

Transposable element and host silencing activity in gigantic genomes

1 **Jie Wang^{1*}, Liang Yuan², Jiaxing Tang^{1,3}, Jiongyu Liu¹, Cheng Sun⁴, Michael W. Itgen⁵,**
2 **Guiying Chen³, Stanley K. Sessions⁶, Guangpu Zhang^{1,3*}, Rachel Lockridge Mueller^{5*}**

3 ¹CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization &
4 Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province,
5 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041,
6 China

7 ²School of Life Sciences, Xinjiang Normal University, Urumqi, China

8 ³College of Life Sciences, Sichuan Normal University, Chengdu, China

9 ⁴College of Life Sciences, Capital Normal University, Beijing, China

10 ⁵Department of Biology, Colorado State University, Fort Collins, CO, USA

11 ⁶Biology Department, Hartwick College, Oneonta, NY, USA

12 *** Correspondence:**

13 Jie Wang, wangjie@cib.ac.cn

14 Guangpu Zhang, zgp1122@outlook.com

15 Rachel Lockridge Mueller, rlm@colostate.edu

17

18 **Keywords:** TE expression, piRNA pathway, genome size evolution, salamander, KRAB-
19 ZFP, *Ranodon sibiricus*

20

21 **Abstract**

22 Transposable elements (TEs) and the silencing machinery of their hosts are engaged in a
23 germline arms-race dynamic that shapes TE accumulation and, therefore, genome size. In
24 animal species with extremely large genomes (>10 Gb), TE accumulation has been pushed to
25 the extreme, prompting the question of whether TE silencing also deviates from typical
26 conditions. To address this question, we characterize TE silencing via two pathways — the
27 piRNA pathway and KRAB-ZFP transcriptional repression — in the male and female gonads
28 of *Ranodon sibiricus*, a salamander species with a ~21 Gb genome. We quantify 1) genomic
29 TE diversity, 2) TE expression, and 3) small RNA expression and find a significant
30 relationship between the expression of piRNAs and TEs they target for silencing in both
31 sexes. We also quantified TE silencing pathway gene expression in *R. sibiricus* and 14 other
32 vertebrates with genome sizes ranging from 1 – 130 Gb and find no association between
33 pathway expression and genome size. Taken together, our results reveal that the gigantic *R.*
34 *sibiricus* genome includes at least 19 putatively active TE superfamilies, all of which are
35 targeted by the piRNA pathway in proportion to their expression levels, suggesting
36 comprehensive piRNA-mediated silencing. Males have higher TE expression than females,
37 suggesting that they may contribute more to the species' high genomic TE load. We posit that
38 apparently conflicting interpretations of TE silencing and genomic gigantism in the literature,
39 as well as the absence of a correlation between TE silencing pathway gene expression and
40 genome size, can be reconciled by considering whether the TE community or the host is
41 currently “on the attack” in the arms race dynamic.

42

43 **1 Introduction**

44 Transposable elements (TEs) are DNA sequences that can mobilize throughout the genomes
45 of their hosts, typically replicating as part of the transposition life cycle (Doolittle and
46 Sapienza, 1980; Orgel and Crick, 1980; Wicker et al., 2007). TEs are an ancient and diverse
47 class of sequences, encompassing a range of replication mechanisms that rely on both TE-
48 and host-encoded enzymatic machinery (Bourque et al., 2018). Eukaryotic genomes contain a
49 substantial yet variable number of TEs; they make up well over half of the human genome,
50 up to 85% of the maize genome (Haberer et al., 2005), yet only ~0.1% of the yeast
51 *Pseudozyma antarctica* genome (de Koning et al., 2011; Castanera et al., 2017; Jiao et al.,
52 2017). TE abundance is one of the major determinants of overall genome size, which ranges
53 from ~0.002 Gb to ~150 Gb across eukaryotes and from ~0.4 Gb to ~130 Gb across
54 vertebrates (Rodriguez and Arkhipova, 2018; Gregory, 2022). The mechanistic and
55 evolutionary forces shaping TE abundance and, thus, genome size remain incompletely
56 understood.

57 Individual TE insertions have a range of effects on host fitness; the majority are
58 effectively neutral or slightly deleterious, while smaller proportions are either harmful (or
59 lethal) on the one hand or adaptive on the other (Arkhipova, 2018; Almeida et al., 2022). For
60 example, at least 120 human diseases have been attributed to the effects of de novo TE
61 insertions, but so have classic adaptive traits including industrial melanism and the
62 mammalian placenta (Hancks and Kazazian, 2016; Hof et al., 2016; Senft and Macfarlan,
63 2021). The likelihood of a novel TE insertion having an extreme effect on the host phenotype
64 depends on properties of the host genome including gene density, which affects the
65 probability of a new insertion disrupting a functional protein-coding or regulatory sequence
66 (Medstrand et al., 2002).

67 In response to TEs' mutagenic properties, eukaryotes have evolved multiple
68 mechanisms to silence their activity, particularly in the germline and early embryo where TE
69 effects on host fitness are the most pronounced (Almeida et al., 2022). Some mechanisms act
70 by transcriptionally silencing TE loci through targeted deposition of chromatin modifications
71 (e.g. methylation of cytosines on DNA, or H3K9 methylation of histone proteins) (Deniz et
72 al., 2019). Other mechanisms act post-transcriptionally, targeting TE transcripts for
73 destruction in the cytoplasm before they can complete the replicative life cycle and generate a
74 novel genomic TE insertion (Czech and Hannon, 2016).

75 In multicellular animals, TE silencing in the germline and during early embryogenesis
76 is carried out by the piRNA pathway, a small RNA pathway that relies on RNA-induced
77 silencing complexes (RISC) composed of PIWI proteins and associated guide piRNAs that
78 identify TE transcripts by base complementarity (Aravin et al., 2006; Ozata et al.,
79 2019; Iwakawa and Tomari, 2022). In the nucleus, piRNA-PIWI complexes identify
80 chromatin-associated nascent TE transcripts, inducing transcriptional silencing of the
81 genomic TE locus through recruitment of DNA methyltransferases and histone
82 methyltransferases to establish a repressive chromatin structure (Aravin et al., 2008; Czech et
83 al., 2018). In the cytoplasm, piRNA-PIWI complexes identify mature TE transcripts and
84 cleave them between nucleotide positions 10 and 11 of the guide piRNA (Reuter et al.,
85 2011; Iwasaki et al., 2015). The cleaved fragments of TE mRNA induce the production of
86 more TE-targeting piRNAs through a feed-forward loop called the ping-pong cycle, which
87 amplifies the cell's post-transcriptional TE silencing response (Brennecke et al.,
88 2007; Gunawardane et al., 2007; Castel and Martienssen, 2013). Although present in both
89 males and females, there are sex-specific differences in activity of the piRNA pathway,
90 which may be associated with sex-biased contributions to overall genomic TE load (Saint-
91 Leandre et al., 2020).

92 In lobe-finned fishes (tetrapods, coelacanth, and lungfishes), TE silencing is also
93 carried out by a large family of transcriptional modulators called the Krüppel-associated box
94 domain-containing zinc-finger proteins (KRAB-ZFPs) (Imbeault et al., 2017). These proteins
95 include an array of zinc fingers, each of which binds short DNA sequences such that,
96 together, they confer specificity to individual TE families (Thomas and Schneider, 2011).
97 These proteins also include the KRAB domain, which recruits KAP1/TRIM28 and, in turn, a
98 silencing complex of proteins that establish a repressive chromatin structure at TE loci (Ecco
99 et al., 2017).

100 Although these TE silencing pathways are broadly conserved phylogenetically and
101 functionally critical for maintaining genome integrity, they nonetheless evolve (Parhad and
102 Theurkauf, 2019). Our work is motivated by the hypothesis that their evolution contributes to
103 variation in TE content, and therefore overall genome size, across the tree of life (Mueller,
104 2017). Species that are extreme genome size outliers provide a powerful test of this
105 hypothesis, as they are predicted to harbor strong signatures of divergent TE silencing
106 compared with genomes of more typical size.

107 Among vertebrates, extreme genome expansion through TE accumulation evolved
108 independently in salamanders and in lungfishes, with large increases in both lineages
109 occurring over 200 million years ago (Liedtke et al., 2018; Meyer et al., 2021). Salamanders
110 are one of the three clades of living amphibians; there are 775 extant species, and haploid
111 genome sizes range from 9 to 120 Gb, reflecting ongoing genome size evolution
112 (AmphibiaWeb, 2022; Gregory, 2022). Lungfishes are the sister taxon to tetrapods; there are 6
113 extant species, and haploid genome size estimates range from 40 Gb to 130 Gb (Meyer et al.,
114 2021). Amphibians also include some of the smallest vertebrate genomes; the ornate
115 burrowing frog *Platyplectrum ornatum* and the New Mexico spadefoot toad *Spea*
116 *multiplicata* have genome sizes of 1.06 and 1.09 Gb, respectively (Lamichhaney et al.,
117 2021; Gregory, 2022).

118 To date, several studies have begun to explore the relationship between TE silencing
119 and genome size among vertebrates. At the smaller extremes, studies of frogs and fish with
120 tiny genomes (≤ 1 Gb) revealed at least one additional duplicate copy of a PIWI gene,
121 suggesting increased activity of the piRNA pathway in silencing TEs in genomes that have
122 undergone size reduction (Malmstrøm et al., 2018; Lamichhaney et al., 2021). At the larger
123 extremes, the data reveal a more complex picture; the Australian and African lungfish
124 genomes (*Neoceratodus forsteri* and *Protopterus annectens*, ≥ 40 Gb) show neither gains nor
125 losses of PIWI or related genes (Biscotti et al., 2017; Meyer et al., 2021). However, the
126 African lungfish genome includes far more KRAB domains than other vertebrate genomes,
127 suggesting a copy-number-based increase in activity. In contrast, the genome of the Mexican
128 axolotl salamander *Ambystoma mexicanum* (~ 34 Gb) (Gregory, 2022) contains a comparable
129 number of KRAB domains to mammalian and non-avian reptile genomes, suggesting no
130 similar increase in this TE silencing activity (Wang et al., 2021b).

131 Expression data reveal a similarly mixed picture: for some piRNA pathway genes,
132 germline expression is higher in salamanders (represented by the fire-bellied newt *Cynops*
133 *orientalis*, ~ 43 Gb) than in the African lungfish, whereas for other genes, the pattern is
134 reversed; comparisons with genomes of more typical size (coelacanth *Latimeria menadoensis*
135 and zebrafish *Danio rerio*) show patterns of both higher and lower germline expression of TE
136 silencing genes in the species with gigantic genomes (Biscotti et al., 2017; Carducci et al.,
137 2021). Small RNA sequence data from the gonads of the northern dusky salamander
138 *Desmognathus fuscus* (~ 15 Gb) reveal lower percentages of TE-mapping piRNAs than are
139 found in smaller genomes, suggesting a less comprehensive TE-targeting piRNA pool in the
140 gigantic genome (Madison-Villar et al., 2016). Taken together, these inconsistent patterns
141 reveal that the relationship between TE silencing pathway activity and genome size evolution

142 remains incompletely understood, and that integrating genomic, transcriptomic, and small
143 RNA analysis is critical for a complete picture.

144 Here we present a detailed analysis of TEs and germline TE silencing activity in the
145 central Asian salamander *Ranodon sibiricus* — a range-restricted species endemic to China
146 and Kazakhstan — adding both phylogenetic (family Hynobiidae) and genome size (~21 Gb)
147 diversity to the small but growing dataset on TE silencing in gigantic genomes
148 (AmphibiaWeb, 2022; Gregory, 2022). We quantify the expression of TEs in the male and
149 female gonads, and we complement this data with analyses of the genomic TE landscape and
150 TE amplification histories to reveal what TE superfamilies are active in the *R. sibiricus*
151 genome. We quantify small RNAs expressed in male and female gonads and test whether
152 small RNAs targeting TEs for silencing are expressed and amplified in proportion to TE
153 expression. We quantify the relative expression of genes encoding proteins from two TE
154 silencing pathways — piRNA and KRAB-ZFP. Finally, we extend these latter analyses to
155 other vertebrates with a range of genome sizes to test for changes in TE silencing
156 accompanying extreme increases in genome size.

157

158

159 2 Results

160

161 2.1 The genome of *R. sibiricus* contains diverse known, active TE superfamilies

162 We estimated the haploid genome size of *R. sibiricus* to be 17 Gb; averaging our result with
163 published estimates (22.3 or 24.8 Gb) yields 21.3 Gb (Gregory, 2022). We used the PiRATE
164 pipeline (Berthelier et al., 2018), which was designed to mine and classify repeats from low-
165 coverage genomic shotgun data in taxa that lack genomic resources. The pipeline yielded
166 109,909 repeat contigs (Table 1). RepeatMasker mined the most repeats (75,381 out of
167 109,909; 68.6%), followed by dnaPipeTE (21.9%), RepeatScout (3.3%), RepeatModeler
168 (2.9%), and TE-HMMER (2.8%). TEdenovo, LTRharvest, HelSearch, SINE-Finder, and
169 MITE-Hunter found few repeats, and MGEScan-non-LTR found none.

170 Repeat contigs were annotated as TEs to the levels of order and superfamily in
171 Wicker's hierarchical classification system (Wicker et al., 2007), modified to include several
172 recently discovered TE superfamilies, using PASTEC (Hoede et al., 2014). Of the 109,909
173 identified repeat contigs, 1,088 were filtered out as potential chimeras, 275 were classified as
174 potential multiple-copy host genes, and 54,221 (49.33%) were classified as known TEs
175 (Table 2), representing 23 superfamilies in eight orders as well as retrotransposon and
176 transposon derivatives.

177 To calculate the proportion of different repeats in the genome, shotgun reads were
178 masked with RepeatMasker using two *R. sibiricus*-derived repeat libraries: excluding or
179 including unknown repeats. This comparison provided a rough approximation of the quantity
180 of unknown repeats that were TE-derived, but divergent, fragmented, or otherwise
181 unidentifiable by our pipeline.

182 Class I TEs (retrotransposons) make up 28.90%–48.43% (unknown repeats included
183 or excluded in the repeat library, respectively) of the *R. sibiricus* genome; they are over 4
184 times more abundant than Class II TEs (DNA transposons; 5.48%–12.11%). *LINE/Jockey* is
185 the most abundant superfamily (9.69%–12.12% of the genome), followed by *LINE/L1*
186 (5.04%–6.62%), *LTR/Gypsy* (3.85–6.50%), and *TRIM* (3.80%–9.76%); all are
187 retrotransposons or retrotransposon derivatives (Table 2). *TIR/PIF-harbinger* (2.98%–
188 4.22%), *TIR/hAT* (1.12%–1.15%), and *MITE* (0.56%–4.07%) are the most abundant
189 superfamilies of DNA transposons/transposon derivatives (Table 2).

190 Diversity of the overall genomic TE community was measured using both Simpson's
191 and Shannon diversity indices, considering TE superfamilies as "species" and the total

192 number of base pairs for each annotated superfamily as individuals per “species.” The Gini-
193 Simpson Index (1-D) is 0.83, and the Shannon Index H is 1.92, similar to estimates of
194 genomic diversity from other salamander species (Wang et al., 2021a; Haley and Mueller,
195 2022).

196 Seventeen superfamilies and three retrotransposon or transposon derivatives (each
197 covering more than 0.05% of the genome) were selected for summaries of overall
198 amplification history, generated by plotting the genetic distances between individual reads
199 (representing TE loci) and the corresponding ancestral TE sequences as a histogram, with
200 bins of 1%. All of the resulting distributions showed characteristics of ongoing or recent
201 activity (*i.e.*, presence of TE sequences < 1% diverged from the ancestral sequence) (Figure
202 1).

203 Ten of these showed right-skewed, essentially monotonically decreasing distributions
204 with a maximum or near-maximum at < 1% diverged from the ancestral sequence: *LTR/ERV*,
205 *LTR/Copia*, *LTR/Bel-Pao*, *LINE/Jockey*, *LINE/L1*, *SINE/5S*, *LARD*, *TIR/hAT*, *MITE*, and
206 *Helitron/Helitron*, suggesting TE superfamilies or derivatives that continue to be replicating
207 today at their highest-ever rates of accumulation. In contrast, ten TE superfamilies or
208 derivatives showed right-skewed, uni- or multimodal distributions: *LTR/Gypsy*, *DIRS/DIRS*,
209 *PLE/Penelope*, *LINE/I*, *LINE/RTE*, *TRIM*, *TIR/PIF-Harbinger*, *TIR/Tc1-Mariner*,
210 *TIR/PiggyBac*, and *Maverick/Maverick*. These 10 distributions suggest TE superfamilies that
211 continue to be active today, but whose accumulation peaked at some point in the past.
212

213 **2.2 Germline relative TE expression is higher in males than females, but is correlated 214 with genomic abundance in both sexes**

215 Our *de novo* gonad transcriptome assembly yielded 510,439 contigs (N50 = 1,250 bp; min
216 and max contig lengths = 201 bp and 28,590 bp; total assembly length = 362,097,394 bp).
217 The BUSCO pipeline revealed the presence of 95.3% of core vertebrate genes and 89.8% of
218 core tetrapod genes. 47,182 contigs were annotated as TEs (representing 28 superfamilies),
219 64,409 as endogenous genes (representing 28,283 different genes), and 1,257 as having both
220 a TE and an endogenous gene; the majority of contigs (72%) remained unannotated.

221 Endogenous genes account for the majority of expression in the gonads of both sexes
222 (68% and 51% of summed TPM in females and males, respectively), followed by
223 unannotated contigs (29% and 42%). Relative expression of TEs is an order of magnitude
224 lower than endogenous gene expression in both sexes (2.4% and 5.6%) (Table 3,
225 Supplementary File S3). Nine superfamilies (*LTR/Retrovirus*, *LINE/R2*, *SINE/7SL*,
226 *TIR/MuDR*, *TIR/CACTA*, *TIR/ISL2EU*, *TIR/Ginger*, *TIR/Academ*, *TIR/P*) were detected at
227 low expression levels in the transcriptome but were not initially detected in the genomic data
228 (Table 2); mapping the genomic reads to these transcriptome contigs with Bowtie2 identified
229 an average of 4 reads per superfamily, indicating their extremely low frequency in the
230 genome. In contrast, only one superfamily (*LTR/Bel-Pao*) was detected in the genomic data
231 but not in the transcriptome data. Overall, 19 superfamilies were identified both in the
232 genomic contigs and transcriptome contigs.

233 In ovaries, autonomous TEs account for 8.9% of the total transcriptome contigs and
234 1.8% of the overall transcripts (summed TPM = 17,890) (Table 3). Non-autonomous TEs
235 account for only 0.6% of the total transcriptome contigs, but still represent 0.6% of the
236 overall transcripts (summed TPM = 5,538). In testes, relative TE expression is more than
237 double that seen in females, with 4.4% and 1.2% of the overall gonad transcriptome
238 accounted for by autonomous and non-autonomous TEs, respectively.

239 Differential expression analysis identified 780 contigs of 18 TE superfamilies as
240 differently expressed between testes and ovaries. 678 TE transcripts were more highly
241 expressed in testes, while only 102 TE transcripts were more highly expressed in ovaries

242 (Figure 2A). Of the nine superfamilies with more than ten differentially expressed transcripts
243 between males and females, eight of them showed significantly higher relative expression in
244 testes than ovaries, and one showed a non-significant trend towards higher testis expression
245 (Figure 2B). Across the 19 TE superfamilies detected in both the genomic and transcriptomic
246 datasets, genomic abundance is positively correlated with overall relative expression both in
247 ovaries ($R = 0.786$, $P < 0.001$) and testes ($R=0.837$, $P < 0.001$), with male relative expression
248 higher overall (Figure 2C).
249

250 **2.3 Expression of TE-mapping piRNAs correlates with TE expression in the gonads**

251 In both testes and ovaries, the length distribution of small RNAs includes a peak at 29
252 nucleotides (Figure 3A), and sequences up to 30 nt show a strong 5'-U bias at the first
253 nucleotide position, consistent with expectations for the piRNA pool (Figure 3B). In ovaries,
254 there is a second peak at 22 nucleotides. The relative expression of putative piRNAs (25–30
255 nt) is lower in females than in males. In contrast, the relative expression of ~22 nt RNAs is
256 higher in females than in males; 41%–59% of 22 nt RNAs correspond to known miRNAs in
257 females, versus 37%–41% in males.

258 A higher percentage of total putative piRNAs map to TEs in females than in males; on
259 average, 22.7% map in the antisense direction and 23.5% map in the sense direction in
260 females, and 11.0% map in the antisense direction and 10.1% map in the sense direction in
261 males. Considering unique putative piRNA sequences, 16.9% map in the antisense direction
262 and 17.1% map in the sense direction in females, and 15.1% map in the antisense direction
263 and 14.7% map in the sense direction in males. Overall, more total putative piRNAs map to
264 TEs in males than females, although the ranges overlap (1,264,088–3,045,727 in males vs.
265 897,586–2,503,814 in females) (Figure 3B).

266 In both sexes, we identify a peak overlap length between TE-mapping sense and anti-
267 sense piRNAs of 10 base pairs, consistent with ping-pong amplification of piRNAs in
268 response to TE transcription (Figure 3C, Supplementary S5, S6). The strength of the ping-
269 pong signal, indicated by the Z-scores of the 10-nt overlap, is greater in females.

270 piRNA expression is correlated with TE expression, measured at the TE superfamily
271 level, in both females and males (Figure 4, Supplementary File S4). At higher levels of TE
272 expression, females show a trend of having more piRNAs relative to TE expression level than
273 males.
274

275 **2.4 Germline expression of piRNA pathway genes is higher in males in *R. sibiricus*, 276 whereas KRAB-ZFP silencing and miRNA pathway genes are higher in females**

277 The expression of piRNA pathway genes in *R. sibiricus* is higher in testes than in ovaries,
278 measured both relative to miRNA pathway gene expression and as TPM (Figure 5;
279 Supplementary Files 6,7). In contrast, the expression of genes establishing a repressive
280 transcriptional environment (NuRD complex + related proteins) is comparable between the
281 sexes relative to miRNA pathway gene expression and slightly higher in females measured as
282 TPM. The expression of TRIM28 — which links KRAB-ZFP proteins to the NuRD complex
283 + related proteins — is higher in females than males relative to miRNA expression, yet
284 miRNA pathway expression levels (TPM) are slightly higher in females (consistent with
285 higher miRNA expression, Figure 3; Supplementary Files 6,7). Taken together, these results
286 suggest that males may rely more heavily on piRNA machinery to recruit repressive
287 transcriptional machinery, whereas females may rely more heavily on KRAB-ZFP proteins to
288 recruit repressive transcriptional machinery.
289

290 **2.5 Relative expression of TE silencing pathways between males and females varies 291 across species**

292 Across species, higher piRNA pathway expression relative to miRNA pathway expression in
293 males is seen in the majority of taxa across the range of genome sizes; the exceptions are
294 *Gallus gallus* and *Protopterus annectens* (Figure 5, Supplementary File S6). Similarly, higher
295 miRNA pathway expression in females (TPM) is seen in all taxa except *G. gallus* and *D.*
296 *rerio*, although the difference is not always as pronounced as in *R. sibiricus* (Supplementary
297 File S7). *Platylectrum ornatum*, *Anolis carolinensis*, and *C. orientalis* show the same pattern
298 of TE silencing expression differences between males and females as in *R. sibiricus*, with
299 higher reliance on piRNA machinery in males and higher reliance on KRAB-ZFP in females.
300 However, this pattern does not hold in other taxa (Figure 5).

301

302 **2.6 Germline expression of TE silencing machinery does not correlate with genome size 303 in either sex**

304 Across the range of genome sizes from ~1 Gb to ~130 Gb, we find no correlations between
305 genome size and 1) the expression of piRNA processing genes, 2) NuRD complex and
306 associated genes establishing a repressive transcriptional environment, or 3) TRIM28.
307 Interestingly, five of the six highest piRNA pathway expression levels are found in
308 amphibians, the clade with the most variation in genome size (Figure 5, Supplementary File
309 S9).

310

311 **3 Discussion**

312 **3.1 Permissive TE environment despite comprehensive piRNA-mediated silencing**

313 The transposable element community in *Ranodon sibiricus* is comparable in diversity to other
314 gigantic amphibian genomes and shares many of the same abundant TE superfamilies (e.g.,
315 LTR/Gypsy, DIRS and LINE/L1) (Sun et al., 2012; Sun and Mueller, 2014; Wang et al.,
316 2021a). However, *R. sibiricus* differs from other salamanders in having high levels of
317 LINE/Jockey, a superfamily shown to be abundant in the caecilian *Ichthyophis bannanicus*,
318 but rare in other salamanders (Wang et al., 2021a). Both genomic and transcriptomic data
319 suggest that all TE superfamilies are potentially experiencing ongoing transposition in *R.*
320 *sibiricus*. Thus, like other gigantic amphibian genomes, *R. sibiricus* appears to have attained
321 its large size because of the expansion of multiple types of TEs, supporting the notion of
322 amphibian genomes as permissive TE environments. At the same time, all of these putatively
323 active TE superfamilies are targeted by piRNAs, and piRNA levels are correlated with TE
324 expression at the superfamily level, consistent with patterns in *Drosophila* and suggesting
325 that the scope, if not efficacy, of TE silencing in *Ranodon sibiricus* is comparable to other
326 species (Kelleher and Barbash, 2013; Saint-Leandre et al., 2020).

327

328 **3.2 Sex-biased TE expression and silencing**

329 Transposable element expression is higher in *R. sibiricus* testes than ovaries, a pattern
330 also reported in *Drosophila* (Wei et al., 2022) and *Oryzias latipes* (the medaka fish) (Saint-
331 Leandre et al., 2020; Dechaud et al., 2021), but opposite the pattern reported in *Corvus corone*
332 (carrion crow) (Warmuth et al., 2022) and different from the non-sex-biased TE expression in
333 the fire-bellied newt *Cynops orientalis* (Carducci et al., 2021). In *Drosophila*, testes
334 expression levels of TE-mapping piRNAs and piRNA pathway genes, as well as the ping-
335 pong signature, are lower than ovary expression levels, suggesting that lower male piRNA-
336 mediated silencing contributes to higher male TE expression (Saint-Leandre et al., 2020; Chen
337 et al., 2021). In *O. latipes*, on the other hand, testes expression levels of TE-mapping piRNAs
338 are higher than ovary expression levels — a pattern also observed in zebrafish — suggesting
339 that higher male piRNA-mediated silencing may actually be correlated with high male TE
340 expression in these two fish species (Houwing et al., 2007; Kneitz et al., 2016). In *R. sibiricus*,
341 TE-mapping piRNA counts are similar between the sexes, despite higher relative expression

342 of putative piRNAs in males than females (Figure 3a,b). However, the ping-pong
343 amplification signature is higher in females, as is the number of piRNAs per expressed TE
344 transcript, suggestive of a more robust piRNA-directed silencing response in females (Figure
345 3c, 4). On the other hand, the piRNA pathway protein expression levels are higher in males,
346 suggesting the opposite case of a more robust response in males (Figure 5).

347 Sex-specific differences in gonadal TE expression have also been explained by factors
348 other than variation in TE silencing; for example, in systems with heteromorphic sex
349 chromosomes, sex-biased TE expression has been attributed to different TE dynamics on the
350 sex-limited chromosome (Y in XY systems, or W in ZW systems). TE abundance is higher
351 on sex-limited chromosomes because of lower effective population size, lack of
352 recombination, and lower gene density. In addition, TE expression per locus has been shown
353 to be higher on the sex-limited chromosome itself—as well as genome-wide—in the
354 heterogametic sex in *Drosophila* (Y, males) and in crows (*Corvus corone*; W, females) (Wei
355 et al., 2020; Warmuth et al., 2022). The mechanism for higher TE expression in the
356 heterogametic sex in these cases remains incompletely understood, but may involve TEs
357 affecting their own genome-wide regulation *in trans* or the heightened conflict between
358 creating a repressive chromatin state to silence TEs while maintaining open chromatin to
359 allow genic transcription on a degenerating chromosome (Wei et al., 2020; Warmuth et al.,
360 2022). Neither *Ranodon sibiricus* nor *Oryzias latipes* has heteromorphic sex chromosomes
361 (Hillis and Green, 1990; Matsuda et al., 2002; Evans et al., 2012; Perkins et al., 2019), yet both
362 show sex-biased TE expression, and only *Oryzias* shows unambiguous sex-biased TE-
363 targeting piRNA expression; taken together, these data reveal that the difference in TE
364 expression between sexes reflects different underlying causes across species. The
365 relationships among sex-biased TE expression, sex determination, and TE silencing are an
366 important target for future research, but irrespective of the underlying mechanisms, the sex
367 with higher TE activity contributes more to the species' genomic TE load. In *R. sibiricus*, that
368 sex is the male, provided that TE expression is a reasonable proxy for transposition.

369 **3.3 The TE-silencing arms race dynamic across genome sizes**

370 Transposable elements and the silencing machinery of their hosts are engaged in an arms race
371 in which a novel TE family initially proliferates, the host evolves silencing based on TE
372 sequence identification, and the TE subsequently diverges to evade silencing—or that
373 particular TE remains permanently silenced, but a novel TE invades the host genome and
374 begins the cycle anew (Luo et al., 2020; Zhang et al., 2020; Said et al., 2022; Wei et al., 2022).
375 If balanced by deletion of TE sequences, this arms-race dynamic can be associated with fairly
376 stable genome size over evolutionary timescales, despite turnover in TE content (Kapusta et
377 al., 2017). To yield an overall evolutionary trend in genome size, the long-term balance
378 between TE insertion and deletion has to become skewed in favor of one or the other, with
379 deletion bias leading to genome contraction and insertion bias leading to genome expansion
380 (Nam and Ellegren, 2012).

381 It has been suggested in the literature that large genomes may be manifestations of an
382 arms race between TEs and the silencing of their hosts, but that this arms race involves the
383 TE community as a whole rather than individual TE families—and the species with the
384 gigantic genome has been interpreted as both the current “attacker” and “defender” in the
385 arms race. For example, Meyer et al (2021) suggested that TE silencing machinery did not
386 adapt to reduce TE expansion in the Australian lungfish, based on high genomic TE
387 abundance and ongoing TE expression. In the strawberry poison dart frog, which has a
388 moderately expanded genome size of 6.76 Gb, a widespread failure to silence TEs was
389 suggested based on high genomic TE abundance, germline TE expression of diverse TEs, and
390 the presence of an identified *piwi2* and *piwi3* transcript in only one individual sampled each

391 (Rogers et al., 2018). In the salamander *Desmognathus fuscus*, less comprehensive piRNA
392 pathway-mediated TE silencing was suggested based on a relatively low percentage of TE-
393 mapping piRNAs (Madison-Villar et al., 2016). In all three of these examples, the TEs are
394 suggested to be currently on the attack. On the other hand, in the African lungfish, Wang et
395 al. (2021) suggested that the KRAB-ZFP TE transcriptional silencing machinery has
396 expanded in scope in response to the high genomic TE load. Similarly, in the fire-bellied
397 newt *Cynops orientalis*, it was suggested that TE silencing is now enhanced in response to
398 high TE load, which accumulated in the past during a period of increased TE mobilization
399 (Carducci et al., 2021). In both of these examples, the TEs are suggested to be currently on
400 the defensive. Thus, two opposite predictions for TE silencing in gigantic genomes — either
401 increased or decreased — have been proposed to be met in different extant organisms, albeit
402 with datasets that are not necessarily comparable. This apparent conflict can be resolved by
403 considering that the attack/defense status of TEs and their silencing reflect where the lineage
404 currently exists in the dynamic cycle between TE and host dominance. Our results revealing
405 no consistent pattern in TE silencing pathway expression levels and genome size (Figure 5)
406 are consistent with this interpretation. At large sizes, it is not the size of the genome itself that
407 likely predicts the efficacy of the TE silencing machinery, but more likely the directional
408 trend in genome size evolution; genomes that are contracting are more likely to have effective
409 TE silencing, whereas genomes undergoing expansion are more likely to have reduced TE
410 silencing. In the absence of comparable data (including small RNA, TE expression and
411 amplification, and silencing pathway expression) for other species with known trends in
412 genome size evolution, we opt for a conservative position and do not infer *Ranodon sibiricus*'
413 current position in the TE/host dynamic arms race cycle.

414 The mechanisms by which global TE silencing mechanisms can be subverted by a
415 community of TEs, and then evolve to regain stricter control, are not yet well-understood. A
416 few studies in invertebrates have begun to reveal differences in TE and silencing dynamics in
417 genomes of different sizes. In a pairwise comparison of grasshopper species with different
418 genome sizes, Liu et al. revealed that the species with the larger genome had higher TE
419 expression, lower piRNA abundance, and lower expression of the piRNA biogenesis gene
420 *HENMT*, which suggested that lower piRNA-mediated TE silencing was permissive to higher
421 TE activity and genome expansion (Liu et al., 2022). A comparison between *Drosophila*
422 *melanogaster* and the mosquito *Aedes aegypti*, which has a larger genome (1.38 Gb versus
423 180 Mb), revealed that the mosquito has a higher TE load and a smaller percentage of TE-
424 mapping piRNAs (Arensburger et al., 2011). Future studies that leverage the large range of
425 genome sizes present in vertebrates, emphasizing comprehensive across-species data on TE
426 activity and TE silencing in a phylogenetic context to allow ancestral genome size
427 reconstruction, will continue to shed light on how TEs and their hosts coevolve to achieve
428 gigantic genomes.

429

430 **4 Materials and methods**

431 **4.1 Specimen information**

432 We collected three male adult *Ranodon sibiricus* from the wild of Wenquan County, Xinjiang
433 Uygur Autonomous Region of China, and egg-hatched and raised one male and four females
434 in an aquarium of Xinjiang Normal University from eggs originally collected from the same
435 field site as the wild males. All these individuals were collected during the breeding season of
436 August, 2017, and all adults had a snout-tail length of 16–21 cm and a body mass of 12–35 g
437 prior to euthanasia (Supplementary File S1). Wild-caught adults were euthanized upon return
438 to the laboratory and were not kept alive in captivity. Collection, hatching, and euthanasia
439 were performed following Animal Care & Use Protocols approved by Chengdu Institute of
440 Biology, Chinese Academy of Sciences.

441
442

4.2 Genome size estimation

443 Blood smears were prepared from a formalin-fixed specimen of *Ranodon sibiricus* and
444 nuclear area was measured from Fuelgen-stained red blood cell nuclei using the ImagePro®
445 image analysis program (Itgen et al., 2022). Blood smears of the reference standards
446 *Ambystoma mexicanum* (34 Gb; Gregory, 2022) and the Iberian ribbed newt *Pleurodeles*
447 *walzl* (20 Gb; Gregory 2022) were prepared and analyzed at the same time under the same
448 conditions.

449

450 4.3 Genomic shotgun library creation, sequencing, and assembly

451 Total DNA was extracted from muscle tissue using the modified low-salt CTAB extraction of
452 high-quality DNA procedure (Arseneau et al., 2017). DNA quality and concentration were
453 assessed using agarose gel electrophoresis and a NanoDrop Spectrophotometer
454 (ThermoFisher Scientific, Waltham, MA), and a PCR-free library was prepared using the
455 NEBNext Ultra DNA Library Prep Kit for Illumina. Sequencing was performed on one lane
456 of a Hiseq 2500 platform (PE250). Library preparation and sequencing were performed by
457 the Beijing Novogene Bioinformatics Technology Co. Ltd. Raw reads were quality-filtered
458 and adaptor-trimmed using Trimmomatic-0.39 (Bolger et al., 2014) with default parameters.
459 In total, the genomic shotgun dataset included 11,960,858 reads. After filtering and trimming,
460 11,168,678 reads covering a total length of 2,314,096,923 bp remained. Thus, the sequencing
461 coverage is about 10.1% (0.1X coverage). Filtered, trimmed reads were assembled into
462 contigs using dipSPAdes 3.12.0 (Bankevich et al., 2012) with default parameters, yielding
463 478,991 contigs with an N50 of 447 bp and a total length of 249,425,929 bp.

464

465 4.4 Mining and classification of repeat elements

466 The PiRATE pipeline was used as in the original publication (Berthelier et al., 2018),
467 including the following steps: **1)** Contigs representing repetitive sequences were identified
468 from the assembled contigs using similarity-based, structure-based, and repetitiveness-based
469 approaches. The similarity-based detection programs included RepeatMasker v-4.1.0
470 (<http://repeatmasker.org/RepeatMasker/>, using Repbase20.05_REPET.embl.tar.gz as the
471 library instead) and TE-HMMER (Eddy, 2011). The structural-based detection programs
472 included LTRharvest (Ellinghaus et al., 2008), MGEScan non-LTR (Rho and Tang, 2009),
473 HelSearch (Yang et al., 2009), MITE-Hunter (Han and Wessler, 2010), and SINE-finder
474 (Wenke et al., 2011). The repetitiveness-based detection programs included TEdenovo
475 (Flutre et al., 2011) and RepeatScout (Price et al., 2005). **2)** Repeat consensus sequences
476 (e.g., representing multiple subfamilies within a TE family) were also identified from the
477 cleaned, filtered, and unassembled reads with dnaPipeTE (Goubert et al., 2015) and
478 RepeatModeler (<http://www.repeatmasker.org/RepeatModeler/>). **3)** Contigs identified by
479 each individual program in steps 1 and 2, above, were filtered to remove those < 100 bp in
480 length and clustered with CD-HIT-est (Li and Godzik, 2006) to reduce redundancy (100%
481 sequence identity cutoff). This yielded a total of 155,999 contigs. **4)** All 155,999 contigs were
482 then clustered together with CD-HIT-est (100% sequence identity cutoff), retaining the
483 longest contig and recording the program that classified it. 46,090 contigs were filtered out at
484 this step. **5)** The remaining 109,909 repeat contigs were annotated as TEs to the levels of
485 order and superfamily in Wicker's hierarchical classification system (Wicker et al., 2007),
486 modified to include several recently discovered TE superfamilies using PASTEC (Hoede et
487 al., 2014), and checked manually to filter chimeric contigs and those annotated with
488 conflicting evidence (Supplementary File S2). **6)** All classified repeats ("known TEs"
489 hereafter), along with the unclassified repeats ("unknown repeats" hereafter) and putative
490 multi-copy host genes, were combined to produce a *Ranodon*-derived repeat library. **7)** For

491 each superfamily, we collapsed the contigs to 95% and 80% sequence identity using CD-
492 HIT-est to provide an overall view of within-superfamily diversity; 80% is the sequence
493 identity threshold used to define TE families (Wicker et al., 2007).

494

495 **4.5 Characterization of the overall repeat element landscape**

496 Overlapping paired-end shotgun reads were merged using PEAR v.0.9.11 (Zhang et al.,
497 2014) with the following parameter values based on our library insert size and trimming
498 parameters: min-assemble-length 36, max-assemble-length 490, min-overlap size 10. After
499 merging, 7,385,166 reads remained (including both merged and singletons), with an N50 of
500 388 bp and total length of 1,997,175,501 bp. To calculate the percentage of the *R. sibiricus*
501 genome composed of different TEs, these shotgun reads were masked with RepeatMasker v-
502 4.1.0 using two versions of our *Ranodon*-derived repeat library: one that included the
503 unknown repeats and the other that excluded them. In both cases, simple repeats were
504 identified using the Tandem Repeat Finder module implemented in RepeatMasker. The
505 overall results were summarized at the levels of TE class, order, and superfamily.

506

507 **4.6 Measuring diversity of the genomic TE community**

508 Unknown repeats were excluded from the analysis, as were TEs that could only be annotated
509 down to the level of Class. Simpson's diversity index is expressed as the variable D,
510 calculated by: $D = \frac{\sum n(n-1)}{N(N-1)}$ (Simpson, 1949). D is the probability that two individuals at
511 random pulled from a community will be from the same species. We report 1 – D, or the
512 Gini-Simpson's index, which is more intuitive. The Shannon's diversity index H is calculated
513 by: $H = -\sum_{i=1}^s p_i \ln p_i$ (Shannon, 1948). The higher the value of H, the greater the diversity.

514

515 **4.7 Amplification history of TE superfamilies**

516 To summarize the overall amplification history of TE superfamilies and test for ongoing
517 activity, the perl script parseRM.pl (Kapusta et al., 2017) was used to parse the raw output
518 files from RepeatMasker (.align) and report the sequence divergence between each read and
519 its respective consensus sequence (parameter values = -l 50,1 and -a 5). The repeat library
520 used to mask the reads comprised the 55,327 TE contigs classified by the PiRATE pipeline
521 and clustered at 100% sequence identity. Each TE superfamily is therefore represented by
522 multiple consensus sequences corresponding to the family and subfamily TE taxonomic
523 levels (i.e., not the distant common ancestor of the entire superfamily). For each superfamily,
524 histograms were plotted to summarize the percent divergence of all reads from their closest
525 (i.e., least divergent) consensus sequence. These histograms do not allow the delineation
526 between different amplification dynamics scenarios (i.e., a single family with continuous
527 activity *versus* multiple families with successive bursts of activity). Rather, these global
528 overviews were examined for overall shapes consistent with ongoing activity (i.e., the
529 presence of TE loci < 1% diverged from the ancestral sequence and a unimodal, right-
530 skewed, J-shaped, or monotonically decreasing distribution).

531

532 **4.8 Transcriptome library creation, sequencing, assembly, and TE annotation**

533 Total RNA was extracted separately from testes ($n = 4$) and ovary ($n = 4$) tissues using
534 TRIzol (Invitrogen). For each sample, RNA quality and concentration were assessed using
535 agarose gel electrophoresis, a NanoPhotometer spectrophotometer (Implen, CA), a Qubit 2.0
536 Fluorometer (ThermoFisher Scientific), and an Agilent BioAnalyzer 2100 system (Agilent
537 Technologies, CA), requiring an RNA integrity number (RIN) of 8.5 or higher; one ovary
538 sample failed to meet these quality standards and was excluded from downstream analyses.
539 Sequencing libraries were generated using the NEBNext Ultra RNA Library Prep Kit for

540 Illumina following the manufacturer's protocol. After cluster generation of the index-coded
541 samples, the library was sequenced on one lane of an Illumina Hiseq 4000 platform (PE 150).
542 Transcriptome sequences were filtered using Trimmomatic-0.39 with default parameters
543 (Bolger et al., 2014). 30,848,170 to 39,695,323 reads were retained for each testis or ovary
544 sample, and in total, 290,925,984 reads remained, with a total length of 42,385,060,050 bp.
545 Remaining reads of all testes and ovary samples were combined and assembled using Trinity
546 2.12.0 (Haas et al., 2013), yielding 573,144 contigs (i.e., putative assembled transcripts).
547 Contigs were clustered using CD-hit-est (95% identity). Completeness of this final *de novo*
548 transcriptome assembly were assessed using the BUSCO pipeline (Simao et al., 2015).

549 Expression levels of contigs in each sample were measured with Salmon (Patro et al.,
550 2017), and contigs with no raw counts were removed. To annotate the remaining contigs
551 containing autonomous TEs, BLASTp and BLASTx were used against the Repbase Database
552 (downloaded on January 5, 2022) with an E-value cutoff of 1E-5 and 1E-10, respectively.
553 The aligned length coverage was set to exceed 80% of the queried transcriptome contigs. To
554 annotate contigs containing non-autonomous TEs, RepeatMasker was used with our
555 *Ranodon*-derived genomic repeat library of non-autonomous TEs (LARD-, TRIM-, MITE-,
556 and SINE-annotated contigs) and the requirement that the transcriptome/genomic contig
557 overlap was > 80 bp long, > 80% identical in sequence, and covered > 80% of the length of
558 the genomic contig. Contigs annotated as conflicting autonomous and non-autonomous TEs
559 were filtered out.

560 To identify contigs that contained endogenous *R. sibiricus* genes, the Trinotate
561 annotation suite (Bryant et al., 2017) was used with an E-value cutoff of 1E-5 for both
562 BLASTx and BLASTp against the Uniport database, and 1E-5 for HMMER against the Pfam
563 database (Wheeler and Eddy, 2013). To identify contigs that contained both a TE and an
564 endogenous gene (i.e., putative cases where a TE and a gene were co-transcribed on a single
565 transcript), all contigs that were annotated both by Repbase and Trinotate were examined,
566 and the ones annotated by Trinotate to contain a TE-encoded protein (i.e., the contigs where
567 Repbase and Trinotate annotations were in agreement) were not further considered. The
568 remaining contigs annotated by Trinotate to contain a non-TE gene (i.e., an endogenous
569 *Ranodon* gene) and also annotated either by Repbase to include a TE-encoded protein or by
570 RepeatMasker to include a non-autonomous TE were identified for further examination and
571 expression-based analysis.

572
573 **4.9 Germline TE expression quantification in males and females**
574 Expression levels of the individual TE superfamilies were calculated by averaging the TPM
575 values among replicates of each sex and then summing the average TPM of all contigs
576 annotated to each superfamily. For TE superfamilies detected in both the genomic and
577 transcriptomic datasets, we tested for a relationship between genomic abundance and
578 expression levels in each sex using linear regression on log-transformed data.

579 To identify differentially expressed contigs between males and females, DESeq2
580 (Love et al., 2014) was used with an adjusted P-value cut off of 0.05. Among the 15,011 total
581 differentially expressed transcripts between sexes (including TEs, endogenous genes, and
582 unannotated contigs), 869 were TEs, representing 18 superfamilies and other unknown TEs.
583 Superfamilies with fewer than 10 differentially expressed transcripts between sexes were
584 removed, leaving 9 superfamilies; for each, we tested for a difference in expression between
585 males and females using a t-test.

586
587 **4.10 Identification of putative piRNAs from small RNA-seq data**
588 Small RNA libraries were prepared for each sample using the NEBNext® Multiplex Small
589 RNA Library Prep Set for Illumina® (NEB, USA) following the manufacturer's

590 recommendations, and index codes were added to attribute sequences to each sample. Briefly,
591 the NEB 3' SR Adaptor (5'-AGATCGGAAGAGCACACGTCT-3') was ligated to the 3' end
592 of small RNA molecules. After the 3' ligation reaction, the SR RT Primer was hybridized to
593 the excess 3' SR Adaptor (that remained free after the 3' ligation reaction), transforming the
594 single-stranded DNA adaptor into a double-stranded DNA molecule (dsDNAs). This step was
595 important for preventing adaptor-dimer formation, and because dsDNAs are not substrates for
596 ligation mediated by T4 RNA Ligase 1, they therefore would not ligate to the 5' SR Adaptor
597 (5'-GTTCAGAGTTCTACAGTCCGACGATC-3') in the subsequent ligation step. The 5'
598 end adapter was then ligated to the 5' ends of small RNA molecules. First strand cDNA was
599 synthesized using M-MuLV Reverse Transcriptase (RNase H). PCR amplification was
600 performed using LongAmp Taq 2X Master Mix, SR Primer for Illumina, and index primers.
601 PCR products were purified on an 8% polyacrylamide gel (100V, 80 min). DNA fragments
602 corresponding to ~140-160 bp (the length of a small noncoding RNA plus the 3' and 5'
603 adaptors) were recovered and dissolved in 8 µL elution buffer. Library quality was assessed
604 on the Agilent Bioanalyzer 2100 using DNA High Sensitivity Chips. Clustering of index-
605 coded samples was performed on a cBot Cluster Generation System using the TruSeq SR
606 Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer's instructions. After cluster
607 generation, libraries were sequenced on an Illumina Hiseq 2500 platform (SE50).

608 We filtered low-quality sequences using the fastq_quality_filter (-q 20, -p 90) in the
609 FASTX-Toolkit v0.0.13 (http://hannonlab.cshl.edu/fastx_toolkit/). We removed the adapter
610 sequence with a minimum overlap of 10 bp from the 3'-end, discarded untrimmed reads, and
611 selected those with a minimum length of 18 bp and a maximum length of 40 bp (after cutting
612 adapters) and no Ns using cutadapt v2.8 (Martin, 2011). Reads mapping to the mitochondrial
613 genome (NCBI code: AJ419960) and riboRNAs (NCBI codes: DQ283664, AJ279506,
614 MH806872) were identified and filtered out using Bowtie v1.1.0 (Langmead et al., 2009).
615 Overall, more reads were filtered out based on length and rRNA identity in females than
616 males (Supplementary File S5). miRNAs 21-24 nt in length were annotated using Bowtie
617 v1.1.0 to identify hits to miRbase 22.1 (Kozomara et al., 2019) in each male and female.

618 To test for the predicted bias towards U at the first 5' nucleotide position of piRNAs, we
619 calculated the proportion of small RNAs with each nucleotide in the first position. Based on
620 this result, and the overall length distribution of RNAs between 18 and 40 nt, we
621 conservatively defined putative piRNAs as those ranging from 25-30 nt, and we selected
622 these using the seqkit software (Shen et al., 2016). We mapped these putative piRNAs to our
623 transcriptome assembly using Bowtie and identified piRNAs that map to autonomous TEs
624 (i.e. those that include transposition-related ORFs) in the sense and antisense orientations.

626 **4.11 Ping-pong signature analysis**

627 Secondary piRNA biogenesis associated with piRNA-targeted post-transcriptional TE
628 silencing produces a distinctive "ping-pong signature" in the piRNA pool, which consists of a
629 10 bp overlap between the 5' ends of antisense and sense piRNAs. The ping-pong signature
630 for each individual was analyzed using the following approach: First, TE transcripts that were
631 not mapped by both sense-oriented and antisense-oriented piRNAs were filtered out using
632 Bowtie, allowing 0 mismatches for sense mapping under the assumption that piRNAs derived
633 directly from an RNA target should have the identical sequence (Teefy et al., 2020) and 3
634 mismatches for antisense mapping because cleavage of RNA targets can occur with imperfect
635 base-pairing (Zhang et al., 2015). Second, the fractions of overlapping pairs of
636 sense/antisense piRNAs corresponding to specific lengths, as well as the Z-score measuring
637 the significance of each ping-pong signature, were generated using the script of
638 1_piRNA_and_Degradome_Counts.RMD (Teefy et al., 2020).

640 **4.12 Putative piRNAs targeting TE superfamilies**

641 To estimate levels of piRNAs targeting each TE superfamily, putative piRNAs were mapped
642 to the TE transcripts using the ‘align_and_estimate_abundance.pl’ script of Trinity (Haas et
643 al., 2013). Reads per million (RPM) values were calculated for each TE contig and then
644 averaged across individuals of each sex. For each sex, overall putative piRNA levels
645 targeting each TE superfamily were calculated by summing across all contigs annotated to
646 the same TE superfamily. We tested for a correlation between TE superfamily expression
647 level and targeting piRNA abundance using linear regression on the log-transformed
648 variables.

649

650 **4.13 Germline TE silencing pathway expression across genome sizes**

651 To test for an association between overall piRNA or KRAB-ZFP pathway activity and
652 genome size, we first compiled male and female gonad RNA-Seq datasets for vertebrates of
653 diverse genome sizes, including *Platyplectrum ornatum* (ornate burrowing frog), *Gallus*
654 *gallus* (chicken), *Danio rerio* (zebrafish), *Xenopus tropicalis* (Western clawed frog), *Anolis*
655 *carolinensis* (green anole), *Mus musculus* (mouse), *Geotrypetes seraphini* (Gaboon
656 caecilian), *Rhinatremma bivittatum* (two-lined caecilian), and *Caecilia tentaculata* (bearded
657 caecilian) spanning genomes sizes from 1.0 – 5.5 Gb, and *Pleurodeles waltl* (the Iberian
658 ribbed newt), *Ambystoma mexicanum* (the Mexican axolotl), *Cynops orientalis* (the fire-
659 bellied newt), *Protopterus annectens*, and *P. aethiopicus* (African and marbled lungfishes)
660 spanning genome sizes from 20 – ~130 Gb (Supplementary File S8). We performed de novo
661 assemblies using the same pipeline as for *R. sibiricus* on all obtained datasets.

662 We identified transcripts of 21 genes receiving a direct annotation of piRNA
663 processing in vertebrates in the Gene Ontology knowledgebase that were present in the
664 majority of our target species: ASZ1, BTBD18 (BTBD1), DDX4, EXD1, FKBP6, GPAT2,
665 HENMT1 (HENMT), MAEL, MOV10L1 (M10L1), PIWIL1, PIWIL2, PIWIL4, PLD6,
666 TDRD1, TDRD5, TDRD6, TDRD7, TDRD9, TDRD12 (TDR12), TDRD15 (TDR15), and
667 TDRKH. In addition, we identified transcripts of 14 genes encoding proteins that create a
668 transcriptionally repressive chromatin environment in response to recruitment by PIWI
669 proteins or KRAB-ZFP proteins, 12 of which received a direct annotation of NuRD complex
670 in the Gene Ontology knowledgebase and 2 of which were taken from the literature: CBX5,
671 CHD3, CHD4, CSNK2A1 (CSK21), DNMT1, GATAD2A (P66A), MBD3, MTA1, MTA2,
672 RBBP4, RBBP7, SALL1, SETDB1 (SETB1), and ZBTB7A (ZBT7A) (cite Ecco et al 2017)
673 (Wang et al., 2022). Finally, we identified TRIM28, which bridges this repressive complex to
674 TE-bound KRAB-ZFP proteins in lobe-finned fishes (Ecco et al., 2017). For comparison, we
675 identified transcripts of 14 protein-coding genes receiving a direct annotation of miRNA
676 processing in vertebrates in the Gene Ontology knowledgebase, which we did not predict to
677 differ in expression based on genome size: ADAR (DSRAD), AGO1, AGO2, AGO3, AGO4,
678 DICER1, NUP155 (NU155), PUM1, PUM2, SNIP1, SPOUT1 (CI114), TARBP2 (TRBP2),
679 TRIM71 (LIN41), and ZC3H7B. Expression levels for each transcript in each individual were
680 measured with Salmon (Patro et al., 2017) (Supplementary File S9).

681 As a proxy for overall piRNA silencing activity, for each individual, we calculated the
682 ratio of total piRNA pathway expression (summed TPM of 21 genes) to total miRNA
683 pathway expression (summed TPM of 14 genes). As a proxy for transcriptional repression
684 driven by both the piRNA pathway and KRAB-ZFP binding activity, we calculated the ratio
685 of total transcriptional repression machinery expression (summed TPM of 14 genes) to total
686 miRNA pathway expression. Finally, we calculated the ratio of TRIM28 expression to total
687 miRNA pathway expression for each individual. We also calculated these ratios with a more
688 conservative dataset allowing for no missing genes; this yielded 15 piRNA pathway genes, 9

689 KRAB-ZFP genes, and 13 miRNA genes. We plotted these ratios to reveal any relationship
690 between TE silencing pathway expression and genome size.
691

692 **5 Data availability statement**

693 Genomic shotgun and transcriptome sequences have been deposited in the Genome Sequence
694 Archive at the National Genomics Data Center, Beijing Institute of Genomics, Chinese
695 Academy of Sciences/China National Center for Bioinformation (GSA: CRA008892,
696 CRA008899, CRA008900), and are publicly accessible at <http://bigd.big.ac.cn/gsa>.
697

698 **6 Author contributions**

699 **Jie Wang:** Conceptualization, Methodology, Software, Formal analysis, Investigation,
700 Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization,
701 Funding acquisition. **Liang Yuan:** Specimen collection. **Jiaxing Tang Jiongyu Liu, Cheng**
702 **Sun, Michael W. Itgen, & Guiying Chen:** Methodology, Software. **Stanley K. Sessions:**
703 Investigation, Resources. **Guangpu Zhang:** Methodology, Formal analysis, Writing -
704 original draft, Writing - review & editing, Visualization. **Rachel Lockridge Mueller:**
705 Conceptualization, Formal analysis, Investigation, Resources, Writing - original draft,
706 Writing - review & editing, Supervision, Project administration, Funding acquisition. All
707 authors read and approved the final manuscript.
708

709 **7 Funding**

710 This work was supported by the National Natural Science Foundation of China (Grant Nos.
711 32170435, 31570391 to WJ) and the National Science Foundation of USA (Grant No.
712 1911585 to RLM).
713

714 **8 Acknowledgements**

715 We gratefully acknowledge Ye Xu and Yuzhou Gong for target tissue dissection; Xiuling
716 Wang for help in field work; Jianping Jiang, Ava Louise Haley, and Chaochao Yan for their
717 expertise in facilitating data analysis.
718

719 **9 Literature cited**

721 Almeida, M.V., Vernaz, G., Putman, A.L.K., and Miska, E.A. (2022). Taming transposable
722 elements in vertebrates: from epigenetic silencing to domestication. *Trends in*
723 *Genetics* 38, 529-553.

724 Amphibiaweb (2022). AmphibiaWeb: Information on amphibian biology and conservation.
725 Berkeley, California.

726 Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris,
727 P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., Chien, M., Russo, J.J.,
728 Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T. (2006). A novel class of
729 small RNAs bind to MILI protein in mouse testes. *Nature* 442, 203-207.

730 Aravin, A.A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor,
731 T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is
732 linked to de novo DNA methylation in mice. *Molecular Cell* 31, 785-799.

733 Arensburger, P., Hice, R.H., Wright, J.A., Craig, N.L., and Atkinson, P.W. (2011). The
734 mosquito *Aedes aegypti* has a large genome size and high transposable element load

735 but contains a low proportion of transposon-specific piRNAs. *BMC Genomics* 12,
736 606.

737 Arkhipova, I.R. (2018). Neutral theory, transposable elements, and eukaryotic genome
738 evolution. *Mol Biol Evol* 35, 1332-1337.

739 Arseneau, J.R., Steeves, R., and Laflamme, M. (2017). Modified low-salt CTAB extraction of
740 high-quality DNA from contaminant-rich tissues. *Mol Ecol Resour* 17, 686-693.

741 Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin,
742 V.M., Nikolenko, S.I., Pham, S., and Prjibelski, A.D. (2012). SPAdes: a new genome
743 assembly algorithm and its applications to single-cell sequencing. *Journal of*
744 *Computational Biology* 19, 455-477.

745 Berthelier, J., Casse, N., Daccord, N., Jamilloux, V., Saint-Jean, B., and Carrier, G. (2018). A
746 transposable element annotation pipeline and expression analysis reveal potentially
747 active elements in the microalga *Tisochrysis lutea*. *BMC Genomics* 19, 378.

748 Biscotti, M.A., Canapa, A., Forconi, M., Gerdol, M., Pallavicini, A., Schartl, M., and
749 Barucca, M. (2017). The small noncoding RNA processing machinery of two living
750 fossil species, lungfish and coelacanth, gives new insights into the evolution of the
751 Argonaute protein family. *Genome Biology and Evolution* 9, 438-453.

752 Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for
753 Illumina sequence data. *Bioinformatics* 30, 2114-2120.

754 Bourque, G., Burns, K.H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M.,
755 Imbeault, M., Izsvák, Z., Levin, H.L., Macfarlan, T.S., Mager, D.L., and Feschotte, C.
756 (2018). Ten things you should know about transposable elements. *Genome Biol* 19,
757 199.

758 Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon,
759 G.J. (2007). Discrete small RNA-generating loci as master regulators of transposon
760 activity in *Drosophila*. *Cell* 128, 1089-1103.

761 Bryant, D.M., Johnson, K., Ditomaso, T., Tickle, T., Couger, M.B., Payzin-Dogru, D., Lee,
762 T.J., Leigh, N.D., Kuo, T.-H., and Davis, F.G. (2017). A tissue-mapped axolotl de
763 novo transcriptome enables identification of limb regeneration factors. *Cell Reports*
764 18, 762-776.

765 Carducci, F., Carotti, E., Gerdol, M., Greco, S., Canapa, A., Barucca, M., and Biscotti, M.A.
766 (2021). Investigation of the activity of transposable elements and genes involved in
767 their silencing in the newt *Cynops orientalis*, a species with a giant genome. *Scientific*
768 *Reports* 11, 1-11.

769 Castanera, R., Borgognone, A., Pisabarro, A.G., and Ramírez, L. (2017). Biology, dynamics,
770 and applications of transposable elements in basidiomycete fungi. *App Microbiol*
771 *Biotech* 101, 1337-1350.

772 Castel, S.E., and Martienssen, R.A. (2013). RNA interference in the nucleus: roles for small
773 RNAs in transcription, epigenetics and beyond. *Nature Reviews Genetics* 14, 100-112.

774 Chen, P., Kotov, A.A., Godneeva, B.K., Bazylev, S.S., Olenina, L.V., and Aravin, A.A.
775 (2021). piRNA-mediated gene regulation and adaptation to sex-specific transposon
776 expression in *D. melanogaster* male germline. *Genes & Development* 35, 914-935.

777 Czech, B., and Hannon, G.J. (2016). One loop to rule them all: The ping-pong cycle and
778 piRNA-guided silencing. *Trends in Biochemical Sciences* 41, 324-337.

779 Czech, B., Munafò, M., Ciabrelli, F., Eastwood, E.L., Fabry, M.H., Kneuss, E., and Hannon,
780 G.J. (2018). piRNA-guided genome defense: from biogenesis to silencing. *Annual
781 Review of Genetics* 52, 131-157.

782 De Koning, A.J., Gu, W., Castoe, T.A., Batzer, M.A., and Pollock, D.D. (2011). Repetitive
783 elements may comprise over two-thirds of the human genome. *PLoS Genetics* 7,
784 e1002384.

785 Dechaud, C., Miyake, S., Martinez-Bengochea, A., Schartl, M., Volff, J.-N., and Naville, M.
786 (2021). Clustering of sex-biased genes and transposable elements in the genome of
787 the medaka fish *Oryzias latipes*. *Genome Biology and Evolution* 13, evab230.

788 Deniz, Ö., Frost, J.M., and Branco, M.R. (2019). Regulation of transposable elements by
789 DNA modifications. *Nature Reviews Genetics* 20, 417-431.

790 Doolittle, W.F., and Sapienza, C. (1980). Selfish genes, the phenotype paradigm and genome
791 evolution. *Nature* 284, 601-603.

792 Ecco, G., Imbeault, M., and Trono, D. (2017). KRAB zinc finger proteins. *Development* 144,
793 2719-2729.

794 Eddy, S.R. (2011). Accelerated Profile HMM Searches. *PLoS Comput Biol* 7, e1002195.

795 Ellinghaus, D., Kurtz, S., and Willhöft, U. (2008). LTRharvest, an efficient and flexible
796 software for de novo detection of LTR retrotransposons. *BMC Bioinformatics* 9, 18.

797 Evans, B.J., Alexander Pyron, R., and Wiens, J.J. (2012). "Polyploidization and sex
798 chromosome evolution in amphibians," in *Polyploidy and Genome Evolution*.
799 Springer), 385-410.

800 Flutre, T., Duprat, E., Feuillet, C., and Quesneville, H. (2011). Considering transposable
801 element diversification in de novo annotation approaches. *PLoS One* 6, e16526.

802 Goubert, C., Modolo, L., Vieira, C., Valientemoro, C., Mavingui, P., and Boulesteix, M.
803 (2015). De novo assembly and annotation of the Asian tiger mosquito (*Aedes
804 albopictus*) repeatome with dnaPipeTE from raw genomic reads and comparative
805 analysis with the yellow fever mosquito (*Aedes aegypti*). *Genome Biology and
806 Evolution* 7, 1192-1205.

807 Gregory, T.R. (2022). "Animal Genome Size Database (<http://www.genomesize.com>)".

808 Gunawardane, L.S., Saito, K., Nishika, K.M., Kawamura, Y., Nagami, T., Siomi, H., and
809 Siomi, M.C. (2007). A slicer-mediated mechanism for repeat-associated siRNA 5' end
810 formation in *Drosophila*. *Science* 315, 1587-1590.

811 Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger,
812 M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N.,
813 Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R.,
814 Leduc, R.D., Friedman, N., and Regev, A. (2013). De novo transcript sequence
815 reconstruction from RNA-seq using the Trinity platform for reference generation and
816 analysis. *Nature Protocols* 8, 1494-1512.

817 Haberer, G., Young, S., Bharti, A.K., Gundlach, H., Raymond, C., Fuks, G., Butler, E., Wing,
818 R.A., Rounsley, S., Birren, B., Nusbaum, C., Mayer, K.F.X., and Messing, J. (2005).
819 Structure and architecture of the maize genome. *Plant Physiology* 139, 1612-1624.

820 Haley, A.L., and Mueller, R.L. (2022). Transposable Element Diversity Remains High in
821 Gigantic Genomes. *J Mol Evol* 90, 332-341.

822 Han, Y.J., and Wessler, S.R. (2010). MITE-Hunter: a program for discovering miniature
823 inverted-repeat transposable elements from genomic sequences. *Nucleic Acids
824 Research* 38.

825 Hancks, D.C., and Kazazian, H.H. (2016). Roles for retrotransposon insertions in human
826 disease. *Mobile DNA* 7, 9.

827 Hillis, D.M., and Green, D.M. (1990). Evolutionary changes of heterogametic sex in the
828 phylogenetic history of amphibians. *Journal of Evolutionary Biology* 3, 49-64.

829 Hoede, C., Arnoux, S., Moisset, M., Chaumier, T., Inizan, O., Jamilloux, V., and Quesneville,
830 H. (2014). PASTEC: an automatic transposable element classification tool. *PloS One*
831 9, e91929.

832 Hof, A.E., Campagne, P., Rigden, D.J., Yung, C.J., Lingley, J., Quail, M.A., Hall, N., Darby,
833 A.C., and Saccheri, I.J. (2016). The industrial melanism mutation in British peppered
834 moths is a transposable element. *Nature* 534, 102-105.

835 Houwing, S., Kamminga, L.M., Berezikov, E., Cronembold, D., Girard, A., Van Den Elst, H.,
836 Filippov, D.V., Blaser, H., Raz, E., Moens, C.B., Plasterk, R.H.A., Hannon, G.J.,
837 Draper, B.W., and Ketting, R.F. (2007). A role for Piwi and piRNAs in germ gell
838 maintenance and transposon silencing in zebrafish. *Cell* 129, 69-82.

839 Imbeault, M., Helleboid, P.-Y., and Trono, D. (2017). KRAB zinc-finger proteins contribute
840 to the evolution of gene regulatory networks. *Nature* 543, 550-554.

841 Itgen, M.W., Siegel, D.S., Sessions, S.K., and Mueller, R.L. (2022). Genome size drives
842 morphological evolution in organ-specific ways. *Evolution* in press.

843 Iwakawa, H.-O., and Tomari, Y. (2022). Life of RISC: Formation, action, and degradation of
844 RNA-induced silencing complex. *Molecular Cell* 82, 30-43.

845 Iwasaki, Y.W., Siomi, M.C., and Siomi, H. (2015). PIWI-Interacting RNA: its biogenesis and
846 functions. *Annual Review of Biochemistry* 84, 405-433.

847 Jiao, Y., Peluso, P., Shi, J., Liang, T., Stitzer, M.C., Wang, B., Campbell, M.S., Stein, J.C.,
848 Wei, X., Chin, C.-S., Guill, K., Regulski, M., Kumari, S., Olson, A., Gent, J.,
849 Schneider, K.L., Wolfgruber, T.K., May, M.R., Springer, N.M., Antoniou, E.,

850 Mccombie, W.R., Presting, G.G., McMullen, M., Ross-Ibarra, J., Dawe, R.K., Hastie,
851 A., Rank, D.R., and Ware, D. (2017). Improved maize reference genome with single-
852 molecule technologies. *Nature* 546, 524-527.

853 Kapusta, A., Suh, A., and Feschotte, C. (2017). Dynamics of genome size evolution in birds
854 and mammals. *Proceedings of the National Academy of Sciences* 114, E1460-E1469.

855 Kelleher, E.S., and Barbash, D.A. (2013). Analysis of piRNA-mediated silencing of active
856 TEs in *Drosophila melanogaster* suggests limits on the evolution of host genome
857 defense. *Molecular Biology and Evolution* 30, 1816-1829.

858 Kneitz, S., Mishra, R.R., Chalopin, D., Postlethwait, J., Warren, W.C., Walter, R.B., and
859 Schartl, M. (2016). Germ cell and tumor associated piRNAs in the medaka and
860 *Xiphophorus melanoma* models. *BMC Genomics* 17, 1-13.

861 Kozomara, A., Birgaoanu, M., and Griffiths-Jones, S. (2019). miRBase: from microRNA
862 sequences to function. *Nucleic Acids Res* 47, D155-D162.

863 Lamichhaney, S., Catullo, R., Keogh, J.S., Clulow, S., Edwards, S.V., and Ezaz, T. (2021). A
864 bird-like genome from a frog: Mechanisms of genome size reduction in the ornate
865 burrowing frog, *Platyplectrum ornatum*. *Proc Nat Acad Sci* 118.

866 Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L. (2009). Ultrafast and memory-
867 efficient alignment of short DNA sequences to the human genome. *Genome Biol* 10,
868 R25.

869 Li, W.Z., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large
870 sets of protein or nucleotide sequences. *Bioinformatics* 22, 1658-1659.

871 Liedtke, H.C., Gower, D.J., Wilkinson, M., and Gomez-Mestre, I. (2018). Macroevolutionary
872 shift in the size of amphibian genomes and the role of life history and climate. *Nat
873 Ecol Evol* 2, 1792-1799.

874 Liu, X., Majid, M., Yuan, H., Chang, H., Zhao, L., Nie, Y., He, L., Liu, X., He, X., and
875 Huang, Y. (2022). Transposable element expansion and low-level piRNA silencing in
876 grasshoppers may cause genome gigantism. *BMC Biology* 20, 1-16.

877 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
878 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550.

879 Luo, S., Zhang, H., Duan, Y., Yao, X., Clark, A.G., and Lu, J. (2020). The evolutionary arms
880 race between transposable elements and piRNAs in *Drosophila melanogaster*. *BMC
881 Evol Biol* 20, 14.

882 Madison-Villar, M.J., Sun, C., Lau, N., Settles, M., and Mueller, R.L. (2016). Small RNAs
883 from a big genome: the piRNA pathway and transposable elements in the salamander
884 species *Desmognathus fuscus*. *J Mol Evol* 83, 126-136.

885 Malmstrøm, M., Britz, R., Matschiner, M., Torresen, O.K., Hadiaty, R.K., Yaakob, N., Tan,
886 H.H., Jakobsen, K.S., Salzburger, W., and Rüber, L. (2018). The most
887 developmentally truncated fishes show extensive Hox gene loss and miniaturized
888 genomes. *Genome Biology and Evolution* 10, 1088-1103.

889 Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey,
890 C.E., Shibata, N., Asakawa, S., and Shimizu, N. (2002). DMY is a Y-specific DM-
891 domain gene required for male development in the medaka fish. *Nature* 417, 559-563.

892 Medstrand, P., Van De Lagemaat, L.N., and Mager, D.L. (2002). Retroelement distributions
893 in the human genome: variations associated with age and proximity to genes. *Genome*
894 *Research* 12, 1483-1495.

895 Meyer, A., Schloissnig, S., Franchini, P., Du, K., Woltering, J.M., Irisarri, I., Wong, W.Y.,
896 Nowoshilow, S., Kneitz, S., and Kawaguchi, A. (2021). Giant lungfish genome
897 elucidates the conquest of land by vertebrates. *Nature* 590, 284-289.

898 Mueller, R.L. (2017). piRNAs and evolutionary trajectories in genome size and content.
899 *Journal of Molecular Evolution* 85, 169-171.

900 Nam, K., and Ellegren, H. (2012). Recombination drives vertebrate genome contraction.
901 *PLoS Genetics* 8, e1002680.

902 Orgel, L.E., and Crick, F.H. (1980). Selfish DNA: the ultimate parasite. *Nature* 284, 604.

903 Ozata, D.M., Gainetdinov, I., Zoch, A., O'carroll, D., and Zamore, P.D. (2019). PIWI-
904 interacting RNAs: small RNAs with big functions. *Nature Reviews Genetics* 20, 89-
905 108.

906 Parhad, S.S., and Theurkauf, W.E. (2019). Rapid evolution and conserved function of the
907 piRNA pathway. *Roy Soc Open Biol* 9, 180181.

908 Patro, R., Duggal, G., Love, M.I., Irizarry, R.A., and Kingsford, C. (2017). Salmon provides
909 fast and bias-aware quantification of transcript expression. *Nat Methods* 14, 417-419.

910 Perkins, R.D., Gamboa, J.R., Jonika, M.M., Lo, J., Shum, A., Adams, R.H., and Blackmon,
911 H. (2019). A database of amphibian karyotypes. *Chromosome Research* 27, 313-319.

912 Price, A.L., Jones, N.C., and Pevzner, P.A. (2005). De novo identification of repeat families
913 in large genomes. *Bioinformatics* 21 Suppl 1, i351-358.

914 Reuter, M., Berninger, P., Chuma, S., Shah, H., Hosokawa, M., Funaya, C., Antony, C.,
915 Sachidanandam, R., and Pillai, R.S. (2011). Miwi catalysis is required for piRNA
916 amplification-independent LINE1 transposon silencing. *Nature* 480, 264-267.

917 Rho, M., and Tang, H. (2009). MGEScan-non-LTR: computational identification and
918 classification of autonomous non-LTR retrotransposons in eukaryotic genomes.
919 *Nucleic Acids Res* 37, e143.

920 Rodriguez, F., and Arkhipova, I.R. (2018). Transposable elements and polyploid evolution in
921 animals. *Current Opinion in Genetics & Development* 49, 115-123.

922 Rogers, R.L., Zhou, L., Chu, C., Márquez, R., Corl, A., Linderoth, T., Freeborn, L.,
923 Macmanes, M.D., Xiong, Z., and Zheng, J. (2018). Genomic takeover by transposable
924 elements in the strawberry poison frog. *Molecular Biology and Evolution* 35, 2913-
925 2927.

926 Said, I., McGurk, M.P., Clark, A.G., and Barbash, D.A. (2022). Patterns of piRNA regulation
927 in *Drosophila* revealed through transposable element clade inference. *Molecular*
928 *Biology and Evolution* 39, msab336.

929 Saint-Leandre, B., Capy, P., Hua-Van, A., and Filée, J. (2020). piRNA and transposon
930 dynamics in *Drosophila*: A female story. *Genome Biology and Evolution* 12, 931-947.

931 Senft, A.D., and Macfarlan, T.S. (2021). Transposable elements shape the evolution of
932 mammalian development. *Nature Reviews Genetics* 22, 691-711.

933 Shannon, C.E. (1948). A mathematical theory of communication. *Bell Syst Tech J* 27, 379-
934 423.

935 Shen, W., Le, S., Li, Y., and Hu, F. (2016). SeqKit: a cross-platform and ultrafast toolkit for
936 FASTA/Q file manipulation. *PLoS One* 11, e0163962.

937 Simao, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015).
938 BUSCO: assessing genome assembly and annotation completeness with single-copy
939 orthologs. *Bioinformatics* 31, 3210-3212.

940 Simpson, E.H. (1949). Measurement of Diversity. *Nature* 163, 688-688.

941 Sun, C., and Mueller, R.L. (2014). Hellbender genome sequences shed light on genomic
942 expansion at the base of crown salamanders. *Genome Biol Evol* 6, 1818-1829.

943 Sun, C., Shepard, D.B., Chong, R.A., Lopez Arriaza, J., Hall, K., Castoe, T.A., Feschotte, C.,
944 Pollock, D.D., and Mueller, R.L. (2012). LTR retrotransposons contribute to genomic
945 gigantism in plethodontid salamanders. *Genome Biol Evol* 4, 168-183.

946 Teefy, B.B., Siebert, S., Cazet, J.F., Lin, H., and Juliano, C.E. (2020). PIWI-piRNA pathway-
947 mediated transposable element repression in *Hydra* somatic stem cells. *RNA* 26, 550-
948 563.

949 Thomas, J.H., and Schneider, S. (2011). Coevolution of retroelements and tandem zinc finger
950 genes. *Genome Research* 21, 1800-1812.

951 Wang, J., Itgen, M.W., Wang, H., Gong, Y., Jiang, J., Li, J., Sun, C., Sessions, S.K., and
952 Mueller, R.L. (2021a). Gigantic genomes provide empirical tests of transposable
953 element dynamics models. *Genom Proteom Bioinform* 19, 123-139.

954 Wang, K., Wang, J., Zhu, C., Yang, L., Ren, Y., Ruan, J., Fan, G., Hu, J., Xu, W., and Bi, X.
955 (2021b). African lungfish genome sheds light on the vertebrate water-to-land
956 transition. *Cell* 184, 1362-1376. e1318.

957 Wang, X., Ramat, A., Simonelig, M., and Liu, M.F. (2022). Emerging roles and functional
958 mechanisms of PIWI-interacting RNAs. *Nat Rev Mol Cell Biol*.

959 Warmuth, V.M., Weissensteiner, M.H., and Wolf, J.B. (2022). Accumulation and ineffective
960 silencing of transposable elements on an avian W Chromosome. *Genome Research*
961 32, 671-681.

962 Wei, K.H.-C., Gibilisco, L., and Bachtrog, D. (2020). Epigenetic conflict on a degenerating Y
963 chromosome increases mutational burden in *Drosophila* males. *Nature Communications* 11, 1-9.

965 Wei, K.H.-C., Mai, D., Chatla, K., and Bachtrog, D. (2022). Dynamics and impacts of
966 transposable element proliferation in the *Drosophila nasuta* species group radiation.
967 *Molecular Biology and Evolution* 39, msac080.

968 Wenke, T., Döbel, T., Sörensen, T.R., Junghans, H., Weisshaar, B., and Schmidt, T. (2011).
969 Targeted identification of short interspersed nuclear element families shows their
970 widespread existence and extreme heterogeneity in plant genomes. *The Plant Cell* 23,
971 3117-3128.

972 Wheeler, T.J., and Eddy, S.R. (2013). nhmmer: DNA homology search with profile HMMs.
973 *Bioinformatics* 29, 2487-2489.

974 Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., Flavell, A.,
975 Leroy, P., Morgante, M., Panaud, O., Paux, E., Sanmiguel, P., and Schulman, A.H.
976 (2007). A unified classification system for eukaryotic transposable elements. *Nat Rev Genet* 8, 973-982.

978 Yang, G., Nagel, D.H., Feschotte, C., Hancock, C.N., and Wessler, S.R. (2009). Tuned for
979 transposition: molecular determinants underlying the hyperactivity of a Stowaway
980 MITE. *Science* 325, 1391-1394.

981 Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A. (2014). PEAR: a fast and accurate
982 Illumina Paired-End reAd mergeR. *Bioinformatics* 30, 614-620.

983 Zhang, P., Kang, J.Y., Gou, L.T., Wang, J., Xue, Y., Skogerboe, G., Dai, P., Huang, D.W.,
984 Chen, R., Fu, X.D., Liu, M.F., and He, S. (2015). MIWI and piRNA-mediated
985 cleavage of messenger RNAs in mouse testes. *Cell Res* 25, 193-207.

986 Zhang, S., Pointer, B., and Kelleher, E.S. (2020). Rapid evolution of piRNA-mediated
987 silencing of an invading transposable element was driven by abundant de novo
988 mutations. *Genome Research* 30, 566-575.

989

990

991 **10 Conflict of Interest**

992 The authors declare that the research was conducted in the absence of any commercial or
993 financial relationships that could be construed as a potential conflict of interest.

994

995 **11 Figure Legends**
996

997 **Figure 1** Amplification plots for TE superfamilies and derivatives. All of the amplification
998 plots suggest current activity. Note that the y-axes differ in scale.
999

1000 **Figure 2** (A) TE transcripts that are differentially expressed between testes and ovaries.
1001 Positive fold-change value indicates higher expression in testes. The majority of transcripts
1002 show male-biased expression. (B) Expression levels of TE superfamilies represented by >10
1003 TE transcripts in ovaries vs. testes. Expression is higher in males. Each point represents the
1004 average expression of a TE transcript across same-sex individuals. * and NS indicate P < 0.05
1005 and not significant, respectively. (C) Genomic abundance and gonadal expression level of TE
1006 superfamilies are positively correlated in both sexes.
1007

1008 **Figure 3** (A) The length distribution of small RNA molecules. (B) Composition of the first
1009 nucleotide (green means U) of small RNAs that could be mapped to TE transcripts in
1010 different genders. (C) The 5' to 5' overlapping of putative piRNA (25–30 bp) in gonads of
1011 males and females, a typical signature of ping-pong biogenesis. The number above the peak
1012 at the 10th overlapping is the Z-score.
1013

1014 **Figure 4** The relationship between TE expression and putative piRNAs (25–30 bp) mapped
1015 to TEs in both sexes. Gray lines connect male and female datapoints for the same TE
1016 superfamily.
1017

1018 **Figure 5** (A) The ratio of the summed expression of piRNA pathway genes, (B) NuRD and
1019 associated repressive complex genes, and (C) TRIM28 to the summed expression of miRNA
1020 pathway genes in species with diverse genome sizes. The species and their genome sizes (Gb)
1021 from left to right are: *Platynectrum ornatum* (1), *Gallus gallus* (1.3), *Danio rerio* (1.4),
1022 *Xenopus tropicalis* (1.7), *Anolis carolinensis* (2.2), *Mus musculus* (2.5), *Geotrypetes*
1023 *seraphini* (3.8), *Rhinatremma bivittatum* (5.3), *Caecilia tentaculata* (5.5), *Pleurodeles waltli*
1024 (20), *Ranodon sibiricus* (21), *Ambystoma mexicanum* (32), *Protopterus annectens* (43),
1025 *Cynops orientalis* (44), and *Protopterus aethiopicus* (~130).
1026

1027

1028 **Table 1** Repeat contigs (≥ 100 bp) identified by different methods/software in the PiRATE
1029 pipeline (Berthelier et al., 2018).

TE-mining method	Software	Repeats clustered at 100% identify
Similarity-based	RepeatMasker	75,381 (68.6%)
	TE-HMMER	3,108 (2.8%)
Structure-based	HelSearch	1 (0.0%)
	LTR harvest	84 (0.1%)
	MGEScan-non-LTR	0
	HITE hunter	7 (0.0%)
	SINE finder	48 (0.0%)
	TEdenovo	306 (0.3%)
Repetitiveness-based	RepeatScout	3,671 (3.3%)
	dnaPipeTE	24,090 (21.9%)
Repeat-building-based	RepeatModeler	3,213 (2.9%)
	In total	109,909 (100%)

1030

1031

1032 **Table 2** Classification of repeat contigs (modified from Wicker 2007) and summary of
1033 repeats detected in the genome.

Order	Superfamily	Percent of Genome ^a	Genomic Contigs (100% Identical)	Genomic Contigs (95% Identical)	Genomic Contigs (80% Identical)	Average Genomic Contig Length (100% identical) (bp)	Longest Genomic Contig (bp)	Transcriptome contigs (80% Identical)	Expression Level in females (TPM)	Expression Level in males (TPM)
Class I - Retrotransposons - Autonomous										
LTR	<i>Gypsy</i>	3.85-6.50	5,985	5,464	3,835	548	7,587	2,057	827	3,024
	<i>ERV</i>	0.41-0.43	413	394	264	593	11,567	321	392	694
	<i>Copia</i>	0.10-0.25	23	21	19	592	1,353	27	31	26
	<i>Bel-Pao</i>	0.05	12	7	2	575	766	-	-	-
	<i>Retrovirus</i>	-	3	2	2	1,375	1,719	10	1	10
	<i>THE1</i>	-	4	4	3	491	674	-	-	-
	<i>Unknown LTR</i>	-	4	4	4	469	955	-	-	-
DIRS	<i>DIRS</i>	4.44-5.95	8,087	7,821	3,844	379	4,266	4,844	5,427	11.962
PLE	<i>Penelope</i>	0.09-0.12	482	462	376	407	3,208	460	123	352
LINE	<i>Jockey</i>	9.69-12.12	25,276	23,361	13,287	426	3,625	11,622	6,206	15,535
	<i>L1</i>	5.04-6.62	10,189	8,997	5,941	672	6,546	8,241	2,954	7,610
	<i>RTE</i>	0.12-0.24	227	201	137	676	4,540	399	130	360
	<i>I</i>	0.09-0.17	32	25	10	905	3,858	48	42	125
	<i>R2</i>	-						1	-	1
	<i>Unknown LINE</i>	0.39-1.89	90	77	72	1,393	5,881	1	-	-
Class I - Retrotransposons - Non-autonomous										
SINE	<i>5S</i>	0.23-0.18	57	41	15	773	1,783	4	5	1
	<i>7SL</i>	-	43	41	15	243	450	2	1	-
	<i>tRNA</i>	-	22	22	22	273	403	-	-	-
	<i>Unknown SINE</i>	0.45-3.42	365	348	338	377	695	219	2,901	2,471
Retrotransposon Derivatives	TRIM	3.80-9.76	748	631	465	588	2,619	492	1,651	5,847
	LARD	0.15-0.73	45	37	35	2,834	8,148	153	515	2,643
Class II - DNA Transposons - Subclass 1										
TIR	<i>PIF-Harbinger</i>	2.98-4.22	1,164	1,014	434	411	5,169	416	575	1,359
	<i>hAT</i>	1.15-1.12	177	135	55	869	5,706	35	83	26
	<i>Tcl-Mariner</i>	0.18-0.63	73	40	24	1025	3,781	20	58	87
	<i>PiggyBac</i>	0.05-0.08	9	8	6	1,087	1,956	6	21	15
	<i>MuDR</i>	-	3	3	3	266	417	13	4	10
	<i>CACTA</i>	-	2	2	2	645	846	3	2	1
	<i>ISL2EU</i>	-						1	18	16
	<i>Ginger</i>	-						4	10	6
	<i>Academ</i>	-						11	5	8
	<i>P</i>	-						1	1	1

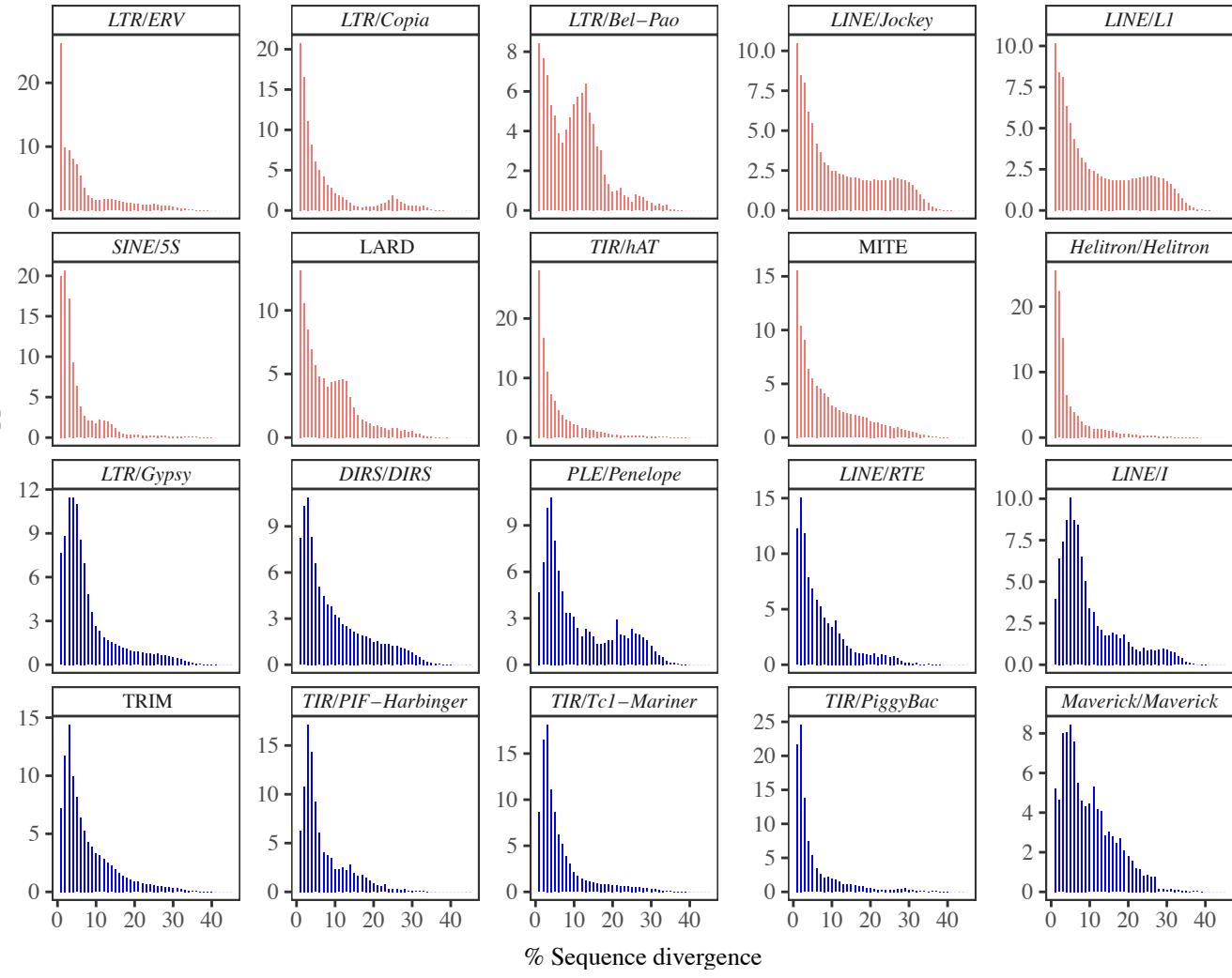
<i>Unknown TIR</i>	0.33-1.46	22	20	19	754	2,174	-	-	-	
Transposon Derivatives	MITe	0.56-4.07	357	346	321	258	1,942	137	465	1,188
Class II - DNA Transposons - Subclass 2										
Maverick	<i>Maverick</i>	0.05	258	228	65	583	6,090	123	44	762
Helitron	<i>Helitron</i>	0.18-0.48	49	38	19	939	6,551	13	2	10
Total		34.38-60.54	54,221	49,794	29,634	489	11,567	29,684	22,494	42,200

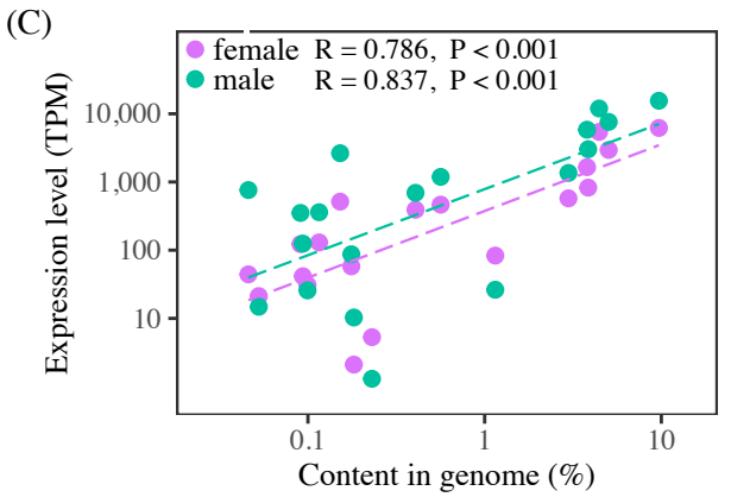
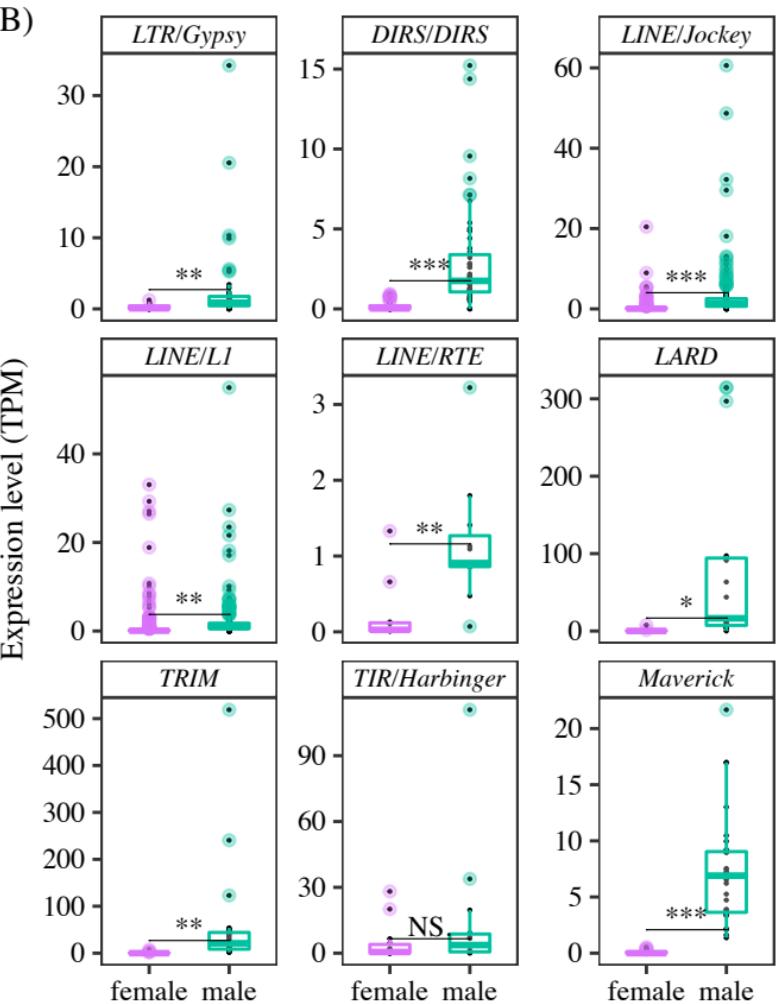
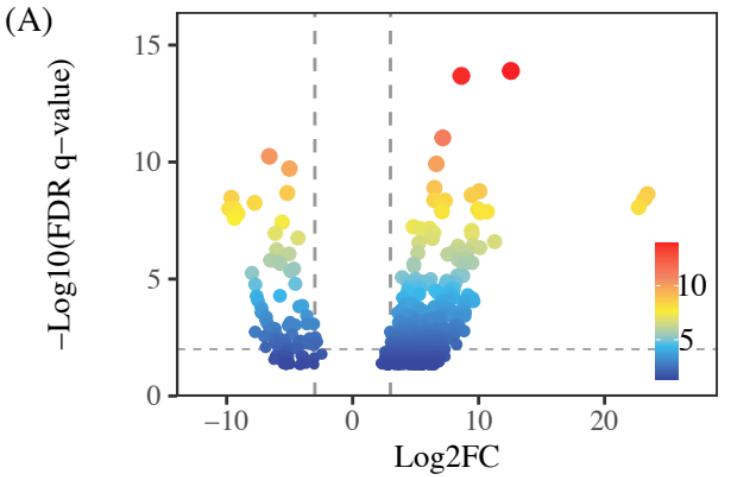
1034 ^aThe first and second numbers were estimated including and excluding unknown repeats, respectively, from
 1035 the repeat library.

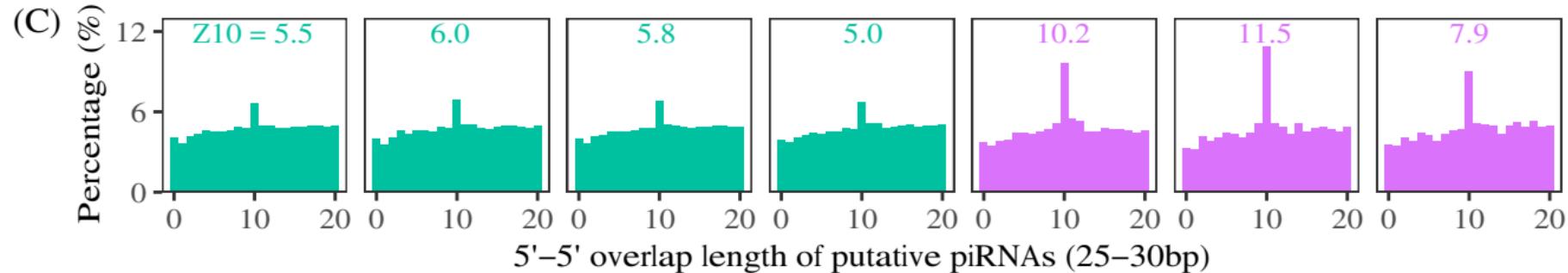
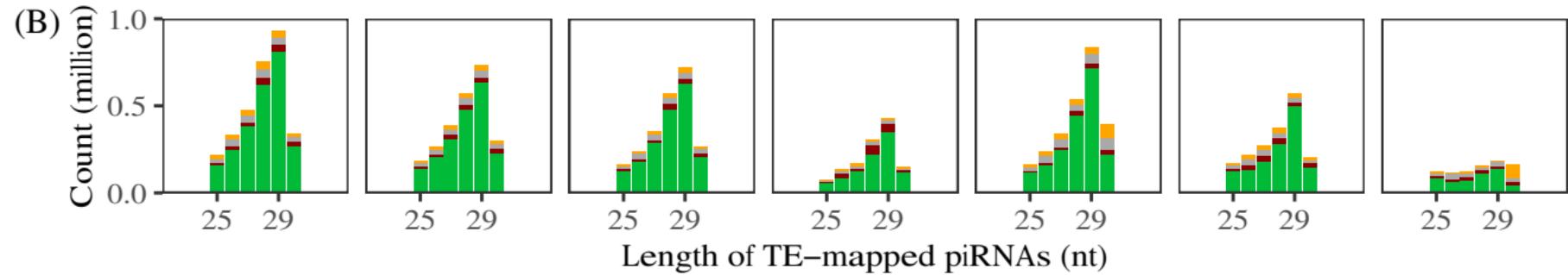
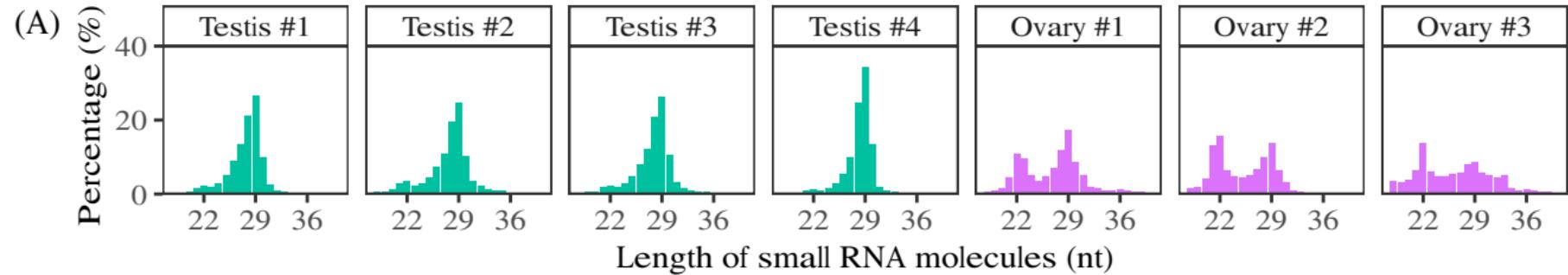
1036

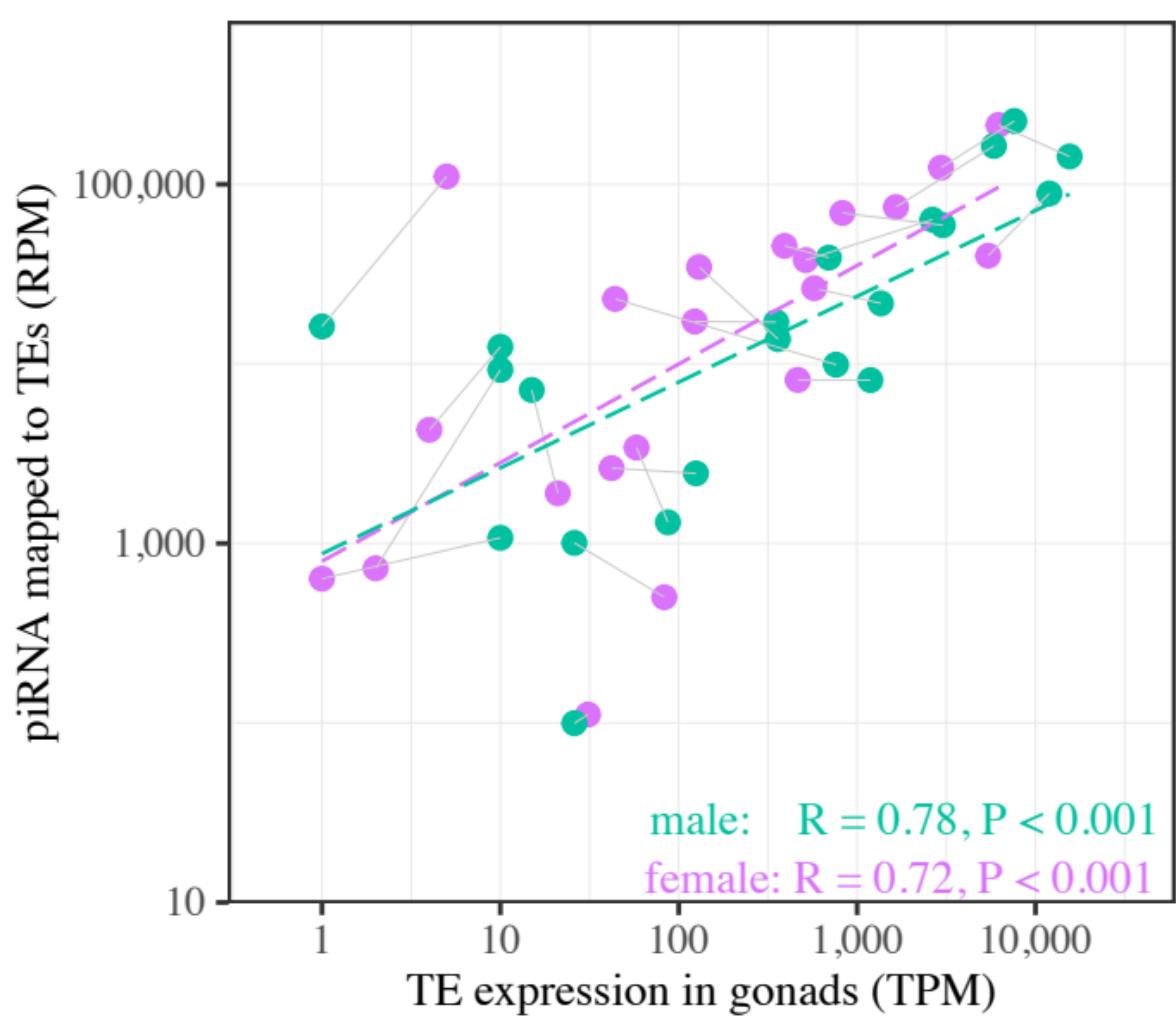
1037

1038 **Table 3** Overall summary of transcriptome annotation and expression in each sex.

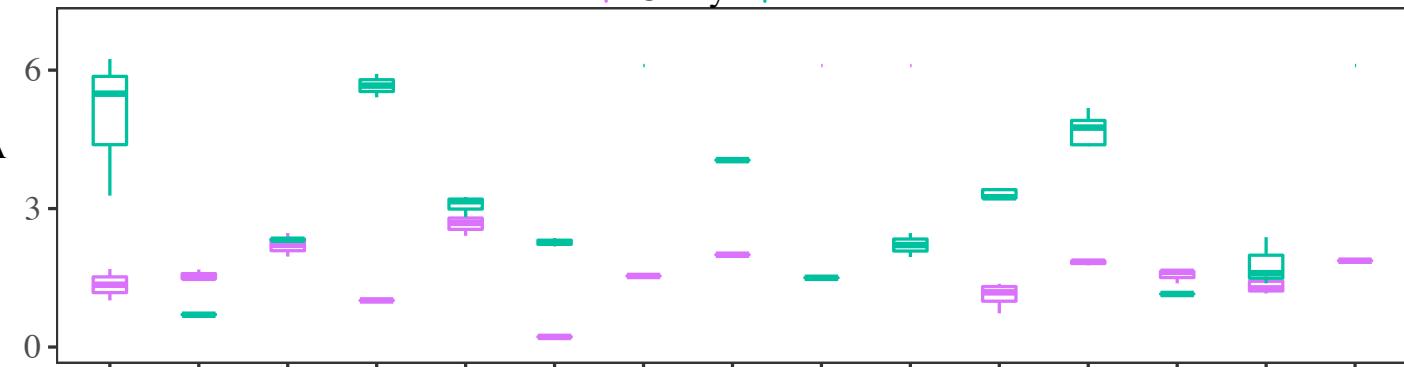

	No. of contigs expressed in females (percentage of total contigs)	Summed TPM in females (percentage of total expression)	No. of contigs expressed in males (percentage of total contigs)	Summed TPM in males (percentage of total expression)
Endogenous gene	51,647 (17.4%)	678,366 (67.8%)	58,041 (13.3%)	513,783 (51.4%)
Autonomous TE	26,358 (8.9%)	17,890 (1.8%)	41,421 (9.5%)	43,694 (4.4%)
Non-autonomous TE	1,700 (0.6%)	5,538 (0.6%)	2,348 (0.5%)	12,151 (1.2%)
Gene/autonomous TE	722 (0.2%)	2,618 (0.3%)	1,001 (0.2%)	5,748 (0.6%)
Gene/nonautonomous TE	168 (0.1%)	2,779 (0.3%)	189 (0.0%)	1,073 (0.1%)
Unannotated	215,508 (72.8%)	292,828 (29.3%)	334,533 (76.5%)	423,550 (42.4%)
Total	296,103 (100%)	1,000,029 (100%)	437,533 (100%)	999,999 (100%)

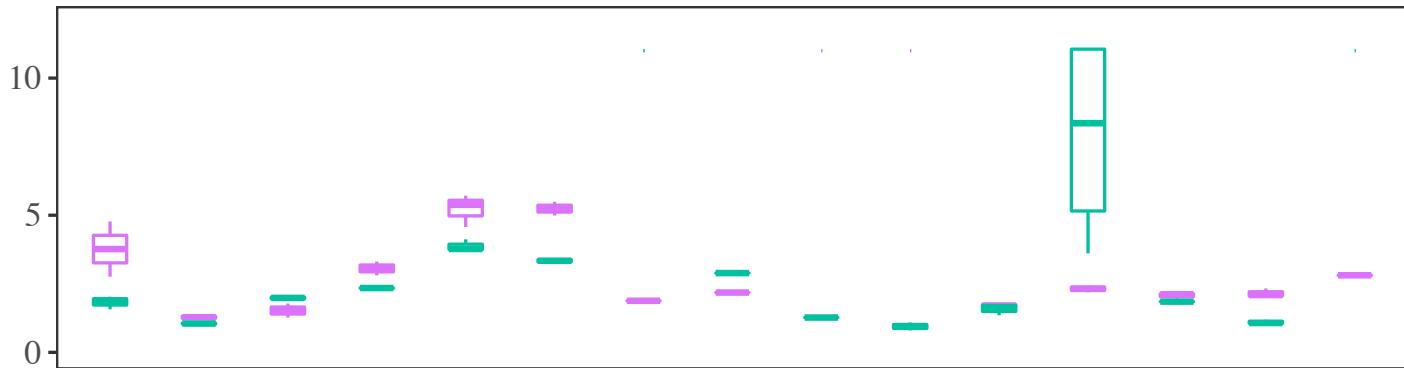



1039




1040

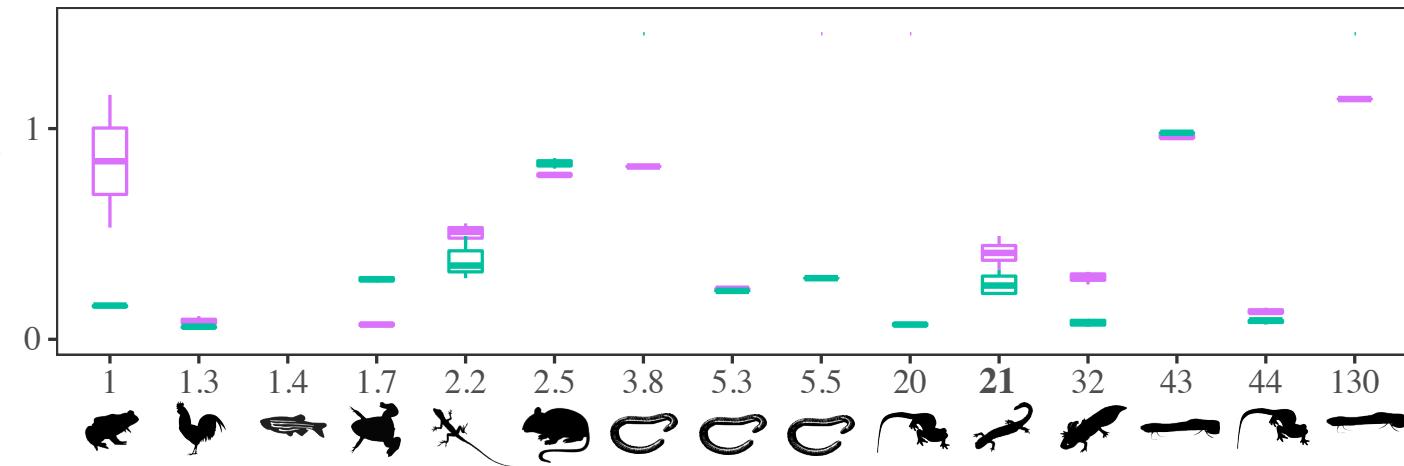

1041

% Reads mapped





♀ Ovary ♂ Testis


piRNA : miRNA
pathway gene
expression

NuRD repressive
complex : miRNA
pathway gene
expression

TRIM28 : miRNA
pathway gene
expression

