

1 **Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe**
2 **COVID-19**

3
4 Chiara E. Geyer^{1†}, Hung-Jen Chen^{1†}, Alexander P. Bye^{2,3,4}, Xue D. Manz⁵, Denise Guerra⁶, Tom G.
5 Caniels⁶, Tom P.L. Bijl⁶, Guillermo R. Griffith⁷, Willianne Hoepel¹, Steven W. de Taeye⁶, Jennifer Veth¹,
6 Alexander P.J. Vlaar⁸, Amsterdam UMC COVID-19 Biobank⁺, Gestur Vidarsson^{9,10}, Harm Jan Bogaard⁵,
7 Jurjan Aman⁵, Jonathan M. Gibbins², Marit J. van Gils⁶, Menno P.J. de Winther^{7*#}, Jeroen den
8 Dunnen^{1,11*#}

9
10 ¹Center for Experimental and Molecular Medicine, Amsterdam Institute for Infection and Immunity,
11 Amsterdam University Medical Centers, Amsterdam, Netherlands

12 ²Institute for Cardiovascular and Metabolic Research, and. School of Biological Sciences, University of
13 Reading, Reading, United Kingdom.

14 ³Molecular and Clinical Sciences Research Institute, St George's University, Cranmer Terrace, London,
15 United Kingdom

16 ⁴School of Pharmacy, University of Reading, Reading RG6 6UB, United Kingdom

17 ⁵Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands

18 ⁶Medical Microbiology and Infection Prevention, Amsterdam Institute for Infection and Immunity,
19 Amsterdam University Medical Centers, Amsterdam, Netherlands

20 ⁷Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Atherosclerosis &
21 Ischemic Syndromes, Amsterdam Institute for Infection and Immunity, Inflammatory diseases,
22 Amsterdam University Medical Centers, Amsterdam, the Netherlands

23 ⁸Department of Intensive Care Medicine, Amsterdam Institute for Infection and Immunity,
24 Amsterdam University Medical Centers, Amsterdam, Netherlands

25 ⁹Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands

26 ¹⁰Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for
27 Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht,
28 Netherlands

29 ¹¹lead contact

30
31 + Members and affiliations of the Amsterdam UMC COVID-19 Biobank are listed in Table S1

32 † Contributed equally, sharing first authorship

33 # Contributed equally, sharing last authorship

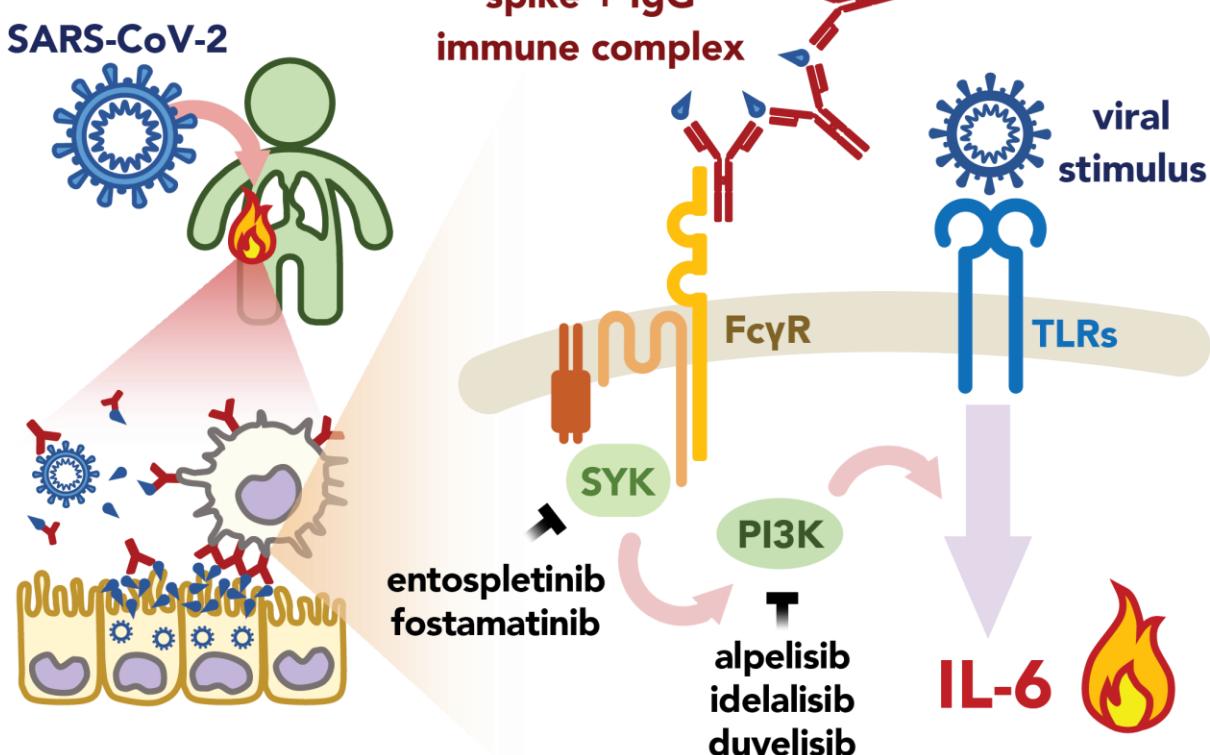
34 * Correspondence to: Jeroen den Dunnen (j.dendunnen@amsterdamumc.nl) and Menno de Winther
35 (m.dewinther@amsterdamumc.nl)

36

37

38 **Summary**

39 Previously, we and others have shown that SARS-CoV-2 spike-specific IgG antibodies play a major role
40 in disease severity in COVID-19 by triggering macrophage hyperactivation, disrupting endothelial
41 barrier integrity, and inducing thrombus formation. This hyper-inflammation is dependent on high
42 levels of anti-spike IgG with aberrant Fc tail glycosylation, leading to Fc γ receptor hyper-activation. For
43 development of immune-regulatory therapeutics, drug specificity is crucial to counteract excessive
44 inflammation while simultaneously minimizing inhibition of antiviral immunity. We here developed an
45 *in vitro* activation assay to screen for small molecule drugs that specifically counteract antibody-
46 induced pathology. We identified that anti-spike induced inflammation is specifically blocked by small
47 molecule inhibitors against SYK and PI3K. We identified SYK inhibitor entospletinib as the most
48 promising candidate drug, which also counteracted anti-spike-induced endothelial dysfunction and
49 thrombus formation. Moreover, entospletinib blocked inflammation by different SARS-CoV-2 variants
50 of concern. Combined, these data identify entospletinib as a promising treatment for severe COVID-
51 19.


52

53 **Key words:** COVID-19 treatment, SYK, macrophage, FcR, entospletinib, inflammation, IL-6, thrombosis,
54 endothelial dysfunction, platelet

55

56 **Graphical abstract**

57

58 **Introduction**

59 The ongoing severe acute respiratory syndrome coronavirus (SARS-CoV-2) pandemic is associated with
60 millions of deaths and immense pressure on healthcare systems and economies worldwide ^{1,2}. In most
61 patients, SARS-CoV-2 infection leads to a mild manifestation of coronavirus disease 2019 (COVID-19)
62 characterized by flu-like symptoms such as cough, fever, and fatigue. However, some patients,
63 particularly more in the unvaccinated population ³, develop severe and lethal complications including
64 pneumonia, acute respiratory distress syndrome, thromboembolism, and sepsis ⁴. One characteristic
65 of severe COVID-19 cases is the fast deterioration of the symptoms one to two weeks after onset,
66 accompanied by prolonged and elevated systemic pro-inflammatory cytokine levels, particularly
67 interleukin (IL)-6, tumor necrosis factor (TNF), and interferons (IFNs) ^{2,5,6}. In addition to the hyper-
68 inflammatory states, severe COVID-19 patients develop multiorgan dysfunction that can be explained
69 by derangements in hemostasis, also known as COVID-19-associated coagulopathy ⁷⁻⁹. Although the
70 exact mechanisms of COVID-19-associated coagulopathy remain unclear, a complex interplay
71 between coronaviruses, endothelial cells, platelets, elevated immune responses, and dysfunction of
72 the coagulation system has been postulated ¹⁰.

73 Despite the increasing coverage of safe and effective vaccines worldwide, SARS-CoV-2
74 continues to spread rapidly. As the virus evolves, several variants of concern (VOC) characterized by
75 increased transmissibility or virulence have been discovered ¹¹⁻¹⁴. Recent studies reveal a rapid
76 increase in symptomatic COVID-19 cases in the vaccinated population, indicating reduced vaccine
77 effectiveness over time and the emergence of new immune-escaping variants ¹⁵⁻¹⁷. Newly occurring
78 virus variants to which previous vaccines do not provide sufficient protection are a threat to global
79 public health ^{18,19}. Moreover, some people including immune-compromised populations or patients
80 receiving immunomodulatory medications develop poor vaccination responses ²⁰.

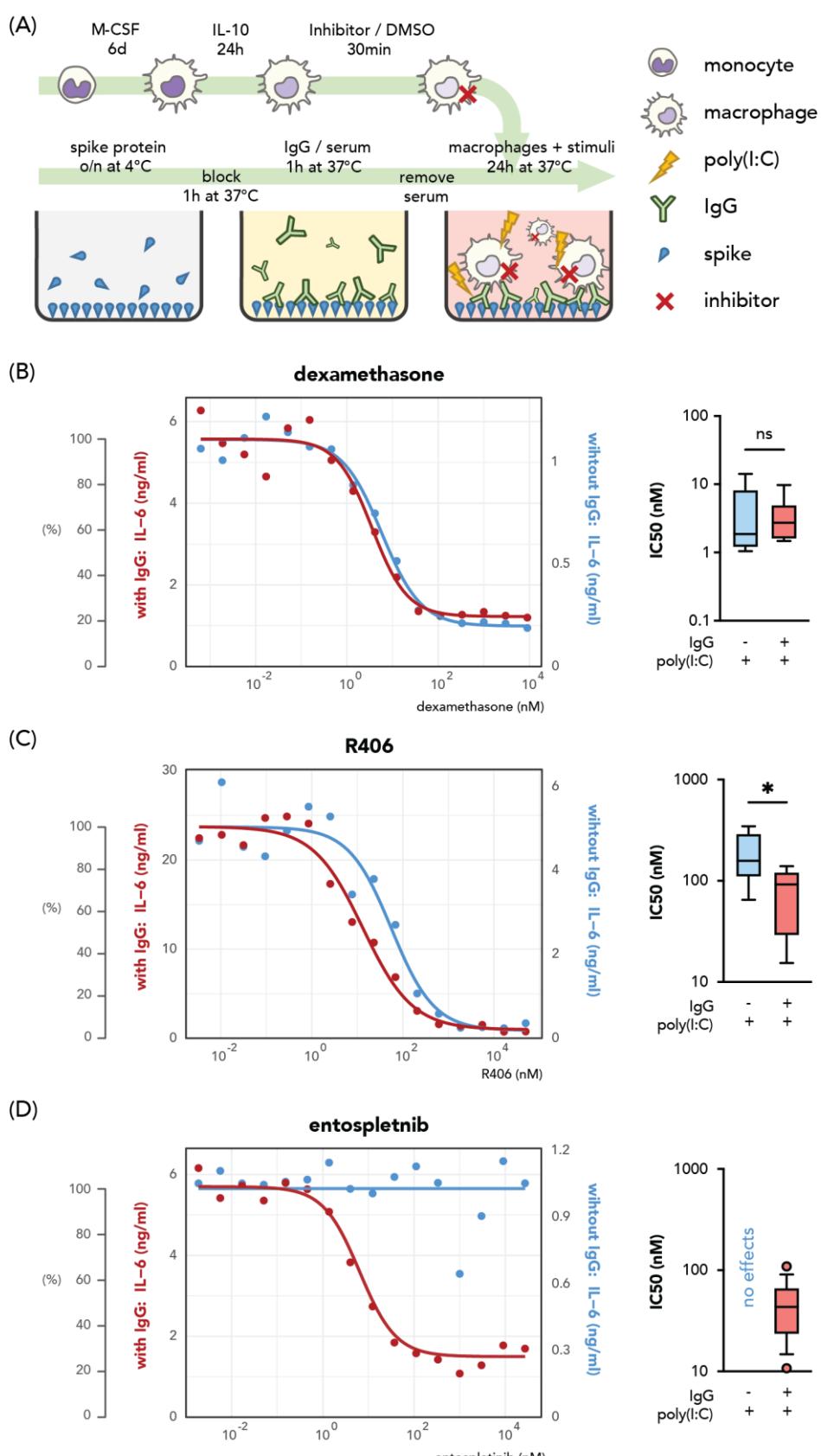
81 Therefore, in addition to disease prevention by vaccination, efforts have been made to
82 develop treatments to alleviate symptoms. Several effective anti-viral therapeutics are authorized for
83 COVID-19 treatment. Molnupiravir, a prodrug of a ribonucleoside analog introducing replication errors
84 ²¹, has been shown to hasten the elimination of infectious viruses ^{22,23}. Nirmatrelvir, a SARS-CoV-2
85 main protease inhibitor, together with the HIV-1 protease inhibitor ritonavir, has been developed as
86 a combined treatment (Paxlovid), which largely reduces the risk of hospitalization or death ^{24,25}. Given
87 that anti-viral treatments do not rectify the underlying excessive host immune response deteriorating
88 COVID-19, studies have also focused on attenuating uncontrolled inflammation in severe cases.
89 Dexamethasone is the first approved immunoregulatory therapeutic that significantly reduces the risk
90 of death, particularly in patients requiring mechanical ventilation or supplemental oxygen ^{26,27}. The
91 efficacy of steroids in treating critical COVID-19 cases supports the idea that immune components
92 contribute to disease severity. However, while steroid therapy is a successful approach in suppressing
93 excessive inflammation and dampening COVID-19 complications, concern remains about secondary
94 infection and the reactivation of latent infections ²⁸⁻³⁰. Furthermore, as a potent corticosteroid,
95 dexamethasone has a significant impact on the immune system and could cause a delay in viral
96 shedding and have consequences in various organs ^{31,32}. Therefore, there is still an unmet need for a
97 specific immunomodulatory treatment that reduces uncontrolled inflammation while keeping the
98 anti-viral response intact simultaneously.

99 Previously, we and others provided evidence that SARS-CoV-2 spike protein-specific
100 immunoglobulin G (IgG) promotes excessive production of pro-inflammatory mediators by alveolar
101 macrophages and monocytes, disrupts endothelial barrier function, and activates platelet thereby
102 contributing to the exacerbation of COVID-19 in severe cases ³³⁻³⁵. The pathogenic effect mediated by
103 anti-spike IgG is induced via the overactivation of fragment crystallizable region gamma receptors
104 (FcγRs) on innate immune cells ^{5,33,36}. Two specific antibody features of severe COVID-19 patients
105 contribute to the excessive immune response: extremely high anti-Spike IgG titers and aberrant
106 glycosylation of the IgG Fc tail, which combined lead to the overactivation of FcγRs. The overactivated
107 macrophages create a pro-inflammatory environment that leads to endothelial dysfunction and

108 platelet adhesion. Furthermore, the aberrantly glycosylated IgG together with spike protein can form
109 immune complexes that directly enhance platelet thrombus formation³⁷.

110 Spleen Associated Tyrosine Kinase (SYK) is a critical component in Fc γ R signal transduction³⁸
111 and hence serves as a potential target. The SYK inhibitor R406 (the active form of FDA- and EMA-
112 approved drug fostamatinib) has been recently identified as an effective immunoregulatory drug
113 modulating the activities of immune cells and platelets in severe COVID-19^{33,37,39,40} and has been
114 applied in several clinical trials (NCT04581954, NCT04629703, NCT04924660)⁴¹. Once SYK is activated,
115 it binds to phosphoinositide 3-kinase (PI3K) and triggers downstream signaling cascades^{42,43}. While
116 the SYK-PI3K axis drives macrophage chemotaxis and phagocytosis^{38,44,45}, ample evidence shows that
117 SYK-PI3K activation also promotes the expression of inflammatory mediators⁴⁶⁻⁴⁹. Furthermore, the
118 SYK-PI3K signaling pathway also contributes to platelet activation, adhesion, and aggregation⁵⁰.
119 Therefore, interventions targeting SYK and PI3K activity might provide potential treatment options for
120 severe COVID-19.

121 In this study, we set out to identify inhibitors counteracting immune complex-induced
122 hyperinflammation. We developed a macrophage activation assay capable of determining compound
123 potency and efficacy against anti-spike-specific inflammation. We applied this screening assay on
124 approved and investigational small molecule inhibitors. We demonstrate that several SYK and PI3K
125 inhibitors can counteract the hyper-inflammatory state induced by anti-spike immune complexes. We
126 identify entospletinib, a SYK inhibitor, as a promising candidate drug to tackle anti-spike IgG-mediated
127 inflammation, endothelial barrier disruption, platelet adhesion, and thrombus formation. Moreover,
128 entospletinib dampens the anti-spike IgG-mediated inflammation induced by different variants of
129 concern.


130 **Results**

131

132 ***Anti-spike IgG-induced inflammation can be specifically counteracted by targeting SYK***

133 To quantify the potency and selectivity against anti-spike-mediated inflammation, we determined the
134 half-maximal inhibitory concentration (IC_{50}) on macrophage activation. Previously, our transcriptomic
135 classification showed that M-CSF and IL-10-differentiated macrophages most closely resemble human
136 primary alveolar macrophages ⁵¹. We applied these monocyte-derived alveolar macrophage-like
137 macrophages (MDAMs) in the assay. Briefly, MDAMs were treated with different compounds at
138 increasing concentrations 30 minutes prior to stimulation by the TLR3 ligand polyinosinic:polycytidylic
139 acid (poly(I:C)) (a viral stimulus mimic) in the presence or absence of recombinant anti-spike IgG-
140 formed immune complexes (Fig. 1A). We assessed the pro-inflammatory activity of macrophages by
141 measuring IL-6 production. We hypothesized that if the compound is specific for Fc γ R signaling, it will
142 dose-dependently decrease anti-spike-dependent IL-6 production while leaving activation by poly(I:C)
143 alone unchanged. We investigated two SYK inhibitors R406 (the active form of fostamatinib) and
144 entospletinib, along with the standard-of-care drug dexamethasone. Dose-dependent inhibitory
145 curves were then plotted and the IC_{50} values were calculated for each inhibitor for the two stimulation
146 conditions (Fig. 1B-D).

147 All compounds suppressed IL-6 production by macrophages upon co-stimulation by poly(I:C)
148 and anti-spike immune complex (red curves in Fig. 1B-D). Dexamethasone showed the best potency
149 with the lowest concentration (around 20-100 nM) required to achieve maximal inhibition, compared
150 to 0.5-1 μ M for R406 and entospletinib. Notably, dexamethasone similarly blocked anti-spike-induced
151 and virus-induced IL-6 production (average IC_{50} = 3.6 or 4.4 nM with or without anti-spike IgG,
152 respectively) (Fig. 1B). Compared to dexamethasone, both SYK inhibitors exerted greater potency for
153 anti-spike-mediated inflammation. We observed a significant difference between IC_{50} values for the
154 R406 treatment against anti-viral and anti-IgG-induced IL6 production (mean IC_{50} value of 191.9 nM
155 for poly(I:C) alone-induced IL-6 and 78.5 nM for anti-IgG and poly(I:C) co-stimulation) (Fig 1C).
156 Entospletinib was the most anti-spike-dependent inflammation-specific compound which did not
157 affect poly(I:C)-only activated macrophages, and exhibited higher potency than R406 (IC_{50} = 45.6 nM,
158 Fig. 1D).

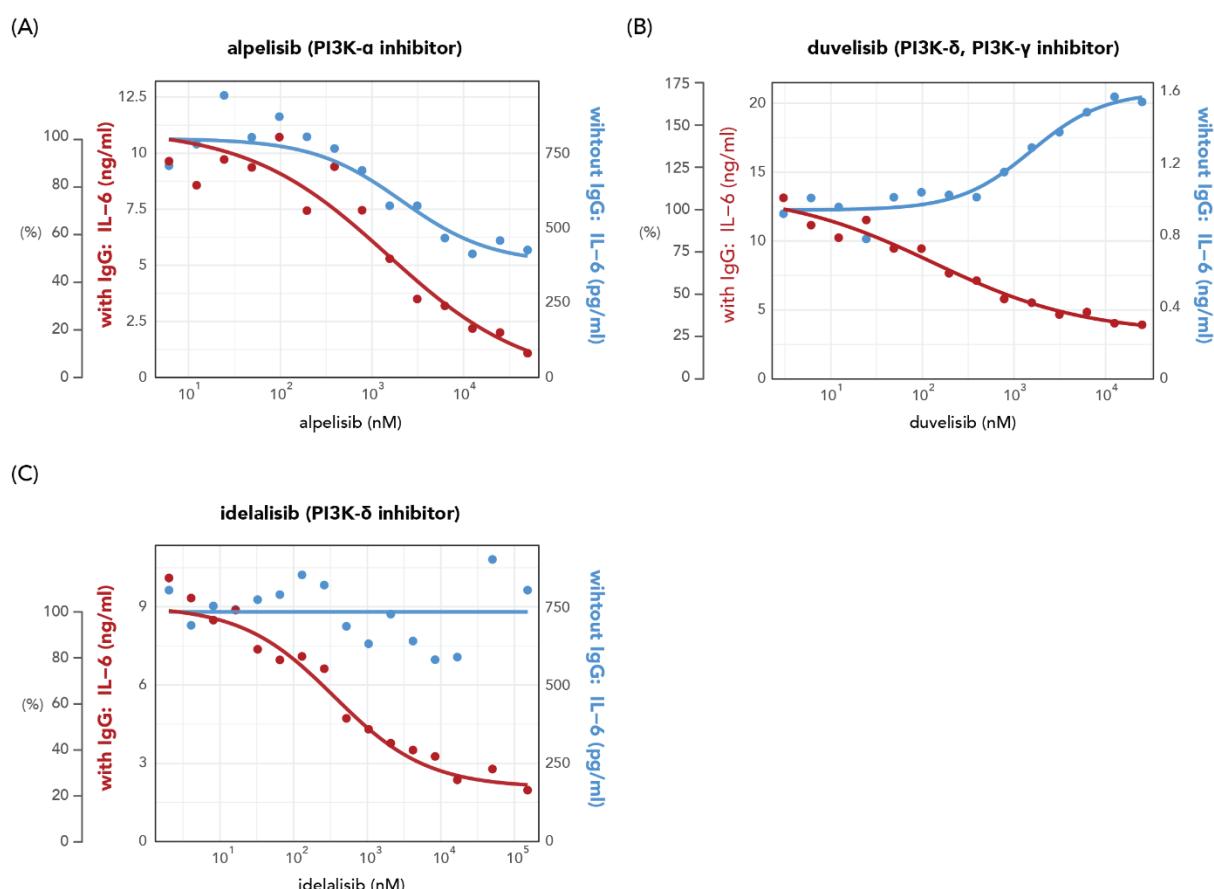

159
160
161
162
163

Figure 1: Immunoregulatory activities of dexamethasone and SYK inhibitors R406 and entospletinib on IL-6 production by stimulated macrophages. (A) Schematic overview of the experimental setup. Monocyte-derived alveolar macrophage-like macrophages (MDAMs) were generated by differentiating peripheral monocytes with M-CSF and IL-10. The generated MDAMs were then treated

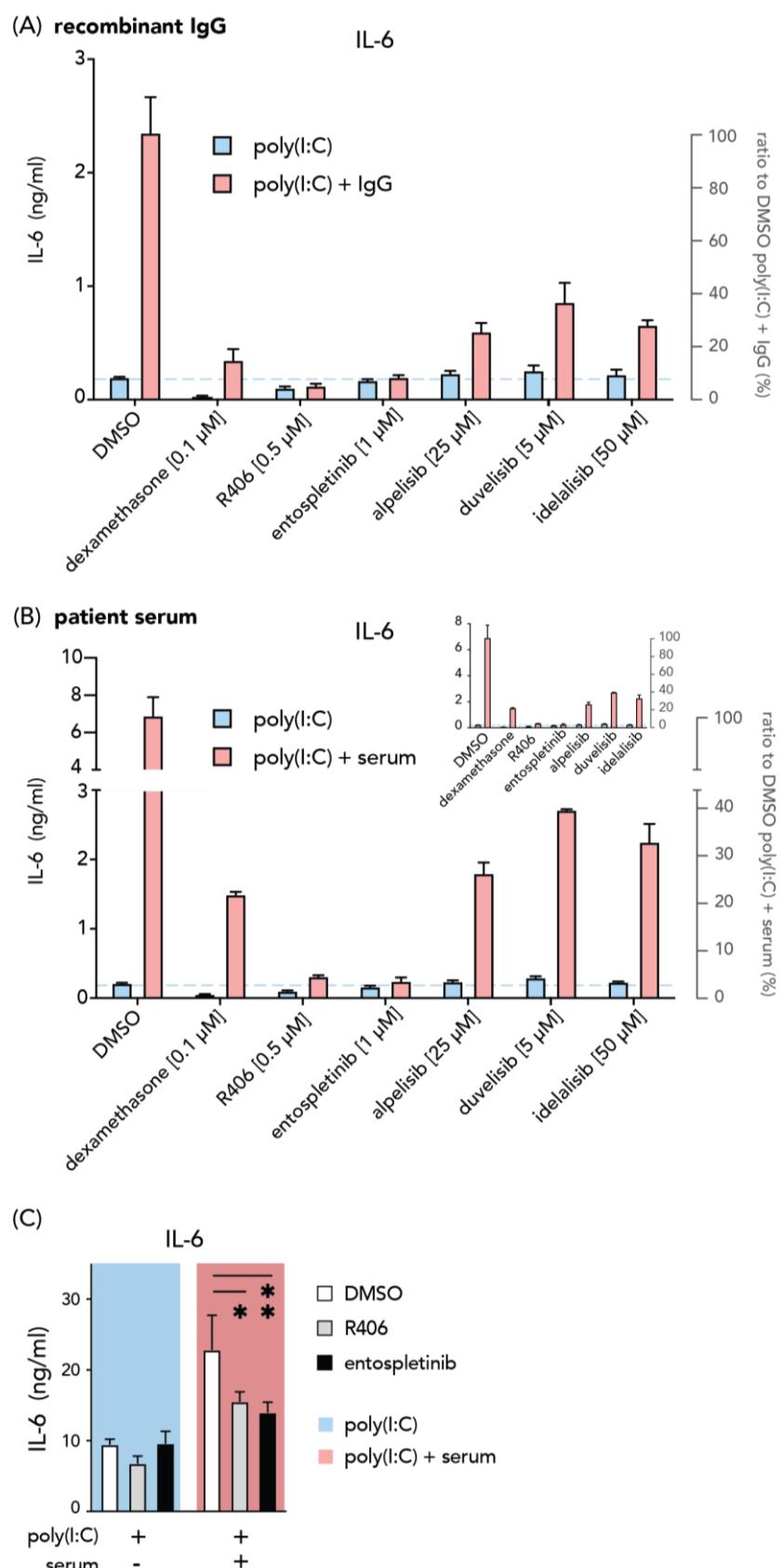
164 with inhibitors in increasing concentration or DMSO 30 min prior to stimulation with viral stimulus
165 poly(I:C) with or without the presence of immune complexes. Immune complex is formed by plate-
166 bounded SARS-CoV-2 spike proteins and monoclonal anti-spike IgGs. All conditions are with SARS-CoV-
167 2 spike proteins. (B-D) IL-6 production was used as the pro-inflammatory activation readout.
168 Representative data of macrophage activation assay for (B) dexamethasone(C) R406 and (D)
169 entospletinib, with the left Y axis and red curves showing the concentration measured from poly(I:C)
170 and anti-spike immune complex conditions and right Y axis and blue curves activation with poly(I:C)
171 alone. Half maximal inhibitory concentrations (IC_{50}) from different macrophage donors
172 (dexamethasone (n = 6), R406 (n = 5), entospletinib (n = 14)) per stimulation condition are plotted as
173 box plots indicating 10-90 percentile and median. Significant differences were calculated with a paired
174 *t* test. **P* < 0.05.
175

176 ***PI3K inhibitors affect macrophage activation***

177 Next, we investigated the effect of inhibitors targeting PI3K, a downstream kinase in the Fc γ R-SYK
178 signaling pathways. We carried out the same macrophage activation assay used for SYK inhibitors with
179 compounds inhibiting different PI3K isoforms. In general, compared to SYK inhibitors, PI3K inhibitors
180 required higher concentrations (> 10 μ M) to reach an 80% inhibition of anti-spike-induced IL-6 (Fig.
181 2A-C). The effect on IL-6 induced by poly(I:C) alone varied between different compounds. Alpelisib, a
182 PI3K- α inhibitor, inhibited IL-6 production with higher potency against anti-spike-dependent
183 inflammation in comparison to other tested PI3K inhibitors (Fig. 2A). Interestingly, while PI3K- γ / δ
184 inhibitor duvelisib suppressed macrophage IL-6 production in response to poly(I:C) and anti-spike
185 immune complex co-stimulation, it amplified IL-6 secretion dose-dependently when only poly(I:C) was
186 applied (Fig. 3B). This observation suggests distinct regulatory functions for different PI3K isoforms in
187 inflammatory processes and/or potential off-target effects of the drug. Another PI3K- δ inhibitor
188 idelalisib counteracted anti-spike-dependent IL-6 production while not affecting the anti-viral
189 response (Fig. 2C). However, with the highest two concentrations tested in our assay, we observed
190 reduced viability (data not shown), as well as an increase in IL-6 levels in the poly(I:C)-only condition.
191 These results indicate that the potency of PI3K inhibitors is inferior to SYK inhibitors.
192

193
194
195 **Figure 2: Immunoregulatory activities of PI3K inhibitors on IL-6 production by stimulated**
196 **macrophages.** Representative data of macrophage activation assay for (A) the PI3K α inhibitor alpelisib,
197 (B) the PI3K δ and PI3K γ inhibitor duvelisib, and (C) the PI3K δ inhibitor idelalisib.

198
199
200
201 **Entospletinib counteracts serum-induced hyperinflammatory response by alveolar macrophages**


202 We next assessed the effects of all tested inhibitors with their maximal inhibition concentrations
203 against anti-spoke-induced IL-6. In concordance with the dose-dependent assays, all treatments
204 resulted in a substantial reduction in IL-6 production by macrophages upon anti-spoke and poly(I:C)
205 co-stimulation (red bars in Fig. 3A). Dexamethasone and SYK inhibitors showed better potency with
206 more profound effects at the selected concentration than PI3K inhibitors for blocking anti-spoke-
207 induced macrophage activation. More importantly, while dexamethasone hampered both anti-spoke
208 and anti-viral responses, SYK and PI3K inhibitors had limited impact on the IL-6 production in the
209 poly(I:C)-alone condition (blue bars in Fig. 3A). These results indicate that compounds deactivating
210 SYK and PI3K serve as more selective treatment options for counterbalancing excessive inflammation
211 induced by anti-spoke immune complexes.

212 Unlike recombinant monoclonal antibodies, anti-spoke IgGs in the patient serum are a pool of
213 polyclonal antibodies against different domains of the spoke protein with variate affinities and post-
214 translational modifications. Therefore, the immune complexes formed by recombinant monoclonal
215 antibodies and serum could exert different biological activities. To assess whether SYK and PI3K
216 inhibitors can counteract macrophage hyperactivation by serum-derived immune complexes, we
217 generated spoke-IgG immune complexes by incubating spoke protein with sera obtained from severely
218 ill COVID-19 patients hospitalized at Amsterdam UMC from the first wave in early 2020. These patients
219 were infected with the Wuhan strain and without prior vaccination. The sera were collected at the
220 time of admission to the ICU. We observed similar inhibition patterns for all compounds compared to

221 their monoclonal IgG counterparts (Fig. 3B). SYK inhibitors R406 and entospletinib completely blocked
222 anti-spike-induced IL-6 production, which dampened the cytokine levels to the concentration of the
223 poly(I:C) condition (blue dashed line in Fig. 3B). Interestingly, dexamethasone appeared to be less
224 potent in blocking IL-6 induced by serum-derived anti-spike immune complexes than the ones formed
225 by monoclonal IgGs (Fig. 3A-B). Finally, we validated our findings in an *ex vivo* setting for the two most
226 promising candidate compounds, by activating human alveolar macrophages obtained from
227 bronchoalveolar lavage (BAL). Upon serum-derived immune complex activation, both R406 and
228 entospletinib yielded comparable inhibition in BAL macrophages as the *in vitro* models (Fig. 3C).

229 To conclude, these data indicate that blocking SYK signaling can serve as a potent strategy
230 against hyperactivation of alveolar macrophages induced by serum-derived immune complexes.

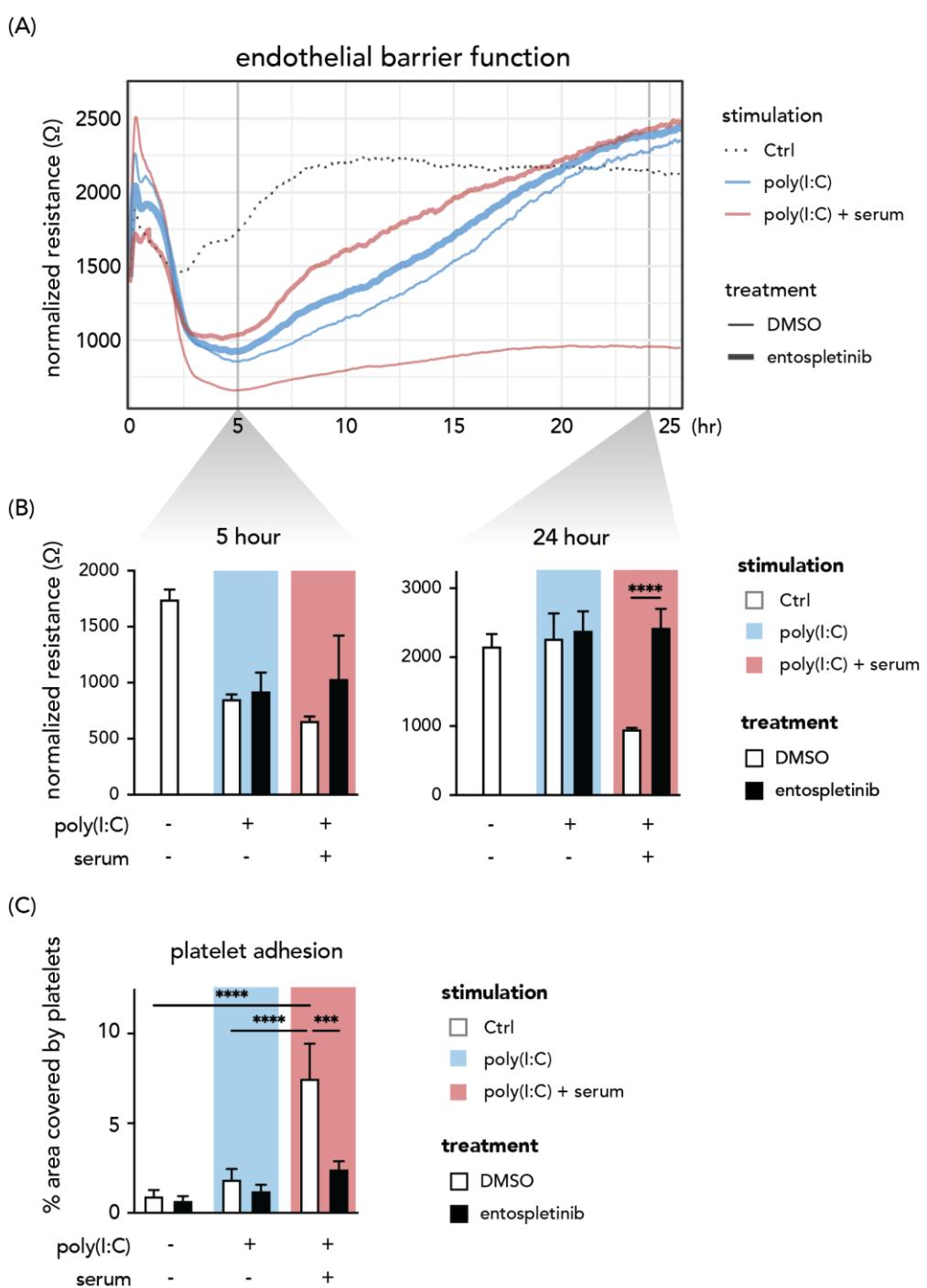
231

232

233 **Figure 3: Entospletinib counteracts serum-induced hyperinflammatory response by alveolar**
 234 **macrophages.** (A-B) Representative data from four independent experiments showing IL-6 production

235 by macrophages treated with dexamethasone and different SYK or PI3K inhibitors upon poly(I:C)

236 stimulation with (red bars) or without (blue bars) immune complexes derived from a monoclonal
237 antibody (A) or patient serum (B). Bar charts with one-segment Y axis (insert) or enlarged two-segment
238 Y axis. (C) IL-6 production in DMSO, R406, or entospletinib-treated *ex vivo* bronchoalveolar lavage (BAL)
239 fluid-derived alveolar macrophages. Statistics were calculated using a two-way ANOVA and corrected
240 using Tukey's multiple comparison test. * $P < 0.05$; ** $P < 0.01$. n = 3 technical replicates per group, one
241 representative example of n = 3 BAL donors. Data are shown as (mean + SD).


242

243 ***Entospletinib dampens anti-spike IgG-associated pulmonary endothelial barrier disruption and***
244 ***thrombus formation***

245 Pulmonary endothelial damage in COVID-19 is associated with macrophage activation and
246 accumulation in the lungs⁵². Overactivated alveolar macrophages create a pro-inflammatory milieu
247 that subsequently promotes microvascular thrombosis and endothelial barrier disruption⁵³⁻⁵⁵. We
248 hypothesized that disrupted pulmonary endothelial function could be rescued by dampening
249 macrophage hyperinflammatory activities with entospletinib. To investigate this, we treated human
250 pulmonary microvascular endothelial cells (HPMVECs) with conditioned media from activated MDAMs.
251 We monitored the trans-endothelial electrical resistance of the HPMVECs monolayer over time as a
252 readout of endothelial integrity.

253 In line with our previous findings in pulmonary artery endothelial cells³³, a prolonged
254 disruption of endothelial barrier integrity was observed in HPMVECs treated with the conditioned
255 media from macrophages co-stimulated with immune complexes generated with serum from severe
256 COVID-19 patients and the viral stimulus (i.e. poly(I:C)) (the red thin line in Fig. 4A). The conditioned
257 media from poly(I:C)-only activated macrophages exerted a transient effect on endothelial barrier
258 function (the thin blue line in Fig. 4A). Entospletinib was able to block anti-spike-mediated long-term
259 endothelial dysfunction and significantly restored endothelial barrier integrity (thick red line in Fig. 4A,
260 Fig. 4B). Notably, entospletinib treatment did not affect HPMVECs stimulated with supernatant of
261 macrophages activated only by viral stimulus (the blue lines, Fig. 4A). This indicates that entospletinib
262 can selectively counteract the barrier-damaging mediators produced by macrophages upon
263 stimulation with viral stimulus and serum-derived anti-spike immune complexes.

264 Next, we accessed the *in situ* thrombus formation by adding thrombocytes to macrophage-
265 conditioned medium-activated HPMVECs under flow conditions (flow shear rate 2.5 dyn/cm²). During
266 perfusion, platelets adhered less to the HPMVECs exposed to conditioned media of entospletinib-
267 treated macrophages under poly(I:C) and serum co-activation (Fig. 4C). To sum up, we show that
268 blocking Fc γ R signaling with entospletinib reduces pulmonary endothelial dysfunction and
269 microvascular thrombosis formation.

270

271

272

273

274

275

276

277

278

279

280

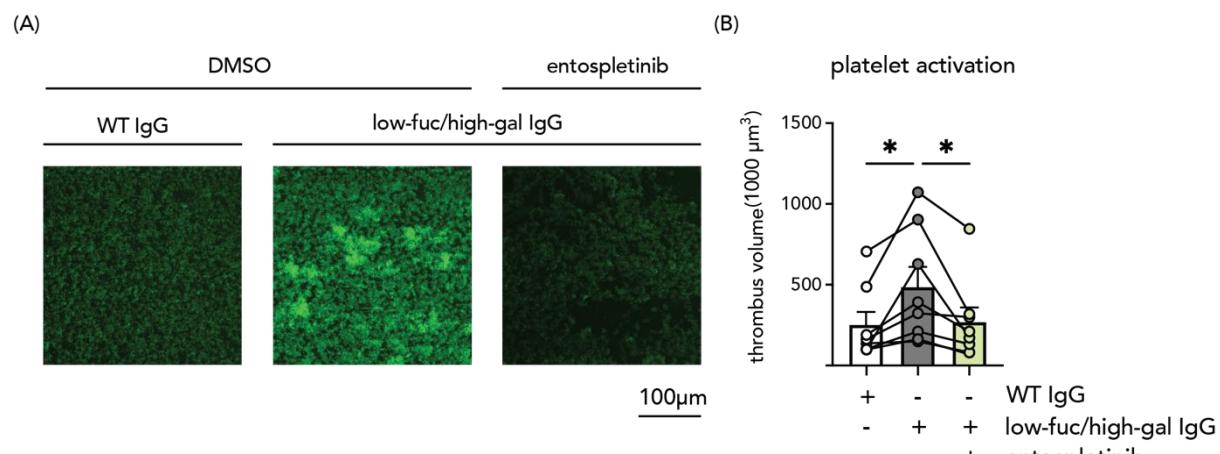

281

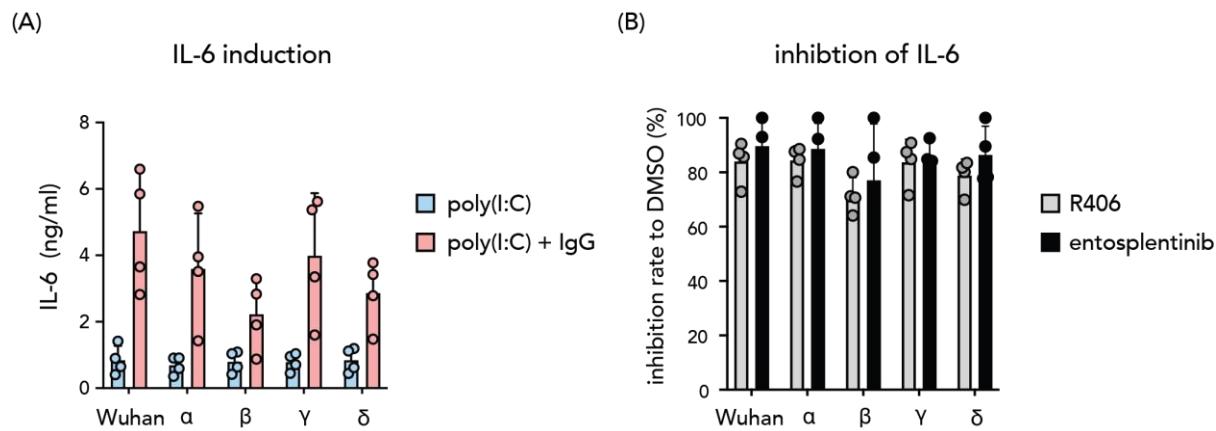
Figure 4: Entospletinib dampens anti-spike IgG-associated pulmonary endothelial dysfunction and thrombus formation. (A-B) Representative data of trans-endothelial electrical resistance of the HPAEC monolayer from two donors over time. HPAECs were stimulated with conditioned media from activated macrophages treated with entospletinib or DMSO. The conditioned medium from macrophages without poly(I:C) or serum activation was used as a negative control. (C) Stimulated HPAECs were perfused with platelets for 5 min, after which the area covered by platelets was quantified. $n = 3$ donors per group. Background colors in the bar plots indicate the stimulation the macrophages received. White or black bars indicate the drug treatments. Data are shown as (mean \pm SD). Statistical significance was calculated using a two-way ANOVA and corrected using Tukey's multiple comparison test. $^{***}P < 0.001$; $^{****}P < 0.0001$.

282 **Entospletinib reduces aberrantly-fucosylated ant-spike IgG-induced platelet activation**

283 Recent evidence shows that anti-spike IgG of severely ill COVID-19 patients do not only indirectly
284 activate blood platelets (via macrophages and endothelial cells), but also directly enhance platelet
285 activation and thrombus formation ³⁷. This direct activation of platelets critically depends on the
286 aberrant IgG Fc tail glycosylation pattern that is observed in severely ill COVID-19 patients ^{35,56-58}. While
287 immune complexes with normal glycosylation patterns do not affect platelet adhesion, aberrantly
288 glycosylated IgG-spike immune complexes enhance platelet activation in the presence of von
289 Willibrand factor (vWF). As platelet activation by IgG is induced via Fc γ RIIa and the rapid
290 phosphorylation of SYK ⁵⁹, we studied the direct effect of entospletinib on platelets. We examined
291 platelet adhesion under flow on coverslips coated with vWF and spike-IgG immune complexes formed
292 by recombinant monoclonal anti-spike IgG COVA1-18 bearing aberrant glycosylation (9.1%
293 fucosylated and 77.6% galactosylated). Platelets were pre-treated with entospletinib or DMSO before
294 perfusion. Slides coated with vWF and spike-and-wild-type COVA1-18 immune complexes (97.8%
295 fucosylated, 19.6% galactosylated) were used as a control ³⁷. By quantifying the volume of thrombi,
296 we show that aberrantly glycosylated immune complexes synergized platelet adhesion to vWF (Fig. 5).
297 Entospletinib counteracted the enhanced thrombus formation and reduced thrombus volume to the
298 level of wild-type COVA1-18 controls. These data demonstrate that entospletinib can reduce
299 microvascular thrombosis induced by pathogenic platelet activation mediated by aberrantly
300 glycosylated immune complexes.

301

302


303 **Figure 5: Entospletinib reduces aberrantly-fucosylated ant-spike IgG-induced platelet activation.**

304 Thrombi formed under flow on vWF and spike-IgG immune complexes-coated slides in perfusion
305 chambers. Immune complexes were formed with normally-glycosylated (WT) or lowly-fucosylated and
306 highly-galactosylated (low-fuc/high-gal) IgGs. Platelets were pre-treated with either vehicle control
307 (DMSO) or entospletinib (1 μ M). (A) Representative images of thrombi stained with DiOC₆ (acquired
308 at $\times 20$ original magnification). (B) Quantification of thrombus volume from 8 different platelet donors.
309 Data are represented as mean \pm SD. Statistical significance was examined by a one-way ANOVA test
310 with Dunn's multiple comparison correction. * P < 0.05.

311 **Antibody-induced inflammation is a shared mechanism across SARS-CoV-2 variants of concern and**
312 **can be counteracted by SYK inhibitors**

313 SARS-CoV-2 evolves to evade antibodies with mutations of the spike proteins⁶⁰. First, we investigated
314 whether spike-IgG immune complexes of different SARS-CoV-2 VOCs induce hyper-inflammation by
315 alveolar macrophages. We generated spike proteins of α , β , γ , δ VOCs, and the original Wuhan strain
316 (GenBank accession MN908947.3)^{61,62}. These spike proteins were subsequently applied to form
317 variant-specific immune complexes with COVA1-16, a monoclonal antibody that binds a highly
318 conserved epitope on the spike receptor binding domain⁶³. Immune complexes of all tested VOCs in
319 the combination of poly(I:C) led to increased IL-6 release (Fig. 6A) by macrophages. Next, we examined
320 the effects of SYK inhibitors in counteracting anti-spike-dependent inflammation. SYK inhibitors R406
321 and entospletinib effectively suppressed the IL-6 production induced by immune complexes by 75-95
322 percent against all tested VOCs (Fig. 6B). These data indicate that anti-spike-induced hyper-
323 inflammation is a shared mechanism across different SARS-CoV-2 VOCs, which can all be blocked by
324 SYK inhibition.

325
326

327
328

329 **Figure 6: Antibody-induced inflammation by different SARS-CoV-2 variants of concern.** (A) Immune
330 complexes formed by spike proteins from variants of concern (α , β , γ , δ , and Wuhan strain)
331 and a monoclonal antibody targeting a highly conserved epitope of the spike portion were used to simulate
332 macrophages. IL-6 level was measured as the readout of the macrophage inflammatory response. (B)
333 Inhibition rates of IL-6 production from macrophages treated with SYK inhibitors R406 and
334 entospletinib compared with DMSO control (DMSO concentration 0.005 %). Each dot represents
335 cytokine production or inhibition rate by different macrophage donors (mean + SD).

336 **Discussion**
337 There is still an unmet need for specific, cost-effective, and orally bioavailable therapeutics to prevent
338 disease progression to severe COVID-19. Here we identify the small-molecular SYK inhibitor
339 entospletinib as a potential medication with high potency and efficacy in specifically diminishing
340 uncontrolled macrophage inflammation induced by anti-spike IgG immune complexes. Anti-spike IgG
341 immune complexes can trigger the production of pro-inflammatory mediators, such as IL-6, TNF, and
342 IFNs by alveolar macrophages ³³. The high level of IL-6 produced by macrophages is a hallmark of
343 COVID-19 ⁶⁴. It has been shown that IL-6 induces oxidative stress, endothelial dysfunction, and
344 coagulation cascade activation ^{65,66}. IL-6 receptor blockade treatments have been recommended by
345 the WHO to tackle systemic inflammation in severe COVID-19 ^{67,68}. Given the critical role of SYK in Fc_YR
346 signaling, blocking SYK activity could serve as a potential therapeutic for severe COVID-19 by ceasing
347 the pathogenic hyperactivation of immune cells and the ensuing endotheliopathy ⁶⁹.

348 The small molecule drug fostamatinib (the pro-drug form of R406) is currently indicated for
349 chronic immune thrombocytopenia (ITP) due to its ability to block SYK signaling thus preventing the
350 phagocytosis-based, antibody-mediated platelet destruction ⁷⁰. While mild thrombocytopenia is a
351 common clinical manifestation in COVID-19 patients ⁷¹, ITP can occur secondary to COVID-19 in both
352 acute and late stages, particularly in old and severely ill patients ⁷². Therefore, fostamatinib might
353 provide additional benefits apart from its immunosuppressive effect against anti-spike-specific
354 inflammation. In severe or critical COVID-19 cases, clinical improvements were observed in the
355 fostamatinib treatment group in a phase-II randomized trial (NCT04579393) ⁴¹. Based on this success,
356 fostamatinib is currently tested in several phase-III clinical trials. However, the adverse effects of
357 fostamatinib have been reported in cancers and rheumatoid arthritis and are attributed to off-target
358 effects ^{70,73,74}. Therefore, a more selective SYK inhibitor could provide better tolerability.

359 Entospletinib is a highly selective and orally efficacious second-generation SYK inhibitor ⁷⁵.
360 While both tested SYK inhibitors can dampen anti-spike-induced inflammation, compared to R406,
361 our data indicate that entospletinib has less effect on macrophage anti-viral response, thereby
362 representing a promising therapeutic approach for COVID-19 treatment. Notably, the average IC₅₀
363 value of entospletinib against anti-spike-induced IL-6 was 45.6 nM with an efficacy of around 90% in
364 a concentration of 1 μM. Hence, the steady-state serum concentration of entospletinib (C_{trough} 3.02
365 μM to C_{max} 6.54 μM) at a dose of 600 mg twice daily ⁷⁶ would provide complete coverage of the IC₅₀
366 values throughout the 12-hour dosing interval. In addition to the cytokine production inhibition,
367 entospletinib can rescue the prolonged loss of HPMVECs barrier function and increased platelet
368 adhesion mediated by anti-spike-induced macrophage hyperactivation. Endotheliopathy is associated
369 with critical illness and death in COVID-19 ^{77,78}. Our findings are not only valuable for treatment
370 targeting inflammation, but also have implications for strategies aimed at preserving endothelial
371 function in COVID-19 and other related diseases. Furthermore, entospletinib counterbalances the
372 hyperinflammation induced by anti-spike immune complexes across different SARS-CoV-2 VOCs. A
373 recent study also showed that anti-spike IgG of SARS-CoV-1 could cause the antibody-dependent
374 inflammation by alveolar macrophages thereby deteriorating lung injury ⁷⁹. As the mechanism of
375 action of SYK inhibitors is through inhibition of immune hyperactivation rather than through direct
376 effects on coronaviruses, we are optimistic that entospletinib can be also applied for treatment of
377 newly emerging variants and future coronaviruses.

378 Interestingly, in line with our previous findings ³³, patient serum-derived immune complexes
379 lead to substantially stronger induction of IL-6 compared to recombinant monoclonal IgG. IgG clonality,
380 avidity, subclasses, and glycosylation patterns at the Fc domain all contribute to the activity of FcRs
381 ^{80,81}. Our data indicate that dexamethasone is less potent in suppressing inflammation caused by
382 serum-derived immune complexes, while SYK inhibitor R406 and entospletinib remain highly
383 efficacious. It has been shown that the high titer and aberrant afucosylation of anti-spike IgG are two
384 main serological characteristics in severe COVID-19 cases, which combined lead to hyperactivation of
385 Fc_YRs ^{34,35,37,57}. Furthermore, under the prothrombotic environment in severe COVID-19 ^{77,82,83},
386 aberrantly glycosylated anti-spike immune complexes can trigger platelet activation leading to

387 thrombus formation. Ample evidence now supports the beneficial role of anti-platelet medication in
388 COVID-19 treatments^{84,85}. Therefore, as the altered glycosylation pattern of Fc tail on IgGs is transient
389 in the early phase of seroconversion, the selective effect of entospletinib in counterbalancing
390 thrombus formation against aberrantly glycosylated immune complex could be beneficial to prevent
391 severe COVID-19. Yet, one major challenge with immunoregulatory therapeutics against COVID-19 is
392 the tailoring of treatments to the clinical course of the disease stages. SYK inhibition by fostamatinib
393 has been shown to impair B cell development at the transitional stage but not mature B cell
394 populations^{86,87}. Since the proposed therapeutic effects of SYK inhibitors are dependent on spike-
395 specific IgGs, appropriate timing for administrating these compounds is crucial.

396 It has been shown that immune complexes can also affect other cell types during COVID-19
397 disease progression. In severely ill patients, SARS-CoV-2 infection triggers soluble multimeric immune
398 complex formation. These circulating immune complexes can activate monocytes via CD16 (Fc γ RIII)
399 and promote immunopathology⁸⁸. Sera from severely ill COVID-19 patients contain high levels of
400 immune complexes and activate neutrophil IL-8 production and CD11b expression via Fc γ RII (CD32)⁸⁹.
401 Immune complexes also promote the degranulation of CD16 $^{+}$ T cells in severe COVID-19⁹⁰. The
402 activation of these highly cytotoxic CD16 $^{+}$ T cell population results in endothelial injury. Moreover, the
403 CD16 $^{+}$ T cell proliferation and differentiation is driven by the cleaved complement product C3a⁹⁰,
404 which is induced in macrophages upon immune complex stimulation⁹¹. Evidently, anti-spike IgG with
405 the aberrant glycosylation together with the predisposed proinflammatory milieu in the disease-prone
406 patients could promote this uncontrolled vicious circle initiated by pulmonary macrophages. In light
407 of these altered effector functions by immune complexes in various cell types in COVID-19, we
408 propose that FcR-dependent activation is associated with disease severity in a systemic level than only
409 in the (peri-)pulmonary region. Therefore, SYK inhibition could provide additional benefits against
410 antibody-dependent inflammation beyond the tested cell types and conditions in this manuscript.

411 While our data suggest SYK inhibitors are promising candidates for COVID-19 therapeutics,
412 targeting other kinases in the Fc γ R signaling cascade does not yield similar results. PI3K is a group of
413 signal transducer enzymes downstream of the Fc γ R-SYK pathway. Studies also proposed the
414 therapeutic potential of PI3K inhibitors in preventing uncontrolled inflammation and coagulation
415 complications in COVID-19 patients^{92,93}. However, our data show that PI3K inhibitors are less potent
416 and efficacious than SYK inhibitors. The concentration required to reach 80% inhibition of anti-spike-
417 dependent IL-6 by macrophages is high and can affect cell viability. Our observations of PI3K-induced
418 effects on cell viability are in line with the already known problem of not fully studied early and late
419 onset toxicity mechanism of this class of drug. In several clinical cases the drug toxicity leads to
420 development of fatal adverse effects during treatment such as skin toxicity, autoimmune dysfunction,
421 hypertension and hyperglycemia^{94,95}.

422 Furthermore, PI3K- γ/δ inhibitor duvelisib can induce macrophage repolarization toward a
423 more pro-inflammatory phenotype *in vivo*⁹⁶. We also observed this pro-inflammatory activation by
424 duvelisib in poly(I:C)-only conditions. Interestingly, in the presence of spike-IgG immune complexes,
425 duvelisib suppresses IL-6 production by macrophages. As PI3K- δ -specific inhibitor idelalisib does not
426 exert this differential regulation between TLR-dependent and anti-spike-dependent inflammation, the
427 role of PI3K- γ is of great interest for further investigation.

428 In addition to the anti-inflammatory effects, blocking Fc γ R signaling in alveolar macrophages
429 could halt disease progression through other mechanisms. Recent evidence shows that Fc γ Rs mediate
430 SARS-CoV-2 uptake by monocytes and tissue macrophages, which leads to pyroptosis and
431 inflammasome activation that aborts virus proliferation, but aggravates systemic inflammation⁹⁷⁻⁹⁹.
432 As both SYK inhibitors fostamatinib and entospletinib are capable of blocking phagocytosis^{100,101},
433 whether these compounds can curb SARS-CoV-2 uptake and subsequent pyroptosis in COVID-19 is of
434 interest for further exploration.

435 In conclusion, we show that small molecule SYK inhibitors specifically counteract the anti-
436 spike-associated hyperinflammation, while simultaneously preserving anti-viral immunity. We further
437 demonstrate that entospletinib, the best candidate drug, can rescue anti-spike-induced endothelial

438 barrier disruption and platelet adhesion. Moreover, we show that SYK inhibitors dampen
439 inflammation triggered by different variants of concern. Hence, entospletinib serves as a potential
440 treatment option for halting COVID-19 progression independent of the virus variants. In conjunction
441 with additional emerging evidence indicating the beneficial effect of another SYK inhibitor
442 fostamatinib, our work provides evidence for pursuing clinical trials to investigate repurposing
443 entospletinib for preventing COVID-19 deterioration.

444 **Acknowledgments**

445 We are grateful for the generous support from the Amsterdam UMC COVID-19 Biobank.

446

447 **Author Contributions**

448 Conceptualization MPJW and JD; Methodology HJC, CEG, MPJW and JD; Software HJC; Validation CEG,
449 HJC, APB, XDM, WH, JV; Formal analysis CEG and HJC; Investigation CEG, HJC, APB, XDM, GRG, WH, JV
450 and JA; Resources DG, TGC, TPLB, SWT, APJV, Amsterdam UMC COVID-19 Biobank. Writing – Original
451 Draft HJC and CEG; Writing – Review and Editing GV, HJB, JMG, MJG, MPJW and JD. Visualization HJC;
452 Supervision MPJW and JD; Funding Acquisition WPJW and JD

453

454 **Funding**

455 JD was supported by ZonMw (10430 01 201 0008), Amsterdam Infection and Immunity COVID-19 grant
456 (24184), AMC Fellowship (2015), European Union’s Horizon 2020 research and innovation programme
457 (847551) and Innovative Medicines Initiative 2 Joint Undertaking grant (831434). MPJW was supported
458 by Amsterdam UMC, Amsterdam Cardiovascular Sciences, the Netherlands Heart Foundation (CVON
459 GENIUS and GENIUSII 2017-20), Spark-Holding BV (2015B002 and 2019B016), Fondation Leducq
460 (Transatlantic Network Grant 16CVD01) and ZonMW (09120011910025).

461

462 **Declaration of interests**

463 The authors declare no conflict of interests.

464

465 **Ethical declaration**

466 All human biological samples were sourced ethically and their research use was in accord with the
467 terms of the informed consents under an IRB/EC approved protocol.

468 **STAR★Methods**

469

470 **Key resources table**

471

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
COVA1-18 WT	P.J.M Brouwer et al. ¹⁰²	doi:10.1126/science.abc5902
COVA1-18 low fuc/high gal	Hoepel et al. ³³	doi:10.1126/scitranslmed.abf8654
COVA1-16	P.J.M Brouwer et al. ¹⁰²	doi:10.1126/science.abc5902
Biological samples		
Severe COVID19 patient serum	Amsterdam UMC COVID19 Biobank	N/A
Primary Alveolar Macrophages	DIVA Study	NL6318
Chemicals, peptides, and recombinant proteins		
Human M-CSF	Miltenyi Biotec	Cat#130-096-491
Recombinant Human IL-10 Protein	R&D Systems	Cat# 217-IL-025/CF
Recombinant SARS-CoV2-Spike Wuhan Hu-1 Protein	T.Caniels et al. ⁶¹	GenBank accession MN908947.3; doi:10.1126/sciadv.abj5365
Recombinant SARS-CoV2-Spike B.1.1.7 Protein	T.Caniels et al. ⁶¹	doi:10.1126/sciadv.abj5365
Recombinant SARS-CoV2-Spike B.1.351 Protein	T.Caniels et al. ⁶¹	doi:10.1126/sciadv.abj5365
Recombinant SARS-CoV2-Spike P.1 Protein	T.Caniels et al. ⁶¹	doi:10.1126/sciadv.abj5365
Recombinant SARS-CoV2-Spike B.1.617.2 Protein	M. van Gils et al. ⁶²	doi:10.1371/journal.pmed.1003991doi
Dexamethasone	Merck	Cat#D1756-25mg
Entospletinib (GS-9973)	Selleckchem.com	Cat# S7523
R406	Selleckchem.com	Cat#S1533
Aleplisib (BYL719)	Selleckchem.com	Cat#S1815
Idelalisib	MedChemExpres	Cat# HY-13026
Duvelisib	MedChemExpres	Cat# HY-17044
polyinosinic:polycytidylic acid (poly(I:C))	Sigma-Aldrich	Cat#P1530
Critical commercial assays		
CD14 MicroBeads, human	Miltenyi Biotec	Cat#130-050-201
ELISA MAX™ Standard Set Human IL-6	BioLegend	Cat#430501
Software and algorithms		
GraphPad Prism version 9.4.0	GraphPad Software	www.graphpad.com
R (v.4.1.3)	R Core Team (2022)	https://www.R-project.org/
R package drc	Ritz et al. ¹⁰³	doi:10.1371/journal.pone.0146021
R package dr4pl	An et al. ¹⁰⁴	doi:10.32614/RJ-2019-003

472

473

474

475

476

477 **Resource availability**

478 **Lead contact**

479 Further information and requests for resources and reagents should be directed to and will be fulfilled
480 by the lead contact, Jeroen den Dunnen (j.dendunnen@amsterdamumc.nl).

481

482 **Material availability**

483 This study did not generate new unique reagents. The recombinant anti-spike antibodies COVA1-16
484 and COVA1-18 are available upon request to the lead contact through a materials transfer agreement.

485

486 **Data and code availability**

487 All data and code reported in this paper will be shared by the lead contact upon request.

488

489 **Experimental Model and Subject Details**

490 **Human subjects**

491 Buffy coats were purchased from Sanquin blood supply in Amsterdam. All healthy donors provided
492 written informed consent prior to blood donation. HPMVECs were collected from lung tissue obtained
493 as waste material from lobectomy performed at the Amsterdam UMC (location VU University Medical
494 Center). Primary alveolar macrophages were obtained from broncho alveolar lavage fluid as waste
495 material from the ongoing DIVA study (Netherlands Trial Register: NL6318; AMC Medical Ethical
496 Committee approval number: 2014_294). All volunteers of the DIVA study provided written consent
497 form. The severe COVID19 serum samples were collected by the Amsterdam UMC COVID19 Biobank
498 according to approved protocols and in accordance with the Declaration of Helsinki.

499

500 **Method details**

501 **Monocyte-derived alveolar macrophage-like macrophages (MDAMs)**

502 MDAMs were generated as previously described ³³. In short, CD14⁺ monocytes were isolated by
503 Lymphoprep (Stemcell) isolation followed by CD14 magnetic beads purification via the MACS cell
504 separation system (Miltenyi). The resulting monocytes were then differentiated with 50 ng/ml human
505 M-CSF (Miltenyi) for 6 days in Iscove's modified Dulbecco's medium (Gibco) containing 5 % fetal calf
506 serum (CAPRICORN) and gentamycin (Gibco). Total culture medium was refreshed on after three days
507 of culture. On day 6, M-CSF-differentiated macrophages were primed with 50 ng/ml IL-10 (R&D
508 Systems) for 24 hours. For further stimulation cells were detached from the culture plates using TrypLE
509 Select (Gibco).

510

511 **Coating**

512 Stabilized recombinant SARS-CoV-2 spike protein and monoclonal antibodies (COVA1-16 and COVA1-
513 18) were generated as previously described ^{61,62,102}. To form immune complexes, 2 µg/ml spike protein
514 diluted in PBS was incubated over-night on 96-well high affinity plates (Nunc). To prevent unspecific
515 binding, the plates were subsequently blocked with 10 % FCS in PBS for 1 hour at 37 °C. After blocking,
516 plates were incubated for 1 hour at 37 °C with diluted serum (2% in PBS) from severe COVID19 patients
517 (Amsterdam UMC COVID19 Biobank) or 2 µg/ml monoclonal antibodies.

518

519 **Cell stimulation and inhibitor treatment**

520 Selective small-molecule inhibitors specifically against the SYK/PI3K signaling pathway were
521 investigated ¹⁰⁵. For repurposing purpose, only approved or investigational compounds in phase-III
522 clinical trials were used in the screening assay. All inhibitors (dexamethasone (Merck, D1756),
523 entospletinib (Selleckchem, S7523), R406 (Selleckchem, S1533), alpelisib (Selleckchem, S2814),
524 idelalisib (MedChemExpress, HY-13026), duvelisib (MedChemExpress, HY-17044), were purchased in
525 powdered form and dissolved according to the distributor's instructions. Macrophages were pre-
526 incubated with inhibitors (or DMSO as a control) for 30 minutes at 37 °C. After pre-incubation,

527 macrophages were stimulated with 20 µg/ml polyinosinic:polycytidylc acid (poly(I:C), Sigma-Aldrich)
528 and seeded in a density of 50,000 cells/well in pre-coated 96-well plates in 200µl/well medium.
529

530 ***Enzyme-linked immunosorbent assay***

531 To measure the IL-6 production, the supernatants of the stimulated cells were harvested after 24-hour
532 incubation. IL-6 concentration was determined using antibody pairs from U-CyTech Biosciences
533 (Human IL-6 ELISA, CT744-20) or Biolegend (ELISA MAXTM Standard Set Human IL-6, 430501).

534

535 ***Endothelial barrier function***

536 Pulmonary microvascular endothelial cells (HPMVECs, passage 4 to 6) were seeded 1:1 in 0.1% gelatin-
537 coated 96-well ibidi culture slides (96W10id PET, Applied BioPhysics) for electrical cell-substrate
538 impedance sensing, as previously described ¹⁰⁶. In short, HPMVECs were maintained in culture in
539 Endothelial Cell Medium (ECM, ScienCell) supplemented with 1% penicillin-streptomycin, 1% ECGS,
540 5% FCS, and 1% NEAA (Biowest). From seeding onward, electrical impedance was measured at 4000
541 Hz every 5 min. PAECs were grown to confluence. After 72 hours, ECM was removed and replaced by
542 either complete ECM with DMSO or 1 µM entospletinib. After 2.5 hours of pre-treatment, medium
543 was removed and replaced by the macrophage-conditioned media stimulated for 6 hours as described
544 above with poly(I:C) or in combination with patient serum. Three technical replicate measurements
545 were performed for each condition. For every experiment, PAECs and macrophages obtained from
546 different donors were used.

547

548 ***Platelet adhesion on HPMVEC under flow***

549 HPMVECs (passage 4 to 6) were seeded in 0.1% gelatin-coated 6-channel µ-Slide VI 0.4 ibiTreat flow
550 slides (ibidi, #80606) and cultured for 7 days. HPMVECs were preincubated for 2.5 hours with
551 complete ECM with DMSO or 1 µM entospletinib followed by 24-hour treatment with macrophage-
552 conditioned media as described above. On the day of perfusion, platelets were isolated from citrated
553 blood from healthy volunteers, as previously described ¹⁰⁷. Platelets were perfused for 5 min. After
554 then, the phase-contrast and fluorescent images were taken using a 20× phase-contrast objective with
555 an Etaluma LS720 microscope. Platelet adhesion was quantified in ImageJ (v. 1.53) by determining the
556 platelet-covered area per field of view.

557

558 ***In vitro thrombus formation***

559 Blood samples were obtained from healthy donors that had given informed consent and using
560 procedures approved by the University of Reading Research Ethics Committee and collected into
561 vacutainers containing 3.8% (w/v) sodium citrate. Thrombus formation experiments were performed
562 using microfluidic flow chips (Vena8, CellixLtd, Dublin, Ireland) coated with 5µg/ml recombinant SARS-
563 CoV-2 spike protein for 60 minutes at 37 °C, washed and then blocked with 10% FCS for 1 hour at 37
564 °C. The slides were then washed and treated with 10µg/ml wildtype or lowly fucosylated and highly
565 galactosylated COVA1-18 antibodies for 1 hour at 37 °C followed by 20µg/ml vWF (Abcam, UK) for 1
566 hour. Thrombus formation was measured by perfusing citrated whole blood treated with 20µg/ml
567 vWF and either vehicle (DMSO) or entospletinib (1 µM) for 1 hour through the flow chambers at 1000s-
568 1 for 6 minutes before fixing with 10% formyl saline, staining with 2µM DiOC₆ and then imaged by
569 acquiring z-stacks using the 20× objective lens of a confocal Ti2 fluorescence microscope (Nikon).

570

571 ***Quantification and Statistical Analysis***

572 Statistical significance of the data was performed in GraphPad Prism 9.4.0 (GraphPad). For *t* tests
573 comparing two sets of measurements, data were first examined with D'Agostino-Pearson normality
574 test with $\alpha = 0.05$ followed by paired or unpaired *t* tests according to the experiment design. The
575 statistical exams applied for each figure are stated in the legends. The half maximal inhibitory
576 concentration (IC₅₀) calculation was conducted in R (v.4.1.3) environment with R packages drc ¹⁰³ and
577 dr4pl ¹⁰⁴.

578 **References:**

579 1. Hu, B., Guo, H., Zhou, P., and Shi, Z.-L. (2021). Characteristics of SARS-CoV-2 and COVID-19.
580 *Nature Reviews Microbiology* 19, 141-154. 10.1038/s41579-020-00459-7.

581 2. Tay, M.Z., Poh, C.M., Rénia, L., MacAry, P.A., and Ng, L.F.P. (2020). The trinity of COVID-19:
582 immunity, inflammation and intervention. *Nature Reviews Immunology* 20, 363-374.
583 10.1038/s41577-020-0311-8.

584 3. Moghadas, S.M., Vilches, T.N., Zhang, K., Wells, C.R., Shoukat, A., Singer, B.H., Meyers, L.A.,
585 Neuzil, K.M., Langley, J.M., Fitzpatrick, M.C., and Galvani, A.P. (2021). The Impact of
586 Vaccination on Coronavirus Disease 2019 (COVID-19) Outbreaks in the United States. *Clinical
587 Infectious Diseases* 73, 2257-2264. 10.1093/cid/ciab079.

588 4. Merad, M., Blish, C.A., Sallusto, F., and Iwasaki, A. (2022). The immunology and
589 immunopathology of COVID-19. *Science* 375, 1122-1127. 10.1126/science.abm8108.

590 5. Merad, M., and Martin, J.C. (2020). Pathological inflammation in patients with COVID-19: a key
591 role for monocytes and macrophages. *Nature Reviews Immunology* 20, 355-362.
592 10.1038/s41577-020-0331-4.

593 6. Chen, G., Wu, D., Guo, W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang, X., Chen, H., Yu, H., et
594 al. (2020). Clinical and immunological features of severe and moderate coronavirus disease
595 2019. *J Clin Invest* 130, 2620-2629. 10.1172/JCI137244.

596 7. Klok, F.A., Kruip, M., van der Meer, N.J.M., Arbous, M.S., Gommers, D., Kant, K.M., Kaptein,
597 F.H.J., van Paassen, J., Stals, M.A.M., Huisman, M.V., and Endeman, H. (2020). Confirmation of
598 the high cumulative incidence of thrombotic complications in critically ill ICU patients with
599 COVID-19: An updated analysis. *Thromb Res* 191, 148-150. 10.1016/j.thromres.2020.04.041.

600 8. Vinayagam, S., and Sattu, K. (2020). SARS-CoV-2 and coagulation disorders in different organs.
601 *Life Sci* 260, 118431. 10.1016/j.lfs.2020.118431.

602 9. Becker, R.C. (2020). COVID-19 update: Covid-19-associated coagulopathy. *J Thromb
603 Thrombolysis* 50, 54-67. 10.1007/s11239-020-02134-3.

604 10. Shankar, A., Varadan, B., Ethiraj, D., Sudarsanam, H., Hakeem, A.R., and Kalyanasundaram, S.
605 (2021). Systemic arterio-venous thrombosis in COVID-19: A pictorial review. *World J Radiol* 13,
606 19-28. 10.4329/wjr.v13.i1.19.

607 11. Zhou, W., and Wang, W. (2021). Fast-spreading SARS-CoV-2 variants: challenges to and new
608 design strategies of COVID-19 vaccines. *Signal Transduction and Targeted Therapy* 6, 226.
609 10.1038/s41392-021-00644-x.

610 12. Hirabara, S.M., Serdan, T.D.A., Gorjao, R., Masi, L.N., Pithon-Curi, T.C., Covas, D.T., Curi, R., and
611 Durigon, E.L. (2022). SARS-CoV-2 Variants: Differences and Potential of Immune Evasion.
612 *Frontiers in Cellular and Infection Microbiology* 11. 10.3389/fcimb.2021.781429.

613 13. Fisman, D.N., and Tuite, A.R. (2021). Evaluation of the relative virulence of novel SARS-CoV-2
614 variants: a retrospective cohort study in Ontario, Canada. *Cmaj* 193, E1619-e1625.
615 10.1503/cmaj.211248.

616 14. Callaway, E. (2021). Beyond Omicron: what's next for COVID's viral evolution. *Nature* 600, 204-
617 207. 10.1038/d41586-021-03619-8.

618 15. Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M.,
619 Groves, N., O'Connell, A.-M., et al. (2022). Covid-19 Vaccine Effectiveness against the Omicron
620 (B.1.1.529) Variant. *New England Journal of Medicine* 386, 1532-1546.
621 10.1056/NEJMoa2119451.

622 16. Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., Bolland,
623 W.-H., Porrot, F., Staropoli, I., Lemoine, F., et al. (2022). Considerable escape of SARS-CoV-2
624 Omicron to antibody neutralization. *Nature* 602, 671-675. 10.1038/s41586-021-04389-z.

625 17. Feikin, D.R., Higdon, M.M., Abu-Raddad, L.J., Andrews, N., Araos, R., Goldberg, Y., Groome,
626 M.J., Huppert, A., O'Brien, K.L., Smith, P.G., et al. (2022). Duration of effectiveness of vaccines
627 against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-
628 regression. *The Lancet* 399, 924-944. 10.1016/S0140-6736(22)00152-0.

629 18. Callaway, E., and Ledford, H. (2021). How to redesign COVID vaccines so they protect against
630 variants. *Nature* 590, 15-16.

631 19. Liu, L., Iketani, S., Guo, Y., Chan, J.F.W., Wang, M., Liu, L., Luo, Y., Chu, H., Huang, Y., Nair, M.S.,
632 et al. (2022). Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2.
633 *Nature* 602, 676-681. 10.1038/s41586-021-04388-0.

634 20. Furer, V., Eviatar, T., Zisman, D., Peleg, H., Paran, D., Levartovsky, D., Zisapel, M., Elalouf, O.,
635 Kaufman, I., and Meidan, R. (2021). Immunogenicity and safety of the BNT162b2 mRNA
636 COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in
637 the general population: a multicentre study. *Annals of the rheumatic diseases* 80, 1330-1338.

638 21. Malone, B., and Campbell, E.A. (2021). Molnupiravir: coding for catastrophe. *Nat Struct Mol*
639 *Biol* 28, 706-708. 10.1038/s41594-021-00657-8.

640 22. Fischer William, A., Eron Joseph, J., Holman, W., Cohen Myron, S., Fang, L., Szewczyk Laura, J.,
641 Sheahan Timothy, P., Baric, R., Mollan Katie, R., Wolfe Cameron, R., et al. A phase 2a clinical
642 trial of molnupiravir in patients with COVID-19 shows accelerated SARS-CoV-2 RNA clearance
643 and elimination of infectious virus. *Science Translational Medicine* 14, eabl7430.
644 10.1126/scitranslmed.abl7430.

645 23. Jayk Bernal, A., Gomes da Silva, M.M., Musungaie, D.B., Kovalchuk, E., Gonzalez, A., Delos
646 Reyes, V., Martín-Quirós, A., Caraco, Y., Williams-Diaz, A., Brown, M.L., et al. (2021).
647 Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients. *New England Journal*
648 of Medicine

649 24. Wen, W., Chen, C., Tang, J., Wang, C., Zhou, M., Cheng, Y., Zhou, X., Wu, Q., Zhang, X., Feng, Z.,
650 et al. (2022). Efficacy and safety of three new oral antiviral treatment (molnupiravir,
651 fluvoxamine and Paxlovid) for COVID-19 : a meta-analysis. *Ann Med* 54, 516-523.
652 10.1080/07853890.2022.2034936.

653 25. Extance, A. (2022). Covid-19: What is the evidence for the antiviral Paxlovid? *BMJ* 377, o1037.
654 10.1136/bmj.o1037.

655 26. Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell, J.L., Linsell, L., Staplin, N., Brightling, C.,
656 Ustianowski, A., Elmahi, E., et al. (2021). Dexamethasone in Hospitalized Patients with Covid-
657 19. *N Engl J Med* 384, 693-704. 10.1056/NEJMoa2021436.

658 27. Sterne, J.A.C., Murthy, S., Diaz, J.V., Slutsky, A.S., Villar, J., Angus, D.C., Annane, D., Azevedo,
659 L.C.P., Berwanger, O., Cavalcanti, A.B., et al. (2020). Association Between Administration of
660 Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-
661 analysis. *Jama* 324, 1330-1341. 10.1001/jama.2020.17023.

662 28. Cano, E.J., Fonseca Fuentes, X., Corsini Campioli, C., O'Horo, J.C., Abu Saleh, O., Odeyemi, Y.,
663 Yadav, H., and Temesgen, Z. (2021). Impact of Corticosteroids in Coronavirus Disease 2019
664 Outcomes: Systematic Review and Meta-analysis. *Chest* 159, 1019-1040.
665 10.1016/j.chest.2020.10.054.

666 29. Karn, M., Yonghang, S., and Ghimire, S. (2021). Corticosteroids in COVID-19: We Should Be
667 Mindful of Their Acute Toxicities. *The Journal of Clinical Pharmacology* 61, 1301-1302.
668 <https://doi.org/10.1002/jcph.1936>.

669 30. Kocks, J., Kerkhof, M., Scherpenisse, J., van de Maat, A., van Geer-Postmus, I., le Rütte, T.,
670 Schaart, J., Gans, R.O.B., and Kerstjens, H.A.M. (2022). A potential harmful effect of
671 dexamethasone in non-severe COVID-19: results from the COPPER-pilot study. *ERJ Open Res*
672 8. 10.1183/23120541.00129-2022.

673 31. Mishra, G.P., and Mulani, J. (2021). Corticosteroids for COVID-19: the search for an optimum
674 duration of therapy. *The Lancet Respiratory Medicine* 9, e8. 10.1016/S2213-2600(20)30530-0.

675 32. Li, S., Hu, Z., and Song, X. (2021). High-dose but Not Low-dose Corticosteroids Potentially Delay
676 Viral Shedding of Patients With COVID-19. *Clinical Infectious Diseases* 72, 1297-1298.
677 10.1093/cid/ciaa829.

678 33. Hoepel, W., Chen, H.J., Geyer, C.E., Allahverdiyeva, S., Manz, X.D., de Taeye, S.W., Aman, J., Mes,
679 L., Steenhuis, M., Griffith, G.R., et al. (2021). High titers and low fucosylation of early human

680 anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. *Sci Transl Med* 13. 10.1126/scitranslmed.abf8654.

681 34. Chakraborty, S., Gonzalez Joseph, C., Sievers Benjamin, L., Mallajosyula, V., Chakraborty, S.,
682 Dubey, M., Ashraf, U., Cheng Bowie, Y.-L., Kathale, N., Tran Kim Quyen, T., et al. Early non-
683 neutralizing, afucosylated antibody responses are associated with COVID-19 severity. *Science
684 Translational Medicine* 14, eabm7853. 10.1126/scitranslmed.abm7853.

685 35. Larsen Mads, D., de Graaf Erik, L., Sonneveld Myrthe, E., Plomp, H.R., Nouta, J., Hoepel, W.,
686 Chen, H.-J., Linty, F., Visser, R., Brinkhaus, M., et al. (2021). Afucosylated IgG characterizes
687 enveloped viral responses and correlates with COVID-19 severity. *Science* 371, eabc8378.
688 10.1126/science.abc8378.

689 36. Bournazos, S., Gupta, A., and Ravetch, J.V. (2020). The role of IgG Fc receptors in antibody-
690 dependent enhancement. *Nature Reviews Immunology* 20, 633-643.

691 37. Bye, A.P., Hoepel, W., Mitchell, J.L., Jégouic, S., Loureiro, S., Sage, T., Vidarsson, G., Nouta, J.,
692 Wahrer, M., de Taeye, S., et al. (2021). Aberrant glycosylation of anti-SARS-CoV-2 spike IgG is a
693 prothrombotic stimulus for platelets. *Blood* 138, 1481-1489. 10.1182/blood.2021011871.

694 38. Crowley, M.T., Costello, P.S., Fitzer-Attas, C.J., Turner, M., Meng, F., Lowell, C., Tybulewicz, V.L.,
695 and DeFranco, A.L. (1997). A critical role for Syk in signal transduction and phagocytosis
696 mediated by Fc γ receptors on macrophages. *The Journal of experimental medicine* 186,
697 1027-1039. 10.1084/jem.186.7.1027.

698 39. Strich, J.R., Ramos-Benitez, M.J., Randazzo, D., Stein, S.R., Babyak, A., Davey, R.T., Suffredini,
699 A.F., Childs, R.W., and Chertow, D.S. (2021). Fostamatinib Inhibits Neutrophils Extracellular
700 Traps Induced by COVID-19 Patient Plasma: A Potential Therapeutic. *The Journal of Infectious
701 Diseases* 223, 981-984. 10.1093/infdis/jiaa789.

702 40. Kost-Alimova, M., Sidhom, E.H., Satyam, A., Chamberlain, B.T., Dvela-Levitt, M., Melanson, M.,
703 Alper, S.L., Santos, J., Gutierrez, J., Subramanian, A., et al. (2020). A High-Content Screen for
704 Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for Rapid Repurposing
705 for Acute Lung Injury. *Cell Rep Med* 1, 100137. 10.1016/j.xcrm.2020.100137.

706 41. Strich, J.R., Tian, X., Samour, M., King, C.S., Shlobin, O., Reger, R., Cohen, J., Ahmad, K., Brown,
707 A.W., Khangoora, V., et al. (2021). Fostamatinib for the treatment of hospitalized adults with
708 COVID-19 A randomized trial. *Clin Infect Dis*. 10.1093/cid/ciab732.

709 42. Mócsai, A., Ruland, J., and Tybulewicz, V.L. (2010). The SYK tyrosine kinase: a crucial player in
710 diverse biological functions. *Nat Rev Immunol* 10, 387-402. 10.1038/nri2765.

711 43. Schymeinsky, J., Then, C., Sindrilaru, A., Gerstl, R., Jakus, Z., Tybulewicz, V.L.J., Scharffetter-
712 Kochanek, K., and Walzog, B. (2007). Syk-Mediated Translocation of PI3K δ to the Leading Edge
713 Controls Lamellipodium Formation and Migration of Leukocytes. *PLoS One* 2, e1132.
714 10.1371/journal.pone.0001132.

715 44. Park, H., and Cox, D. (2011). Syk Regulates Multiple Signaling Pathways Leading to CX3CL1
716 Chemotaxis in Macrophages*. *Journal of Biological Chemistry* 286, 14762-14769.
717 <https://doi.org/10.1074/jbc.M110.185181>.

718 45. Gevrey, J.-C., Isaac, B.M., and Cox, D. (2005). Syk Is Required for Monocyte/Macrophage
719 Chemotaxis to CX3CL1 (Fractalkine). *The Journal of Immunology* 175, 3737.
720 10.4049/jimmunol.175.6.3737.

721 46. Ulanova, M., Asfaha, S., Stenton, G., Lint, A., Gilbertson, D., Schreiber, A., and Befus, D. (2007).
722 Involvement of Syk protein tyrosine kinase in LPS-induced responses in macrophages. *Journal
723 of Endotoxin Research* 13, 117-125. 10.1177/0968051907079125.

724 47. Yi, Y.-S., Son, Y.-J., Ryou, C., Sung, G.-H., Kim, J.-H., and Cho, J.Y. (2014). Functional Roles of Syk
725 in Macrophage-Mediated Inflammatory Responses. *Mediators Inflamm* 2014, 270302.
726 10.1155/2014/270302.

727 48. Corr, E.M., Cunningham, C.C., and Dunne, A. (2016). Cholesterol crystals activate Syk and PI3
728 kinase in human macrophages and dendritic cells. *Atherosclerosis* 251, 197-205.
729 10.1016/j.atherosclerosis.2016.06.035.

730

731 49. Hawkins, P.T., and Stephens, L.R. (2015). PI3K signalling in inflammation. *Biochimica et*
732 *Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids* 1851, 882-897.
733 <https://doi.org/10.1016/j.bbalip.2014.12.006>.

734 50. Estevez, B., and Du, X. (2017). New Concepts and Mechanisms of Platelet Activation Signaling.
735 *Physiology (Bethesda)* 32, 162-177. 10.1152/physiol.00020.2016.

736 51. Chen, H.-J., Li Yim, A.Y.F., Griffith, G.R., de Jonge, W.J., Mannens, M.M.A.M., Ferrero, E.,
737 Henneman, P., and de Winther, M.P.J. (2019). Meta-Analysis of in vitro-Differentiated
738 Macrophages Identifies Transcriptomic Signatures That Classify Disease Macrophages in vivo.
739 *Frontiers in immunology* 10, 2887-2887. 10.3389/fimmu.2019.02887.

740 52. D'Agnillo, F., Walters, K.-A., Xiao, Y., Sheng, Z.-M., Scherler, K., Park, J., Gygli, S., Rosas Luz, A.,
741 Sadtler, K., Kalish, H., et al. Lung epithelial and endothelial damage, loss of tissue repair,
742 inhibition of fibrinolysis, and cellular senescence in fatal COVID-19. *Science Translational
743 Medicine* 13, eabj7790. 10.1126/scitranslmed.abj7790.

744 53. Ruhl, L., Pink, I., Kühne, J.F., Beushausen, K., Keil, J., Christoph, S., Sauer, A., Boblitz, L., Schmidt,
745 J., David, S., et al. (2021). Endothelial dysfunction contributes to severe COVID-19 in
746 combination with dysregulated lymphocyte responses and cytokine networks. *Signal
747 Transduction and Targeted Therapy* 6, 418. 10.1038/s41392-021-00819-6.

748 54. Deinhardt-Emmer, S., Böttcher, S., Häring, C., Giebel, L., Henke, A., Zell, R., Jungwirth, J.,
749 Jordan, P.M., Werz, O., Hornung, F., et al. (2021). SARS-CoV-2 causes severe epithelial
750 inflammation and barrier dysfunction. *J Virol* 95. 10.1128/jvi.00110-21.

751 55. Smeda, M., and Chlopicki, S. (2020). Endothelial barrier integrity in COVID-19-dependent
752 hyperinflammation: does the protective facet of platelet function matter? *Cardiovascular
753 Research* 116, e118-e121. 10.1093/cvr/cvaa190.

754 56. Chakraborty, S., Gonzalez, J.C., Sievers, B.L., Mallajosyula, V., Chakraborty, S., Dubey, M., Ashraf,
755 U., Cheng, B.Y.-L., Kathale, N., Tran, K.Q.T., et al. (2022). Early non-neutralizing, afucosylated
756 antibody responses are associated with COVID-19 severity. *Science Translational Medicine* 14,
757 eabm7853. doi:10.1126/scitranslmed.abm7853.

758 57. Chakraborty, S., Gonzalez, J., Edwards, K., Mallajosyula, V., Buzzanco, A.S., Sherwood, R.,
759 Buffone, C., Kathale, N., Providenza, S., Xie, M.M., et al. (2021). Proinflammatory IgG Fc
760 structures in patients with severe COVID-19. *Nature Immunology* 22, 67-73. 10.1038/s41590-
761 020-00828-7.

762 58. Pongracz, T., Nouta, J., Wang, W., van Meijgaarden, K.E., Linty, F., Vidarsson, G., Joosten, S.A.,
763 Ottenhoff, T.H.M., Hokke, C.H., de Vries, J.J.C., et al. (2022). Immunoglobulin G1 Fc
764 glycosylation as an early hallmark of severe COVID-19. *eBioMedicine* 78, 103957.
765 <https://doi.org/10.1016/j.ebiom.2022.103957>.

766 59. Yanaga, F., Poole, A., Asselin, J., Blake, R., Schieven, G.L., Clark, E.A., Law, C.L., and Watson, S.P.
767 (1995). Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by
768 collagen and cross-linking of the Fc gamma-IIA receptor. *Biochem J* 311 (Pt 2), 471-478.
769 10.1042/bj3110471.

770 60. Harvey, W.T., Carabelli, A.M., Jackson, B., Gupta, R.K., Thomson, E.C., Harrison, E.M., Ludden,
771 C., Reeve, R., Rambaut, A., Peacock, S.J., et al. (2021). SARS-CoV-2 variants, spike mutations
772 and immune escape. *Nature Reviews Microbiology* 19, 409-424. 10.1038/s41579-021-00573-
773 0.

774 61. Caniels Tom, G., Bontjer, I., van der Straten, K., Poniman, M., Burger Judith, A., Appelman, B.,
775 Lavell, A.H.A., Oomen, M., Godeke, G.-J., Valle, C., et al. (2021). Emerging SARS-CoV-2 variants
776 of concern evade humoral immune responses from infection and vaccination. *Science
777 Advances* 7, eabj5365. 10.1126/sciadv.abj5365.

778 62. van Gils, M.J., Lavell, A., van der Straten, K., Appelman, B., Bontjer, I., Poniman, M., Burger, J.A.,
779 Oomen, M., Bouhuijs, J.H., van Vught, L.A., et al. (2022). Antibody responses against SARS-CoV-
780 2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the
781 Netherlands: A prospective cohort study. *PLOS Medicine* 19, e1003991.

782 10.1371/journal.pmed.1003991.

783 63. Liu, H., Wu, N.C., Yuan, M., Bangaru, S., Torres, J.L., Caniels, T.G., van Schooten, J., Zhu, X., Lee, C.-C.D., Brouwer, P.J.M., et al. (2020). Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. *Immunity* 53, 1272-1280.e1275. 10.1016/j.immuni.2020.10.023.

787 64. McGonagle, D., Sharif, K., O'Regan, A., and Bridgewood, C. (2020). The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. *Autoimmunity reviews* 19, 102537-102537. 10.1016/j.autrev.2020.102537.

791 65. Wassmann, S., Stumpf, M., Strehlow, K., Schmid, A., Schieffer, B., Böhm, M., and Nickenig, G. (2004). Interleukin-6 Induces Oxidative Stress and Endothelial Dysfunction by Overexpression of the Angiotensin II Type 1 Receptor. *Circulation Research* 94, 534-541. 10.1161/01.RES.0000115557.25127.8D.

795 66. Kang, S., and Kishimoto, T. (2021). Interplay between interleukin-6 signaling and the vascular endothelium in cytokine storms. *Experimental & Molecular Medicine* 53, 1116-1123. 10.1038/s12276-021-00649-0.

798 67. Niknam, Z., Jafari, A., Golchin, A., Danesh Pouya, F., Nemati, M., Rezaei-Tavirani, M., and Rasmi, Y. (2022). Potential therapeutic options for COVID-19: an update on current evidence. *European Journal of Medical Research* 27, 6. 10.1186/s40001-021-00626-3.

801 68. WHO Guidelines Approved by the Guidelines Review Committee. (2022). In *Therapeutics and COVID-19: living guideline*, (World Health Organization © World Health Organization 2021.).

804 69. Kiefer, F., Brumell, J., Al-Alawi, N., Latour, S., Cheng, A., Veillette, A., Grinstein, S., and Pawson, T. (1998). The Syk protein tyrosine kinase is essential for Fc γ receptor signaling in macrophages and neutrophils. *Molecular and cellular biology* 18, 4209-4220. 10.1128/MCB.18.7.4209.

808 70. Bussel, J., Arnold, D.M., Grossbard, E., Mayer, J., Treliński, J., Homenda, W., Hellmann, A., Windyga, J., Sivcheva, L., Khalafallah, A.A., et al. (2018). Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia: Results of two phase 3, randomized, placebo-controlled trials. *Am J Hematol* 93, 921-930. 10.1002/ajh.25125.

812 71. Guan, W.-j., Ni, Z.-y., Hu, Y., Liang, W.-h., Ou, C.-q., He, J.-x., Liu, L., Shan, H., Lei, C.-l., Hui, D.S.C., et al. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. *New England Journal of Medicine* 382, 1708-1720. 10.1056/NEJMoa2002032.

815 72. Bhattacharjee, S., and Banerjee, M. (2020). Immune Thrombocytopenia Secondary to COVID-19: a Systematic Review. *SN Compr Clin Med* 2, 2048-2058. 10.1007/s42399-020-00521-8.

817 73. Friedberg, J.W., Sharman, J., Sweetenham, J., Johnston, P.B., Vose, J.M., Lacasce, A., Schaefer-Cutillo, J., De Vos, S., Sinha, R., Leonard, J.P., et al. (2010). Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. *Blood* 115, 2578-2585. 10.1182/blood-2009-08-236471.

821 74. Skinner, M., Philp, K., Lengel, D., Coverley, L., Lamm Bergström, E., Glaves, P., Musgrove, H., Prior, H., Braddock, M., Huby, R., et al. (2014). The contribution of VEGF signalling to fostamatinib-induced blood pressure elevation. *Br J Pharmacol* 171, 2308-2320. 10.1111/bph.12559.

825 75. Currie, K.S., Kropf, J.E., Lee, T., Blomgren, P., Xu, J., Zhao, Z., Gallion, S., Whitney, J.A., Maclin, D., and Lansdon, E.B. (2014). Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. *Journal of medicinal chemistry* 57, 3856-3873.

828 76. Ramanathan, S., Di Paolo, J.A., Jin, F., Shao, L., Sharma, S., Robeson, M., and Kearney, B.P. (2017). Pharmacokinetics, Pharmacodynamics, and Safety of Entospletinib, a Novel pSYK Inhibitor, Following Single and Multiple Oral Dosing in Healthy Volunteers. *Clin Drug Investig* 37, 195-205. 10.1007/s40261-016-0476-x.

832 77. Goshua, G., Pine, A.B., Meizlish, M.L., Chang, C.H., Zhang, H., Bahel, P., Baluha, A., Bar, N., Bona,

833 R.D., Burns, A.J., et al. (2020). Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. *Lancet Haematol* 7, e575-e582. 10.1016/S2352-3026(20)30216-7.

834 78. Gu, S.X., Tyagi, T., Jain, K., Gu, V.W., Lee, S.H., Hwa, J.M., Kwan, J.M., Krause, D.S., Lee, A.I., Halene, S., et al. (2021). Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. *Nature Reviews Cardiology* 18, 194-209. 10.1038/s41569-020-00469-1.

835 79. Liu, L., Wei, Q., Lin, Q., Fang, J., Wang, H., Kwok, H., Tang, H., Nishiura, K., Peng, J., Tan, Z., et al. (2019). Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. *JCI Insight* 4. 10.1172/jci.insight.123158.

836 80. Vidarsson, G., Dekkers, G., and Rispens, T. (2014). IgG Subclasses and Allotypes: From Structure to Effector Functions. *Frontiers in Immunology* 5. 10.3389/fimmu.2014.00520.

837 81. Li, T., DiLillo, D.J., Bournazos, S., Giddens, J.P., Ravetch, J.V., and Wang, L.-X. (2017). Modulating IgG effector function by Fc glycan engineering. *Proceedings of the National Academy of Sciences of the United States of America* 114, 3485-3490. 10.1073/pnas.1702173114.

838 82. Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.W., Stubben, C., Petrey, A.C., Tolley, N.D., Guo, L., Cody, M., et al. (2020). Platelet gene expression and function in patients with COVID-19. *Blood* 136, 1317-1329. 10.1182/blood.2020007214.

839 83. Rapkiewicz, A.V., Mai, X., Carsons, S.E., Pittaluga, S., Kleiner, D.E., Berger, J.S., Thomas, S., Adler, N.M., Charytan, D.M., Gasmi, B., et al. (2020). Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. *eClinicalMedicine* 24. 10.1016/j.eclim.2020.100434.

840 84. Santoro, F., Nuñez-Gil, I.J., Vitale, E., Viana-Llamas, M.C., Reche-Martinez, B., Romero-Pareja, R., Feltez Guzman, G., Fernandez Rozas, I., Uribarri, A., Becerra-Muñoz, V.M., et al. (2022). Antiplatelet therapy and outcome in COVID-19: the Health Outcome Predictive Evaluation Registry. *Heart* 108, 130. 10.1136/heartjnl-2021-319552.

841 85. Zong, X., Wang, X., Liu, Y., Li, Z., Wang, W., Wei, D., and Chen, Z. (2022). Antiplatelet therapy for patients with COVID-19: Systematic review and meta-analysis of observational studies and randomized controlled trials. *Front Med (Lausanne)* 9, 965790. 10.3389/fmed.2022.965790.

842 86. Barr, P.M., Wei, C., Roger, J., Schaefer-Cutillo, J., Kelly, J.L., Rosenberg, A.F., Jung, J., Sanz, I., and Friedberg, J.W. (2012). Syk inhibition with fostamatinib leads to transitional B lymphocyte depletion. *Clin Immunol* 142, 237-242. 10.1016/j.clim.2011.12.012.

843 87. Cornall, R.J., Cheng, A.M., Pawson, T., and Goodnow, C.C. (2000). Role of Syk in B-cell development and antigen-receptor signaling. *Proceedings of the National Academy of Sciences of the United States of America* 97, 1713-1718. 10.1073/pnas.97.4.1713.

844 88. Ankerhold, J., Giese, S., Kolb, P., Maul-Pavicic, A., Voll, R.E., Göppert, N., Ciminski, K., Kreutz, C., Lother, A., Salzer, U., et al. (2022). Circulating multimeric immune complexes contribute to immunopathology in COVID-19. *Nature Communications* 13, 5654. 10.1038/s41467-022-32867-z.

845 89. Mazzitelli, I., Bleichmar, L., Ludueña, M.G., Pisarevsky, A., Labato, M., Chiaradia, V., Finocchieto, P., Paulin, F., Hormannstorfer, M., Baretto, M.C., et al. (2021). Immunoglobulin G Immune Complexes May Contribute to Neutrophil Activation in the Course of Severe Coronavirus Disease 2019. *The Journal of Infectious Diseases* 224, 575-585. 10.1093/infdis/jiab174.

846 90. Georg, P., Astaburuaga-García, R., Bonaguro, L., Brumhard, S., Michalick, L., Lippert, L.J., Kostevc, T., Gäbel, C., Schneider, M., Streitz, M., et al. (2022). Complement activation induces excessive T cell cytotoxicity in severe COVID-19. *Cell* 185, 493-512.e425. 10.1016/j.cell.2021.12.040.

847 91. Laufer, J., Boichis, H., Farzam, N., and Passwell, J.H. (1995). IgA and IgG immune complexes increase human macrophage C3 biosynthesis. *Immunology* 84, 207-212.

848 92. Abu-Eid, R., and Ward, F.J. (2021). Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. *Immunology Letters* 240, 1-8.

884 884 https://doi.org/10.1016/j.imlet.2021.09.005.

885 93. 885 Khezri, M.R., Varzandeh, R., and Ghasemnejad-Berenji, M. (2022). The probable role and
886 therapeutic potential of the PI3K/AKT signaling pathway in SARS-CoV-2 induced coagulopathy.
887 *Cellular & Molecular Biology Letters* 27, 6. 10.1186/s11658-022-00308-w.

888 94. 888 Hanlon, A., and Brander, D.M. (2020). Managing toxicities of phosphatidylinositol-3-kinase
889 (PI3K) inhibitors. *Hematology* 2020, 346-356. 10.1182/hematology.2020000119.

890 95. 890 Greenwell, I.B., Ip, A., and Cohen, J.B. (2017). PI3K Inhibitors: Understanding Toxicity
891 Mechanisms and Management. *Oncology (Williston Park)* 31, 821-828.

892 96. 892 Horwitz, S.M., Koch, R., Porcu, P., Oki, Y., Moskowitz, A., Perez, M., Myskowski, P., Officer, A.,
893 Jaffe, J.D., Morrow, S.N., et al. (2018). Activity of the PI3K- δ , γ inhibitor duvelisib in a phase 1
894 trial and preclinical models of T-cell lymphoma. *Blood* 131, 888-898. 10.1182/blood-2017-08-
895 802470.

896 97. 896 Junqueira, C., Crespo, Â., Ranjbar, S., de Lacerda, L.B., Lewandrowski, M., Ingber, J., Parry, B.,
897 Ravid, S., Clark, S., Schrimpf, M.R., et al. (2022). Fc γ R-mediated SARS-CoV-2 infection of
898 monocytes activates inflammation. *Nature*. 10.1038/s41586-022-04702-4.

899 98. 899 Wang, S., Wang, J., Yu, X., Jiang, W., Chen, S., Wang, R., Wang, M., Jiao, S., Yang, Y., Wang, W.,
900 et al. (2022). Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection
901 requires Fc γ RIIB and virus-antibody complex with bivalent interaction. *Communications
902 Biology* 5, 262. 10.1038/s42003-022-03207-0.

903 99. 903 Sefik, E., Qu, R., Junqueira, C., Kaffe, E., Mirza, H., Zhao, J., Brewer, J.R., Han, A., Steach, H.R.,
904 Israelow, B., et al. (2022). Inflammasome activation in infected macrophages drives COVID-19
905 pathology. *Nature* 606, 585-593. 10.1038/s41586-022-04802-1.

906 100. 906 Colado, A., Almejún, M.B., Podaza, E., Risnik, D., Stanganelli, C., Elías, E.E., Dos Santos, P.,
907 Slavutsky, I., Fernández Grecco, H., Cabrejo, M., et al. (2017). The kinase inhibitors R406 and
908 GS-9973 impair T cell functions and macrophage-mediated anti-tumor activity of rituximab in
909 chronic lymphocytic leukemia patients. *Cancer Immunology, Immunotherapy* 66, 461-473.
910 10.1007/s00262-016-1946-y.

911 101. 911 Newland, A., and McDonald, V. (2020). Fostamatinib: a review of its clinical efficacy and safety
912 in the management of chronic adult immune thrombocytopenia. *Immunotherapy* 12, 1325-
913 1340. 10.2217/imt-2020-0215.

914 102. 914 Brouwer Philip, J.M., Caniels Tom, G., van der Straten, K., Snitselaar Jonne, L., Aldon, Y.,
915 Bangaru, S., Torres Jonathan, L., Okba Nisreen, M.A., Claireaux, M., Kerster, G., et al. (2020).
916 Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability.
917 *Science* 369, 643-650. 10.1126/science.abc5902.

918 103. 918 Ritz, C., Baty, F., Streibig, J.C., and Gerhard, D. (2016). Dose-Response Analysis Using R. *PLoS
919 One* 10, e0146021. 10.1371/journal.pone.0146021.

920 104. 920 An, H., Justin, T.L., Aubrey, G.B., Marron, J.S., and Dittmer, D.P. (2019). dr4pl: A Stable
921 Convergence Algorithm for the 4 Parameter Logistic Model. *R J*. 11, 171.

922 105. 922 van Egmond, M., Vidarsson, G., and Bakema, J.E. (2015). Cross-talk between pathogen
923 recognizing Toll-like receptors and immunoglobulin Fc receptors in immunity. *Immunological
924 Reviews* 268, 311-327. <https://doi.org/10.1111/imr.12333>.

925 106. 925 Botros, L., Pronk, M.C., Juschten, J., Liddle, J., Morsing, S.K., van Buul, J.D., Bates, R.H., Tuinman,
926 P.R., van Bezu, J.S., and Huvemeers, S. (2020). Bosutinib prevents vascular leakage by reducing
927 focal adhesion turnover and reinforcing junctional integrity. *Journal of cell science* 133,
928 jcs240077.

929 107. 929 Smeets, M.W., Mourik, M.J., Niessen, H.W., and Hordijk, P.L. (2017). Stasis promotes
930 erythrocyte adhesion to von Willebrand factor. *Arteriosclerosis, thrombosis, and vascular
931 biology* 37, 1618-1627.

932

933

934 **Supplemental information**

935

936 **Table S1. Members and affiliation of the Amsterdam UMC COVID19 Biobank**

937

Name	Affiliations
M.A. van Agtmael	Department of Infectious Diseases
A.G. Algera	Department of Intensive Care
B. Appelman	Department of Infectious Diseases
F.E.H.P. van Baarle	Department of Intensive Care
D. van de Beek	Department of Neurology
M. Beudel	Department of Neurology
H J Bogaard	Department of Pulmonology
M. Bomers	Department of Infectious Diseases
P.I. Bonta	Department of Pulmonology
L.D.J. Bos	Department of Intensive Care
M. Botta	Department of Intensive Care
J. de Brabander	Department of Infectious Diseases
G.J. de Bree	Department of Infectious Diseases
M.C. Brouwer	Department of Neurology
S. de Bruin	Department of Intensive Care
M. Bugiani	Department of Pathology
E.B. Bulle	Department of Intensive Care
O. Chouchane	Department of Infectious Diseases
A.P.M. Cloherty	Experimental Immunology
D. Buis	Department of Infectious Diseases
M. C.F.J. de Rotte	Department of Clinical Chemistry
M. Dijkstra	Department of Clinical Chemistry
D.A. Dongelmans	Department of Intensive Care
R.W.G Dujardin	Department of Intensive Care
P.E. Elbers	Department of Intensive Care
L.M. Fleuren	Department of Intensive Care
S.E. Geerlings	Department of Infectious Diseases
T.B.H. Geijtenbeek	Department of Experimental Immunology
A.R.J. Girbes	Department of intensive care
A. Goorhuis	Department of Infectious Diseases
M.P. Grobusch	Department of Infectious Diseases
L.A. Hagens	Department of Intensive Care
J. Hamann	Amsterdam UMC Biobank Core Facility
V. C. Harris	Department of Infectious Diseases
R. Hemke	Department of Radiology
S.M. Hermans	Department of Infectious Diseases
L.M.A. Heunks	Department of Intensive Care
M.W. Hollmann	Department of Anesthesiology
J. Horn	Department of Intensive Care
J.W. Hovius	Department of Infectious Diseases
M.D. de Jong	Department of Medical Microbiology
R. Koing	Department of Neurology
E.H.T. Lim	Department of Intensive Care
N. van Mourik	Department of Intensive Care
J.F Nellen	Department of Infectious Diseases

E.J. Nossent	Department of Pulmonology
F. Paulus	Department of Intensive Care
E. Peters	Department of Infectious Diseases
D. Piña-Fuentes	Department of neurology
T. van der Poll	Department of Infectious Diseases
B. Preckel	Department of Anesthesiology
J.M. Prins	Department of Infectious Diseases
S.J. Raasveld	Department of Intensive Care
T.D.Y. Reijnders	Department of Infectious Diseases
M. Schinkel	Department of Infectious Diseases
F.A.P. Schrauwen	Department of Clinical Chemistry
M.J. Schultz	Department of Intensive Care
A.R. Schuurman	Department of Internal Medicine
J. Schuurmans	Department of Intensive Care
K. Sigaloff	Department of Infectious Diseases
M.A. Slim	Department of Intensive Care and Infectious Diseases
P. Smeele	Department of Pulmonology
M.R. Smit	Department of Intensive Care
C. Stijnis	Department of Infectious Diseases
W. Stilma	Department of Intensive Care
C.E. Teunissen	Neurochemical Laboratory
P. Thoral	Department of Intensive Care
A.M. Tsonas	Department of Intensive Care
P.R. Tuinman	Department of Intensive Care
M. van der Valk	Department of Infectious Diseases
D.P. Veelo	Department of Anesthesiology
A.P.J. Vlaar	Department of Intensive Care
C. Volleman	Department of Intensive Care
H. de Vries	Department of Intensive Care
L.A. van Vught	Department of Intensive Care and Infectious Diseases
M. van Vugt	Department of Infectious Diseases
W.J. Wiersinga	Department of Infectious Diseases
D. Wouters	Department of Clinical Chemistry
A.H. Zwinderman	Department of Clinical Epidemiology, Biostatistics and Bioinformatics