was sealed and placed horizontally at 4 °C for 3 days to break the
671 seed dormancy, then cultured in the greenhouse to wait for the seeds to
672 germinate and grow, and photographed after two or three weeks.

673 **Protein extraction of *N. benthamiana* leaves**

674 For normal western blot assay, extraction buffer (50 mM HEPES, 150 mM
675 KCL, 1 mM EDTA, and 0.1% Triton X-100; pH 7.5), supplemented with 1 mM
676 DL-Dithiothreitol (DTT) and protease inhibitor cocktail (Sigma-Aldrich, St. Louis,
677 MO, USA), was used for protein extraction from plant materials. *N. benthamiana*
678 leaves were frozen in liquid nitrogen and polished to a fine
679 powder, add 1ml of the configured protein extract for every 0.5 g of leaves,
680 vortex and mix well, incubate at 4 °C for 30 minutes to fully lyse the sample,
681 centrifuge at 13000 rpm for 15min at 4 °C, take 80 ul of 5 x sample loading
682 buffer, mixed well and then placed in a metal bath at 100 °C for 10min. When
683 the extracted protein is used for Co-IP assay, the above method is used to
684 sample for input in SDS-PAGE, and the remaining supernatant is incubated
685 with target beads.

686 **Western blot**

687 Proteins from the sample lysate were fractionated by sodium dodecyl
688 sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Sample in the gel

689 were transferred to PVDF membrane using eBlotTM L1 (GenScript Corporation).
690 Anti-HA (1:5, 000; #M20013; Abmart Inc., Shanghai, China), anti-flag (1:5, 000;
691 #M20018; Abmart), antibodies were used to bind the protein with the
692 corresponding tag. The total protein is displayed in this paper by ponceau
693 staining.

694 **Luciferase complementation assay**

695 The coding sequence of indicated genes was cloned into
696 pCAMBIA1300-35S-HA-Nluc-RBS or pCAMBIA1300-35S-Cluc-RBS and then
697 was transferred into *A. tumefaciens* strain GV3101. The constructs were
698 co-expressed in *N. benthamiana* plants, OD₆₀₀=0.5. The leaves were infiltrated
699 with 1 mM luciferin (Biovision) at 2dpi, then the leaves were detected with a
700 microplate reader (BioTek, Beijing, China). Two leaves were used for each test
701 and three independent experiments were performed with same results.

702 **Yeast two-hybrid system**

703 pGBKT7-Bait or pGADT7-Prey constructs used in **S9 Fig** and were
704 transformed into the yeast strain AH109. Co-transformants were plated on
705 double dropout supplements (SD-LW) and incubated at 28 degrees for 3days.
706 After the yeast colonies on the Double Dropout Supplements plates grew, it
707 indicated that the pGBKT7 and pGADT7 vectors were successfully
708 co-transformed. Next, the yeast colonies were diluted with sterile water to
709 OD600=0.1, followed by another 10-fold and 100-fold, respectively. Take 10 ul
710 of yeast liquid droplets on the double dropout supplements (SD-LW) and triple
711 dropout supplements (SD-LWH), and take pictures and records after
712 incubating at 28 degrees for 3 days.

713 **Phylogenetic analysis**

714 Multiple alignments of full-length amino acid sequences were aligned using
715 MUSCLE. Phylogenetic analysis was performed using NB-ARC sequences
716 with the fasttree program [58] or MEGA X program [59] by the maximum
717 likelihood method with 100 bootstrap samples and parameters: poisson model,
718 uniform rates and complete deletion. Alignments data and phylogenetic tree

719 data could be found in **S2 and S3 Files**.

720 **Accession number**

721 The primary accession codes for PN1a, PN1b, PN2a, PN2b, NRCX,
722 NRCY that support the finding of this study were shown as NbD002668.1
723 (PN1a), NbD002669.1 (PN1b), NbD026701.1 (PN2a), NbD026704.1 (PN2b),
724 NbD022578.1 (NRCY), NbD022579.1 (NRCX), respectively.

725

726 **Abbreviations:**

727 ETI: Effector-triggered immunity; HR: Hypersensitive response; CC:
728 Coiled-coil; TIR: Toll/interleukin 1 receptor (TIR) domain; NRC:NB-ARC:
729 Nucleotide Binding (NB)-ARC (APAF1, R gene products, and CED-4) domain;
730 LRR: Leucine-rich repeat; NRC-H: NRC helper; ID: Integrated decoy; Sensor:
731 An NLR that is responsible for identifying effectors; Helper: Downstream of
732 sensor NLR-mediated immunity; Paired NLR: Two NLR genes, whose loci are
733 very close to each other, work together to regulate immunity; SD Media:
734 Synthetic Dropout Media.

735

736 **Figure legend**

737 **Fig 1. The quantities of paired NLRs and NRC-Hs are negatively**
738 **correlated in Solanaceae species**

739 (A) Summary of predicted NLRs. The phylogeny of the 29 species is based on
740 data from the Taxonomy Database (<https://www.ncbi.nlm.nih.gov/taxonomy>).
741 The counts of NLRs, paired NLRs and NRCH-s in each species are shown in
742 boxplots following the species names. (B) Scatter plot of %Paired NLRs
743 against %NRC-Hs. Black line represents the linear trend, with dotted line
744 representing the 95% confidence interval. Regression equation (with its R
745 square value) and Person correlation value is shown at top right.

746 **Fig 2. Mutant of NRCX is senescence-accelerated, display growth defect**
747 **and high resistance level.**

748 (A) Schematic diagram of six paired NLRs in *N. benthamiana*. (B) The
749 morphology of plants silencing indicated genes. Two-week-old *N. benthamiana*
750 plants were infiltrated with *Agrobacterium* strains carrying tobacco rattle virus
751 (TRV) VIGS constructs, and photographs were taken 4 weeks after
752 agroinfiltration. TRV:GUS (β -glucuronidase) was used as a negative control.
753 Bar = 2 cm. (C) Schematic diagram showing the deletion of *NRCX* in *N.*

754 *benthamiana*. The genomic region information of *NRCX* is shown above. The
755 gRNA used for CRISPR/Cas9 editing and DNA sequencing results are shown
756 below. (D) Phenotypes of wild type and *nrcx* knockout mutants grown in soil for
757 30 days. Bar = 2 cm. (E) Phenotypes of wild type and *nrcx* mutant seedlings on
758 sterile 1/2 MS medium for three weeks. Bar = 1 cm. (F) Chlorophyll content in
759 leaves of *N. benthamiana* wild type and *nrcx* mutant. Asterisks indicate
760 statistically significant differences with t test (mean \pm SD, n = 12, ** P < 0.01),
761 and asterisk in the following text indicates the same meaning. (G,H) Stem
762 length and root length statistics of wild type and *nrcx* grown on 1/2 MS medium
763 for 3 weeks (mean \pm SD, n = 7). (I-J) Enhanced resistance in *nrx* mutant. The
764 photos were taken at 24 hours after inoculation (hpi) under UV light. Bar = 2
765 Inoculated lesion areas are show in (J) (mean \pm SD, n = 12). (K) Upregulation
766 of *PR1* expression in *nrcx* mutant. The indicated leaves were inoculated with
767 *P. capsici* for 12 hours and the *PR1* expression was tested (mean \pm SEM, n =
768 3).

769 **Fig 3. Simultaneously silencing *NRCY* restores the *NRCX*-silenced plants**
770 **phenotype.**

771 (A) The morphology of *N. benthamiana* plants silencing indicated genes.
772 TRV:GUS was used as a negative control. Two-week-old *N. benthamiana*
773 plants were infiltrated with *Agrobacterium* strains carrying TRV constructs, and
774 the photographs were taken 4 weeks after agroinfiltration. Bar = 2 cm. (B) Leaf
775 diameter of plants silencing indicated genes. The fourth and fifth true leaves
776 (counting from bottom to top) were harvested and the average diameters were
777 recorded. Three independent biological replicates were performed and
778 indicated by different colored dots (n = 16, lowercase letters indicate significant
779 differences tested between multiple groups by one-way ANOVA at P < 0.05).
780 (C) Chlorophyll contents of indicated leaves. The fourth true leaf (counting
781 from bottom to top) was taken from five plants silencing indicated genes at 6
782 weeks of age and the chlorophyll contents were calculated (n = 6, lowercase
783 letters indicate significant differences tested between multiple groups by
784 one-way ANOVA at P < 0.05). (D-E) *P. capsici* inoculation phenotypes. Leaves
785 of plants silencing indicated genes were detached and inoculated with *P.*
786 *capsici* and then incubated in a growth room at 25°C in darkness. Bar = 2 cm.
787 Lesion area was calculated and is shown at (E). Different colored dots indicate
788 different repetitions (n = 37, lowercase letters indicate significant differences
789 tested between multiple groups by one-way ANOVA at P < 0.05). (F) Relative
790 *PR1* gene expression levels. The indicated leaves were inoculated with *P.*
791 *capsici* for 12 hours and the *PR1* expression was tested (mean \pm SEM, n = 3).
792 (G) Schematic diagram of *NRCX* and *NRCY* plant genomes.

793 **Fig 4. *NRCY* does not induce HR in *N. benthamiana*.**

794 (A) P-loop, walker B and MHD motifs of indicated NLRs. The motif sequences
795 of *NRC3*, *NRCX*, *NRCY* and *RGA4* are shown. Canonical residues in motifs
796 are marked by blue while non-canonical residues are marked by red. (B) The
797 phenotype of leaves expressing *NRCY*. GFP and INF1 were used as negative

798 and positive controls for cell death, respectively. (C) Protein accumulation of
799 NRCY in *N. benthamiana*. Proteins were extracted from leaves at 36 hours
800 after the agroinfiltration. Indicated protein was detected using HA antibody.
801 Total protein loading was confirmed by Ponceau S staining. (D) Cell death
802 induced by the NRC3 mutants. NRC3^{D480V} is an autoactive NRC3 mutant. The
803 phenotypes of leaves expressing NRC3 with walker B motif of NRCY
804 (NRC3^{EDV}), NRC3 with MHD motif of NRCY (NRC3^{LVG}) and NRC3 with both
805 walker B and MHD motif of NRCY (NRC3^{EDV+LVG}) are shown above.
806 Accumulation of the NRC3 variant proteins is shown below. (E) Phenotype of
807 leaves expressing autoactive NRCY mutants. Photos were taken at 5 days
808 post infiltration. (F) Protein accumulation of NRCY autoactive mutants. Total
809 protein loading was confirmed by Ponceau S staining.

810 **Fig 5. Silencing NRCY impairs Nsm-Sw5b and NRC3-mediated cell death.**
811 (A-D) Hypersensitive response phenotypes in indicated leaves. Photos were
812 taken at 5 days post infiltration and are shown (A,C). Violin plots in (B,D)
813 showing the HR index scored at 5 days post agroinfiltration. Three
814 independent biological replicates were performed and indicated by different
815 colored dot. Asterisks indicate statistically significant differences with *t* test (n >
816 14, ***P* < 0.01).

817 **Figure 7. NRCX and NRCY are involved in age-dependent plant immunity.**
818 **(A,B) Upregulation of NRCX and NRCY during leaf senescence.** Leaf
819 positions used to evaluate NRCX/Y expressions are labelled in (A). A total of 6
820 leaves in each positions were sampled for qRT-PCR assay. The relative
821 expression levels of NRCX and NRCY in leave 1-6 are shown in (B) (mean ±
822 SEM, n = 3). Bar = 2 cm **(C-E) Age-dependent immunity of *N. benthamiana***
823 **to *P. capsici*.** Leaves from positions indicated in (A) were sample and
824 inoculated with *P. capsici* mycelium. The photos were taken at 24 hpi (C).
825 Lesion areas were calculated and are shown in (D). Three independent
826 replicates were performed and labelled by different colors (mean ± SD, n > 15,
827 lowercase letters indicate significant differences tested between multiple
828 groups by one-way ANOVA at *P* < 0.05). Relative biomass of *P. capsici* is
829 shown in (E) (mean ± SEM, n = 3, lowercase letters indicate significant
830 differences tested between multiple groups by one-way ANOVA at *P* < 0.05).
831 (F) illustration of working model. The paired NLRs, NRCX/Y, coordinately
832 modulate NRC3-dependent immunity and are involved in age-dependent
833 immunity through different expression level during leave maturation.

834

835 **Supporting information**

836 **S1 Fig. The pipeline of paired NLRs and NRC-Hs identification.**

837 NLR proteins were identified from plant proteome using NLRtracker.
838 Sequences with NB-ARC annotated by NLRtracker were considered as NLRs.
839 NLRs in “head-to-head” fashion with enclosing no more than 2 non-NLR genes
840 are paired NLRs. NRC-Hs were identified by phylogenetic assay (**S2 File**).

841 NLR clustered with functionally validated NRC helpers, NRC2/3/4, are
842 NRC-Hs.

843 **S2 Fig. NLR identification materials and NLR evolutionary trees for**
844 **different species.**

845 (A) Summary of plants species used in this study. Different branches of the
846 species are represented by different colors corresponding to figure 1. (B) High
847 similarity between NLR numbers identified in this study and those identified by
848 Ngou et al.. Black line represents the linear trend, with dotted line representing
849 the 95% confidence interval. Regression equation (with its R square value)
850 and Person correlation value is shown at top right.

851 **S3 Fig. No correlation between %tail-to-tail NLRs and %head-to-head**
852 **NLRs against %NRC-Hs in Solanaceae species**

853 (A-B) Scatter plot of %tail-to-tail NLRs and %head-to-head NLRs
854 against %NRC-Hs. Black line represents the linear trend, with dotted line
855 representing the 95% confidence interval. Regression equation (with its R
856 square value) and Person correlation value is shown at top right.

857 **S4 Fig. Virus-induced silencing of NRCX impairs growth and promotes**
858 **senescence in *N. benthamiana*.**

859 (A) The silencing efficiency of indicated genes. TRV empty vector (TRV:GUS)
860 was used as a negative control. (B) The morphology of 6-week-old
861 NRCX-silenced *N. benthamiana* plants. Two-week-old *N. benthamiana* plants
862 were infiltrated with *Agrobacterium* strains carrying tobacco rattle virus (TRV)
863 VIGS constructs, and photographs were taken at 4 weeks after the
864 agroinfiltration. Bar = 2 cm. (C,D) Accelerated senescence in NRCX-silenced
865 plants. The fourth true leaf (counting from bottom to top) at 5-week-old plant
866 was harvested (C) and the chlorophyll contents were calculated and shown in
867 (D). Asterisks indicate statistically significant differences with. Three
868 independent biological replicates were performed and indicated by different
869 colored dots (** $P < 0.01$, *t* test; mean \pm SD, $n = 12$). Bar = 2 cm. (E) Virus
870 content in TRV:GUS and TRV:NRCX was detected by qRT-PCR (** $P < 0.01$, *t*
871 test; mean \pm SEM, $n = 12$).

872 **S5 Fig. No off-target effects in *nrcx* mutant.**

873 (A) Evolutionary tree of NRCX homologous genes in *N. benthamiana*. The
874 confidence levels are marked in the node of branches. (B) Flanking sequence
875 of potential CRISPR target. The *nrcx* mutant contains a 7 bp deletion in NRCX
876 locus and not mutation could be found in other potential targets.

877 **S6 Fig. Silencing efficient of NRCX and NRCY in *N. benthamiana*.**

878 (A) Gene fragments used for VIGS. The gene fragment used for VIGS are
879 marked by light blue. (B) Silencing efficient of NRCX and NRCY in VIGS
880 experiments (** $P < 0.01$, *t* test; mean \pm SEM, $n = 3$) (C) Silencing efficient of
881 NRCX and NRCY in RNAi experiments (* $P < 0.05$, ** $P < 0.01$, *t* test; mean \pm
882 SEM, $n = 3$).

883 **S7 Fig. The phylogenetic assay of NRCY.**

884 The maximum likelihood phylogenetic tree was generated in RAxML version
885 8.2.12 with JTT model using NB-ARC domain sequences of 2189 NLRs
886 identified from tomato (Solyc-), N. benthamiana (NbD-), Coffee (Cc-), Kiwifruit
887 (DTZ-), Sugar beet (EL-), Arabidopsis (AT-), Rice (Os-) (SI Appendix, FileS3).
888 NRCY-clade and NRCX-clade are marked by blue and orange, respectively.
889 NRCY-clade are expanded and shown below. Domain architecture and motif
890 sequences of NRCY clade members are shown at bottom right. Each motif
891 was identified in MEME using NRCY-clade sequences.

892 S8 Fig. NRCX negatively modulates NRC3-mediated cell death.

893 (A) Hypersensitive cell death phenotypes. Infiltration site of leaves expressing
894 NRC3^{D480V}, NRC4^{D478V}, Nsm/Sw5b and Avr3a/R3a were photographed at 5
895 days post infiltration and related cell death intensities were scored. (B)
896 Calculated HR index of indicated leave sites. Three independent biological
897 replicates were performed and indicated by different colored dot. Asterisks
898 indicate statistically significant differences with *t* test (***P* < 0.01). (C) The
899 leave phenotype of each HR index. The scale representing cell death extent
900 ranges from 0 (no cell death) to 8 (extensive cell death).

901 S9 Fig. CC domains of NRCX and NRCY form heterodimer.

902 (A) Schematic diagram of domain segmentation of NRCX and NRCY. (B)
903 Verification of the interaction between CC domains of NRCX and NRCY by
904 yeast two-hybrid (Y2H) assay. Ev/p53 is positive control for interaction. (C)
905 Association between CC domains of NRCX and NRCY detected by luciferase
906 complementation assays. FLS2-nLUC + cLUC-AGB1 was used as positive
907 control.

908 S1 File. List of primers in this article.

909 S2 File. NLR evolutionary tree files for 29 species.

910 S3 File. Evolutionary tree file of the gene NRCY.

911

912 Declarations

913 Ethics approval and consent to participate

914 Not applicable.

915

916 Consent for publication

917 Not applicable.

918

919 Availability of data and material

920 Not applicable.

921

922 **Competing interests**

923 The authors declare that they have no competing interests.

924

925 **Funding**

926 The work was supported by the National Natural Science Foundation of China
927 (31625023 and 32072507) and the Fundamental Research Funds for the
928 Central Universities (KYT202001 and JCQY201904).

929

930 **Authors' contributions**

931 DD, XD and GA conceived and designed the project, jointly performed data
932 analysis and wrote the manuscript. XD, XZ, ZY, JL, CX, WP, TL, HZ, ZY, YZ,
933 YL, ZW, ZK and YY performed the experiments. XD and GA analysed data.
934 DD, XD and GA wrote and modified the manuscript. All authors read and
935 approved the final manuscript.

936

937 **Acknowledgements**

938 We appreciate Dr. Min Zhu and Prof. Xiaorong Tao at Nanjing Agricultural
939 University for their gift of NRC3/4 auto-activated mutant, constructive
940 suggestions and help. We appreciate Dr. Meixiang Zhang at Shaanxi Normal
941 University for his help.

942

943 **References**

- 944 1. Ngou BPM, Ding PT, Jones JDG (2022) Thirty years of resistance: Zig-zag through the plant
945 immune system. *Plant Cell* 34: 1447-1478.
- 946 2. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen
947 interactions. *Nat Rev Genet* 11: 539-548.
- 948 3. Cui H, Tsuda K, Parker JE (2015) Effector-triggered immunity: from pathogen perception to robust
949 defense. *Annu Rev Plant Biol* 66: 487-511.
- 950 4. Dalio RJD, Paschoal D, Arena GD, Magalhaes DM, Oliveira TS, et al. (2021) Hypersensitive
951 response: From NLR pathogen recognition to cell death response. *Annals Of Applied Biology*
952 178: 268-280.
- 953 5. Kourelis J, van der Hoorn RAL (2018) Defended to the Nines: 25 Years of Resistance Gene Cloning

Identifies Nine Mechanisms for R Protein Function. *Plant Cell* 30: 285-299.

6. Adachi H, Derevnina L, Kamoun S (2019) NLR singletons, pairs, and networks: evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants. *Curr Opin Plant Biol* 50: 121-131.

7. Griebel T, Maekawa T, Parker JE (2014) NOD-like receptor cooperativity in effector-triggered immunity. *Trends Immunol* 35: 562-570.

8. Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. *Curr Opin Plant Biol* 13: 472-477.

9. Cesari S, Kanzaki H, Fujiwara T, Bernoux M, Chalvon V, et al. (2014) The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance. *EMBO J* 33: 1941-1959.

10. Marchal C, Michalopoulou VA, Zou Z, Cevik V, Sarris PF (2022) Show me your ID: NLR immune receptors with integrated domains in plants. *Essays Biochem* 66: 527-539.

11. Xi Y, Cesari S, Kojro T (2022) Insight into the structure and molecular mode of action of plant paired NLR immune receptors. *Essays Biochem* 66: 513-526.

12. Guo H, Ahn HK, Sklenar J, Huang J, Ma Y, et al. (2020) Phosphorylation-Regulated Activation of the *Arabidopsis* RRS1-R/RPS4 Immune Receptor Complex Reveals Two Distinct Effector Recognition Mechanisms. *Cell Host Microbe* 27: 769-781 e766.

13. Castel B, Ngou PM, Cevik V, Redkar A, Kim DS, et al. (2019) Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. *New Phytol* 222: 966-980.

14. Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, et al. (2021) Plant “helper” immune receptors are Ca^{2+} -permeable nonselective cation channels. *Science*.

15. Wu CH, Derevnina L, Kamoun S (2018) Receptor networks underpin plant immunity. *Science* 360: 1300-1301.

16. Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, et al. (2017) NLR network mediates immunity to diverse plant pathogens. *Proc Natl Acad Sci U S A* 114: 8113-8118.

17. Zhu M, van Grinsven IL, Kormelink R, Tao X (2019) Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. *Annu Rev Phytopathol* 57: 41-62.

18. Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, et al. (2019) An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. *Elife* 8.

19. Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. *Curr Opin Plant Biol* 15: 375-384.

20. BIEZEN EAVD, JONES JDG (1998) Plant disease-resistance proteins and the gene-for-gene concept.

21. J.Riedl S, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. *Nature* 434: 921-926.

22. Williams SJ, Sornaraj P, deCourcy-Ireland E, Menz RI, Kobe B, et al. (2011) An Autoactive Mutant of the M Flax Rust Resistance Protein Has a Preference for Binding ATP, Whereas Wild-Type M Protein Binds ADP. *MPMI*

23. van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, et al. (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. *J Exp Bot* 59: 1383-1397.

24. Zou Y, Wang S, Lu D (2020) MiR172b-TOE1/2 module regulates plant innate immunity in an

998 age-dependent manner. *Biochem Biophys Res Commun* 531: 503-507.

999 25. Yusuke Shibata KK, and Daigo Takemoto (2010) Age-Related Resistance of Nicotiana
1000 benthamiana Against Hemibiotrophic Pathogen Phytophthora infestans Requires Both
1001 Ethylene- and Salicylic Acid-Mediated Signaling Pathways. *MPMI*.

1002 26. Deng Y, Wang J, Tung J, Liu D, Zhou Y, et al. (2018) A role for small RNA in regulating innate
1003 immunity during plant growth. *PLoS Pathog* 14: e1006756.

1004 27. Ngou BPM, Heal R, Wyler M, Schmid MW, Jones JDG (2022) Concerted expansion and
1005 contraction of immune receptor gene repertoires in plant genomes. *Nat Plants* 8: 1146-1152.

1006 28. Wang L, Zhao L, Zhang X, Zhang Q, Jia Y, et al. (2019) Large-scale identification and functional
1007 analysis of NLR genes in blast resistance in the Tetep rice genome sequence. *Proc Natl Acad
1008 Sci U S A* 116: 18479-18487.

1009 29. Wu C-H, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, et al. (2017) NLR network
1010 mediates immunity to diverse plant pathogens. *Proceedings of the National Academy of
1011 Sciences* 114: 8113.

1012 30. Adachi H, Sakai T, Harant A, Duggan C, Bozkurt TO, et al. (2021) An atypical NLR protein
1013 modulates the NRC immune receptor network. *bioRxiv*.

1014 31. Karasov TL, Chae E, Herman JJ, Bergelson J (2017) Mechanisms to Mitigate the Trade-Off
1015 between Growth and Defense. *Plant Cell* 29: 666-680.

1016 32. Lozano-Duran R, Zipfel C (2015) Trade-off between growth and immunity: role of brassinosteroids.
1017 *Trends In Plant Science* 20: 12-19.

1018 33. He Z, Webster S, He SY (2022) Growth-defense trade-offs in plants. *Curr Biol* 32: R634-R639.

1019 34. van Wersch S, Tian L, Hoy R, Li X (2020) Plant NLRs: The Whistleblowers of Plant Immunity.
1020 *Plant Commun* 1: 100016.

1021 35. Tameling WIL, Vossen JH, Albrecht M, Lengauer T, Berden JA, et al. (2006) Mutations in the
1022 NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. *Plant Physiology*
1023 140: 1233-1245.

1024 36. Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL (2019) Help wanted: helper NLRs and plant
1025 immune responses. *Curr Opin Plant Biol* 50: 82-94.

1026 37. Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, et al. (2012) Arms race co-evolution of
1027 Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. *Plant J*
1028 72: 894-907.

1029 38. De la Concepcion JC, Vega Benjumea J, Bialas A, Terauchi R, Kamoun S, et al. (2021) Functional
1030 diversification gave rise to allelic specialization in a rice NLR immune receptor pair. *Elife* 10.

1031 39. Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, et al. (2015) A Plant Immune Receptor Detects
1032 Pathogen Effectors that Target WRKY Transcription Factors. *Cell* 161: 1089-1100.

1033 40. Zdrzalek R, Kamoun S, Terauchi R, Saitoh H, Banfield MJ (2020) The rice NLR pair
1034 Pikp-1/Pikp-2 initiates cell death through receptor cooperation rather than negative regulation.
1035 *PLoS One* 15: e0238616.

1036 41. Saucet SB, Ma Y, Sarris PF, Furzer OJ, Sohn KH, et al. (2015) Two linked pairs of Arabidopsis
1037 TNL resistance genes independently confer recognition of bacterial effector AvrRps4. *Nat
1038 Commun* 6: 6338.

1039 42. Bernoux M, Burdett H, Williams SJ, Zhang X, Chen C, et al. (2016) Comparative Analysis of the
1040 Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model.
1041 *Plant Cell* 28: 146-159.

1042 43. Gao Z, Chung EH, Eitas TK, Dangl JL (2011) Plant intracellular innate immune receptor
1043 Resistance to *Pseudomonas syringae* pv. *maculicola* 1 (RPM1) is activated at, and functions
1044 on, the plasma membrane. *Proc Natl Acad Sci U S A* 108: 7619-7624.

1045 44. Wang GF, Ji J, El-Kasmi F, Dangl JL, Johal G, et al. (2015) Molecular and functional analyses of a
1046 maize autoactive NB-LRR protein identify precise structural requirements for activity. *PLoS
1047 Pathog* 11: e1004674.

1048 45. Wu Z, Li M, Dong OX, Xia S, Liang W, et al. (2019) Differential regulation of TNL-mediated
1049 immune signaling by redundant helper CNLs. *New Phytol* 222: 938-953.

1050 46. Bi G, Su M, Li N, Liang Y, Dang S, et al. (2021) The ZAR1 resistosome is a calcium-permeable
1051 channel triggering plant immune signaling. *Cell* 184: 3528-3541 e3512.

1052 47. Wang J, Hu M, Wang J, Qi J, Han Z, et al. (2019) Reconstitution and structure of a plant NLR
1053 resistosome conferring immunity. *Science* 364.

1054 48. Forderer A, Li E, Lawson AW, Deng YN, Sun Y, et al. (2022) A wheat resistosome defines
1055 common principles of immune receptor channels. *Nature* 610: 532-539.

1056 49. Ma S, Lapin D, Liu L, Sun Y, Song W, et al. (2020) Direct pathogen-induced assembly of an NLR
1057 immune receptor complex to form a holoenzyme. *Science* 370.

1058 50. Ahn H-K, Lin X, Olave-Achury AC, Derevnina L, Contreras MP, et al. (2022) Effector-dependent
1059 activation and oligomerization of NRC helper NLRs by Rpi-amr3 and Rpi-amr1. *bioRxiv*.

1060 51. Wu Z, Tian L, Liu X, Huang W, Zhang Y, et al. (2021) The N-terminally truncated helper NLR
1061 NRG1C antagonizes immunity mediated by its full-length neighbors NRG1A and NRG1B.
1062 *Plant Cell*.

1063 52. Chen Y, Li Y, Wei J, Li YY (2014) Transcriptional regulation and spatial interactions of
1064 head-to-head genes. *BMC Genomics* 15: 519.

1065 53. Liang W, van Wersch S, Tong M, Li X (2019) TIR-NB-LRR immune receptor SOC3 pairs with
1066 truncated TIR-NB protein CHS1 or TN2 to monitor the homeostasis of E3 ligase SAUL1.
1067 *New Phytol* 221: 2054-2066.

1068 54. Liang WW, Tong MXZ, Li X (2020) SUSA2 is an F-box protein required for autoimmunity
1069 mediated by paired NLRs SOC3-CHS1 and SOC3-TN2. *Nature Communications* 11.

1070 55. van Wersch S, Li X (2019) Stronger When Together: Clustering of Plant NLR Disease resistance
1071 Genes. *Trends In Plant Science* 24: 688-699.

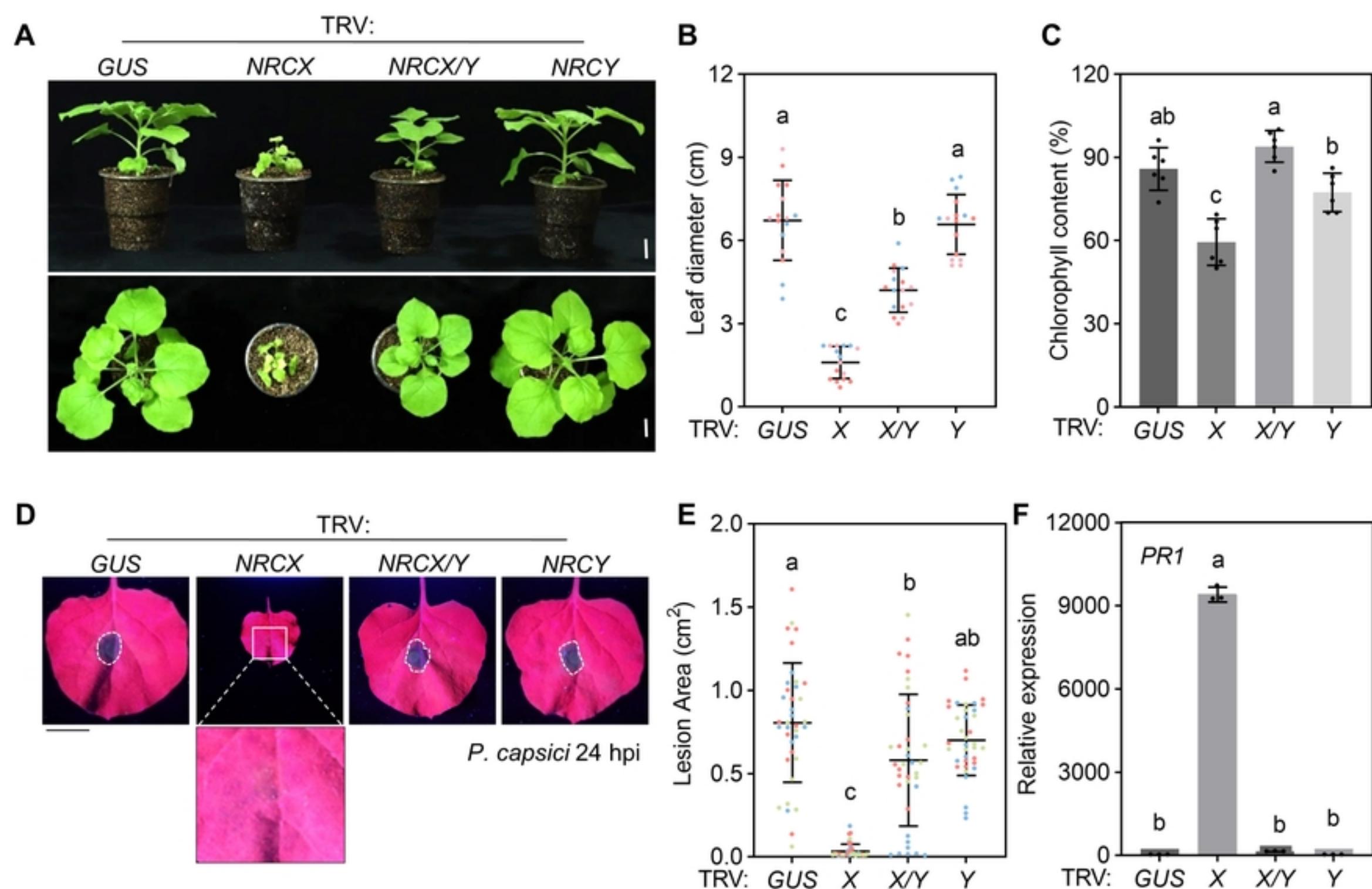
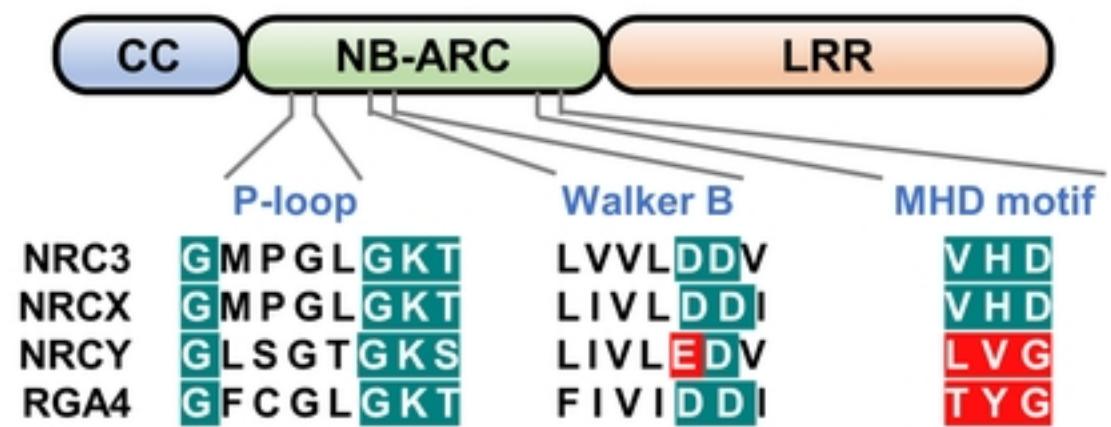
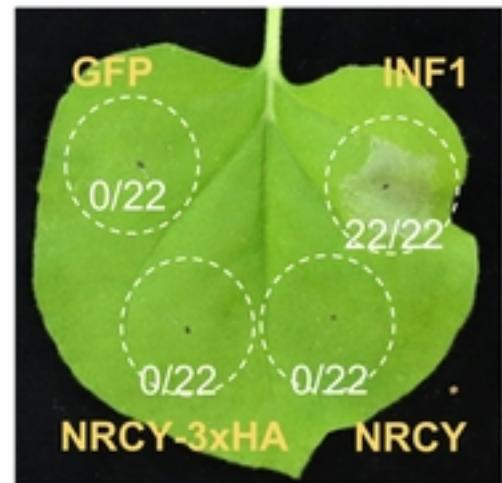
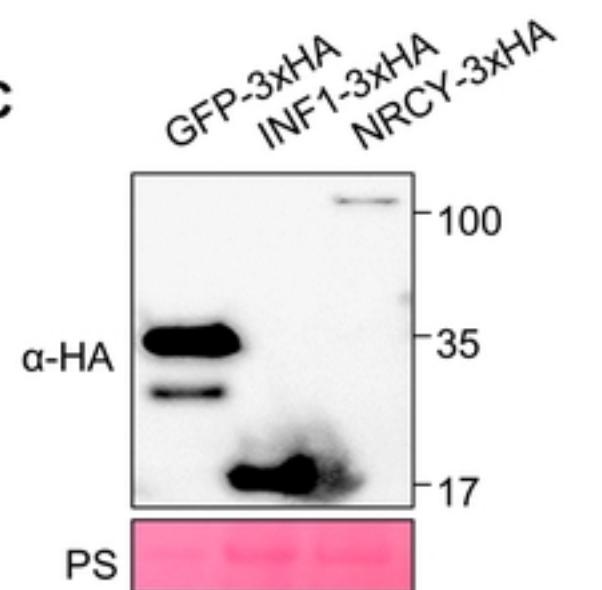
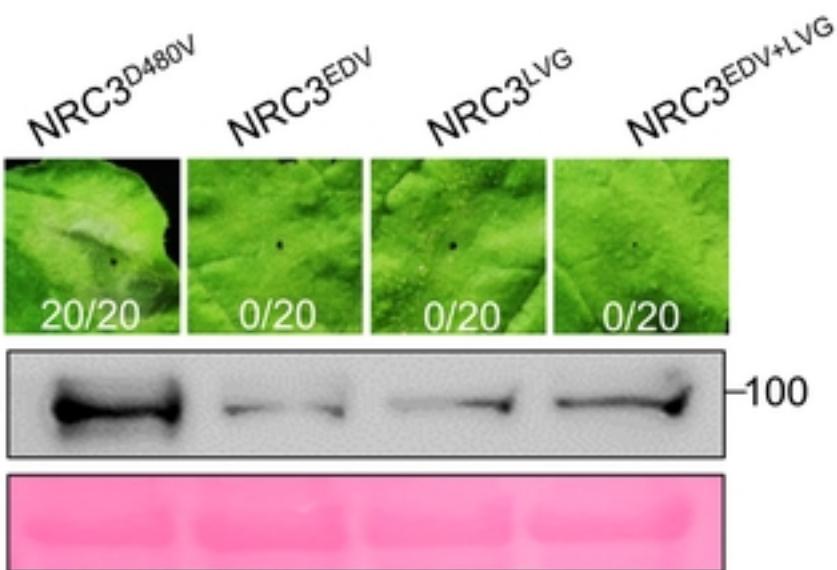
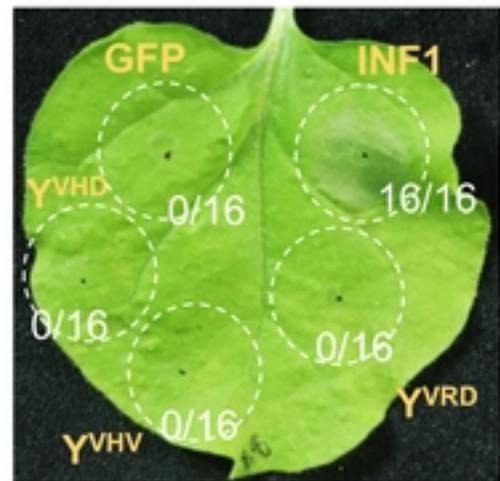
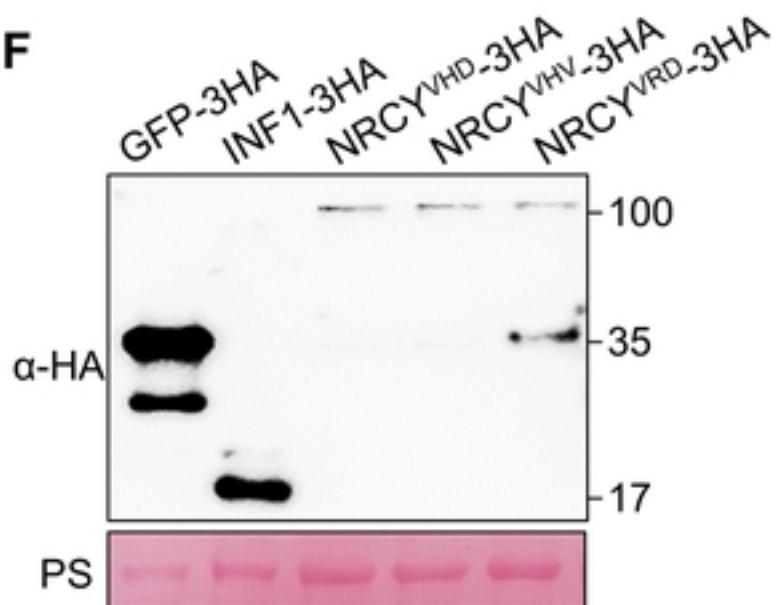
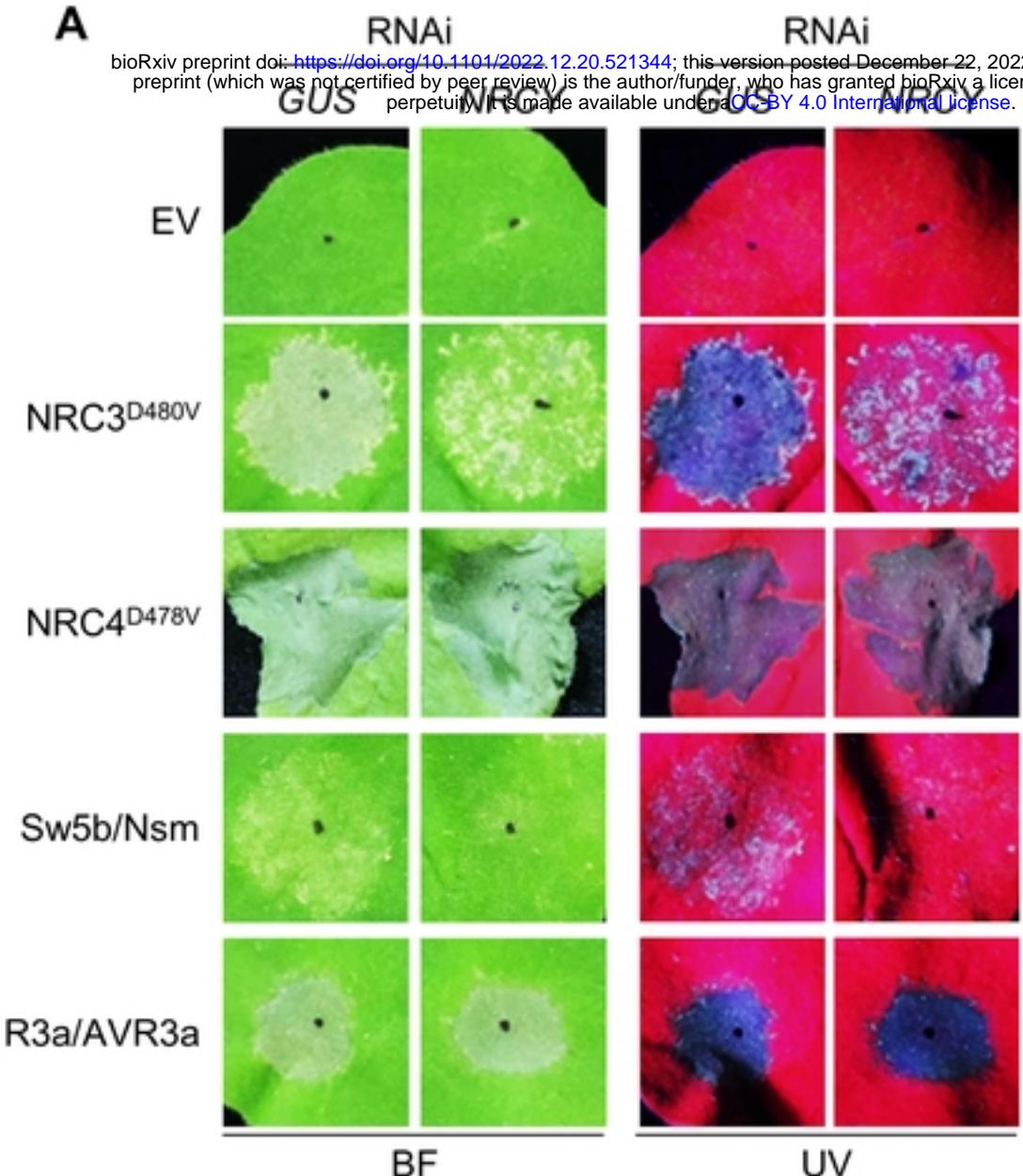
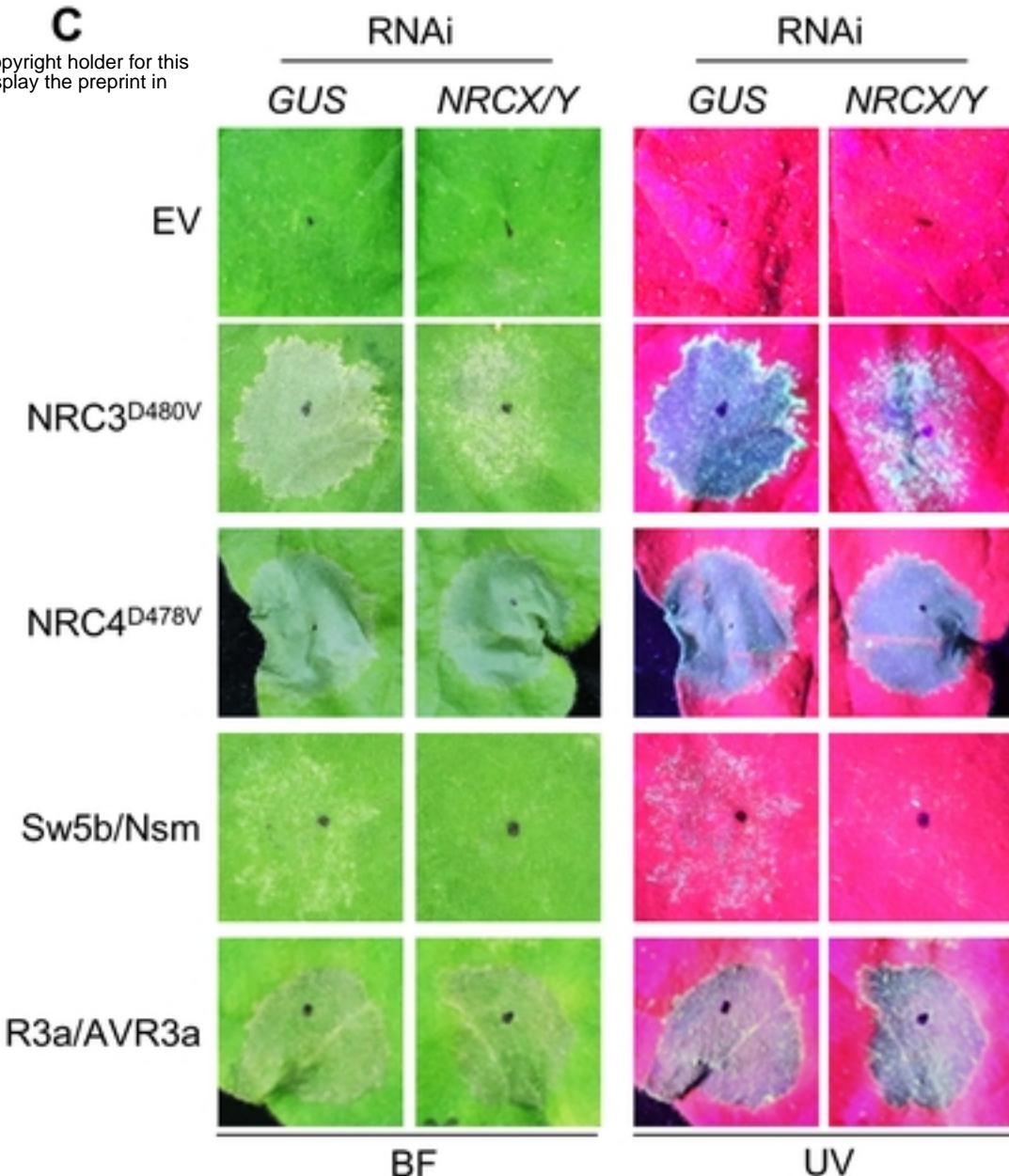
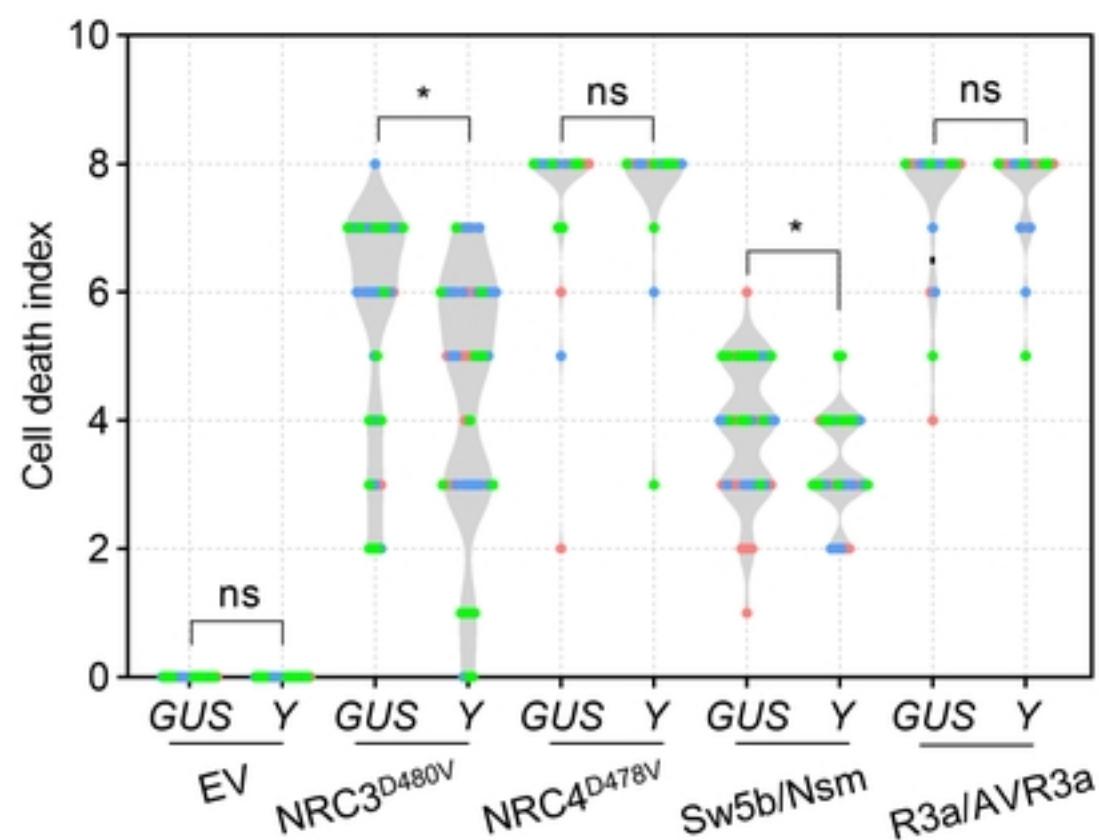
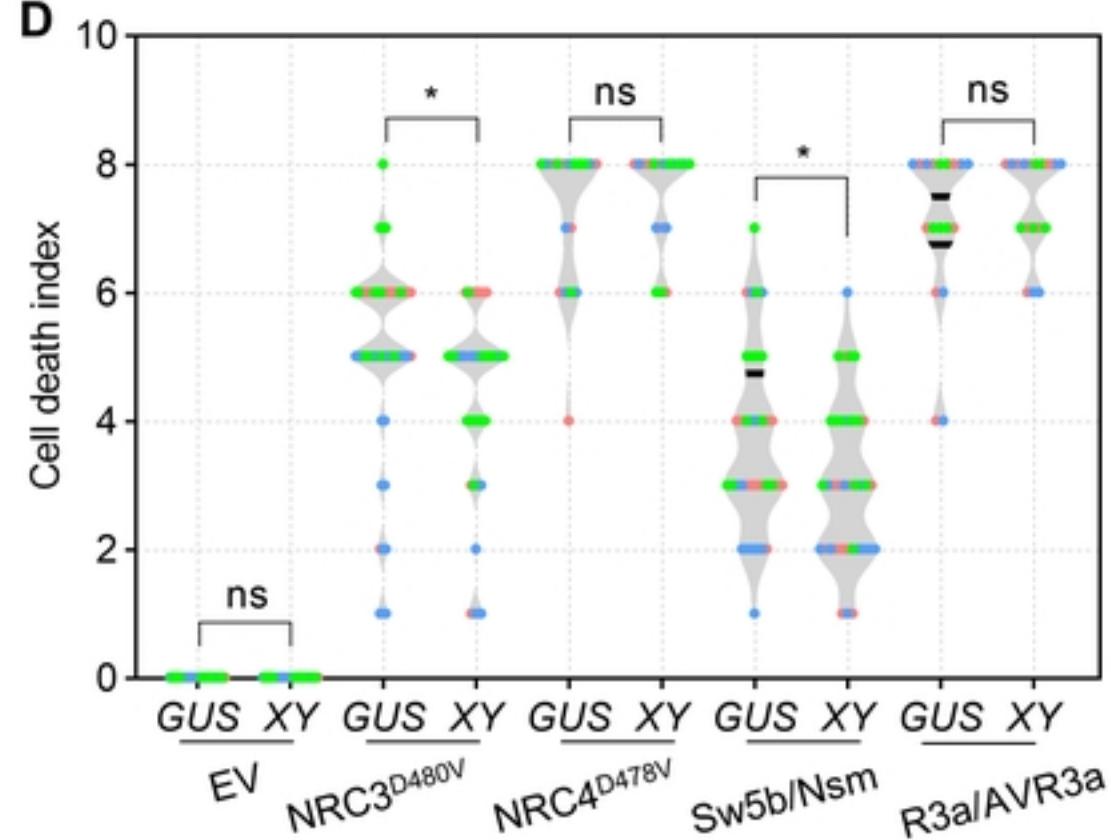
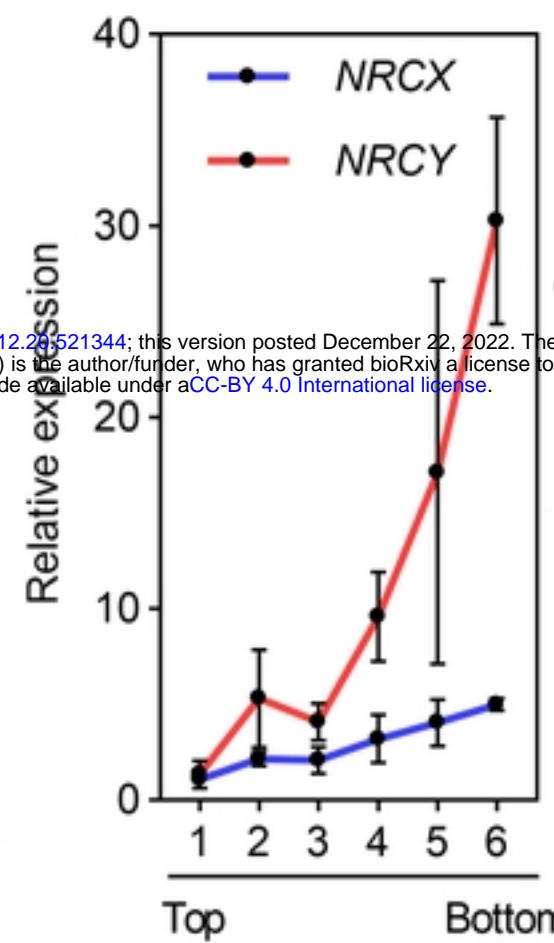
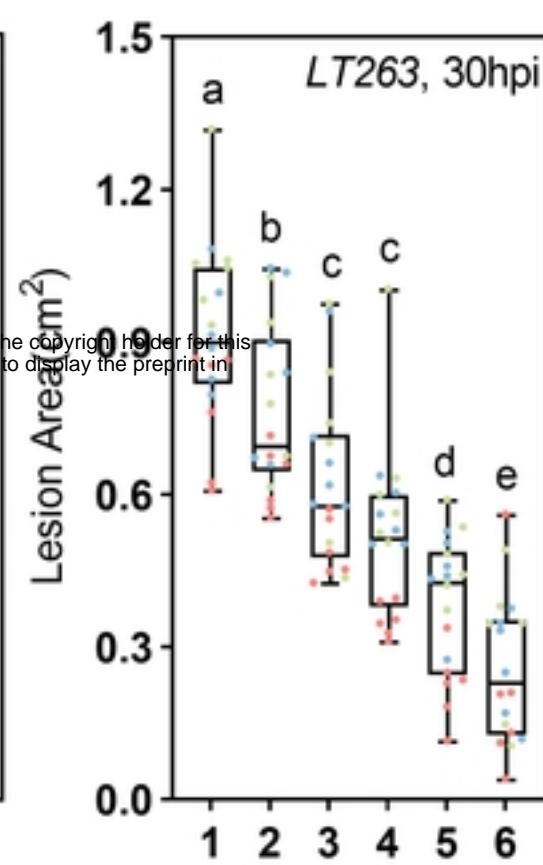
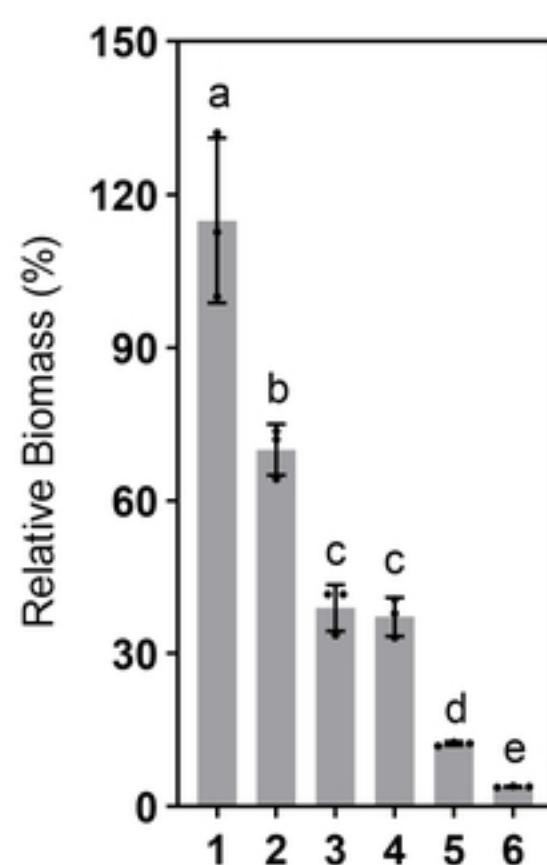
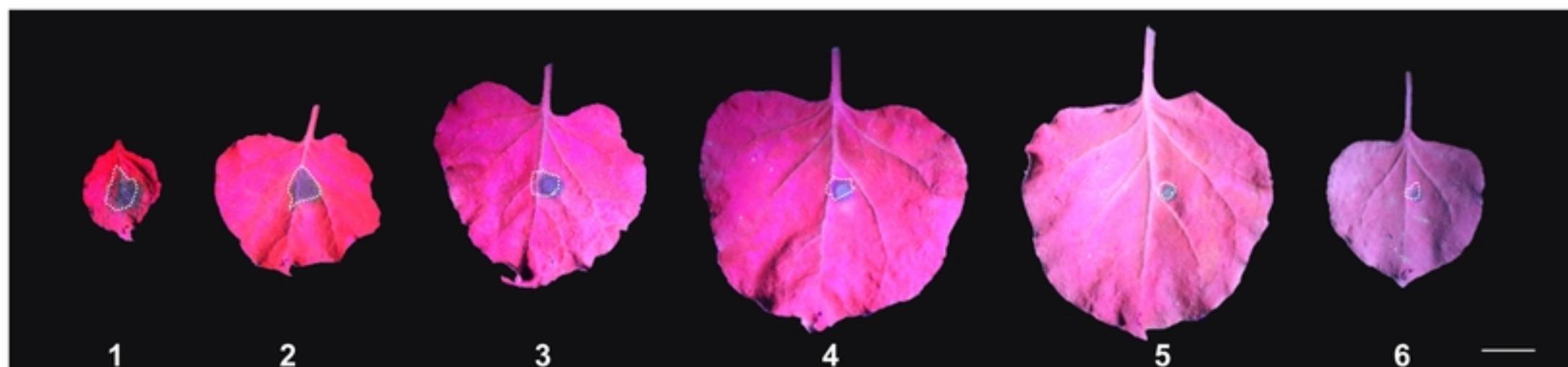
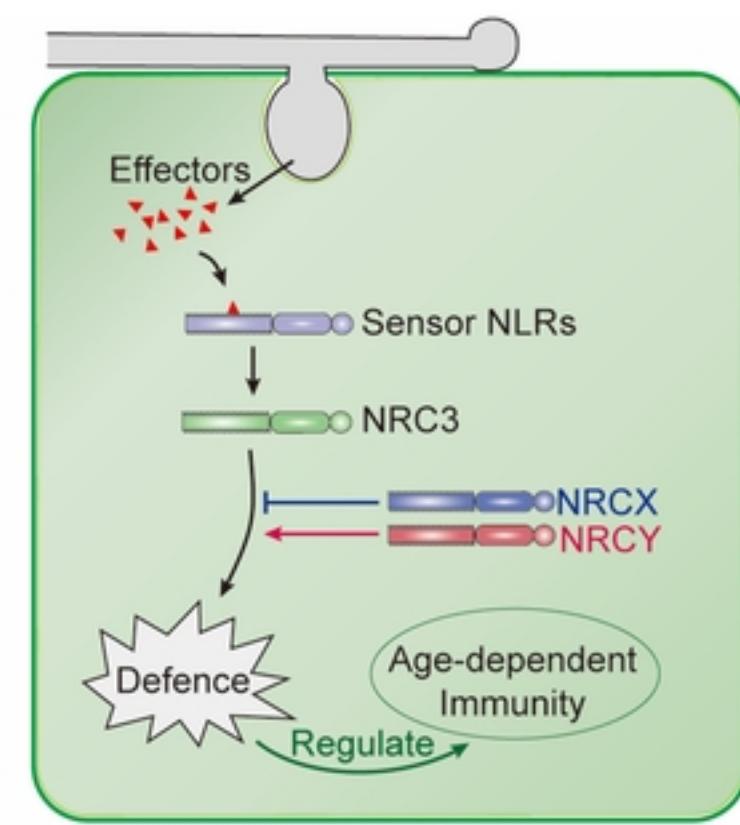
1072 56. Kourelis J, Sakai T, Adachi H, Kamoun S (2021) RefPlantNLR is a comprehensive collection of
1073 experimentally validated plant disease resistance proteins from the NLR family. *PLoS Biol* 19:
1074 e3001124.

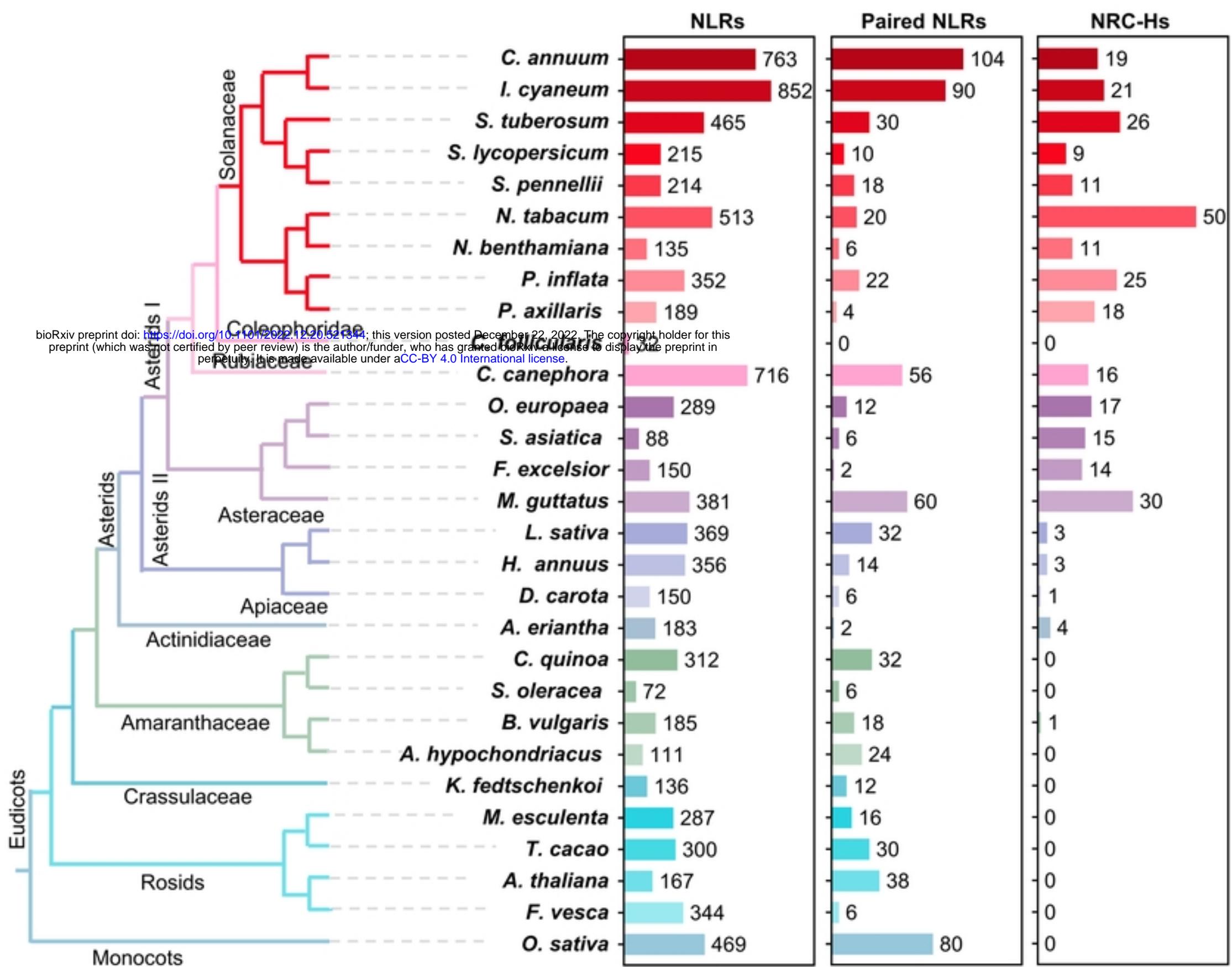
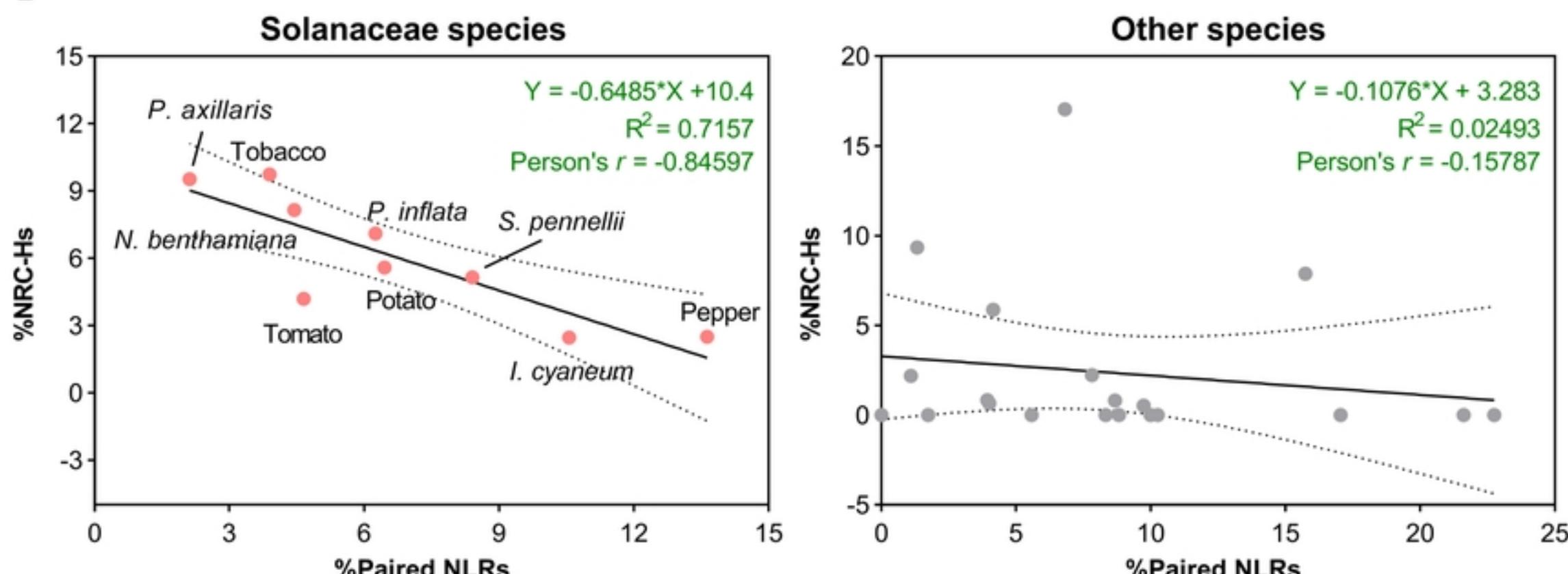
1075 57. Ratcliff F, Martin-Hernandez AM, Baulcombe DC (2001) Technical Advance. Tobacco rattle virus
1076 as a vector for analysis of gene function by silencing. *Plant J* 25: 237-245.

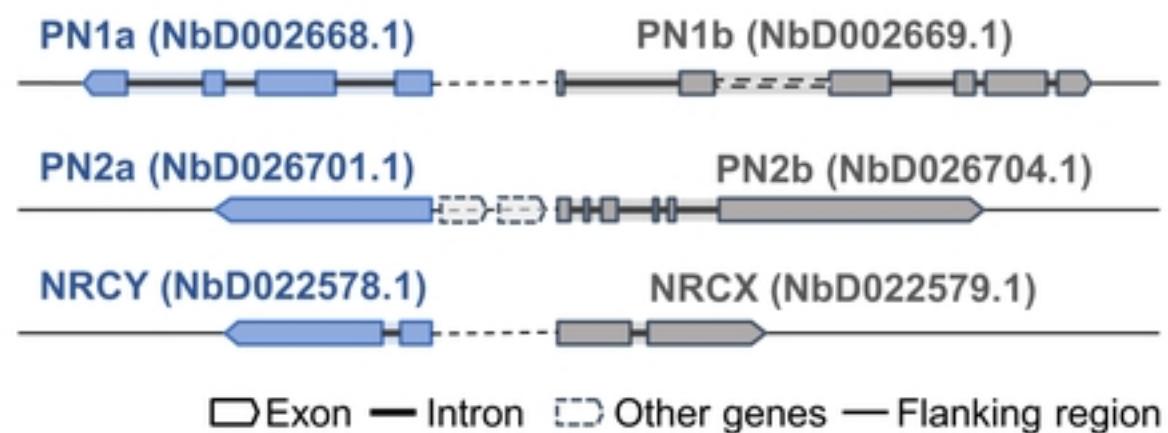
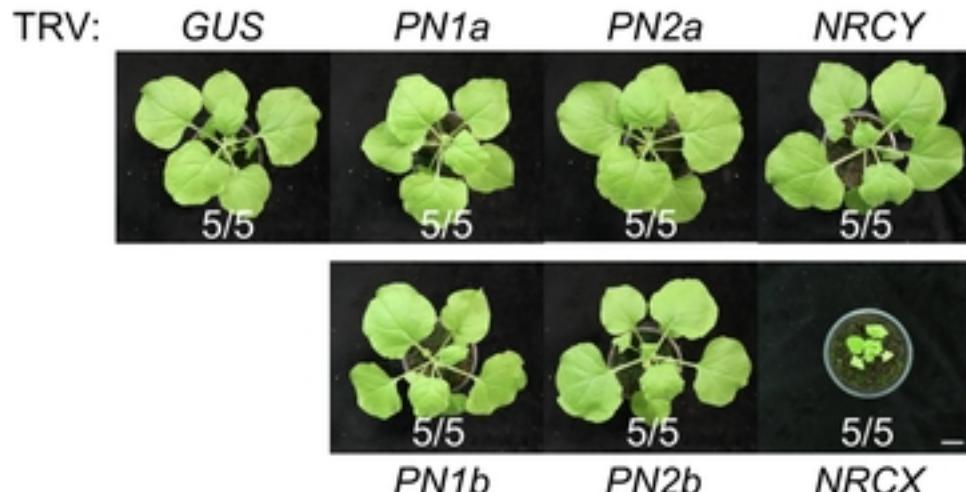
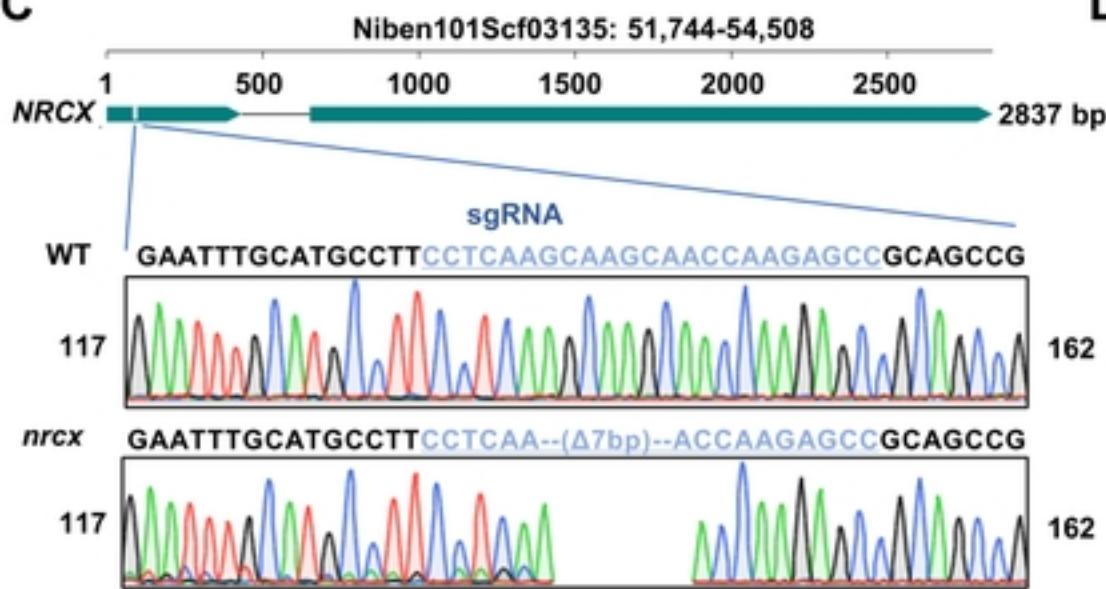
1077 58. Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing Large Minimum Evolution Trees with
1078 Profiles instead of a Distance Matrix. *Molecular Biology And Evolution* 26: 1641-1650.

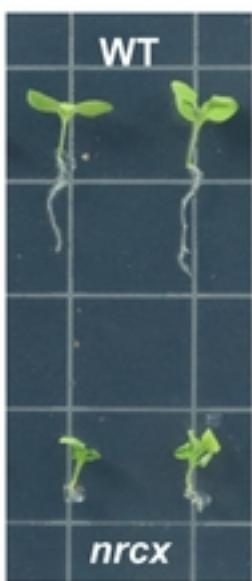
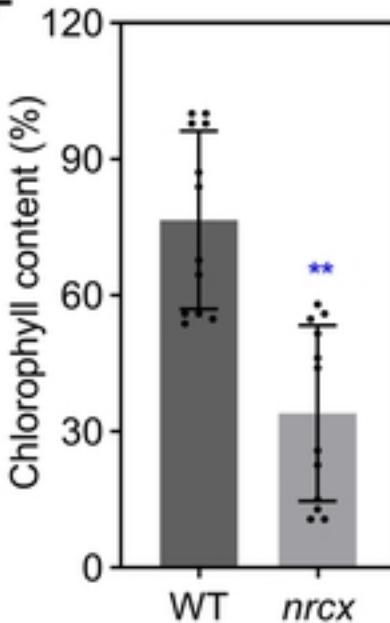
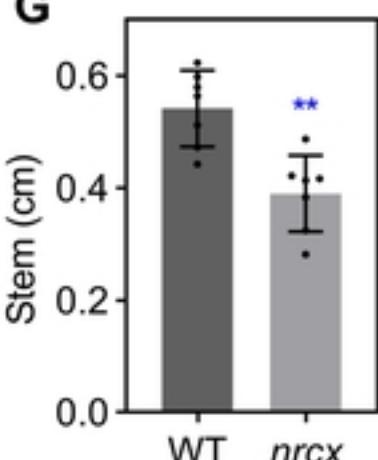
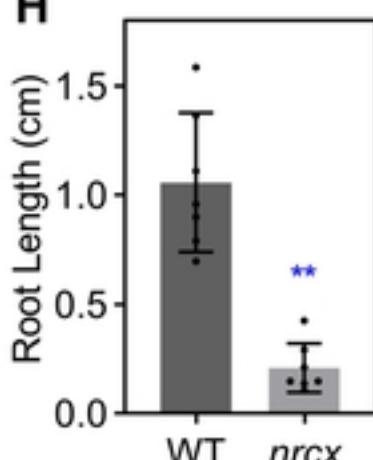
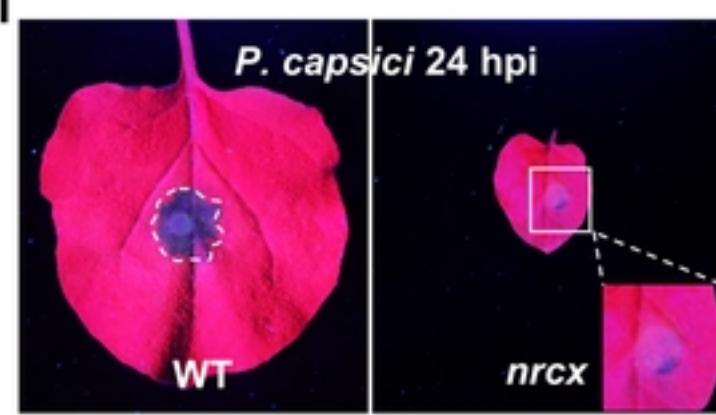
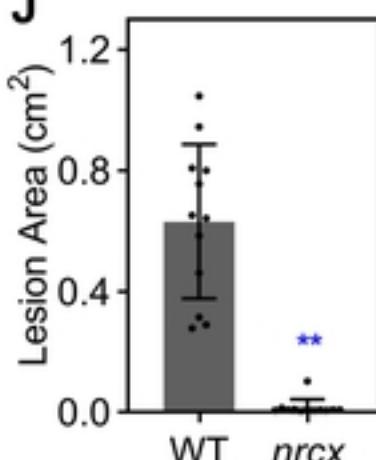
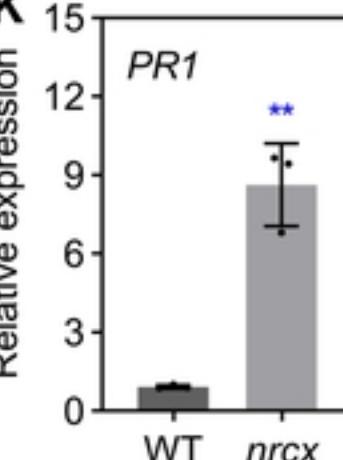
1079 59. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary
1080 Genetics Analysis across Computing Platforms. *Molecular Biology And Evolution* 35:
1081 1547-1549.

1082








Figure 3

A**B****C****D****E****F****Figure 4**

A**C****B****D****Figure 5**

A**B****D****E****C****F****Figure 6**

A**B****Figure 1**

A**B****C****D****E****F****G****H****I****J****K****Figure 2**