

1
2 **Recurrent hypoxia in a rat model of sleep apnea during pregnancy leads to**
3 **microglia-dependent respiratory deficits and persistent neuroinflammation in**
4 **adult male offspring**

5
6
7 Carly R. Mickelson^{†,1}, Andrea C. Ewald^{†,1}, Maia G. Gumnitt^{†,1}, Armand L. Meza^{†,1},
8 Abigail B. Radcliff¹, Stephen M. Johnson¹, Jonathan N. Ouellette¹, Bailey A. Kermath¹,
9 Avtar S. Roopra², Michael E. Cahill¹, Jyoti J. Watters^{*,1}, Tracy L. Baker^{*,1}

10
11
12
13
14 †contributed equally; *co-corresponding

15
16
17
18
19
20
21
22 ¹Department of Comparative Biosciences, ²Department of Neuroscience, University of
23 Wisconsin-Madison, Madison, WI 53706

24
25
26
27
28
29
30 *Correspondence to:
31 Tracy L. Baker, PhD
32 2015 Linden Dr.
33 Madison, WI 53706
34 Ph: 608-890-2964
35 Fax: 608-263-3926
36 Email: tracy.baker@wisc.edu

37
38 Jyoti J. Watters, PhD
39 2015 Linden Dr.
40 Madison, WI 53706
41 Ph: 608-262-1016
42 Fax: 608-263-3926
43 Email: jjwatters@wisc.edu

45 **ABSTRACT**

46

47 Sleep apnea (SA) during pregnancy is detrimental to the health of the pregnancy and
48 neonate, but little is known regarding long-lasting consequences of maternal SA during
49 pregnancy on adult offspring. SA is characterized by repeated cessations in breathing
50 during sleep, resulting in intermittent hypoxia (IH). We show that gestational IH (GIH) in
51 rats reprograms the male fetal neuroimmune system toward enhanced inflammation in a
52 region- and sex-specific manner, which persists into adulthood. Male GIH offspring also
53 had deficits in the neural control of breathing, specifically in the ability to mount
54 compensatory responses to central apnea, an effect that was rescued by a localized
55 anti-inflammatory or microglial depletion. Female GIH offspring appeared unaffected.
56 These results indicate that SA during pregnancy sex- and region-dependently skews
57 offspring microglia toward a pro-inflammatory phenotype, which leads to long-lasting
58 deficits in the capacity to elicit important forms of respiratory neuroplasticity in response
59 to breathing instability. These studies contribute to the growing body of recent evidence
60 indicating that SA during pregnancy may lead to sex-specific neurological deficits in
61 offspring that persist into adulthood.

62

63

64 INTRODUCTION

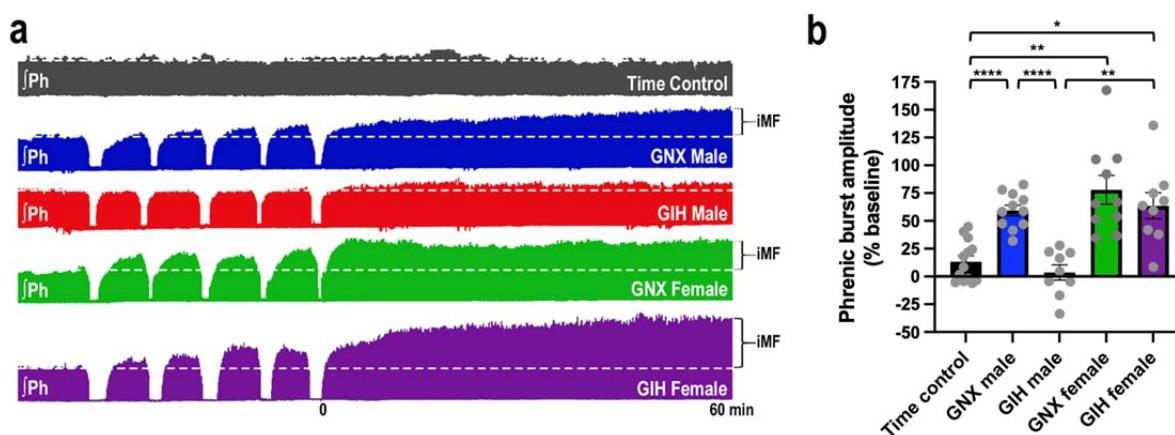
65 It is both scientifically thrilling and practically terrifying that a mother's
66 experiences during pregnancy can contribute to disease development in her adult
67 offspring (Bilbo et al., 2018). For example, prolonged or severe hypoxia during perinatal
68 life is associated with an increased risk for neurological disorders in offspring (Amgalan
69 et al., 2021), such as autism spectrum disorder (ASD), schizophrenia or intellectual
70 disability (Dalman et al., 2001; Modabbernia et al., 2016); typically this form of hypoxia
71 is associated with a traumatic or disordered pregnancy and physicians are well-aware of
72 risks to the child. Underappreciated is that many women commonly experience
73 recurrent episodes of brief hypoxia during pregnancy in the form of sleep apnea (SA).
74 SA is characterized by repeated pauses in breathing, and occurs in 10-30% of all
75 pregnancies by the third trimester (Pien et al., 2014; Lockhart et al., 2015). Although SA
76 in pregnancy is associated with adverse consequences to the neonate, including
77 preterm birth and NICU admission (Ding et al., 2014), little is known regarding long-
78 lasting effects of maternal SA on adult offspring. Recent evidence in animal models
79 indicates that intermittent hypoxia (IH) associated with SA leads to life-long alterations
80 in offspring physiology, with male offspring more severely affected. Adult male offspring
81 born from rodent dams exposed to IH exhibit deficits in metabolism (Khalyfa et al.,
82 2017; Cortese et al., 2021), cardiovascular function (Song et al., 2021) and have
83 behavioral deficits characteristic of ASD in humans (Vanderplow et al., 2022). However,
84 effects on other core physiological systems are unknown.

85 Sex-specific reprogramming of the neuroimmune response toward a persistently
86 pro-inflammatory state is a common outcome of an adverse *in utero* environment and

87 may contribute to offspring cognitive deficits (Al-Haddad et al., 2019).
88 Neuroinflammation in brain regions important in cognition undermines synaptic plasticity
89 (Rizzo et al., 2018), a foundational piece of cognitive processing that enables the CNS
90 to adapt to new experiences over the lifetime. Microglia play critical roles in creating and
91 resolving neuroinflammation in the healthy and injured brain (Bilbo et al., 2018; Oh et
92 al., 2020; Yegla et al., 2021). While the detrimental impact of an adverse perinatal
93 environment on offspring cognitive function has been intensely investigated, potential
94 effects of the perinatal environment on CNS regions important in breathing remain
95 poorly understood.

96 Breathing is a complex neuromotor behavior that relies on a precisely
97 coordinated pattern of muscle activation to hold the airway open and expand the
98 thoracic cavity. Plasticity is a key element of a healthy respiratory control system since it
99 adjusts muscle activation patterns to optimize breathing throughout the lifetime (Fuller
100 and Mitchell, 2017). Neural circuits driving breathing are tuned for near constant activity
101 from birth until death, and as such, are exquisitely sensitive to reductions in respiratory
102 neural activity, even in the absence of a change in blood gases. Indeed, central
103 hypopnea/apnea trigger a chemoreflex-independent, proportional enhancement in
104 inspiratory motor output to muscles maintaining upper airway tone and expanding the
105 thoracic cavity, a form of plasticity known as inactivity-induced inspiratory motor
106 facilitation (iMF) (Braegelmann et al., 2017). Although respiratory neural activity is likely
107 monitored in multiple neural circuits, local mechanisms operating within inspiratory
108 motor neuron pools are key for iMF initiation (Streeter and Baker-Herman, 2014a).

109 We modeled SA during pregnancy by exposing rat dams to IH during their sleep
110 phase in late gestation (gestational intermittent hypoxia; GIH). We report that GIH leads
111 to long-lasting respiratory control and neuroimmune dysregulation in adult male, but not
112 female, offspring. Adult male GIH offspring exhibit enhanced microglial inflammatory
113 gene expression in spinal regions encompassing the phrenic motor pool, which
114 interferes with the capacity to trigger iMF in response to recurrent central apnea. GIH-
115 induced neuroinflammation was CNS-region specific, with no evidence for brainstem
116 neuroinflammation. The capacity to elicit iMF could be rescued by a spinal anti-
117 inflammatory or microglial depletion. Our results indicate that GIH sex- and region-
118 specifically skews microglia toward a pro-inflammatory phenotype, impairing important
119 forms of respiratory neuroplasticity elicited by breathing instability.


120

121 **RESULTS**

122 **GIH impairs respiratory neuroplasticity**

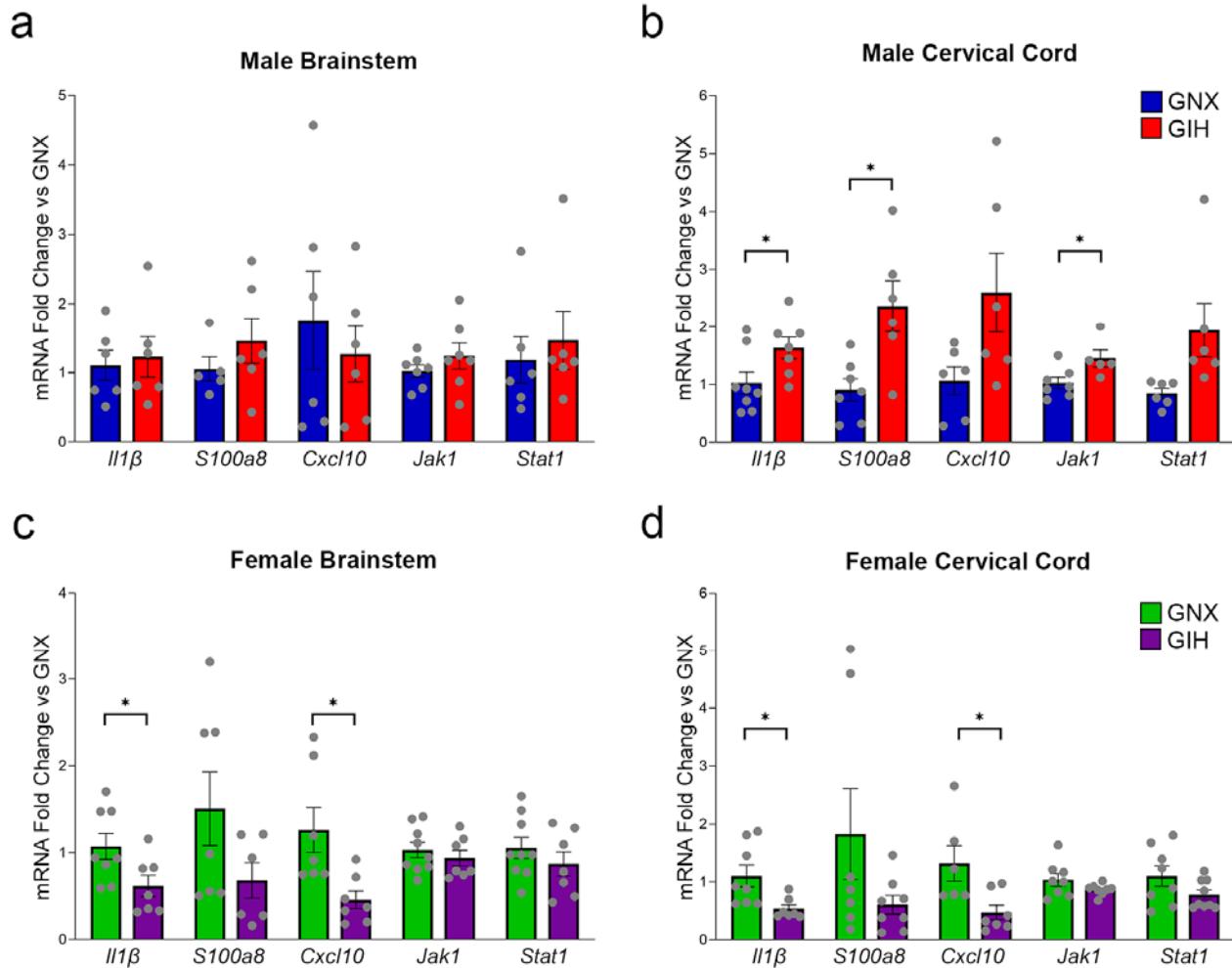
123 We first tested the hypothesis that the capacity to elicit respiratory neuroplasticity
124 is impaired in adult offspring exposed to GIH compared to gestational intermittent
125 normoxia (GNX)-exposed controls (Experimental Series 1). To induce respiratory
126 plasticity, inspiratory neural activity was briefly silenced five times for ~1min each to
127 mimic recurrent central apnea; rats continued to be ventilated during the central apnea
128 so that no hypoxia or hypercapnia was experienced. Representative compressed
129 phrenic neurograms show phrenic inspiratory motor output at baseline, during, and for
130 60 min following recurrent central apnea (**Fig. 1a**). Phrenic inspiratory activity was
131 monitored for an equivalent duration in “time controls” exposed to the same surgical

132 preparation, but with no central apneas. Recurrent central apneas triggered a
133 compensatory increase in phrenic inspiratory burst amplitude in both male (59.3±4.8%
134 baseline, n=11, p<0.0001) and female (78±12.9% baseline, n=10, p=0.0036) GNX
135 offspring relative to time controls (13.3±5.1% baseline, n=13), indicating iMF (**Fig. 1a**,
136 **1b**). Likewise, recurrent central apnea triggered robust iMF in female GIH offspring
137 (63.6±11.7% baseline, n=9, p=0.0150) that was not statistically different from female
138 GNX offspring (p=0.9688; **Fig. 1b**). Strikingly, recurrent central apnea did not elicit iMF
139 in male GIH offspring (3.6±6.8% baseline, n=9, p=0.8627 compared to time controls;
140 p<0.0001 compared to male GNX offspring). These data show that normal
141 compensatory responses to reductions in respiratory neural activity are impaired by GIH
142 in male, but not female, offspring.

143
144 **Figure 1: Gestational intermittent hypoxia (GIH) dysregulates compensatory**
145 **respiratory neuroplasticity in adult male offspring.**
146 (a) Representative compressed phrenic neurograms depicting phrenic burst amplitude
147 before, during, and for 60 minutes following exposure to recurrent reductions in
148 respiratory neural activity (5, ~1 min central apneas) or the equivalent duration in a rat
149 not receiving central apnea (time control). Dotted white line represents baseline
150 amplitude. (b) Average percent change (\pm SEM) in the amplitude of phrenic inspiratory
151 output from baseline at 60 minutes following the fifth apnea. Treatment groups exposed
152 to central apnea were compared to time controls that did not receive central apnea

153 (n=13) to determine if respiratory neural activity deprivation triggered plasticity. In adult
154 male and female rats exposed to gestational intermittent normoxia (GNX; males n=11,
155 t=6.535, df=21.98, p<0.0001; females n=10, t=4.664, df=11.85; p=0.0036) and female
156 GIH rats (n=9, t=3.929, df=11.08, p=0.0150), recurrent reductions in respiratory neural
157 activity elicited a compensatory increase in phrenic inspiratory burst amplitude,
158 indicating iMF. There was no statistical difference between the magnitude of iMF in
159 GNX versus GIH females (t=0.8257, df=16.98, p<0.9688). Conversely, recurrent central
160 apnea did not elicit increased phrenic inspiratory burst amplitude in adult male GIH rats
161 (n=9, t=1.135, df=16.12, p=0.8627 relative to time controls; t=4.664, df=14.99, p<0.0001
162 relative to male GNX offspring), indicating that the ability to trigger compensatory
163 enhancements in phrenic inspiratory output in response to respiratory neural activity
164 deprivation (i.e., iMF) is impaired in adult male, but not female, offspring of dams
165 exposed to intermittent hypoxia during gestation. Statistical analysis: Welch ANOVA
166 ($W_{(4,21.64)} = 18.63$, p<0.0001) followed by Dunnett's T3 multiple comparisons test,
167 *p<0.05, **p<0.005, ****p<0.0001).

168


169 **GIH does not impact maternal care**

170 Because other models of prenatal insult show changes in maternal care (Moore
171 and Power, 1986), which can impact respiratory control in the offspring (Genest et al.,
172 2007), we tested the hypothesis that GIH impacted maternal care. Several aspects of
173 rodent maternal care were measured, including the time it took GNX and GIH mothers
174 to approach their pups after they had been removed for 10 mins (GNX n=6, GIH n=6;
175 **Suppl. Fig. 1a**), retrieve the first pup (GNX n=11, GIH n =10; **Suppl. Fig. 1b**), retrieve
176 all pups (GNX n=11, GIH n=10; **Suppl. Fig. 1c**), begin licking, grooming or sniffing the
177 pups (GNX n=6, GIH n=6; **Suppl. Fig. 1d**) and begin crouching after all pups had been
178 retrieved (GNX n=6, GIH n=5; **Suppl. Fig. 1e**). We detected no differences in these
179 measures of maternal care between GIH and GNX dams, suggesting that poor maternal
180 care does not likely play a role in GIH-induced deficits in adult male offspring.

181

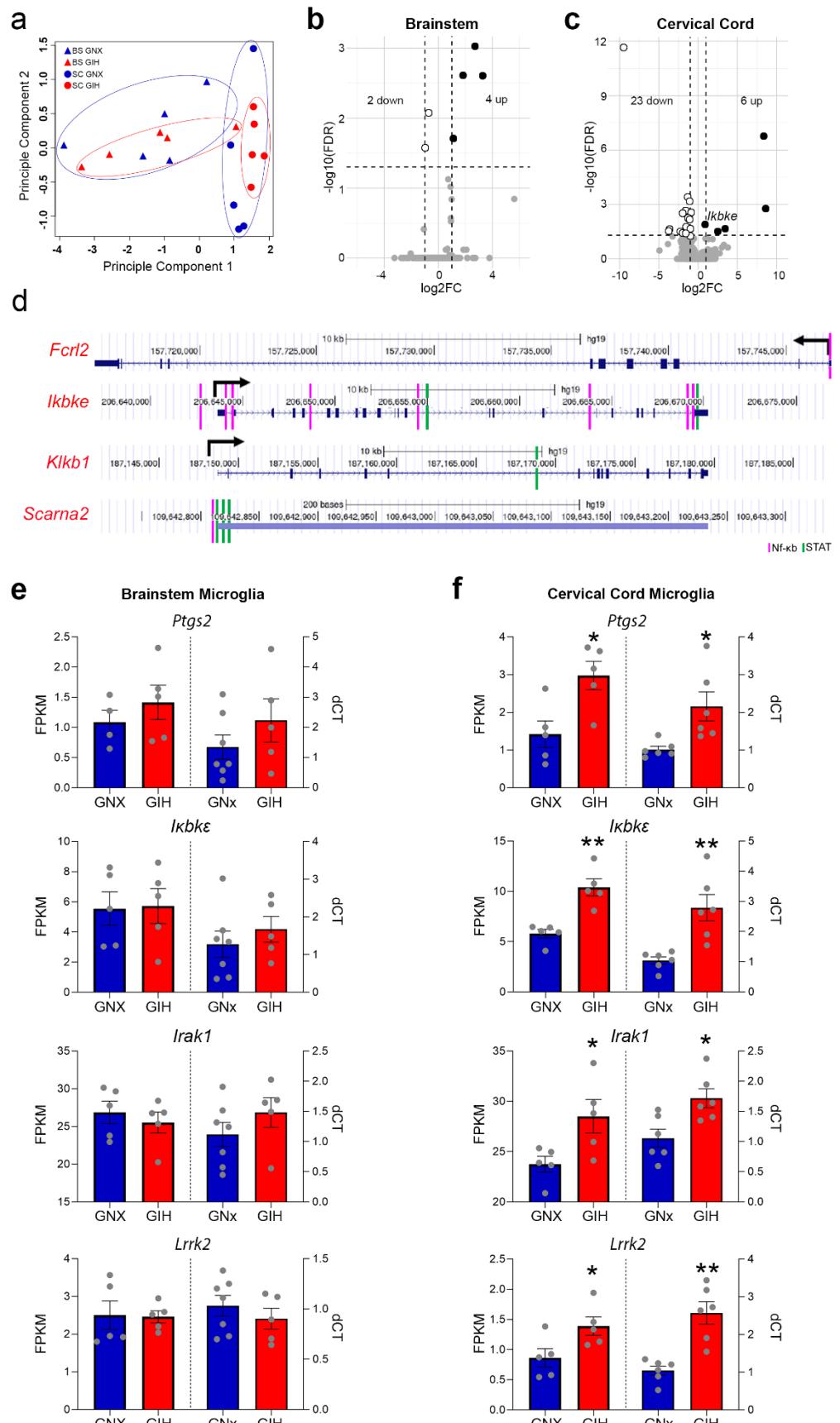
182 **GIH increases spinal cord, but not brainstem, inflammation in male offspring**

183 To test whether GIH induces neuroinflammation in CNS regions underlying
184 breathing, we measured inflammatory gene expression in tissue homogenates from
185 brainstem, where respiratory rhythm is generated, and cervical spinal cord segments
186 C3-C6, where phrenic motor neurons reside. We focused on several general
187 inflammatory markers that are increased in humans and rodent models with deficits in
188 respiratory control, including interleukin-1 beta (IL-1 β), s100a8 (a calcium binding
189 protein), C-X-C motif chemokine ligand 10 (CXCL10), Janus kinase 1 (JAK1), and
190 signal transducer and activator of transcription 1 (STAT1) (Jain et al., 2012; Anderson et
191 al., 2014; Almatroodi et al., 2015). For male GIH offspring, no differences in brainstem
192 inflammatory markers were detected (**Fig. 2a**) but increases in *Il1 β* (GNX n=8, GIH n=7,
193 p=0.04), *s100a8* (GNX n=7, GIH n=6, p=0.019), *Cxcl10* (GNX n=6, GIH n=6, p=0.078),
194 *Jak1*, (GNX n=7, GIH n=5, p=0.046) and *Stat1* (GNX n=6, GIH n=6, p=0.065) gene
195 expression were observed in cervical spinal cord (**Fig. 2b**). In contrast, *Il1 β* and *Cxcl10*
196 gene expression was reduced in adult female GIH offspring in both brainstem (*Il1 β* GNX
197 n=8, GIH n=7, p=0.035; *s100a8* GNX n=7, GIH n=6, p=0.11; *Cxcl10* GNX n=7, GIH
198 n=7, p=0.02) (**Fig. 2c**) and cervical cord (*Il1 β* GNX n=8, GIH n=7, p=0.019; *s100a8*
199 GNX n=7, GIH n=8, p=0.17; *Cxcl10* GNX n=6, GIH n=7, p=0.04), with a trend toward a
200 reduction in *s100a8* (brainstem: GNX n=7, GIH n=6, p=0.11; cervical cord: GNX n=7,
201 GIH n=8, p=0.17) (**Fig. 2d**). These observations underscore critical sex differences in
202 how offspring adapt to the maternal IH insult and indicate that spinal inflammation may
203 play a role in GIH-induced neuroplasticity impairments.

204

205 **Figure 2: GIH males have increased inflammation in cervical spinal cord.**

206 **(a, b)** Basal inflammatory gene expression was analyzed in adult male brainstem **(a)**
 207 and cervical spinal cord **(b)** tissue homogenates using an unpaired t-test with Welch's
 208 correction. Increases in *IL1β* (GNX, GIH n=8,7; t=2.285, df=12.94, F=1.170, p=0.04),
 209 *s100a8* (GNX, GIH n=7,6; t=3.029, df=6.885, F=4.482, p=0.019), *Cxcl10* (GNX, GIH
 210 n=6,6; t=2.101, df=6.249, F=7.876, p=0.078), *Jak1*, (GNX, GIH n=7,5; t=2.395, df=7.391,
 211 F=1.598, p=0.046) and *Stat1* (GNX, GIH n=6,6; t=2.315, df=5.351, F=28.45, p=0.065)
 212 gene expression were seen in male spinal cord but not in brainstem. **(c, d)** Basal
 213 inflammatory gene expression was analyzed in adult female brainstem **(c)** and cervical
 214 spinal cord **(d)** tissue homogenates using an unpaired t-test with Welch's correction. In
 215 contrast to male offspring, decreases in *IL-1β*, *S100a8*, *Cxcl10* gene expression were
 216 seen in both female brainstem (*IL1β* GNX, GIH n=8,7; t=2.361, df=12.81, F=1.706,
 217 p=0.035; *s100a8* GNX, GIH n=7,6; t=1.763, df=8.503, F=5.149, p=0.11; *Cxcl10*
 218 GNX, GIH n=7,7; t=2.905, df=7.898, F=6.161, p=0.02) and cervical spinal cord (*IL1β*
 219 GNX, GIH n=8,7; t= 2.852, df=8.822, F=8.505, p=0.019; *s100a8* GNX, GIH n=7,8;
 220 t=1.537, df=6.5, F=21.02, p=0.17; *Cxcl10* GNX, GIH n=6,7; t=2.538, df=6.702, F=4.987,
 221 p=0.04). Collectively, these data demonstrate sex- and CNS region- specific changes in
 222 inflammatory gene expression induced by GIH exposure. *p<0.05 relative to GNX
 223 controls.


224

225 **Adult offspring brainstem and spinal microglial transcriptomes are differentially
226 reprogrammed by GIH**

227 Since microglia are important mediators of neuroinflammation, we next examined
228 whether GIH skewed microglia toward a pro-inflammatory phenotype. RNA-sequencing
229 was performed on microglia (CD11b+ cells) immunomagnetically isolated from
230 brainstem and cervical spinal cord (C3-C6; n=5/treatment). Principal component
231 analysis of brainstem and cervical spinal microglia transcriptomes revealed little
232 variability between male GNX and GIH treatments in either region (**Fig. 3a**), although
233 there were notable differences between brainstem and cervical spinal cord
234 transcriptomes. Surprisingly, in cervical spinal microglia from female GIH offspring,
235 there were nearly 4000 differentially expressed genes, with only modest changes in
236 brainstem microglial genes (**Suppl. Fig 2**). Our subsequent analyses focused on
237 transcriptomic changes in male GIH offspring microglia as our interest was in deficits in
238 respiratory plasticity. However, understanding the physiological role for microglial
239 transcriptomic changes in GIH females represents an exciting direction for future study.
240 In isolated brainstem microglia from male GIH offspring, only 6 out of the 13,504
241 expressed genes were differentially expressed (4 up, 2 down) (**Fig. 3b; Table 1**).
242 Similarly, of the 12,982 genes expressed in male GIH offspring cervical spinal microglia,
243 only 29 were differentially expressed (6 up, 23 down) (FDR < 0.05; **Fig 3c; Table 1**).
244 Despite the relatively low number of differentially expressed genes, all of the known
245 differentially upregulated genes in the cervical spinal cord are putative targets of either
246 NF- κ B or STAT transcription factors (**Fig. 3d**). Notably, the I κ B kinase epsilon isoform

247 (Ikbk ϵ) was 1 of the 6 upregulated transcripts in spinal microglia from male GIH
248 offspring. Ikbk ϵ targets the NF- κ B inhibitory subunit (I κ B) for degradation by the
249 proteasome, resulting in activation of NF- κ B-dependent inflammatory signaling,
250 consistent with the enhanced neuroinflammatory gene expression data we observed in
251 Figure 2.

252 We evaluated the FPKM values of all expressed genes within the male brainstem
253 and cervical cord microglia RNA-Seq datasets. Interrogating for genes specifically
254 associated with the Gene Ontology search terms “NF- κ B signaling” (GO: 0038061) and
255 “neuroinflammatory response” (GO: 0150076) we found the NF- κ B target genes
256 prostaglandin-endoperoxide synthase 2 (Ptgs2, or COX-2), Ikbk ϵ , interleukin-1-receptor-
257 associated-kinase-1 (Irak1), and leucine-rich repeat kinase 2 (Lrrk2) to be increased. In
258 brainstem microglia, there were no detectable changes induced by GIH in the
259 expression of any of these genes either by RNA-Seq FPKM (**Fig. 3e, left**) or qPCR
260 analyses (**Fig. 3e, right**). However, in cervical spinal microglia, GIH increased the
261 expression of all four of these inflammatory genes both by RNA-Seq FPKM (**Fig. 3f,**
262 **left**) and individual qPCR confirmation analyses (**Fig. 3f, right**), indicating that NF- κ B
263 signaling pathways may be hyperactivated in male GIH cervical spinal microglia.

265 **Figure 3: GIH differentially upregulates inflammatory gene transcripts in male**
266 **spinal microglia**

267 **(a)** Principal component analysis of RNA-seq data from male brainstem and cervical
268 spinal microglia (n = 5/treatment) show greater transcriptomic differences resulting from
269 CNS region than by GIH treatment. **(b)** Volcano plot indicating differential gene
270 expression in microglia isolated from the male GIH offspring brainstem. Few genes (6)
271 were altered by GIH. Black dots represent significantly upregulated genes (FDR < 0.05);
272 white dots represent significantly downregulated genes. FC, fold change. **(c)** Volcano
273 plot of differential gene expression in male GIH offspring cervical spinal microglia. 29
274 genes were differentially expressed; black dots represent significantly upregulated
275 genes (FDR < 0.05); white dots represent significantly downregulated genes. **(d)** Gene
276 tracks from the ENCODE database of the 4 known upregulated genes in GIH male
277 spinal microglia demonstrate binding sites for NF- κ B (pink) and STAT (green) below
278 each track, suggesting that differentially upregulated gene expression in GIH spinal
279 microglia may be regulated by NF- κ B and STAT transcription factor activity. **(e,f)** To
280 ascertain evidence of enhanced basal inflammation in GIH offspring microglia, FPKM
281 (fragments per kilobase of exon per million mapped fragments) analyses of RNA-seq
282 data (left) and RT-qPCR (right) for the inflammatory genes Ptgs2, Ikbke, Irak1, and
283 Lrrk2 were performed. **(e)** No differences in the expression of Ptgs2, Ikbke, Irak1, or
284 Lrrk2 were observed in male brainstem microglia but **(f)** enhanced inflammatory gene
285 expression for Ptgs2, Ikbke, Irak1 and Lrrk2 was observed in male GIH spinal microglia
286 (Ptgs2 FPKM t=3.029, df=7.96, F=1.152, p=0.016 and dCT t=2.888, df=5.489, F=20.40,
287 p=0.031; Ikbke FPKM t=4.836, df=5.986, F=3.762, p=0.003 and dCT t=3.867, df=5.777,
288 F=12.80, p=0.009; Irak1 FPKM t=2.581, df=5.690, F=4.512, p=0.044 and dCT t=3.04,
289 df=9.985, F=1.08, p=0.013; Lrrk2 FPKM t=2.439, df=7.998, F=1.034, p=0.041 and dCT
290 t=4.766, df=6.636, F=5.945, p=0.002). *p<0.05, **p<0.01 relative to GNX controls.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

Brainstem Differentially Expressed Genes				
	Gene name	Gene stable ID	FDR	log(Fold Change)
Upregulated	AABR07000398.1	ENSRNOG00000047746	0.002	1.811
	AABR07015057.1	ENSRNOG00000060518	0.002	3.267
	AABR07015081.1	ENSRNOG00000047351	0.001	2.695
	<i>F13a1</i>	ENSRNOG00000015957	0.020	1.082
Downregulated	<i>Ccl4</i>	ENSRNOG00000011406	0.026	-0.960
	<i>Ch25h</i>	ENSRNOG00000019141	0.008	-0.709
Cervical Spinal Cord Differentially Expressed Genes				
	Gene name	Gene stable ID	FDR	log(Fold Change)
Upregulated	AABR07034362.2	ENSRNOG00000050586	0.022	3.390
	<i>Fcrl2</i>	ENSRNOG00000016164	0.030	2.500
	<i>Ikbbkε</i>	ENSRNOG00000025100	0.013	0.868
	<i>Klk1</i>	ENSRNOG00000014118	0.002	8.547
	LOC100910181	ENSRNOG00000051439	1.76E-07	8.332
	<i>Scarna2</i>	ENSRNOG00000051850	0.031	2.561
Downregulated	AABR07015081.1	ENSRNOG00000047351	0.030	-3.740
	<i>Acox2</i>	ENSRNOG00000007378	0.022	-3.635
	<i>Bcam</i>	ENSRNOG00000029399	0.003	-1.953
	<i>Cxcl12</i>	ENSRNOG00000013589	0.006	-1.333
	<i>Cyrr1</i>	ENSRNOG00000001544	0.002	-1.561
	<i>Epas1</i>	ENSRNOG00000021318	6.91E-4	-1.095
	<i>Fcmr</i>	ENSRNOG00000004441	0.047	-1.076
	<i>Flt1</i>	ENSRNOG00000000940	0.003	-0.860
	<i>Igf2</i>	ENSRNOG00000020369	0.030	-2.224
	<i>Igfbp3</i>	ENSRNOG00000061910	0.023	-1.599

<i>Plat</i>	ENSRNOG00000019018	0.017	-1.497
<i>Plcl1</i>	ENSRNOG00000032659	0.023	-1.649
<i>Plip</i>	ENSRNOG00000016558	0.038	-1.364
<i>Plxnd1</i>	ENSRNOG00000025209	0.022	-1.009
<i>Podxl</i>	ENSRNOG00000012495	0.040	-1.319
<i>RT1-Da</i>	ENSRNOG00000032844	0.023	-1.202
<i>Sema3g</i>	ENSRNOG00000018952	0.005	-1.322
<i>Slco1a4</i>	ENSRNOG00000047493	0.004	-1.085
<i>Slco1c1</i>	ENSRNOG00000009740	3.83E-4	-1.310
<i>Spock2</i>	ENSRNOG00000061544	0.007	-1.045
<i>Stab1</i>	ENSRNOG00000018434	6.91E-4	-1.034
<i>Ttr</i>	ENSRNOG00000016275	2.21E-12	-9.480
<i>Wscd1</i>	ENSRNOG00000007869	0.038	-1.850

311

312 **Table 1: Differentially Expressed Genes**

313

314

315

316

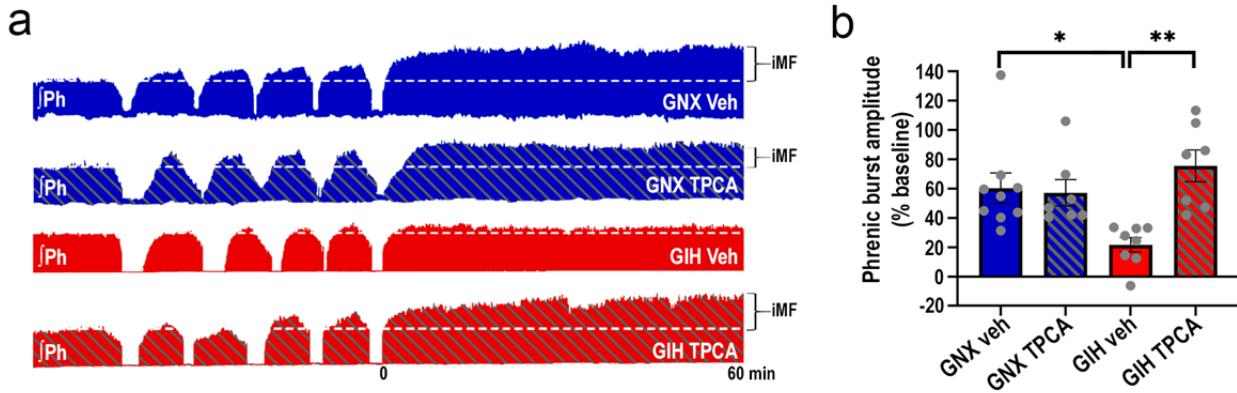
317

318

319

320

321


322

323 **GIH-induced spinal neuroinflammation impairs iMF in adult male GIH offspring**

324 Since iMF is a predominantly spinal form of neuroplasticity (Streeter and Baker-
325 Herman, 2014a) and we observed increased neuroinflammation specifically in the spinal
326 cord, we tested whether functional inhibition of local spinal inflammation, and NF-
327 kB/STAT signaling in particular, could rescue iMF expression in adult male GIH
328 offspring (Experimental Series 2). We intrathecally delivered vehicle (DMSO) or TPCA-1
329 (potent inhibitor of Ik-kinases and STAT transcription factor activation) directly over the
330 cervical spinal segments C3-C6, where phrenic motor neurons reside, prior to
331 administering recurrent central apneas (**Fig. 4a, b**). Intrathecal TPCA-1 did not alter iMF
332 magnitude in male GNX offspring (vehicle: $60.3\pm10.4\%$ baseline, n=9; TPCA-1:
333 $59.7\pm10.2\%$ baseline, n=6; $p>0.9999$). As in figure 1, iMF was significantly impaired in
334 vehicle-treated adult male GIH offspring ($26.5\pm3.1\%$, n=8) relative to vehicle-treated
335 GNX offspring ($p=0.048$). Interestingly, local spinal TPCA-1 treatment in male GIH
336 offspring restored the capacity to express iMF in response to recurrent central apnea
337 ($75.6\pm10.8\%$, n=7, $p=0.004$ relative to vehicle GIH) to a level similar to that observed in
338 GNX offspring ($p=0.6726$). These data indicate that GIH-induced spinal
339 neuroinflammation abolishes the ability to elicit compensatory increases in phrenic
340 inspiratory output in response to reductions in respiratory neural activity in adult male
341 GIH offspring.

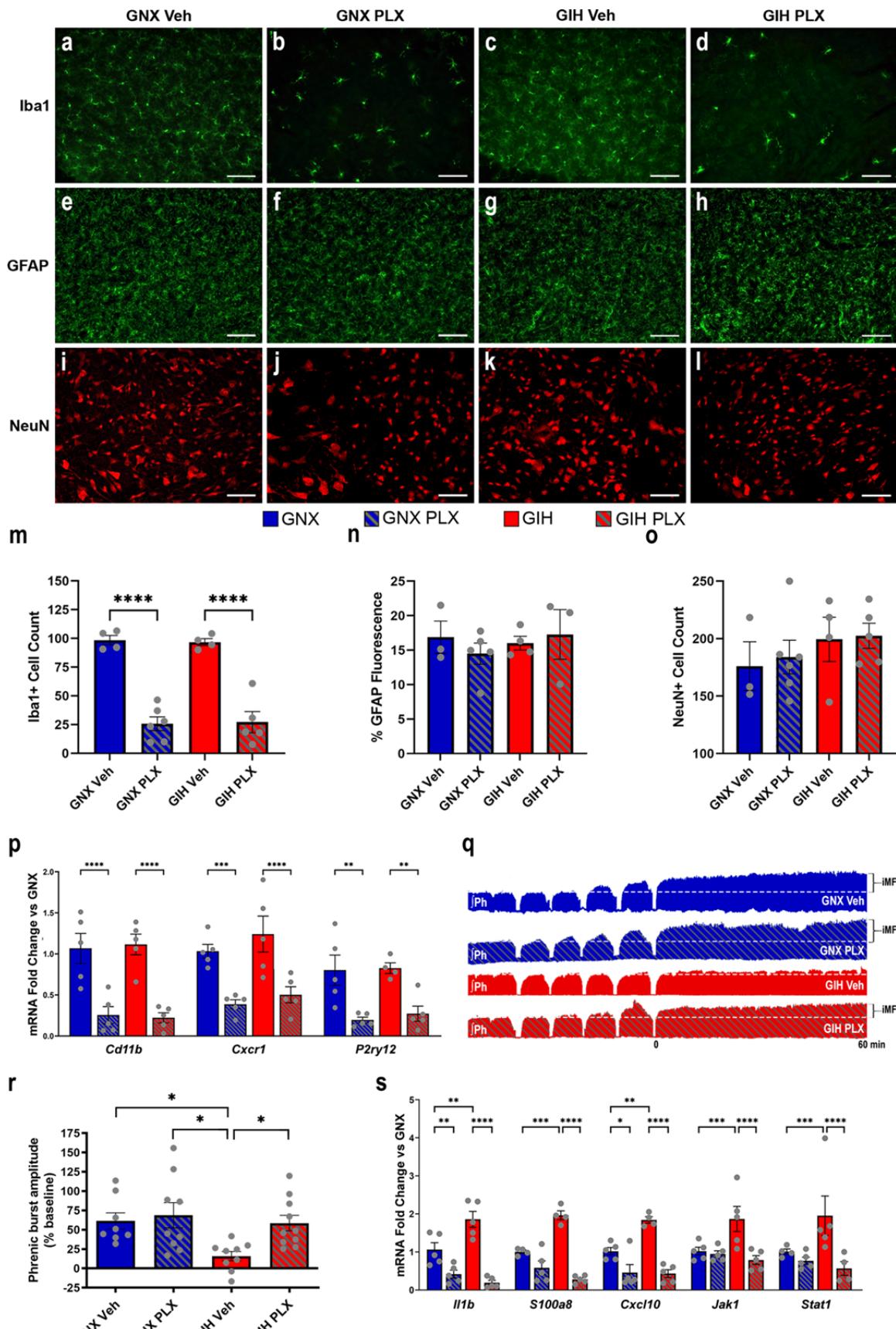
342

343

344

345 **Figure 4: TPCA-1 administration to the phrenic motor pool restores iMF**

346 (a) Representative compressed phrenic neurograms depicting phrenic burst amplitude
347 before, during, and for 60 minutes following exposure to recurrent reductions in
348 respiratory neural activity (5, ~1 min neural apneas). Dotted white line represents
349 baseline amplitude. ~45 minutes prior to respiratory neural activity deprivation, rats
350 received intrathecal injections of the I κ -kinases/STAT inhibitor TPCA-1 or intrathecal
351 vehicle in spinal regions encompassing the phrenic motor pool. (b) Average percent
352 change (\pm SEM) in phrenic inspiratory burst amplitude from baseline at 60 minutes
353 following the fifth central apnea. 2-way ANOVA revealed a significant effect of TPCA
354 treatment ($F_{(1,26)} = 6.82$, $p=0.0148$) and a significant interaction between TPCA treatment
355 and GIH/GNX status ($F_{(1,26)} = 7.132$, $p=0.0129$). Tukey's post-hoc test revealed that there
356 was no difference in the magnitude of iMF between GNX rats treated with vehicle or
357 TPCA-1 ($n=9$, 6 respectively; $p>0.9999$). Similar to previous results, iMF magnitude in
358 vehicle treated male GIH rats ($n=8$) was significantly lower than the response in vehicle
359 treated GNX males ($p=0.0480$). However, local application of TPCA-1 to the phrenic
360 motor pool of male GIH ($n=7$) offspring rescued the capacity to trigger compensatory
361 increases in phrenic inspiratory output following recurrent central apneas ($p=0.004$
362 relative to vehicle treated GIH; $p=0.6726$ relative to TPCA treated GNX). Collectively,
363 these data demonstrate that GIH-induced spinal inflammation impairs the ability to elicit
364 compensatory increases in phrenic inspiratory output in response to respiratory neural
365 activity deprivation in adult male GIH offspring. * $p<0.05$, ** $p<0.01$.


366

367 **Aberrant microglial activities play a key role in impairing iMF in adult male GIH
368 offspring**

369 To determine whether aberrant microglial function, specifically, contributes to
370 neuroinflammation-induced impairments in iMF, rats were treated with vehicle or the
371 CSF1R inhibitor Pexidartinib (PLX3397; 80mg/kg daily for seven days, p.o.) to
372 pharmacologically deplete microglia (Fig. 5a-o). Microglial depletion was confirmed

373 using immunohistochemistry. Compared to vehicle-treated control groups, PLX3397
374 significantly reduced Iba+ cell numbers by ~73% in the ventral horn (near phrenic motor
375 neurons) of both GNX (Vehicle n=4, PLX n=6, p<0.0001) and GIH (Vehicle n=4, PLX
376 n=5, p<0.0001) offspring (**Fig. 5b, d, m**). Similar reductions were observed in the
377 brainstem (not shown). PLX administration affected neither GFAP+ area fluorescence in
378 GNX (Vehicle n=3, PLX n=5, p=0.424) or GIH offspring (Vehicle n=4, PLX n=3,
379 p=0.682) (**Fig. 5f, h, n**) nor NeuN+ cell counts in GNX (Vehicle n=3, PLX n=6, p=0.754)
380 or GIH offspring (Vehicle n=4, PLX n=5, p=0.895) (**Fig. 5j, l, o**). Consistent with other
381 recent reports in the rat brain (Oh et al., 2020; Yegla et al., 2021), these results confirm
382 that seven days of PLX3397 treatment significantly decreased microglial numbers in the
383 rat cervical spinal cord, without detectably impacting astrocyte activation status and
384 neuron populations. To assess for evidence of astrogliosis in the brainstem, a key site
385 involved in the neural control of breathing, we quantified GFAP+ area fluorescence in
386 the brainstem and found no significant difference between PLX3397 and vehicle-treated
387 rats (data not shown), which is consistent with other reports (De et al., 2014; Fu et al.,
388 2020; Wyatt-Johnson et al., 2021; Stokes et al., 2022). To further confirm spinal
389 microglial cell depletion, RNA from offspring cervical spinal cord tissue was analyzed for
390 the expression of other genes that are specific to microglia in the CNS (**Fig. 5p**).
391 Analysis of the integrin alpha M receptor CD11b, the fractalkine receptor CX3CR1 (C-
392 X3-C motif chemokine receptor 1), and the P2Y₁₂ purinergic receptor genes by qRT-
393 PCR confirmed significant reductions in their expression in both GNX and GIH offspring
394 (n=5 each, p<0.004 vs. vehicle), indicating a significant loss of microglial cells following
395 PLX treatment.

396 To test the hypothesis that depletion of inflammatory microglia rescues iMF in
397 adult male GIH offspring (Experimental Series 3), we treated a separate cohort of
398 animals with PLX3397 (**Fig. 5q, r**). PLX3397 treatment did not alter iMF magnitude in
399 male GNX offspring (vehicle: $61.4 \pm 10.6\%$ baseline, n=8; PLX: $68.7 \pm 16.3\%$ baseline,
400 n=9; p=0.9706). Consistent with our earlier findings (**Figs. 1 and 4**), iMF was
401 significantly impaired in vehicle-treated adult male GIH offspring ($15.9 \pm 6.1\%$ baseline,
402 n=9) relative to vehicle-treated GNX offspring (p=0.0473; **Fig. 5q, r**). However,
403 microglial depletion with PLX3397 rescued the capacity of adult male GIH offspring to
404 elicit iMF ($58.7 \pm 10.1\%$ baseline, n=10, p=0.0489 vs. vehicle-treated GIH offspring) to a
405 level similar to that observed in GNX offspring (p=0.9182), indicating that microglial
406 depletion in adulthood can restore the capacity to express iMF in offspring that were
407 exposed to GIH during fetal development. To determine whether microglia-dependent
408 spinal neuroinflammation is also reversed by PLX treatment (**Fig. 5s**), we analyzed the
409 same inflammatory genes assessed in Fig 2. As before, we found that the inflammatory
410 gene expression that was significantly enhanced in the GIH male cervical spinal cord
411 homogenate (n=4-5; *Il1b* p=0.001; *s100a8* p=0.0006; *Cxcl10* p=0.002; *Jak 1* p=0.0007;
412 *Stat1* p=0.0003) was significantly reduced by PLX treatment, especially in GIH males
413 (*Il1b* GNX p=0.009, GIH p<0.001; *s100a8* GNX p=0.116, GIH p=<0.0001; *Cxcl10* GNX
414 p=0.02, GIH p<0.0001; *Jak 1* GNX p=0.761, GIH p<0.0001; *Stat1* GNX p=0.377, GIH
415 p<0.0001). Collectively, these data show that microglia are crucial mediators of GIH-
416 induced impairment of iMF in adult males and support the idea that although the
417 microglial reprogramming insult occurred *in utero* months earlier, the neuroplasticity
418 deficit can be rescued in the adult male by depleting persistently inflammatory microglia.

420 **Figure 5: PLX reduces Iba+ cells in cervical spinal cord and restores iMF**
421 **(a-l)** Cervical spinal cord sections from PLX-treated GNX and GIH male rats were
422 immunostained for Iba-1 (microglia) **(a-d)**, GFAP (astrocytes) **(e-h)**, and NeuN
423 (neurons) **(i-l)**. Scale bar = 100um. **(m-o)** Cell count and percent-area fluorescence
424 analyses indicated significant (~73%) depletion of Iba+ cells in both GNX ($p<0.0001$)
425 and GIH ($p<0.0001$) offspring. No significant differences were detected in neurons (GNX
426 $p=0.754$, GIH $p=0.895$) or astrocytes (GNX $p=0.424$, GIH $p=0.682$). **(p)** Two-way
427 ANOVA revealed PLX treatment resulted in a significant decrease in expression of the
428 microglia-specific genes *Cd11b* ($n=5$ each; $F_{(1,16)}=45.94$, $p<0.0001$), *Cx3cr1* ($n=5$ each;
429 $F_{(1,16)}=28.12$, $p<0.0001$) and *P2ry12* ($n=5$ each, except $n=4$ GIH PLX; $F_{(1,15)}=25.8$,
430 $p=0.0001$) in both GNX and GIH offspring, confirming evidence that PLX3397
431 significantly depletes microglia in rats. **(q)** Representative compressed phrenic
432 neurograms depicting phrenic inspiratory output before, during, and for 60 minutes
433 following exposure to recurrent reductions in respiratory neural activity (5, ~1 min neural
434 apneas). Dotted white line represents baseline amplitude. **(r)** Average percent change
435 (\pm SEM) in phrenic inspiratory burst amplitude from baseline at 60 minutes following the
436 fifth central apnea. 2-way ANOVA revealed a significant effect of GNX/GIH status ($F_{(1,32)}$
437 = 5.88, $p=0.0211$) and vehicle/PLX treatment ($F_{(1,32)} = 4.794$, $p=0.036$). Tukey's post
438 hoc tests revealed that there was no significant difference in the magnitude of iMF
439 between male GNX rats treated with vehicle or PLX3397 ($n=8,9$ respectively,
440 $p=0.9706$). Similar to previous results, iMF magnitude in vehicle-treated adult male GIH
441 rats ($n=9$) was significantly lower than the response in GNX males ($p=0.0473$).
442 However, PLX-treatment restored the capacity for male GIH ($n=10$) offspring to trigger
443 compensatory increases in phrenic inspiratory output following recurrent central apneas
444 ($p=0.0489$ relative to vehicle-treated GIH; $p=0.9182$ relative to PLX-treated GNX
445 offspring), indicating that microglial depletion rescues the capacity to trigger iMF in male
446 GIH offspring. **(s)** GIH-induced upregulation of *Il1b*, *S100a8*, *Cxcl10*, *Jak1*, and *Stat1*
447 spinal gene expression was also significantly decreased by PLX treatment, suggesting
448 a microglial source of neuroinflammation in the GIH spinal cord [$n=4-5$; two-way ANOVA
449 with Tukey's *post-hoc* test]. * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$

450

451 **Regulation of physiological variables**

452 **Supplementary Table 1** lists average age and body weight, and average Pa_{CO_2} ,
453 Pa_{O_2} , pH, mean arterial pressure (MAP) at baseline and 60 min after treatments. Small,
454 but significant, differences in PO_2 and MAP from baseline to 60 min after the protocol
455 were noted for a few groups, but these values were within normal physiological limits,
456 not associated with iMF magnitude and were consistent with other reports using this
457 anesthetized rat preparation (Dale-Nagle et al., 2011; Streeter and Baker-Herman,
458 2014b; Baertsch and Baker-Herman, 2015).

459

460 **DISCUSSION**

461 We demonstrate that gestational intermittent hypoxia (GIH), a hallmark of
462 maternal SA during pregnancy, reprograms the male offspring neuroimmune system
463 toward enhanced inflammation in CNS regions important in breathing, an effect that
464 lasts into adulthood. Persistent neuroinflammation in male GIH offspring has lasting
465 consequences on the ability to elicit compensatory neuroplasticity in response to a life-
466 threatening event – reductions in respiratory neural activity. Several NF- κ B pathway
467 target genes are upregulated in adult male GIH microglia isolated from spinal regions
468 encompassing phrenic motoneurons, with no changes in brainstem microglia. Depleting
469 inflammatory microglia or directly inhibiting spinal NF- κ B and STAT transcription factor
470 activation rescued the capacity for adult male GIH offspring to exhibit respiratory
471 plasticity. Adult female GIH offspring did not exhibit neuroinflammation or impaired
472 respiratory neuroplasticity, yet exhibited nearly 4000 differentially expressed genes in
473 spinal microglia, with only a handful of differentially expressed brainstem microglial

474 genes. Mechanisms conferring protection to females from detrimental effects of maternal
475 IH are not understood but may involve a protective gene program that mitigates
476 neuroinflammation, and represents an exciting direction for future study. Thus, we
477 demonstrate for the first time a link between maternal IH, sex- and brain region-specific
478 reprogramming of central immune processes, and detrimental effects on respiratory
479 control in adult offspring. Our data indicate that microglia may be a source of cellular
480 memory for *in utero* experiences, releasing neuromodulatory mediators that influence
481 circuits regulating breathing.

482 Converging evidence suggests that many neurological disorders result from a
483 complex interplay between genetics and early life experiences, particularly in the womb
484 (Bilbo et al., 2018). Several prenatal factors have been implicated, such as maternal
485 infection, stress, obesity, malnutrition, and environmental toxins. Although seemingly
486 diverse, these factors share one commonality: maternal immune system activation.
487 Without question, IH associated with SA causes chronic inflammation in humans and
488 animal models (McNicholas, 2009; Dempsey et al., 2010; Fung et al., 2012; Khalyfa et
489 al., 2017), which is responsible for many morbidities associated with SA. The scientific
490 community has begun to appreciate that maternal SA during pregnancy is detrimental to
491 the health of the newborn (Brown et al., 2018; Johns et al., 2020); however, whether
492 these detrimental effects extend into adulthood is unclear. Correlative evidence
493 suggests that maternal SA during pregnancy may have life-long consequences on
494 offspring neural function in humans. SA is most prevalent in women that are obese or of
495 advanced age, and SA during pregnancy increases risk for gestational diabetes,
496 hypertension, fetal growth restriction, premature birth, NICU admission and lower

497 APGAR scores (Carnelio et al., 2017). These risk factors for, or complications of, SA
498 during pregnancy increase susceptibility to the development of neural disorders in
499 offspring (Krakowiak et al., 2012; Carnelio et al., 2017). Despite this striking correlation,
500 systematic investigations of a mechanistic link between maternal SA and aberrant
501 neural outcomes in offspring are lacking. Indeed, before such a link can be rigorously
502 investigated in humans, animal models must necessarily provide the justification due to
503 the expensive and time-consuming nature of epidemiological studies.

504 Given that neuroinflammation undermines plasticity in the hippocampus (Rizzo et
505 al., 2018) and respiratory control system (Hocker et al., 2017), we investigated sex-
506 specific differences in inflammatory gene expression in the brainstem and cervical
507 spinal cord, CNS regions associated with the control of breathing, as a mechanism
508 underlying GIH-induced respiratory control deficits. In male GIH offspring, we found
509 enhanced neuroinflammatory gene expression in spinal cord, but not in brainstem,
510 which extends our previous observations of increased neuroinflammation in GIH
511 neonates (Johnson et al., 2018). A tendency towards the opposite (decreased
512 neuroinflammatory gene expression in brainstem and spinal cord) was observed in GIH
513 females. Mechanisms underlying sex-specific effects of GIH are under investigation, but
514 others report sexual dimorphisms in epigenetic gene alterations following prenatal
515 stressors (Nätt et al., 2017; Lei et al., 2020), including gestational sleep fragmentation
516 (Khalyfa et al., 2015).

517 Epigenetic alterations of the neural immune system resulting from prenatal
518 insults can have long-lasting neurological impacts on offspring (Bergdolt and
519 Dunaevsky, 2019). Having observed spinal neuroinflammation in male GIH offspring,

520 we performed RNA-seq on spinal microglia isolated from male GNX and GIH offspring.
521 Although the mechanistic experiments described here focused on differentially
522 upregulated genes in male GIH offspring spinal microglia related to inflammatory
523 processes, there were also 23 differentially downregulated genes (Table 1). These
524 downregulated genes included *Flt1*, which encodes vascular endothelial growth factor
525 receptor 1 protein, and *Epas1*, which encodes hypoxia inducible factor 2a (HIF-2a)
526 transcription factor. These observations suggest in addition to exaggerated
527 inflammation in male GIH spinal microglia, aberrant function of hypoxia-responsive
528 signaling pathways might also play a role. Additional studies are required to probe
529 functional contributions of downregulated microglial genes in impaired respiratory
530 neuroplasticity in adult male GIH offspring.

531 Although only six genes were upregulated in spinal microglia from adult male
532 GIH offspring, of the four upregulated genes with known function (*Scarna2*, *Klkb1*, *Fcrl2*
533 and *Ikbbε*; **Table 1**), all play roles in inflammation and/or are implicated in neural
534 dysfunction (Chikaev et al., 2005; Khoddami and Cairns, 2013; Hayama et al., 2016; Yin
535 et al., 2020). Recently, NF-κB was found to be upregulated in the nucleus accumbens of
536 mouse offspring whose mothers were injected with poly I:C mid-gestation
537 (Ketharanathan et al., 2021), setting a precedent for dysregulation of offspring NF-κB in
538 models of maternal immune activation. Analyses of upregulated genes from adult male
539 GIH spinal microglia on the ENCODE database indicated that NF-κB and/or STAT
540 transcription factors bind proximally, which guided our subsequent neurophysiological
541 experiments. Local pharmacologic inhibition of NF-κB and STAT transcription factors in
542 the spinal cord rescued expression of compensatory respiratory plasticity in adult male

543 GIH offspring, indicating that region-specific inflammatory signaling plays a role in GIH-
544 induced iMF impairment. Pharmacologic depletion of microglia also rescued iMF, further
545 implicating altered spinal microglial inflammatory function as the underlying mechanism
546 for impaired compensatory respiratory plasticity.

547 An important caveat to consider when using PLX drugs to reduce microglia
548 number and reactivity is that PLX3397 inhibits CSF1R in all cells, not exclusively in
549 microglia (Kumari et al., 2018; Han et al., 2020). Nevertheless, several lines of evidence
550 indicate that CSF1R inhibition does not impact astrocyte (Qu et al., 2017) or neuronal
551 function (Green et al., 2020), consistent with our findings that astrocyte and neuronal
552 cell numbers were unaffected by PLX treatment, and that phrenic iMF was not impaired
553 in PLX-treated adult male GNX offspring (**Fig. 5**). While this latter finding shows that
554 phrenic iMF expression does not require microglia for normal expression of plasticity,
555 inflammatory microglia seem sufficient to abolish phrenic iMF in the context of GIH-
556 induced neuroinflammation.

557 We model SA in pregnancy by delivering IH to pregnant dams during their sleep
558 phase; however, it is acknowledged that SA in humans induces concurrent pathologic
559 conditions besides IH, such as sleep fragmentation, hypercapnia, excessive
560 sympathetic activation, and drastic swings in intrathoracic pressure. Regardless, chronic
561 IH alone replicates many core consequences of SA in humans (Chopra et al., 2016),
562 allowing us to dissociate other concomitant aspects of SA as causal, and simplifying the
563 experimental pathologic insult. Thus, exposing pregnant animals to IH is a logical
564 starting point for investigation into long-lasting effects of SA on offspring, and
565 mechanisms underlying deficits in respiratory control.

566 Although our studies are the first to show that GIH differentially reprograms adult
567 male offspring spinal microglia to create deficits in the neural control of breathing in
568 adulthood, other studies have interrogated long-lasting consequences of maternal IH on
569 adult offspring physiology. For example, late GIH exposure epigenetically reprograms
570 adipocytes towards a pro-inflammatory phenotype, resulting in offspring metabolic
571 dysfunction (Khalyfa et al., 2017; Cortese et al., 2021). Other studies have found that
572 GIH offspring exhibit endothelial dysfunction (Badran et al., 2019), increased blood
573 pressure (Chen et al., 2018; Song et al., 2021), altered gut microbiome (Cortese et al.,
574 2021), and blunted hypoxic ventilatory responses (Gozal et al., 2003). Although we are
575 beginning to recognize that GIH can have life-long effects on adult physiology,
576 comparatively little is known regarding adult offspring neural function. We recently
577 reported that GIH has sexually dimorphic effects on offspring neural function, and
578 permanently alters the male offspring brain in regions underlying social motivation and
579 cognition, leading to a constellation of deficits that may have relevancy to autism
580 spectrum disorder (Vanderplow et al., 2022). Our current study extends those findings
581 to include CNS regions involved in breathing. GIH transforms developing microglia in
582 male offspring to a pro-inflammatory phenotype present in adulthood, which is linked to
583 respiratory neural dysfunction that results in an inability to respond to reductions in
584 respiratory neural activity with compensatory enhancements in phrenic inspiratory
585 output (i.e., iMF). Strikingly, IH-induced enhancement of microglial pro-inflammatory
586 activity is region specific, apparent in the spinal cord but not in the brainstem. These
587 findings indicate that maternal SA may have a previously unrecognized, detrimental
588 impact on male offspring neural function that may increase vulnerability to developing

589 disorders of ventilatory control associated with breathing instability later in adulthood.
590 Given the stark rise in prevalence of SA during pregnancy in recent years, future work
591 examining additional consequences of GIH-induced microglial reprogramming on male
592 offspring neural function are warranted.

593

594 **MATERIALS AND METHODS**

595 All animal experimental procedures were performed according to the NIH guidelines set
596 forth in the Guide for the Care and Use of Laboratory Animals and were approved by
597 the University of Wisconsin-Madison Institutional Animal Care and Use Committee.
598 Sample sizes for each individual experiment is listed in the results section and figure
599 legends.

600

601 **Intermittent hypoxic exposures during pregnancy**

602 Timed pregnant Sprague-Dawley rats (gestational age G9) were obtained from Charles
603 River (RRID:RGD_734476; Wilmington, MA, USA) and housed in AAALAC-accredited
604 facilities with 12 h:12 h light-dark conditions. Pregnant rats were purchased in multiples
605 of 2, and were randomly assigned to GNX or GIH exposure. Food and water were
606 provided ad libitum. Beginning at G10, dams were exposed to intermittent hypoxia (GIH)
607 which consisted of alternating 2-minute hypoxic (45 s down to 10.5% O₂) and normoxic
608 (15 s up to 21% O₂) episodes for 8 h (9:00 am–5:00 pm) daily for 12 days. The apnea-
609 hypopnea index (AHI) of 15 events/h generated by these parameters parallels the
610 kinetics of moderate SA in children and adults (Lim et al., 2015; Brockmann et al.,
611 2016). The control group (GNX) received alternating episodes of room air (normoxia)

612 with the same time and gas flow parameters as GIH dams. Both groups were housed in
613 standard microisolator cages with custom-made acrylic lids to deliver the gases. Rats
614 were removed from the exposure system prior to their expected delivery date (G22), to
615 prevent direct exposure of the pups to IH. Hereafter, offspring of GNX- and GIH-
616 exposed dams are referred to as “GNX” and “GIH” rats, respectively. To control for
617 potential differences in maternal care due to litter size, all litters were reduced to 8 pups
618 (4 males and 4 females per litter if possible) by postnatal day 3. In all experiments, the
619 investigator was blinded to treatment during the study except when populating the
620 plates for qRT-PCR when equal numbers of control samples and sex needed to be
621 included on each plate.

622

623 ***In vivo* electrophysiology preparations**

624 Adult rat offspring (8-16 weeks of age) exposed to GNX or GIH were induced with
625 isoflurane (2.5-5%; balance O₂ and N₂), tracheotomized, mechanically ventilated (2-4
626 mL tidal volume; VentElite Small Animal Ventilator, Harvard Apparatus, Holliston, MA,
627 USA), and bilaterally vagotomized to prevent mechanosensory feedback from
628 ventilation. A tail vein catheter was placed for administration of fluids (1:5 sodium
629 bicarbonate/Lactated Ringers Solution) and I.V. drugs. Anesthesia was gradually
630 converted from isoflurane to urethane (1.4-1.7 g/kg, I.V.), and depth of anesthesia was
631 confirmed by monitoring pressor response. Rats were paralyzed with pancuronium
632 bromide (1.0 mg/kg I.V.). Body temperature was maintained between 36-38°C
633 throughout the duration of the surgery and experimental protocol. Blood pressure was
634 monitored, and blood samples were taken periodically from a femoral artery catheter to

635 monitor blood-gas values using an ABL90 Flex (Radiometer, Brea, CA, USA). The
636 phrenic nerve was cut distally, desheathed and inspiratory activity was measured using
637 a bipolar or suction electrode. Raw signals were recorded and digitized with PowerLab
638 data acquisition system (LabChart 8.0, ADInstruments, Colorado Springs, CO, USA),
639 and compound action potentials were amplified (x10k), band-pass filtered (0.3-10 kHz)
640 and integrated (time constant 50 ms). In a subset of rats, an intrathecal catheter was
641 placed for drug delivery. A C2-C3 laminectomy was performed over the spinal midline
642 and a small hole was cut in the dura. A silicone catheter (2 French; Access
643 Technologies, Skokie, IL, USA) connected to a 30 μ L Hamilton syringe containing
644 TPCA-1 or vehicle was inserted into the intrathecal space and advanced caudally to lie
645 on the dorsal surface of spinal segment C4.

646

647 **Inactivity-induced inspiratory motor facilitation (iMF) protocol**

648 To facilitate rapid induction of brief cessations in respiratory neural activity, rats were
649 slightly hyperventilated and CO₂ was added to the inspired gas to maintain end-tidal
650 CO₂ at ~45 mmHg. One hour following surgery, the CO₂ threshold for spontaneous
651 breathing was determined (apneic threshold). Inspired CO₂ was lowered until phrenic
652 activity ceased (apneic threshold), then raised slowly until phrenic activity resumed
653 (recruitment threshold). Inspired CO₂ was then maintained 2-3 mmHg above recruitment
654 threshold to establish “baseline” respiratory neural activity. Following at least 20 minutes
655 of stable baseline phrenic activity, two arterial blood samples were collected to establish
656 baseline arterial PCO₂, PO₂, and pH values. A series of five intermittent central apneas
657 (~1 min each) were induced by lowering inspired CO₂ below the apneic threshold until

658 phrenic inspiratory output ceased, then inspired CO₂ was rapidly returned to baseline
659 levels, at which point phrenic inspiratory activity resumed. Each central apnea was
660 separated by 5 minutes. Importantly, rats remained mechanically ventilated during
661 central apnea and did not experience hypoxia. Following the five central apneas,
662 phrenic activity was recorded for 60 minutes under baseline conditions. Phrenic burst
663 amplitude at 60 minutes post-apneas was compared to baseline phrenic burst amplitude
664 to determine the magnitude of iMF (measured as percent change from baseline). To
665 ensure blood-gas values were maintained at baseline levels following recurrent central
666 apnea, arterial blood samples were drawn at 5-, 15-, 30- and 60-minute after the
667 protocol. After the 60-minute blood draw, rats were euthanized with a urethane
668 overdose. To be included in the analysis, rats had to meet the following criteria: arterial
669 PO₂ of >150 mmHg, arterial PCO₂ maintained within 1.5 mmHg of baseline, and base
670 excess within +/-3 mEq/L.

671

672 **TPCA-1 treatment**

673 In electrophysiological experimental Series 2, we delivered the Iκ-kinase inhibitor [5-(p-
674 Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1; Sigma-Aldrich CAS 507475-
675 17-4; SigmaAldrich, St. Louis, MO, USA) to examine the role of local inflammation in
676 compensatory phrenic facilitation. TPCA-1 was dissolved in DMSO and diluted with
677 artificial cerebral spinal fluid (in mM: 120 NaCl, 3 KCl, 2 CaCl₂, 2 MgCl₂, 23 NaHCO₃, 10
678 glucose, bubbled with 95% O₂-5% CO₂). Vehicle or TPCA-1 (1.4 µg in 10 µL) was
679 delivered in 2 µL boluses over 2 min via an intrathecal catheter, 30-60 min prior to
680 induced neural inactivity.

681

682 **PLX3397 treatment**

683 In electrophysiological experimental Series 3, we pharmacologically depleted microglia
684 cells in the CNS using PLX3397 (MedKoo Biosciences, Morrisville, NC, USA) to
685 examine the role of microglia in iMF expression. This drug selectively kills microglia by
686 inhibiting the tyrosine kinase of the CSF1 receptor, which is a receptor crucial to
687 microglia survival. Each adult offspring rat received daily dosing of PLX3397 or vehicle
688 for 7 consecutive days (80 mg/kg, P.O.). Drugs were formulated in DMSO, 1% PS80,
689 and 2.5% hydroxycellulose.

690

691 **Litters used in electrophysiological studies**

692 Electrophysiological experiments included 1-2 offspring of each sex from a single litter.
693 The distribution was as follows: Experimental Series 1: GNX male (11 rats from 9
694 litters), GIH male (9 rats from 8 litters), GNX female (10 rats from 7 litters), GIH female
695 (9 rats from 9 litters), time control (13 rats from 9 litters); Experimental Series 2: GNX
696 male vehicle (9 rats from 6 litters), GIH male vehicle (8 rats from 5 litters), GNX male
697 TPCA (6 rats from 4 litters), GIH male TPCA (7 rats from 6 litters); Experimental Series
698 3: GNX male vehicle (8 rats from 7 litters), GIH male vehicle (9 rats from 8 litters), GNX
699 male PLX (9 rats from 8 litters), GIH male PLX (10 rats from 8 litters).

700

701 **Immunohistochemistry (IHC) and imaging**

702 In adult offspring, the expression of astrocytes, microglia, and neurons were quantified
703 using IHC following 7 days of PLX3397 treatment. Male GNX and GIH rats (1 rat from a

704 litter) were transcardially perfused with 4% paraformaldehyde (PFA) in 1X phosphate
705 buffered saline (pH 7.4). Cervical spinal cords were collected and post-fixed in 4% PFA
706 for 24 h before being cryoprotected in 20% sucrose solution (1 day) followed by 30%
707 sucrose solution (3 days). Coronal sections 40 μ m thick were cut using a sliding
708 microtome (SM200R, Leica Biosystems, Buffalo Grove, IL, USA) in the C3-C5 spinal
709 regions. Spinal slices (n=2-4 from each rat) were incubated with antibodies to IBA1
710 (1:1000, anti-rabbit, 019-19741, Wako Chemicals, Richmond, VA, USA), GFAP (1: 250,
711 anti-rabbit, ab5804, EMD MilliporeSigma, Burlington, MA, USA), and NeuN (1: 500, anti-
712 mouse, MAV377, EMD MilliporeSigma, Burlington, MA, USA) to identify the expression
713 of microglia, astrocytes, and neurons, respectively. Secondary antibodies were
714 conjugated to Alexa Fluor fluorescent dyes (Invitrogen, Waltham, MA, USA). Images
715 were obtained with a fluorescence microscope (BZX710 series microscope, Keyence,
716 Itasca, IL, USA). Ventral horn images at 20x magnification were taken bilaterally for
717 each slice. IBA+ and NeuN+ cells were hand counted by two blinded scorers using FIJI
718 cell counter (ImageJ, public domain). GFAP+ cells were quantified by comparing
719 percent area fluorescence via FIJI. The analysis threshold was set at default 30, 255.

720

721 **Quantitative RT-PCR**

722 Brainstem (medulla and caudal pons) and cervical spinal cord tissues (C3-C6) were
723 isolated (n=5-8/treatment; 1 male and 1 female per litter) and sonicated in Tri-Reagent
724 (Sigma, St. Louis, MO, USA) and stored at -80°C. Total RNA was isolated with the
725 addition of Glycoblue reagent (Invitrogen, Carlsbad, CA, USA) in accordance with the
726 manufacturers' protocols. Complementary DNA (cDNA) was synthesized from 1.0 μ g of

727 total RNA using MMLV reverse transcriptase and a cocktail of oligo dT and random
728 primers (Promega, Madison, WI, USA). qPCR was performed using PowerSYBR green
729 PCR master mix (Thermo Fisher Scientific, Warrington, UK) on an Applied Biosystems
730 7500 Fast system (Waltham, MA, USA). The ddCT method was employed to determine
731 relative gene expression with respect to 18s ribosomal RNA in brainstem and cervical
732 spinal cord tissue homogenates. The primer sequences used for qPCR are shown in
733 Supplementary Table 2. Primers were designed to span introns wherever possible
734 (NCBI Primer-BLAST) and were purchased from Integrated DNA Technologies
735 (Coralville, IA, USA).

736

737 **CD11b+ cell isolation and RNA sequencing**

738 Adult offspring (n=5/treatment; 1 male and 1 female per litter) were euthanized and
739 perfused with cold PBS to remove circulating immune cells from the vasculature of the
740 CNS. Whole brainstems were dissected between the pontomedullary junction and the
741 obex. Spinal cervical C2–C6 vertebrae were removed, and dorsal and ventral C3–C6
742 cervical spinal segments were extracted based on identification of the spinal roots.
743 Tissues were dissociated into single cell suspensions using papain enzymatic digestion.
744 CD11b+ cells were immunomagnetically isolated as previously described (Crain and
745 Watters, 2009; Nikodemova and Watters, 2012; Crain et al., 2013; Crain and Watters,
746 2015). Isolated CD11b+ cells will be hereafter referred to as “microglia.”

747 Total RNA was extracted from freshly isolated microglia with TriReagent
748 according to the manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO) as we have
749 done before (Crain and Watters, 2009; Nikodemova and Watters, 2012; Crain et al.,

750 2013; Crain and Watters, 2015). Total RNA was submitted to Novogene for library
751 construction and paired-end (PE-150) sequencing with an Illumina NovaSeq.

752

753 **Maternal care testing**

754 To assess maternal competency of dams exposed to GIH relative to dams exposed to
755 GNX, pup retrieval tests were performed on GIH and GNX litters on postnatal day 3 or
756 4. All pups were removed from the home cage and placed in under a heating lamp for
757 10 min before being returned to the home cage with 2 pups placed in the nest with the
758 other pups scattered throughout the cage. Maternal behaviors were observed for 10
759 min, such as time (latency) to investigate, time to retrieve first pup, time to retrieve all
760 pups, latency to lick, groom, or sniff pups, and time to crouch, burrow, or group pups.
761 Dams that did not retrieve all pups within the 10-min testing period were given a
762 maximal score of 600 s.

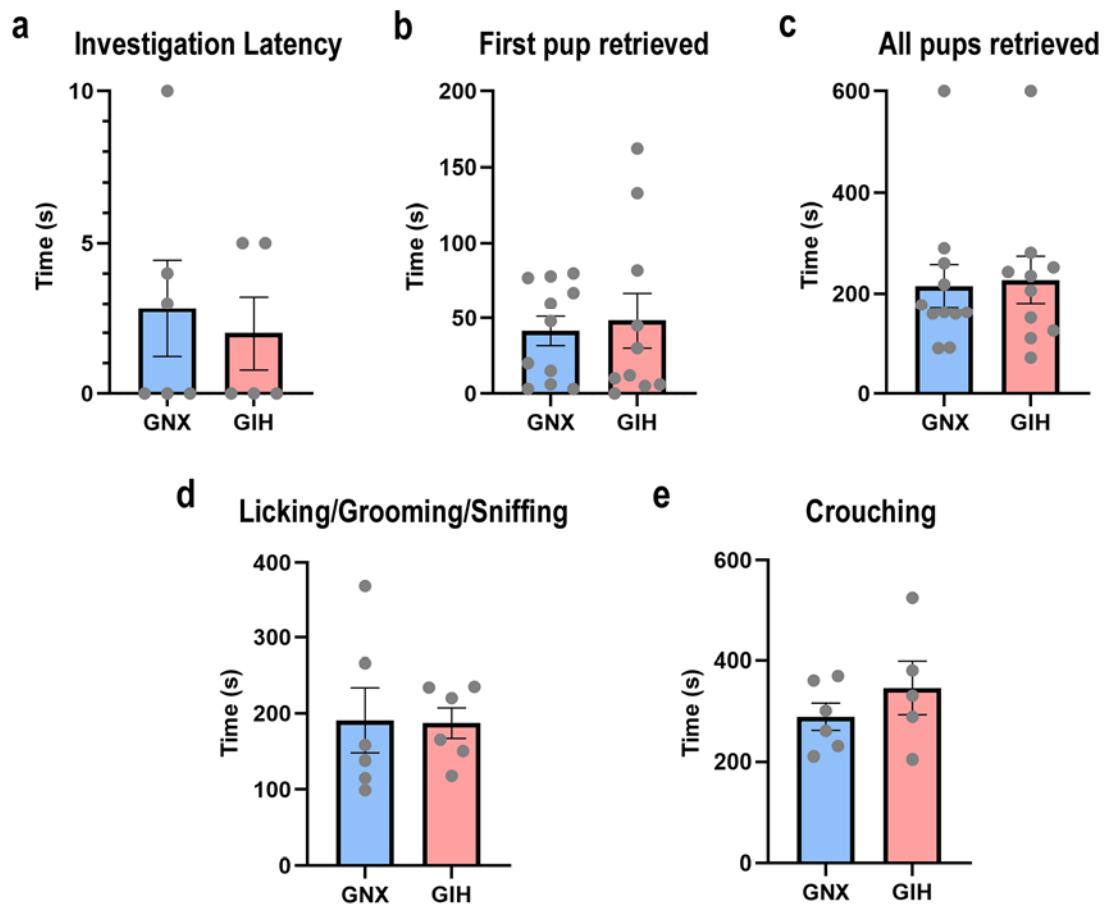
763

764 **Statistical analyses**

765 Power analyses were done for each experiment based on previous results. All individual
766 datapoints shown in graphs are biological replicates. Technical replicates were also
767 included in the PCR analyses (all samples were pipeted in duplicate). Technical
768 replicates were also used for immunohistochemistry analyses in which 3 tissue
769 sections per animals were quantified and averaged to a single number for each animal.

770 For all electrophysiology experiments, phrenic nerve burst amplitude was
771 expressed as a percent change from baseline. Phrenic amplitude was measured just
772 prior to blood samples taken at baseline, 15, 30, and 60 min after induced central apnea

773 during the iMF protocol. In experimental series one (Figure 1), statistical differences
774 between groups were determined using Welch's ANOVA with Dunnett's T3 multiple
775 comparisons *post hoc* test. In electrophysiological experiments 2 and 3 (Figures 4 and
776 5), statistical differences between groups were determined using 2-way ANOVA with
777 Tukey's *post hoc* test. Groups were considered significantly different when *P* values
778 were <0.05. Outliers were determined using Grubbs' Test with $\alpha=0.05$. One outlier was
779 identified by the Grubb's test in the GIH vehicle group in electrophysiological
780 experimental series 2 (Figure 4). For RNA sequencing, index of the reference Rnor6.0
781 genome was built using Bowtie version 2.2.3. Reads were aligned using TopHat version
782 2.0.12. Gene counts were made using HTSeq version 0.6.1. Count files were imported
783 to R and filtered such that only genes with a CPM 0.1 expressed in three samples were
784 retained. Counts were normalized using the trimmed mean of M-values method and
785 analyzed for differential expression using EdgeR (Robinson et al., 2010). Differentially
786 expressed genes were identified as statistically significant if the false discovery rate
787 (FDR) was 5%. Results were uploaded to the National Center for Biotechnology
788 Information Gene Expression Omnibus with reference number **GSE142478**
789 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142478>). Transcriptomic Differences in Microglia 211 at ASPET Journals
790 on July 1, 2021 jpet.aspetjournals.org Downloaded from nih.gov/gds). For all qRT-PCR
791 analysis, experimental groups were compared back to their respective control, GNX,
792 using an unpaired t-test with Welch's correction or a two-way ANOVA with Tukey's post-
793 hoc test (indicated in the figure legend). No samples for PCR were excluded unless they
794 were identified as outliers by the Grubb's test, or as outliers by principal component


795 analyses for the RNA-seq dataset. One outlier was identified in each of the male
796 and female GIH brainstem groups (Fig. 3a and Suppl. Fig. 2a).

797

798 **Data availability**

799 All raw data are available on Dryad (<https://doi.org/10.5061/dryad.8sf7m0csq>)
800 or the National Center for Biotechnology Information Gene Expression Omnibus with
801 reference number GSE142478 (<https://www.ncbi.nlm>).

802 **SUPPLEMENTARY FIGURES AND TABLES:**

803

804 **Supplementary Figure 1: Maternal care is uniform among GNX and GIH dams.**

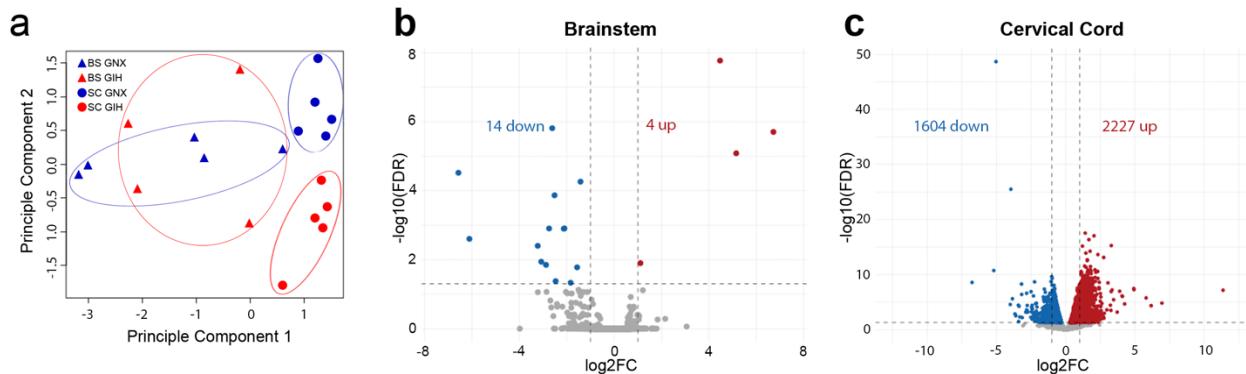
805 Maternal care was assessed in pregnant dams exposed to intermittent hypoxia or
806 normoxia during gestation. No significant differences were observed among several
807 measures used to assess maternal behavior after pup removal and replacement,
808 including the time to investigate pups (a), time to retrieve the first pup (b), time to
809 retrieve all pups into the nest (c), time to lick/groom/sniff pups (d), or time to
810 crouch/nurse pups (e). All $p>0.05$. Data are displayed as mean \pm SEM.

811

812

Experimental Series 1										
	GNX males		GIH males		GNX females		GIH females		Time controls	
	baseline	60 min	baseline	60 min	baseline	60 min	baseline	60 min	baseline	60 min
PaCO₂ (mmHg)	47.2 ± 1.0	47.3 ± 0.8	46.2 ± 1.1	46.0 ± 1.0	51.7 ± 1.0	51.9 ± 0.9	49.8 ± 1.8	49.9 ± 1.9	51.2 ± 1.5	50.8 ± 1.5
PaO₂ (mmHg)	243 ± 12	236 ± 12	257 ± 12	245 ± 14	249 ± 15	201 ± 14*	231 ± 18	207 ± 13*	245 ± 10	225 ± 11*
pH	7.35±0.01	7.34±0.01	7.35±0.01	7.35±0.01	7.30±0.01	7.29±0.01	7.33±0.01	7.33±0.02	7.31±0.01	7.31±0.01
MAP (mmHg)	133 ± 12	115 ± 9	145 ± 12	134 ± 16	145 ± 12	134 ± 16	101 ± 12	91 ± 11	150 ± 8	137 ± 9
Age (weeks)	9.1 ± 0.5		10.6 ± 0.7		11.9 ± 0.7		11.3 ± 0.4		11.0 ± 0.4	
Weight (g)	408 ± 19		477 ± 24		300 ± 13		284 ± 11		363 ± 30	

Experimental Series 2								
	GNX male vehicle		GIH male vehicle		GNX male TPCA		GIH male TPCA	
	baseline	60 min	baseline	60 min	baseline	60 min	baseline	60 min
PaCO₂ (mmHg)	45.8 ± 1.3	45.3 ± 1.3	45.7 ± 1.1	45.2 ± 1.1	43.2 ± 0.7	43.2 ± 0.9	47.2 ± 1.5	47.6 ± 1.5
PaO₂ (mmHg)	252 ± 13	233 ± 13	263 ± 11	250 ± 11	261 ± 11	246 ± 17	285 ± 9	275 ± 13
pH	7.35±0.01	7.35±0.01	7.35±0.01	7.36±0.02	7.37±0.01	7.38±0.01	7.33±0.01	7.34±0.01
MAP (mmHg)	132 ± 11	116 ± 10	130 ± 8	118 ± 7	120 ± 8	107 ± 8	148 ± 6	138 ± 7
Age (weeks)	9.9 ± 0.5		11.4 ± 0.6		8.7 ± 0.3		11.7 ± 1.2	
Weight (g)	420 ± 30		507 ± 31		382 ± 20		462 ± 30	


Experimental Series 3								
	GNX male vehicle		GIH male vehicle		GNX male PLX		GIH male PLX	
	baseline	60 min	baseline	60 min	baseline	60 min	baseline	60 min
PaCO₂ (mmHg)	45.3 ± 1.2	45.2 ± 1.1	45.9 ± 1.4	46.3 ± 1.5	46.4 ± 1.4	46.3 ± 1.3	45.4 ± 1.1	45.7 ± 1.1
PaO₂ (mmHg)	258 ± 8	243 ± 15	233 ± 16	236 ± 16	272 ± 12	235 ± 13*	263 ± 10	255 ± 8
pH	7.35±0.01	7.36±0.02	7.35±0.01	7.35±0.01	7.34±0.01	7.35±0.01	7.34±0.01	7.35±0.02
MAP (mmHg)	134 ± 8	124 ± 10	131 ± 9	125 ± 7	139 ± 9	128 ± 9	122 ± 8	118 ± 8
Age (weeks)	10.7 ± 0.9		10.7 ± 0.9		9.5 ± 0.6		9.1 ± 0.2	
Weight (g)	468 ± 33		444 ± 31		409 ± 17		404 ± 17	

813
814

815 **Supplementary Table 1: Regulation of physiological variables**

816 Values are expressed as mean ± SEM of arterial pCO₂, pO₂, pH, and mean arterial pressure
817 (MAP) at baseline and 60 minutes following reduced respiratory neural activity. Statistics: 2-way
818 repeated measures ANOVA, Holm-Sidak post-hoc comparisons. * Indicates p<0.05 relative to
819 baseline within the treatment.

820

821
822

823 **Supplementary Figure 2: GIH differentially alters the microglial transcriptome in**
824 **female spinal microglia.**

825 (a) Principal component analysis of RNA-seq data from female brainstem and cervical
826 spinal microglia ($n = 5$ /treatment) shows transcriptomic differences between brainstem
827 and cervical spinal microglia, and with GIH treatment in spinal microglia. (b) Volcano
828 plot indicating differential gene expression in microglia isolated from the female GIH
829 offspring brainstem. In female brainstem microglia, few genes (18) were differentially
830 altered by GIH; red dots represent significantly upregulated genes ($FDR < 0.05$) and
831 blue dots represent significantly downregulated genes. (c) Volcano plot indicating
832 differential gene expression in female cervical spinal microglia from GIH offspring. 3831
833 genes were differentially expressed; red dots represent significantly upregulated genes
834 ($FDR < 0.05$) and blue dots represent significantly downregulated genes. FC, fold
835 change.

836

Gene target	Forward Primer (5' → 3')	Reverse Primer (5' → 3')
18s	CGG GTG CTC TTA GCT GAG TGT CCC	CTC GGG CCT GCT TTG AAC AC
Ptgs2	CTC AGC CAT GCA GCA AAT CC	GGG TGG GCT TCA GCA GTA AT
Cxcl10	CCG CAT GTT GAG ATC ATT GCC	CTA GCC GCA CAC TGG GTA AA
Ikbke	AGC CTG GCC AAG ATG TTT GA	TTC CTG CAT GTG GAA GAC CAG
Il1β	CAG CTT TCG ACA GTG AGG AGA	TTG TCG AGA TGC TGC TGT GA
Irak1	CCT CCT CCA TCA AGC CAA GC	ACC ACC CTC TCC AAT CCT GA
Hmgb1	GGC GGC TGT TTT GTT GAC AT	ACC CAA AAT GGG AAG CA
Jak1	CAA GAA GAC GGA GGT GAA GC	GCA GAG AGG AGA GAT ACT GCA TTC
Lrrk2	AGG AAC CCA AGA ACA AAA AGA GAT	GTG GCG AGG ATG TCT GAT GT
S100a8	TGC CCT CAG TTT GTG CAG AAT AA	GTC TTT ATG AGC TGC CAC GC
Stat1	ACA AAG TCA TGG CTG CTG AGA	AAG TCT AGA AGG GTG GAC TTC AG
Tlr4	ATC TGA GCT TCA ACC CCC TG	TGT CTC AAT TTC ACA CCT GGA T

837 **Supplementary Table 2: Primer sequences used for quantitative PCR**

838

REFERENCES:

839 Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, Burd I, Kapur R, Jacobsson B,
840 Wang C, Mysorekar I, Rajagopal L, Adams Waldorf KM (2019) The fetal origins of mental illness. *Am J*
841 *Obstet Gynecol* 221:549-562.

842 Almatroodi SA, McDonald CF, Collins AL, Darby IA, Pouniotis DS (2015) Quantitative proteomics of
843 bronchoalveolar lavage fluid in lung adenocarcinoma. *Cancer Genomics Proteomics* 12:39-48.

844 Amgalan A, Andescavage N, Limperopoulos C (2021) Prenatal origins of neuropsychiatric diseases. *Acta*
845 *Paediatr* 110:1741-1749.

846 Anderson ME, Buchwald ZS, Ko J, Aurora R, Sanford T (2014) Patients with pediatric obstructive sleep apnea
847 show altered T-cell populations with a dominant TH17 profile. *Otolaryngol Head Neck Surg* 150:880-
848 886.

849 Badran M, Yassin BA, Lin DTS, Kober MS, Ayas N, Laher I (2019) Gestational intermittent hypoxia induces
850 endothelial dysfunction, reduces perivascular adiponectin and causes epigenetic changes in adult male
851 offspring. *J Physiol* 597:5349-5364.

852 Baertsch NA, Baker-Herman TL (2015) Intermittent reductions in respiratory neural activity elicit spinal TNF-
853 alpha-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation. *Am J Physiol*
854 *Regul Integr Comp Physiol* 308:R700-707.

855 Bergdolt L, Dunaevsky A (2019) Brain changes in a maternal immune activation model of neurodevelopmental
856 brain disorders. *Prog Neurobiol* 175:1-19.

857 Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK (2018) Beyond infection - Maternal immune activation
858 by environmental factors, microglial development, and relevance for autism spectrum disorders. *Exp*
859 *Neurol* 299:241-251.

860 Braegelmann KM, Streeter KA, Fields DP, Baker TL (2017) Plasticity in respiratory motor neurons in response
861 to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control? *Exp Neurol* 287:225-
862 234.

863 Brockmann PE, Damiani F, Gozal D (2016) Sleep-Disordered Breathing in Adolescents and Younger Adults: A
864 Representative Population-Based Survey in Chile. *Chest* 149:981-990.

865 Brown NT, Turner JM, Kumar S (2018) The intrapartum and perinatal risks of sleep-disordered breathing
866 in pregnancy: a systematic review and metaanalysis. *Am J Obstet Gynecol* 219:147-161.e141.

867 Cornelio S, Morton A, McIntyre HD (2017) Sleep disordered breathing in pregnancy: the maternal and fetal
868 implications. *J Obstet Gynaecol* 37:170-178.

869 Chen L, Zadi ZH, Zhang J, Scharf SM, Pae EK (2018) Intermittent hypoxia in utero damages postnatal growth
870 and cardiovascular function in rats. *J Appl Physiol* (1985) 124:821-830.

871 Chikaev NA, Bykova EA, Najakshin AM, Mechetina LV, Volkova OY, Peklo MM, Shevelev AY, Vlasik TN,
872 Roesch A, Vogt T, Taranin AV (2005) Cloning and characterization of the human FCRL2 gene.
873 *Genomics* 85:264-272.

874 Chopra S, Polotsky VY, Jun JC (2016) Sleep Apnea Research in Animals. Past, Present, and Future. *Am J*
875 *Respir Cell Mol Biol* 54:299-305.

876 Cortese R, Khalyfa A, Bao R, Gozal D (2021) Gestational sleep apnea perturbations induce metabolic
877 disorders by divergent epigenomic regulation. *Epigenomics* 13:751-765.

878 Crain JM, Watters JJ (2009) Cytokine and BDNF expression vary with age and sex in mouse microglia. *Journal*
879 *of Neurochemistry* 108:138.

880 Crain JM, Watters JJ (2015) Microglial P2 Purinergic Receptor and Immunomodulatory Gene Transcripts Vary
881 By Region, Sex, and Age in the Healthy Mouse CNS. *Transcr Open Access* 3.

882 Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the
883 postnatal and adult central nervous system in male and female mice. *Journal of Neuroscience*
884 *Research* 91:1143-1151.

885 Dale-Nagle EA, Satriotomo I, Mitchell GS (2011) Spinal vascular endothelial growth factor induces phrenic
886 motor facilitation via extracellular signal-regulated kinase and Akt signaling. *J Neurosci* 31:7682-7690.

887 Dalman C, Thomas HV, David AS, Gentz J, Lewis G, Allebeck P (2001) Signs of asphyxia at birth and risk of
888 schizophrenia. Population-based case-control study. *Br J Psychiatry* 179:403-408.

889 De I, Nikodemova M, Steffen MD, Sokn E, Maklakova VI, Watters JJ, Collier LS (2014) CSF1 overexpression
890 has pleiotropic effects on microglia in vivo. *Glia* 62:1955-1967.

891 Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP (2010) Pathophysiology of Sleep Apnea. *Physiol Rev*
892 90:47-112.

893 Ding XX, Wu YL, Xu SJ, Zhang SF, Jia XM, Zhu RP, Hao JH, Tao FB (2014) A systematic review and
894 quantitative assessment of sleep-disordered breathing during pregnancy and perinatal outcomes. *Sleep*
895 Breath

896 Fu H, Zhao Y, Hu D, Wang S, Yu T, Zhang L (2020) Depletion of microglia exacerbates injury and impairs
897 function recovery after spinal cord injury in mice. *Cell Death Dis* 11:528.

898 Fuller DD, Mitchell GS (2017) Respiratory neuroplasticity - Overview, significance and future directions. *Exp*
899 *Neurol* 287:144-152.

900 Fung AM, Wilson DL, Barnes M, Walker SP (2012) Obstructive sleep apnea and pregnancy: the effect on
901 perinatal outcomes. *J Perinatol* 32:399-406.

902 Genest SE, Balon N, Laforest S, Drolet G, Kinkead R (2007) Neonatal maternal separation and enhancement
903 of the hypoxic ventilatory response in rat: the role of GABAergic modulation within the paraventricular
904 nucleus of the hypothalamus. *J Physiol* 583:299-314.

905 Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ (2003) Respiratory effects of gestational
906 intermittent hypoxia in the developing rat. *Am J Respir Crit Care Med* 167:1540-1547.

907 Green KN, Crapser JD, Hohsfield LA (2020) To Kill a Microglia: A Case for CSF1R Inhibitors. *Trends Immunol*
908 41:771-784.

909 Han J, Fan Y, Zhou K, Zhu K, Blomgren K, Lund H, Zhang XM, Harris RA (2020) Underestimated Peripheral
910 Effects Following Pharmacological and Conditional Genetic Microglial Depletion. *Int J Mol Sci* 21.

911 Hayama T, Kamio N, Okabe T, Muromachi K, Matsushima K (2016) Kallikrein Promotes Inflammation in
912 Human Dental Pulp Cells Via Protease-Activated Receptor-1. *J Cell Biochem* 117:1522-1528.

913 Hocker AD, Stokes JA, Powell FL, Huxtable AG (2017) The impact of inflammation on respiratory plasticity.
914 *Exp Neurol* 287:243-253.

915 Jain SK, Kahlon G, Morehead L, Lieblong B, Stapleton T, Hoeldtke R, Bass PF, Levine SN (2012) The effect of
916 sleep apnea and insomnia on blood levels of leptin, insulin resistance, IP-10, and hydrogen sulfide in
917 type 2 diabetic patients. *Metab Syndr Relat Disord* 10:331-336.

918 Johns EC, Denison FC, Reynolds RM (2020) Sleep disordered breathing in pregnancy: A review of the
919 pathophysiology of adverse pregnancy outcomes. *Acta Physiol (Oxf)* 229:e13458.

920 Johnson SM, Randhawa KS, Epstein JJ, Gustafson E, Hocker AD, Huxtable AG, Baker TL, Watters JJ (2018)
921 Gestational intermittent hypoxia increases susceptibility to neuroinflammation and alters respiratory
922 motor control in neonatal rats. *Respir Physiol Neurobiol* 256:128-142.

923 Ketharanathan T, Pereira A, Reets U, Walker D, Sundram S (2021) Brain changes in NF- κ B1 and epidermal
924 growth factor system markers at peri-pubescent in the spiny mouse following maternal immune
925 activation. *Psychiatry Res* 295:113564.

926 Khalyfa A, Carreras A, Almendros I, Hakim F, Gozal D (2015) Sex dimorphism in late gestational sleep
927 fragmentation and metabolic dysfunction in offspring mice. *Sleep* 38:545-557.

928 Khalyfa A, Cortese R, Qiao Z, Ye H, Bao R, Andrade J, Gozal D (2017) Late gestational intermittent hypoxia
929 induces metabolic and epigenetic changes in male adult offspring mice. *J Physiol* 595:2551-2568.

930 Khoddami V, Cairns BR (2013) Identification of direct targets and modified bases of RNA cytosine
931 methyltransferases. *Nat Biotechnol* 31:458-464.

932 Krakowiak P, Walker CK, Bremer AA, Baker AS, Ozonoff S, Hansen RL, Hertz-Pannier I (2012) Maternal
933 metabolic conditions and risk for autism and other neurodevelopmental disorders. *Pediatrics*
934 129:e1121-1128.

935 Kumari A, Silakari O, Singh RK (2018) Recent advances in colony stimulating factor-1 receptor/c-FMS as an
936 emerging target for various therapeutic implications. *Biomed Pharmacother* 103:662-679.

937 Lei L, Wu X, Gu H, Ji M, Yang J (2020) Differences in DNA Methylation Reprogramming Underlie the Sexual
938 Dimorphism of Behavioral Disorder Caused by Prenatal Stress in Rats. *Front Neurosci* 14:573107.

939 Lim DC, Brady DC, Po P, Chuang LP, Marcondes L, Kim EY, Keenan BT, Guo X, Maislin G, Galante RJ, Pack
940 AI (2015) Simulating obstructive sleep apnea patients' oxygenation characteristics into a mouse model
941 of cyclical intermittent hypoxia. *J Appl Physiol* (1985) 118:544-557.

942 Lockhart EM, Ben Abdallah A, Tuuli MG, Leighton BL (2015) Obstructive Sleep Apnea in Pregnancy:
943 Assessment of Current Screening Tools. *Obstet Gynecol* 126:93-102.

944 McNicholas WT (2009) Obstructive sleep apnea and inflammation. *Prog Cardiovasc Dis* 51:392-399.

945 Modabbernia A, Mollon J, Boffetta P, Reichenberg A (2016) Impaired Gas Exchange at Birth and Risk of
946 Intellectual Disability and Autism: A Meta-analysis. *J Autism Dev Disord* 46:1847-1859.

947 Moore CL, Power KL (1986) Prenatal stress affects mother-infant interaction in Norway rats. *Dev Psychobiol*
948 19:235-245.

949 Nikodemova M, Watters JJ (2012) Efficient isolation of live microglia with preserved phenotypes from adult
950 mouse brain. *J Neuroinflammation* 9:147.

951 Nätt D, Barchiesi R, Murad J, Feng J, Nestler EJ, Champagne FA, Thorsell A (2017) Perinatal Malnutrition
952 Leads to Sexually Dimorphic Behavioral Responses with Associated Epigenetic Changes in the Mouse
953 Brain. *Sci Rep* 7:11082.

954 Oh SJ, Ahn H, Jung KH, Han SJ, Nam KR, Kang KJ, Park JA, Lee KC, Lee YJ, Choi JY (2020) Evaluation of
955 the Neuroprotective Effect of Microglial Depletion by CSF-1R Inhibition in a Parkinson's Animal Model.
956 *Mol Imaging Biol* 22:1031-1042.

957 Pien GW, Pack AI, Jackson N, Maislin G, Macones GA, Schwab RJ (2014) Risk factors for sleep-disordered
958 breathing in pregnancy. *Thorax* 69:371-377.

959 Qu W, Johnson A, Kim JH, Lukowicz A, Svedberg D, Cvetanovic M (2017) Inhibition of colony-stimulating
960 factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice. *J Neuroinflammation*
961 14:107.

962 Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F,
963 Mandolesi G, Centonze D, Gentile A (2018) Tumor Necrosis Factor and Interleukin-1. *Neural Plast*
964 2018:8430123.

965 Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression
966 analysis of digital gene expression data. *Bioinformatics* 26:139-140.

967 Song R, Mishra JS, Dangudubiyam SV, Antony KM, Baker TL, Watters JJ, Kumar S (2021) Gestational
968 Intermittent Hypoxia Induces Sex-Specific Impairment in Endothelial Mechanisms and Sex Steroid
969 Hormone Levels in Male Rat Offspring. *Reprod Sci*.

970 Stokes JC, Bornstein RL, James K, Park KY, Spencer KA, Vo K, Snell JC, Johnson BM, Morgan PG,
971 Sedensky MM, Baertsch NA, Johnson SC (2022) Leukocytes mediate disease pathogenesis in the
972 Ndufs4(KO) mouse model of Leigh syndrome. *JCI Insight* 7.

973 Streeter KA, Baker-Herman TL (2014a) Decreased spinal synaptic inputs to phrenic motor neurons elicit
974 localized inactivity-induced phrenic motor facilitation. *Exp Neurol* 256:46-56.

975 Streeter KA, Baker-Herman TL (2014b) Spinal NMDA receptor activation constrains inactivity-induced phrenic
976 motor facilitation in Charles River Sprague-Dawley rats. *J Appl Physiol* (1985) 117:682-693.

977 Vanderplow AM, Kermath BA, Bernhardt CR, Gums KT, Seabloom EN, Radcliff AB, Ewald AC, Jones MV,
978 Baker TL, Watters JJ, Cahill ME (2022) A feature of maternal sleep apnea during gestation causes
979 autism-relevant neuronal and behavioral phenotypes in offspring. *PLoS Biol* 20:e3001502.

980 Wyatt-Johnson SK, Sommer AL, Shim KY, Brewster AL (2021) Suppression of Microgliosis With the Colony-
981 Stimulating Factor 1 Receptor Inhibitor PLX3397 Does Not Attenuate Memory Defects During
982 Epileptogenesis in the Rat. *Front Neurol* 12:651096.

983 Yegla B, Boles J, Kumar A, Foster TC (2021) Partial microglial depletion is associated with impaired
984 hippocampal synaptic and cognitive function in young and aged rats. *Glia* 69:1494-1514.

985 Yin M, Wang X, Lu J (2020) Advances in IKBKE as a potential target for cancer therapy. *Cancer Med* 9:247-
986 258.

989 **ACKNOWLEDGEMENTS:**

990 This work was supported by grants from the National Institutes of Health R01HL105511 (TLB),
991 R01NS085226 (JJW) and R01HL142752 (TLB and JJW). MGG was supported by the National
992 Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1747503. Any
993 opinions, findings, and conclusions or recommendations expressed in this material are those of the
994 author(s) and do not necessarily reflect the views of the National Science Foundation. Support was
995 also provided by the University of Wisconsin-Madison Office of the Vice Chancellor for Research and
996 Graduate Education and Wisconsin Alumni Research Foundation via a UW2020 award (TLB, JJW,
997 MEC, ASR, SMJ).

998
999 **AUTHOR CONTRIBUTIONS:**

000 CRM, ACE, MGG, ALM, ABR, JNO, BAK conducted experiments and analyzed data. SMJ, ASR,
001 MEC, JJW, TLB planned experiments and analyzed data. SMJ, JJW and TLB contributed to funding
002 acquisition. ASR developed custom bioinformatic tools to analyze RNA-sequencing results. All
003 authors contributed to data interpretation. CRM, ACE, MGG, ALM, ABR, SMJ, JJW, TLB contributed
004 to manuscript preparation. All authors approve the final version of the manuscript.

005
006 **COMPETING INTERESTS STATEMENT:**

007 The authors declare no competing interests.