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Summary

Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role
in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial
barrier integrity, and inducing thrombus formation. This hyper-inflammation is dependent on high
levels of anti-spike 1gG with aberrant Fc tail glycosylation, leading to Fcy receptor hyper-activation. For
development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive
inflammation while simultaneously minimizing inhibition of antiviral immunity. We here developed an
in vitro activation assay to screen for small molecule drugs that specifically counteract antibody-
induced pathology. We identified that anti-spike induced inflammation is specifically blocked by small
molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most
promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and
thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants
of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-
19.

Key words: COVID-19 treatment, SYK, macrophage, FcR, entospletinib, inflammation, IL-6, thrombosis,
endothelial dysfunction, platelet

Graphical abstract

spike + IgG ‘
SARS-CoV-2 immune complex ..
=K viral
@) " stimulus
FcyR TLRs
SYK
» PI3K

entospletinib

fostamatinib I .II. ib
alpelisi
idelalisib I L'6
duvelisib


https://doi.org/10.1101/2022.12.20.521247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521247; this version posted December 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

58 Introduction

59  Theongoing severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic is associated with

60  millions of deaths and immense pressure on healthcare systems and economies worldwide 2. In most

61 patients, SARS-CoV-2 infection leads to a mild manifestation of coronavirus disease 2019 (COVID-19)

62 characterized by flu-like symptoms such as cough, fever, and fatigue. However, some patients,

63  particularly more in the unvaccinated population 3, develop severe and lethal complications including

64 pheumonia, acute respiratory distress syndrome, thromboembolism, and sepsis 4. One characteristic

65 of severe COVID-19 cases is the fast deterioration of the symptoms one to two weeks after onset,

66 accompanied by prolonged and elevated systemic pro-inflammatory cytokine levels, particularly

67  interleukin (IL)-6, tumor necrosis factor (TNF), and interferons (IFNs) 2>®. In addition to the hyper-

68 inflammatory states, severe COVID-19 patients develop multiorgan dysfunction that can be explained

69 by derangements in hemostasis, also known as COVID-19-associated coagulopathy 7 Although the

70 exact mechanisms of COVID-19-associated coagulopathy remain unclear, a complex interplay

71 between coronaviruses, endothelial cells, platelets, elevated immune responses, and dysfunction of

72  the coagulation system has been postulated °.

73 Despite the increasing coverage of safe and effective vaccines worldwide, SARS-CoV-2

74 continues to spread rapidly. As the virus evolves, several variants of concern (VOC) characterized by

75  increased transmissibility or virulence have been discovered 14 Recent studies reveal a rapid

76  increase in symptomatic COVID-19 cases in the vaccinated population, indicating reduced vaccine

77  effectiveness over time and the emergence of new immune-escaping variants ***’. Newly occurring

78  virus variants to which previous vaccines do not provide sufficient protection are a threat to global

79  public health ¥, Moreover, some people including immune-compromised populations or patients

80  receiving immunomodulatory medications develop poor vaccination responses 2.

81 Therefore, in addition to disease prevention by vaccination, efforts have been made to

82 develop treatments to alleviate symptoms. Several effective anti-viral therapeutics are authorized for

83 COVID-19 treatment. Molnupiravir, a prodrug of a ribonucleoside analog introducing replication errors

84 2! has been shown to hasten the elimination of infectious viruses 22?3, Nirmatrelvir, a SARS-CoV-2

85 main protease inhibitor, together with the HIV-1 protease inhibitor ritonavir, has been developed as

86  acombined treatment (Paxlovid), which largely reduces the risk of hospitalization or death 2*?°, Given

87  thatanti-viral treatments do not rectify the underlying excessive host immune response deteriorating

88 COVID-19, studies have also focused on attenuating uncontrolled inflammation in severe cases.

89 Dexamethasone is the first approved immunoregulatory therapeutic that significantly reduces the risk

90  of death, particularly in patients requiring mechanical ventilation or supplemental oxygen 2%?’. The

91 efficacy of steroids in treating critical COVID-19 cases supports the idea that immune components

92  contribute to disease severity. However, while steroid therapy is a successful approach in suppressing

93 excessive inflammation and dampening COVID-19 complications, concern remains about secondary

94  infection and the reactivation of latent infections 3°, Furthermore, as a potent corticosteroid,

95  dexamethasone has a significant impact on the immune system and could cause a delay in viral

96 shedding and have consequences in various organs 332, Therefore, there is still an unmet need for a

97  specific immunomodulatory treatment that reduces uncontrolled inflammation while keeping the

98  anti-viral response intact simultaneously.

99 Previously, we and others provided evidence that SARS-CoV-2 spike protein-specific
100  immunoglobulin G (IgG) promotes excessive production of pro-inflammatory mediators by alveolar
101  macrophages and monocytes, disrupts endothelial barrier function, and activates platelet thereby
102  contributing to the exacerbation of COVID-19 in severe cases 333>, The pathogenic effect mediated by
103  anti-spike 1gG is induced via the overactivation of fragment crystallizable region gamma receptors
104  (FcyRs) on innate immune cells >3%3¢, Two specific antibody features of severe COVID-19 patients
105  contribute to the excessive immune response: extremely high anti-Spike IgG titers and aberrant
106  glycosylation of the IgG Fc tail, which combined lead to the overactivation of FcyRs. The overactivated
107  macrophages create a pro-inflammatory environment that leads to endothelial dysfunction and


https://doi.org/10.1101/2022.12.20.521247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521247; this version posted December 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

108  platelet adhesion. Furthermore, the aberrantly glycosylated 1gG together with spike protein can form
109  immune complexes that directly enhance platelet thrombus formation ¥.

110 Spleen Associated Tyrosine Kinase (SYK) is a critical component in FcyR signal transduction 38
111  and hence serves as a potential target. The SYK inhibitor R406 (the active form of FDA- and EMA-
112  approved drug fostamatinib) has been recently identified as an effective immunoregulatory drug
113 modulating the activities of immune cells and platelets in severe COVID-19 33373940 and has been
114  applied in several clinical trials (NCT04581954, NCT04629703, NCT04924660) 1. Once SYK is activated,
115 it binds to phosphoinositide 3-kinase (P13K) and triggers downstream signaling cascades #**3. While
116  the SYK-PI3K axis drives macrophage chemotaxis and phagocytosis 33445 ample evidence shows that
117  SYK-PI3K activation also promotes the expression of inflammatory mediators ¢%°. Furthermore, the
118 SYK-PI3K signaling pathway also contributes to platelet activation, adhesion, and aggregation *°.
119 Therefore, interventions targeting SYK and PI13K activity might provide potential treatment options for
120  severe COVID-19.

121 In this study, we set out to identify inhibitors counteracting immune complex-induced
122  hyperinflammation. We developed a macrophage activation assay capable of determining compound
123  potency and efficacy against anti-spike-specific inflammation. We applied this screening assay on
124  approved and investigational small molecule inhibitors. We demonstrate that several SYK and PI3K
125  inhibitors can counteract the hyper-inflammatory state induced by anti-spike immune complexes. We
126  identify entospletinib, a SYK inhibitor, as a promising candidate drug to tackle anti-spike IgG-mediated
127 inflammation, endothelial barrier disruption, platelet adhesion, and thrombus formation. Moreover,
128  entospletinib dampens the anti-spike IgG-mediated inflammation induced by different variants of
129  concern.
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130  Results

131

132  Anti-spike IgG-induced inflammation can be specifically counteracted by targeting SYK

133  To quantify the potency and selectivity against anti-spike-mediated inflammation, we determined the
134 half-maximal inhibitory concentration (ICsp) on macrophage activation. Previously, our transcriptomic
135 classification showed that M-CSF and IL-10-differentiated macrophages most closely resemble human
136 primary alveolar macrophages >!. We applied these monocyte-derived alveolar macrophage-like
137  macrophages (MDAMs) in the assay. Briefly, MDAMs were treated with different compounds at
138 increasing concentrations 30 minutes prior to stimulation by the TLR3 ligand polyinosinic:polycytidylic
139  acid (poly(l:C)) (a viral stimulus mimic) in the presence or absence of recombinant anti-spike 1gG-
140  formed immune complexes (Fig. 1A). We assessed the pro-inflammatory activity of macrophages by
141 measuring IL-6 production. We hypothesized that if the compound is specific for FcyR signaling, it will
142 dose-dependently decrease anti-spike-dependent IL-6 production while leaving activation by poly(l:C)
143 alone unchanged. We investigated two SYK inhibitors R406 (the active form of fostamatinib) and
144  entospletinib, along with the standard-of-care drug dexamethasone. Dose-dependent inhibitory
145  curves were then plotted and the ICso values were calculated for each inhibitor for the two stimulation
146  conditions (Fig. 1B-D).

147 All compounds suppressed IL-6 production by macrophages upon co-stimulation by poly(l:C)
148  and anti-spike immune complex (red curves in Fig. 1B-D). Dexamethasone showed the best potency
149  with the lowest concentration (around 20-100 nM) required to achieve maximal inhibition, compared
150  to 0.5-1 uM for R406 and entospletinib. Notably, dexamethasone similarly blocked anti-spike-induced
151  and virus-induced IL-6 production (average I1Cso = 3.6 or 4.4 nM with or without anti-spike IgG,
152  respectively) (Fig. 1B). Compared to dexamethasone, both SYK inhibitors exerted greater potency for
153  anti-spike-mediated inflammation. We observed a significant difference between 1Cso values for the
154  RA406 treatment against anti-viral and anti-lgG-induced IL6 production (mean ICso value of 191.9 nM
155  for poly(l:C) alone-induced IL-6 and 78.5 nM for anti-IgG and poly(l:C) co-stimulation) (Fig 1C).
156 Entospletinib was the most anti-spike-dependent inflammation-specific compound which did not
157  affect poly(l:C)-only activated macrophages, and exhibited higher potency than R406 (ICso = 45.6 nM,
158  Fig. 1D).
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160  Figure 1: Immunoregulatory activities of dexamethasone and SYK inhibitors R406 and entospletinib
161  on IL-6 production by stimulated macrophages. (A) Schematic overview of the experimental setup.
162 Monocyte-derived alveolar macrophage-like macrophages (MDAMs) were generated by
163 differentiating peripheral monocytes with M-CSF and IL-10. The generated MDAMs were then treated
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164  with inhibitors in increasing concentration or DMSO 30 min prior to stimulation with viral stimulus
165  poly(l:C) with or without the presence of immune complexes. Immune complex is formed by plate-
166  bounded SARS-CoV-2 spike proteins and monoclonal anti-spike IgGs. All conditions are with SARS-CoV-
167 2 spike proteins. (B-D) IL-6 production was used as the pro-inflammatory activation readout.
168 Representative data of macrophage activation assay for (B) dexamethasone(C) R406 and (D)
169 entospletinib, with the left Y axis and red curves showing the concentration measured from poly(1:C)
170  and anti-spike immune complex conditions and right Y axis and blue curves activation with poly(l:C)
171  alone. Half maximal inhibitory concentrations (ICs) from different macrophage donors
172 (dexamethasone (n = 6), R406 (n = 5), entospletinib (n = 14)) per stimulation condition are plotted as
173  box plots indicating 10-90 percentile and median. Significant differences were calculated with a paired
174  ttest. *P < 0.05.

175

176  PI3K inhibitors affect macrophage activation

177 Next, we investigated the effect of inhibitors targeting PI3K, a downstream kinase in the FcyR-SYK
178  signaling pathways. We carried out the same macrophage activation assay used for SYK inhibitors with
179  compounds inhibiting different PI3K isoforms. In general, compared to SYK inhibitors, PI3K inhibitors
180 required higher concentrations (> 10 uM) to reach an 80% inhibition of anti-spike-induced IL-6 (Fig.
181  2A-C). The effect on IL-6 induced by poly(l:C) alone varied between different compounds. Alpelisib, a
182 PI3K-a inhibitor, inhibited IL-6 production with higher potency against anti-spike-dependent
183  inflammation in comparison to other tested PI3K inhibitors (Fig. 2A). Interestingly, while PI3K-y/6
184  inhibitor duvelisib suppressed macrophage IL-6 production in response to poly(l:C) and anti-spike
185  immune complex co-stimulation, it amplified IL-6 secretion dose-dependently when only poly(l:C) was
186  applied (Fig.3B). This observation suggests distinct regulatory functions for different PI3K isoforms in
187  inflammatory processes and/or potential off-target effects of the drug. Another PI3K-§ inhibitor
188 idelalisib counteracted anti-spike-dependent IL-6 production while not affecting the anti-viral
189  response (Fig. 2C). However, with the highest two concentrations tested in our assay, we observed
190  reduced viability (data not shown), as well as an increase in IL-6 levels in the poly(I:C)-only condition.
191 These results indicate that the potency of PI3K inhibitors is inferior to SYK inhibitors.

192
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194

195  Figure 2: Immunoregulatory activities of PI3K inhibitors on IL-6 production by stimulated
196  macrophages. Representative data of macrophage activation assay for (A) the PI3Ka inhibitor alpelisib,
197  (B) the PI3KS and PI3Ky inhibitor duvelisib, and (C) the PI3K§ inhibitor idelalisib.

198

199

200

201  Entospletinib counteracts serum-induced hyperinflammatory response by alveolar macrophages
202  We next assessed the effects of all tested inhibitors with their maximal inhibition concentrations
203  against anti-spike-induced IL-6. In concordance with the dose-dependent assays, all treatments
204  resulted in a substantial reduction in IL-6 production by macrophages upon anti-spike and poly(l:C)
205  co-stimulation (red bars in Fig. 3A). Dexamethasone and SYK inhibitors showed better potency with
206  more profound effects at the selected concentration than PI3K inhibitors for blocking anti-spike-
207  induced macrophage activation. More importantly, while dexamethasone hampered both anti-spike
208  and anti-viral responses, SYK and PI3K inhibitors had limited impact on the IL-6 production in the
209  poly(l:C)-alone condition (blue bars in Fig. 3A). These results indicate that compounds deactivating
210  SYK and PI3K serve as more selective treatment options for counterbalancing excessive inflammation
211  induced by anti-spike immune complexes.

212 Unlike recombinant monoclonal antibodies, anti-spike IgGs in the patient serum are a pool of
213  polyclonal antibodies against different domains of the spike protein with variate affinities and post-
214  translational modifications. Therefore, the immune complexes formed by recombinant monoclonal
215 antibodies and serum could exert different biological activities. To assess whether SYK and PI3K
216 inhibitors can counteract macrophage hyperactivation by serum-derived immune complexes, we
217  generated spike-lgG immune complexes by incubating spike protein with sera obtained from severely
218 ill COVID-19 patients hospitalized at Amsterdam UMC from the first wave in early 2020. These patients
219  were infected with the Wuhan strain and without prior vaccination. The sera were collected at the
220  time of admission to the ICU. We observed similar inhibition patterns for all compounds compared to
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their monoclonal IgG counterparts (Fig. 3B). SYK inhibitors R406 and entospletinib completely blocked
anti-spike-induced IL-6 production, which dampened the cytokine levels to the concentration of the
poly(l:C) condition (blue dashed line in Fig. 3B). Interestingly, dexamethasone appeared to be less
potent in blocking IL-6 induced by serum-derived anti-spike immune complexes than the ones formed
by monoclonal IgGs (Fig. 3A-B). Finally, we validated our findings in an ex vivo setting for the two most
promising candidate compounds, by activating human alveolar macrophages obtained from
bronchoalveolar lavage (BAL). Upon serum-derived immune complex activation, both R406 and
entospletinib yielded comparable inhibition in BAL macrophages as the in vitro models (Fig. 3C).

To conclude, these data indicate that blocking SYK signaling can serve as a potent strategy
against hyperactivation of alveolar macrophages induced by serum-derived immune complexes.
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Figure 3: Entospletinib counteracts serum-induced hyperinflammatory response by alveolar
macrophages. (A-B) Representative data from four independent experiments showing IL-6 production
by macrophages treated with dexamethasone and different SYK or PI3K inhibitors upon poly(l:C)
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236 stimulation with (red bars) or without (blue bars) immune complexes derived from a monoclonal
237 antibody (A) or patient serum (B). Bar charts with one-segment Y axis (insert) or enlarged two-segment
238  Yaxis. (C) IL-6 production in DMSO, R406, or entospletinib-treated ex vivo bronchoalveolar lavage (BAL)
239  fluid-derived alveolar macrophages. Statistics were calculated using a two-way ANOVA and corrected
240 using Tukey’s multiple comparison test. *P < 0.05; **P < 0.01. n = 3 technical replicates per group, one
241  representative example of n = 3 BAL donors . Data are shown as (mean + SD).

242
243  Entospletinib dampens anti-spike IgG-associated pulmonary endothelial barrier disruption and

244 thrombus formation

245  Pulmonary endothelial damage in COVID-19 is associated with macrophage activation and
246  accumulation in the lungs >2. Overactivated alveolar macrophages create a pro-inflammatory milieu
247  that subsequently promotes microvascular thrombosis and endothelial barrier disruption >*°°, We
248 hypothesized that disrupted pulmonary endothelial function could be rescued by dampening
249  macrophage hyperinflammatory activities with entospletinib. To investigate this, we treated human
250 pulmonary microvascular endothelial cells (HPMVECs) with conditioned media from activated MDAMs.
251 We monitored the trans-endothelial electrical resistance of the HPMVECs monolayer over time as a
252  readout of endothelial integrity.

253 In line with our previous findings in pulmonary artery endothelial cells 33

, a prolonged
254  disruption of endothelial barrier integrity was observed in HPMVECs treated with the conditioned
255  media from macrophages co-stimulated with immune complexes generated with serum from severe
256  COVID-19 patients and the viral stimulus (i.e. poly (I:C)) (the red thin line in Fig. 4A). The conditioned
257  media from poly(l:C)-only activated macrophages exerted a transient effect on endothelial barrier
258  function (the thin blue line in Fig. 4A). Entospletinib was able to block anti-spike-mediated long-term
259  endothelial dysfunction and significantly restored endothelial barrier integrity (thick red line in Fig. 4A,
260 Fig. 4B). Notably, entospletinib treatment did not affect HPMVECs stimulated with supernatant of
261  macrophages activated only by viral stimulus (the blue lines, Fig. 4A). This indicates that entospletinib
262  can selectively counteract the barrier-damaging mediators produced by macrophages upon
263  stimulation with viral stimulus and serum-derived anti-spike immune complexes.

264 Next, we accessed the in situ thrombus formation by adding thrombocytes to macrophage-
265  conditioned medium-activated HPMVECs under flow conditions (flow shear rate 2.5 dyn/cm?). During
266  perfusion, platelets adhered less to the HPMVECs exposed to conditioned media of entospletinib-
267  treated macrophages under poly(l:C) and serum co-activation (Fig. 4C). To sum up, we show that
268  blocking FcyR signaling with entospletinib reduces pulmonary endothelial dysfunction and
269  microvascular thrombosis formation.
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271  Figure 4: Entospletinib dampens anti-spike IgG-associated pulmonary endothelial dysfunction and
272  thrombus formation. (A-B) Representative data of trans-endothelial electrical resistance of the HPAEC
273  monolayer from two donors over time. HPAECs were stimulated with conditioned media from
274  activated macrophages treated with entospletinib or DMSO. The conditioned medium from
275 macrophages without poly(l:C) or serum activation was used as a negative control. (C) Stimulated
276 HPAECs were perfused with platelets for 5 min, after which the area covered by platelets was
277  quantified. n = 3 donors per group. Background colors in the bar plots indicate the stimulation the
278 macrophages received. White or black bars indicate the drug treatments. Data are shown as (mean +
279 SD). Statistical significance was calculated using a two-way ANOVA and corrected using Tukey’s
280  multiple comparison test. ***P < 0.001; ****P < 0.0001.
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282  Entospletinib reduces aberrantly-fucosylated ant-spike IgG-induced platelet activation

283  Recent evidence shows that anti-spike IgG of severely ill COVID-19 patients do not only indirectly
284  activate blood platelets (via macrophages and endothelial cells), but also directly enhance platelet
285  activation and thrombus formation ¥’. This direct activation of platelets critically depends on the
286  aberrant|gG Fc tail glycosylation pattern that is observed in severely ill COVID-19 patients 35°658, While
287 immune complexes with normal glycosylation patterns do not affect platelet adhesion, aberrantly
288  glycosylated 1gG-spike immune complexes enhance platelet activation in the presence of von
289  Willibrand factor (VWF). As platelet activation by 1gG is induced via FcyRlla and the rapid
290  phosphorylation of SYK °°, we studied the direct effect of entospletinib on platelets. We examined
291  platelet adhesion under flow on coverslips coated with vVWF and spike-IgG immune complexes formed
292 by recombinant monoclonal anti-spike 1gG COVA1-18 bearing aberrant glycosylation (9.1%
293  fucosylated and 77.6% galactosylated). Platelets were pre-treated with entospletinib or DMSO before
294  perfusion. Slides coated with VWF and spike-and-wild-type COVA1-18 immune complexes (97.8%
295  fucosylated, 19.6% galactosylated) were used as a control ¥. By quantifying the volume of thrombi,
296  we show that aberrantly glycosylated immune complexes synergized platelet adhesion to vWF (Fig. 5).
297 Entospletinib counteracted the enhanced thrombus formation and reduced thrombus volume to the
298  level of wild-type COVA1-18 controls. These data demonstrate that entospletinib can reduce
299  microvascular thrombosis induced by pathogenic platelet activation mediated by aberrantly
300 glycosylated immune complexes.
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303  Figure 5: Entospletinib reduces aberrantly-fucosylated ant-spike IgG-induced platelet activation.
304  Thrombi formed under flow on VWF and spike-IgG immune complexes-coated slides in perfusion
305  chambers. Immune complexes were formed with normally-glycosylated (WT) or lowly-fucosylated and
306  highly-galactosylated (low-fuc/high-gal) IgGs. Platelets were pre-treated with either vehicle control
307  (DMSO) or entospletinib (1 uM). (A) Representative images of thrombi stained with DiOCs (acquired
308  at x20 original magnification). (B) Quantification of thrombus volume from 8 different platelet donors.
309 Data are represented as mean + SD. Statistical significance was examined by a one-way ANOVA test
310  with Dennett’s multiple comparison correction. *P < 0.05.
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311  Antibody-induced inflammation is a shared mechanism across SARS-CoV-2 variants of concern and
312  can be counteracted by SYK inhibitors

313  SARS-CoV-2 evolves to evade antibodies with mutations of the spike proteins . First, we investigated
314  whether spike-IgG immune complexes of different SARS-CoV-2 VOCs induce hyper-inflammation by
315 alveolar macrophages. We generated spike proteins of a, B, y, 8 VOCs, and the original Wuhan strain
316  (GenBank accession MN908947.3) 62, These spike proteins were subsequently applied to form
317  variant-specific immune complexes with COVA1-16, a monoclonal antibody that binds a highly
318  conserved epitope on the spike receptor binding domain . Immune complexes of all tested VOCs in
319  the combination of poly(l:C) led to increased IL-6 release (Fig. 6A) by macrophages. Next, we examined
320 the effects of SYK inhibitors in counteracting anti-spike-dependent inflammation. SYK inhibitors R406
321 and entospletinib effectively suppressed the IL-6 production induced by immune complexes by 75-95
322  percent against all tested VOCs (Fig. 6B). These data indicate that anti-spike-induced hyper-
323 inflammation is a shared mechanism across different SARS-CoV-2 VOCs, which can all be blocked by
324  SyKinhibition.

325
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329  Figure 6: Antibody-induced inflammation by different SARS-CoV-2 variants of concern. (A) Immune
330  complexes formed by spike proteins from variants of concern (a, B, y, 6, and Wuhan strain) and a
331  monoclonal antibody targeting a highly conserved epitope of the spike portion were used to simulate
332  macrophages. IL-6 level was measured as the readout of the macrophage inflammatory response. (B)
333  Inhibition rates of IL-6 production from macrophages treated with SYK inhibitors R406 and
334  entospletinib compared with DMSO control (DMSO concentration 0.005 %). Each dot represents
335  cytokine production or inhibition rate by different macrophage donors (mean + SD).

14


https://doi.org/10.1101/2022.12.20.521247
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521247; this version posted December 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

336  Discussion

337  Thereis still an unmet need for specific, cost-effective, and orally bioavailable therapeutics to prevent
338  disease progression to severe COVID-19. Here we identify the small-molecular SYK inhibitor
339  entospletinib as a potential medication with high potency and efficacy in specifically diminishing
340  uncontrolled macrophage inflammation induced by anti-spike IgG immune complexes. Anti-spike IgG
341 immune complexes can trigger the production of pro-inflammatory mediators, such as IL-6, TNF, and
342  IFNs by alveolar macrophages 3. The high level of IL-6 produced by macrophages is a hallmark of
343  COVID-19 ®. It has been shown that IL-6 induces oxidative stress, endothelial dysfunction, and
344  coagulation cascade activation %, |L-6 receptor blockade treatments have been recommended by
345  the WHO to tackle systemic inflammation in severe COVID-19 /%8 Given the critical role of SYK in FcyR
346 signaling, blocking SYK activity could serve as a potential therapeutic for severe COVID-19 by ceasing
347  the pathogenic hyperactivation of immune cells and the ensuing endotheliopathy .

348 The small molecule drug fostamatinib (the pro-drug form of R406) is currently indicated for
349  chronic immune thrombocytopenia (ITP) due to its ability to block SYK signaling thus preventing the
350 phagocytosis-based, antibody-mediated platelet destruction 7°. While mild thrombocytopenia is a
351  common clinical manifestation in COVID-19 patients 7%, ITP can occur secondary to COVID-19 in both
352  acute and late stages, particularly in old and severely ill patients 72. Therefore, fostamatinib might
353  provide additional benefits apart from its immunosuppressive effect against anti-spike-specific
354 inflammation. In severe or critical COVID-19 cases, clinical improvements were observed in the
355  fostamatinib treatment group in a phase-Il randomized trial (NCT04579393) #*. Based on this success,
356  fostamatinib is currently tested in several phase-lil clinical trials. However, the adverse effects of
357  fostamatinib have been reported in cancers and rheumatoid arthritis and are attributed to off-target
358  effects %7374, Therefore, a more selective SYK inhibitor could provide better tolerability.

359 Entospletinib is a highly selective and orally efficacious second-generation SYK inhibitor 7.
360 While both tested SYK inhibitors can dampen anti-spike-induced inflammation, compared to R406,
361 our data indicate that entospletinib has less effect on macrophage anti-viral response, thereby
362 representing a promising therapeutic approach for COVID-19 treatment. Notably, the average ICso
363  value of entospletinib against anti-spike-induced IL-6 was 45.6 nM with an efficacy of around 90% in
364  a concentration of 1 uM. Hence, the steady-state serum concentration of entospletinib (Ctrough 3.02
365 UM to Cmax 6.54 uM) at a dose of 600 mg twice daily ”® would provide complete coverage of the ICso
366  values throughout the 12-hour dosing interval. In addition to the cytokine production inhibition,
367  entospletinib can rescue the prolonged loss of HPMVECs barrier function and increased platelet
368  adhesion mediated by anti-spike-induced macrophage hyperactivation. Endotheliopathy is associated
369  with critical illness and death in COVID-19 7”78, Our findings are not only valuable for treatment
370  targeting inflammation, but also have implications for strategies aimed at preserving endothelial
371 function in COVID-19 and other related diseases. Furthermore, entospletinib counterbalances the
372  hyperinflammation induced by anti-spike immune complexes across different SARS-CoV-2 VOCs. A
373  recent study also showed that anti-spike IgG of SARS-CoV-1 could cause the antibody-dependent
374  inflammation by alveolar macrophages thereby deteriorating lung injury 7°. As the mechanism of
375  action of SYK inhibitors is through inhibition of immune hyperactivation rather than through direct
376  effects on coronaviruses, we are optimistic that entospletinib can be also applied for treatment of
377  newly emerging variants and future coronaviruses.

378 Interestingly, in line with our previous findings 33, patient serum-derived immune complexes
379  lead to substantially stronger induction of IL-6 compared to recombinant monoclonal IgG. IgG clonality,
380  avidity, subclasses, and glycosylation patterns at the Fc domain all contribute to the activity of FcRs
381 881 Qur data indicate that dexamethasone is less potent in suppressing inflammation caused by
382  serum-derived immune complexes, while SYK inhibitor R406 and entospletinib remain highly
383 efficacious. It has been shown that the high titer and aberrant afucosylation of anti-spike IgG are two
384  main serological characteristics in severe COVID-19 cases, which combined lead to hyperactivation of
385  FcyRs 3353757 Fyrthermore, under the prothrombotic environment in severe COVID-19 778283,
386  aberrantly glycosylated anti-spike immune complexes can trigger platelet activation leading to
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387  thrombus formation. Ample evidence now supports the beneficial role of anti-platelet medication in
388  COVID-19 treatments 8%, Therefore, as the altered glycosylation pattern of Fc tail on IgGs is transient
389 in the early phase of seroconversion, the selective effect of entospletinib in counterbalancing
390 thrombus formation against aberrantly glycosylated immune complex could be beneficial to prevent
391 severe COVID-19. Yet, one major challenge with immunoregulatory therapeutics against COVID-19 is
392 the tailoring of treatments to the clinical course of the disease stages. SYK inhibition by fostamatinib
393  has been shown to impair B cell development at the transitional stage but not mature B cell
394  populations ##7, Since the proposed therapeutic effects of SYK inhibitors are dependent on spike-
395 specific IgGs, appropriate timing for administrating these compounds is crucial.

396 It has been shown that immune complexes can also affect other cell types during COVID-19
397 disease progression. In severely ill patients, SARS-CoV-2 infection triggers soluble multimeric immune
398  complex formation. These circulating immune complexes can activate monocytes via CD16 (FcyRIIl)
399  and promote immunopathology 8. Sera from severely ill COVID-19 patients contain high levels of
400  immune complexes and activate neutrophil IL-8 production and CD11b expression via FcyRII (CD32) &°.
401 Immune complexes also promote the degranulation of CD16* T cells in severe COVID-19 *°, The
402  activation of these highly cytotoxic CD16* T cell population results in endothelial injury. Moreover, the
403 CD16" T cell proliferation and differentiation is driven by the cleaved complement product C3a %,
404  which is induced in macrophages upon immune complex stimulation X, Evidently, anti-spike IgG with
405  the aberrant glycosylation together with the predisposed proinflammatory milieu in the disease-prone
406  patients could promote this uncontrolled vicious circle initiated by pulmonary macrophages. In light
407  of these altered effector functions by immune complexes in various cell types in COVID-19, we
408  propose that FcR-dependent activation is associated with disease severity in a systemic level than only
409 in the (peri-)pulmonary region. Therefore, SYK inhibition could provide additional benefits against
410 antibody-dependent inflammation beyond the tested cell types and conditions in this manuscript.
411 While our data suggest SYK inhibitors are promising candidates for COVID-19 therapeutics,
412  targeting other kinases in the FcyR signaling cascade does not yield similar results. PI3K is a group of
413 signal transducer enzymes downstream of the FcyR-SYK pathway. Studies also proposed the
414  therapeutic potential of PI3K inhibitors in preventing uncontrolled inflammation and coagulation
415  complications in COVID-19 patients %%, However, our data show that PI3K inhibitors are less potent
416  and efficacious than SYK inhibitors. The concentration required to reach 80% inhibition of anti-spike-
417  dependent IL-6 by macrophages is high and can affect cell viability. Our observations of PI3K-induced
418  effects on cell viability are in line with the already known problem of not fully studied early and late
419  onset toxicity mechanism of this class of drug. In several clinical cases the drug toxicity leads to
420  development of fatal adverse effects during treatment such as skin toxicity, autoimmune disfunction,
421  hypertension and hyperglycemia %%,

422 Furthermore, PI3K-y/& inhibitor duvelisib can induce macrophage repolarization toward a
423  more pro-inflammatory phenotype in vivo *. We also observed this pro-inflammatory activation by
424 duvelisib in poly(I:C)-only conditions. Interestingly, in the presence of spike-IgG immune complexes,
425  duvelisib suppresses IL-6 production by macrophages. As PI3K-8-specific inhibitor idelalisib does not
426  exertthis differential regulation between TLR-dependent and anti-spike-dependent inflammation, the
427  role of PI3K-y is of great interest for further investigation.

428 In addition to the anti-inflammatory effects, blocking FcyR signaling in alveolar macrophages
429  could halt disease progression through other mechanisms. Recent evidence shows that FcyRs mediate
430  SARS-CoV-2 uptake by monocytes and tissue macrophages, which leads to pyroptosis and
431 inflammasome activation that aborts virus proliferation, but aggravates systemic inflammation %7-°
432  As both SYK inhibitors fostamatinib and entospletinib are capable of blocking phagocytosis 109101,
433  whether these compounds can curb SARS-CoV-2 uptake and subsequent pyroptosis in COVID-19 is of
434  interest for further exploration.

435 In conclusion, we show that small molecule SYK inhibitors specifically counteract the anti-
436  spike-associated hyperinflammation, while simultaneously preserving anti-viral immunity. We further
437  demonstrate that entospletinib, the best candidate drug, can rescue anti-spike-induced endothelial
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barrier disruption and platelet adhesion. Moreover, we show that SYK inhibitors dampen
inflammation triggered by different variants of concern. Hence, entospletinib serves as a potential
treatment option for halting COVID-19 progression independent of the virus variants. In conjunction
with additional emerging evidence indicating the beneficial effect of another SYK inhibitor
fostamatinib, our work provides evidence for pursuing clinical trials to investigate repurposing
entospletinib for preventing COVID-19 deterioration.
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REAGENT or RESOURCE SOURCE \ IDENTIFIER
Antibodies
COVA1-18 WT P.J.M Brouwer et al. 102 doi:10.1126/science.

abc5902

COVAL1-18 low fuc/high gal

Hoepel et al. 32

doi:10.1126/scitransl
med.abf8654

COVA1-16

P.J.M Brouwer et al. 102

doi:10.1126/science.
abc5902

Biological samples

Severe COVID19 patient serum Amsterdam UMC N/A
COVID19 Biobank
Primary Alveolar Macrophages DIVA Study NL6318

Chemicals, peptides, and recombinant proteins

Human M-CSF

Miltenyi Biotec

Cat#130-096-491

Recombinant Human IL-10 Protein

R&D Systems

Cat# 217-1L-025/CF

Recombinant SARS-CoV2-Spike Wuhan Hu-1
Protein

T.Caniels et al. 61

GenBank accession
MN908947.3;
doi:10.1126/sciadv.a
bj5365

Recombinant SARS-CoV2-Spike B.1.1.7 Protein

T.Caniels et al. 81

doi:10.1126/sciadv.a
bj5365

Recombinant SARS-CoV2-Spike B.1.351 Protein

T.Caniels et al. 81

doi:10.1126/sciadv.a
bj5365

Recombinant SARS-CoV2-Spike P.1 Protein

T.Caniels et al. 61

doi:10.1126/sciadv.a
bj5365

Recombinant SARS-CoV2-Spike B.1.617.2 Protein

M. van Gils et al. 62

doi:10.1371/journal.p
med.1003991doi

Dexamethasone Merck Cat#D1756-25mg
Entospletinib (GS-9973) Selleckchem.com Cat# S7523
R406 Selleckchem.com Cat#S1533
Aleplisib (BYL719) Selleckchem.com Cat#S1815
Idelalisib MedChemExpres Cat# HY-13026
Duvelisib MedChemExpres Cat# HY-17044
polyinosinic:polycytidylic acid (poly(l:C)) Sigma-Aldrich Cat#P1530

Critical commercial assays

CD14 MicroBeads, human

Miltenyi Biotec

Cat#130-050-201

ELISA MAX™ Standard Set Human IL-6

BioLegend

Cat#430501

Software and algorithms

GraphPad Prism version 9.4.0

GraphPad Software

www.graphpad.com

R (v.4.1.3)

R Core Team (2022)

https://imww.R-
project.org/

R package drc Ritz et al. 103 doi:10.1371/journal.p
one.0146021
R package dr4pl An et al. 104 doi:10.32614/RJ-

2019-003
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477  Resource availability

478  Lead contact

479 Further information and requests for resources and reagents should be directed to and will be fulfilled
480 by the lead contact, Jeroen den Dunnen (j.dendunnen@amsterdamumc.nl).

481

482  Material availability

483  This study did not generate new unique reagents. The recombinant anti-spike antibodies COVA1-16
484  and COVA1-18 are available upon request to the lead contact through a materials transfer agreement.
485

486  Data and code availability

487  All data and code reported in this paper will be shared by the lead contact upon request.

488

489  Experimental Model and Subject Details

490  Human subjects

491 Buffy coats were purchased from Sanquin blood supply in Amsterdam. All healthy donors provided
492  written informed consent prior to blood donation. HPMVECs were collected from lung tissue obtained
493  as waste material from lobectomy performed at the Amsterdam UMC (location VU University Medical
494  Center). Primary alveolar macrophages were obtained from broncho alveolar lavage fluid as waste
495  material from the ongoing DIVA study (Netherlands Trial Register: NL6318; AMC Medical Ethical
496  Committee approval number: 2014_294). All volunteers of the DIVA study provided written consent
497  form. The severe COVID19 serum samples were collected by the Amsterdam UMC COVID19 Biobank
498  according to approved protocols and in accordance with the Declaration of Helsinki.

499

500 Method details

501  Monocyte-derived alveolar macrophage-like macrophages (MDAMs)

502 MDAMs were generated as previously described 3. In short, CD14* monocytes were isolated by
503 Lymphoprep (Stemcell) isolation followed by CD14 magnetic beads purification via the MACS cell
504  separation system (Miltenyi). The resulting monocytes were then differentiated with 50 ng/ml human
505 M-CSF (Miltenyi) for 6 days in Iscove’s modified Dulbecco’s medium (Gibco) containing 5 % fetal calf
506  serum (CAPRICORN) and gentamycin (Gibco). Total culture medium was refreshed on after three days
507  of culture. On day 6, M-CSF-differentiated macrophages were primed with 50 ng/ml IL-10 (R&D
508  Systems) for 24 hours. For further stimulation cells were detached from the culture plates using TrypLE
509  Select (Gibco).

510

511  Coating

512  Stabilized recombinant SARS-CoV-2 spike protein and monoclonal antibodies (COVA1-16 and COVA1-
513  18) were generated as previously described 162192 To form immune complexes, 2 ug/ml spike protein
514  diluted in PBS was incubated over-night on 96-well high affinity plates (Nunc). To prevent unspecific
515  binding, the plates were subsequently blocked with 10 % FCS in PBS for 1 hour at 37 °C. After blocking,
516 plates were incubated for 1 hour at 37 °C with diluted serum (2% in PBS) from severe COVID19 patients
517  (Amsterdam UMC COVID19 Biobank) or 2 pg/ml monoclonal antibodies.

518

519  Cell stimulation and inhibitor treatment

520 Selective small-molecule inhibitors specifically against the SYK/PI3K signaling pathway were
521  investigated 1%. For repurposing purpose, only approved or investigational compounds in phase-lll
522 clinical trials were used in the screening assay. All inhibitors (dexamethasone (Merck, D1756),
523  entospletinib (Selleckchem, $7523), R406 (Selleckchem, $1533), alpelisib (Selleckchem, S2814),
524  idelalisib (MedChemExpress, HY-13026), duvelisib (MedChemExpress, HY-17044), were purchased in
525 powdered form and dissolved according to the distributor’s instructions. Macrophages were pre-
526  incubated with inhibitors (or DMSO as a control) for 30 minutes at 37 °C. After pre-incubation,
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527  macrophages were stimulated with 20 pg/ml polyinosinic:polycytidylic acid (poly(l:C), Sigma-Aldrich)
528  and seeded in a density of 50,000 cells/well in pre-coated 96-well plates in 200ul/well medium.

529

530  Enzyme-linked immunosorbent assay

531  Tomeasure the IL-6 production, the supernatants of the stimulated cells were harvested after 24-hour
532 incubation. IL-6 concentration was determined using antibody pairs from U-CyTech Biosciences
533  (Human IL-6 ELISA, CT744-20) or Biolegend (ELISA MAXTM Standard Set Human IL-6, 430501).

534

535  Endothelial barrier function

536 Pulmonary microvascular endothelial cells (HPMVECs, passage 4 to 6) were seeded 1:1 in 0.1% gelatin-
537 coated 96-well ibidi culture slides (96W10idf PET, Applied BioPhysics) for electrical cell-substrate
538 impedance sensing, as previously described 1%. In short, HPMVECs were maintained in culture in
539 Endothelial Cell Medium (ECM, ScienCell) supplemented with 1% penicillin-streptomycin, 1% ECGS,
540 5% FCS, and 1% NEAA (Biowest). From seeding onward, electrical impedance was measured at 4000
541 Hz every 5 min. PAECs were grown to confluence. After 72 hours, ECM was removed and replaced by
542  either complete ECM with DMSO or 1 uM entospletinib. After 2.5 hours of pre-treatment, medium
543  wasremoved and replaced by the macrophage-conditioned media stimulated for 6 hours as described
544  above with poly(I:C) or in combination with patient serum. Three technical replicate measurements
545  were performed for each condition. For every experiment, PAECs and macrophages obtained from
546  different donors were used.

547

548  Platelet adhesion on HPMVEC under flow

549 HPMVECs (passage 4 to 6) were seeded in 0.1% gelatin-coated 6-channel p-Slide VI 0.4 ibiTreat flow
550  slides (ibidi, #80606) and cultured for 7 days. HPMVECs were preincubated for 2.5 hours with
551  complete ECM with DMSO or 1 pM entospletinib followed by 24-hour treatment with macrophage-
552 conditioned media as described above. On the day of perfusion, platelets were isolated from citrated
553  blood from healthy volunteers, as previously described %7, Platelets were perfused for 5 min. After
554 then, the phase-contrast and fluorescent images were taken using a 20x phase-contrast objective with
555  an Etaluma LS720 microscope. Platelet adhesion was quantified in Image) (v. 1.53) by determining the
556  platelet-covered area per field of view.

557

558  Invitro thrombus formation

559 Blood samples were obtained from healthy donors that had given informed consent and using
560  procedures approved by the University of Reading Research Ethics Committee and collected into
561  vacutainers containing 3.8% (w/v) sodium citrate. Thrombus formation experiments were performed
562  using microfluidic flow chips (Venas, CellixLtd, Dublin, Ireland) coated with 5ug/ml recombinant SARS-
563  CoV-2 spike protein for 60 minutes at 37 °C, washed and then blocked with 10% FCS for 1 hour at 37
564  °C. The slides were then washed and treated with 10ug/ml wildtype or lowly fucosylated and highly
565  galactosylated COVA1-18 antibodies for 1 hour at 37 °C followed by 20ug/ml vWF (Abcam, UK) for 1
566  hour. Thrombus formation was measured by perfusing citrated whole blood treated with 20pg/ml
567  vWEF and either vehicle (DMSO) or entospletinib (1 uM) for 1 hour through the flow chambers at 1000s-
568 1 for 6 minutes before fixing with 10% formyl saline, staining with 2uM DiOC¢ and then imaged by
569  acquiring z-stacks using the 20x objective lens of a confocal Ti2 fluorescence microscope (Nikon).
570

571  Quantification and Statistical Analysis

572  Statistical significance of the data was performed in GraphPad Prism 9.4.0 (GraphPad). For t tests
573  comparing two sets of measurements, data were first examined with D’Agostino-Pearson normality
574  test with a = 0.05 followed by paired or unpaired t tests according to the experiment design. The
575  statistical exams applied for each figure are stated in the legends. The half maximal inhibitory
576 concentration (ICso) calculation was conducted in R (v.4.1.3) environment with R packages drc 103 and
577  drdpl 104,
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