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CHOICE OF PARCELLATION ATLAS MIGHT NOT BE TOO CRITICAL FOR
CONNECTOMIC ANALYSIS
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ABSTRACT

Connectomics has been a rapidly growing discipline in neu-
roimaging and neuroscience that evolved our understanding
of the brain. Connectomics involves representing the brain as
a network of regions, where the parcellation of the brain into
regions using a template atlas is an integral part of the anal-
ysis. Over developmental and young adult cohorts of healthy
individuals, we investigated how choosing parcellation atlases
at certain resolutions affect sex classification and age predic-
tion tasks performed using deep learning on structural con-
nectomes. Datasets were processed on a total of 35 parcella-
tions, where the only significant difference was observed for
age prediction on the developmental cohort with a slight im-
provement on higher resolutions. This indicates that choice of
parcellation scheme is generally not critical for deep learning-
based age prediction and sex classification. Therefore, results
between studies using different parcellation schemes could be
comparable and repeating analyses on multiple atlases might
be unnecessary.

Index Terms— Connectomics, deep learning, graph neu-
ral networks

1. INTRODUCTION

Connectomics is the analysis of the brain as a network of
structurally and functionally interconnected brain regions.
Within recent times, it has proven useful in understanding
the healthy brain as well as various brain related diseases
and disorders including autism, Alzheimer’s, and traumatic
brain injury [1]. Connectomes are typically represented as
graphs with brain regions as nodes and either structural or
functional connectivity denoted as weighted edges. Struc-
tural connectivity is calculated over diffusion weighted MR
images through a method called tractography, which mod-
els neural pathways connecting region pairs in the brain,
while functional connectivity is calculated over functional
MR images as the correlation of Blood Oxygenation Level
Dependent (BOLD) signals among region pairs, denoting the
pairwise activation of brain regions. Identifying regions of
the brain, known as parcellation, is a necessary step in con-
nectomic analysis to reveal graph nodes. Brain parcellation is
commonly achieved by applying a template brain atlas over
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the brain image of individuals. A wide repository of parcel-
lation atlases are available in the literature that differ on the
type of features that the parcellation is obtained from such as
functional or anatomical features [2]. Therefore, the choice
of the atlas is an important question that the researcher needs
to address before starting the analysis of the data.

A second problem that follows is the resolution of the at-
las, that is, the number of regions into which the brain is par-
cellated. While some of the template atlases come in one
resolution [3], others come in multiple resolutions [4]. In
the face of this variation, it is necessary to evaluate how the
choice of atlas and its resolution affects certain connectomic
analysis. Previous research has sought to explore the effects
of atlas choice on various graph-theoretical measures such as
clustering coefficient, characteristic path length, global effi-
ciency, and degree distribution [2, 5, 6]. Domhof et al. [2]
also explored the effects of parcellation on phase oscillator
and neural mass modeling and noticed significant heterogene-
ity in results between different atlases. However, the question
remains as to how significant these differences are when it
comes to certain connectomic analysis. In this paper, we ad-
dress the problem of choice of atlas and resolution for two
tasks, namely age prediction and sex classification, on two
datasets over a wide range of atlas resolutions.

2. METHODS

2.1. Dataset and Preprocessing

We used diffusion wieghted images obtained from Human
Connectome Project (HCP) [7] and Philadelphia Neurode-
velopmental Cohort (PNC) [8] for our experiments. For the
HCP, we investigated 200 subjects (104 females) from the
young adult dataset in age range [22,36]. Structural connec-
tomes were obtained from two different processing pipelines
provided in EBRAINS [2] and braingraph.org [9]. The first
pipeline on HCP [2] generated structural connectomes by
using probabilistic tracking with 10M streamlines, over 20
different parcellation atlases that vary in regions of interest
(ROI) ranging 31 to 294. Adjacency matrices were then cre-
ated using the regions specified by each atlas as nodes and
fiber counts as the edge weights. The second pipeline on HCP
generated structural connectomes using probabilistic track-
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Fig. 1: Overall summary of the experiments and the structure of the deep learning model.

ing on 1M streamlines, and repeated the process ten times
to consider their average as the final connectomes. Connec-
tomes were parcellated into five different resolutions of the
Lausanne atlas [10] having 83 to 1,015 nodes. The reader is
referred to [2] and [9] for further details on the processing
pipeline of the connectomes.

The PNC is a developmental dataset consisting of 987
healthy individuals (546 females) in age range [8,22]. Struc-
tural connectomes derived from diffusion MRI data of PNC
dataset were generated using probabilistic tracking [11] with
10M streamlines at ten different resolutions of the Schaefer
atlas [4] having 120 to 1,020 nodes. Weights were then calcu-
lated for each streamline using SIFT2 [12] and connectivity
between regions of interest was determined as the total num-
ber of streamlines connecting them. Adjacency matrices were
created with brain regions as nodes and fiber counts connect-
ing them as edge weights.

2.2. Deep Learning

The neural network consisted of three fully-connected layers
of shapes that allowed for the maximum number of parame-
ters to still fit the model, given the size of the datasets, with
the matrices of the greatest number of nodes, in 8 GB of GPU
RAM (Figure 1). It consisted of an input layer for a (D, D)
matrix of size (D?, 256), followed by a ReL.U activation func-
tion. The next layer was of size (256, 64), which was also fol-
lowed by a ReLU activation function. The output layer was
of size (64, 2) for sex classification and (64, 1) for age predic-
tion. Each layer was followed by a dropout layer with 20%
probability for the sex classification task, while only the first
layer was followed by a dropout layer with 10% probability
for the age prediction task. Overfitting was not observed after
adding these dropout layers.

To avoid connectivity bias across ages and sexes, connec-
tomes, which are simply weighted adjacency matrices, were
normalized by dividing each matrix element by the mean
value of all elements for that matrix. For sex classification,
each element was then divided by the maximum value of that
matrix so that the input values to the neural network would
be between 0 and 1. To meet the memory requirement for
the largest adjacency matrices, mini batches of size 8 were
used for all training regimens. Ten-folds cross validation was

performed to determine sex classification and age prediction
accuracies across the whole datasets. The neural networks
were trained for 150 epochs using Adam optimization. Train-
ing for the sex classification task used cross-entropy loss,
while training for age prediction used a mean squared er-
ror objective function. Sex classification performance was
evaluated as percentage correct, whereas age prediction per-
formance was evaluated using an L1 loss function.

2.3. Statistical Analysis

Repeated measures analysis of variance (ANOVA) tests were
performed to determine if there were any significant main ef-
fects of the parcellation scheme choice on the sex classifica-
tion or age prediction accuracy on the PNC and HCP datasets.
Repeated measures ANOVA was used because the subjects
in each fold were identical across atlases for a given dataset.
Mauchly’s tests of sphericity were conducted to ensure the
equality of variance assumption was not violated. In the case
of age prediction error for the PNC dataset, equality of vari-
ance was violated as indicated by a Mauchly’s test of spheric-
ity p < 0.05. Due to € < 0.75, a Huynh-Feldt correction was
applied to the ANOVA. Post-hoc tests consisted of dependent
t-tests with Bonferroni correction.

3. RESULTS

3.1. Age Prediction

The top plot of Figure 2 shows the age prediction error, in
years, for each atlas of the HCP dataset. The connectomes
from the EBRAINS dataset are shown in black and brain-
graph.org in yellow. Mean age prediction errors, as shown
by the red bars in Figure 2, ranged from 2.59 to 2.79 years.
The atlas that achieved the minimum age prediction error was
the Lausanne atlas with 129 nodes, whereas the atlas that pro-
duced the maximum error was the Harvard-Oxford 96 atlas.
However, a one-way repeated measures ANOVA showed no
significant main effect of connectome atlas selection on age
prediction error for the HCP subjects (F'(9,240) = 1.52,p =
.063,m% = .15). The top part of Figure 3 shows the age pre-
diction error, in years, for each atlas of the PNC dataset, indi-
cated in blue, with asterisks denoting significant differences.
As shown by the red bars, mean age prediction errors ranged
from 1.43 to 1.55 years. The Schaefer atlas that achieved
the lowest age prediction error was the one with 820 nodes
and the one that produced the highest age prediction error
was the one with 120 nodes. The variances of the age pre-
diction error for the different atlases were not equal, which
was verified by Mauchly’s test of sphericity (W = .000, ¢ =
.537,p < .001), so a Huynh-Feldt correction was made. A
one-way repeated measures ANOVA with Huynh-Feldt cor-
rection showed a large and significant main effect of atlas on
age prediction error (F'(5,90) = 5.31,p < .001,n* = .37).
Post-hoc dependent t-tests with Bonferroni correction showed
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Fig. 2: Age prediction (top) and sex classification (bottom) results on the HCP dataset. There were no significant differences observed for this dataset.
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Fig. 3: Age prediction (top) and sex classification (bottom) results on the PNC dataset.
* indicates significance at p < .05 and ** indicates significance at p < .01.

the Schaefer atlas with 120 nodes gave significantly higher
error (M = 1.55,5D = 0.20 years) than the Schaefer atlas
with 920 nodes (M = 1.43,SD = 0.14 years, p = .024) and
the one with 1,020 nodes (M = 1.43,SD = 0.17 years,p =
.005).

3.2. Sex Classification

The bottom plot in Figure 2 shows sex classification percent
accuracy for each atlas of the HCP dataset. Mean sex classi-
fication accuracies ranged from 83.5 to 91.5%. The atlas that
achieved the best sex classification accuracy was the MIST 56
atlas and the atlas that produced the worst sex classification
accuracy was the Lausanne atlas with 129 nodes. However,
a one-way repeated measures ANOVA showed no significant
main effects of connectome atlas on sex classification accu-
racy for the HCP subjects (F(9,240) = 1.52,p = .062,n? =
.15). The bottom half of Figure 3 shows the sex classifica-
tion percent accuracy for each atlas of the PNC dataset. Mean
sex classification accuracies ranged from 88.4 to 90.5%. The
Schaefer atlas that achieved the best sex classification accu-
racy was the one with 920 nodes and the one that produced the
lowest sex classification accuracy was the one with 120 nodes.
However, a one-way repeated measures ANOVA showed no
significant main effect of atlas on sex classification accuracy
(F(9,90) = 1.99,p = .051, 7% = .18).

4. DISCUSSION AND CONCLUSION

The only significant differences detected in this study were
between the Schaefer atlas with 120 nodes and the Schae-
fer atlases with 920 and 1,020 nodes for age prediction er-
ror on the PNC dataset. However, the differences in age pre-
diction error between connectomes parcellated with these at-
lases were no more than 0.12 years, indicating satisfactory
performance for the Schaefer 120 atlas, despite its signifi-
cantly higher error. Therefore, it is possible that parcellation
atlas selection is not critical for deep learning tasks involving
age prediction or sex classification of healthy subject connec-
tomes. In addition, this indicates that it may be possible to
compare works between studies that used different parcella-
tion regimes.

Whereas sex classification accuracies were similar be-
tween the HCP and PNC datasets, the age prediction error
was lower for the PNC dataset than it was for the HCP
dataset. This may be due to the differences in age range for
the two datasets, with the HCP subset containing participants
aged 22 to 36 years, and the PNC dataset containing partic-
ipants aged 8 to 23 years. The discrepancy in error may be
caused by more significant structural changes in the brain
present during development than during adulthood [13].

Although we showed that choice of parcellation scheme
may not matter for deep learning sex classification and age
prediction tasks, further research is warranted to explore tasks
such as clustering of individuals into subgroups by using con-
nectomes. The study also needs to be expanded over individ-
uals with brain diseases or disorders as our analysis evaluated
only healthy individuals. Additionally, we only considered
choice of parcellation over structural connectomes. Thus, fu-
ture work will incorporate functional connectomes as well in
order to determine how well different parcellation schemes
represent functional connections.

For sex classification and age prediction deep learning
tasks over structural connectomes, the choice of atlas gen-
erally does not significantly affect performance. Therefore,
when performing these tasks, the researcher may be better
suited considering parcellation resolutions that do not include
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an unnecessarily large number of nodes. Since memory, stor-
age, and computation time requirements for the connectomic
analysis scale quadratically with the number of nodes in the
parcellation, using a high resolution parcellation may delay
connectomics research without producing much tangible ben-
efit. In addition, it may not be necessary for a researcher to
repeat analyses using multiple atlases, as the results here sug-
gest that any reputable atlas should be able to produce robust
results.

5. COMPLIANCE WITH ETHICAL STANDARDS
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