bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Lab evolution, transcriptomics, and modeling reveal
mechanisms of paraquat tolerance

Kevin Rychel’, Justin Tan', Arjun Patel', Cameron Lamoureux’, Ying Hefner', Richard Szubin’,
Josefin Johnsen?, Elsayed Tharwat Tolba Mohamed?, Patrick V. Phaneuf?, Amitesh Anand?,
Connor A. Olson', Joon Ho Park®, Anand V. Sastry’, Laurence Yang®, Adam M. Feist'?,
Bernhard O. Palsson'?

1. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093,
USA

2. Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark,
Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark

3. Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai,
Maharashtra, IN

4. Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main
Street, Building 76, Cambridge, MA 02139, USA

5. Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6,
Canada

Corresponding author: Bernhard O. Palsson

Correspondence: palsson@ucsd.edu

Summary

Relationships between the genome, transcriptome, and metabolome underlie all evolved
phenotypes. However, it has proved difficult to elucidate these relationships because of the high
number of variables measured. A recently developed data analytic method for characterizing the
transcriptome can simplify interpretation by grouping genes into independently modulated sets
(iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of
causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E.
coli strains that tolerate high levels of the redox cycling compound paraquat, which produces
reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models
to elucidate six interacting stress tolerance mechanisms: 1) modification of transport, 2)
activation of ROS stress responses, 3) use of ROS-sensitive iron regulation, 4) motility, 5) broad
transcriptional reallocation toward growth, and 6) metabolic rewiring to decrease NADH
production. This work thus reveals the genome-scale systems biology of ROS tolerance.
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Introduction

Omics technologies have enabled global understanding of cellular states at each level of the
central dogma of biology. In particular, the falling cost of nucleotide sequencing has led to a
dramatic increase in available genomic and transcriptomic datasets, allowing researchers to
probe nucleotide changes in DNA and condition-dependent expression changes in RNA at
unprecedented scale’. With genome-scale metabolic models, we can also gain a global
perspective on metabolic fluxes, and how they change based on genetic or expression
perturbations®*. Each tool on its own has been successful in gaining novel biological insights,
but an even deeper understanding can be achieved if they are made interoperable. Many
approaches to integrate multiple omics data types are being developed®, but the high number of
variables and employment of complex “black-box” computational tools presents a problem for
elucidating a clear, genome-scale understanding of biological systems across multiple levels of
genomic, transcriptional, metabolic, and phenotypic changes.

Adaptive laboratory evolution (ALE) is an experimental procedure in which a microbial starting
strain is grown in a selected condition for many generations, propagating when flasks reach a
targeted density during repeated batch growth. This allows selection to enrich for mutant strains
with improved fitness under the chosen condition®. A tolerization ALE uses this procedure with
increasing stressor concentrations, pushing cells to amplify stress tolerance mechanisms’,
thereby generating unique strains which are stress tolerance specialists. ALE strains are an
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excellent starting point for developing multi-omic approaches because they have a well-defined
phenotype which arises from an average of only ~22 mutations®. ALE mutations are highly
informative for improving gene annotations, identifying fundamental biological principles and
tradeoffs, designing bioproduction strains, and understanding antimicrobial resistance®®.
However, it is difficult to interpret effects of mutations on regulators and enzymes without adding
characterization from the transcriptome and metabolome.

The transcriptional regulatory network (TRN) employs transcription factors (TFs) which sense
features of the cellular state and regulate the expression of genes in response. As
transcriptomic data has been generated in rapidly growing numbers and deposited into online
databases, it has become increasingly important to develop scalable methods which enable
their interpretation. However, the typical method for transcriptional analysis, differentially
expressed gene (DEG) analysis, is cumbersome for complex transcriptomic adjustments due to
the high number of DEGs, and it does not easily capture the large-scale structure of the TRN.
We seek to integrate signals from the TRN with mutations in the genome via biologically
meaningful relationships, which is difficult if we do not first effectively decrease the number of
transcriptomic variables.

A recently developed approach addresses this challenge by using independent component
analysis (ICA) of large compendia of transcriptomic data to group genes into independently
modulated sets (iModulons). The expression level (activity) of each group is computed in each
sample, allowing systematic, large-scale analysis of the transcriptomic effect of adaptation to a
new growth condition. Each iModulon is manually curated with predicted regulators and
functions, bridging between the quantitative TRN and existing literature. iModulon activity levels
can be used to infer the activity of their underlying regulators, and thus enable quantitative
interrogation of the cell’s sensory systems. This approach has provided valuable insights into
the TRNs of Escherichia coli'®" and several other organisms'>"°. iModulon analysis is
supported by a developed codebase and online knowledgebase (iModulonDB.org)?*2', which
are publicly available. iModulons have already shown promise for analyzing transcriptional
reallocation in tandem with mutations, which revealed important examples of the interplay
between the genome and the transcriptome?-2%, but more work needs to be done to explain
larger fractions of transcriptomic variance by systematically characterizing iModulon changes.

Downstream of the genome and gene expression, the state of the metabolic network is
fundamental in determining cellular phenotypes. We have developed genome-scale metabolic
and expression (ME) models, which compute optimal steady-state fluxes for all known reactions
in a cell given mathematical constraints and an objective function??’. These models can be
constrained with growth rates, uptake and secretion rates from metabolomic data, and
transcriptomic data?2°. Recent work has also incorporated the effects of biochemical
stresses®#?°, enabling understanding of the cellular response to stress. Since ME models
integrate phenotypic, metabolic, and transcriptional or proteomic data, they can be useful for
supporting or refuting separate predictions made by analyzing genomic alterations.

The goal of the present study was to gain a genome-scale, multilevel, “white-box” understanding
of a particular phenotype by leveraging ALE, genome sequencing, iModulons and ME modeling.
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Thus, we needed to select a well-defined phenotype of interest. We did so by employing ALE to
generate E. coli strains which are specialized to tolerate a common herbicide, the redox-cycling
compound paraquat (PQ). PQ is a redox-cycling compound, meaning that it can generate large
amounts of reactive oxygen species (ROS) by stripping electrons from cellular electron carriers,
such as NADH and NADPH, and reducing oxygen; this generates destructive superoxide ROS
and regenerates the oxidizing agent to re-initiate the cycle®*22. The ROS are particularly
damaging to iron-containing enzymes and DNA. They decrease activity of important pathways,
challenge the integrity of the genome, and inhibit growth332-%,

Though the ROS response of E. coli is well understood and ROS are often delivered in the
laboratory by PQ3*, some questions remain about how high levels of tolerance can be achieved:
(i) In addition to the known proteins, which transporters and enzymes are involved in PQ
cycling? (ii) What transcriptional alterations, specifically with respect to stress responses, metal
homeostasis, and redox balance, are optimal? (iii) How can cells balance a tradeoff between
generating NAD(P)H for energy and decreasing its production to prevent stress generation?
Through our unique combination of systems biology techniques, we are able to shed new light
on these questions. Their answers are informative for the fundamental biology of stress and
metabolism, and for applications in pathology, antimicrobial design, and biomanufacturing.

This work provides a blueprint for combining ALE, mutational analysis, transcriptomics,
computational biology, and phenotypic characterizations for stress-tolerant ALE strains, which
emphasizes the rich insights provided by iModulon analysis. We begin by characterizing the
strains and presenting an overview of the genomic and transcriptional changes. We then show
that the effects of large DNA changes and TF mutations are easily quantified in the
transcriptome. We also find an unexpected non-TF mutation that regulates motility regulons in
our strains. Next, we disentangle the large fraction of the transcriptome which responds to
changes in stress and growth phenotypes. Finally, we propose and model a metabolic
mechanism for PQ tolerance which involves several interesting mutations and broad
transcriptional reallocation. We show that the evolved strains employ a multi-pronged strategy
of: (i) modifying membrane transport, (ii) using the SoxS and OxyR regulons to ensure stress
readiness, (iii) allowing ROS-sensitive iron-sulfur (Fe-S) clusters to play a larger role in
regulation of metal homeostasis, (iv) increasing motility, (v) shifting transcriptional allocation
toward growth, and (vi) using fermentation to avert the PQ cycle. Taken together, these results
elucidate a detailed, coherent, multilevel understanding of an important cellular phenotype by
combining several cutting edge technologies in big data analytics and computational biology.


https://www.zotero.org/google-docs/?G43daR
https://www.zotero.org/google-docs/?zbMBwW
https://www.zotero.org/google-docs/?Ea8Z4u
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Results
A 0.0 C
— Flt More Fit 1.0 1.00 + Evolved
Startin,
Straing Growth Mutant Growth Mutant Evolved % Start
o0 e — Strain o 0.75
L
% 050 -
Low PQ Increase PQ 500 uM PQ o
O]
( | 1.1 0.25
Evolved
Straln Strain 0.00 (I) 1OI00 ZOIDO
Paraquat (uM)
B 1,370 pM PQ D
pitA,sucA,ygrZ \ginX, (@)(arcA, nuoG, thic-p, +4) _
icd, priA fur,nuoC OxyR,thiC-p Transporters
0.25 1 - (
@ fur,nuoM)oxyR, s0dA-p,+5 II
J lacZ I G
0.00 1, T T T T ftsN, oppA-p,ybh @ DmpA ubiF,zwf,+2) ..II s S D
0.75 1 emrE-a aceE iSCR, gan gitA,
< 7 a%‘z%
E 0.50 4 @ garc cyoB,oppA-p.lon,tig-p) (nuoM,oxyR,+3
) ‘ rl
T 0.25 - \ OpPA-p,ion,rpsG, ompN-p,trxC,
e Other
oy
% 0.00 - 2—“ 3 (arg.lon,pfo-p, rpsG; (icd,0ppA-p. zut, +4;
s 0
O]

0.75 - X

emrE- 3.1
acek,icd,oppA-parcB,iscR,+1)(coaA,nuoG,+1, GC—AT
0.50 1 3_2
; crp.icd,oppA-p,pta, +3: : ff ;; iscR,ppA,ydiE, ;
3.3
aceE Del 3

0.25 1 X AT—-GC
’ aceE,0ppA-p, mntH-p,zwf, +2
0.00 - \ 3.4 I ALEdb
: CpdA icd,ilvH,oppA-p.pla, +1 @) Gur,+1 AT & M This study
G-C

1 11 I T T T
Cumulallve Cell DIVISIOHS e 00 02 04 06

P
Q (uM) Fraction of SNPs

0 200 400 600 800 1000 1200 1400

gF z G .
LN 1 i L]
% < ® 1774 DEGs . T. . EB e 42 DiMAs EmrE Amp itgss
3% % g 8221 e
N O . N~ o <
.;. £ ‘;‘( Fur-1,2
g5 0 : £5 o
o g5 U
%o 72
il 8 =51 o] g
> : =0
B T T T T E - L T T T
> >
w -10 -5 0 5 w -20 0 20 iani
Starting Strain [250 uM PQ] Parent Strain [250 uM PQ] Insignificant PyIR
Gene Expression iModulon Activities iModulons

Figure 1. ALE increases PQ tolerance via changes to the genome and transcriptome. (A) Tolerization ALE
process, showing mutant strains (cells with various appearances) in media with increasing stress concentrations
(red). Example replicates are shown: 1_0 in the first generation and 1_1 in the second generation. (B) Points
represent ALE flasks colored by their PQ concentration. The first generation of ALEs (strains 1_0, 2_0, and 3_0) are
shown with each flask’s growth rate. ‘Cumulative cell divisions’ are estimated from the growth rate and time elapsed.
Stars represent flasks that underwent DNA sequencing, and newly mutated genes are shown. Black colored genes
are discussed in detail. (C) Growth rate for each strain at each PQ concentration. The starting strain cannot grow at
250 uM PQ), whereas some evolved strains reach up to 2500 uM PQ. Evolved strains grow slower than the starting
strain in the absence of PQ. (D) Treemap of mutations in all strains, grouped by gene with intergenic mutations
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assigned to nearest genes. UC: Uncharacterized. See Table S1. (E) Fraction of SNP types in this study compared
with all public ALE studies on ALEdb (aledb.org;, mean + 95% confidence interval). Each label corresponds to four of
the twelve possible substitutions; for instance, “GC—AT” includes “G—A”, “G—T”, “C—A” and “C—T” substitutions.
This study is enriched for mutations which decrease the GC content of the genome. (F-G) Comparison between the
mean transcriptomes of the parent strain at 250 uM PQ vs. all evolved strains at 250 and 750 uM PQ. (F) DEG
analysis, showing an intractably large number of DEGs. (G) Differential iModulon activity (DiMA) analysis, which
compresses the differential transcriptomic changes into 42 DiMAs. DiMAs are colored by their category from panel
(H). For more information about each iModulon, explore the PRECISE-1K E. coli dataset at iModulonDB.org and see
Table S2. (H) Treemap of the explained variance of each iModulon in the transcriptome of the evolved strains. The
map is first broken into three parts: the colorful region, composed of iModulons that are differentially activated after
the evolution and categorized, the light gray region composed of iModulons that do not show a significant trend with
evolution, and the dark gray region, representing the error in the iModulon decomposition.

Laboratory evolution increased tolerated PQ levels by 1000%

We evolved strains aerobically in minimal media with glucose under increasing PQ stress
(Figure 1A). Our starting strain (0_0) was a derivative of E. coli K-12 MG1655 which had been
pre-evolved to grow in minimal media with glucose®’. By using this media-adapted starting
strain, the subsequent ALEs were enriched for mutations which improve stress tolerance, since
the mutations that promote rapid growth under the culture conditions were already fixed. ALE
was performed by steadily increasing PQ concentrations, first in three parallel first generation
ALEs (1_0, 2_0, 3_0) and followed by eleven second generation ALEs (1_1,1_2,...,2_1, etc.)
(Figure 1A-B). Parallelizing ALE replicates generated diverse strains and allowed for
identification of common mutation targets which are more likely to be causal.

After evolution, growth rates for each endpoint under different PQ concentrations were
measured (Figure 1C). The starting strain’s growth was severely impaired by low PQ
concentrations, with no growth at 250 uM PQ. The evolved strains showed a dramatic increase
in the concentration of PQ they can tolerate while still growing; some endpoint strains tolerated
2500 uM. There was a fitness cost to the PQ tolerance, however: the strains no longer grew as
well in the absence of PQ as the starting strain. This observation is consistent with the tradeoffs
of the PQ tolerization mechanisms.

Adaptive mutations reflect effects of PQ

Throughout the PQ ALE, a total of 222 mutations were observed, representing 111 unique
sequence changes. Each mutation was assigned to its closest gene in the case of intergenic
mutations, and 72 total genes were affected. Mutations were then categorized by their likely
effects (Figure 1D, Supplemental Table 1). The largest category of mutated genes was central
and energy metabolism-related (35%), which reflect the metabolic effects of PQ on redox
balance. Transporters were also frequently mutated (16%), likely to prevent influx or promote
efflux of PQ or other ROS. Iron and iron-sulfur (Fe-S) clusters are sensitive to oxidative stress*,
so we observed changes to iron regulators and Fe-S cluster synthesis genes (16%). Three large
deletions, Del-1, Del-2, and E14 removal, were also notable (5%). Other mutations which were
less convergent across endpoint strains (26%) were observed in ribosomal subunits, tRNAs,
and /on protease, as well as across other parts of the metabolic network.
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We performed DNA sequencing on several midpoint strains during the ALEs (Figure 1B), which
provided insight into the most effective growth strategies since mutations tend to fix in the order
of fitness benefit*®. We note that emrE and aceE are among the first genes to be affected in all
three of our first generation strains.

An interesting pattern arose in the observed single nucleotide polymorphisms (SNPs):
compared to other ALE projects available on ALEdb?, they are highly enriched for changes from
guanine or cytosine to adenine or thymine (Figure 1E; Fisher’s exact test p = 9.38*10). This
enrichment was consistent with direct damage to DNA by ROS, since guanine is the most easily
oxidized nucleotide®3°4°_ Thus, these mutations might not only improve cellular fitness through
genomic and transcriptomic changes, but also by physically tolerizing cellular DNA to oxidation.

iModulons enable analysis of complex transcriptomic changes

To identify transcriptomic adaptations, we performed RNAseq on the starting strain at 0 and 250
MM PQ, and on each evolved strain at 0, 250, and 750 uM PQ. In a comparison between the
stressed samples for the pool of all evolved strains vs. the starting strain, we found 1,774
differentially expressed genes (DEGs) (Figure 1F), making detailed analysis using traditional
transcriptomic methods challenging. Therefore, we applied iModulon analysis to enable
interpretation.

The data was included in a large compendium of E. coli RNAseq data generated from a single
wet lab protocol (PRECISE-1K™"). By leveraging over 1,000 samples across diverse conditions,
this dataset facilitated machine learning of global transcriptomic patterns. Following our
pipeline?', we performed ICA on the full dataset. The result was a set of 201 iModulons,
independently modulated gene sets which have similar expression patterns, along with their
activities in each sample. Together, the iModulons constitute a quantitative regulatory structure
which maps well to the known TRN, and can be used to reduce the dimensionality of the
dataset. The set of PRECISE-1K iModulons was characterized in a separate study*', and the
iModulon structure, including interactive plots, search, and download functionality, is available at
iModulonDB.org under E. coli PRECISE-1K?.

iModulons enabled a global characterization of changes in the transcriptome. The evolved
strains’ gene expression under PQ stress against the starting strain had only 42 statistically
significant differential iModulon activities (DiMAs) (Figure 1G). These 42 iModulons made the
analysis of the large-scale changes in the transcriptome tractable, and their observed activity
changes could be related to the mutations fixed under ALE. We categorized the DiMAs and
assigned mechanistic hypotheses which explain their changes (Table S2). Explained variance
for all categories of significant and insignificant iModulons are shown in Figure 1H.
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Figure 2. Multilevel approach reveals mechanisms of PQ tolerance. (A) Knowledge graph summarizing multilevel
relationships between mutations, iModulons, metabolism, and phenotypes. Pie charts appearing in the two left
columns indicate prevalence of given changes to the genome and transcriptome (legend in panel B), where wedges
indicate strains. The protruding wedges correspond to the first generation of ALEs, with the wedges counterclockwise
to them being their second generation descendants. For genes, green indicates the strain has mutations affecting it
or its promoter. For iModulons, colors indicate the difference between the iModulon activity in the strain at 750 uM PQ
and the starting strain at 250 uM PQ, normalized to the standard deviation of the iModulon activity across all of
PRECISE-1K. Dashed lines represent relationships for which there is little existing literature. (B) Phenotypic changes
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target specific processes involved in PQ and ROS stress. Lowercase letters indicate elements from the rightmost
column of (A). Entities which glow are reduced, and red indicates stress-related molecules.

A multilevel approach focused on explaining iModulon activities revealed
the effects of mutations and phenotypes of evolved strains

Modifications to the genome can affect the transcriptome in several ways: large deletions and
amplifications can directly alter the expression of genes involved, mutations in TFs can change
the expression of their associated regulons, and the transcriptome can adjust due to changes in
metabolites or other sensed processes that result from mutations. The latter type of alteration
can be complicated by the fact that gene expression also regulates metabolite concentrations
and sensed processes. In Figure 2A, we summarize how each of these types of relationships
were observed in the evolved strains. iModulons play a central role in each highlighted
mechanism, as evidenced by the full second column in Figure 2A. Their utility is a key outcome
of this work. The combined analysis of genomic and transcriptional changes led us to six key
cellular mechanisms of PQ tolerance (Figure 2B). Together, these mechanisms constitute a
summary of the systems biology of PQ-generated ROS stress tolerance.
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Figure 3. Consequences of deletions and amplifications affecting membrane transport are found in both
genomes and transcriptomes. (A) Genome coverage in strain 1_0, which is representative of strains containing the
emrE amplification, in the region of the amplification. Genes in the iModulon are labeled. (B) Genome coverage of
strain 3_0 in the region of Del-1. Del-1 iModulon genes are shown in black, with flanking non-deleted, non-iModulon
genes in gray, and transporters in bold. (C-E) iModulon activities for selected genomic iModulons. Bars indicate mean
+ 95% confidence interval. Individual samples are color-coded by PQ concentration. Upstream + and A indicate
insertions and deletions, respectively. (F) Color-coded table showing all observed mutations related to transporter
genes. Purple x: amplification; green: upstream insertion (+) or deletion (A); blue: indicated SNP; orange: frameshift
mutation within gene; red delta: complete gene deletion. The red area on the right indicates transporters deleted in
the major 3_0 deletion.

Large amplifications and deletions in the genome affect membrane
transport

‘Genomic iModulons’ are transcriptomic modules which capture the effect of large changes to
the genome, so they are of primary interest for obtaining genome-to-transcriptome relationships.
In the PQ tolerant strains, the major genomic iModulons happen to all be associated with
alterations in membrane transport.

The first mutation in each of the first-generation strains affected emrE, a multidrug efflux pump
which pumps out PQ*2. In 1_0, 2_0, and their subsequent evolutions, genome coverage was
increased approximately 42-fold in the region containing emrE (Figure 3A). This amplification
was likely mediated by the flanking DLP12 prophage insertion sequence (IS) genes, specifically
the 1S3 transposase elements insEF3*. ICA of the transcriptome recovered the amplified genes
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as an independent signal in the dataset, which we named the emrE Amp iModulon (called ROS
TALE Amp-1 in PRECISE-1K" on iModulonDB.org?). This iModulon showed elevated activity
levels in all affected strains regardless of PQ concentration (Figure 3C). Thus, this case
illustrates three levels in our multilevel approach (Figure 2A): it relates a clear mutational
mechanism (transposase-mediated amplification) to a corresponding transcriptomic signal
(emrE Amp iModulon) and beneficial phenotype (PQ efflux).

We discuss Del-1, a large deletion that contains several transporters (Figure 3B, D), Del-2, a
deletion of the oppABCDF operon (Figure 3E), and additional transporter mutations of potential
interest (Figure 3F) in Note S1. We hypothesize that these mutations and their related genomic
iModulons may have decreased influx of PQ or other oxidized molecules.
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Figure 4. Mutations regulate stress response, iron metabolism, and motility iModulons in novel ways. Bars
indicate mean + 95% confidence interval. (A) OxyR iModulon activity is correlated with PQ in starting and evolved
strains (Pearson R = 0.47, p = 6.2*10°), except for the three strains which mutated oxyR. PQ colors in the legend
also apply to panels (B, D, E-F, H). (B-D) Scatter plot of Fur-1 and Fur-2 iModulon activities with bar plots sharing
axes. Light gray dots indicate other samples from PRECISE-1K. In (C), samples are colored by relevant mutations,
and shapes indicate PQ concentrations according to the legends. A black arrow connects the starting strain samples
between 0 and 250 uM PQ. In bar plots, point colors indicate PQ concentrations and label colors match with the
scatter plots. The red trend line is a logarithmic curve fit to all samples in PRECISE-1k. Samples with the P18T
mutation are above the trend line, indicating a preference for Fur-2. (E) Distances from each sample in this study to
the trend line in (B), more clearly showing the preference for Fur-2 induced by P18T. (F) feoA expression, which is
representative of the feoABC operon. Genes are upregulated by the fur P18T mutation. (G) Knowledge graph linking
fur mutation to negative feedback which averts stress. (H) FliA iModulon activities by pitA mutation, showing an
upregulation in the case of the frameshift pitA*, but not in the case of pitA deletion. (I) Growth curves for strains with
and without the pitA* mutation as the only difference. The mutation contributes to higher final ODs under no stress,
and shorter lag and faster growth under stress. (J) DiMA for strains 0_0 and 1_0 with and without the pitA frameshift
mutation under PQ stress. Points indicate the mean of all relevant samples (individual conditions in duplicate; n=6 per
axis). The strains with the mutation significantly activate FliA, one of the motility iModulons. The point near FliA is
FIhDC-2, the other major motility iModulon. (K) Representative images of swarming in the 0_0 strain with (bottom)
and without (top) the pitA* frameshift. Additional plots: Figure S1; Images for all swarming experiments: Figure S2.
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Mutations in TFs alter the regulation of stress responses and iron
homeostasis

‘Regulatory iModulons’ are iModulons which are statistically enriched with genes from a specific
regulon, and their activity level quantifies the activity of the underlying TF. Thus, iModulon
analysis reveals the effects of TF mutations in a convenient way.

The OxyR iModulon contains oxidative stress response genes, and its regulator, OxyR,
responds to oxidative stress*. Thus, we expected its activity level to correlate with PQ level. We
found that for most strains, this is the case (p = 6.2*10°). However, we observed three separate
oxyR mutations which all fix OxyR iModulon activity levels at a level just below that of the
stressed starting strain (Figure 4A), regardless of PQ concentration. We speculate that this
level may be ideal because it enables quick detoxification of ROS, while higher levels would be
proteomically expensive and/or induce growth-limiting levels of oxyS (which is regulated by
OxyR and leads to growth arrest*°). Previous iModulon work in other ALEs found that fixing
OxyR in the active conformation provided a fitness benefit?®. Without the OxyR iModulon to
quantify OxyR activity, it would have been much more difficult to define the effect of these
mutations.

Fur, the ferric uptake regulator, regulates two main iModulons (Fur-1 and Fur-2) whose activities
have a nonlinear relationship which has been described previously*® (Figure 4B-D, S1A). Three
separate strains acquired fur P18T, which appears to shift Fur’s preference above the trend line,
towards Fur-2 (Figure 4E). They specifically upregulate the expression of feoABC, a
ROS-sensitive iron transporter’ (Figure 4F). By using feoABC to strongly couple iron uptake to
ROS levels, this mutation should prevent ROS-induced iron toxicity by preventing iron uptake
under high stress (Note S2; Figure 4G). This mutation is of interest for further study, since it
modifies the TRN in a unique way, and promotes a strategy of ROS-sensitive iron uptake that
may be useful for production strains that are hampered by ROS.

The TFs IscR and SoxS also provide important insights. See Figure S1 and Note S3.

These results highlight the efficacy of iModulon analysis for revealing TF mutational
mechanisms. The Fur and IscR mechanisms predict that the ROS-sensitivity of Fe-S clusters
can be used to couple iron uptake or utilization to ROS levels, which constitutes an interesting
tolerance phenotype. The particular mutations ought to be introduced into production strains,
where they could increase yields if ROS stresses are limiting. They can also be used to study
TF-DNA interactions, since their effects on the transcriptome have already been elucidated
here.

An unexpected mutation in pitA upregulates motility

A frameshift in the phosphate transporter pitA led to a motile phenotype. This mutation occurred
in 1_0 and its derivatives, and these strains also exhibited strong activation of
motility-associated iModulons such as FliA (Figure 4H). There is no obvious connection
between phosphate transport and motility, and the mutated strains were likely able to use the
other phosphate transport system, pstABCS, to meet their phosphorus needs*®. Interestingly,
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the 3_0 strain deleted pitA as part of Del-1 (Figure 3B), and it did not exhibit the motility
phenotype. Thus, to understand this mutation, we generated two new strains: 0_0::pitA* and
1_0::pitA, which added the mutation on its own to the starting strain and removed it in favor of
the original pitA sequence in the evolved strain, respectively. We found that the mutation
provided a growth advantage under PQ stress (Figure 4l). We also transcriptomically profiled
the strains under the same conditions used for our other strains, and found that, particularly
under PQ stress, the mutation exclusively perturbs the motility iModulons (Figure 4J). The
change to the transcriptome was also reflected in the phenotype, as the mutant strains swarmed
on agar plates while the wild-type pitA strains did not (Figure 4K, S1). The detailed mechanism
of action linking the pitA mutant to motility remains to be elucidated.

An upregulation of anaerobic iModulons such as Fnr-3 in the ALE pitA mutants (Figure S2A)
suggests a possible benefit for motility, in that it may be correlated with beneficial fermentation
phenotypes discussed later, as has been previously studied*® (Note S4).

This section illustrates the usefulness of our multilevel approach. After connecting mutations to
their effects and predicting causes for DiMAs, we were left with an orphan mutation (pitA) and
an unexplained DIMA (FliA). We predicted that the mutation caused the DiMA, and then we
generated new strains to validate the prediction. The recapitulation of the expected iModulon
change and swarming phenotype lends credibility to the iModulon method of elucidating
mutational effects.
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Figure 5. Changes to stress and growth explain the changes to activity in several iModulons. Mean iModulon
activities + 95% confidence interval; all plots use the legend in (D). P-values are false discovery rate corrected
p-values from a comparison of stressed transcriptomes (250 and/or 750 uM PQ) between 0_0 and evolved strains.
(A) RpoS activity, the general stress response, is downregulated (p = 0.017). (B) The Translation iModulon,
ribosomes and translation machinery, is upregulated (p = 0.023). (C) The ppGpp iModulon, a large iModulon with
many growth-related functions, follows a similar pattern to the Translation iModulon (p = 0.027). (D) The Leucine
iModulon, which responds to leucine concentrations downstream of an Fe-S-dependent synthesis pathway, is
downregulated after evolution, suggesting improved Fe-S metabolism (p = 0.0017). (E) The Biotin iModulon is
downregulated after evolution. Biotin also depends on Fe-S-dependent synthesis (q = 0.017). (F-l) Ribose (p =
0.011), Purine (p = 0.036), Cysteine-1 (p = 0.025), and Copper (p = 0.034) iModulon activities behave differently in
starting and evolved strains (Note S5). (L) Knowledge graph connecting decreased oxidative stress to each of the
iModulon changes shown.

Shifting from stress to growth explains activity of several iModulons

Regulatory iModulons can be used not only to understand the direct effects of mutations as
described above, but also effects of changes to the processes that TFs sense. We have divided
these types of changes in the PQ tolerant strains into two categories: those that respond to
stress and growth (21% of the variance in the transcriptome; Figure 1H), and metabolic
changes (10%). In this section we describe the former.

An important global tradeoff in the E. coli transcriptome is between growth and general stress
readiness, which is governed by complex regulation®*®'. We previously identified a ‘fear-greed
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tradeoff’ between the RpoS and Translation iModulons, in which the activity levels of the two
iModulons have a negative correlation; faster growing cells exhibit low RpoS and high
Translation activity'234652%3 The starting strain without stress is ‘greedy’, but it becomes ‘fearful’
upon addition of PQ, as expected (Figure 5A-B). The evolved strains, on the other hand, largely
remain ‘greedy’ in the presence of PQ; they strongly downregulate RpoS (Figure 5A) and have
higher translation activity than the stressed starting strain (Figure 5B). Translation activity is
decreased relative to the starting strain in the absence of PQ, likely because of tradeoffs
towards ROS stress readiness in the tolerized phenotype.

Despite the presence of stressors and the activation of specific ROS responses OxyR and
SoxS, the global stress response is not activated in the evolved strains. There are two likely
reasons for this: the stress signals are downregulated by the success of the evolved strategies
of PQ tolerance, and the growth-inhibiting effects of RpoS have selected against strains with
high RpoS activity. This work agrees with previous findings that ALE shifts allocation toward
‘greed’'®%352_ The decoupling of the ROS and general stress responses makes these strains
ROS-response specialists, constituting a valuable adaptation strategy.

Two DiMAs reflect a decrease in oxidative damage by sensing Fe-S-dependent metabolites.
The Leucine iModulon (Figure 5D) encodes the leucine biosynthesis pathway, which requires
an Fe-S cluster and other metal-dependent enzymes that are sensitive to oxidative stress®.
Leucine feeds back to inhibit the iModulon’s expression®. In the starting strain with PQ,
oxidative damage likely leads to a decrease in leucine concentrations and an upregulation of the
iModulon. By contrast, the evolved strains experience less stress, protect their Fe-S clusters,
and therefore exhibit low Leucine iModulon activity. Similarly, the Biotin iModulon (Figure 5E)
uses an Fe-S cluster in BioB to synthesize biotin®, which then controls iModulon activity via
regulation by BirA%.

The activities of the ppGpp, Purine, Ribose, Cysteine-1, and Copper iModulons (Figure 5C, F-I)
each also reflect decreased stress and a return to homeostasis in the evolved strains (Figure
5J; Note S5).

Thus, iModulons measure the entire sensory output of the TRN and allow us to mine the
transcriptome for insights into many cellular processes. Because we also have an
understanding of the stress phenotype of our cells, we predicted reasons for a large fraction of
transcriptional alterations. This approach would be useful to any researcher seeking to
enumerate phenotypic alterations in novel strains using only RNAseq data as a guide.

16


https://www.zotero.org/google-docs/?kPsjgL
https://www.zotero.org/google-docs/?JF6xzX
https://www.zotero.org/google-docs/?bvsKNX
https://www.zotero.org/google-docs/?UF3jqe
https://www.zotero.org/google-docs/?ihiigQ
https://www.zotero.org/google-docs/?rowIUA
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B
A ./Pyruvate Energy B
e uQe ETC eUQH
B[ o ® 2 12
QCEEVW o ‘\. ONAD* g_ o
e N nuoCGM 2 08
NADHO & 50
gqu& —g’ 0.6
O NAD* 3 o4
=
pae PQ epar =N
TCA Cycl Cyele \ g
yele Stress < gg
[¢]
= Mutated Reaction gl g o gl g
"
NADP . \& 5 01_4 1 E\Straln e, o, o e, o,
icd iy \ & 2 ;? L2 WTallele © o F o «
NADPH SucA 20 33° A Mutant 250 uM PQ v Vv v
aceE Q409*(TAG) v Vv VvV
gInX CAG—TAG v Vv
1_0750pq vs 0_0 Opq
L]
0 125 250 750 pM PQ Glucose 204 -r o1 .5
C e .’. Start D Glycolysis E ' bl %
Q ~[ ~A Evolved j 3.5 g 1.04 Total
- a TCA
—~ 05 - g g‘) S 3.0 1 2
2 viaz X [ 5 0.5
o S5 ? £ 25 - o F Undamaged TCA
s ca x <
Z 04 - 52 3 20,0
bt v| = w204 ’ G
2 1.2 o o g 4-
o N o Q = 1.5 1 o]
2 S @ 10 o s 1.0 o 28
g 0.2 1 ) ALE _._" Pyruvate Oy gs® 05 o
o Acetat = 7
o ¢ A 08 cetate — 00 =— 10
T T T 0.0 - 0 T T T
10 15 20 Difference Between Fluxes (mmol/h/gDW) £ B 0.000 0.002 0.004
Glucose uptake rate (mmol/gDCW/h) - - b TE PQ Cycle Flux
-5 2.5 0 25 5 w

Figure 6. Mutations drive metabolic rerouting toward fermentation to avoid PQ cycling by decreasing NADH
availability. (A) Simplified metabolic map of the TCA cycle and fate of NADH. Reactions catalyzed by mutated
enzymes are shown in red and labeled with a pie chart indicating which strains have a wild-type (WT) or mutant
allele. First generation strains in the pie chart protrude, with their descendants following them counter-clockwise. (B)
Ribosome readthrough ratio in aceE from ribosome profiling, means * standard deviation. The ratio B/A is the fraction
of ribosomes bound downstream (B) vs. upstream (A) of the early amber stop codon (TAG) in aceE. The midpoint
(MP) strain has aceE Q409* with WT gInX, whereas the 2_0 strain has both aceE Q409* and the gInX anticodon
mutation that enables ribosomes to read through the amber stop codon. In evolved strains such as 2_0, PDH levels
are decreased but not zero. (C) Aero-type plot® computed from measured growth rates and glucose uptake rates,
where points represent means + SEM, with constant growth rate isoclines. Colored regions labeled with roman
numerals are aero-type regions as defined previously®®. Cells switch to a lower aero-type with PQ and increase their
glucose uptake after evolution. (D) Flux differences from the OxidizeME model, comparing the starting strain with no
PQ and a representative evolved strain at high PQ. Model was constrained by growth rate, glucose uptake rate, and
RNAseq data (Figure S4). (E) Each point represents a TCA cycle reaction in the constrained OxidizeME models;
models of evolved strains predict lower TCA cycle fluxes. (F-G) OxidizeME model results in mmol/gDCW/h for 0_0
and 1_0, constrained by growth rate, glucose uptake rate, and RNA expression. (F) As PQ cycle flux increases, the
damaged fraction (filled in) of the TCA cycle increases. (G) NADH production decreases with PQ, but is more
sensitive in 0_0. 0_0 can also carry more PQ cycle flux.

Mutating central and energy metabolism genes decreases PQ cycling

We now turn to metabolism, which adds a fourth layer to our analysis and involves a complex
interplay of effects from each level (Figure 2A). We show that enzyme mutations can suggest
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tolerance strategies, and then ME modeling can validate them. Finally, iModulon analysis can
reveal how those strategies are organized and regulated by the cell.

The main metabolic mutations occur in the tricarboxylic acid (TCA) cycle. The second gene to
mutate in all strains was aceE (Figure 1B, D). aceE encodes a subunit of pyruvate
dehydrogenase (PDH), the entry point into the TCA cycle. gltA, sucA, and icd also mutate often,
with icd being affected by e14 deletion and SNPs*® (Figure 6A). These mutations would likely
decrease the function of the enzymes, thus decreasing TCA cycle flux and production of NADH.
These mutations suggest a tolerance benefit to decreasing NADH production. The likely reason
for this benefit is that PQ uses electrons from NAD(P)H to reduce oxygen and generate
stress®-62, These mutations would decrease the available electrons to the PQ cycle and prevent
stress generation. To decrease oxidative stress from PQ, the evolved strains perform less
oxidative metabolism. The supplementary Fe-S and motility mechanisms (Note $3, S$4) also
shift strains away from NADH production.

Loss of function (LOF) mutations in the TCA cycle come with a cost, since those pathways are
the primary energy source for aerobic cells. Indeed, the evolved strains have decreased growth
and translational activity under no stress relative to the starting strain, probably for this reason
(Figure 1C, 5B). During ALE, the strains must therefore balance a tradeoff: generate enough
NADH to grow and repair themselves, but not so much as to over-empower the PQ cycle. The
tradeoff is embodied by an interesting interaction between mutations the aceE and ginX
mutations, in which a tRNA mutation partially restored PDH activity (Figure 6B; Note S6).

We summarize all metabolic mutations in Figure 83 and Table S1. We also observe mutations
in enzymes involved in the utilization of NADH (Figure S3A; Note S7). Next, we characterize
the strains using a variety of tools to test this explanation for the selection for TCA cycle
mutations.

Metabolic rewiring towards a lower aero-type decreases PQ sensitivity and
flux in evolved strains

We quantified glucose uptake for each strain at various PQ levels (Note S8), and generated a
plot comparing biomass yield per gram of glucose to the glucose uptake rate (Figure 6C). This
rate-yield plane has been characterized in past studies?*¢, which revealed distinct energy
generation strategies (aero-types) for each position in the plane. Samples with high biomass
yields are in the highest aero-type (aero-type v), which represents efficient aerobic growth,
whereas lower aero-types are associated with lower aerobicity and secretion of organic acids.
The higher aero-types pump more protons across the inner membrane than the lower
aerotypes?.

In Figure 6C, we observe a switch to a lower aero-type in the starting strain upon PQ exposure,
since ROS damage decreases growth rate and particularly damages respiration. In the evolved
strains, the lower aero-type is maintained even when no PQ is present. The aero-type change is
likely due to the TCA cycle-related mutations, which we predicted would decrease respiration.
However, the evolved samples also shift rightward, increasing their glucose uptake and total
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metabolic flux, enabling them to maintain growth under stress. Their position in the plane
doesn’t vary much with PQ concentration, indicating decreased sensitivity.

To characterize metabolism in silico, we used OxidizeME, a genome-scale computational model
of E. coli metabolism and expression (ME) which incorporates ROS stress effects®. We
constrained the model using each strain’s growth rate, glucose uptake rate, and RNA
expression, then simulated optimal steady states (Figure 6D, S4). Though we did not attempt to
simulate the effects of mutations on the reaction rates, the optimal flux distributions in the
evolved strains showed decreases in TCA cycle flux (Figure 6E), consistent with the predicted
effects of the mutations.

In the absence of experimental methods for directly measuring PQ cycle flux, we
computationally assessed the consequences of PQ cycle flux by varying it for the starting strain
and a representative evolved strain (Figure 6F-G). Though total proteomic allocation to the TCA
cycle was constrained to match the RNA expression, ROS damage to the Fe-S clusters in acnA,
fumAB, and sdhABCD led to decreasing functional proteome fractions (Figure 6F). The starting
strain relied more heavily on the TCA cycle; this made it more sensitive to PQ, as evidenced by
the steeper slope in NADH production (Figure 6G). The starting strain was also able to grow at
higher PQ fluxes, which is inefficient and exacerbates stress. Thus, tolerization both decreases
sensitivity to lower PQ fluxes and prevents a steady state with high PQ flux.

The genome-scale OxidizeME model integrates the individual cellular processes and RNA
expression changes which adjust the phenotype, and it elucidates key systems level tolerization
strategies. Its results match expectations from mutational analysis.
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Figure 7. Mutations and iModulon reallocation drive metabolic rerouting toward fermentation to avoid PQ
cycling. Bars indicate mean iModulon activities £95% confidence interval. (A) ArcA iModulon activities are mostly
decreased after evolution, except in the case of mutations to arcAB (p = 0.035). ArcA contains aerobic metabolism
genes. (B-D) Fnr controls three iModulons with anaerobic metabolism genes, all of which are upregulated (p = 0.034,
0.030, 0.023). (E) Knowledge graph describing changes in the evolved strains connecting central carbon mutations to
anaerobic and glycolytic gene expression, which decreases TCA cycle flux and ROS generation. (F) The Cra
iModulon, which contains glycolytic genes that are repressed by Cra, is upregulated (p = 0.017). (G) The Crp-2
iModulon, which controls phosphotransferase systems, is upregulated (p = 0.022). (H) The Pyruvate-2 iModulon is
upregulated (p = 0.012).

iModulon activities shift tolerant strains towards anaerobic metabolism and
glycolysis

Finally, we discuss iModulons which regulate the metabolic rerouting presented above. The
cellular oxidation state is sensed and regulated by ArcA and Fnr® whose iModulons are
differentially activated in the evolved strains (Figure 7A-D). Both TFs sense redox balance,
which shifts towards reduction in the evolved strains due to the successful tolerization: ArcA
represses when the electron transport chain is in a reduced state®, whereas Fnr repression
ceases when Fe-S clusters are intact®® (Figure 7E). These transcriptional changes shift from
aerobic respiration genes toward anaerobic fermentation genes®® (despite the aerobic ALE
conditions). This strategy maintains a lower aero-type and decreases reliance on NADH. Thus,
this mechanism reinforces the decreased reliance on the TCA cycle brought on by the
mutations, ultimately slowing PQ cycling.

To meet energy needs with lower respiration, the cells increased their glycolytic activity, a
change which is described by two DiMAs. Cra iModulon activity increases, indicating an
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increase in glycolytic flux (Figure 7F). Similarly, the Crp-2 iModulon returns to unstressed or
intermediate levels in the evolved strains, which indicates a more active phosphotransfer
system (Figure 7G). This transcriptomic change matches the rightward shift in the aero-type
plot (Figure 6C). Finally, the LOF mutations downstream of pyruvate should increase pyruvate
concentrations, which are sensed by the Pyruvate-2 iModulon and strongly upregulate it (Figure
7H). More details for all transcriptional mechanisms in this section are provided (Note S9).

In the past three sections, we showed that mutations and iModulon activity adjustments work
together to enforce a low aero-type, PQ-tolerant metabolic network. The PQ tolerance stems
from a decreased reliance on the TCA cycle and decreased NADH production, which leads to a
metabolic network that supports less total PQ cycling and makes the system less sensitive to
small amounts of PQ cycling. It is often difficult to interpret biological systems when genes, gene
expression, and metabolic flux are all changing, but our multilevel interoperable approach using
mutational analysis, iModulon activity changes, and genome-scale modeling produced a
consistent and comprehensive interpretation of multiple data types.

Discussion

In this study, we combined ALE with a detailed, systems-level transcriptomic analysis to
comprehensively reveal mechanisms underlying PQ tolerance. The approach spanned four
levels of analysis (Figure 2A): (i) genetic alterations and their predicted effects, (ii)
transcriptomic adaptations along with up- and downstream inferences about their regulatory
causes and physiological impact, (iii) metabolic fluxes calculated from genome-scale metabolic
models, and (iv) phenotypic changes such as swarming motility. We found iModulon analysis of
the transcriptome to be particularly revealing, as the TF activities could be readily quantified and
utilized to infer a wealth of information about the phenotypic state. By combining these
approaches into a coherent set of tolerization strategies, we presented a summary of the
systems biology of ROS tolerance.

The evolved strains characterized herein achieved high tolerance through several mechanisms
(Figure 2B). They promoted efflux of PQ via emrE segmental amplification, and precluded influx
by mutating or deleting various other transporters. Inside the cells, PQ failed to generate as
much ROS due to LOF mutations in and downregulation of NADH-producing pathways. To
compensate for the decreased biomass yield of their metabolism, the cells increased glucose
uptake and glycolytic flux. Since ROS interact with iron, some strains modified iron regulation
via TF mutations that curtailed these systems when stress was high. These mutational and
metabolic strategies led to a decrease in stress, which was sensed by the TRN and shifted
various regulators toward faster growth.

The impact of this study is threefold. (i) We present biological insights of wide interest to
researchers, including the growth/stress tradeoff of redox metabolism, the use of Fe-S clusters
as a brake on iron uptake and metabolism, and novel interactions such as those between pitA
and motility and between aceE and ginX. (ii) Acquired mutations and iModulon activities can
become design variables for strain engineering, which frequently seeks to mitigate oxidative
stress for bioproduction applications. (iii) We demonstrate an approach that utilizes iModulons to
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reveal a novel integrated perspective on adaptation to stress by understanding transcriptomic
allocation.

Future studies should integrate additional data types into this framework. For instance,
proteomics, endo-metabolomics, and chromatin immunoprecipitation of key TFs would be able
to test various aspects of these hypotheses, better constrain models, and potentially uncover
new insights. In addition, we encourage focused studies which characterize the mechanisms
proposed here in greater detail.

Taken together, our results elucidate the systems biology of ROS tolerization using
genome-scale datasets, computational models, and detailed literature review. Given the falling
cost of RNAseq, development of laboratory evolution, and the availability of the pipeline
developed here, we can expect that the systems biology of an increasing number of cellular
functions and adaptations will be revealed.
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STAR Methods

Resource Availability

Lead contact

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the lead contact, Bernhard Palsson (palsson@ucsd.edu).

Materials availability

Strains generated in this study are available upon request.

Data and code availability

RNA-seq data have been deposited to GEO and are publicly available as of the date of
publication, under accession numbers GSE134256 and GSE221314. DNA-seq data are
available from aledb.org under the project “ROS”. iModulons and related data are available from
iModulonDB.org under the dataset “E. coli PRECISE-1K".

All original code and data to generate figures are available at github.com/SBRG/ROS-ALE,
which also links to the alignment, ICA, and iModulon analysis workflows?'. It has been deposited
at Zenodo and is publicly available as of the date of publication®®. The DOI is
10.5281/zenodo.7449004.

Any additional information required to reanalyze the data reported in this paper is available from
the lead contact upon request.

Experimental Model and Subject Details

Microbial strains

The starting strain (0_0) was an MG1655 K-12 E. coli strain which had been evolved for optimal
growth on glucose as a carbon source in M9 minimal media®’. Mutations for the evolved strains
are listed on aledb.org and in Table S1.

Culture conditions

Strains were grown overnight in M9 minimal media with 0.4% w/v glucose as a carbon source.
Fresh media was inoculated with the overnight culture at an initial 600 nm optical density (OD)
of 0.025. Cultures were aerated with a stir bar at 1100 rpm in a water bath maintained at 37°C
until OD reached 0.5. 50 mM PQ was added to reach the desired concentration in stressed
flasks. After 20 minutes, samples were harvested for transcriptomics or ribosome profiling.
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Method Details

Adaptive laboratory evolution

ALE was performed using a similar protocol to Mohamad et al. 2017¢. Parallel cultures were
started in M9 minimal medium by inoculation from isolated colonies. Evolution was performed in
an automated platform with 15 mL working volume aerobic cultures maintained at 37°C and
magnetically stirred at 1100 rpm. Growth was monitored by periodic measurement of the 600
nm OD on a Tecan Sunrise microplate reader, and cultures were passaged to fresh medium
during exponential cell growth at an OD of approximately 0.3. Growth rates were determined for
each batch by linear regression of In(OD) versus time. At the time of passage, PQ concentration
in the fresh medium batch was automatically increased if a growth rate of 0.08 h™' had been met
for 3 consecutive flasks. Samples were saved throughout the experiment by mixing equal parts
culture and 50% v/v glycerol and storing at -80°C.

DNA sequencing and mutation calling

DNA was isolated as described®®. Total DNA was sampled from an overnight culture and
immediately centrifuged for 5 min at 8,000 rpm. The supernatant was decanted, and the cell
pellet was frozen at -80°C. Genomic DNA was isolated using a Quick-DNA Fungal/Bacterial
Microprep Kit (Zymo Research) following the manufacturer’s protocol, including treatment with
RNase A. Resequencing libraries were prepared using a Kapa Hyper Plus Kit (Roche
Diagnostics) following the manufacturer’s protocol. Libraries were run on HiSeq and/or NextSeq
(Numina).

Sequencing reads were filtered and trimmed using AfterQC version 0.9.7%°. We mapped reads
to the E. coli K-12 MG1655 reference genome (NC_00913.3) using the breseq pipeline version
0.33.17°. Mutation analysis was performed using ALEdb8.

Physiological characterization

Growth curves and exometabolomic samples were generated by inoculating cells from an
overnight culture to a low OD using the same conditions as the ALE. For each strain, we started
with 0 PQ. OD measurements and samples were taken at various time points until stationary
phase was reached. We then passaged the cells into a new flask, stepped up the PQ
concentration, and characterized the next curve, for concentrations 125, 250, 500, 750, 1500,
and 2500 uM. We stopped if growth was not observed after 48 hours. For each flask, growth
rates were determined by linear regression of In(OD) versus time in the early exponential part of
the curve.

We took cell culture samples at the same time as OD measurements for the starting strain at 0
and 125 uM PQ, and for the evolved strains at 0, 250, and 750 uM PQ. Samples were sterile
filtered, and extracellular by-products were determined by high pressure liquid chromatography
(HPLC). The filtrate was injected into an HPLC column (Aminex HPX-87H 125-0140). The
concentrations of the detected compounds were determined by comparison to a normalized
curve of known concentrations. Substrate uptake and secretion rates in the early exponential
growth phase were calculated from the product of the growth rate and the slope from a linear
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regression of the grams (dry weight) (gDW) versus the substrate concentration. The biomass
yield was calculated as the quotient of the growth rate and the glucose uptake rates during the
exponential growth phase.

RNA Sequencing

3 mL of induced culture was added to 6 mL of RNAProtect Bacteria Reagent (Qiagen) and
vortexed, then left at room temperature to incubate for 5 minutes. Cells were pelleted,
resuspended in 400 L elution buffer, and then split into two tubes with one kept as a spare.
One pellet was then lysed enzymatically with addition of lysozyme, proteinase-K, and 20% SDS.
SUPERase-In was added to maintain the integrity of the RNA. RNA isolation was then
performed according to the RNeasy Mini Kit (Qiagen) protocol. rRNA was depleted using the
Ribo-Zero rRNA Removal Kit for gram negative bacteria according to the protocol. Libraries
were constructed for paired-end sequencing using a KAPA RNAseq Library Preparation kit.
Reads were sequenced on the Illlumina NextSeq platform.

As part of the PRECISE-1K dataset*', transcriptomic reads were mapped using our pipeline
(https://github.com/avsastry/modulome-workflow)?' and run on Amazon Web Services Batch.
First, raw read trimming was performed using Trim Galore with default options, followed by
FastQC on the trimmed reads. Next, reads were aligned to the E. coli K-12 MG1655 reference
genome (NC_000913.3) using Bowtie”". The read direction was inferred using RSeQC". Read
counts were generated using featureCounts’. All quality control metrics were compiled using
MultiQC™. Finally, the expression dataset was reported in units of log-transformed transcripts
per million (log(TPM)).

All included samples passed rigorous quality control, with “high-quality” defined as (i) passing
the following FastQC checks: per_base_sequence_quality, per_sequence_quality _scores,
per_base_n_content, adaptor content; (ii) having at least 500,000 reads mapped to the coding
sequences of the reference genome (NC_000913.3); (iii) not being an outlier in a hierarchical
clustering based on pairwise Pearson correlation between all samples in PRECISE-1K; and (iv)
having a minimum Pearson correlation between biological replicates of 0.95.

Ribosome profiling

Ribosome profiling libraries were created using a modified version of the protocol outlined in
Latif et al.”. The protocol was modified to negate the effects of the addition of chloramphenicol
by grinding frozen cells. 50 mL of cell culture was harvested by centrifugation for 4 minutes at
37°C in a 50 mL conical tube containing 0.4 g of sand. Supernatant was aspirated quickly and
the pellet was flash frozen in liquid nitrogen. Pellets were transferred into a liquid nitrogen
cooled mortar and pestle, 500 pL of lysis buffer was added, and the pellet was pulverized to lyse
the cells. Lysate was transferred to a falcon tube to thaw on ice. The lysate was then
centrifuged, and the supernatant was isolated to continue with the published protocol. Reads
were sequenced on an lllumina HighSeq machine using a single end 50 bp kit.

25


https://www.zotero.org/google-docs/?uPHUHg
https://github.com/avsastry/modulome-workflow
https://www.zotero.org/google-docs/?SGRh6j
https://www.zotero.org/google-docs/?uRlnUr
https://www.zotero.org/google-docs/?eCX9VH
https://www.zotero.org/google-docs/?L7uASP
https://www.zotero.org/google-docs/?KidobA
https://www.zotero.org/google-docs/?sWbP0D
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Adaptors were removed from ribosome profiling reads using CutAdapt v1.87¢, then mapped to
the E. coli K-12 MG1655 reference genome (NC_000913.3) using bowtie’!. They were scored at
the 3’ end to generate ribosome density profiles.

Generation of pitA mutant strains

The mutations referred to in Figures 4H-K and S2 were introduced into the starting (0_0) and
evolved (1_0) genomes using a Cas9-assisted Lambda Red homologous recombination
method. Golden gate assembly was first used to construct a plasmid vector harboring both
Cas9 and lambda red recombinase genes under the control of an L-arabinose inducible
promoter, a single guide RNA sequence, and a donor fragment generated by PCR which
contained the desired pitA +T mutation and around 200 bp flanking both sides of the Cas9
target cut site as directed by the guide RNA. After allowing cells harboring the plasmid to grow
for 2 hours at 30°C, L-arabinose was added to the media and the cells were allowed to grow for
3 to 5 hours, at which time a portion of the culture was plated. Single colonies were screened
using ARMS PCR. Amplicons spanning the mutation site, generated with primers annealing to
the genome upstream and downstream of the sequence of the donor fragment contained in the
plasmid, were confirmed with Sanger sequencing. Confirmed isolates were cured of the plasmid
by growth at 37°C.

Cell motility assay

We performed motility assays in duplicate for each of the conditions shown in Figure S2. We
mixed a tryptone broth (13 g tryptone and 7 g NaCl per liter of media) with 0.25% agar and the
desired PQ level. We autoclaved the broths, then poured 25 mL into petri dishes and solidified
them at room temperature overnight. Fresh colonies were spotted in the middle of the semi-solid
agar with a toothpick. The plates were then incubated at 37°C for 6-8 hours and imaged on a
Gel Imaging System.

Quantification and statistical analysis

iModulon computation and curation

The full PRECISE-1K compendium, including the samples for this study, was used to compute
iModulons using our previously described method*'’’. The log(TPM) dataset X was first
centered such that wild-type E. coli MG1655 samples in M9 minimal media with glucose had
expression values of 0 for all genes. Independent component analysis was performed using the
Scikit-Learn (v0.19.0) implementation of FastICA. We performed 100 iterations of the algorithm
across a range of dimensionalities, and for each dimensionality we pooled and clustered the
components with DBSCAN to find robust components which appeared in more than 50 of the
iterations. If the dimensionality parameter is too high, ICA will begin to return single gene
components; if it is too low, the components will be too dense to represent biological signals.
Therefore, we selected a dimensionality which was as high as possible without creating many
single gene components, as described’’. At the optimal dimensionality, the total number of
iModulons was 201. The output is composed of matrices M [genes x iModulons], which defines
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the relationship between each iModulon and each gene, and A [iModulons x samples], which
contains the activity levels for each iModulon in each sample.

For each iModulon, a threshold must be drawn in the M matrix to determine which genes are
members of each iModulon. These thresholds are based on the distribution of gene weights.
The highest weighted genes were progressively removed until the remaining weights had a
D’agostino K2 normality below 550. Thus, the iModulon member genes are outliers from an
otherwise normal distribution. iModulon annotation and curation was performed by comparing
them against the known TRN from RegulonDB®. Names, descriptions, and statistics for each
iModulon are available from the PRECISE-1K manuscript*', iModulonDB?°, and Table S2.

Differential iModulon activity analysis

DiMAs were calculated as previously described'®?'. For each iModulon, a null distribution was
generated by calculating the absolute difference between each pair of biological replicates and
fitting a log-normal distribution to them. For the groups being compared, their mean difference
for each iModulon was compared to that iModulon’s null distribution to obtain a p-value. The set
of p-values for all iModulons was then false discovery rate (FDR) corrected to generate
g-values. Activities were considered significant if they passed an absolute difference threshold
of 5 and an FDR of 0.1. The main comparison in this study was between the starting strain at
250 uyM PQ (n = 2) and the combined set of all evolved strains at 250 and 750 pM PQ (n = 61).
Performing the comparison using both concentrations of PQ ensures that our comparison
captures all of the major effects of tolerization. The set of DiMAs was similar when performing
the comparison at just one or the other concentration.

We also performed a brief DEG analysis, which used the same algorithm as above but with
individual gene expression values instead of iModulon activities.

iModulon explained variance calculation

The explained variance for each iModulon in this study was calculated using our workflow?".
Since iModulons are built on a matrix decomposition, the contribution of each one to the overall
expression dataset can be calculated. For each iModulon, the column of M and the row of A for
the evolved samples in this study were multiplied together, and the explained variance between
the result and the full expression dataset was computed. These explained variance scores were
used to size the subsets of the treemap in Figure 1H. Note that the variance explained by ICA
is ‘knowledge-based’ in contrast to the ‘statistic-based’ variance explanation provided by the
commonly used principal component analysis (PCA).

ME modeling

We used OxidizeME, a genome-scale model of metabolism and expression (ME) with ROS
damage responses®. Models used for flux maps were constrained using phenotypic data
(glucose uptake rate and growth rate) and expression data as previously described?*?°. In order
to force PQ cycling in the model, the lower bounds for the
‘PQ2RED_FWD_FLAVONADPREDUCT-MONOMER_mod_fad’ and ‘PQ10OX_FWD_SPONT’
were set to the same non-zero value and iterated over. Additionally, the former reaction was

27


https://www.zotero.org/google-docs/?vQXj8b
https://www.zotero.org/google-docs/?83ziFP
https://www.zotero.org/google-docs/?zMWV4L
https://www.zotero.org/google-docs/?2grHlj
https://www.zotero.org/google-docs/?f4qCju
https://www.zotero.org/google-docs/?pEP4ze
https://www.zotero.org/google-docs/?ASq4YG
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

amended to accept NADH as an electron donor by editing the stoichiometry. PQ cycling
sweeping calculations were performed by sampling various lower bounds to identify the range
the model could support growth, and then sweeping 100 uniform values within that range. The
total NADH produced through the TCA cycle was calculated by summing the fluxes for the
‘MDH’ and ‘AKGDH’ metabolic reactions. The percentage of the proteome allocated to the TCA
cycle was calculated using the solutions from each model, specifically the translation fluxes:

translation
mei*Vi

% Proteome Allocated to the TCA cycle = —

% translation
%:mwj Vj
translation . . . .
Where mw, and Vl, represents the molecular weight and translation flux of the ith protein
in the TCA cycle, and mw and V]t,mnsmio" represents the molecular weight and translation flux of

the jth protein the entire model. The damaged portion of the proteome was calculated as
follows:

complexformation

mek*Vk
% Damaged Proteome Allocated to the TCA cycle = =
me *Vtranslation
=
Where mw, and V]t,mml“tion are the same variables above, and mw, and Viomplexf ormation

correspond to the kth protein in the table below:

ComplexFormation Reaction ID Associated Protein

damage_SUCC-DEHASE_mod_3fe4s_mod_f | Succinate Dehydrogenase
ad_mod_2fe2s mod_4fed4s o02s

damage_CPLX0-7760_mod_4feds 02s Aconitase A
damage CPLXO0-7761_mod_4feds 02s Aconitase B
damage FUMARASE-A_mod_4fe4s 02s Fumarase A
damage_FUMARASE-B_mod_4fe4s_o02s Fumarase B

The undamaged portion of the proteome allocated to the TCA cycle was calculated as the
difference between the total proteome allocated and the damaged proteome allocated.

Additional resources

iModulonDB: https://imodulondb.org/dataset.html?organism=e _coli&dataset=precise1k
ALEdb: http://aledb.org/stats/?ale _experiment id=1540
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Figure S1. Additional insights from mutational, iModulon, and metabolic analysis. Bars indicate mean + 95%
confidence interval. (A)Venn diagram of the Fur-1 and Fur-2 iModulon genes, color coded by function. lon transport
and storage systems, which may be advantageous under ROS conditions, are enriched in Fur-2. (B-D, H-J) Scatter
plots of iModulon activities with bar plots sharing axes. Light gray dots indicate other samples from PRECISE-1K. In
(C) and (H), samples are colored by relevant mutations, and shapes indicate PQ concentrations according to the
legends. A black arrow connects the starting strain samples between 0 and 250 uM PQ. In bar plots, point colors
indicate PQ concentrations and label colors match with the scatter plots. (B-D) Suf and Isc iModulon activities, which
are both regulated by IscR and encode distinct Fe-S cluster synthesis mechanisms (Suf is more robust to stress
compared to Isc). (E) Knowledge graph linking two key TF mutations through their iModulons to negative feedback
which averts stress. (F) SoxS iModulon activity is correlated with PQ in both starting and evolved strains (Pearson R
=0.72, p = 5.5*10"). (G-I) FliA and Fnr-3 iModulon activities by pitA mutation, showing an unexpected upregulation
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in the case of the frameshift pitA*, but not in the case of the pitA deletion. (J) NDH-1 iModulon activities. The NDH-1
iModulon consists of genes (nuoGHIJKLMN) that are controlled by ArcA and Fnr and are all downstream of the nuoG
A40 mutation, which may create a terminator sequence. (K) Pyruvate production rates from exometabolomic
characterizations of evolved strains. Note that the starting strain was characterized at 0 and 125 uM PQ (due to no
growth at higher PQ), whereas the evolved strains were characterized at 0, 250, and 750 uM PQ. Pyruvate is
secreted at high PQ levels, particularly by evolved strains which have downregulated PDH and the TCA cycle.

0 uM PQ 250 uM PQ 750 uM PQ

00

;I pitA*

00

0

1

pitA

10

Figure S2. Swarming assays of pitA mutants. Cells were plated on agar in tryptone broth with glucose and the PQ
concentration shown in the column headers. They were allowed to swarm for one day prior to image capture. The
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pitA mutant strains 0_0::pitA* (D-F) and 1_0 (G-l) swarmed, while wild type pitA strains (A-C; J-L) did not. Panels A
and D are shown in Figure 4K.
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Figure S3. Mutations in genes relevant to metabolism. Colored blocks share a mutation in the given strain and
gene (blue: missense SNP; brown: nonsense SNP; orange: frameshift deletion less than 3 bp; red: large deletion
affecting gene; olive: insertion that does not cause a frameshift). Gene names are colored by type (green: central
carbon metabolic enzyme; purple: redox enzyme; black: other gene relevant to metabolism). Silent mutations, the
e14 deletion, and promoter mutations are omitted.
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Figure S4. The constrained OxidizeME model predicts the flux distribution change in central metabolism after
evolution. Flux distribution changes from specific OxidizeME models, constrained by RNAseq, growth, and glucose
uptake data. TCA cycle flux always decreases after evolution (Figure 6D), and glycolytic flux varies with glucose
uptake rate. Note that glucose uptake increases in evolved strains relative to the stressed starting strain, but some
strains have more or less glucose uptake relative to the unstressed starting strain.
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Supplemental Tables

Table S1. Mutations in ROS tolerized strains.

Mutations details, position, type, sequence change, and affected genes were generated by the
ALEdb mutation calling pipeline®. Hypothetical effect descriptions, both levels of categorization,
and figure references were manually curated. ‘Treemap Category’ was used to generate Figure
1D. Columns labeled with strain numbers indicate presence or absence of the mutation in the
given strain.

Table S2. Significantly differentially activated iModulons in ROS tolerized strains.

List of significant DiMAs from the comparison shown in Figure 1F, in which evolved strains
under 250 and 750 uM PQ were compared against the starting strain under 250 pM PQ.
‘Difference’ refers to the difference between the mean activity level of both groups, which has an
absolute value greater than 5. ‘P-value’ is the false discovery rate corrected p-value for the
statistical comparison, which is less than 0.1. ‘Explained Variance’ is the explained variance of
the iModulon in the study samples, which was used with ‘Treemap Category’ to generate Figure
1H. ‘Treemap Category’, ‘Confidence’, ‘General Notes’, ‘Start Strain’, and ‘Evolved Strain’ were
manually curated, with the latter two columns describing predicted regulatory mechanisms
explaining the iModulon’s behavior in the respective samples. Remaining descriptive columns
are copied from the PRECISE-1K curation of these iModulons*'. See iModulonDB.org for details
of each iModulon, including its member genes, activity levels across over 1000 conditions
including those from this study, and overlap with associated regulons.
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Note S1. PQ tolerant strains modify membrane transport, related to Figure
3.

In the 3_0 strain and its subsequent evolutions, we do not observe the emrE amplification.
However, our mutation caller predicted a 9-base pair (bp) insertion 39 bp upstream of emrE in
these strains, consistent with 1S1 insertions that can affect transcription or translation®. We do
not observe an iModulon signal in the transcriptome of these strains (Figure 3C). However, we
do have evidence that increased expression of emrE provides an evolutionary benefit.
Therefore, we hypothesize that this mutation would increase translation of EmrE.

The 3_0 strain and its descendants have a large deletion containing 26 genes (Figure 3B). The
deletion may have been mediated by the insH11 transposase at its 3’ end. Similarly to the emrE
Amp iModulon discussed in the text, the Del-1 iModulon captured the effect of this change in the
genome on the composition of the transcriptome. It showed a strong decrease in activity in the
strains harboring the deletion (Figure 3D). The deleted segment contained a variety of genes,
making it difficult to deduce its benefit to ROS tolerization. However, we note that it contained
four transporter genes: yhhJ, pitA, dipB, and arsB. Removal of one or several of these
transporters may have decreased PQ influx or helped to prevent influx of other oxidized
molecules that resulted from oxidative damage.

In addition to the transporters in the Del-1 iModulon, other deleted genes may have been
important for the PQ tolerance of the 3_0 strain and its subsequent evolutions (Figure 3B).
These include universal stress response regulators uspBA, reductases gor, arsC, and yhiN, or
ribosome-related genes rbbA, rsmJ, and rimdJ. yhhJ and yhiN are uncharacterized genes with
putative assignments, and these results support their potential role in PQ stress.

The oppABCDF operon was a common target of mutations. Nine of the eleven
second-generation strains acquired the same 1,199 bp deletion of the insH21 1S5 element
upstream of it, and one strain, 1_1, deleted the entire operon and its surrounding genes. The
deletion was captured by an iModulon (Del-2). The activity of this iModulon shows a
downregulation in the deleted strain, and little change between the evolved strains with and
without the upstream deletion (Figure 3E). Since oppABCDF is known to be a promiscuous
tripeptide transporter that prefers positively charged substrates®’ , it should be considered as a
possible route of entry for PQ. The prevalence of the upstream deletion suggests that such a
deletion provides improved tolerance, and there is an apparent benefit to a complete deletion of
the entire operon. This leads us to predict that the upstream deletion negatively impacts
oppABCDF translation, as has been suggested in past studies® .

In addition to the genome-transcriptome-phenotype associations we analyze in depth, mutations
on their own can predict putative new functions for their target genes. Therefore, we include all
transporters mutated in this study in Figure 3F so that further research can explore their
affinities for PQ and other oxidized compounds, as well as the effects of the observed SNPs.

34


https://www.zotero.org/google-docs/?XMUUsL
https://www.zotero.org/google-docs/?m5NpJV
https://www.zotero.org/google-docs/?xsH8sK
https://doi.org/10.1101/2022.12.20.521246
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521246; this version posted December 23, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Note S2. Fur iModulon activities are variable and depend on fur mutations,
related to Figure 4 and S1A.

Fur, the ferric uptake regulator, regulates two main iModulons whose activities have a non-linear
activity relationship which has been described in detail previously*® (Figure 4B-D). Fur-1 mostly
contains genes for siderophore synthesis and transport (Figure S1A) which are derepressed
under more extreme iron starvation conditions. Fur-2 contains ferrous iron transport genes, as
well as siderophore transport and hydrolysis systems, which are derepressed more easily under
relatively higher iron concentrations. The activities of the two iModulons form a logarithmic curve
(Figure 4C), which captures the nonlinear effect of Fur on the composition of the transcriptome.

ROS demetallates iron enzymes and oxidizes iron(ll) to iron(Il1)*%4. Thus, PQ would induce
higher intracellular iron concentrations that could be sensed by Fur and cause repression of
both iModulons (black arrow, Figure 4C)%. This hypothesis is consistent with the starting
strain’s behavior. After evolution, a decrease in oxidative stress leads to a general upregulation
of the Fur-1 and Fur-2 iModulons (p = 0.031 and 0.034, respectively).

The evolved strains exhibit a great degree of variation along the Fur curve (Figure 4C). Since
many different factors could perturb iron concentrations for each culture (e.g. local ROS
concentrations, trace element mixture variability, enzyme metallation levels, etc.), and Fur is
highly sensitive to those concentrations, we believe that this variation is to be expected.

The mutation fur P18T was observed in three separate strains (1_2, 1_4, and 3_4). Strains with
this mutation tend to be above the trend line in the Fur scatterplot (Figure 4E), suggesting a
higher preference for expressing Fur-2 relative to Fur-1. The strains with this mutation
specifically upregulated the feoABC genes, which are members of Fur-2 (Figure 4F, S1A).This
transporter system may be highly beneficial under ROS conditions because it directly couples
demetallation of an Fe-S cluster to iron transport, allowing for rapid decreases in iron acquisition
when ROS levels are high?’.

Two other mutations were also observed in fur. H71Y in 1_3 tends to decrease expression of
both iModulons, perhaps by strengthening Fur binding. This would potentially have the benefit of
preventing iron toxicity. However, this strategy was not utilized by any other strains and it may
have also hampered iron homeostasis in situations where local iron concentrations are low. The
other mutation, A53G in 3_2, did not have a detectable effect on the transcriptome.

Note S3. IscR mutations modify the balance between Fe-S cluster
synthesis mechanisms and wildtype SoxS ensures ROS readiness, related
to Figure 4 and S1F.

IscR regulates two separate iron-sulfur (Fe-S) cluster synthesis systems which have iModulons,
Isc and Suf®®. Isc is associated with housekeeping Fe-S synthesis, whereas Suf is robust to iron
starvation and ROS stress® . Across our strains, we observed 5 mutations in iscR, and each
associated with a particular region in a scatter plot of Suf and Isc iModulon activities (Figure
S$1B-D). Interestingly, most mutations do not strongly upregulate the ROS-tolerant Suf system
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(Figure S1D), and they either increase or decrease the expression of the Isc system (Figure
S1B).

The particular regions in Figure S1C that were selected by the strains are somewhat
unexpected. iscR C104S has been previously reported®®'. The mutation is in IscR’s own Fe-S
binding site, which causes it to maintain an unbound state that should de-repress Isc and
activate Suf®®®'. We observe a strong upregulation of Isc in these strains, with more modest
increases in Suf iModulon activity. The other most common mutation, iscR V55L, seems to
downregulate Isc while also keeping Suf near basal levels. Given that ROS stress induces Fe-S
cluster damage and Suf is significantly better at handling ROS stress®®, we would initially expect
mutations which upregulate Suf to be more effective under the ALE conditions and therefore be
enriched in these strains. We only see one mutation, iscR V87A, which seems to achieve that.

One possible explanation for this unexpected outcome is that the proteomic cost of the systems,
particularly Suf, selects against strains which allocate too many resources towards Fe-S
synthesis; this explanation has been modeled in a ME flux balance analysis®. However, another
possibility relates to the control of electron flux described in the metabolic section of the text:
many redox enzymes, including some in respiration and the TCA cycle, contain Fe-S clusters®.
Damage to these enzymes by high ROS slows oxidative metabolism. This would charge fewer
electron carriers and therefore slow the PQ cycle, allowing the cell to recover. It would therefore
be better to express less Suf so that Fe-S synthesis would remain sensitive to ROS — using Isc
or less of both systems would strengthen the coupling between ROS and respiration as a
means of controlling the PQ cycle (Figure 4K). Thus, like the Fur P18T mutation (Note S2), this
mutation enables a negative feedback loop, which aids in slowing oxidative metabolism and PQ
cycling when stress is high (Figure S1E). This agrees with metabolic insights discussed in
Figures 6 and 7.

While discussing Fe-S clusters, it is also worth noting that every strain mutated the putative
Fe-S cluster repair gene ygfZ. This provides evidence for its role in Fe-S cluster homeostasis
and motivates further study (Table S1).

Interestingly, there was a lack of mutations affecting soxS, the regulator of processes that
remove the ROS superoxide®. SoxS iModulon activity is highly correlated with PQ in the
starting and all evolved strains (Figure S1F; Pearson R = 0.72, p = 5.5*10"). The lack of
mutations suggests that ROS readiness is preserved by using wild-type soxS.

Note S4. PitA mutants’ upregulation of motility also upregulates anaerobic
metabolism, providing a benefit to the strains, related to Figure 4 and S1.

We propose the following possible mechanism for the benefit that motility upregulation provided
to the pitA mutants (Figure 4H-K). The gene aer, which is upregulated as part of the FliA
iModulon, mediates aerotaxis and would therefore allow cells to swim away from locally high
concentrations of ROS%°. However, in our well-mixed cultures, there may not be local high
ROS concentrations. In addition to its role in chemotaxis, aer helps to upregulate the
Entner-Doudoroff pathway and anaerobic metabolism*®, a tendency which can be observed in
the iModulon activities of our strains. Each of the anaerobic iModulons, Fnr-3 in particular, is
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slightly upregulated by the strains with pitA* (Figure S1G-l). An increase in anaerobic
metabolism would help to prevent PQ cycling as described in the text. Thus, a decrease in
oxidative metabolism is also achieved by the cells through this very non-conventional
mechanism. An added benefit may lie in the expression of fliZ, a member of the FIliA iModulon,
which is known to antagonize RpoS and would therefore be expected to promote growth®.

Note S5. iModulons related to specific metabolites reflect decreased stress
after tolerization, related to Figure 5.

The ppGpp iModulon contains a large set of growth-related genes regulated by the master
regulator ppGpp?’. It follows a similar pattern to the Translation iModulon, suggesting that
ppGpp concentrations decline after evolution (Figure 5C).In addition to the Translation and
ppGpp iModulons, a few other differentially activated iModulons with more specific functions are
also likely to be responding to ppGpp levels, including the Nucleotide Stress, Glutarate, Efflux
Pump, and Biofilm iModulons (Table S2).

Ribose concentrations are sensed by RbsR%, which represses the Ribose iModulon in its
presence. Ribose is produced as part of the pentose phosphate pathway (PPP), which is the
primary pathway for producing NADPH to detoxify ROS. Upon initiation of oxidative stress, PPP
flux increases, producing ribose®. Oxidative stress also slows growth and DNA synthesis, which
will decrease ribose utilization. We therefore expect an increase in ribose concentrations in the
starting strain upon PQ stress, which is observed as a decrease in Ribose iModulon activity
(Figure 5H). In the evolved strains, flux shifts towards glycolysis and away from the PPP,
producing less ribose. They also synthesize more DNA to support faster growth, using ribose.
Therefore, Ribose iModulon activity increases relative to the starting strain, while still exhibiting
a negative correlation with PQ.

The Purine iModulon is regulated by PurR and ppGpp, and its activation pattern in our samples
(Figure 51) mirrors that of the Translation and ppGpp iModulons (Figure 5E). This activation
may be explained by direct action by ppGpp, or via PurR, which represses these genes in the
presence of hypoxanthine or guanine'®. The faster growing evolved strains would perform more
DNA replication and RNA synthesis, and therefore require purine synthesis, depleting the
metabolites which are sensed by PurR and de-repressing the iModulon.

Changes in Cysteine-1 iModulon activities may be explained by increased ROS readiness and
subsequent improvement in amino acid homeostasis (Figure 5J). This iModulon is regulated by
CysB, which can be inhibited by cystine and other oxidized sulfur compounds''1%2, Cysteine is
very easily oxidized'®*'%, which may explain the dramatic downregulation of the iModulon upon
PQ addition in the starting strain. The evolved strains with PQ have significantly higher
Cysteine-1 activity compared to the parent strain with PQ, due to the success of their
tolerization strategies.

The Copper iModulon, which contains copper efflux genes regulated by CueR, CusR, and HprR,
is downregulated in the evolved strains (Figure 5K). Copper is redox-sensitive, and its efflux
depends on the proton-motive force (PMF) or ATP'®. It is also an important cofactor for various
enzymes, including the superoxide dismutase sodC'®. Oxidative damage should decrease the
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PMF and ATP concentrations and alter the copper redox state, which would explain the
iModulon’s upregulation in the stressed starting strain. The evolved strains downregulate this
iModulon, reflecting improvements in metal homeostasis resulting from ROS tolerization.

The Arginine iModulon is generally upregulated in the evolved strains relative to the stressed
starting strain. This set of genes is regulated by ArgR, which represses them in the presence of
arginine, and is also influenced by ppGpp'%. The iModulon activity in the starting strain indicates
that oxidative stress increases arginine concentrations. This activation may be due to a variety
of reasons, including damage to polyamine synthesis pathways that use arginine as a
precursor'®1%_Since the stressed evolved strains behave more like the unstressed starting
strain, it appears that arginine homeostasis is restored by ROS tolerization.

Note S6. Synergistic mutations in PDH and a tRNA balance the tradeoff,
related to Figure 5.

The growth/stress tradeoff is embodied by interactions between two mutations, which both
occurred in both the 1_0 and 2_0 strains. First, aceE acquired a C—T nonsense SNP, creating
an amber stop codon'?: Q791* in 1_0 and Q409* in 2_0. This mutation inactivated PDH and
likely significantly decreased flux into the TCA cycle. While effective early in the evolution at
decreasing PQ cycling, the change was extremely damaging. Interestingly, both 1_0and 2_0
later acquired the same C—T SNP in the anticodon of the glutamine tRNA g/nX™"'. This second
change enabled the mutant g/nX to read through the initial aceE truncation, allowing for some
functional PDH to be translated and utilized for energy generation. Due to competition between
stop codon release factors and glnX, functional aceE translation would not return to wild type
levels'?, but rather find an intermediate level which balanced the tradeoff.

We quantified the above relationship using ribosome profiling (Figure 5C). By measuring the
fraction of ribosomes bound to the sequence before and after the truncating SNP, we
demonstrated the near complete deactivation of aceE translation in the midpoint strain. In the
2_0 strain with both the aceE and ginX mutations, translation was partially restored (to a ratio of
0.2310.08). Thus, synergy between these two mutations brokered a compromise between the
energy and stress-generating effects of TCA cycle flux.

The 3_0 strain acquired a frameshift 1 bp deletion in aceE instead of the nonsense SNP. This
meant that it could not employ a similar strategy to 1_0 and 2_0. However, two of its second
generation derivative strains (3_1 and 3_3) had insertions at or near the deletion (Figure S3),
which may have served a similar purpose in re-increasing PDH levels.

Note S7. NADH dehydrogenase and other reductases may be PQ
diaphorases, related to Figures 6 and S2.

In addition to the NADH production-related mutations described in the text, we also observe
NADH utilization-related mutations. Five strains acquired unique mutations in nuoC, nuoG, and
nuoM of the NADH dehydrogenase complex (NDH-1). A 40 bp deletion within nuoG appears to
induce early termination of transcription, since genes downstream of it are captured by the
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NDH-1 iModulon and strongly downregulated in the strain with the deletion (Figure S1J). Note
that another strain deleted 123 bp in a nearby region of the same gene, but we do not observe
early termination in that strain. The prevalence of these mutations suggests a benefit to NDH-1
LOF under PQ conditions.

Cellular enzymes which catalyze PQ reduction are called PQ diaphorases, and three have been
identified in E. coli by past studies®" '3, Those studies suggested that NADPH plays a larger role
than NADH, but our mutations preferentially affect NADH production and NDH-1. It is possible
that transhydrogenases first convert NADH to NADPH"* prior to the PQ cycle. Alternatively,
NDH-1 and other mutated NADH reductases from this study (e.g. cyoB, ubiF, torZ, and trxC;
Figure S3) ought to be considered as potential PQ diaphorases. Though NDH-1 has not been
implicated in PQ cycling in E. coli, this phenomenon has been observed in mammals %2,

Note S8. Exometabolomics revealed secretion of pyruvate, consistent with
TCA LOF, related to Figures 6 and S2.

In addition to the glucose uptake rates discussed in the text, our exometabolomic physiological
characterization quantified production of organic acids. We do not report the specific rates in the
text because of the low signal to noise ratio for the low concentrations of these compounds in
the early exponential phase region. However, it was interesting to note that pyruvate was
secreted by several evolved strains at 750 uM PQ (Figure S1K). This is consistent with the
expected decreased function of PDH and TCA that was predicted from the mutations, and with
the intracellular pyruvate concentration increase predicted for all PQ levels in the evolved
strains (Figure 7E, 7H; Note $9). We also observed acetate production by all strains.

Note S9. iModulon activities shift tolerant strains towards anaerobic
metabolism and glycolysis, related to Figure 7.

ArcA is part of the ArcAB two-component system, which senses the ratio of reduced to oxidized
quinones in the ETC®. In the starting strain, oxidative stress from PQ shifts this ratio toward
oxidation, causing ArcAB to be less active and derepress the ArcA iModulon. As strains evolve,
they experience less oxidative stress due to their transport and TCA cycle mutations. This
lowered stress leads to a more reduced quinone pool, an increase in ArcAB activity, and
repression of the ArcA iModulon (Figure 7A). The ArcA iModulon contains aerobic growth
genes such as oxidoreductases and cytochromes, so its repression will encourage anaerobic
metabolism, fermentation, and a decreased reliance on NADH.

There are two strains which have mutations in the ArcAB two-component system, affecting ArcA
iModulon activity. A frameshift in the sensor kinase arcB in 3_1 has a moderate derepressing
effect, and an early stop in arcA in 1_1 had a stronger derepressing effect (Figure 7A). These
two strains are an exception which appear to have struck a different balance in the
growth/stress generation tradeoff compared to the other evolved strains. They express aerobic
metabolism genes as well as the Fnr-activated anaerobic fermentation genes, which would
enable them to use more energy producing pathways but could also exacerbate stress
generation.
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Fnr senses oxygen levels via oxidative damage to its Fe-S cluster and activates anaerobic
metabolism genes when the cluster is intact®®'"s. Its regulon is captured by three iModulons,
whose activities behave similarly in this study (Figure 7B-D). The decrease in oxidative stress,
as well as the success of iron-related mutations, help to maintain more active Fnr and therefore
upregulate this iModulon.

The Cra iModulon captures a set of genes of glycolysis and carbohydrate catabolism genes
which are repressed by Cra''®"’. Cra regulates these genes by acting as a flux sensor for
glycolysis, since their suppression is activated by fructose-1,6-bisphosphate’®. We observe an
increase in Cra iModulon activity in the evolved strains (Figure 7F), which both indicates and
positively regulates an increase in glycolytic flux.

The Crp-2 iModulon contains mostly phosphotransfer (PTS) system genes which are activated
by the master regulator Crp'®. Crp responds to cAMP levels in a biphasic manner, and cAMP
levels themselves have complex regulation'®. We observe a strong downregulation of the Crp-2
iModulon in the stressed starting strain, but a return to unstressed or intermediate levels in the
evolved strains (Figure 7G). This change is consistent with a return to homeostasis, and may
indicate a more active PTS, higher glucose uptake, and increase in ATP concentrations after
evolution.

The LOF mutations in PDH and the TCA cycle should increase intracellular pyruvate
concentrations, since pyruvate is the initial substrate for those reactions. The Pyruvate-2
iModulon is regulated by PyrR, which can sense pyruvate concentrations '2'. Pyruvate-2 activity
increases in the evolved strains (Figure 7H), which is consistent with this prediction. We also
observe pyruvate secretion at high PQ levels (Figure S1K; Note S8), probably due to the
oxidative damage to PDH and the TCA cycle causing so much pyruvate accumulation that it

must be secreted.
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