

1 **Hypothalamic supramammillary neurons that project to the medial**
2 **septum control wakefulness**

3 Mengru Liang^{1, #}, Tingliang Jian^{2,3, #}, Wenjun Jin², Qianwei Chen², Xinyu Yang⁴, Rui Wang²,
4 Jingyu Xiao⁴, Zhiqi Yang², Xiang Liao⁴, Xiaowei Chen^{2,5*}, Liecheng Wang^{1*}, Han Qin^{4,*†}

5

6 ¹Department of Anatomy, School of Basic Medical Sciences, Anhui Medical University, Hefei
7 230032, China

8 ²Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury,
9 Third Military Medical University, Chongqing 400038, China

10 ³Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan
11 Province, Sichuan Agricultural University, P. R. China

12 ⁴Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400044,
13 China

14 ⁵Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing
15 400064, China

16 [#]These authors contributed equally

17 *Correspondence: xiaowei_chen@tmmu.edu.cn (X.C.), wangliecheng@ahmu.edu.cn (L.W.),
18 qinhan@cqu.edu.cn (H.Q.)

19 [†]Lead Contact

20

21 **Abstract**

22 The hypothalamic supramammillary nucleus (SuM) plays a key role in controlling wakefulness,
23 but the downstream target regions participating in this control process remain unknown.

24 Here, using circuit-specific fiber photometry and single-neuron electrophysiology together
25 with electroencephalogram, electromyogram and behavioral recordings, we find
26 approximately half of SuM neurons that project to the medial septum (MS) are wake-active.

27 Optogenetic stimulation of axonal terminals of SuM-MS projection induces a rapid and
28 reliable transition to wakefulness from NREM or REM sleep, and chemogenetic activation of
29 SuM^{MS} projecting neurons significantly increases wakefulness time and prolongs latency to
30 sleep. Consistently, chemogenetically inhibiting these neurons significantly reduces
31 wakefulness time and latency to sleep. Therefore, these results identify the MS as a

32 functional downstream target of SuM and provide evidence for a causal role for this
33 hypothalamic-septal projection in wakefulness control.

34

35 **Introduction**

36 The supramammillary nucleus (SuM) is a hypothalamic region lying above the mammillary
37 body, and provides abundant projections to numerous brain regions like the hippocampus,
38 septum, frontal cortex, and cingulate cortex (Pan & McNaughton, 2004; Vertes, 1992).
39 Recent advances in high-performance recording and manipulation techniques have enabled
40 extensive studies of SuM functions, subsequently revealing its involvement in numerous
41 processes such as episodic memory (Li et al., 2020; Qin et al., 2022), novelty detection (Chen
42 et al., 2020), theta rhythm (Billwiller et al., 2020; Kocsis & Vertes, 1994), locomotion (Farrell
43 et al., 2021), hippocampal neurogenesis (Li et al., 2022), and wakefulness (Pedersen et al.,
44 2017). In particular, one previous study demonstrated that SuM glutamatergic neurons serve
45 as a key node for arousal, and chemogenetic activation of SuM glutamatergic neurons, but
46 not GABAergic neurons, produces sustained arousal (Pedersen et al., 2017). However, which
47 downstream brain regions are involved in the SuM control of arousal remains unknown.

48 The medial septum (MS), which primarily contains cholinergic, GABAergic and
49 glutamatergic neurons (Hajszan et al., 2004; Kiss et al., 1990), has been suggested to mediate
50 different brain functions like locomotion (Fuhrmann et al., 2015), learning and memory
51 (Boyce et al., 2016; Lecourtier et al., 2011), hippocampal theta generation (Buzsáki, 2002),
52 and wakefulness (An et al., 2021; Osborne, 1994). Among these functions, MS glutamatergic
53 neurons were shown to control wakefulness by activating lateral hypothalamic glutamatergic
54 neurons (An et al., 2021). Furthermore, a recent study has demonstrated that SuM
55 glutamatergic neurons project to MS glutamatergic neurons and are responsible for
56 modulating the motivation for environmental interaction (Kesner et al., 2021). Based on this
57 established anatomical connection and combined findings, we hypothesized that a SuM-MS
58 projection may control wakefulness.

59 To test this hypothesis, we performed circuit-specific optical Ca^{2+} and optrode
60 recordings in SuM-MS projection across sleep-wakefulness cycles. We identified a set of
61 wake-active neurons in SuM that project to MS. Optogenetic or chemogenetic activation of

62 SuM-MS projection induced behavioral and EEG arousal, and chemogenetic inhibition of this
63 projection decreased wakefulness. Overall, our results reveal a critical role of the
64 hypothalamic-septal projection for wakefulness control.

65

66 **Results**

67 **SuM^{MS} projection terminals are strongly active during both wakefulness and REM sleep**

68 SuM neurons have been reported to project to MS region (Vertes, 1988, 1992). We labeled
69 the SuM-MS projection by local injection of an adeno-associated viral (AAV) vector to deliver
70 the enhanced green fluorescent protein (eGFP) gene into SuM (Figure1-figure supplement
71 1A). Four weeks after injection, robust eGFP expression was observed in cell bodies within
72 SuM (Figure1-figure supplement 1B), and the axonal terminals in MS were also labeled with
73 eGFP (Figure1-figure supplement 1C). To further investigate the SuM to MS connection,
74 retrograde AAV vector expressing eGFP was injected into MS (Figure1-figure supplement 1D).
75 We verified that the expression area of eGFP was limited in MS (Figure1-figure supplement
76 1E) and the corresponding eGFP-labeled cell bodies were observed in SuM (f Figure1-figure
77 supplement 1F).

78 Although both SuM and MS neurons have been shown to function as essential
79 components in wakefulness (An et al., 2021; Pedersen et al., 2017), the activity of SuM
80 neurons projecting to MS (SuM^{MS} projecting neurons) has not been recorded during
81 sleep-wakefulness cycles. First, a circuit-specific fiber photometry system (Gunaydin et al.,
82 2014; Qin et al., 2018; Qin et al., 2019) was used in conjunction with electroencephalogram
83 (EEG) and electromyogram (EMG) recordings to observe Ca²⁺ activities at axonal terminals of
84 SuM-MS projection in freely moving mice. For this purpose, AAV-syn-axon-jGCaMP7b
85 (Broussard et al., 2018; Dana et al., 2019) was locally injected into SuM to express the Ca²⁺
86 indicator, jGCaMP7b, in axons of SuM neurons (Figure 1A). One month following virus
87 injection, an optical fiber was implanted with the tip above MS to record activity at axonal
88 terminals of SuM neurons and EEG-EMG electrodes were attached to the mouse cortical
89 surface and neck muscles respectively, to define sleep-wakefulness states (Figure 1A). Virus
90 expression and fiber tip location were verified by post-hoc histology after recording finished
91 (Figure 1B). Notably, axonal terminals of SuM^{MS} projecting neurons had higher levels of Ca²⁺

92 activity during both wakefulness and REM sleep than that during NREM sleep (Figure 1C, also
93 see statistics in Table Appendix 1 for all figures). In addition, these activities increased
94 strongly during NREM-wakefulness and NREM-REM transitions, but sharply decreased during
95 wakefulness-NREM transitions (Figure 1E-H). Taken together, these results suggested that
96 SuM projects to MS and the Ca^{2+} activity in this projection is highly active during wakefulness
97 and REM sleep.

98 **Identification of wake-active SuM^{MS} projecting neurons**

99 To characterize the firing rates of SuM^{MS} projecting neurons at the single-cell level, we
100 conducted optrode recordings across sleep-wakefulness cycles (Liu et al., 2020; Stark et al.,
101 2012). Channelrhodopsin-2 (ChR2) was expressed specifically in SuM^{MS} projecting neurons by
102 injecting a Cre-dependent retrograde AAV (retroAAV-Cre) into MS and, concurrently, an AAV
103 vector carrying DIO-ChR2-mCherry into SuM. We then implanted an optrode in SuM to
104 identify SuM^{MS} projecting neurons and record single-neuron activities (Figure 2A; see
105 optrode locations in Figure 2-figure supplement 1). A series of blue light pulses (450 nm, 2 Hz,
106 10 mW, 10 ms duration) were delivered to stimulate ChR2-expressing neurons. SuM neurons
107 were then identified as MS projecting neurons based on light-induced spike which responses
108 at short latency, low jitter, high success rate, and high correlation with spontaneous spike
109 waveform (latency 3.6 ± 0.3 ms, jitter 0.8 ± 0.1 ms, success rate $95\% \pm 2\%$, correlation
110 coefficient 0.92 ± 0.02 , $n = 23$ neurons, Figure 2B-E).

111 We found that two groups of neurons showed distinct firing features across
112 sleep-wakefulness cycles. Neurons in one group significantly increased firing rates following
113 the transition from NREM or REM sleep to wakefulness, and significantly decreased their
114 firing rates following the switch from wakefulness to NREM sleep (wake-active neuron, see
115 example in Figure 2F). Neurons in the other group significantly increased firing rates
116 following the transition from NREM sleep to REM sleep and significantly decreased their
117 firing rates following the switch from REM sleep to wakefulness (REM-active neuron, see
118 example in Figure 2G). We summarized the firing rates of all SuM^{MS} projecting neurons in
119 wakefulness, NREM sleep, and REM sleep states. Consistent with the results of Ca^{2+} activity
120 at axonal terminals, the firing rates of SuM^{MS} projecting neurons were significantly higher
121 during wakefulness and REM sleep than that during NREM sleep (Figure 2H; wakefulness,

122 12.4 ± 2.1 Hz; REM, 10.6 ± 2.6 Hz; NREM, 6.6 ± 1.7 Hz; Friedman's ANOVA and Wilcoxon
123 signed-rank tests, $n = 23$ neurons from 8 mice, wakefulness versus NREM, $P = 0.001$, REM
124 versus NREM, $P = 0.0002$, wakefulness versus REM, $P = 0.24$).

125 Analysis of firing modulation by SuM^{MS} projecting neurons during these three states
126 followed by calculation of firing rates in wake-active neurons during state transitions (Figure
127 2I) revealed that these wake-active neurons had higher firing rates during
128 NREM-wakefulness or REM-wakefulness transitions, but lower firing rates during
129 wakefulness-NREM transitions (Figure 2J). These results established that wake-active
130 neurons were indeed present in SuM-MS projection, likely contributing to control of
131 wakefulness.

132 **Stimulating SuM-MS projection promotes wakefulness**

133 To determine whether the SuM-MS projection indeed play a causal and key role in the
134 control of wakefulness, optogenetic activation was applied in MS to activate ChR2-expressing
135 axonal terminals of SuM neurons (Figure 3A). To this end, we injected AAV-ChR2-mCherry
136 into SuM to express ChR2 in axonal terminals of SuM-MS projection (see virus expression in
137 Figure 3B and C) and an optical fiber was subsequently implanted into MS to deliver blue
138 light. EEG-EMG electrodes were attached to monitor activity during sleep-wakefulness cycles,
139 and axonal terminals of SuM-MS projection were optogenetically activated for 20 s (473 nm,
140 15 mW, 10 ms duration) after the onset of stable NREM or REM sleep. The activation induced
141 transition from NREM sleep to wakefulness in a frequency-dependent manner (example in
142 Figure 3D; statistics in Figure 3E and F). The success rate of transition from NREM sleep to
143 wakefulness after 20-Hz optogenetic activation was 100%, with a latency to wakefulness of
144 2.0 ± 0.3 s (SuM-DG ChR2 control: 65.8 ± 11.8 s, SuM-MS mCherry control: 65.1 ± 6.0 s).
145 Transition to wakefulness was also induced upon 20-Hz optogenetic activation of this
146 projection during REM sleep (example in Figure 3G; statistics in Figure 3H and I), with an 89%
147 $\pm 8\%$ success rate and a latency to wakefulness of 16.4 ± 6.7 s (SuM-DG ChR2 control: $64.7 \pm$
148 3.7 s, SuM-MS mCherry control: 59.2 ± 7.5 s).

149 To verify the above results, SuM^{MS} projecting neurons were selectively chemogenetically
150 activated by specific labeling with an engineered G_i-coupled hM3Dq receptor (Armbruster et
151 al., 2007). We injected retroAAV-Cre into MS and AAV-DIO-hM3Dq-mCherry into SuM (Figure

152 4A) to label these SuM^{MS} projecting neurons. And robust expression of hM3Dq-mCherry in
153 SuM neurons was confirmed by post-hoc histological analysis (Figure 4B). Immunostaining
154 for c-Fos protein (a marker of active neurons) (Adamsky et al., 2018; Zhou et al., 2018)
155 showed that SuM^{MS} projecting neurons were activated after application of the synthetic
156 ligand clozapine-N-oxide (CNO, 1 mg/Kg). In hM3Dq-positive neurons, c-Fos expression was
157 significantly higher in the CNO application group than in saline-treated control animals
158 (Figure 4B and C). At behavioral level, intraperitoneal injection with CNO at the start of the
159 light period resulted in significantly greater wakefulness (Figure 4D-F; RMs 2-way ANOVA test,
160 $P = 0.0008$, $F = 17.9$, $n = 8$ mice) and latency to first sleep was significantly longer in the CNO
161 group (7.1 ± 0.5 h vs 0.7 ± 0.1 h, Paired t test, $P < 0.001$, $n = 8$ mice) compared with that in
162 the saline control (Figure 4G). These experiments thus demonstrated that optogenetic and
163 chemogenetic activation of SuM^{MS} projecting neurons could promote wakefulness and
164 maintain at this state.

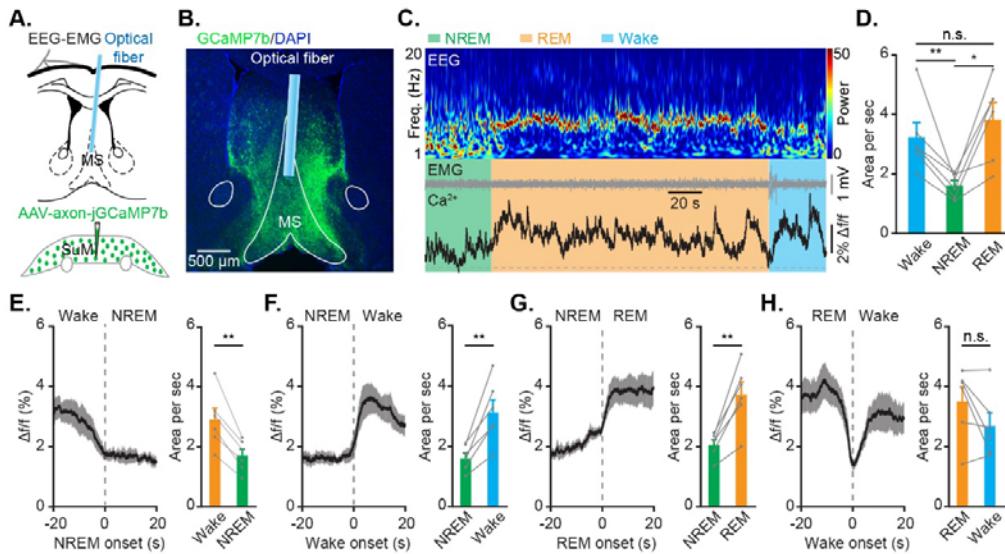
165 **Chemogenetic inhibition of SuM^{MS} projecting neurons reduces wakefulness**

166 To further examine how chemogenetic inhibition of SuM^{MS} projecting neurons affects control
167 of wakefulness, expression of an engineered G_i-coupled hM4Di receptor in SuM^{MS} projecting
168 neurons was induced by injecting retroAAV-Cre into MS and AAV-DIO-hM4Di-mCherry into
169 SuM (Figure 5A). Immunostaining detection of c-Fos verified that CNO injection led to the
170 inhibition of SuM^{MS} projecting neurons in hM4Di-expressing mice, indicated by lower c-Fos
171 signal in the CNO group than in saline control (Figure 5B-C). Examination of behavioral states
172 (Figure 5D-E) indicated that mice in the CNO group had shorter latency to first sleep than
173 that in saline control (14.5 ± 1.8 vs 28.8 ± 3.3 min, Paired t test, $P = 0.002$, $n = 10$ mice) and
174 wakefulness was significantly reduced during the first 2 h in the CNO-treated mice (Figure 5D
175 and F). These results thus indicated that acute inhibition of SuM^{MS} projecting neurons
176 reduces wakefulness and increases sleep.

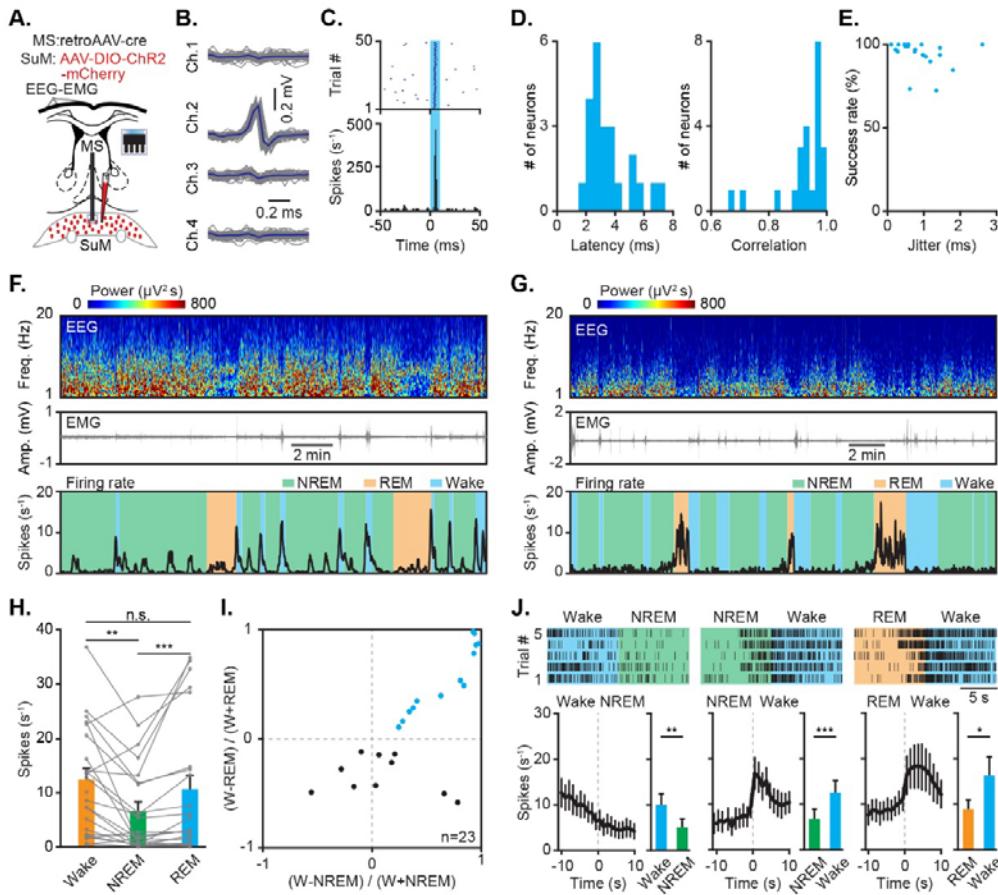
177

178 **Discussion**

179 Control of wakefulness requires multiple brain regions that span across the entire neural
180 networks (Brown et al., 2012; Liu & Dan, 2019; Saper & Fuller, 2017). And identification of
181 wake-active neurons is a necessary step in resolving the mechanism(s) underlying the

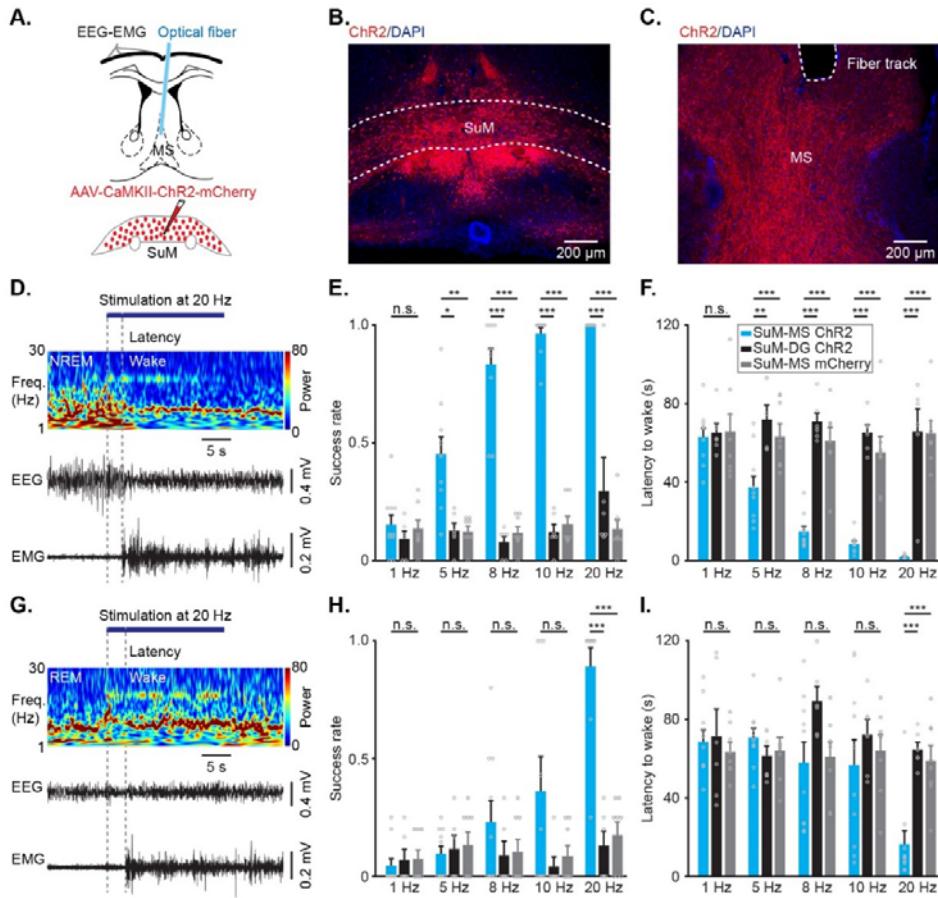

182 regulation of wakefulness. For example, monoaminergic neurons in the ascending activating
183 system (Gu et al., 2022; Kayama & Koyama, 2003; Liu & Dan, 2019; Scammell et al., 2017)
184 and orexin neurons in lateral hypothalamus (Lee et al., 2005; Mileykovskiy et al., 2005) have
185 been identified as wake-active neurons that are essential for wakefulness control. Here,
186 using optical fiber and optrode recordings, we found a group of wake-active MS projecting
187 neurons in SuM (Figures 1 and 2). Optogenetic stimulation of axonal terminals from these
188 SuM^{MS} projecting neurons was sufficient to induce a rapid and reliable transition to
189 wakefulness from sleep (Figure 3). Retrograde projection-specific labeling combined with
190 chemogenetic manipulation revealed that the SuM^{MS} neurons play an essential role in
191 maintaining wakefulness (Figures 4 and 5).

192 Previous work has shown that MS glutamatergic neurons are all wake-active and
193 involved in wakefulness control (An et al., 2021), and SuM neurons can activate hippocampal
194 neurons during REM sleep and locomotion (Farrell et al., 2021; Li et al., 2022; Renouard et al.,
195 2015). In addition, our previous study revealed a REM-active pattern in all SuM-hippocampus
196 projecting neurons and that these neurons are critical for episodic memory consolidation
197 (Qin et al., 2022). However, for SuM^{MS} projecting neurons, the firing patterns appear more
198 complicated in different behavioral states. SuM neurons exhibit high activity during
199 exploration and approach behaviors, but low activity during sucrose consumption (Kesner et
200 al., 2021). Our results here show that approximately half (13/23) of the SuM^{MS} projecting
201 neurons are wake-active, while about 39% (9/23) neurons are REM-active. It is possible that
202 these REM-active SuM^{MS} projecting neurons might participate in certain REM sleep-related
203 functions, such as memory consolidation (Boyce et al., 2016; Kumar et al., 2020; Qin et al.,
204 2022) or cortical plasticity (Peever & Fuller, 2017; Sterpenich et al., 2014).


205 SuM mainly contains Vgat, Vglut2, Tac1 and Nos1 neurons (Farrell et al., 2021; Kesner et
206 al., 2021; Pan & McNaughton, 2004; Pedersen et al., 2017), among which Tac1 neurons
207 project to the septum, hippocampus and other regions, functioning in the control of
208 locomotion (Farrell et al., 2021). By contrast, SuM Vglut2 neurons promote arousal, while
209 Nos1/Vglut2 neurons together contribute to theta rhythm in the hippocampus during REM
210 sleep (Pedersen et al., 2017). In particular, SuM^{MS} projecting neurons are well-established to
211 be primarily glutamatergic (Kesner et al., 2021), and SuM Vglut2 neurons can

212 monosynaptically innervate MS Vglut2 neurons by releasing glutamate (Kesner et al., 2021).
213 Thus, wake-active SuM^{MS} projecting neurons identified here are likely to be glutamatergic
214 and innervate MS Vglut2 neurons, which are known to control wakefulness by activating
215 lateral hypothalamus glutamatergic neurons (An et al., 2021; Wang et al., 2021).

216 **Figures:**


217
218 **Figure 1.** Strong activation of SuM-MS projection terminals during wakefulness and REM sleep. (A)
219 Experimental design for virus injection into SuM, fiber implantation in MS, and EEG-EMG
220 recording. (B) Post-hoc histological images showing the expression of jGCaMP7b at axonal
221 terminals of SuM neurons and optical fiber location in MS. (C) Ca^{2+} activities in axonal terminals
222 of SuM-MS projection across sleep-wakefulness cycles. Heatmap of EEG power spectrum (μV^2).
223 Freq., frequency. (D) Summary of the area under the curve per second during wakefulness,
224 NREM sleep, and REM sleep. $n = 6$ mice, RM 1-way ANOVA with LSD post-hoc comparison, $*p <$
225 0.05, $**p < 0.01$. (E-H) Ca^{2+} activities during brain state transitions: wakefulness-NREM (E),
226 NREM-wakefulness (F), NREM-REM (G), and REM-wakefulness (H). $n = 6$ mice, paired t test, $**p <$
227 0.01.
228

229

230 **Figure 2.** Optrode recording of wake-active SuM^{MS} projecting neurons. (A) Experimental design
 231 for retrograde labeling of SuM^{MS} projecting neurons, optrode recording in SuM , and EEG-EMG
 232 recording. (B) Waveforms of average light-invoked (blue) and individual spontaneous (gray) spikes
 233 from a representative SuM^{MS} projecting neuron. (C) Stimulus time histogram of neuronal spikes
 234 in (B). (D) Distributions of latencies before the first light-induced spikes (left), and correlation
 235 coefficients between light-induced spikes and spontaneous spikes (right) for all recorded SuM^{MS}
 236 projecting neurons. (E) Success rate versus temporal jitter of the first light-induced spikes for all
 237 recorded SuM^{MS} projecting neurons. (F) Firing rates of a representative wake-active neuron
 238 across sleep-wakefulness cycles. (G) Firing rates of a representative REM-active neuron across
 239 sleep-wakefulness cycles. (H) Summary of firing rates from 23 recorded SuM^{MS} projecting
 240 neurons (from 8 mice) in different states. Friedman's ANOVA test and Wilcoxon signed-rank tests,
 241 $**p < 0.01$, $***p < 0.001$. (I) Firing rate modulation of SuM^{MS} projecting neurons, $n = 23$ neurons
 242 from 8 mice. (J) Firing rate of wake-active SuM^{MS} projecting neurons during state transitions:
 243 wakefulness-NREM, left; NREM-wakefulness, middle; REM-wakefulness, right. Top: example of a

244 wake-active SuM^{MS} projecting neuron during five trials of different state transitions. Bottom left:
245 average firing rates during state transitions. Bottom right: summary of firing rates of 10 s before
246 and after state transitions, paired *t* test, **p* < 0.05, ***p* < 0.01, ****p* < 0.001, *n* = 13 neurons.
247

248

249 **Figure 3.** Optogenetic stimulation at axonal terminals of SuM neurons in MS induces wakefulness.

250 (A) Experimental design for virus injection into SuM, fiber implantation in MS, and EEG-EMG recording.

251 (B-C) Representative images showing mCherry-labelled somas in SuM (B), and mCherry-labelled

252 axonal terminals of SuM neurons and the track of fiber in MS (C); Scale bar = 200 μ m. (D)

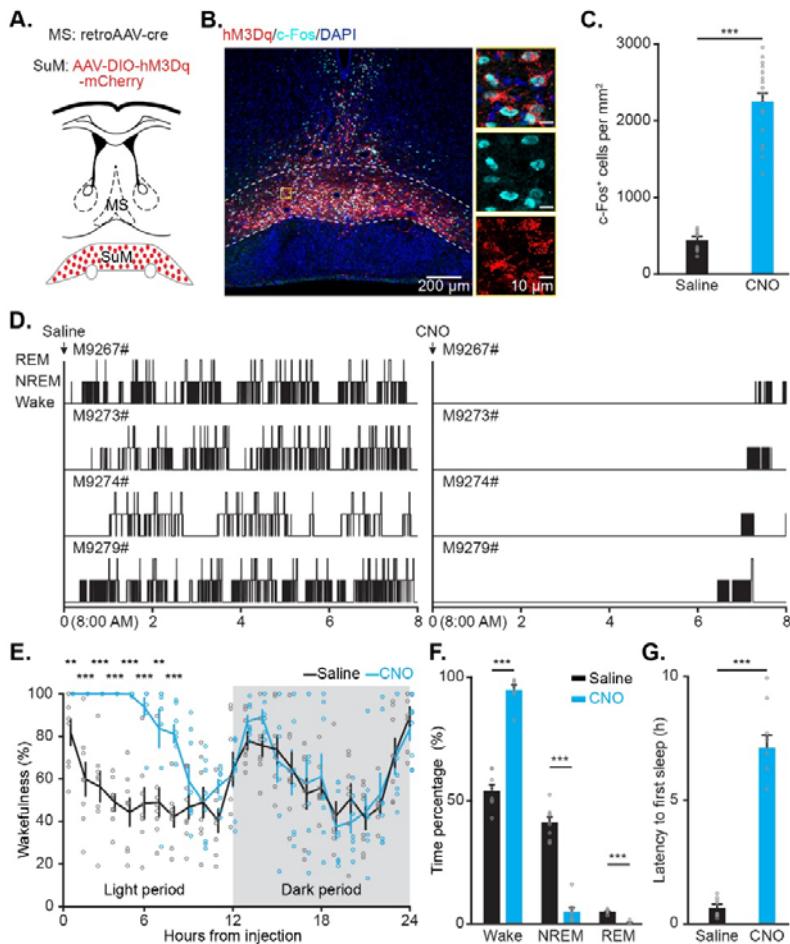
253 Representative EEG power spectrum (μ V²) and EEG-EMG trace data around 20-Hz stimulation during

254 NREM sleep. Freq., frequency. (E) Summary of the success rate for inducing wakefulness from NREM

255 sleep in different groups; SuM-MS ChR2, n = 10, SuM-DG ChR2, n = 6, SuM-MS mCherry, n = 8; RM

256 2-way ANOVA with Sidak post-hoc comparison test, *p < 0.05, **p < 0.01, ***p < 0.001. (F) Summary

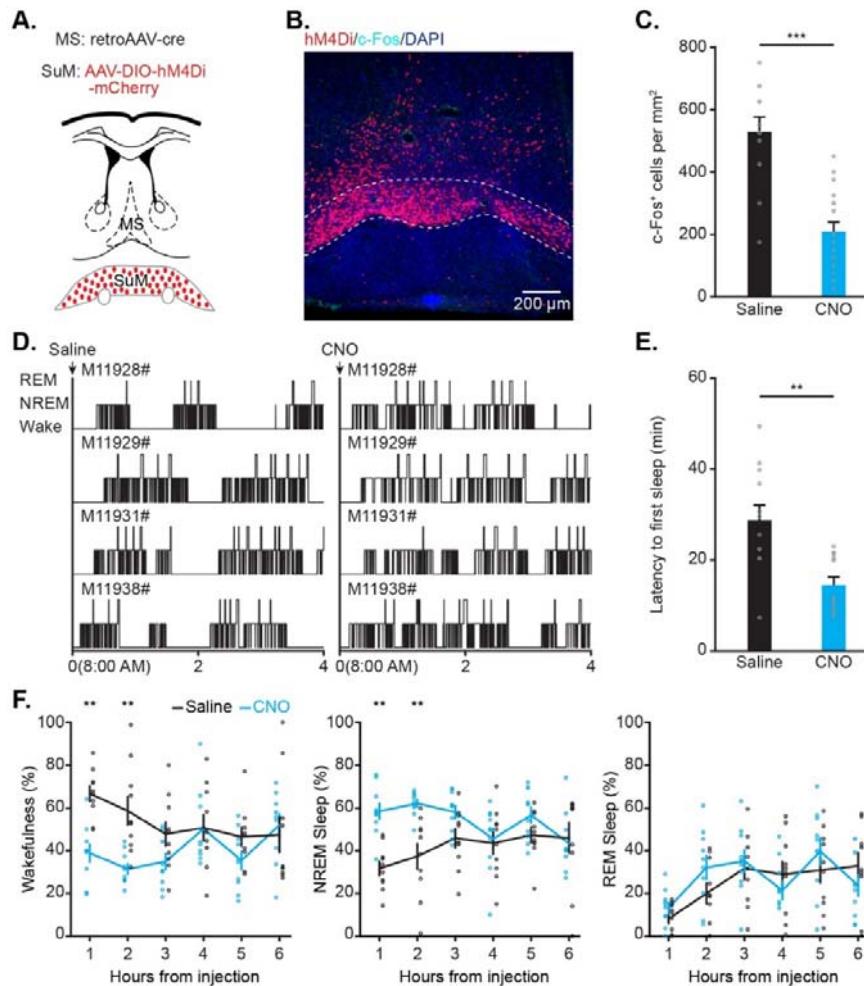
257 of the latency to wakefulness from NREM sleep; RM 2-way ANOVA with Sidak post-hoc comparison


258 test, **p < 0.01, ***p < 0.001. (G) Representative EEG power spectrum (μ V²) and EEG-EMG trace data

259 around 20-Hz stimulation during REM sleep. (H) Summary of the success rate for inducing wakefulness

260 from REM sleep; SuM-MS ChR2, n = 10, SuM-DG ChR2, n = 6, SuM-MS mCherry, n = 8; RM 2-way

261 ANOVA with Sidak post-hoc comparison test, ***p < 0.001. (I) Summary of the latency to wakefulness


262 from REM sleep; RM 2-way ANOVA with Sidak post-hoc comparison test, ***p < 0.001.

263

264 **Figure 4.** Chemogenetic activation of SuM^{MS} projecting neurons increases wakefulness. (A)
265 Schematic for virus injection of retroAAV-Cre into MS and AAV-DIO-hM3Dq-mCherry into SuM. (B)
266 Post-hoc histological image of hM3Dq expression in SuM and c-Fos expression after
267 intraperitoneal injection of CNO; yellow rectangle indicates magnified area. (C) Summary of
268 c-Fos⁺ neurons in saline- and CNO-treated mice. Saline: $n = 9$ brain sections from 3 mice, CNO: $n =$
269 18 brain sections from 6 mice; Wilcoxon rank-sum test, *** $p < 0.001$. (D) Hypnograms of
270 hM3Dq-mCherry mice in the 8 h following saline (left) or CNO (right) injection. (E) Hourly
271 percentage of time in wakefulness across 24-hour recording period after saline or CNO injection
272 in hM3Dq-mCherry mice, $n = 8$ mice, RMs 2-way ANOVA with Sidak post-hoc comparison test. (F)
273 Percentage of time in each state during the first 8 h after saline or CNO injection, $n = 8$ mice;
274 Wilcoxon rank-sum test, *** $p < 0.001$. (G) Summary of the latency to first sleep after saline or
275 CNO injection, $n = 8$ mice; paired *t* test, *** $p < 0.001$.

276

277

278 **Figure 5.** Chemogenetic inhibition of SuM^{MS} projecting neurons reduces wakefulness. **(A)**
279 Schematic for injection of retroAAV-cre into MS and AAV-DIO-hM4Di-mCherry into SuM. **(B)**
280 Post-hoc histological image of hM4Di expression in SuM and c-Fos expression after
281 intraperitoneal injection of CNO. **(C)** Summary of c-Fos⁺ neurons in saline- and CNO-treated mice.
282 Saline: $n = 12$ brain sections from 3 mice, CNO: $n = 18$ brain sections from 5 mice; unpaired t test,
283 *** $p < 0.001$. **(D)** Hypnograms of hM4Di-mCherry mice in the 4 h following saline (left) or CNO
284 (right) injection. **(E)** Summary of the latency to first sleep after saline or CNO injection, $n = 10$
285 mice; paired t test, ** $p < 0.01$. **(F)** Hourly percentage of time in wakefulness (left), NREM sleep
286 (middle), and REM sleep (right) during the 6 h following saline or CNO injection in
287 hM4Di-mCherry mice; $n = 10$ mice; RMs 2-way ANOVA with Sidak post-hoc comparison test, ** p
288 < 0.01.

289

290 **Materials and methods**

291 **Animals**

292 12-20-week-old C57BL/6J mice (male) were used in the recording and manipulation
293 experiments. Mice were housed in groups under a constant temperature (21-24°C) and
294 humidity (50%-60%), while those implanted with optical fibers or optrodes were maintained
295 in individual cages. All mice were housed under a 12/12-hour light/dark cycle (with lights on
296 at 7:00 am), and had free access to food and water. All experimental procedures were
297 conducted according to the protocols and guidelines of the Third Military Medical University
298 Animal Care and Use Committee.

299 **Virus**

300 AAV2/8-EF1 α -eGFP (titer: 1.49×10^{13} viral particles/mL) and retroAAV2/2 Plus-EF1 α -eGFP
301 (titer: 1.92×10^{13} viral particles/mL) were used for tracing experiments.
302 AAV2/9-Syn-axon-jGCaMP7b (titer: 2.17×10^{13} viral particles/mL) was used for Ca^{2+} recording.
303 AAV2/9-EF1 α -DIO-hChR2-mCherry (titer: 3.67×10^{13} viral particles/mL) and retroAAV2/2
304 Plus-Syn-Cre (titer: 1.92×10^{13} viral particles/mL) were used for optrode recording.
305 AAV2/9-CaMKII-hChR2-mCherry (titer: 1.72×10^{13} viral particles/mL),
306 AAV2/9-CaMKII-mCherry (titer: 1.72×10^{13} viral particles/mL), retroAAV2/2 Plus-Syn-Cre
307 (titer: 1.92×10^{13} viral particles/mL), AAV2/9-DIO-hM3Dq-mCherry (titer: 1.00×10^{12} viral
308 particles/mL), AAV2/9-DIO-hM4Di-mCherry (titer: 1.00×10^{12} viral particles/mL), and
309 AAV2/9-DIO-mCherry (titer: 1.00×10^{12} viral particles/mL) were used for optogenetic and
310 chemogenetic manipulations. All of the AAV constructs mentioned above were purchased
311 from Taitool Bioscience Co., Ltd. (Shanghai, China) or Obio Biotechnology Co., Ltd. (Shanghai,
312 China).

313 **Optrode construction for *in vivo* recording**

314 An optrode consisted of an optical fiber (200 μm diameter, NA 0.37) and four custom-made
315 tetrodes. A tetrode was grouped by four insulated tungsten wires (25 μm diameter, California
316 Fine Wire). The four tetrodes were arranged into a line with a spacing of $\sim 200 \mu\text{m}$ and fixed
317 by a fused silica capillary tube, and then mounted onto a micro-drive for vertical movement.
318 The optical fiber was fixed to tetrodes with the tips being $\sim 500 \mu\text{m}$ shorter than the tetrode
319 tips. The light from a laser diode (450 nm) was collimated to the optical fiber at the opposite

320 end with a maximal light intensity measured by an optical power meter (PM100D, Thorlabs).

321 Optical adhesive was used to connect the laser diode and optical fiber.

322 **Surgical procedures**

323 For all surgeries, mice were anesthetized with 3% isoflurane in oxygen for 3-5 min and then
324 placed into a stereotaxic frame with an isoflurane concentration maintained at 1%-2%. A
325 heating pad was put under the mice to maintain a temperature of ~37 °C throughout the
326 surgery process. After surgery, the mice were placed back in warm cages and allowed to fully
327 recover. Moreover, they received one dose of dexamethasone sodium phosphate (1mg/ml,
328 0.1ml/10g/d) and ceftriaxone sodium (50mg/ml, 0.1ml/10g/d) per day by intraperitoneal
329 injection for 3 consecutive days to reduce inflammation (Li et al., 2018; Zhao et al., 2020).

330 For virus injection, 8-12-week-old mice were used. A glass pipette (tip diameter: 10-20
331 μm) was inserted through a small craniotomy (0.5 \times 0.5 mm) to deliver the virus to specific
332 brain areas. To express eGFP in the SuM-MS projection, ~50 nL of AAV-eGFP was injected
333 into SuM (AP: -2.8 mm, ML: 1.0 mm, 5° angle towards the midline, DV: 5.0 mm) or ~200 nL of
334 retro AAV2/2-eGFP was injected into MS (AP: 1.0 mm, ML: 0.5 mm, 5° angle towards the
335 midline, DV: 3.8 mm). To express ChR2 or mCherry in the axons of SuM-MS projection, ~200
336 nL of AAV-CaMKII-hChR2-mCherry or AAV-CaMKII-mCherry was injected into SuM. To express
337 ChR2, hM3Dq, hM4Di, or mCherry specifically in SuM^{MS} projecting neurons, ~200 nL of
338 retroAAV2/2-Cre was injected into MS concurrent with ~200 nL of AAV-DIO-ChR2-mCherry,
339 AAV-DIO-hM3Dq-mCherry, AAV-DIO-hM4Di-mCherry or AAV-DIO-mCherry was injected into
340 SuM. The viruses were allowed sufficient expression for about one month before subsequent
341 experiments.

342 For fiber implantation, mice injected with AAV-axon-jGCaMP7b,
343 AAV-CaMKII-ChR2-mCherry, or AAV-CaMKII-mCherry were used. To record Ca^{2+} activity, a
344 self-made fiber probe (Qin et al., 2019) was prepared with an optical fiber (200 μm diameter,
345 NA 0.53, MFP_200/230/900-0.53, Doric lenses) glued into a mental cannula (ID:0.51 mm, OD:
346 0.82 mm) after the end face was cut flat. To deliver blue light for optogenetic excitation,
347 optical fiber ferrules (200 μm diameter, NA 0.37, Hangzhou Newdoon Technology Co., Ltd)
348 were used. The prepared fiber probe was inserted through a small cranial window above MS
349 (AP: 1.0 mm, ML: 0.5 mm, 5° angle towards the midline) to a depth of 3.5 mm. Blue

350 light-curing dental cement (595989WW, Tetric EvoFlow) was applied to fix the probe to the
351 skull. Further reinforcement was achieved with a common dental cement mixture in super
352 glue.

353 For optrode implantation, mice expressing ChR2 in SuM^{MS} projecting neurons were used.
354 Similarly, the previously described optrode was inserted after a craniotomy above SuM was
355 made. The implantation depth was 4.7 mm from the dura. After a full recovery (the body
356 weight started to increase), the optrode was gradually advanced to the target depth of ~5.0
357 mm by micro-drive.

358 For EEG-EMG electrodes implantation, three EEG electrodes made by stainless steel
359 screws were inserted into the craniotomy holes, with two above the frontal lobe (AP: 1.3
360 mm, ML: ± 1.2 mm) and the third one above the parietal lobe (AP: - 3.2 mm, ML: 3.0 mm).
361 Two fine-wire EMG electrodes were inserted into the neck musculature for EMG recording.

362 Before all recording and manipulation experiments, mice were connected to optical and
363 electrophysiological recording cables in the recording cages to habituate for 3 consecutive
364 days.

365 **Fiber recording**

366 A previously described fiber photometry system was used for Ca²⁺ recording (Qin et al., 2018;
367 Qin et al., 2022). The recording was performed in jGCaMP7b-expressing mice with a fiber
368 probe implanted in MS. Ca²⁺ activity (2 KHz), EEG-EMG signals (200 Hz), and behavioral
369 videos (25 Hz) were simultaneously recorded across sleep-wakefulness cycles. Offline event
370 makers were used to synchronize these three forms of signals.

371 **Optrode recording**

372 Excitation light pulses (450 nm wavelength, 10 ms duration, ~10 mW intensity, 0.5 s interval)
373 were applied in optrode-implanting mice to identify SuM^{MS} projecting neurons. Units evoked
374 by light stimulation with short spike latency (< 8 ms for all the units in our data) and high
375 response reliabilities (> 73% for all the units in our data) were identified as ChR2-positive
376 neurons. Then electrophysiological recordings (sampled at 20 KHz), EEG-EMG recording, and
377 behavioral video recordings were simultaneously conducted across sleep-wakefulness cycles
378 in the light phase. After all recordings were finished, an electrical lesion (current with 30 µA
379 intensity and 12 s duration) was made to verify the recording sites.

380 **Optogenetic stimulation**

381 473 nm blue laser light (MBL-III-473, Changchun New Industries) was delivered through an
382 optical fiber ferrule under the control of a self-written program on the LabVIEW platform
383 (LabVIEW 2014, National Instrument). The intensity of the light was measured with an
384 optical power meter (PM100D, Thorlabs) and calibrated to ~15 mW at the fiber tip.
385 Stimulation pulses with 10 ms in duration at 1/5/8/10/20 Hz were delivered randomly during
386 NREM or REM sleep. The EEG and EMG signals were manually monitored by experimenters
387 in real time, and stimulation was applied after 20 s from the onset of stable NREM or REM
388 sleep in the light phase.

389 **Chemogenetic manipulation**

390 Chemogenetic manipulations were applied to hM3Dq or hM4Di-expressing mice after
391 EEG-EMG electrodes implantation. After recovery, CNO (1 mg/kg, dissolved in saline, 0.3 mL)
392 or an equal volume of saline was intraperitoneally injected. EEG-EMG signals and behavioral
393 videos were recorded 2 h before drug applications and lasted for 24 hours.

394 **Sleep structure analysis**

395 All EEG-EMG signals were first band-filtered (EEG: 0.5-30 Hz, EMG: 10 - 70 Hz). Then signals
396 were divided into non-overlapping epochs of 4 s for analysis. The NREM sleep, REM sleep, or
397 wakefulness state was automatically defined according to the amplitude of EMG and δ/θ
398 power of the EEG spectrum by sleep analysis software (SleepSign for Animal, Kissei Comtec).
399 NREM sleep was characterized by high amplitude in the EEG δ band (0.5-4 Hz) and low
400 amplitude of EMG activity. REM sleep was characterized by low amplitude in the EEG δ band
401 and high amplitude in EEG θ band (4-10 Hz), without tonic EMG activity. Wakefulness was
402 characterized by high EMG activity and low amplitude of EEG activity. The automatically
403 defined results were reviewed and manually corrected. The cumulative duration of NREM
404 sleep, REM sleep, and wakefulness were summarized by a self-written MATLAB program.

405 **Histology**

406 All mice used above were perfused with 4% paraformaldehyde (PFA) in PBS. The brains were
407 sectioned into 50- μ m slices after being dehydrated with 15% sucrose in 4% PFA for 24 h.
408 Brain sections were imaged by a wide-field fluorescence microscope (Olympus, BX51) or
409 confocal microscope (Zeiss, LSM 700) after being stained with DAPI. For

410 immunohistochemistry, mice expressing hM3Dq or hM4Di were perfused 1.5 h after CNO or
411 saline injection and sectioned as described above. Brain sections were blocked and
412 incubated with primary antibodies (rabbit anti-c-Fos 1:200, ab190289, Abcam, RRID:
413 AB_2737414), as previously described (Qin et al., 2020; Zhang et al., 2016). The number of
414 c-Fos expressing neurons was manually counted by experiment-blinded analysts.

415 **Data analysis and statistics**

416 The data of Ca^{2+} signals were analyzed as previously described (Qin et al., 2018; Qin et al.,
417 2019). Briefly, all Ca^{2+} signals were filtered by Savitzky-Golay FIR smoothing filter with 50 side
418 points and a 3rd-order polynomial. Then Ca^{2+} signals were calculated into $\Delta f/f$ by the formula
419 of $\Delta f/f = (f - f_{\text{baseline}}) / f_{\text{baseline}}$, where f_{baseline} represents the baseline fluorescence obtained
420 during recording. To quantify the Ca^{2+} signals during sleep-wakefulness cycles, we identified
421 the arousal state based on synchronous EEG-EMG signals. The area under Ca^{2+} signals was
422 used for statistical analysis (Qin et al., 2022).

423 The raw extracellular electrophysiological data were analyzed as described previously
424 (Qin et al., 2018; Qin et al., 2022). Events that exceeded an amplitude threshold of four
425 standard deviations above the baseline were saved for subsequent spike sorting analysis. All
426 detected events for each tetrode were sorted in the toolbox MClust based on the features of
427 waveforms (Schmitzer-Torbert & Redish, 2004). The firing rates of each unit were calculated
428 in a sliding time bin of 2 s (0.1 s interval). Units were classified according to the firing rates in
429 NREM sleep, REM sleep, and wakefulness. We analyzed the spectral profiles of EEG activity
430 by a self-designed MATLAB program (Ren et al., 2018). The EEG data were calculated by fast
431 Fourier transformation with a frequency resolution of 0.15 Hz.

432 Statistical analyses were performed in MATLAB and SPSS22.0 (Table Appendix 1).
433 Normality tests were analyzed between samples. Parametric tests (paired and unpaired
434 t-tests, RMs 1-way ANOVA with LSD post hoc comparison, 1-way ANOVA with LSD post hoc
435 comparison, and RMs 2-way ANOVA with Sidak's post hoc comparison) were subsequently
436 applied if normality or equal variance was achieved. Otherwise, non-parametric tests
437 (Wilcoxon signed-rank test, Wilcoxon rank-sum test, Kruskal-Wallis test with Tukey post hoc
438 comparison, and Friedman's ANOVA test) were applied. All tests were two-tailed. All
439 summary data were from individual mice and represented as mean \pm SEM.

440

441 **Acknowledgements**

442 The authors are grateful to Ms. Jia Lou for help in composing and layout editing of the figures.

443 This work was supported by grants from the National Key R&D Program of China

444 (2021YFA0805000), the National Natural Science Foundation of China (31925018, 32127801,

445 31921003, 81971236, 32200838), Chongqing Basic Research grants (cstc2019jcyjjqX0001) to

446 X.C. and Fundamental Research Funds for the Central Universities (2022CDJXY-024) to H.Q..

447 X.C. is a member of the CAS Center for Excellence in Brain Science and Intelligence

448 Technology.

449

450 **Author contribution**

451 Conceptualization and methodology, H.Q., L.W., and X.C.; software programming, W.J. and

452 X.L.; data curation, M.L., T.J., and H.Q.; investigation, M.L., T.J., Q.C., X.Y., and Z.Y.; technical

453 support, R.W., and J.X.; writing-original draft, M.L.; writing – review & editing, H.Q. and X.C.;

454 funding acquisition, L.W., X.C. and H.Q.; resources, M.L., T.J., W. J. and H.Q.; supervision, H.Q.

455 and X.C. All authors read and commented on the manuscript.

456

457 **Competing interests**

458 The authors declare that no competing interests exist.

459

460 **Supplementary files**

461 Table Appendix 1. Statistics summary in the study, related to Figures 1–5. Only statistically

462 significant ($p < 0.05$) results are reported.

463

464 **Data availability**

465 All data needed to evaluate the conclusions in the paper are present in the manuscript

466 and/or the figure supplement.

467

468 **References**

469 Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, Refaeli R, Horn H, Regev L,

470 Groysman M, London M, Goshen I. 2018. Astrocytic Activation Generates De Novo Neuronal
471 Potentiation and Memory Enhancement. *Cell*, 174(1), 59-71.e14.
472 <https://doi.org/10.1016/j.cell.2018.05.002>

473 An S, Sun H, Wu M, Xie D, Hu, SW, Ding HL, Cao JL. 2021. Medial septum glutamatergic neurons
474 control wakefulness through a septo-hypothalamic circuit. *Current Biology*, 31(7), 1379-1392.e1374.
475 <https://doi.org/10.1016/j.cub.2021.01.019>

476 Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. 2007. Evolving the lock to fit the key to create a
477 family of G protein-coupled receptors potently activated by an inert ligand. *PNAS*, 104(12),
478 5163-5168. <https://doi.org/10.1073/pnas.0700293104>

479 Billwiller F, Castillo L, Elseedy H, Ivanov AI, Scapula J, Ghestem A, Carponcy J, Libourel PA, Bras H,
480 Abdelmeguid NE, Krook-Magnuson E, Soltesz I, Bernard C, Luppi PH, Esclapez M. 2020.
481 GABA-glutamate supramammillary neurons control theta and gamma oscillations in the dentate
482 gyrus during paradoxical (REM) sleep. *Brain Structure & Function*, 225(9), 2643-2668.
483 <https://doi.org/10.1007/s00429-020-02146-y>

484 Boyce R, Glasgow SD, Williams S, Adamantidis A. 2016. Causal evidence for the role of REM sleep
485 theta rhythm in contextual memory consolidation. *Science*, 352(6287), 812-816.
486 <https://doi.org/10.1126/science.aad5252>

487 Broussard GJ, Liang Y, Fridman M, Unger EK, Meng G, Xiao X, Ji N, Petreanu L, Tian L. 2018. In vivo
488 measurement of afferent activity with axon-specific calcium imaging. *Nature Neuroscience*, 21(9),
489 1272-1280. <https://doi.org/10.1038/s41593-018-0211-4>

490 Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. 2012. Control of sleep and wakefulness.
491 *Physiological Review*, 92(3), 1087-1187. <https://doi.org/10.1152/physrev.00032.2011>

492 Buzsáki G. 2002. Theta oscillations in the hippocampus. *Neuron*, 33(3), 325-340.
493 [https://doi.org/10.1016/s0896-6273\(02\)00586-x](https://doi.org/10.1016/s0896-6273(02)00586-x)

494 Chen S, He L, Huang AJY, Boehringer R, Robert V, Wintzer ME, Polygalov D, Weitemier AZ, Tao Y, Gu M,
495 Middleton SJ, Namiki K, Hama H, Therreau L, Chevaleyre V, Hioki H, Miyawaki A, Piskorowski RA,
496 McHugh TJ. 2020. A hypothalamic novelty signal modulates hippocampal memory. *Nature*,
497 586(7828), 270-274. <https://doi.org/10.1038/s41586-020-2771-1>

498 Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM, Hasseman JP, Tsegaye G, Tsang A, Wong A, Patel R,
499 Macklin JJ, Chen Y, Konnerth A, Jayaraman V, Looger LL, Schreiter ER, Svoboda K, Kim DS. 2019.
500 High-performance calcium sensors for imaging activity in neuronal populations and
501 microcompartments. *Nature Methods*, 16(7), 649-657. <https://doi.org/10.1038/s41592-019-0435-6>

502 Farrell JS, Lovett-Barron M, Klein PM, Sparks FT, Gschwind T, Ortiz AL, Ahanonu B, Bradbury S, Terada S,
503 Oijala M, Hwaun E, Dudok B, Szabo G, Schnitzer MJ, Deisseroth K, Losonczy A, Soltesz I. 2021.
504 Supramammillary regulation of locomotion and hippocampal activity. *Science*, 374(6574), 1492-1496.
505 <https://doi.org/10.1126/science.abb4272>

506 Fuhrmann F, Justus D, Sosulina L, Kaneko H, Beutel T, Friedrichs D, Schoch S, Schwarz MK, Fuhrmann M,
507 Remy S. 2015. Locomotion, Theta Oscillations, and the Speed-Correlated Firing of Hippocampal
508 Neurons Are Controlled by a Medial Septal Glutamatergic Circuit. *Neuron*, 86(5), 1253-1264.
509 <https://doi.org/https://doi.org/10.1016/j.neuron.2015.05.001>

510 Gu L, Yu Q, Shen Y, Wang Y, Xu Q, Zhang H. 2022. The role of monoaminergic neurons in modulating
511 respiration during sleep and the connection with SUDEP. *Biomedicine & Pharmacotherapy*, 150,
512 112983. <https://doi.org/10.1016/j.biopha.2022.112983>

513 Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ,

514 Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K. 2014. Natural neural
515 projection dynamics underlying social behavior. *Cell*, 157(7), 1535-1551.
516 <https://doi.org/10.1016/j.cell.2014.05.017>

517 Hajszan T, Alreja M, Leranth C. 2004. Intrinsic vesicular glutamate transporter 2-immunoreactive input
518 to septohippocampal parvalbumin-containing neurons: novel glutamatergic local circuit cells.
519 *Hippocampus*, 14(4), 499-509. <https://doi.org/10.1002/hipo.10195>

520 Kayama Y, Koyama Y. 2003. Control of sleep and wakefulness by brainstem monoaminergic and
521 cholinergic neurons. *Acta Neurochirurgica Supplement*, 87, 3-6.
522 https://doi.org/10.1007/978-3-7091-6081-7_1

523 Kesner AJ, Shin R, Calva CB, Don RF, Junn S, Potter CT, Ramsey LA, Abou-Elnaga AF, Cover CG, Wang DV,
524 Lu H, Yang Y, Ikemoto S. 2021. Supramammillary neurons projecting to the septum regulate
525 dopamine and motivation for environmental interaction in mice. *Nature Communications*, 12(1),
526 2811. <https://doi.org/10.1038/s41467-021-23040-z>

527 Kiss J, Patel AJ, Baimbridge KG, Freund TF. 1990. Topographical localization of neurons containing
528 parvalbumin and choline acetyltransferase in the medial septum-diagonal band region of the rat.
529 *Neuroscience*, 36(1), 61-72. [https://doi.org/10.1016/0306-4522\(90\)90351-4](https://doi.org/10.1016/0306-4522(90)90351-4)

530 Kocsis B, Vertes RP. 1994. Characterization of neurons of the supramammillary nucleus and
531 mammillary body that discharge rhythmically with the hippocampal theta rhythm in the rat. *The
532 Journal of Neuroscience*, 14(11 Pt 2), 7040-7052.
533 <https://doi.org/10.1523/jneurosci.14-11-07040.1994>

534 Kumar D, Koyanagi I, Carrier-Ruiz A, Vergara P, Srinivasan S, Sugaya Y, Kasuya M, Yu TS, Vogt KE,
535 Muratani M, Ohnishi T, Singh S, Teixeira CM, Chérasse Y, Naoi T, Wang SH, Nondhalee P, Osman BAH,
536 Kaneko N, Sawamoto K, Kernie SG, Sakurai T, McHugh TJ, Kano M, Yanagisawa M, Sakaguchi M. 2020.
537 Sparse Activity of Hippocampal Adult-Born Neurons during REM Sleep Is Necessary for Memory
538 Consolidation. *Neuron*, 107(3), 552-565.e510. <https://doi.org/10.1016/j.neuron.2020.05.008>

539 Lecourtier L, de Vasconcelos AP, Leroux E, Cosquer B, Geiger K, Lithfous S, Cassel JC. 2011.
540 Septohippocampal pathways contribute to system consolidation of a spatial memory: Sequential
541 implication of gabaergic and cholinergic neurons. *Hippocampus*, 21(12), 1277-1289.
542 <https://doi.org/https://doi.org/10.1002/hipo.20837>

543 Lee MG, Hassani OK, Jones BE. 2005. Discharge of identified orexin/hypocretin neurons across the
544 sleep-waking cycle. *The Journal of Neuroscience*, 25(28), 6716-6720.
545 <https://doi.org/10.1523/jneurosci.1887-05.2005>

546 Li R, Wang M, Yao J, Liang S, Liao X, Yang M, Zhang J, Yan J, Jia H, Chen X, Li X. 2018. Two-Photon
547 Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines.
548 *Frontiers in Neural Circuits*, 12, 33. <https://doi.org/10.3389/fncir.2018.00033>

549 Li Y, Bao H, Luo Y, Yoan C, Sullivan HA, Quintanilla L, Wickersham I, Lazarus M, Shin YI, & Song J. 2020.
550 Supramammillary nucleus synchronizes with dentate gyrus to regulate spatial memory retrieval
551 through glutamate release. *eLife*, 9. <https://doi.org/10.7554/eLife.53129>

552 Li YD, Luo YJ, Chen ZK, Quintanilla L, Cherasse Y, Zhang L, Lazarus M, Huang ZL, & Song J. 2022.
553 Hypothalamic modulation of adult hippocampal neurogenesis in mice confers activity-dependent
554 regulation of memory and anxiety-like behavior. *Nature Neuroscience*, 25(5), 630-645.
555 <https://doi.org/10.1038/s41593-022-01065-x>

556 Liu D, & Dan Y. 2019. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit. *Annual Review of
557 Neuroscience*, 42, 27-46. <https://doi.org/10.1146/annurev-neuro-080317-061813>

558 Liu D, Li W, Ma C, Zheng W, Yao Y, Tso CF, Zhong P, Chen X, Song JH, Choi W, Paik SB, Han H, & Dan Y.
559 2020. A common hub for sleep and motor control in the substantia nigra. *Science*, 367(6476),
560 440-445. <https://doi.org/10.1126/science.aaz0956>

561 Mileykovskiy BY, Kiyashchenko LI, & Siegel JM. 2005. Behavioral correlates of activity in identified
562 hypocretin/orexin neurons. *Neuron*, 46(5), 787-798. <https://doi.org/10.1016/j.neuron.2005.04.035>

563 Osborne PG. 1994. A GABAergic mechanism in the medial septum influences cortical arousal and
564 locomotor activity but not a previously learned spatial discrimination task. *Neuroscience Letters*,
565 173(1), 63-66. [https://doi.org/https://doi.org/10.1016/0304-3940\(94\)90150-3](https://doi.org/https://doi.org/10.1016/0304-3940(94)90150-3)

566 Pan WX, & McNaughton N. 2004. The supramammillary area: its organization, functions and
567 relationship to the hippocampus. *Progress in Neurobiology*, 74(3), 127-166.
568 <https://doi.org/10.1016/j.pneurobio.2004.09.003>

569 Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, & Fuller PM.
570 2017. Supramammillary glutamate neurons are a key node of the arousal system. *Nature
571 Communications*, 8(1), 1405. <https://doi.org/10.1038/s41467-017-01004-6>

572 Peever J, & Fuller PM. 2017. The Biology of REM Sleep. *Current Biology*, 27(22), R1237-R1248.
573 <https://doi.org/10.1016/j.cub.2017.10.026>

574 Qin H, Fu L, Hu B, Liao X, Lu J, He W, Liang S, Zhang K, Li R, Yao J, Yan J, Chen H, Jia H, Zott B, Konnerth
575 A, & Chen X. 2018. A Visual-Cue-Dependent Memory Circuit for Place Navigation. *Neuron*, 99(1),
576 47-55.e44. <https://doi.org/10.1016/j.neuron.2018.05.021>

577 Qin H, Fu L, Jian T, Jin W, Liang M, Li J, Chen Q, Yang X, Du H, Liao X, Zhang K, Wang R, Liang S, Yao J, Hu
578 B, Ren S, Zhang C, Wang Y, Hu Z, Jia H, Konnerth A, & Chen X. 2022. REM sleep-active hypothalamic
579 neurons may contribute to hippocampal social-memory consolidation. *Neuron*, 110(23),
580 4000-4014.e4006. <https://doi.org/10.1016/j.neuron.2022.09.004>

581 Qin H, He W, Yang C, Li J, Jian T, Liang S, Chen T, Feng H, Chen X, Liao X, & Zhang K. 2020. Monitoring
582 Astrocytic Ca²⁺ Activity in Freely Behaving Mice. *Frontiers in Cellular Neuroscience*, 14(410).
583 <https://doi.org/10.3389/fncel.2020.603095>

584 Qin H, Lu J, Jin W, Chen X, & Fu L. 2019. Multichannel fiber photometry for mapping axonal terminal
585 activity in a restricted brain region in freely moving mice. *Neurophotonics*, 6(3), 1-10, 10.
586 <https://doi.org/10.1117/1.NPh.6.3.035011>

587 Qin J, Huang WS, Du HR, Zhang CQ, Xie P, & Qin H. 2022. Ca(2+)-based neural activity recording for
588 rapidly screening behavioral correlates of the claustrum in freely behaving mice. *Biomedical
589 Research-Tokyo*, 43(3), 81-89. <https://doi.org/10.2220/biomedres.43.81>

590 Ren S, Wang Y, Yue F, Cheng X, Dang R, Qiao Q, Sun X, Li X, Jiang Q, Yao J, Qin H, Wang G, Liao X, Gao D,
591 Xia J, Zhang J, Hu B, Yan J, Wang Y, Xu M, Han Y, Tang X, Chen X, He C, & Hu Z. 2018. The
592 paraventricular thalamus is a critical thalamic area for wakefulness. *Science*, 362(6413), 429-434.
593 <https://doi.org/10.1126/science.aat2512>

594 Renouard L, Billwiller F, Ogawa K, Clement O, Camargo N, Abdelkarim M, Gay N, Scote-Blachon C,
595 Toure R, Libourel PA, Ravassard P, Salvert D, Peyron C, Claustrat B, Leger L, Salin P, Malleret G, Fort P,
596 & Luppi PH. 2015. The supramammillary nucleus and the claustrum activate the cortex during REM
597 sleep. *Science Advances*, 1(3), e1400177. <https://doi.org/10.1126/sciadv.1400177>

598 Saper CB, & Fuller PM. 2017. Wake-sleep circuitry: an overview. *Current Opinion in Neurobiology*, 44,
599 186-192. <https://doi.org/10.1016/j.conb.2017.03.021>

600 Scammell TE, Arrigoni E, & Lipton JO. 2017. Neural Circuitry of Wakefulness and Sleep. *Neuron*, 93(4),
601 747-765. <https://doi.org/10.1016/j.neuron.2017.01.014>

602 Schmitzer-Torbert N, & Redish AD. 2004. Neuronal activity in the rodent dorsal striatum in sequential
603 navigation: separation of spatial and reward responses on the multiple T task. *Journal of*
604 *Neurophysiology*, 91(5), 2259-2272. <https://doi.org/10.1152/jn.00687.2003>

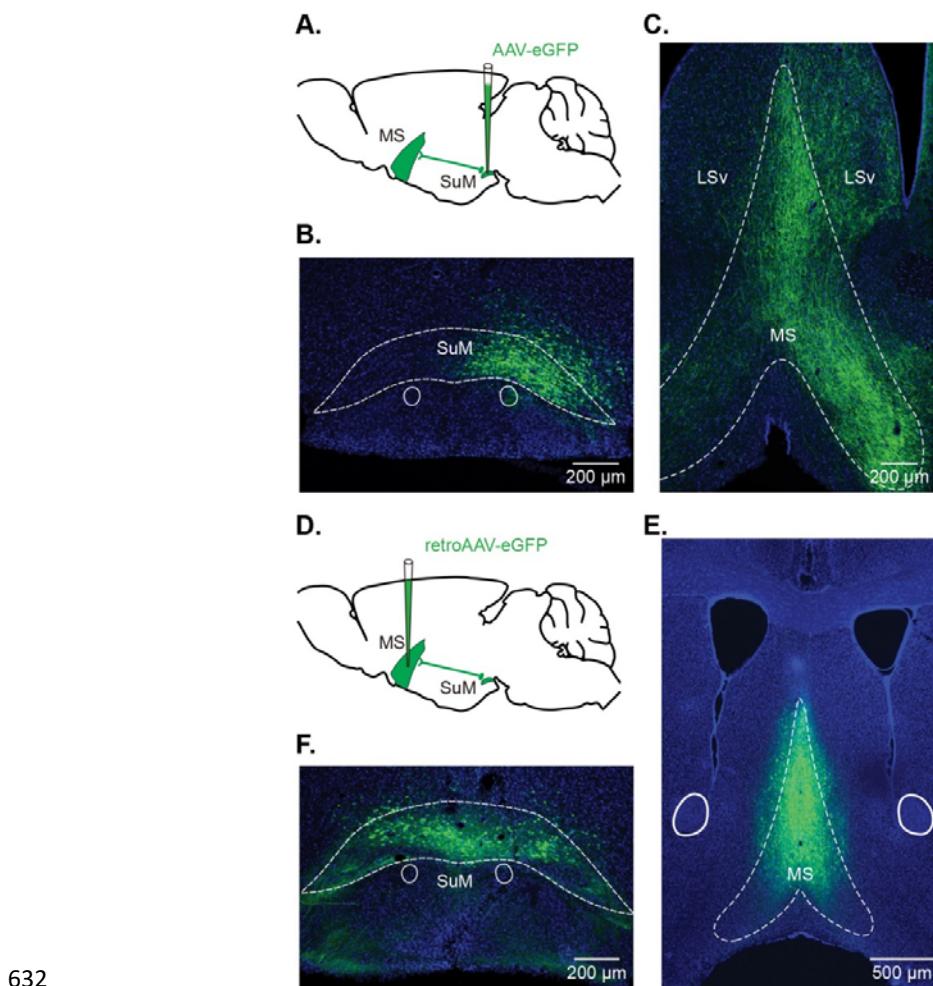
605 Stark E, Koos T, & Buzsaki G. 2012. Diode probes for spatiotemporal optical control of multiple
606 neurons in freely moving animals. *Journal of Neurophysiology*, 108(1), 349-363.
607 <https://doi.org/10.1152/jn.00153.2012>

608 Sterpenich V, Schmidt C, Albouy G, Matarazzo L, Vanhaudenhuyse A, Boveroux P, Degueldre C,
609 Leclercq Y, Balteau E, Collette F, Luxen A, Phillips C, & Maquet P. 2014. Memory Reactivation during
610 Rapid Eye Movement Sleep Promotes Its Generalization and Integration in Cortical Stores. *Sleep*,
611 37(6), 1061-1075. <https://doi.org/10.5665/sleep.3762>

612 Vertes RP. 1988. Brainstem afferents to the basal forebrain in the rat. *Neuroscience*, 24(3), 907-935.
613 [https://doi.org/10.1016/0306-4522\(88\)90077-2](https://doi.org/10.1016/0306-4522(88)90077-2)

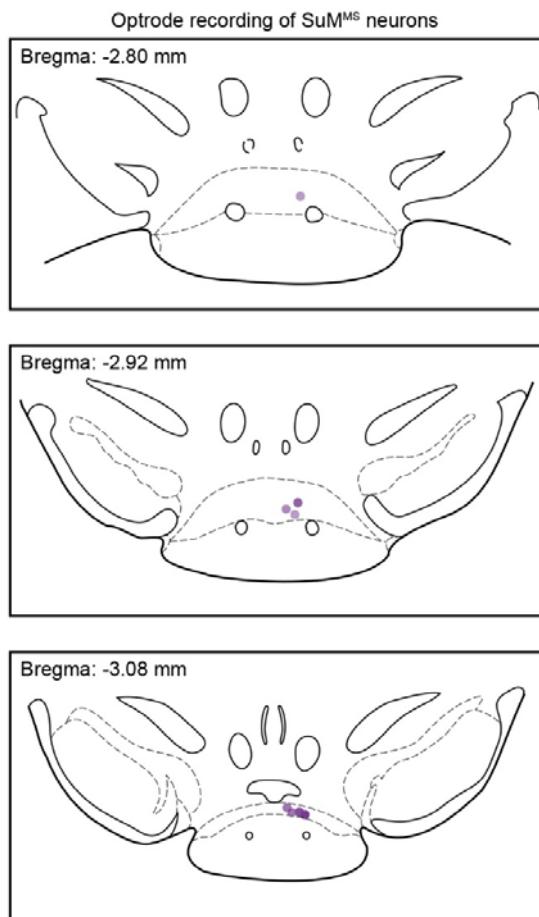
614 Vertes RP. 1992. PHA-L analysis of projections from the supramammillary nucleus in the rat. *Journal of*
615 *Comparative Neurology*, 326(4), 595-622. <https://doi.org/10.1002/cne.903260408>

616 Wang RF, Guo H, Jiang SY, Liu ZL, Qu WM, Huang ZL, & Wang L. 2021. Control of wakefulness by lateral
617 hypothalamic glutamatergic neurons in male mice. *Journal of Neuroscience Research*, 99(6),
618 1689-1703. <https://doi.org/10.1002/jnr.24828>


619 Zhang K, Chen C, Yang Z, He W, Liao X, Ma Q, Deng P, Lu J, Li J, Wang M, Li M, Zheng L, Zhou Z, Sun W,
620 Wang L, Jia H, Yu Z, Zhou Z, & Chen X. 2016. Sensory Response of Transplanted Astrocytes in Adult
621 Mammalian Cortex In Vivo. *Cerebral Cortex*, 26(9), 3690-3704.
622 <https://doi.org/10.1093/cercor/bhw213>

623 Zhao L, Li Z, Vong JSL, Chen X, Lai HM, Yan LYC, Huang J, Sy SKH, Tian X, Huang Y, Chan HYE, So HC, Ng
624 WL, Tang Y, Lin WJ, Mok VCT, & Ko H. 2020. Pharmacologically reversible zonation-dependent
625 endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged
626 brain. *Nature Communications*, 11(1), 4413. <https://doi.org/10.1038/s41467-020-18249-3>

627 Zhou W, Cheung K, Kyu S, Wang L, Guan Z, Kurien PA, Bickler PE, & Jan LY. 2018. Activation of orexin
628 system facilitates anesthesia emergence and pain control. *PNAS*, 115(45), E10740-e10747.
629 <https://doi.org/10.1073/pnas.1808622115>


630

631

632

633 **Figure 1-figure supplement 1.** SuM neurons project to MS. (A) Diagram of AAV-eGFP injection
634 into SuM. (B-C) Representative histological images of eGFP-labeled cell bodies in SuM (B) and
635 their axon fibers in MS (C). The same experiments were performed in 5 mice. (D) Diagram of
636 retroAAV-eGFP injection into MS. (E-F) Representative histological images of injection area in MS
637 (E) and eGFP-labeled cell bodies in SuM (F). The same experiments were performed in 6 mice.
638

639

640 **Figure 2-figure supplement 1. Locations of tetrodes after optrode recordings, $n = 8$ mice.**