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 Summary 
 Relationships between the genome, transcriptome, and metabolome underlie all evolved 
 phenotypes. However, it has proved difficult to elucidate these relationships because of the high 
 number of variables measured. A recently developed data analytic method for characterizing the 
 transcriptome can simplify interpretation by grouping genes into independently modulated sets 
 (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of 
 causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate  E. 
 coli  strains that tolerate high levels of the redox cycling compound paraquat, which produces 
 reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models 
 to elucidate six interacting stress tolerance mechanisms: 1) modification of transport, 2) 
 activation of ROS stress responses, 3) use of ROS-sensitive iron regulation, 4) motility, 5) broad 
 transcriptional reallocation toward growth, and 6) metabolic rewiring to decrease NADH 
 production. This work thus reveals the genome-scale systems biology of ROS tolerance. 

 Keywords:  Systems Biology;  Adaptive Laboratory Evolution;  Oxidative Stress; Paraquat; 
 Transcriptomics; Big Data Analytics; Computational Biology; Transcriptional Regulatory 
 Networks; 
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 Graphical Abstract 

 Introduction 
 Omics technologies have enabled global understanding of cellular states at each level of the 
 central dogma of biology. In particular, the falling cost of nucleotide sequencing has led to a 
 dramatic increase in available genomic and transcriptomic datasets, allowing researchers to 
 probe nucleotide changes in DNA and condition-dependent expression changes in RNA at 
 unprecedented scale  1  . With genome-scale metabolic  models, we can also gain a global 
 perspective on metabolic fluxes, and how they change based on genetic or expression 
 perturbations  2–4  . Each tool on its own has been successful  in gaining novel biological insights, 
 but an even deeper understanding can be achieved if they are made interoperable. Many 
 approaches to integrate multiple omics data types are being developed  5  , but the high number of 
 variables and employment of complex “black-box” computational tools presents a problem for 
 elucidating a clear, genome-scale understanding of biological systems across multiple levels of 
 genomic, transcriptional, metabolic, and phenotypic changes. 

 Adaptive laboratory evolution (ALE) is an experimental procedure in which a microbial starting 
 strain is grown in a selected condition for many generations, propagating when flasks reach a 
 targeted density during repeated batch growth. This allows selection to enrich for mutant strains 
 with improved fitness under the chosen condition  6  .  A tolerization ALE uses this procedure with 
 increasing stressor concentrations, pushing cells to amplify stress tolerance mechanisms  7  , 
 thereby generating unique strains which are stress tolerance specialists. ALE strains are an 
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 excellent starting point for developing multi-omic approaches because they have a well-defined 
 phenotype which arises from an average of only ~22 mutations  8  . ALE mutations are highly 
 informative for improving gene annotations, identifying fundamental biological principles and 
 tradeoffs, designing bioproduction strains, and understanding antimicrobial resistance  6,9  . 
 However, it is difficult to interpret effects of mutations on regulators and enzymes without adding 
 characterization from the transcriptome and metabolome. 

 The transcriptional regulatory network (TRN) employs transcription factors (TFs) which sense 
 features of the cellular state and regulate the expression of genes in response. As 
 transcriptomic data has been generated in rapidly growing numbers and deposited into online 
 databases, it has become increasingly important to develop scalable methods which enable 
 their interpretation. However, the typical method for transcriptional analysis, differentially 
 expressed gene (DEG) analysis, is cumbersome for complex transcriptomic adjustments due to 
 the high number of DEGs, and it does not easily capture the large-scale structure of the TRN. 
 We seek to integrate signals from the TRN with mutations in the genome via biologically 
 meaningful relationships, which is difficult if we do not first effectively decrease the number of 
 transcriptomic variables. 

 A recently developed approach addresses this challenge by using independent component 
 analysis (ICA) of large compendia of transcriptomic data to group genes into independently 
 modulated sets (iModulons). The expression level (activity) of each group is computed in each 
 sample, allowing systematic, large-scale analysis of the transcriptomic effect of adaptation to a 
 new growth condition. Each iModulon is manually curated with predicted regulators and 
 functions, bridging between the quantitative TRN and existing literature. iModulon activity levels 
 can be used to infer the activity of their underlying regulators, and thus enable quantitative 
 interrogation of the cell’s sensory systems. This approach has provided valuable insights into 
 the TRNs of  Escherichia coli  10,11  and several other  organisms  12–19  .  iModulon analysis is 
 supported by a developed codebase and online knowledgebase (iModulonDB.org)  20,21  , which 
 are publicly available. iModulons have already shown promise for analyzing transcriptional 
 reallocation in tandem with mutations, which revealed important examples of the interplay 
 between the genome and the transcriptome  22–26  , but  more work needs to be done to explain 
 larger fractions of transcriptomic variance by systematically characterizing iModulon changes. 

 Downstream of the genome and gene expression, the state of the metabolic network is 
 fundamental in determining cellular phenotypes. We have developed genome-scale metabolic 
 and expression (ME) models, which compute optimal steady-state fluxes for all known reactions 
 in a cell given mathematical constraints and an objective function  2,27  . These models can be 
 constrained with growth rates, uptake and secretion rates from metabolomic data, and 
 transcriptomic data  24,25  . Recent work has also incorporated  the effects of biochemical 
 stresses  3,28,29  , enabling understanding of the cellular  response to stress. Since ME models 
 integrate phenotypic, metabolic, and transcriptional or proteomic data, they can be useful for 
 supporting or refuting separate predictions made by analyzing genomic alterations. 

 The goal of the present study was to gain a genome-scale, multilevel, “white-box” understanding 
 of a particular phenotype by leveraging ALE, genome sequencing, iModulons and ME modeling. 
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 Thus, we needed to select a well-defined phenotype of interest. We did so by employing ALE to 
 generate  E. coli  strains which are specialized to  tolerate a common herbicide, the redox-cycling 
 compound paraquat (PQ). PQ is a redox-cycling compound, meaning that it can generate large 
 amounts of reactive oxygen species (ROS) by stripping electrons  from cellular electron carriers, 
 such as NADH and NADPH, and reducing oxygen; this generates destructive superoxide ROS 
 and regenerates the oxidizing agent to re-initiate the cycle  30–32  . The ROS are particularly 
 damaging to iron-containing enzymes and DNA. They decrease activity of important pathways, 
 challenge the integrity of the genome, and inhibit growth  3,32–36  . 

 Though the ROS response of  E. coli  is well understood  and ROS are often delivered in the 
 laboratory by PQ  34  , some questions remain about how  high levels of tolerance can be achieved: 
 (i) In addition to the known proteins, which transporters and enzymes are involved in PQ 
 cycling? (ii) What transcriptional alterations, specifically with respect to stress responses, metal 
 homeostasis, and redox balance, are optimal? (iii) How can cells balance a tradeoff between 
 generating NAD(P)H for energy and decreasing its production to prevent stress generation? 
 Through our unique combination of systems biology techniques, we are able to shed new light 
 on these questions. Their answers are informative for the fundamental biology of stress and 
 metabolism, and for applications in pathology, antimicrobial design, and biomanufacturing. 

 This work provides a blueprint for combining ALE, mutational analysis, transcriptomics, 
 computational biology, and phenotypic characterizations for stress-tolerant ALE strains, which 
 emphasizes the rich insights provided by iModulon analysis. We begin by characterizing the 
 strains and presenting an overview of the genomic and transcriptional changes. We then show 
 that the effects of large DNA changes and TF mutations are easily quantified in the 
 transcriptome. We also find an unexpected non-TF mutation that regulates motility regulons in 
 our strains. Next, we disentangle the large fraction of the transcriptome which responds to 
 changes in stress and growth phenotypes. Finally, we propose and model a metabolic 
 mechanism for PQ tolerance which involves several interesting mutations and broad 
 transcriptional reallocation. We show that the evolved strains employ a multi-pronged strategy 
 of: (i) modifying membrane transport, (ii) using the SoxS and OxyR regulons to ensure stress 
 readiness, (iii) allowing ROS-sensitive iron-sulfur (Fe-S) clusters to play a larger role in 
 regulation of metal homeostasis, (iv) increasing motility, (v) shifting transcriptional allocation 
 toward growth, and (vi) using fermentation to avert the PQ cycle. Taken together, these results 
 elucidate a detailed, coherent, multilevel understanding of an important cellular phenotype by 
 combining several cutting edge technologies in big data analytics and computational biology. 
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 Results 

 Figure 1. ALE increases PQ tolerance via changes to the genome and transcriptome. (A)  Tolerization ALE 
 process, showing mutant strains (cells with various appearances) in media with increasing stress concentrations 
 (red). Example replicates are shown: 1_0 in the first generation and 1_1 in the second generation.  (B)  Points 
 represent ALE flasks colored by their PQ concentration. The first generation of ALEs (strains 1_0, 2_0, and 3_0) are 
 shown with each flask’s growth rate. ‘Cumulative cell divisions’ are estimated from the growth rate and time elapsed. 
 Stars represent flasks that underwent DNA sequencing, and newly mutated genes are shown. Black colored genes 
 are discussed in detail.  (C)  Growth rate for each  strain at each PQ concentration. The starting strain cannot grow at 
 250 µM PQ, whereas some evolved strains reach up to 2500 µM PQ. Evolved strains grow slower than the starting 
 strain in the absence of PQ.  (D)  Treemap of mutations  in all strains, grouped by gene with intergenic mutations 
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 assigned to nearest genes. UC: Uncharacterized. See  Table S1  .  (E)  Fraction of SNP types in this study compared 
 with all public ALE studies on ALEdb (aledb.org; mean ± 95% confidence interval). Each label corresponds to four of 
 the twelve possible substitutions; for instance, “GC→AT” includes “G→A”, “G→T”, “C→A” and “C→T” substitutions. 
 This study is enriched for mutations which decrease the GC content of the genome.  (F-G)  Comparison between  the 
 mean transcriptomes of the parent strain at 250 µM PQ vs. all evolved strains at 250 and 750 µM PQ.  (F)  DEG 
 analysis, showing an intractably large number of DEGs.  (G)  Differential iModulon activity (DiMA) analysis,  which 
 compresses the differential transcriptomic changes into 42 DiMAs. DiMAs are colored by their category from panel 
 (H). For more information about each iModulon, explore the PRECISE-1K  E. coli  dataset at iModulonDB.org  and see 
 Table S2.  (H)  Treemap of the explained variance of  each iModulon in the transcriptome of the evolved strains. The 
 map is first broken into three parts: the colorful region, composed of iModulons that are differentially activated after 
 the evolution and categorized, the light gray region composed of iModulons that do not show a significant trend with 
 evolution, and the dark gray region, representing the error in the iModulon decomposition. 

 Laboratory evolution increased tolerated PQ levels by 1000% 

 We evolved strains aerobically in minimal media with glucose under increasing PQ stress 
 (  Figure 1A  ). Our starting strain (0_0) was a derivative  of  E. coli  K-12 MG1655 which had been 
 pre-evolved to grow in minimal media with glucose  37  .  By using this media-adapted starting 
 strain, the subsequent ALEs were enriched for mutations which improve stress tolerance, since 
 the mutations that promote rapid growth under the culture conditions were already fixed. ALE 
 was performed by steadily increasing PQ concentrations, first in three parallel first generation 
 ALEs (1_0, 2_0, 3_0) and followed by eleven second generation ALEs (1_1, 1_2, …, 2_1, etc.) 
 (  Figure 1A-B  ). Parallelizing ALE replicates generated  diverse strains and allowed for 
 identification of common mutation targets which are more likely to be causal. 

 After evolution, growth rates for each endpoint under different PQ concentrations were 
 measured (  Figure 1C  ). The starting strain’s growth  was severely impaired by low PQ 
 concentrations, with no growth at 250 μM PQ. The evolved strains showed a dramatic increase 
 in the concentration of PQ they can tolerate while still growing; some endpoint strains tolerated 
 2500 μM. There was a fitness cost to the PQ tolerance, however: the strains no longer grew as 
 well in the absence of PQ as the starting strain. This observation is consistent with the tradeoffs 
 of the PQ tolerization mechanisms. 

 Adaptive mutations reflect effects of PQ 

 Throughout the PQ ALE, a total of 222 mutations were observed, representing 111 unique 
 sequence changes. Each mutation was assigned to its closest gene in the case of intergenic 
 mutations, and 72 total genes were affected. Mutations were then categorized by their likely 
 effects (  Figure 1D, Supplemental Table 1  ). The largest  category of mutated genes was central 
 and energy metabolism-related (35%), which reflect the metabolic effects of PQ on redox 
 balance. Transporters were also frequently mutated (16%), likely to prevent influx or promote 
 efflux of PQ or other ROS. Iron and iron-sulfur (Fe-S) clusters are sensitive to oxidative stress  34  , 
 so we observed changes to iron regulators and Fe-S cluster synthesis genes (16%). Three large 
 deletions, Del-1, Del-2, and E14 removal, were also notable (5%). Other mutations which were 
 less convergent across endpoint strains (26%) were observed in ribosomal subunits, tRNAs, 
 and  lon  protease, as well as across other parts of  the metabolic network. 
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 We performed DNA sequencing on several midpoint strains during the ALEs (  Figure 1B  ), which 
 provided insight into the most effective growth strategies since mutations tend to fix in the order 
 of fitness benefit  38  . We note that  emrE  and  aceE  are  among the first genes to be affected in all 
 three of our first generation strains. 

 An interesting pattern arose in the observed single nucleotide polymorphisms (SNPs): 
 compared to other ALE projects available on ALEdb  8  ,  they are highly enriched for changes from 
 guanine or cytosine to adenine or thymine (  Figure  1E;  Fisher’s exact test p = 9.38*10  -5  ). This 
 enrichment was consistent with direct damage to DNA by ROS, since guanine is the most easily 
 oxidized nucleotide  33,39,40  .  Thus, these mutations  might not only improve cellular fitness through 
 genomic and transcriptomic changes, but also by physically tolerizing cellular DNA to oxidation  . 

 iModulons enable analysis of complex transcriptomic changes 

 To identify transcriptomic adaptations, we performed RNAseq on the starting strain at 0 and 250 
 μM PQ, and on each evolved strain at 0, 250, and 750 μM PQ. In a comparison between the 
 stressed samples for the pool of all evolved strains vs. the starting strain, we found 1,774 
 differentially expressed genes (DEGs) (  Figure 1F  ),  making detailed analysis using traditional 
 transcriptomic methods challenging. Therefore, we applied iModulon analysis to enable 
 interpretation. 

 The data was included in a large compendium of  E.  coli  RNAseq data generated from a single 
 wet lab protocol (PRECISE-1K  11  ). By leveraging over  1,000 samples across diverse conditions, 
 this dataset facilitated machine learning of global transcriptomic patterns. Following our 
 pipeline  21  , we performed ICA on the full dataset.  The result was a set of 201 iModulons, 
 independently modulated gene sets which have similar expression patterns, along with their 
 activities in each sample. Together, the iModulons constitute a quantitative regulatory structure 
 which maps well to the known TRN, and can be used to reduce the dimensionality of the 
 dataset. The set of PRECISE-1K iModulons was characterized in a separate study  41  , and the 
 iModulon structure, including interactive plots, search, and download functionality, is available at 
 iModulonDB.org under  E. coli  PRECISE-1K  20  . 

 iModulons enabled a global characterization of changes in the transcriptome. The evolved 
 strains’ gene expression under PQ stress against the starting strain had only 42 statistically 
 significant differential iModulon activities (DiMAs) (  Figure 1G  ). These 42 iModulons made the 
 analysis of the large-scale changes in the transcriptome tractable, and their observed activity 
 changes could be related to the mutations fixed under ALE. We categorized the DiMAs and 
 assigned mechanistic hypotheses which explain their changes (  Table S2  ). Explained variance 
 for all categories of significant and insignificant iModulons are shown in  Figure 1H  . 
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 Figure 2. Multilevel approach reveals mechanisms of PQ tolerance. (A)  Knowledge graph summarizing multilevel 
 relationships between mutations, iModulons, metabolism, and phenotypes. Pie charts appearing in the two left 
 columns indicate prevalence of given changes to the genome and transcriptome (legend in panel B), where wedges 
 indicate strains. The protruding wedges correspond to the first generation of ALEs, with the wedges counterclockwise 
 to them being their second generation descendants. For genes, green indicates the strain has mutations affecting it 
 or its promoter. For iModulons, colors indicate the difference between the iModulon activity in the strain at 750 μM PQ 
 and the starting strain at 250 μM PQ, normalized to the standard deviation of the iModulon activity across all of 
 PRECISE-1K. Dashed lines represent relationships for which there is little existing literature.  (B)  Phenotypic  changes 
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 target specific processes involved in PQ and ROS stress. Lowercase letters indicate elements from the rightmost 
 column of (A). Entities which glow are reduced, and red indicates stress-related molecules. 

 A multilevel approach focused on explaining iModulon activities revealed 
 the effects of mutations and phenotypes of evolved strains 

 Modifications to the genome can affect the transcriptome in several ways: large deletions and 
 amplifications can directly alter the expression of genes involved, mutations in TFs can change 
 the expression of their associated regulons, and the transcriptome can adjust due to changes in 
 metabolites or other sensed processes that result from mutations. The latter type of alteration 
 can be complicated by the fact that gene expression also regulates metabolite concentrations 
 and sensed processes. In  Figure 2A  , we summarize how  each of these types of relationships 
 were observed in the evolved strains. iModulons play a central role in each highlighted 
 mechanism, as evidenced by the full second column in  Figure 2A.  Their utility is a key outcome 
 of this work. The combined analysis of genomic and transcriptional changes led us to six key 
 cellular mechanisms of PQ tolerance (  Figure 2B  ). Together,  these mechanisms constitute a 
 summary of the systems biology of PQ-generated ROS stress tolerance. 
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 Figure 3. Consequences of deletions and amplifications affecting membrane transport are found in both 
 genomes and transcriptomes. (A)  Genome coverage in  strain 1_0, which is representative of strains containing the 
 emrE  amplification, in the region of the amplification.  Genes in the iModulon are labeled.  (B)  Genome coverage  of 
 strain 3_0 in the region of Del-1. Del-1 iModulon genes are shown in black, with flanking non-deleted, non-iModulon 
 genes in gray, and transporters in bold.  (C-E)  iModulon  activities for selected genomic iModulons. Bars indicate mean 
 ± 95% confidence interval. Individual samples are color-coded by PQ concentration. Upstream + and Δ indicate 
 insertions and deletions, respectively.  (F)  Color-coded  table showing all observed mutations related to transporter 
 genes. Purple x: amplification; green: upstream insertion (+) or deletion (Δ); blue: indicated SNP; orange: frameshift 
 mutation within gene; red delta: complete gene deletion. The red area on the right indicates transporters deleted in 
 the major 3_0 deletion. 

 Large amplifications and deletions in the genome affect membrane 
 transport 

 ‘Genomic iModulons’ are transcriptomic modules which capture the effect of large changes to 
 the genome, so they are of primary interest for obtaining genome-to-transcriptome relationships. 
 In the PQ tolerant strains, the major genomic iModulons happen to all be associated with 
 alterations in membrane transport. 

 The first mutation in each of the first-generation strains affected  emrE  , a multidrug efflux pump 
 which pumps out PQ  42  . In 1_0, 2_0, and their subsequent  evolutions, genome coverage was 
 increased approximately 42-fold in the region containing  emrE  (  Figure 3A  ). This amplification 
 was likely mediated by the flanking DLP12 prophage insertion sequence (IS) genes, specifically 
 the IS3 transposase elements  insEF3  43  . ICA of the  transcriptome recovered the amplified genes 

 10 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.20.521246doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?ah4aJb
https://www.zotero.org/google-docs/?XujmIj
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 as an independent signal in the dataset, which we named the  emrE  Amp iModulon (called ROS 
 TALE Amp-1 in PRECISE-1K  11  on iModulonDB.org  20  ). This  iModulon showed elevated activity 
 levels in all affected strains regardless of PQ concentration (  Figure 3C  ). Thus, this case 
 illustrates three levels in our multilevel approach (  Figure 2A  ): it relates a clear mutational 
 mechanism (transposase-mediated amplification) to a corresponding transcriptomic signal 
 (  emrE  Amp iModulon) and beneficial phenotype (PQ efflux). 

 We discuss Del-1, a large deletion that contains several transporters (  Figure 3B, D  ), Del-2, a 
 deletion of the  oppABCDF  operon (  Figure 3E  ), and additional transporter mutations of potential 
 interest (  Figure 3F  ) in  Note S1.  We hypothesize that these mutations and their related genomic 
 iModulons may have decreased influx of PQ or other oxidized molecules. 
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 Figure 4. Mutations regulate stress response, iron metabolism, and motility iModulons in novel ways.  Bars 
 indicate mean ± 95% confidence interval.  (A)  OxyR  iModulon activity is correlated with PQ in starting and evolved 
 strains (Pearson R = 0.47, p = 6.2*10  -5  ), except for  the three strains which mutated  oxyR  . PQ colors in  the legend 
 also apply to panels (B, D, E-F, H).  (B-D)  Scatter  plot of Fur-1 and Fur-2 iModulon activities with bar plots sharing 
 axes. Light gray dots indicate other samples from PRECISE-1K. In (C), samples are colored by relevant mutations, 
 and shapes indicate PQ concentrations according to the legends. A black arrow connects the starting strain samples 
 between 0 and 250 μM PQ. In bar plots, point colors indicate PQ concentrations and label colors match with the 
 scatter plots. The red trend line is a logarithmic curve fit to all samples in PRECISE-1k. Samples with the P18T 
 mutation are above the trend line, indicating a preference for Fur-2.  (E)  Distances from each sample in this  study to 
 the trend line in (B), more clearly showing the preference for Fur-2 induced by P18T.  (F)  feoA  expression, which is 
 representative of the  feoABC  operon. Genes are upregulated  by the  fur  P18T mutation.  (G)  Knowledge graph linking 
 fur  mutation to negative feedback which averts stress.  (H)  FliA iModulon activities by  pitA  mutation, showing  an 
 upregulation in the case of the frameshift  pitA  *,  but not in the case of  pitA  deletion. (  I  ) Growth curves  for strains with 
 and without the  pitA*  mutation as the only difference.  The mutation contributes to higher final ODs under no stress, 
 and shorter lag and faster growth under stress. (  J  )  DiMA for strains 0_0 and 1_0 with and without the  pitA  frameshift 
 mutation under PQ stress. Points indicate the mean of all relevant samples (individual conditions in duplicate; n=6 per 
 axis). The strains with the mutation significantly activate FliA, one of the motility iModulons. The point near FliA is 
 FlhDC-2, the other major motility iModulon. (  K  ) Representative  images of swarming in the 0_0 strain with (bottom) 
 and without (top) the  pitA  * frameshift. Additional  plots:  Figure S1  ;  Images for all swarming experiments:  Figure S2  . 
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 Mutations in TFs alter the regulation of stress responses and iron 
 homeostasis 

 ‘Regulatory iModulons’ are iModulons which are statistically enriched with genes from a specific 
 regulon, and their activity level quantifies the activity of the underlying TF. Thus, iModulon 
 analysis reveals the effects of TF mutations in a convenient way. 

 The OxyR iModulon contains oxidative stress response genes, and its regulator, OxyR, 
 responds to oxidative stress  44  . Thus, we expected  its activity level to correlate with PQ level. We 
 found that for most strains, this is the case (p = 6.2*10  -5  ). However, we observed three separate 
 oxyR  mutations which all fix OxyR iModulon activity  levels at a level just below that of the 
 stressed starting strain (  Figure 4A  ), regardless of  PQ concentration. We speculate that this 
 level may be ideal because it enables quick detoxification of ROS, while higher levels would be 
 proteomically expensive and/or induce growth-limiting levels of  oxyS  (which is regulated by 
 OxyR and leads to growth arrest  45  ). Previous iModulon  work in other ALEs found that fixing 
 OxyR in the active conformation provided a fitness benefit  23  . Without the OxyR iModulon to 
 quantify OxyR activity, it would have been much more difficult to define the effect of these 
 mutations. 

 Fur, the ferric uptake regulator, regulates two main iModulons (Fur-1 and Fur-2) whose activities 
 have a nonlinear relationship which has been described previously  46  (  Figure 4B-D, S1A  ). Three 
 separate strains acquired  fur  P18T, which appears  to shift Fur’s preference above the trend line, 
 towards Fur-2 (  Figure 4E  ). They specifically upregulate  the expression of  feoABC  , a 
 ROS-sensitive iron transporter  47  (  Figure 4F  ). By using  feoABC  to strongly couple iron uptake to 
 ROS levels, this mutation should prevent ROS-induced iron toxicity by preventing iron uptake 
 under high stress (  Note S2; Figure 4G  ). This mutation  is of interest for further study, since it 
 modifies the TRN in a unique way, and promotes a strategy of ROS-sensitive iron uptake that 
 may be useful for production strains that are hampered by ROS. 

 The TFs IscR and SoxS also provide important insights. See  Figure S1  and  Note S3. 

 These results highlight the efficacy of iModulon analysis for revealing TF mutational 
 mechanisms. The Fur and IscR mechanisms predict that the ROS-sensitivity of Fe-S clusters 
 can be used to couple iron uptake or utilization to ROS levels, which constitutes an interesting 
 tolerance phenotype. The particular mutations ought to be introduced into production strains, 
 where they could increase yields if ROS stresses are limiting. They can also be used to study 
 TF-DNA interactions, since their effects on the transcriptome have already been elucidated 
 here. 

 An unexpected mutation in  pitA  upregulates motility 
 A frameshift in the phosphate transporter  pitA  led  to a motile phenotype. This mutation occurred 
 in 1_0 and its derivatives, and these strains also exhibited strong activation of 
 motility-associated iModulons such as FliA (  Figure  4H  ). There is no obvious connection 
 between phosphate transport and motility, and the mutated strains were likely able to use the 
 other phosphate transport system,  pstABCS  , to meet  their phosphorus needs  48  . Interestingly, 
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 the 3_0 strain deleted  pitA  as part of Del-1 (  Figure 3B  ), and it did not exhibit the motility 
 phenotype. Thus, to understand this mutation, we generated two new strains: 0_0::  pitA  * and 
 1_0::  pitA  , which added the mutation on its own to  the starting strain and removed it in favor of 
 the original  pitA  sequence in the evolved strain,  respectively. We found that the mutation 
 provided a growth advantage under PQ stress (  Figure  4I  ). We also transcriptomically profiled 
 the strains under the same conditions used for our other strains, and found that, particularly 
 under PQ stress, the mutation exclusively perturbs the motility iModulons (  Figure 4J  ). The 
 change to the transcriptome was also reflected in the phenotype, as the mutant strains swarmed 
 on agar plates while the wild-type  pitA  strains did  not (  Figure 4K, S1  ). The detailed mechanism 
 of action linking the  pitA  mutant to motility remains  to be elucidated. 

 An upregulation of anaerobic iModulons such as Fnr-3 in the ALE  pitA  mutants (  Figure S2A  ) 
 suggests a possible benefit for motility, in that it may be correlated with beneficial fermentation 
 phenotypes discussed later, as has been previously studied  49  (  Note S4  ). 

 This section illustrates the usefulness of our multilevel approach. After connecting mutations to 
 their effects and predicting causes for DiMAs, we were left with an orphan mutation (  pitA  ) and 
 an unexplained DiMA (FliA). We predicted that the mutation caused the DiMA, and then we 
 generated new strains to validate the prediction. The recapitulation of the expected iModulon 
 change and swarming phenotype lends credibility to the iModulon method of elucidating 
 mutational effects. 
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 Figure 5. Changes to stress and growth explain the changes to activity in several iModulons.  Mean iModulon 
 activities ± 95% confidence interval; all plots use the legend in (D).  P-values are false discovery rate  corrected 
 p-values from a comparison of stressed transcriptomes (250 and/or 750 μM PQ) between 0_0 and evolved strains. 
 (A)  RpoS activity, the general stress response, is  downregulated (p = 0.017).  (B)  The Translation iModulon, 
 ribosomes and translation machinery, is upregulated (p = 0.023).  (C)  The ppGpp iModulon, a large iModulon  with 
 many growth-related functions, follows a similar pattern to the Translation iModulon (p = 0.027).  (D)  The  Leucine 
 iModulon, which responds to leucine concentrations downstream of an Fe-S-dependent synthesis pathway, is 
 downregulated after evolution, suggesting improved Fe-S metabolism (p = 0.0017).  (E)  The Biotin iModulon  is 
 downregulated after evolution. Biotin also depends on Fe-S-dependent synthesis (q = 0.017).  (F-I)  Ribose  (p = 
 0.011), Purine (p = 0.036), Cysteine-1 (p = 0.025), and Copper (p = 0.034) iModulon activities behave differently in 
 starting and evolved strains (  Note S5  ).  (L)  Knowledge  graph connecting decreased oxidative stress to each of the 
 iModulon changes shown. 

 Shifting from stress to growth explains activity of several iModulons 

 Regulatory iModulons can be used not only to understand the direct effects of mutations as 
 described above, but also effects of changes to the processes that TFs sense. We have divided 
 these types of changes in the PQ tolerant strains into two categories: those that respond to 
 stress and growth (21% of the variance in the transcriptome;  Figure 1H  ), and metabolic 
 changes (10%). In this section we describe the former. 

 An important global tradeoff in the  E. coli  transcriptome  is between growth and general stress 
 readiness, which is governed by complex regulation  50,51  .  We previously identified a ‘fear-greed 
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 tradeoff’ between the RpoS and Translation iModulons, in which the activity levels of the two 
 iModulons have a negative correlation; faster growing cells exhibit low RpoS and high 
 Translation activity  10,23,46,52,53  . The starting strain  without stress is ‘greedy’, but it becomes ‘fearful’ 
 upon addition of PQ, as expected (  Figure 5A-B  ). The  evolved strains, on the other hand, largely 
 remain ‘greedy’ in the presence of PQ; they strongly downregulate RpoS (  Figure 5A  ) and have 
 higher translation activity than the stressed starting strain (  Figure 5B  ). Translation activity is 
 decreased relative to the starting strain in the absence of PQ, likely because of tradeoffs 
 towards ROS stress readiness in the tolerized phenotype. 

 Despite the presence of stressors and the activation of specific ROS responses OxyR and 
 SoxS, the global stress response is not activated in the evolved strains. There are two likely 
 reasons for this: the stress signals are downregulated by the success of the evolved strategies 
 of PQ tolerance, and the growth-inhibiting effects of RpoS have selected against strains with 
 high RpoS activity. This work agrees with previous findings that ALE shifts allocation toward 
 ‘greed’  10,23,52  . The decoupling of the ROS and general  stress responses makes these strains 
 ROS-response specialists, constituting a valuable adaptation strategy. 

 Two DiMAs reflect a decrease in oxidative damage by sensing Fe-S-dependent metabolites. 
 The Leucine iModulon (  Figure 5D  ) encodes the leucine  biosynthesis pathway, which requires 
 an Fe-S cluster and other metal-dependent enzymes that are sensitive to oxidative stress  54  . 
 Leucine feeds back to inhibit the iModulon’s expression  55  .  In the starting strain with PQ, 
 oxidative damage likely leads to a decrease in leucine concentrations and an upregulation of the 
 iModulon. By contrast, the evolved strains experience less stress, protect their Fe-S clusters, 
 and therefore exhibit low Leucine iModulon activity. Similarly, the Biotin iModulon (  Figure 5E  ) 
 uses an Fe-S cluster in BioB to synthesize biotin  56  , which then controls iModulon activity via 
 regulation by BirA  57  . 

 The activities of the ppGpp, Purine, Ribose, Cysteine-1, and Copper iModulons (  Figure 5C, F-I  ) 
 each also reflect decreased stress and a return to homeostasis in the evolved strains (  Figure 
 5J; Note S5  ). 

 Thus, iModulons measure the entire sensory output of the TRN and allow us to mine the 
 transcriptome for insights into many cellular processes. Because we also have an 
 understanding of the stress phenotype of our cells, we predicted reasons for a large fraction of 
 transcriptional alterations. This approach would be useful to any researcher seeking to 
 enumerate phenotypic alterations in novel strains using only RNAseq data as a guide. 
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 Figure 6. Mutations drive metabolic rerouting toward fermentation to avoid PQ cycling by decreasing NADH 
 availability.  (  A  ) Simplified metabolic map of the  TCA cycle and fate of NADH. Reactions catalyzed by mutated 
 enzymes are shown in red and labeled with a pie chart indicating which strains have a wild-type (WT) or mutant 
 allele. First generation strains in the pie chart protrude, with their descendants following them counter-clockwise. (  B  ) 
 Ribosome readthrough ratio in  aceE  from ribosome profiling,  means ± standard deviation. The ratio B/A is the fraction 
 of ribosomes bound downstream (B) vs. upstream (A) of the early amber stop codon (TAG) in  aceE.  The  midpoint 
 (MP) strain has  aceE  Q409* with WT  glnX  , whereas the  2_0 strain has both  aceE  Q409* and the  glnX  anticodon 
 mutation that enables ribosomes to read through the amber stop codon. In evolved strains such as 2_0, PDH levels 
 are decreased but not zero.  (C)  Aero-type plot  58  computed  from measured growth rates and glucose uptake rates, 
 where points represent means ± SEM, with constant growth rate isoclines. Colored regions labeled with roman 
 numerals are aero-type regions as defined previously  25  . Cells switch to a lower aero-type with PQ and increase their 
 glucose uptake after evolution.  (D)  Flux differences  from the OxidizeME model, comparing the starting strain with no 
 PQ and a representative evolved strain at high PQ. Model was constrained by growth rate, glucose uptake rate, and 
 RNAseq data (  Figure S4  ).  (E)  Each point represents  a TCA cycle reaction in the constrained OxidizeME models; 
 models of evolved strains predict lower TCA cycle fluxes.  (F-G)  OxidizeME model results in mmol/gDCW/h  for 0_0 
 and 1_0, constrained by growth rate, glucose uptake rate, and RNA expression.  (F)  As PQ cycle flux increases,  the 
 damaged fraction (filled in) of the TCA cycle increases. (  G  ) NADH production decreases with PQ, but is more 
 sensitive in 0_0. 0_0 can also carry more PQ cycle flux. 

 Mutating central and energy metabolism genes decreases PQ cycling 

 We now turn to metabolism, which adds a fourth layer to our analysis and involves a complex 
 interplay of effects from each level (  Figure 2A  ).  We show that enzyme mutations can suggest 
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 tolerance strategies, and then ME modeling can validate them. Finally, iModulon analysis can 
 reveal how those strategies are organized and regulated by the cell. 

 The main metabolic mutations occur in the tricarboxylic acid (TCA) cycle. The second gene to 
 mutate in all strains was  aceE  (  Figure 1B, D  ).  aceE  encodes a subunit of pyruvate 
 dehydrogenase (PDH), the entry point into the TCA cycle.  gltA, sucA,  and  icd  also mutate often, 
 with  icd  being affected by e14 deletion and SNPs  59  (  Figure 6A  ). These mutations would likely 
 decrease the function of the enzymes, thus decreasing TCA cycle flux and production of NADH. 
 These mutations suggest a tolerance benefit to decreasing NADH production. The likely reason 
 for this benefit is that PQ uses electrons from NAD(P)H to reduce oxygen and generate 
 stress  60–62  . These mutations would decrease the available  electrons to the PQ cycle and prevent 
 stress generation. To decrease oxidative stress from PQ, the evolved strains perform less 
 oxidative metabolism. The supplementary Fe-S and motility mechanisms (  Note S3, S4  ) also 
 shift strains away from NADH production. 

 Loss of function (LOF) mutations in the TCA cycle come with a cost, since those pathways are 
 the primary energy source for aerobic cells. Indeed, the evolved strains have decreased growth 
 and translational activity under no stress relative to the starting strain, probably for this reason 
 (  Figure 1C, 5B  ). During ALE, the strains must therefore  balance a tradeoff: generate enough 
 NADH to grow and repair themselves, but not so much as to over-empower the PQ cycle. The 
 tradeoff is embodied by an interesting interaction between mutations the  aceE  and  glnX 
 mutations, in which a tRNA mutation partially restored PDH activity (  Figure 6B; Note S6  ). 

 We summarize all metabolic mutations in  Figure S3  and  Table S1  . We also observe mutations 
 in enzymes involved in the utilization of NADH (  Figure  S3A  ;  Note S7  ). Next, we characterize 
 the strains using a variety of tools to test this explanation for the selection for TCA cycle 
 mutations. 

 Metabolic rewiring towards a lower aero-type decreases PQ sensitivity and 
 flux in evolved strains 

 We quantified glucose uptake for each strain at various PQ levels (  Note S8  ), and generated a 
 plot comparing biomass yield per gram of glucose to the glucose uptake rate (  Figure 6C  ). This 
 rate-yield plane has been characterized in past studies  25,58  ,  which revealed distinct energy 
 generation strategies (aero-types) for each position in the plane. Samples with high biomass 
 yields are in the highest aero-type (aero-type  v  ),  which represents efficient aerobic growth, 
 whereas lower aero-types are associated with lower aerobicity and secretion of organic acids. 
 The higher aero-types pump more protons across the inner membrane than the lower 
 aerotypes  25  . 

 In  Figure 6C  , we observe a switch to a lower aero-type  in the starting strain upon PQ exposure, 
 since ROS damage decreases growth rate and particularly damages respiration. In the evolved 
 strains, the lower aero-type is maintained even when no PQ is present. The aero-type change is 
 likely due to the TCA cycle-related mutations, which we predicted would decrease respiration. 
 However, the evolved samples also shift rightward, increasing their glucose uptake and total 
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 metabolic flux, enabling them to maintain growth under stress. Their position in the plane 
 doesn’t vary much with PQ concentration, indicating decreased sensitivity. 

 To characterize metabolism  in silico  , we used OxidizeME,  a genome-scale computational model 
 of  E. coli  metabolism and expression (ME) which incorporates  ROS stress effects  3  . We 
 constrained the model using each strain’s growth rate, glucose uptake rate, and RNA 
 expression, then simulated optimal steady states (  Figure  6D, S4  ). Though we did not attempt to 
 simulate the effects of mutations on the reaction rates, the optimal flux distributions in the 
 evolved strains showed decreases in TCA cycle flux (  Figure 6E  ), consistent with the predicted 
 effects of the mutations. 

 In the absence of experimental methods for directly measuring PQ cycle flux, we 
 computationally assessed the consequences of PQ cycle flux by varying it for the starting strain 
 and a representative evolved strain (  Figure 6F-G  ).  Though total proteomic allocation to the TCA 
 cycle was constrained to match the RNA expression, ROS damage to the Fe-S clusters in  acnA  , 
 fumAB  , and  sdhABCD  led to decreasing functional proteome  fractions (  Figure 6F  ). The starting 
 strain relied more heavily on the TCA cycle; this made it more sensitive to PQ, as evidenced by 
 the steeper slope in NADH production (  Figure 6G  ).  The starting strain was also able to grow at 
 higher PQ fluxes, which is inefficient and exacerbates stress. Thus, tolerization both decreases 
 sensitivity to lower PQ fluxes and prevents a steady state with high PQ flux. 

 The genome-scale OxidizeME model integrates the individual cellular processes and RNA 
 expression changes which adjust the phenotype, and it elucidates key systems level tolerization 
 strategies. Its results match expectations from mutational analysis. 

 19 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.20.521246doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?UA28kj
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Figure 7. Mutations and iModulon reallocation drive metabolic rerouting toward fermentation to avoid PQ 
 cycling.  Bars indicate mean iModulon activities ±95%  confidence interval.  (A)  ArcA iModulon activities  are mostly 
 decreased after evolution, except in the case of mutations to  arcAB  (p = 0.035). ArcA contains aerobic metabolism 
 genes.  (B-D)  Fnr controls three iModulons with anaerobic  metabolism genes, all of which are upregulated (p = 0.034, 
 0.030, 0.023). (  E  ) Knowledge graph describing changes  in the evolved strains connecting central carbon mutations to 
 anaerobic and glycolytic gene expression, which decreases TCA cycle flux and ROS generation.  (F)  The Cra 
 iModulon, which contains glycolytic genes that are repressed by Cra, is upregulated (p = 0.017).  (G)  The Crp-2 
 iModulon, which controls phosphotransferase systems, is upregulated (p = 0.022).  (H)  The Pyruvate-2 iModulon  is 
 upregulated (p = 0.012). 

 iModulon activities shift tolerant strains towards anaerobic metabolism and 
 glycolysis 

 Finally, we discuss iModulons which regulate the metabolic rerouting presented above. The 
 cellular oxidation state is sensed and regulated by ArcA and Fnr  63  , whose iModulons are 
 differentially activated in the evolved strains (  Figure  7A-D  ). Both TFs sense redox balance, 
 which shifts towards reduction in the evolved strains due to the successful tolerization: ArcA 
 represses when the electron transport chain is in a reduced state  64  , whereas Fnr repression 
 ceases when Fe-S clusters are intact  65  (  Figure 7E  ).  These transcriptional changes shift from 
 aerobic respiration genes toward anaerobic fermentation genes  63  (despite the aerobic ALE 
 conditions). This strategy maintains a lower aero-type and decreases reliance on NADH. Thus, 
 this mechanism reinforces the decreased reliance on the TCA cycle brought on by the 
 mutations, ultimately slowing PQ cycling. 

 To meet energy needs with lower respiration, the cells increased their glycolytic activity, a 
 change which is described by two DiMAs. Cra iModulon activity increases, indicating an 
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 increase in glycolytic flux (  Figure 7F  ). Similarly, the Crp-2 iModulon returns to unstressed or 
 intermediate levels in the evolved strains, which indicates a more active phosphotransfer 
 system (  Figure 7G  ). This transcriptomic change matches  the rightward shift in the aero-type 
 plot (  Figure 6C  ). Finally, the LOF mutations downstream  of pyruvate should increase pyruvate 
 concentrations, which are sensed by the Pyruvate-2 iModulon and strongly upregulate it (  Figure 
 7H  ).  More details for all transcriptional mechanisms  in this section are provided (  Note S9  ). 

 In the past three sections, we showed that mutations and iModulon activity adjustments work 
 together to enforce a low aero-type, PQ-tolerant metabolic network. The PQ tolerance stems 
 from a decreased reliance on the TCA cycle and decreased NADH production, which leads to a 
 metabolic network that supports less total PQ cycling and makes the system less sensitive to 
 small amounts of PQ cycling. It is often difficult to interpret biological systems when genes, gene 
 expression, and metabolic flux are all changing, but our multilevel interoperable approach using 
 mutational analysis, iModulon activity changes, and genome-scale modeling produced a 
 consistent and comprehensive interpretation of multiple data types. 

 Discussion 
 In this study, we combined ALE with a detailed, systems-level transcriptomic analysis to 
 comprehensively reveal mechanisms underlying PQ tolerance. The approach spanned four 
 levels of analysis (  Figure 2A  ): (i) genetic alterations  and their predicted effects, (ii) 
 transcriptomic adaptations along with up- and downstream inferences about their regulatory 
 causes and physiological impact, (iii) metabolic fluxes calculated from genome-scale metabolic 
 models, and (iv) phenotypic changes such as swarming motility. We found iModulon analysis of 
 the transcriptome to be particularly revealing, as the TF activities could be readily quantified and 
 utilized to infer a wealth of information about the phenotypic state. By combining these 
 approaches into a coherent set of tolerization strategies, we presented a summary of the 
 systems biology of ROS tolerance. 

 The evolved strains characterized herein achieved high tolerance through several mechanisms 
 (  Figure 2B  ). They promoted efflux of PQ via  emrE  segmental  amplification, and precluded influx 
 by mutating or deleting various other transporters. Inside the cells, PQ failed to generate as 
 much ROS due to LOF mutations in and downregulation of NADH-producing pathways. To 
 compensate for the decreased biomass yield of their metabolism, the cells increased glucose 
 uptake and glycolytic flux. Since ROS interact with iron, some strains modified iron regulation 
 via TF mutations that curtailed these systems when stress was high. These mutational and 
 metabolic strategies led to a decrease in stress, which was sensed by the TRN and shifted 
 various regulators toward faster growth. 

 The impact of this study is threefold. (i) We present biological insights of wide interest to 
 researchers, including the growth/stress tradeoff of redox metabolism, the use of Fe-S clusters 
 as a brake on iron uptake and metabolism, and novel interactions such as those between  pitA 
 and motility and between  aceE  and  glnX  . (ii) Acquired  mutations and iModulon activities can 
 become design variables for strain engineering, which frequently seeks to mitigate oxidative 
 stress for bioproduction applications. (iii) We demonstrate an approach that utilizes iModulons to 
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 reveal a novel integrated perspective on adaptation to stress by understanding transcriptomic 
 allocation. 

 Future studies should integrate additional data types into this framework. For instance, 
 proteomics, endo-metabolomics, and chromatin immunoprecipitation of key TFs would be able 
 to test various aspects of these hypotheses, better constrain models, and potentially uncover 
 new insights. In addition, we encourage focused studies which characterize the mechanisms 
 proposed here in greater detail. 

 Taken together, our results elucidate the systems biology of ROS tolerization using 
 genome-scale datasets, computational models, and detailed literature review. Given the falling 
 cost of RNAseq, development of laboratory evolution, and the availability of the pipeline 
 developed here, we can expect that the systems biology of an increasing number of cellular 
 functions and adaptations will be revealed. 
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 STAR Methods 

 Resource Availability 

 Lead contact 
 Further information and requests for resources and reagents should be directed to and will be 
 fulfilled by the lead contact, Bernhard Palsson (  palsson@ucsd.edu  ). 

 Materials availability 
 Strains generated in this study are available upon request. 

 Data and code availability 
 RNA-seq data have been deposited to GEO and are publicly available as of the date of 
 publication, under accession numbers GSE134256 and GSE221314. DNA-seq data are 
 available from aledb.org under the project “ROS”. iModulons and related data are available from 
 iModulonDB.org under the dataset “  E. coli  PRECISE-1K”. 

 All original code and data to generate figures are available at  github.com/SBRG/ROS-ALE  , 
 which also links to the alignment, ICA, and iModulon analysis workflows  21  . It has been deposited 
 at Zenodo and is publicly available as of the date of publication  66  . The DOI is 
 10.5281/zenodo.7449004. 

 Any additional information required to reanalyze the data reported in this paper is available from 
 the lead contact upon request. 

 Experimental Model and Subject Details 

 Microbial strains 
 The starting strain (0_0) was an MG1655 K-12  E. coli  strain which had been evolved for optimal 
 growth on glucose as a carbon source in M9 minimal media  37  . Mutations for the evolved strains 
 are listed on aledb.org and in  Table S1. 

 Culture conditions 
 Strains were grown overnight in M9 minimal media with 0.4% w/v glucose as a carbon source. 
 Fresh media was inoculated with the overnight culture at an initial 600 nm optical density (OD) 
 of 0.025. Cultures were aerated with a stir bar at 1100 rpm in a water bath maintained at 37°C 
 until OD reached 0.5. 50 mM PQ was added to reach the desired concentration in stressed 
 flasks. After 20 minutes, samples were harvested for transcriptomics or ribosome profiling. 
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 Method Details 

 Adaptive laboratory evolution 
 ALE was performed using a similar protocol to Mohamad  et al.  2017  67  . Parallel cultures were 
 started in M9 minimal medium by inoculation from isolated colonies. Evolution was performed in 
 an automated platform with 15 mL working volume aerobic cultures maintained at 37°C and 
 magnetically stirred at 1100 rpm. Growth was monitored by periodic measurement of the 600 
 nm OD on a Tecan Sunrise microplate reader, and cultures were passaged to fresh medium 
 during exponential cell growth at an OD of approximately 0.3. Growth rates were determined for 
 each batch by linear regression of ln(OD) versus time. At the time of passage, PQ concentration 
 in the fresh medium batch was automatically increased if a growth rate of 0.08 h  -1  had been met 
 for 3 consecutive flasks. Samples were saved throughout the experiment by mixing equal parts 
 culture and 50% v/v glycerol and storing at -80°C. 

 DNA sequencing and mutation calling 
 DNA was isolated as described  68  . Total DNA was sampled  from an overnight culture and 
 immediately centrifuged for 5 min at 8,000 rpm. The supernatant was decanted, and the cell 
 pellet was frozen at -80°C. Genomic DNA was isolated using a Quick-DNA Fungal/Bacterial 
 Microprep Kit (Zymo Research) following the manufacturer’s protocol, including treatment with 
 RNase A. Resequencing libraries were prepared using a Kapa Hyper Plus Kit (Roche 
 Diagnostics) following the manufacturer’s protocol. Libraries were run on HiSeq and/or NextSeq 
 (Illumina). 

 Sequencing reads were filtered and trimmed using AfterQC version 0.9.7  69  . We mapped reads 
 to the  E. coli  K-12 MG1655 reference genome (NC_00913.3)  using the breseq pipeline version 
 0.33.1  70  . Mutation analysis was performed using ALEdb  8  . 

 Physiological characterization 
 Growth curves and exometabolomic samples were generated by inoculating cells from an 
 overnight culture to a low OD using the same conditions as the ALE. For each strain, we started 
 with 0 PQ. OD measurements and samples were taken at various time points until stationary 
 phase was reached. We then passaged the cells into a new flask, stepped up the PQ 
 concentration, and characterized the next curve, for concentrations 125, 250, 500, 750, 1500, 
 and 2500 μM. We stopped if growth was not observed after 48 hours. For each flask, growth 
 rates were determined by linear regression of ln(OD) versus time in the early exponential part of 
 the curve. 

 We took cell culture samples at the same time as OD measurements for the starting strain at 0 
 and 125 μM PQ, and for the evolved strains at 0, 250, and 750 μM PQ. Samples were sterile 
 filtered, and extracellular by-products were determined by high pressure liquid chromatography 
 (HPLC). The filtrate was injected into an HPLC column (Aminex HPX-87H 125-0140). The 
 concentrations of the detected compounds were determined by comparison to a normalized 
 curve of known concentrations. Substrate uptake and secretion rates in the early exponential 
 growth phase were calculated from the product of the growth rate and the slope from a linear 
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 regression of the grams (dry weight) (gDW) versus the substrate concentration. The biomass 
 yield was calculated as the quotient of the growth rate and the glucose uptake rates during the 
 exponential growth phase. 

 RNA Sequencing 
 3 mL of induced culture was added to 6 mL of RNAProtect Bacteria Reagent (Qiagen) and 
 vortexed, then left at room temperature to incubate for 5 minutes. Cells were pelleted, 
 resuspended in 400 μL elution buffer, and then split into two tubes with one kept as a spare. 
 One pellet was then lysed enzymatically with addition of lysozyme, proteinase-K, and 20% SDS. 
 SUPERase-In was added to maintain the integrity of the RNA. RNA isolation was then 
 performed according to  the RNeasy Mini Kit (Qiagen) protocol. rRNA was depleted using the 
 Ribo-Zero rRNA Removal Kit for gram negative bacteria according to the protocol. Libraries 
 were constructed for paired-end sequencing using a KAPA RNAseq Library Preparation kit. 
 Reads were sequenced on the Illumina NextSeq platform. 

 As part of the PRECISE-1K dataset  41  , transcriptomic  reads were mapped using our pipeline 
 (  https://github.com/avsastry/modulome-workflow  )  21  and run on Amazon Web Services Batch. 
 First, raw read trimming was performed using Trim Galore with default options, followed by 
 FastQC on the trimmed reads. Next, reads were aligned to the  E. coli  K-12 MG1655 reference 
 genome (NC_000913.3) using Bowtie  71  . The read direction  was inferred using RSeQC  72  . Read 
 counts were generated using featureCounts  73  . All quality  control metrics were compiled using 
 MultiQC  74  . Finally, the expression dataset was reported  in units of log-transformed transcripts 
 per million (log(TPM)). 

 All included samples passed rigorous quality control, with “high-quality” defined as (i) passing 
 the following FastQC checks:  per_base_sequence_quality,  per_sequence_quality_scores, 
 per_base_n_content, adaptor content;  (ii) having at  least 500,000 reads mapped to the coding 
 sequences of the reference genome (NC_000913.3); (iii) not being an outlier in a hierarchical 
 clustering based on pairwise Pearson correlation between all samples in PRECISE-1K; and (iv) 
 having a minimum Pearson correlation between biological replicates of 0.95. 

 Ribosome profiling 
 Ribosome profiling libraries were created using a modified version of the protocol outlined in 
 Latif  et al.  75  . The protocol was modified to negate  the effects of the addition of chloramphenicol 
 by grinding frozen cells.  50 mL of cell culture was harvested by centrifugation for 4 minutes at 
 37°C in a 50 mL conical tube containing 0.4 g of sand. Supernatant was aspirated quickly and 
 the pellet was flash frozen in liquid nitrogen. Pellets were transferred into a liquid nitrogen 
 cooled mortar and pestle, 500 μL of lysis buffer was added, and the pellet was pulverized to lyse 
 the cells. Lysate was transferred to a falcon tube to thaw on ice. The lysate was then 
 centrifuged, and the supernatant was isolated to continue with the published protocol. Reads 
 were sequenced on an Illumina HighSeq machine using a single end 50 bp kit. 
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 Adaptors were removed from ribosome profiling reads using CutAdapt v1.8  76  , then mapped to 
 the  E. coli  K-12 MG1655 reference genome (NC_000913.3)  using bowtie  71  . They were scored at 
 the 3’ end to generate ribosome density profiles. 

 Generation of  pitA  mutant strains 
 The mutations referred to in  Figures 4H-K and S2  were  introduced into the starting (0_0) and 
 evolved (1_0) genomes using a Cas9-assisted Lambda Red homologous recombination 
 method. Golden gate assembly was first used to construct a plasmid vector harboring both 
 Cas9 and lambda red recombinase genes under the control of an L-arabinose inducible 
 promoter, a single guide RNA sequence, and a donor fragment generated by PCR which 
 contained the desired  pitA  +T mutation and around  200 bp flanking both sides of the Cas9 
 target cut site as directed by the guide RNA. After allowing cells harboring the plasmid to grow 
 for 2 hours at 30°C, L-arabinose was added to the media and the cells were allowed to grow for 
 3 to 5 hours, at which time a portion of the culture was plated. Single colonies were screened 
 using ARMS PCR. Amplicons spanning the mutation site, generated with primers annealing to 
 the genome upstream and downstream of the sequence of the donor fragment contained in the 
 plasmid, were confirmed with Sanger sequencing. Confirmed isolates were cured of the plasmid 
 by growth at 37°C. 

 Cell motility assay 
 We performed motility assays in duplicate for each of the conditions shown in  Figure S2.  We 
 mixed a tryptone broth (13 g tryptone and 7 g NaCl per liter of media) with 0.25% agar and the 
 desired PQ level. We autoclaved the broths, then poured 25 mL into petri dishes and solidified 
 them at room temperature overnight. Fresh colonies were spotted in the middle of the semi-solid 
 agar with a toothpick. The plates were then incubated at 37°C for 6-8 hours and imaged on a 
 Gel Imaging System. 

 Quantification and statistical analysis 

 iModulon computation and curation 
 The full PRECISE-1K compendium, including the samples for this study, was used to compute 
 iModulons using our previously described method  41,77  .  The log(TPM) dataset  X  was first 
 centered such that wild-type  E. coli  MG1655 samples  in M9 minimal media with glucose had 
 expression values of 0 for all genes. Independent component analysis was performed using the 
 Scikit-Learn (v0.19.0) implementation of FastICA  78  .  We performed 100 iterations of the algorithm 
 across a range of dimensionalities, and for each dimensionality we pooled and clustered the 
 components with DBSCAN to find robust components which appeared in more than 50 of the 
 iterations. If the dimensionality parameter is too high, ICA will begin to return single gene 
 components; if it is too low, the components will be too dense to represent biological signals. 
 Therefore, we selected a dimensionality which was as high as possible without creating many 
 single gene components, as described  77  . At the optimal  dimensionality, the total number of 
 iModulons was 201. The output is composed of matrices  M  [genes x iModulons], which defines 
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 the relationship between each iModulon and each gene, and  A  [iModulons x samples], which 
 contains the activity levels for each iModulon in each sample. 

 For each iModulon, a threshold must be drawn in the  M  matrix to determine which genes are 
 members of each iModulon. These thresholds are based on the distribution of gene weights. 
 The highest weighted genes were progressively removed until the remaining weights had a 
 D’agostino K  2  normality below 550. Thus, the iModulon  member genes are outliers from an 
 otherwise normal distribution. iModulon annotation and curation was performed by comparing 
 them against the known TRN from RegulonDB  79  . Names,  descriptions, and statistics for each 
 iModulon are available from the PRECISE-1K manuscript  41  ,  iModulonDB  20  , and  Table S2. 

 Differential iModulon activity analysis 
 DiMAs were calculated as previously described  10,21  .  For each iModulon, a null distribution was 
 generated by calculating the absolute difference between each pair of biological replicates and 
 fitting a log-normal distribution to them. For the groups being compared, their mean difference 
 for each iModulon was compared to that iModulon’s null distribution to obtain a p-value. The set 
 of p-values for all iModulons was then false discovery rate (FDR) corrected to generate 
 q-values. Activities were considered significant if they passed an absolute difference threshold 
 of 5 and an FDR of 0.1. The main comparison in this study was between the starting strain at 
 250 μM PQ (n = 2) and the combined set of all evolved strains at 250 and 750 μM PQ (n = 61). 
 Performing the comparison using both concentrations of PQ ensures that our comparison 
 captures all of the major effects of tolerization. The set of DiMAs was similar when performing 
 the comparison at just one or the other concentration. 

 We also performed a brief DEG analysis, which used the same algorithm as above but with 
 individual gene expression values instead of iModulon activities. 

 iModulon explained variance calculation 
 The explained variance for each iModulon in this study was calculated using our workflow  21  . 
 Since iModulons are built on a matrix decomposition, the contribution of each one to the overall 
 expression dataset can be calculated. For each iModulon, the column of  M  and the row of  A  for 
 the evolved samples in this study were multiplied together, and the explained variance between 
 the result and the full expression dataset was computed. These explained variance scores were 
 used to size the subsets of the treemap in  Figure  1H.  Note that the variance explained by ICA 
 is ‘knowledge-based’ in contrast to the ‘statistic-based’ variance explanation provided by the 
 commonly used principal component analysis (PCA). 

 ME modeling 
 We used OxidizeME, a genome-scale model of metabolism and expression (ME) with ROS 
 damage responses  3  . Models used for flux maps were  constrained using phenotypic data 
 (glucose uptake rate and growth rate) and expression data  as previously described  24,25  . In order 
 to force PQ cycling in the model, the lower bounds for the 
 ‘PQ2RED_FWD_FLAVONADPREDUCT-MONOMER_mod_fad’ and ‘PQ1OX_FWD_SPONT’ 
 were set to the same non-zero value and iterated over. Additionally, the former reaction was 
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 amended to accept NADH as an electron donor by editing the stoichiometry. PQ cycling 
 sweeping calculations were performed by sampling various lower bounds to identify the range 
 the model could support growth, and then sweeping 100 uniform values within that range. The 
 total NADH produced through the TCA cycle was calculated by summing the fluxes for the 
 ‘MDH’ and ‘AKGDH’ metabolic reactions. The percentage of the proteome allocated to the TCA 
 cycle was calculated using the solutions from each model, specifically the translation fluxes: 

 %     𝑃𝑟𝑜𝑡𝑒𝑜𝑚𝑒     𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑     𝑡𝑜     𝑡ℎ𝑒     𝑇𝐶𝐴     𝑐𝑦𝑐𝑙𝑒    =     𝑖 
∑ 𝑚𝑤 

 𝑖 
* 𝑉 

 𝑖 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 𝑗 
∑ 𝑚𝑤 

 𝑗 
* 𝑉 

 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 Where  and  represents  the molecular weight and translation flux of the  i  th  protein  𝑚𝑤 
 𝑖 

 𝑉 
 𝑖 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 in the TCA cycle, and  and  represents the molecular weight and translation flux of  𝑚𝑤 
 𝑗 

 𝑉 
 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 the jth protein the entire model. The damaged portion of the proteome was calculated as 
 follows: 

 %     𝐷𝑎𝑚𝑎𝑔𝑒𝑑     𝑃𝑟𝑜𝑡𝑒𝑜𝑚𝑒     𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑     𝑡𝑜     𝑡ℎ𝑒     𝑇𝐶𝐴     𝑐𝑦𝑐𝑙𝑒    =     𝑘 
∑ 𝑚𝑤 

 𝑘 
* 𝑉 

 𝑘 
 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 𝑖 
∑ 𝑚𝑤 

 𝑗 
* 𝑉 

 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 Where  and  are the same  variables above, and  and  𝑚𝑤 
 𝑗 

 𝑉 
 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛  𝑚𝑤 

 𝑘 
 𝑉 

 𝑘 
 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 correspond to the kth protein in the table below: 

 ComplexFormation Reaction ID  Associated Protein 

 damage_SUCC-DEHASE_mod_3fe4s_mod_f 
 ad_mod_2fe2s_mod_4fe4s_o2s 

 Succinate Dehydrogenase 

 damage_CPLX0-7760_mod_4fe4s_o2s  Aconitase A 

 damage_CPLX0-7761_mod_4fe4s_o2s  Aconitase B 

 damage_FUMARASE-A_mod_4fe4s_o2s  Fumarase A 

 damage_FUMARASE-B_mod_4fe4s_o2s  Fumarase B 

 The undamaged portion of the proteome allocated to the TCA cycle was calculated as the 
 difference between the total proteome allocated and the damaged proteome allocated. 

 Additional resources 
 iModulonDB:  https://imodulondb.org/dataset.html?organism=e_coli&dataset=precise1k 
 ALEdb:  http://aledb.org/stats/?ale_experiment_id=1540 
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 Supplemental Information 

 Supplemental Figures 

 Figure S1. Additional insights from mutational, iModulon, and metabolic analysis.  Bars indicate mean ± 95% 
 confidence interval.  (A)  Venn diagram of the Fur-1  and Fur-2 iModulon genes, color coded by function. Ion transport 
 and storage systems, which may be advantageous under ROS conditions, are enriched in Fur-2.  (B-D, H-J)  Scatter 
 plots of iModulon activities with bar plots sharing axes. Light gray dots indicate other samples from PRECISE-1K. In 
 (C) and (H), samples are colored by relevant mutations, and shapes indicate PQ concentrations according to the 
 legends. A black arrow connects the starting strain samples between 0 and 250 μM PQ. In bar plots, point colors 
 indicate PQ concentrations and label colors match with the scatter plots. (  B-D  ) Suf and Isc iModulon  activities, which 
 are both regulated by IscR and encode distinct Fe-S cluster synthesis mechanisms (Suf is more robust to stress 
 compared to Isc). (  E  ) Knowledge graph linking two  key TF mutations through their iModulons to negative feedback 
 which averts stress.  (F)  SoxS iModulon activity is  correlated with PQ in both starting and evolved strains (Pearson R 
 = 0.72, p = 5.5*10  -15  ).  (G-I)  FliA and Fnr-3 iModulon  activities by  pitA  mutation, showing an unexpected  upregulation 
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 in the case of the frameshift pitA*, but not in the case of the pitA deletion.  (J  )  NDH-1 iModulon activities. The NDH-1 
 iModulon consists of genes (  nuoGHIJKLMN  ) that are  controlled by ArcA and Fnr and are all downstream of the  nuoG 
 Δ40 mutation, which may create a terminator sequence.  (K)  Pyruvate production rates from exometabolomic 
 characterizations of evolved strains. Note that the starting strain was characterized at 0 and 125 μM PQ (due to no 
 growth at higher PQ), whereas the evolved strains were characterized at 0, 250, and 750 μM PQ. Pyruvate is 
 secreted at high PQ levels, particularly by evolved strains which have downregulated PDH and the TCA cycle. 

 Figure S2. Swarming assays of pitA mutants.  Cells  were plated on agar in tryptone broth with glucose and the PQ 
 concentration shown in the column headers. They were allowed to swarm for one day prior to image capture. The 
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 pitA  mutant strains 0_0::  pitA*  (  D-F  ) and 1_0 (  G-I  ) swarmed, while wild type  pitA  strains (  A-C; J-L  ) did not. Panels  A 
 and  D  are shown in  Figure 4K  . 

 Figure S3. Mutations in genes relevant to metabolism.  Colored blocks share a mutation in the given strain  and 
 gene (blue: missense SNP; brown: nonsense SNP; orange: frameshift deletion less than 3 bp; red: large deletion 
 affecting gene; olive: insertion that does not cause a frameshift). Gene names are colored by type (green: central 
 carbon metabolic enzyme; purple: redox enzyme; black: other gene relevant to metabolism). Silent mutations, the 
 e14 deletion, and promoter mutations are omitted. 
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 Figure S4. The constrained OxidizeME model predicts the flux distribution change in central metabolism after 
 evolution.  Flux distribution changes from specific  OxidizeME models, constrained by RNAseq, growth, and glucose 
 uptake data. TCA cycle flux always decreases after evolution (  Figure 6D  ), and glycolytic flux varies  with glucose 
 uptake rate. Note that glucose uptake increases in evolved strains relative to the stressed starting strain, but some 
 strains have more or less glucose uptake relative to the unstressed starting strain. 
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 Supplemental Tables 

 Table S1. Mutations in ROS tolerized strains. 
 Mutations details, position, type, sequence change, and affected genes were generated by the 
 ALEdb mutation calling pipeline  8  . Hypothetical effect  descriptions, both levels of categorization, 
 and figure references were manually curated. ‘Treemap Category’ was used to generate  Figure 
 1D.  Columns labeled with strain numbers indicate presence  or absence of the mutation in the 
 given strain. 

 Table S2. Significantly differentially activated iModulons in ROS tolerized strains. 
 List of significant DiMAs from the comparison shown in  Figure 1F  , in which evolved strains 
 under 250 and 750 μM PQ were compared against the starting strain under 250 μM PQ. 
 ‘Difference’ refers to the difference between the mean activity level of both groups, which has an 
 absolute value greater than 5. ‘P-value’ is the false discovery rate corrected p-value for the 
 statistical comparison, which is less than 0.1. ‘Explained Variance’ is the explained variance of 
 the iModulon in the study samples, which was used with ‘Treemap Category’ to generate  Figure 
 1H.  ‘Treemap Category’, ‘Confidence’, ‘General Notes’,  ‘Start Strain’, and ‘Evolved Strain’ were 
 manually curated, with the latter two columns describing predicted regulatory mechanisms 
 explaining the iModulon’s behavior in the respective samples. Remaining descriptive columns 
 are copied from the PRECISE-1K curation of these iModulons  41  .  See iModulonDB.org for details 
 of each iModulon, including its member genes, activity levels across over 1000 conditions 
 including those from this study, and overlap with associated regulons. 
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 Note S1. PQ tolerant strains modify membrane transport, related to Figure 
 3. 
 In the 3_0 strain and its subsequent evolutions, we do not observe the  emrE  amplification. 
 However, our mutation caller predicted a 9-base pair (bp) insertion 39 bp upstream of  emrE  in 
 these strains, consistent with IS1 insertions that can affect transcription or translation  80  . We do 
 not observe an iModulon signal in the transcriptome of these strains (  Figure 3C  ). However, we 
 do have evidence that increased expression of  emrE  provides an evolutionary benefit. 
 Therefore, we hypothesize that this mutation would increase translation of EmrE. 

 The 3_0 strain and its descendants have a large deletion containing 26 genes (  Figure 3B  ). The 
 deletion may have been mediated by the  insH11  transposase  at its 3’ end. Similarly to the  emrE 
 Amp iModulon discussed in the text, the Del-1 iModulon captured the effect of this change in the 
 genome on the composition of the transcriptome. It showed a strong decrease in activity in the 
 strains harboring the deletion (  Figure 3D  ). The deleted  segment contained a variety of genes, 
 making it difficult to deduce its benefit to ROS tolerization. However, we note that it contained 
 four transporter genes:  yhhJ, pitA  ,  dtpB,  and  arsB  .  Removal of one or several of these 
 transporters may have decreased PQ influx or helped to prevent influx of other oxidized 
 molecules that resulted from oxidative damage. 

 In addition to the transporters in the Del-1 iModulon, other deleted genes may have been 
 important for the PQ tolerance of the 3_0 strain and its subsequent evolutions (  Figure 3B  ). 
 These include universal stress response regulators  uspBA  , reductases  gor, arsC,  and  yhiN  , or 
 ribosome-related genes  rbbA, rsmJ,  and  rlmJ  .  yhhJ  and  yhiN  are uncharacterized genes with 
 putative assignments, and these results support their potential role in PQ stress. 

 The  oppABCDF  operon was a common target of mutations.  Nine of the eleven 
 second-generation strains acquired the same 1,199 bp deletion of the  insH21  IS5 element 
 upstream of it, and one strain, 1_1, deleted the entire operon and its surrounding genes. The 
 deletion was captured by an iModulon (Del-2). The activity of this iModulon shows a 
 downregulation in the deleted strain, and little change between the evolved strains with and 
 without the upstream deletion (  Figure 3E  ). Since  oppABCDF  is known to be a promiscuous 
 tripeptide transporter that prefers positively charged substrates  81  , it should be considered as a 
 possible route of entry for PQ. The prevalence of the upstream deletion suggests that such a 
 deletion provides improved tolerance, and there is an apparent benefit to a complete deletion of 
 the entire operon. This leads us to predict that the upstream deletion negatively impacts 
 oppABCDF  translation, as has been suggested in past  studies  82,83  . 

 In addition to the genome-transcriptome-phenotype associations we analyze in depth, mutations 
 on their own can predict putative new functions for their target genes. Therefore, we include all 
 transporters mutated in this study in  Figure 3F  so  that further research can explore their 
 affinities for PQ and other oxidized compounds, as well as the effects of the observed SNPs. 
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 Note S2. Fur iModulon activities are variable and depend on  fur  mutations, 
 related to Figure 4 and S1A. 

 Fur, the ferric uptake regulator, regulates two main iModulons whose activities have a non-linear 
 activity relationship which has been described in detail previously  46  (  Figure 4B-D  ). Fur-1 mostly 
 contains genes for siderophore synthesis and transport (  Figure S1A  ) which are derepressed 
 under more extreme iron starvation conditions. Fur-2 contains ferrous iron transport genes, as 
 well as siderophore transport and hydrolysis systems, which are derepressed more easily under 
 relatively higher iron concentrations. The activities of the two iModulons form a logarithmic curve 
 (  Figure 4C  ), which captures the nonlinear effect of  Fur on the composition of the transcriptome. 

 ROS demetallates iron enzymes and oxidizes iron(II) to iron(III)  3,84  . Thus, PQ would induce 
 higher intracellular iron concentrations that could be sensed by Fur and cause repression of 
 both iModulons (black arrow,  Figure 4C  )  85  . This hypothesis  is consistent with the starting 
 strain’s behavior. After evolution, a decrease in oxidative stress leads to a general upregulation 
 of the Fur-1 and Fur-2 iModulons (p = 0.031 and 0.034, respectively). 

 The evolved strains exhibit a great degree of variation along the Fur curve (  Figure 4C  ). Since 
 many different factors could perturb iron concentrations for each culture (e.g. local ROS 
 concentrations, trace element mixture variability, enzyme metallation levels, etc.), and Fur is 
 highly sensitive to those concentrations, we believe that this variation is to be expected. 

 The mutation  fur  P18T was observed in three separate  strains (1_2, 1_4, and 3_4). Strains with 
 this mutation tend to be above the trend line in the Fur scatterplot (  Figure 4E  ), suggesting a 
 higher preference for expressing Fur-2 relative to Fur-1. The strains with this mutation 
 specifically upregulated the  feoABC  genes, which are  members of Fur-2 (  Figure 4F, S1A  ).This 
 transporter system may be highly beneficial under ROS conditions because it directly couples 
 demetallation of an Fe-S cluster to iron transport, allowing for rapid decreases in iron acquisition 
 when ROS levels are high  47  . 

 Two other mutations were also observed in  fur  . H71Y  in 1_3 tends to decrease expression of 
 both iModulons, perhaps by strengthening Fur binding. This would potentially have the benefit of 
 preventing iron toxicity. However, this strategy was not utilized by any other strains and it may 
 have also hampered iron homeostasis in situations where local iron concentrations are low. The 
 other mutation, A53G in 3_2, did not have a detectable effect on the transcriptome. 

 Note S3. IscR mutations modify the balance between Fe-S cluster 
 synthesis mechanisms and wildtype SoxS ensures ROS readiness, related 
 to Figure 4 and S1F. 

 IscR regulates two separate iron-sulfur (Fe-S) cluster synthesis systems which have iModulons, 
 Isc and Suf  86  . Isc is associated with housekeeping  Fe-S synthesis, whereas Suf is robust to iron 
 starvation and ROS stress  87–90  . Across our strains,  we observed 5 mutations in  iscR  , and each 
 associated with a particular region in a scatter plot of Suf and Isc iModulon activities (  Figure 
 S1B-D  ). Interestingly, most mutations do not strongly  upregulate the ROS-tolerant Suf system 
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 (  Figure S1D  ), and they either increase or decrease the expression of the Isc system (  Figure 
 S1B  ). 

 The particular regions in  Figure S1C  that were selected  by the strains are somewhat 
 unexpected.  iscR  C104S has been previously reported  3,91  .  The mutation is in IscR’s own Fe-S 
 binding site, which causes it to maintain an unbound state that should de-repress Isc and 
 activate Suf  90,91  . We observe a strong upregulation  of Isc in these strains, with more modest 
 increases in Suf iModulon activity. The other most common mutation,  iscR  V55L, seems to 
 downregulate Isc while also keeping Suf near basal levels. Given that ROS stress induces Fe-S 
 cluster damage and Suf is significantly better at handling ROS stress  89  , we would initially expect 
 mutations which upregulate Suf to be more effective under the ALE conditions and therefore be 
 enriched in these strains. We only see one mutation,  iscR  V87A, which seems to achieve that. 

 One possible explanation for this unexpected outcome is that the proteomic cost of the systems, 
 particularly Suf, selects against strains which allocate too many resources towards Fe-S 
 synthesis; this explanation has been modeled in a ME flux balance analysis  3  . However, another 
 possibility relates to the control of electron flux described in the metabolic section of the text: 
 many redox enzymes, including some in respiration and the TCA cycle, contain Fe-S clusters  92  . 
 Damage to these enzymes by high ROS slows oxidative metabolism. This would charge fewer 
 electron carriers and therefore slow the PQ cycle, allowing the cell to recover. It would therefore 
 be better to express less Suf so that Fe-S synthesis would remain sensitive to ROS – using Isc 
 or less of both systems would strengthen the coupling between ROS and respiration as a 
 means of controlling the PQ cycle (  Figure 4K  ). Thus,  like the Fur P18T mutation (  Note S2  ), this 
 mutation enables a negative feedback loop, which aids in slowing oxidative metabolism and PQ 
 cycling when stress is high (  Figure S1E  ). This agrees  with metabolic insights discussed in 
 Figures 6  and  7  . 

 While discussing Fe-S clusters, it is also worth noting that every strain mutated the putative 
 Fe-S cluster repair gene  ygfZ  . This provides evidence  for its role in Fe-S cluster homeostasis 
 and motivates further study (  Table S1  ). 

 Interestingly, there was a lack of mutations affecting  soxS  , the regulator of processes that 
 remove the ROS superoxide  93  . SoxS iModulon activity  is highly correlated with PQ in the 
 starting and all evolved strains (  Figure S1F  ; Pearson  R = 0.72, p = 5.5*10  -15  ). The lack of 
 mutations suggests that ROS readiness is preserved by using wild-type  soxS  . 

 Note S4. PitA mutants’ upregulation of motility also upregulates anaerobic 
 metabolism, providing a benefit to the strains, related to Figure 4 and S1. 
 We propose the following possible mechanism for the benefit that motility upregulation provided 
 to the  pitA  mutants (  Figure 4H-K  ). The gene  aer  , which  is upregulated as part of the FliA 
 iModulon, mediates aerotaxis and would therefore allow cells to swim away from locally high 
 concentrations of ROS  94,95  . However, in our well-mixed  cultures, there may not be local high 
 ROS concentrations. In addition to its role in chemotaxis,  aer  helps to upregulate the 
 Entner-Doudoroff pathway and anaerobic metabolism  49  ,  a tendency which can be observed in 
 the iModulon activities of our strains. Each of the anaerobic iModulons, Fnr-3 in particular, is 
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 slightly upregulated by the strains with  pitA*  (  Figure S1G-I  ). An increase in anaerobic 
 metabolism would help to prevent PQ cycling as described in the text. Thus, a decrease in 
 oxidative metabolism is also achieved by the cells through this very non-conventional 
 mechanism. An added benefit may lie in the expression of  fliZ  , a member of the FliA iModulon, 
 which is known to antagonize RpoS and would therefore be expected to promote growth  96  . 

 Note S5. iModulons related to specific metabolites reflect decreased stress 
 after tolerization, related to Figure 5. 
 The ppGpp iModulon contains a large set of growth-related genes regulated by the master 
 regulator ppGpp  97  . It follows a similar pattern to  the Translation iModulon, suggesting that 
 ppGpp concentrations decline after evolution (  Figure  5C  ).In addition to the Translation and 
 ppGpp iModulons, a few other differentially activated iModulons with more specific functions are 
 also likely to be responding to ppGpp levels, including the Nucleotide Stress, Glutarate, Efflux 
 Pump, and Biofilm iModulons (  Table S2  ). 

 Ribose concentrations are sensed by RbsR  98  , which  represses the Ribose iModulon in its 
 presence. Ribose is produced as part of the pentose phosphate pathway (PPP), which is the 
 primary pathway for producing NADPH to detoxify ROS. Upon initiation of oxidative stress, PPP 
 flux increases, producing ribose  99  . Oxidative stress  also slows growth and DNA synthesis, which 
 will decrease ribose utilization. We therefore expect an increase in ribose concentrations in the 
 starting strain upon PQ stress, which is observed as a decrease in Ribose iModulon activity 
 (  Figure 5H  ). In the evolved strains, flux shifts towards  glycolysis and away from the PPP, 
 producing less ribose. They also synthesize more DNA to support faster growth, using ribose. 
 Therefore, Ribose iModulon activity increases relative to the starting strain, while still exhibiting 
 a negative correlation with PQ. 

 The Purine iModulon is regulated by PurR and ppGpp, and its activation pattern in our samples 
 (  Figure 5I  ) mirrors that of the Translation and ppGpp  iModulons (  Figure 5E  ). This activation 
 may be explained by direct action by ppGpp, or via PurR, which represses these genes in the 
 presence of hypoxanthine or guanine  100  . The faster  growing evolved strains would perform more 
 DNA replication and RNA synthesis, and therefore require purine synthesis, depleting the 
 metabolites which are sensed by PurR and de-repressing the iModulon. 

 Changes in Cysteine-1 iModulon activities may be explained by increased ROS readiness and 
 subsequent improvement in amino acid homeostasis (  Figure  5J  ). This iModulon is regulated by 
 CysB, which can be inhibited by cystine and other oxidized sulfur compounds  101,102  . Cysteine is 
 very easily oxidized  103,104  , which may explain the  dramatic downregulation of the iModulon upon 
 PQ addition in the starting strain. The evolved strains with PQ have significantly higher 
 Cysteine-1 activity compared to the parent strain with PQ, due to the success of their 
 tolerization strategies. 

 The Copper iModulon, which contains copper efflux genes regulated by CueR, CusR, and HprR, 
 is downregulated in the evolved strains (  Figure 5K  ).  Copper is redox-sensitive, and its efflux 
 depends on the proton-motive force (PMF) or ATP  105  .  It is also an important cofactor for various 
 enzymes, including the superoxide dismutase  sodC  106  .  Oxidative damage should decrease the 
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 PMF and ATP concentrations and alter the copper redox state, which would explain the 
 iModulon’s upregulation in the stressed starting strain. The evolved strains downregulate this 
 iModulon, reflecting improvements in metal homeostasis resulting from ROS tolerization. 

 The Arginine iModulon is generally upregulated in the evolved strains relative to the stressed 
 starting strain. This set of genes is regulated by ArgR, which represses them in the presence of 
 arginine, and is also influenced by ppGpp  107  . The  iModulon activity in the starting strain indicates 
 that oxidative stress increases arginine concentrations. This activation may be due to a variety 
 of reasons, including damage to polyamine synthesis pathways that use arginine as a 
 precursor  108,109  . Since the stressed evolved strains  behave more like the unstressed starting 
 strain, it appears that arginine homeostasis is restored by ROS tolerization. 

 Note S6. Synergistic mutations in PDH and a tRNA balance the tradeoff, 
 related to Figure 5. 

 The growth/stress tradeoff is embodied by interactions between two mutations, which both 
 occurred in both the 1_0 and 2_0 strains. First,  aceE  acquired a C→T nonsense SNP, creating 
 an amber stop codon  110  : Q791* in 1_0 and Q409* in  2_0. This mutation inactivated PDH and 
 likely significantly decreased flux into the TCA cycle. While effective early in the evolution at 
 decreasing PQ cycling, the change was extremely damaging. Interestingly, both 1_0 and 2_0 
 later acquired the same C→T SNP in the anticodon of the glutamine tRNA  glnX  111  . This second 
 change enabled the mutant  glnX  to read through the  initial  aceE  truncation, allowing for some 
 functional PDH to be translated and utilized for energy generation. Due to competition between 
 stop codon release factors and  glnX  , functional  aceE  translation would not return to wild type 
 levels  112  , but rather find an intermediate level which  balanced the tradeoff. 

 We quantified the above relationship using ribosome profiling (  Figure 5C  ). By measuring the 
 fraction of ribosomes bound to the sequence before and after the truncating SNP, we 
 demonstrated the near complete deactivation of  aceE  translation in the midpoint strain. In the 
 2_0 strain with both the  aceE  and  glnX  mutations,  translation was partially restored (to a ratio of 
 0.23±0.08). Thus, synergy between these two mutations brokered a compromise between the 
 energy and stress-generating effects of TCA cycle flux. 

 The 3_0 strain acquired a frameshift 1 bp deletion in  aceE  instead of the nonsense SNP. This 
 meant that it could not employ a similar strategy to 1_0 and 2_0. However, two of its second 
 generation derivative strains (3_1 and 3_3) had insertions at or near the deletion (  Figure S3  ), 
 which may have served a similar purpose in re-increasing PDH levels. 

 Note S7. NADH dehydrogenase and other reductases may be PQ 
 diaphorases, related to Figures 6 and S2. 
 In addition to the NADH production-related mutations described in the text, we also observe 
 NADH utilization-related mutations. Five strains acquired unique mutations in  nuoC, nuoG,  and 
 nuoM  of the NADH dehydrogenase complex (NDH-1). A  40 bp deletion within  nuoG  appears to 
 induce early termination of transcription, since genes downstream of it are captured by the 

 38 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.20.521246doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Y00vIH
https://www.zotero.org/google-docs/?l0IgWS
https://www.zotero.org/google-docs/?nHh96W
https://www.zotero.org/google-docs/?RvFdC9
https://www.zotero.org/google-docs/?IORnDA
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/


 NDH-1 iModulon and strongly downregulated in the strain with the deletion (  Figure S1J  ). Note 
 that another strain deleted 123 bp in a nearby region of the same gene, but we do not observe 
 early termination in that strain. The prevalence of these mutations suggests a benefit to NDH-1 
 LOF under PQ conditions. 

 Cellular enzymes which catalyze PQ reduction are called PQ diaphorases, and three have been 
 identified in  E. coli  by past studies  61,113  . Those  studies suggested that NADPH plays a larger role 
 than NADH, but our mutations preferentially affect NADH production and NDH-1. It is possible 
 that transhydrogenases first convert NADH to NADPH  114  prior to the PQ cycle. Alternatively, 
 NDH-1 and other mutated NADH reductases from this study (e.g.  cyoB, ubiF, torZ,  and  trxC; 
 Figure S3  ) ought to be considered as potential PQ  diaphorases. Though NDH-1 has not been 
 implicated in PQ cycling in  E. coli  , this phenomenon  has been observed in mammals  60,62  . 

 Note S8. Exometabolomics revealed secretion of pyruvate, consistent with 
 TCA LOF, related to Figures 6 and S2. 

 In addition to the glucose uptake rates discussed in the text, our exometabolomic physiological 
 characterization quantified production of organic acids. We do not report the specific rates in the 
 text because of the low signal to noise ratio for the low concentrations of these compounds in 
 the early exponential phase region. However, it was interesting to note that pyruvate was 
 secreted by several evolved strains at 750 μM PQ (  Figure  S1K  ). This is consistent with the 
 expected decreased function of PDH and TCA that was predicted from the mutations, and with 
 the intracellular pyruvate concentration increase predicted for all PQ levels in the evolved 
 strains (  Figure 7E, 7H; Note S9  ). We also observed  acetate production by all strains. 

 Note S9. iModulon activities shift tolerant strains towards anaerobic 
 metabolism and glycolysis, related to Figure 7. 
 ArcA is part of the ArcAB two-component system, which senses the ratio of reduced to oxidized 
 quinones in the ETC  64  . In the starting strain, oxidative  stress from PQ shifts this ratio toward 
 oxidation, causing ArcAB to be less active and derepress the ArcA iModulon. As strains evolve, 
 they experience less oxidative stress due to their transport and TCA cycle mutations. This 
 lowered stress leads to a more reduced quinone pool, an increase in ArcAB activity, and 
 repression of the ArcA iModulon (  Figure 7A  ). The ArcA  iModulon contains aerobic growth 
 genes such as oxidoreductases and cytochromes, so its repression will encourage anaerobic 
 metabolism, fermentation, and a decreased reliance on NADH. 

 There are two strains which have mutations in the ArcAB two-component system, affecting ArcA 
 iModulon activity. A frameshift in the sensor kinase  arcB  in 3_1 has a moderate derepressing 
 effect, and an early stop in  arcA  in 1_1 had a stronger  derepressing effect (  Figure 7A  ). These 
 two strains are an exception which appear to have struck a different balance in the 
 growth/stress generation tradeoff compared to the other evolved strains. They express aerobic 
 metabolism genes as well as the Fnr-activated anaerobic fermentation genes, which would 
 enable them to use more energy producing pathways but could also exacerbate stress 
 generation. 
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 Fnr senses oxygen levels via oxidative damage to its Fe-S cluster and activates anaerobic 
 metabolism genes when the cluster is intact  65,115  .  Its regulon is captured by three iModulons, 
 whose activities behave similarly in this study (  Figure  7B-D  ). The decrease in oxidative stress, 
 as well as the success of iron-related mutations, help to maintain more active Fnr and therefore 
 upregulate this iModulon. 

 The Cra iModulon captures a set of genes of glycolysis and carbohydrate catabolism genes 
 which are repressed by Cra  116,117  . Cra regulates these  genes by acting as a flux sensor for 
 glycolysis, since their suppression is activated by fructose-1,6-bisphosphate  118  . We observe an 
 increase in Cra iModulon activity in the evolved strains (  Figure 7F  ), which both indicates and 
 positively regulates an increase in glycolytic flux. 

 The Crp-2 iModulon contains mostly phosphotransfer (PTS) system genes which are activated 
 by the master regulator Crp  119  . Crp responds to cAMP  levels in a biphasic manner, and cAMP 
 levels themselves have complex regulation  120  . We observe  a strong downregulation of the Crp-2 
 iModulon in the stressed starting strain, but a return to unstressed or intermediate levels in the 
 evolved strains (  Figure 7G  ). This change is consistent  with a return to homeostasis, and may 
 indicate a more active PTS, higher glucose uptake, and increase in ATP concentrations after 
 evolution. 

 The LOF mutations in PDH and the TCA cycle should increase intracellular pyruvate 
 concentrations, since pyruvate is the initial substrate for those reactions. The Pyruvate-2 
 iModulon is regulated by PyrR, which can sense pyruvate concentrations  121  . Pyruvate-2 activity 
 increases in the evolved strains (  Figure 7H  ), which  is consistent with this prediction. We also 
 observe pyruvate secretion at high PQ levels (  Figure  S1K; Note S8  ), probably due to the 
 oxidative damage to PDH and the TCA cycle causing so much pyruvate accumulation that it 
 must be secreted. 
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