

1 Cost and benefits of being social: examining the influence of
2 sociality on faecal parasites in free-ranging rhesus
3 macaques

4 Melissa A. Pavez-Fox^{1,*}, Carla M. Escabi-Ruiz², Jordan D. A. Hart¹, Josue E. Negron-Del Valle³,
5 Daniel Phillips³, Michael J. Montague², Michael L. Platt^{2,4,5,6}, Angelina Ruiz-Lambides^{7,8},
6 Melween I. Martinez⁷, Cayo Biobank Research Unit¹, James P. Higham⁹, Noah Snyder-
7 Mackler^{3,10,11}, and Lauren J.N. Brent¹

8

9 ¹Centre for Research in Animal Behaviour, University of Exeter, Exeter, United Kingdom EX4
10 4QG

11 ²Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA

12 ³Center for Evolution and Medicine, Arizona State University, Temple, AZ 85281, United States

13 ⁴Departments of Anthropology, University of Pennsylvania, Philadelphia, PA, USA

14 ⁵Departments of Psychology, University of Pennsylvania, Philadelphia, PA, USA

15 ⁶Departments of Marketing, University of Pennsylvania, Philadelphia, PA, USA

16 ⁷Caribbean Primate Research Center, University of Puerto Rico, San Juan, Puerto Rico
17 00936-5067

18 ⁸Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary
19 Anthropology, Leipzig, Germany 04103

20 ⁹Department of Anthropology, New York University, New York, NY 10003

21 ¹⁰School of Life Sciences, Arizona State University, Temple, AZ 85281

22 ¹¹School for Human Evolution and Social Change, Arizona State University, Temple, AZ 85281

23

24 *Corresponding author. Email: mp66@exeter.ac.uk

25

26

Abstract

27

28 Parasites and infectious diseases constitute an important challenge to the health of
29 group-living animals. Social contact and shared space can both increase disease
30 transmission risk, while individual differences in social resources can help prevent
31 infections. For example, high social status individuals and those with more or stronger
32 social relationships may have better immunity and, thus, lower parasitic burden. To test
33 for health trade-offs in the costs and benefits of sociality, we quantified how parasitic
34 load varied with an individual's social status, as well as with their weak and strong
35 affiliative relationships in a free-ranging population of rhesus macaques (*Macaca*
36 *mulatta*). Social resources may also protect against infection under environmentally
37 challenging situations, such as natural disasters. We additionally examined the impact of
38 a major hurricane on the sociality-parasite relationship in this system. We found that
39 both weak and strong proximity partners, but not grooming partners, were associated
40 with lower protozoa infection risk. Social status was not linked to infection risk, even
41 after the hurricane. Overall, our study highlights the buffering against infection that
42 affiliative partners may provide, suggesting individuals can compensate for the health
costs of sociality by having partners who tolerate their presence.

43 **Introduction**

44 Parasites and infectious diseases are one of the major costs associated with group living.
45 High population densities and high rates of social interactions can increase parasite
46 transmission, particularly of parasites that rely on social contact between hosts [1].
47 However, not all individuals in a group are equally likely to get infected, possibly due to
48 differentiated patterns of interactions (*i.e.*, not all group members interact with all others)
49 that can modulate levels of exposure and susceptibility to infection [2]. For instance, it is
50 now well established that social partners are not only a potential source of infection but can
51 also be a valuable form of social capital that can positively impact their partner's health and
52 fitness [3, 4]. Recognising how group-living animals manage the significant trade-off
53 between the cost and benefits of social interactions can bring us closer to understanding the
54 evolution of sociality.

55 Affiliative social behaviours can have opposing effects on infection risk that may depend
56 on the type of interaction. Grooming - a common affiliative behaviour observed in mammals
57 - involves direct social contact and can increase the likelihood of infection by directly
58 transmitted parasites. For example, in Japanese macaques (*Macaca fuscata*)[5], spider
59 monkeys (*Ateles hybridus*) [6], vervet monkeys (*Chlorocebus pygerythrus*) [7] and savannah
60 baboons (*Papio cynocephalus*) [8] individuals with more grooming partners or that engaged
61 more often in grooming interactions were more likely to be infected with nematodes.
62 However, grooming has also been linked to health benefits by directly removing
63 ectoparasites [9, 10]. Grooming is also considered a key behaviour by which social animals
64 establish relationships [11, 12, 13, 14], which can themselves provide indirect health
65 benefits by increasing access to food or shelter [15], or by preventing injuries [16], which
66 can, in turn, promote immunity and resistance to parasites [17, 18]. Similarly, close spatial
67 proximity of individuals might be more favourable for the transmission of parasites,
68 especially those that can survive for extended periods in the environment. For instance,
69 belonging to the same social group and sharing space predicted bacterial and protozoan
70 infection in Verreaux's sifakas (*Propithecus verreauxi*)[19] and Grant's gazelles (*Nanger*
71 *granti*)[20], respectively. But spatial proximity is also commonly considered an affiliative
72 interaction reflecting social tolerance, thus, it could alternatively reduce the susceptibility to
73 infection in cases where it provides animals with more opportunities to access the
74 resources necessary to maintain optimal health or reduce exposure by providing access to
75 resources of better quality (*i.e.*, uncontaminated food) [21, 22, 19, 23]. All these examples
76 highlight the disease-linked trade-offs that an animal must balance when interacting with
77 conspecifics. Yet, the type of interaction is not the only factor influencing an individual's
78 exposure to and ability to cope with communicable diseases- the quality of their
79 relationships with others may play a key additional role.

80 A growing body of research has highlighted the putative importance of weak and strong
81 relationships on an individual's fitness [24, 25, 26] with potential implications on parasite
82 transmission. Having many social partners with whom infrequent interactions occur (*i.e.*,

83 weak relationships) may pose a higher risk of transmission by increasing the diversity of
84 hosts with whom the animal interacts [27]. Strong relationships, where stable social
85 partners frequently interact in an affiliative manner, may also increase the risk of parasite
86 transmission because of longer exposure time [28]. Depending on the context, individuals
87 may prioritise specific relationship types to compensate for the costs associated with social
88 transmission of parasites. For example, weak affiliative relationships may be beneficial in
89 adverse environmental conditions and/or when resources are limited. In macaque species,
90 having more social partners has been associated with enhanced social thermoregulation
91 [29] and heat-stress avoidance [30] when facing harsh winters or a major hurricane,
92 respectively. Strong affiliative relationships can also promote health when expensive
93 returns are required. In vampire bats (*Desmodus rotundus*), for instance, individuals were
94 more likely to donate a blood meal to bats with whom they groomed more frequently [11].
95 Therefore, both strong and weak affiliative relationships could potentially compensate for
96 the health costs of parasite transmission associated with sociality, but their relative
97 importance may differ depending on environmental conditions.

98 Another important component of sociality that might also have competing effects on
99 infection risk are dominance hierarchies. On one hand, the way social status (*i.e.*, dominance
100 rank) is acquired seems to influence parasitic infection in some mammals. For instance, in
101 rhesus macaques (*Macaca mulatta*) individuals that aggressed others more often had a
102 higher risk of bacterial infection [17]. Similarly, in meerkats (*Suricata suricatta*) animals
103 that were more often victims of aggression were at greater risk of contracting tuberculosis
104 [31]. On the other hand, social status may determine inequalities in access to resources,
105 with individuals higher in the hierarchy at an advantage compared to low-status individuals
106 [32]. Having priority or better access to resources might translate into reduced chances of
107 parasitic infection due to disparities in health status and in the susceptibility to infection
108 [33, 34] or, conversely, into higher chances of infections if it is associated with greater
109 exposure [35]. For instance, a meta-analysis of male and female vertebrates found that high-
110 social status was associated with higher parasite risk [36]. Animals at the highest risk were
111 males from species in which social status determines mating effort, suggesting that high-
112 status and priority of access to mates can also lead to higher exposure to parasites. Thus,
113 how dominance hierarchies impact parasite risk is likely to vary in a similar way as it does
114 to social relationships - depending on the socio-ecological context and how the inequalities
115 it entails translate into health differences.

116 Growing evidence has contributed to our understanding of the associations between
117 affiliative relationships, social status, and infectious diseases [37, 38, 2]. Yet results to date
118 are mixed and we are still far from a thorough comprehension of the contexts under which
119 social interactions constitute a risk or act as a buffer against parasite infections. For
120 instance, the ecological context can not only shape the distribution and abundance of
121 parasite species [39] but also the aggregation patterns of individuals [30], both with
122 potential consequences on infection dynamics [40]. Further efforts to disentangle some of

123 the factors that may influence the link between sociality and infection including the types of
124 social interactions involved in parasite transmission, the role of different affiliative
125 relationships in buffering infection risk along with individual differences in susceptibility
126 due to age, sex and social status are therefore required. The sociality/infection trade-offs
127 must be particularly relevant in the context of extreme environmental events, which may
128 cause dramatic changes in the environment and in the dynamics of parasite transmission
129 [41].

130 Here, we studied how social and ecological variation predicted gastro-intestinal parasite
131 burden in a free-ranging population of rhesus macaques. Monkeys in this population self-
132 organize into groups and interact spontaneously with each other, allowing us to explore the
133 consequences of natural variation in social behaviour on infection risk. A natural disaster
134 Hurricane Maria- hit this population in 2017 causing dramatic changes in the environment
135 including a massive decline in vegetation (63%) [30], which provided a unique opportunity
136 to explore how changes in the ecological conditions shape parasite dynamics in a social
137 context. First, to have a better understanding of how changes in the environment affected an
138 individual's infection risk, we explored 1) whether the hurricane was associated with the
139 risk and intensity of parasite infection. Next, 2) we explored if the risk and the intensity of
140 infection were modulated by social status in general and in the context of the hurricane.
141 Given that social status might determine access to better or cleaner resources [32],
142 especially under the context of the hurricane, we expected that high-status individuals
143 would be less likely to be parasitized. Finally, to disentangle the roles of the type of
144 affiliative social interaction (*i.e.*, grooming and proximity) and the quality of relationships
145 (*i.e.*, weak and strong) on parasite risk, we tested 3) whether the number of weak grooming
146 and proximity partners and 4) the frequency of interaction with strong grooming and
147 proximity partners predicted infection risk. Given the complexity of the trade-offs detailed
148 above, we did not have clear predictions for these analyses. However, in a general sense, we
149 expected that individuals with more social capital- either in the form of weak partners or
150 strong relationships- would be less susceptible to infection, while the type of interaction
151 involved might determine the types of parasites found.

152 **Methods**

153 *Subjects and study site*

154 We studied free-ranging rhesus macaques (*Macaca mulatta*) living in the Cayo Santiago field
155 station, Puerto Rico. Animals in this population are provisioned daily with commercial
156 monkey chow and browse on natural vegetation, while water is supplied *ad-libitum* from
157 rainwater collection troughs and is also available from rain water puddles that accumulate
158 naturally. Given that the mean annual population growth rates of the Cayo Santiago
159 macaques are higher than those of wild rhesus populations, live capture and removal of
160 individuals has been implemented by colony management since 1956 [42]. The island is

161 predator-free and there is no regular medical intervention. We studied 67 females and 34
162 males between the ages of 4 and 26 years (mean = 10.7 years). Macaques belonged to three
163 social groups, where each group represents a single year of data: HH was sampled in 2016
164 (group size: 95 adults and 13 subadults), KK was sampled in 2018 (group size: 124 adults)
165 and V was sampled in 2020 (group size: 90 adults). Groups KK and V were sampled after
166 they experienced Hurricane Maria.

167 *Behavioural data collection*

168 Behavioural data were collected using three protocols [43]: 5-min focal animal sample for
169 group HH, group-wide scan sampling for group KK and event sampling for group V. All data
170 collection were done by two experienced observers. Group HH was sampled from August to
171 October 2016 using a previously established protocol for focal sampling [44] that allowed
172 us to have detailed information on social interactions. Specifically, we recorded state
173 behaviours (*i.e.*, resting, feeding, travelling) along with grooming, proximity (*i.e.*, within 2 m
174 of focal animal) and agonistic interactions. For each of these records, the identities of the
175 focal animal and social partner(s), and the specific behaviour were registered. Agonistic
176 interactions included threat and submissive behaviours along with contact and non-contact
177 aggression. We collected 1.46 ± 0.08 hours of behavioural data per individual in HH. Group
178 KK was sampled from January to October 2018 using scan sampling due to constraints
179 following the animals on the island because of the damage caused by Hurricane Maria,
180 which made landfall in Puerto Rico in September 2017. For this group, we recorded state
181 behaviours, affiliative (*i.e.*, grooming and proximity) and agonistic interactions between all
182 visible adults at 15 min intervals. We collected 538.1 ± 161.3 behavioural events per animal
183 in KK. Group V was sampled from January to December 2020 using event sampling because
184 of restrictions on access to the field site during the COVID-19 pandemic as researchers were
185 allowed in the field for half-days and only every 2-3 days. Specifically, we only recorded
186 information on agonistic encounters, focusing on all the aggressive interactions described
187 above so that we could resolve the dominance hierarchy. We collected 7.13 ± 4.6 agonistic
188 events per individual in V.

189 *Parasite data collection and identification*

190 Faecal samples ($n = 1$ per individual) were collected opportunistically in the field from
191 animals living in group V ($n = 30$ samples) and in the laboratory from animals belonging to
192 groups KK ($n = 16$ samples) and HH ($n = 54$ samples), both of which were removed from the
193 population. See Hernandez-Pacheco et al. [42] for details on population control
194 implemented by the field station and Pavez-Fox et al. [18] for details on the removal of
195 individuals used in this study. Although entire groups were scheduled for removal, we could
196 not collect faecal samples from all these individuals. Samples from V were collected a few
197 minutes after defecation within the period of behavioural data acquisition, while samples

198 from HH and KK were collected during necropsy. Each faecal sample was homogenized and
199 stored at room temperature in 10% formalin. In total, we collected 100 samples from 100
200 individuals: 54 samples collected before the hurricane (34 females, 20 males) and 46
201 samples collected after the hurricane (32 females, 14 males).

202 We used the Formalin ethyl-acetate sedimentation technique to extract faecal parasites
203 [45, 46]. We estimated the number of parasites using a wet mount procedure; two drops of
204 a processed sample were placed on a microscopic slide, stained with 5% iodine solution and
205 examined at 10x and 40x magnification. Thick samples were diluted on the slide by adding
206 one drop of 0.9% sodium chloride before the stain. We examined two drops of processed
207 sample twice per sample, thus each individual had two records. For one male, we did not
208 have enough sample to perform the procedure twice, so only one was included. Parasite
209 taxa were identified by direct observation based on their morphology (e.g., shape, colour,
210 size) [47, 48]. Larvae were rarely seen, and we, therefore, identified the presence of
211 helminths based on the morphology of eggs. We identified five parasite taxa across all
212 samples including one protozoa (*Balantidium coli*) and four nematodes (*Ascaris*
213 *lumbricoides*, *Ancylostoma* spp., *Strongyloides fuelleborni*, *Trichuris trichiura*). For our
214 analyses, we focused on the three most prevalent parasites (Fig.1; *B. coli*, *T. trichiura* and *S.*
215 *fuelleborni*) (details on prevalence are presented in the Results), all of which detected in
216 previous studies in this population [49, 50]. We estimated two measures of infection per
217 host: the presence of infection per parasite taxa (i.e., infection risk: 0 = absent, 1 = present)
218 and intensity of infection (i.e., count of parasites on infected hosts) for nematodes and
219 protozoa separately, based on differences on transmission routes [51].

220 *Dominance hierarchies*

221 To determine an individual's social status we computed dominance hierarchies by group
222 and separately for males and females [52, 53, 54]. Our approach is based on the fact that, in
223 this species, males and females acquire social status differently. Females are philopatric and
224 form maternally inherited stable linear dominance hierarchies, where daughters acquire
225 rank just below their mothers [55]. In contrast, males typically disperse from the natal
226 group and acquire rank in the new group by physical contest and tenure [56]. We built
227 independent hierarchies for the three social groups, using the outcomes of win-loss
228 agonistic encounters from focal/scan sampling and *ad-libitum* observations, with known
229 maternal relatedness used to resolve behavioural gaps in the female hierarchy. To account
230 for variation in group sizes, dominance rank was defined as the percentage of group mates
231 from a subject's sex that they outranked, where 100% corresponded to the highest-ranking
232 animal [57].

233 *Social networks*

234 Using proximity and grooming interactions, we constructed social networks for groups that
235 had data on affiliative interactions ($n = 2$ groups). We included all non-juveniles for which
236 we had data: all adult animals from group KK and adults plus subadults for group HH. We
237 built separate networks for each interaction type. We focused on two network metrics that
238 allowed us to delineate relationship types: the number of weak connections and the
239 frequency of interaction (*i.e.*, their relationship strength) with strong partners. Weak
240 connections were quantified as the number of social partners with whom an individual
241 engaged in infrequent affiliative interactions, while the frequency of interaction with strong
242 partners quantifies the time invested in strong relationships [24, 25]. The thresholds used
243 to establish weak and strong partnerships are explained below.

244 We generated undirected weighted Bayesian networks using the BISoN framework and
245 bisonR package [58]. This framework allowed us to account for uncertainty in the edges
246 connecting individuals in the network based on how often they were sampled and, more
247 importantly, propagate this uncertainty to subsequent analyses. In all our networks we
248 modelled the uncertainty around the edges using as prior a beta distribution with alpha =
249 0.1 and beta = 1. For the proximity networks, an edge represented the number of times a
250 pair of individuals were observed in proximity relative to the total observation effort for the
251 dyad (*i.e.*, total scans individual A + total scans individual B). For the KK grooming network,
252 an edge between individuals represented the number of scan records a dyad engaged in
253 grooming interactions relative to their total observation effort (*i.e.*, total scan records
254 individual A + total scan records individual B). For the HH grooming network, edges
255 represented the time a pair of individuals engaged in grooming interactions relative to the
256 total time that dyad was observed. Given that there is no natural statistical model for
257 duration data [58], the time spent grooming and the sampling effort for a dyad were
258 converted to counts by dividing each of these terms by the length of a focal period (5-mins)
259 to make sure each count represented independent sampling events.

260 Networks generated with BISoN include edges between all dyads by default, as it
261 assumes non-zero probability for all potential interactions, even if that probability is
262 exceedingly small. To compute the number of weak partners, we therefore defined a
263 threshold that allowed us to differentiate dyads that did interact versus those that did not
264 based on the minimum observed edge weight in each network. That is, for each of the
265 posterior samples, dyads with a BISoN edge weight above or equal to the minimum
266 empirical edge weight were kept and those below that value were excluded from the
267 computation of network metrics. Strong partners were defined as dyads that had an edge
268 weight within the upper quantile (*i.e.*, 75% and above) of all the existent connections in a
269 network, while weak partners were those dyads that had edge weights values below this
270 quantile (see Fig. S1 for visualisation of both thresholds on each network). An individual's
271 number of weak partners was the number of edges they had that were classed as 'weak'. An

272 individual's relationship strength to strong partners was computed by summing the weights
273 of their edges that were classed as 'strong' connections. All network metrics were set to
274 range between 0 and 10 by dividing by the maximum value of that metric for the group and
275 multiplying it by 10. By doing so, we accounted for possible group differences attributed to
276 sampling methods because the network metrics were scaled relative to other individuals
277 within a group.

278 **Statistical analyses**

279 All statistical analyses were carried out in R v4.3 using the *brms* package for Bayesian
280 statistics [59]. For all models of infection risk, the dependent variables were the binary
281 presence (1) or absence (0) of a given parasite species in the sample. For all models of the
282 intensity of infection, the dependent variables were the count of parasites per taxa
283 (protozoa and nematodes). To quantify the intensity of infection only infected animals were
284 included [51] (n unique infected individuals: protozoa = 60, nematodes = 35), thus we
285 truncated at zero the dependent variable in our models. Additionally, for the intensity of
286 protozoa, we right-censored the dependent variable, as we only quantified up to 60
287 parasites per sample even in cases where animals had more parasites (Out of 199 records
288 from 100 samples, 9 were censored).

289 **Risk and intensity of infection before and after hurricane**

290 To test whether parasite infection risk differed before and after the hurricane, we used
291 linear mixed models with a binomial distribution ('Bernoulli' in *brms* environment), running
292 one model per parasite species. The dependent variable was the presence or absence of a
293 given parasite taxon. As predictors, we included hurricane status, where 0 = sampled before
294 and 1 = sampled after the hurricane, along with the age and sex of the animal. We also
295 included a fixed effect for the season when the sample was collected (rainy vs dry season) to
296 account for changes in precipitation and temperature that might influence parasite
297 dynamics [39].

298 To determine if the hurricane influenced the intensity of parasite infection, we used
299 linear mixed models with a Poisson distribution. We included in the model hurricane status
300 as the main predictor, along with sex, age, and season as covariates. We tested for
301 interaction terms between hurricane status and all the other fixed terms and retained them
302 when evidence of an effect was detected. For all models of infection risk and intensity of
303 infection, we included a random effect for ID to account for repeated records per individual.

304 **Effect of social status on the risk and intensity of infection**

305 To determine if social status influenced the infection risk overall and in the context of the
306 hurricane, we used logistic models where the dependent variable was the presence/absence

307 of infection per parasite species. As fixed effects, we included social status, hurricane status
308 (0 = pre, 1 = post), age, and sex. We accounted for repeated records per individual by
309 including a random effect for animal ID. To test if social status influenced the intensity of
310 infection, we modelled our dependent variables as described above. Fixed effects and the
311 random effect followed the same format as the models for infection risk. We first ran a set of
312 models to test if social status buffered the impact of the hurricane on parasitic infections
313 (interaction among those predictors), and then we ran a second set of models where no
314 interactions between predictors were included to establish the magnitude of main effects.

315 **Effect of weak and strong relationships on infection risk**

316 For all the analyses that included social network metrics, animals from group V were
317 excluded, as we did not have behavioural observations on affiliative interactions for this
318 group. This resulted in a smaller sample size ($n = 70$), especially post-hurricane ($n = 16$),
319 that restricted our ability to test the impact of Hurricane Maria in relation to affiliative
320 relationships.

321 Table 1: Dependent variables, fixed and random effects used in the models.

Variable	Type	Description
<i>B. coli</i> infection	Dependent	Presence or absence of <i>B. coli</i> infection
<i>S. fuelleborni</i> infection	Dependent	Presence or absence of <i>S. fuelleborni</i> infection
<i>T. trichiura</i> infection	Dependent	Presence or absence of <i>T. trichiura</i> infection
Intensity of protozoa infection	Dependent	Count of <i>B. coli</i> parasites in infected host
Intensity of nematode infection	Dependent	Count of <i>S. fuelleborni</i> and <i>T. trichiura</i> parasites in infected host
Social status	Fixed effect	Percentage of same-sex individuals outranked in the group
Number of weak partners	Fixed effect	Number of proximity or grooming partners with whom the focal interacted infrequently ^a
Strength to strong partners	Fixed effect	Rate of engagement in proximity or grooming interactions with strong ^a social partners
Hurricane status	Fixed effect	Sampled before or after the hurricane Maria
Age	Fixed effect	Age of the individual when it was sampled
Sex	Fixed effect	Sex of the animal
Season	Fixed effect	Sample collected during the wet or the dry season
Animal ID	Random effect	Identification of the macaque from which the sample was taken

322 ^arelative to the upper quantile of the group, where infrequent represents a rate of interaction (i.e., edge weight) below the 75% quantile and strong refers to a rate above
323 or equal to it. Prevalence was modelled as binary (0/1). The count for intensity excluded zeroes. Hurricane status was modelled as binary (0/1). All continuous
324 predictors were z-scored.

325 The exclusion of group V also resulted in a substantial reduction in the number of infected
326 individuals (n unique infected individuals: protozoa = 36, nematodes = 21), therefore we did

327 not test the effect of affiliative relationships on the intensity of infection or the effect of
328 interactions between our predictors. All the samples for the remaining groups (HH and KK)
329 were collected during the same period (between October and November in their respective
330 years) so season was not included in these models.

331 To test if individuals with a greater number of weak relationships had a higher risk of
332 parasite infection, we used logistic models where the dependent variable was the
333 presence/absence of infection per parasite species. We tested the effect of the number of
334 weak partners on parasite presence for grooming and proximity in separate models to avoid
335 over-parametrization with our limited sample size. In all the models, our main predictor
336 was the number of weak partners with covariates for social status, age, and sex.

337 To test if individuals with stronger social relationships had a reduced risk of parasite
338 infection, we used logistic models where the dependent variable was the presence/absence
339 of infection per parasite species. As main predictors, we included the strength of
340 relationships to strong partners (separate models for grooming and proximity) along with
341 an individual's social status, age, and sex as covariates. We accounted for repeated records
342 per individual by including a random effect for animal ID.

343 **Bayesian model specifications**

344 In all the models we used weakly informative priors, which are recommended over flat
345 priors to avoid overfitting issues when sample sizes are small and no prior knowledge of the
346 relationship between the dependent variable and predictors is assumed [60]. Specifically,
347 we used a t-student distribution with a mean of 0, 5 degrees of freedom and a standard
348 deviation of 2.5 for all our fixed effects. We opted for a t-student distribution as it is less
349 sensitive to outliers or skewed data compared to a normal distribution. Using weakly
350 informative priors that assign more weight to the absence of an effect (mean = 0) also helps
351 to mitigate the need to account for multiple testing when repeated tests of the same dataset
352 are performed [61], like in our case. We z-scored all the continuous predictors to improve
353 sampling efficiency and to match prior specifications for the intercept (mean-centred at 0).
354 We assessed model convergence by examining the R-hat values ($\hat{R} < 1$), effective sample sizes
355 (> 1000) and visual inspection of the chains. We checked the goodness of fit of the models
356 by using the `pp_check` function from the `brms` package, which allowed us to do posterior
357 predictive checks by comparing the data from the posterior distribution of the models with
358 the observed data. In the case we detected an interactive effect of our predictors, we used
359 the `emmeans` R package [62] to perform a post-hoc test. We reported means as point
360 estimates, standard error (SE) and 89% credible intervals of the posterior distribution.
361 Evidence for an effect was determined based on the degree of overlap between the credible
362 interval and zero (*i.e.*, 89% non-overlapping reflecting strong evidence for an effect). For
363 post-hoc tests, we reported the median and the 89% highest posterior density interval
364 (HPD). All the parameters included in the models can be found in Table 1 and model
365 specifications in Table S1.

366 **Results**

367 The most common parasites detected in our samples was a protozoa (*Balantidium coli*),
368 which was present in 60 of the animals sampled (60% prevalence) and two nematode
369 species: *Trichuris trichiura* (24% prevalence) and *Strongyloides fuelleborni* (23%
370 prevalence). We also identified two other helminth taxa (*Ascaris lumbricoides*, *Ancylostoma*
371 spp.), but these were rarely seen and thus not included in downstream analyses. Twenty-
372 five out of the 100 individuals sampled did not harbour any parasites.

373 **Infection risk before and after hurricane**

374 *B. coli* was found in 38 individuals before the hurricane (70% prevalence) compared to 22
375 animals post-hurricane (48% prevalence). *S. fuelleborni* was present in 8 animals before the
376 hurricane (15% prevalence) and 15 individuals after (33% prevalence), while *T. trichiura*
377 had a prevalence of 15% before the hurricane (present in 8 animals) and of 35% post-
378 hurricane (present in 16 individuals).

379 Overall, the hurricane significantly impacted the risk of infection but this varied with the
380 parasite species examined and with the age and sex of the macaque host. We found that *B.*
381 *coli* infection was associated with the hurricane independent of the sex of the host and the
382 season but dependent on the host's age (Fig. 2A; Log-Odds age*post-hurricane = -0.72, SE =
383 0.27, 89%CI = -1.23, -0.33; Table S2). The risk of infection with *B. coli* had a positive
384 relationship with an individual's age before the hurricane (post hoc test: Log Odds pre-
385 hurricane = 0.44, 89% HPD = 0.0784, 0.842) but was not linked to age after the hurricane
386 (post hoc test: Log Odds post-hurricane = -0.274, 89% HPD = -0.689, 0.106). Individuals
387 sampled after the hurricane had less intense *B. coli* infections compared to animals sampled
388 before the hurricane (Log-Odds post-hurricane = -0.91, SE = 0.49, 89%CI = -1.71, -0.12;
389 Table S3).

390 The hurricane was also associated with the prevalence of *S. fuelleborni*. This was
391 irrespective of individual age and season but in a sex-specific manner (Fig. 2B; Log-Odds
392 sexM*post-hurricane = 3.3, SE = 1.88, 89% CI = 0.68, 6.73; Table S4). Only male's infection
393 risk changed with the impact of the hurricane. Males were more likely to be infected with *S.*
394 *fuelleborni* after than before the hurricane (post hoc test: Males pre vs post-hurricane Log-
395 Odds = -4.04, 89% HPD = -7.16, -1.4), while females had a similar risk of infection before
396 and after hurricane Maria (post-hoc test: Females pre vs post-hurricane Log-Odds = -0.71,
397 89% HPD = -2.83, 1.07). After the hurricane the risk of infection with *T. trichiura* was higher
398 irrespective of the age, season, and sex of the animal (Fig. 2C; Log-Odds post-hurricane =
399 2.06, SE = 1.04, 89%CI = 0.47, 3.93; Table S5), but it did not affect the intensity of nematode
400 infection (Log-Odds post-hurricane = 0.46, SE = 0.44, 89%CI = -0.27, 1.19; Table S6).

401 **Effect of social status on risk and intensity of infection**

402 We did not find evidence for a buffering effect of social status on parasite infection overall
403 or in the context of the hurricane. Social status was not associated with infection risk (*B.*
404 *coli*: Log-Odds status = -0.18, SE = 0.73, 89%CI = -1.38, 1.03, Table S7; *S. fuelleborni*: Log-
405 Odds status = 0.33, SE = 0.6, 89%CI = -0.65, 1.38, Table S9; *T. trichiura*: Log-Odds status = -
406 0.22, SE = 0.52, 89%CI = -1.12, 0.62, Table S10) or with the intensity of infection overall (*B.*
407 *coli*: Log-Odds status = 0.15, SE = 0.19, 89%CI = -0.17, 0.46, Table S8; nematodes: Log-Odds
408 status = 0.03, SE = 0.23, 89%CI = -0.35, 0.4, Table S11). We also did not find evidence for a
409 modulatory effect of the hurricane on the association between social status and infection
410 risk (*B. coli*: Log-Odds status*hurricane = -1.55, SE = 1.32, 89%CI = -3.83, 0.55, Table S11; *S.*
411 *fuelleborni*: Log-Odds status*hurricane = 0.48, SE = 1.12, 89%CI = -1.32, 2.36, Table S13; *T.*
412 *trichiura*: Log-Odds status*hurricane = -0.3, SE = 0.95, 89%CI = -1.9, 1.26, Table S14) nor on
413 the intensity of infection (*B. coli*: Log-Odds status*hurricane = 0.24, SE = 0.39, 89%CI = -
414 0.39, 0.86, Table S12; nematodes: Log-Odds status*hurricane = -0.02, SE = 0.52, 89%CI = -
415 0.87, 0.81, Table S15).

416

417 **Effect of weak relationships on infection risk**

418 The number of weak social partners in the proximity network was negatively associated
419 with the prevalence of *B. coli*. Macaques that had a greater number of weak proximity
420 partners were less likely to be infected than individuals with fewer weak partners (Fig. 3A;
421 Log-Odds = -2.03, SE = 1.118, 89%CI = -4.16, -0.18; Table S17). No effect of the number of
422 weak partners in the grooming network on *B. coli* infection risk was detected (Log-Odds = -
423 1.71, SE = 1.39, 89%CI = -4.19, 0.46; Table S16).

424 When we tested the effect of the number of weak partners on infection risk with *S.*
425 *fuelleborni* and *T. trichiura* the estimates were nearly identical between both parasite
426 species (Tables S18- S21), which seemed to indicate problems of over-parametrization,
427 especially with the lower prevalence for these infections. Therefore, we re-ran these models
428 only including the number of weak partners as predictors (*i.e.*, univariate models), as all
429 other covariates did not have an effect on prevalence when themselves tested in univariate
430 models (Tables S22-S27). We found that infection risk with *S. fuelleborni* was not predicted
431 by the number of weak partners in the proximity or grooming networks (grooming: Log-
432 Odds = 0.26, SE = 0.73, 89%CI = -0.94, 1.52, Table S28; proximity: Log-Odds = 0.48, SE =
433 0.66, 89%CI = -0.56, 1.67, Table S29). Similarly, the number of weak partners did not
434 predict the prevalence of *T. trichiura* in the grooming or proximity networks (grooming:
435 Log-Odds = 0.04, SE = 0.64, 89%CI = -1.08, 1.11, Table S30; proximity: Log-Odds = 0.37, SE =
436 0.56, 89%CI = -0.56, 1.35, Table S31). In other words, having more weak proximity partners
437 was associated with a reduced risk of protozoan infection but had no relationship with the
438 likelihood of infection with nematodes.

439 **Effect of strong relationships on infection risk**

440 Macaques that were more often observed in proximity to their strong partners were less
441 likely to be infected with *B. coli* (Fig. 3B; Log-Odds = -2.07, SE = 1.29, 89% CI = -4.36, -0.02;
442 Table S33). No effect of strong relationships with grooming partners on the infection risk
443 with this protozoan was detected (Log-Odds = -1.06, SE = 1.41, 89% CI = -3.47, 1.24; Table
444 S32).

445 The models for nematode infection risk showed signs of over-parametrization (Tables
446 S34-S37), so as mentioned above, we re-ran univariate models including only the network
447 metrics as predictors. We found that the frequency of observations spent in proximity or
448 grooming with strong partners did not influence the risk of infection with *S. fuelleborni*
449 (grooming: Log-Odds = 0.01, SE = 0.79, 89% CI = -1.4, 1.32, Table S38; proximity: Log-Odds
450 = 0.23, SE = 0.64, 89% CI = -0.84, 1.36, Table S39) or *T. trichiura* (grooming: Log-Odds = 0.2,
451 SE = 64, 89% CI = -0.87, 1.29, Table S40; proximity: Log-Odds = 0.25, SE = 0.56, 89% CI = -
452 0.72, 1.19, Table S41). Overall, we only found evidence that strong relationships in the
453 proximity network predicted infection risk, showing that animals that shared space with
454 their strong partners more often were less likely to be infected with a protozoan.

455 **Discussion**

456 Our results provide evidence for a buffering effect of affiliative relationships on infection
457 risk. We found that social status did not play a role in mitigating infection overall or after
458 the impact of a major hurricane, and that grooming relationships, whether weak or strong,
459 were not associated with parasite infection. But those individuals that spent more time with
460 weak and strong social partners were less likely to be infected with a protozoan. Together,
461 these results suggest that social tolerance is one way by which affiliative partners can help
462 prevent infection from environmental parasites.

463 We found that environmental changes caused by a major disaster are not always
464 associated with a greater risk of parasite transmission. Our results instead suggest that the
465 relationship between parasite transmission and environmental upheaval depends on the
466 life cycle of the parasite under study. For example, we found that the risk and the intensity
467 of infection with the protozoa *B. coli* in the Cayo Santiago population were higher before
468 Hurricane Maria compared to after it. Optimal environmental conditions for the infective
469 stage of *B. coli* (*i.e.*, cysts) are humid areas protected from direct sunlight [63], which were
470 very scarce after the hurricane given the massive loss of vegetative cover [30, 64]. Before
471 the hurricane, when *B. coli* was more prevalent, the likelihood of infection was higher for
472 older individuals compared to younger ones, which could reflect increased susceptibility
473 due to immunosenescence [65] or also be the consequence of higher exposure if older
474 individuals are less able to access uncontaminated resources.

475 Infection risk with nematodes was also associated with the hurricane. Males were more
476 likely to be infected with *S. fuelleborni* than females after the hurricane. Given that previous

477 evidence in this population found that Hurricane Maria was not associated with sex
478 differences in immune-gene expression [64], changes in the environment are more likely to
479 have led to higher parasite exposure in males, instead of this result being the consequence
480 of exacerbated immunosuppressive effects of testosterone after a natural disaster [66, 67].
481 Infection risk with *T. trichiura* was also higher after Hurricane Maria. As the transmission of
482 both nematode species can occur by animals touching infected areas on the soil and then
483 ingesting the parasite eggs [68], enhanced exposure after the hurricane could be due to
484 macaques being more clustered in shade and engaging more in social behaviour [30].
485 Nevertheless, these results should be interpreted with caution, as the prevalence of
486 nematodes was relatively low, leading to greater uncertainty in our models. Compared to a
487 previous study of in this same population [49], we found a similar prevalence of *T. trichiura*
488 but lower *S. fuelleborni*, which could be attributed to group differences and/or the smaller
489 sample size of our study ($n = 256$ vs 100 in our study). Differences in the faecal collection
490 method could also explain a lower prevalence of *S. fuelleborni* as most of our samples were
491 collected during necropsy and therefore were less likely to be contaminated with eggs from
492 these nematodes that were already on the soil. Although we would expect collection
493 method to impact results for both types of nematodes in the same way, which does not
494 appear to be the case.

495 Contrary to our predictions, we did not find a buffering effect of social status on
496 infection risk, either in general or in the aftermath of a hurricane. These results contrast
497 growing evidence that health differences are associated with inequalities linked to social
498 status [33, 3]. In several vertebrate species, high-status individuals, especially males, have a
499 higher parasitic load from contact and environmentally transmitted parasites, which has
500 been posited to be due to greater exposure given their priority of access to resources [35,
501 36]. That is, dominant individuals are usually the ones that take most of the food increasing
502 their risk of infection with parasites transmitted via the faecal-oral route [69], and/or have
503 more mating opportunities, which increases the chances of contact transmission of
504 parasites [70]. Yet, our results are in line with those from a previous study in this
505 population that showed that immune function was not influenced by social status [18]. The
506 macaques on Cayo Santiago are food provisioned, thus the chances of eating contaminated
507 food might be lower than in wild populations and social status does not strongly determine
508 reproductive skew [71]. Together, these results suggest that social status is not a strong
509 determinant of susceptibility and exposure to parasites in these animals, even under
510 adverse ecological conditions.

511 Proximity interactions were associated with infection risk, but grooming was not. We
512 were able to disentangle potential transmission routes by quantifying different types of
513 social interactions and their effects on infection risk for different parasite species. Sharing
514 space was associated with a reduced likelihood of *B. coli* infection. This parasite is
515 commonly found in contaminated food or water [63]. Monkeys in the Cayo Santiago
516 population are food provisioned with monkey chow and have *ad-libitum* access to rainwater

517 in the form of puddles and, rainwater that runs from passive water collectors into drinking
518 troughs [72]. Yet, competition might prevent some individuals to access these resources
519 [73]. Our results suggest that proximity to other individuals might enable access to better
520 quality or cleaner resources by means of social tolerance [21], which may reduce the
521 exposure to *B. coli*.

522 We did not find a relationship between infection risk and grooming interactions,
523 contrasting previous evidence from other systems where this behaviour has been
524 associated with higher infection risk [5, 6, 7, 8]. Yet, we cannot disregard that our reduced
525 sample (e.g., one sample per animal vs multiple samples) and the low prevalence of
526 nematodes in our animals - which are commonly the parasites associated with social contact
527 transmission - explain these results.

528 Both weak and strong relationships in the proximity network were associated with a
529 buffering effect against *B. coli* infection. This suggests that both strategies, either having
530 many partners or relying on strong partners allow individuals to avoid exposure to this
531 protozoan. In conditions where feeding resources are not scarce, like in the Cayo Santiago
532 population, it is likely that tolerating social partners around feeding or drinking areas does
533 not translate into major costs for the animals. This might explain why we did not find
534 distinct effects between weak and strong proximity partners, as not only strong partners
535 but also weak ones might provide access. Surprisingly, we did not find a buffering effect of
536 weak or strong grooming relationships on infection risk. Previous evidence in this system
537 relying on a similar dataset has shown that the number of grooming partners - a measure
538 that closely reflects the number of weak grooming connections (Fig. S2) - was associated
539 with reduced inflammation levels [18]. However, our results seem to suggest that this does
540 not come about because of a reduced likelihood of being parasitized.

541 Conclusion

542 The results of our study highlight how affiliative interactions - specifically weak and strong
543 social partners- can buffer infection risk. Although social inequalities are usually thought to
544 stem from differences in social status, our results emphasize that affiliative relationships
545 also constitute a valuable resource that might compensate for some of the costs associated
546 with living in groups. These findings add more evidence to a growing body of research on
547 the means by which social capital can benefit an individual's health and ultimately survival.

548 Ethical statement

549 This research complied with protocols approved by the Institutional Animal Care and Use
550 Committee (IACUC) of the University of Puerto Rico (protocol no. A6850108) and by the
551 University of Exeter School of Psychology's Ethics Committee. The CPRC's Animal Care and
552 Use Program are evaluated and approved by the IACUC. Pain and distress are assessed as

553 part of the program. Every protocol used in research, teaching, testing or as part of the daily
554 management of the Center, is evaluated by the IACUC using USDA pain and distress
555 categories.

556 **Declaration of interest**

557 None.

558 **Author contributions**

559 Conceptualization: M.A.P-F, L.J.N.B, C.M.E-R, J.P.H. and N.S-M.; Methodology: M.A.PF, C.M.E-
560 R, J.D.A.H.; Resources: L.J.N.B, J.P.H., N.S-M., M.J.M., M.L.P., A.R-L., M.I.M.; Data curation:
561 M.A.P-F, C.M.E-R, J.E.N-D, D.P.; Writing- Original Draft: M.A.P-F; Writing- Review & Editing:
562 M.A.P-F, L.J.N.B., J.P.H., N.S-M.; Supervision: L.J.N.B.

563 **Acknowledgments**

564 We thank the Caribbean Primate Research Center (CPRC) for the permission to undertake
565 research on Cayo Santiago, along with many interns who assisted in behavioural data
566 collection. Additionally, we thank members of the Brent lab, CRAB lab and Network Club for
567 their helpful suggestions.

568 **Funding**

569 This work was supported by ANID-Chilean scholarship [number 72190290], the National
570 Institutes of Health [grant R01AG060931 to N.S-M., L.J.N.B., and J.P.H., R00AG051764 to N.S-
571 M], a European Research Council Consolidator Grant to L.J.N.B. [Friend Origins 864461].
572 The CPRC is supported by the National Institutes of Health. An Animal and Biological
573 Material Resource Center Grant [P40OD012217] was awarded to the UPR from the Office of
574 Research Infrastructure Programs, National Institutes of Health (ORIP). A Research
575 Facilities Construction Grant [G06OD026690] and an NSF grant to J.P.H. [1800558] were
576 awarded for the renovation of CPRC facilities after Hurricane Maria.

577

578 **References**

579 [1] Sonia Altizer, Charles L. Nunn, Peter H. Thrall, John L. Gittleman, Janis Antonovics,
580 Andrew A. Cunningham, Andrew P. Dobson, Vanessa Ezenwa, Kate E. Jones, Amy B.
581 Pedersen, Mary Poss, and Juliet R.C. Pulliam. Social Organization and Parasite Risk in

582 Mammals: Integrating Theory and Empirical Studies. *Annual Review of Ecology, Evolution, and Systematics*, 34(1):517–547, 2003.

583

584 [2] Julie Duboscq, Valeria Romano, and Andrew J.J. MacIntosh. Social Behavior and
585 Infectious Disease. In *Encyclopedia of Animal Behavior*, volume 4, pages 790–800.
586 Elsevier, 2019.

587 [3] Noah Snyder-Mackler, Joseph Robert Burger, Lauren Gaydosh, Daniel W. Belsky, Grace
588 A. Noppert, Fernando A. Campos, Alessandro Bartolomucci, Yang Claire Yang, Allison E.
589 Aiello, Angela O’Rand, Kathleen Mullan Harris, Carol A. Shively, Susan C. Alberts, and
590 Jenny Tung. Social determinants of health and survival in humans and other animals.
591 *Science*, 368:eaax9553, 2020.

592 [4] Joan B. Silk. Social Components of Fitness in Primate Groups. *Science*,
593 317(5843):1347–1351, 2007.

594 [5] Andrew J. J. MacIntosh, Armand Jacobs, Cécile Garcia, Keiko Shimizu, Keiko Mouri,
595 Michael A. Huffman, and Alexander D. Hernandez. Monkeys in the Middle: Parasite
596 Transmission through the Social Network of a Wild Primate. *PLoS ONE*, 7(12):e51144,
597 2012.

598 [6] Rebecca Rimbach, Donal Bisanzio, Nelson Galvis, Andrés Link, Anthony Di Fiore, and
599 Thomas R. Gillespie. Brown spider monkeys (*Ateles hybridus*): A model for
600 differentiating the role of social networks and physical contact on parasite
601 transmission dynamics. *Philosophical Transactions of the Royal Society B: Biological
602 Sciences*, 370, 2015.

603 [7] Brandi Wren, Ian S. Ray, Melissa Remis, Thomas R. Gillespie, and Joseph Camp. Social
604 contact behaviors are associated with infection status for *Trichuris* sp. in wild vervet
605 monkeys (*Chlorocebus pygerythrus*). 16:1–18, 2021.

606 [8] Bobby Habig, David A. W. A. M. Jansen, Mercy Yvonne Akinyi, Laurence R.
607 Gesquiere, Susan C. Alberts, and Elizabeth A. Archie. Multi-scale predictors of parasite
608 risk in wild male savanna baboons (*Papio cynocephalus*). *Behavioral Ecology and
609 Sociobiology*, 73(10):134, 2019.

610 [9] Mercy Y. Akinyi, Jenny Tung, Maamun Jeneby, Nilesh B. Patel, Jeanne Altmann, and
611 Susan C. Alberts. Role of grooming in reducing tick load in wild baboons (*Papio
612 cynocephalus*). *Animal Behaviour*, 85(3):559–568, 2013.

613 [10] Julie Duboscq, Valeria Romano, Cédric Sueur, and Andrew J.J. MacIntosh. Network
614 centrality and seasonality interact to predict lice load in a social primate. *Scientific
615 Reports*, 6, 2016.

616 [11] Gerald Carter and Lauren Leffer. Social Grooming in Bats : Are Vampire Bats
617 Exceptional ? *PLoS ONE*, 10:1-11, 2015.

618 [12] N Kutsukake and T Clutton-Brock. Social functions of allogrooming in cooperatively
619 breeding meerkats. *Animal Behaviour*, 72:1059–1068, 2006.

620 [13] Kenneth J. Forand and R. Larry Marchinton. Patterns of Social Grooming in Adult
621 White-tailed Deer. *American Midland Naturalist*, 122(2):357, 1989.

622 [14] S. Peter Henazi and Louise Barrett. The value of grooming to female primates. *Primates*,
623 40(1):47–59, 1999.

624 [15] L. Samuni, A. Preis, A. Mielke, T. Deschner, R. M. Wittig, and C. Crockford. Social bonds
625 facilitate cooperative resource sharing in wild chimpanzees. *Proceedings of the Royal
626 Society B: Biological Sciences*, 285(1888):20181643, 2018.

627 [16] Melissa A Pavez-Fox, Clare M Kimock, Nahiri Rivera-Barreto, Josue E NegronDel Valle,
628 Daniel Phillips, Angelina Ruiz-Lambides, Noah Snyder-Mackler, James P Higham, Erin R
629 Siracusa, and Lauren JN Brent. Reduced injury risk links sociality to survival in a group-
630 living primate. *iScience*, 25:105454, 2022.

631 [17] Krishna Balasubramaniam, Brianne Beisner, Jessica Vandeleest, Edward Atwill, and
632 Brenda McCowan. Social buffering and contact transmission: network connections
633 have beneficial and detrimental effects on Shigella infection risk among captive rhesus
634 macaques. *PeerJ*, 4:e2630, 2016.

635 [18] Melissa A. Pavez-Fox, Josue E. Negron-Del Valle, Indya J. Thompson, Christopher S.
636 Walker, Samuel E. Bauman, Olga Gonzalez, Nicole Compo, Angelina Ruiz-Lambides,
637 Melween I. Martinez, Michael L. Platt, Michael J. Montague, James P. Higham, Noah
638 Snyder-Mackler, and Lauren J.N. Brent. Sociality predicts individual variation in the
639 immunity of free-ranging rhesus macaques. *Physiology and Behavior*, 241, 2021.

640 [19] Andrea Springer, Alexander Mellmann, Claudia Fichtel, and Peter M. Kappeler. Social
641 structure and *Escherichia coli* sharing in a group-living wild primate, Verreaux's sifaka.
642 *BMC Ecology*, 16, 2016.

643 [20] Allison E. Williams, Katherine E.L. Worsley-Tonks, and Vanessa O. Ezenwa. Drivers and
644 consequences of variation in individual social connectivity. *Animal Behaviour*, 133:1–9,
645 2017.

646 [21] Rachel Dale, Friederike Range, Laura Stott, Kurt Kotrschal, and Sarah MarshallPescini.
647 The influence of social relationship on food tolerance in wolves and dogs. *Behavioral
648 Ecology and Sociobiology*, 71(7):107, 2017.

649 [22] Charlotte Carne, Sue Wiper, and Stuart Semple. Reciprocation and interchange of
650 grooming, agonistic support, feeding tolerance, and aggression in semi-free-ranging
651 Barbary macaques. *American Journal of Primatology*, 73(11):1127–1133, 2011.

652 [23] Claudia Fichtel, Anna V. Schnoell, and Peter M. Kappeler. Measuring social tolerance: An
653 experimental approach in two lemurid primates. *Ethology*, 124(1):65–73, 2018.

654 [24] Samuel Ellis, Noah Snyder-Mackler, Angelina Ruiz-Lambides, Michael L Platt, and
655 Lauren J N Brent. Deconstructing sociality: the types of social connections that predict
656 longevity in a group-living primate. *Proceedings of the Royal Society B: Biological
657 Sciences*, 286(1917):20191991, 2019.

658 [25] Oliver Schu'lke, Simone Anz'a, Catherine Crockford, Delphine De Moor, Tobias
659 Deschner, Claudia Fichtel, Jan F. Gogarten, Peter M. Kappeler, Virgile Manin, Nadine
660 Mu'ller-Klein, Lea Prox, Baptiste Sadoughi, Sonia Touitou, Roman M. Wittig, and Julia
661 Ostner. Quantifying within-group variation in sociality—covariation among metrics
662 and patterns across primate groups and species. *Behavioral Ecology and Sociobiology*,
663 76(4), 2022.

664 [26] Richard McFarland, Derek Murphy, David Lusseau, S. Peter Henzi, Jessica L. Parker,
665 Thomas V. Pollet, and Louise Barrett. The ‘strength of weak ties’ among female
666 baboons: fitness-related benefits of social bonds. *Animal Behaviour*, 126, 2017.

667 [27] Kimberly L. Vanderwaal, Vincent Obanda, George P. Omondi, Brenda McCowan, Hui
668 Wang, Hsieh Fushing, and Lynne A. Isbell. The strength of weak ties and helminth
669 parasitism in giraffe social networks. *Behavioral Ecology*, 27(4):1190–1197, 2016.

670 [28] Nadine Mu'ller-Klein, Michael Heistermann, Christina Strube, Mathias Franz, Oliver
671 Schu'lke, and Julia Ostner. Exposure and susceptibility drive reinfection with
672 gastrointestinal parasites in a social primate. *Functional Ecology*, 33(6):1365–
673 2435.13313, 2019.

674 [29] Liz A.D. Campbell, Patrick J. Tkaczynski, Julia Lehmann, Mohamed Mouna, and
675 Bonaventura Majolo. Social thermoregulation as a potential mechanism linking
676 sociality and fitness: Barbary macaques with more social partners form larger huddles.
677 *Scientific Reports*, 8:1–8, 2018.

678 [30] Camille Testard, Sam M. Larson, Marina M. Watowich, Cassandre H. Kaplinsky, Antonia
679 Bernau, Matthew Faulder, Harry H. Marshall, Julia Lehmann, Angelina RuizLambides,
680 James P. Higham, Michael J. Montague, Noah Snyder-Mackler, Michael L. Platt, and
681 Lauren J.N. Brent. Rhesus macaques build new social connections after a natural
682 disaster. *Current Biology*, 2021.

683 [31] Julian A. Drewe. Who infects whom? Social networks and tuberculosis transmission in
684 wild meerkats. *Proceedings of the Royal Society B: Biological Sciences*, 277(1681):633-
685 642, 2010.

686 [32] T. H. Clutton-Brock and E. Huchard. Social competition and selection in males and
687 females. *Philosophical Transactions of the Royal Society B: Biological Sciences*,
688 368(1631), 2013.

689 [33] R. M. Sapolsky. The Influence of Social Hierarchy on Primate Health. *Science*,
690 308(5722):648-652, 2005.

691 [34] Ipek Ostan, Ali A Kilimcioğlu, Nogay Girginkardesler, Beyhan C“ Ozyurt, M
692 Emin“ Limoncu, and Ulgen Z Ok. Health inequities: lower socio-economic conditions
693 and“ higher incidences of intestinal parasites. *BMC Public Health*, 7(1):342, 2007.

694 [35] Bobby Habig and Elizabeth A. Archie. Social status, immune response and parasitism in
695 males: a meta-analysis. *Philosophical Transactions of the Royal Society B: Biological
696 Sciences*, 370(1669):20140109, 2015.

697 [36] Bobby Habig, Meredith M. Doellman, Kourtney Woods, Jonathan Olansen, and Elizabeth
698 A. Archie. Social status and parasitism in male and female vertebrates: a meta-analysis.
699 *Scientific Reports*, 8, 2018.

700 [37] Léa Briard and Vanessa O. Ezenwa. Parasitism and host social behaviour: a
701 metaanalysis of insights derived from social network analysis. *Animal Behaviour*,
702 172:171- 182, 2021.

703 [38] Baptiste Sadoughi, Simone Anz`a, Charlotte Defolie, Virgile Manin, Nadine MüllerKlein,
704 Tatiana Murillo, Markus Ulrich, and Doris Wu. Parasites in a social world: Lessons from
705 primates. *Animal Behavior and Parasitism*, pages 35-52, 2022.

706 [39] Sonia Altizer, Andrew Dobson, Parvez Hosseini, Peter Hudson, Mercedes Pascual, and
707 Pejman Rohani. Seasonality and the dynamics of infectious diseases. *Ecology Letters*,
708 9(4):467-484, 2006.

709 [40] Amy R. Sweeny, Gregory F. Albery, Saudamini Venkatesan, Andy Fenton, and Amy B.
710 Pedersen. Spatiotemporal variation in drivers of parasitism in a wild wood mouse
711 population. *Functional Ecology*, 35(6):1277-1287, 2021.

712 [41] Gregory F. Albery, Isabella Turilli, Maxwell B. Joseph, Janet Foley, Celine H. Frere, and
713 Shweta Bansal. From flames to inflammation: how wildfires affect patterns of wildlife
714 disease. *Fire Ecology*, 17(1), 2021.

715 [42] Raisa Hernandez-Pacheco, Diana L. Delgado, Richard G. Rawlins, Matthew J. Kessler,
716 Angelina V. Ruiz-Lambides, Elizabeth Maldonado, and Alberto M. Sabat. Managing the
717 Cayo Santiago rhesus macaque population: The role of density. *American Journal of
718 Primatology*, 78:167–181, 2016.

719 [43] Jeanne Altmann. Observational Study of Behavior: Sampling Methods. *Behaviour*, 49(3–
720 4):227–266, 1974.

721 [44] Lauren J. N. Brent, Ann MacLarnon, Michael L. Platt, and Stuart Semple. Seasonal
722 changes in the structure of rhesus macaque social networks. *Behavioral Ecology and
723 Sociobiology*, 67(3):349–359, mar 2013.

724 [45] CDC-National Center for Health Statistics. Stool Specimens- Specimen Processing, 2016.

725 [46] Thomas R. Gillespie. Noninvasive assessment of gastrointestinal parasite infections in
726 free-ranging primates. *International Journal of Primatology*, 27(4):1129–1143, 2006.

727 [47] Lynne S. Garcia, Michael Arrowood, Evelyne Kokoskin, Graeme P. Paltridge, Dylan R.
728 Pillai, Gary W. Procop, Norbert Ryan, Robyn Y. Shimizu, and Govinda Visvesvara.
729 Laboratory diagnosis of parasites from the gastrointestinal tract. *Clinical Microbiology
730 Reviews*, 31(1), 2018.

731 [48] Dickson D. Despommier, Daniel O. Griffin, Robert W. Gwadz, Peter J. Hotez, and Charles
732 A. Knirsch. *Parasitic Diseases*. New York, NY, sixth edition, 2017.

733 [49] Sharon File and Matt J. Kessler. Parasites of free-ranging Cayo Santiago macaques after
734 46 years of isolation. *American Journal of Primatology*, 18(3):231–236, 1989.

735 [50] Mary Knezevich. Geophagy as a therapeutic mediator of endoparasitism in a
736 freeranging group of rhesus macaques (Macaca mulatta). *American Journal of
737 Primatology*, 44(1):71–82, 1998.

738 [51] Lajos Rozsa, Jeno Reiczigel, and Gabor Majoros. Quantifying Parasites in Samples of
739 Hosts. *The Journal of Parasitology*, 86(2):228, 2000.

740 [52] Rebecca L. Chancellor and Lynne A. Isbell. Punishment and competition over food in
741 captive rhesus macaques, Macaca mulatta. 75(6):1939–1947, jun 2008.

742 [53] Lars Kulik, Federica Amici, Doreen Langos, and Anja Widdig. Sex Differences in the
743 Development of Aggressive Behavior in Rhesus Macaques (Macaca mulatta).
744 *International Journal of Primatology*, 36(4):764–789, 2015.

745 [54] L. J.N. Brent, A. Ruiz-Lambides, and M. L. Platt. Persistent social isolation reflects
746 identity and social context but not maternal effects or early environment. *Scientific*
747 *Reports*, 7(1):1–11, 2017.

748 [55] Dennis Chikazawa, Thomas P. Gordon, Carol A. Bean, and Irwin S. Bernstein. Mother-
749 daughter dominance reversals in rhesus monkeys (*Macaca mulatta*). *Primates*,
750 20(2):301–305, 1979.

751 [56] Joseph H. Manson. Do female rhesus macaques choose novel males? *American Journal*
752 *of Primatology*, 37(4):285–296, 1995.

753 [57] Seth Madlon-Kay, Lauren Brent, Michael Montague, Katherine Heller, and Michael Platt.
754 Using Machine Learning to Discover Latent Social Phenotypes in Free-Ranging
755 Macaques. *Brain Sciences*, 7(12):91, 2017.

756 [58] Jordan D A Hart, Michael N Weiss, Daniel W Franks, and J N Brent. BISoN : A Bayesian
757 Framework for Inference of Social Networks BISoN - Bayesian Inference of Social
758 Networks. *bioRxiv*, pages 1–32, 2021.

759 [59] Paul-Christian Bürkner. brms: An R package for Bayesian multilevel models using
760 Stan. *Journal of Statistical Software*, 80(1):1–28, 2017.

761 [60] Richard McElreath. *Statistical Rethinking: A Bayesian Course with Examples in R and*
762 *Stan, 2nd Edition*. CRC Press, 2 edition, 2020.

763 [61] Nathan P. Lemoine. Moving beyond noninformative priors: why and how to choose
764 weakly informative priors in Bayesian analyses. *Oikos*, 128(7):912–928, 2019.

765 [62] Russell V. Lenth. *emmeans: Estimated Marginal Means, aka Least-Squares Means*, 2022.
766 R package version 1.7.3.

767 [63] Frederick L. Schuster and Lynn Ramirez-Avila. Current world status of *Balantidium*
768 *coli*. *Clinical Microbiology Reviews*, 21:626–638, 2008.

769 [64] Marina M. Watowich, Kenneth L. Chiou, Michael J. Montague, Noah D. Simons, Julie E.
770 Horvath, Angelina V. Ruiz-Lambides, Melween I. Martinez, James P. Higham, Lauren J.N.
771 Brent, Michael L. Platt, and Noah Snyder-Mackler. Natural disaster and immunological
772 aging in a nonhuman primate. *Proceedings of the National Academy of Sciences of the*
773 *United States of America*, 119:1–10, 2022.

774 [65] Lia Ginaldi, Maria Francesca Loreto, Maria Pia Corsi, Marco Modesti, and Massimo De
775 Martinis. Immunosenescence and infectious diseases. *Microbes and Infection*,
776 3(10):851–857, 2001.

777 [66] Charles L. Nunn, Patrik Lindenfors, E. Rhiannon Pursall, and Jens Rolff. On sexual
778 dimorphism in immune function. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 364:61–69, 2009.

780 [67] Marlene Zuk and Kurt A. McKean. Sex differences in parasite infections: Patterns and
781 processes. *International Journal for Parasitology*, 26(10):1009–1024, 1996.

782 [68] Charles Nunn and Sonia Altizer. Infectious Diseases in Primates: Behavior, Ecology and
783 Evolution. *Infectious Diseases in Primates: Behavior, Ecology and Evolution*, pages 1–
784 400, 2010.

785 [69] Odd Halvorsen. On the Relationship between Social Status of Host and Risk of Parasitic
786 Infection. *Oikos*, 47(1):71, 1986.

787 [70] Eugenia Natoli, Ludovic Say, Simona Cafazzo, Roberto Bonanni, Michaela Schmid, and
788 Dominique Pontier. Bold attitude makes male urban feral domestic cats more
789 vulnerable to Feline Immunodeficiency Virus. *Neuroscience & Biobehavioral Reviews*,
790 29:151–157, 2005.

791 [71] Constance Dubuc, Laura Muniz, Michael Heistermann, Antje Engelhardt, and Anja
792 Widdig. Testing the priority-of-access model in a seasonally breeding primate species.
793 *Behavioral Ecology and Sociobiology*, 65(8):1615–1627, 2011.

794 [72] Matthew J. Kessler and Richard G. Rawlins. A 75-year pictorial history of the Cayo
795 Santiago rhesus monkey colony. *American Journal of Primatology*, 78(1):6–43, 2016.

796 [73] K. N. Balasubramaniam, E. S. Dunayer, L. J. Gilhooly, K. A. Rosenfield, and C. M. Berman.
797 Group size, contest competition, and social structure in Cayo Santiago rhesus
798 macaques. *Behaviour*, 151(12–13):1759–1798, 2014.

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817 **Figure captions**

818

819 **Figure 1.** Most prevalent parasite species found in the faecal samples of the Cayo Santiago macaques,
820 including a protozoan (*B. coli* trophozoite) and two nematodes (*S. fuelleborni* and *T. trichiura*
821 eggs). Photos taken with a light microscope camera.

822

823 **Figure 2.** Infection risk before and after the hurricane. **A)** Prevalence of *B. coli* as a function of an
824 individual's age and hurricane status (pre-hurricane: grey, post-hurricane: brown). Shaded area
825 represents 89% credible interval and lines the median. Grey points reflect the raw data, where
826 those on the top indicate the presence of infection and those on the bottom, the absence of it. **B)**
827 Prevalence of *S. fuelleborni* as a function of sex and hurricane status. **C)** Prevalence of *T.*
828 *trichiura* before and after the hurricane. Errors bars represent the 89% credible interval and
829 point estimates, the medians. Evidence for an effect is indicated with an asterisk.

830

831 **Figure 3.** Effect of **(A)** the number of weak partners and **(B)** the strength of relationship to strong
832 partners on *B. coli* infection prevalence. In both plots the solid yellow line represents the
833 median prevalence in samples and the shaded area corresponds to values from 20 draws from
834 the posterior distribution within the 89% credible interval. Raw data are depicted with grey
835 points (top: infected, bottom: non-infected).

836

837

838

839

840

841

842

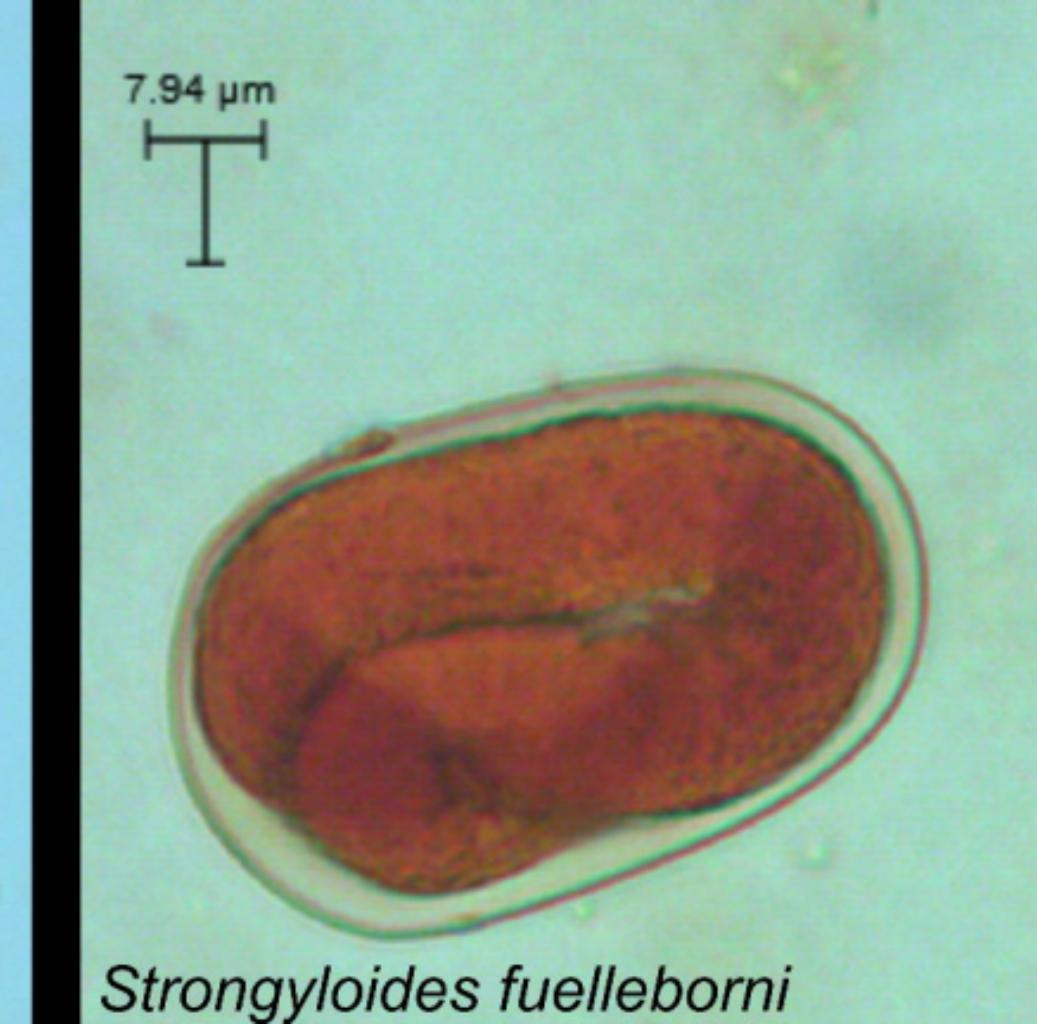
843

844

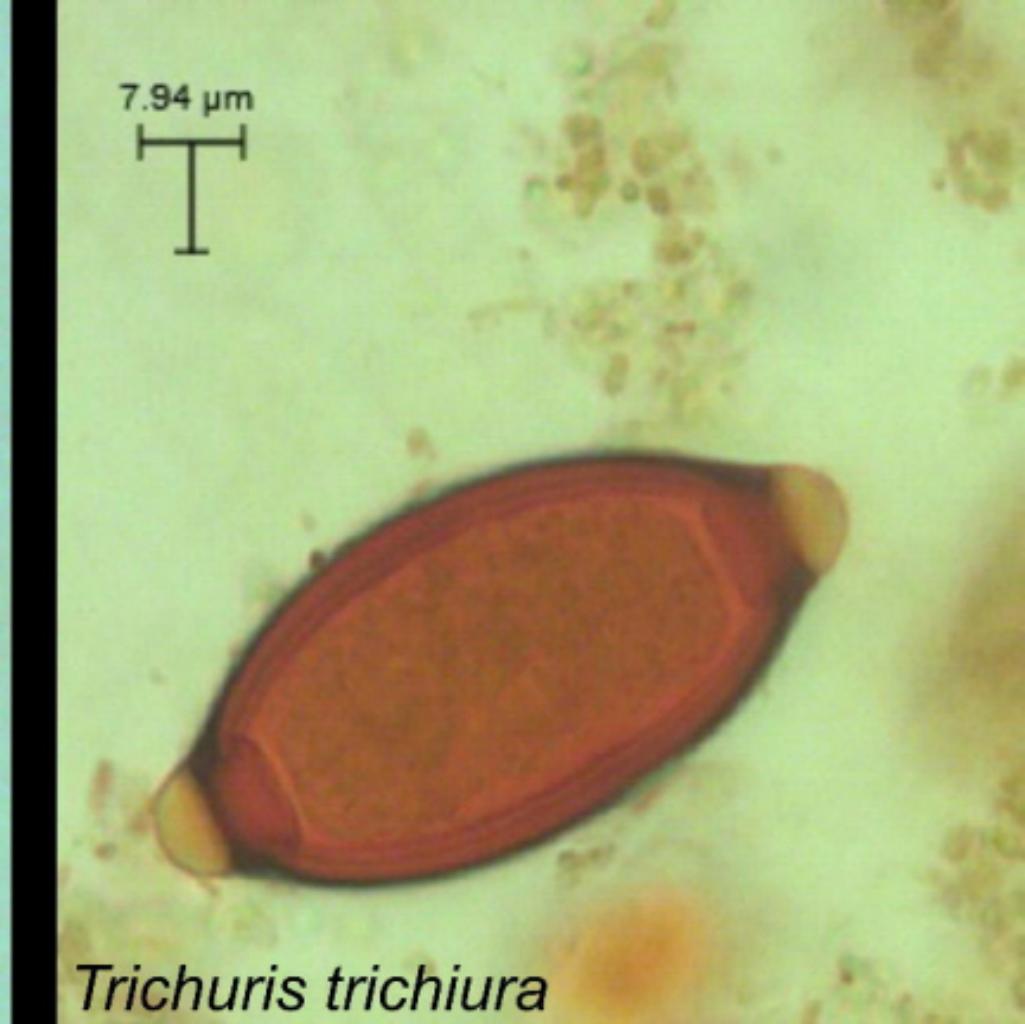
845

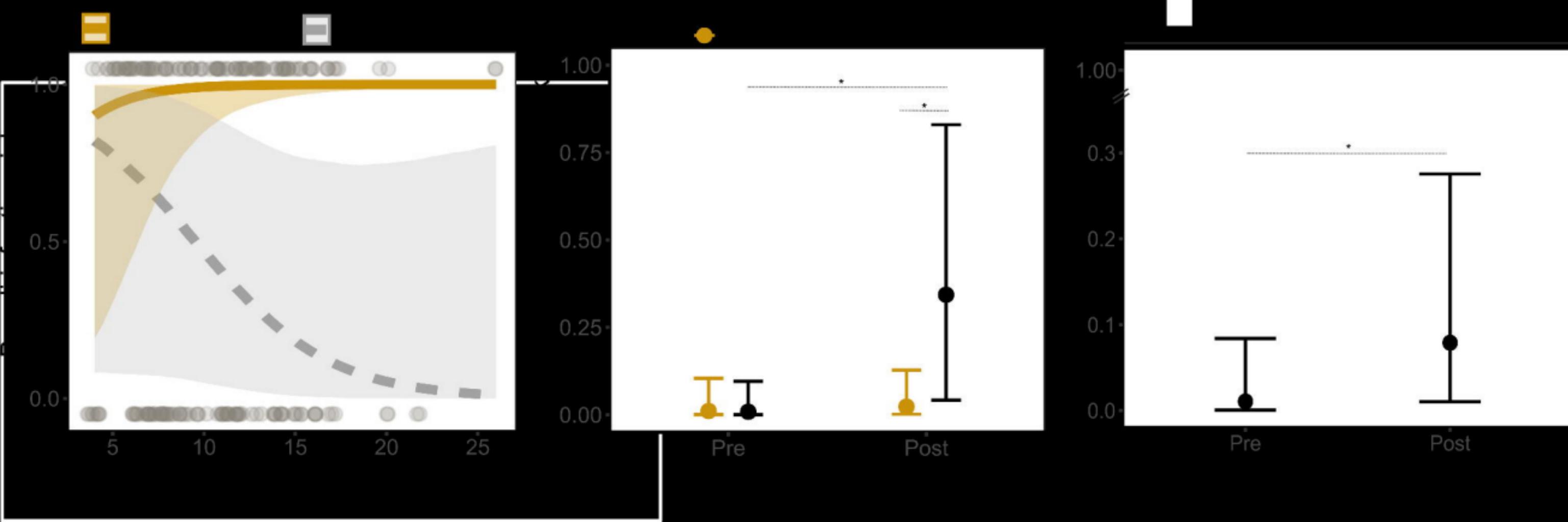

846

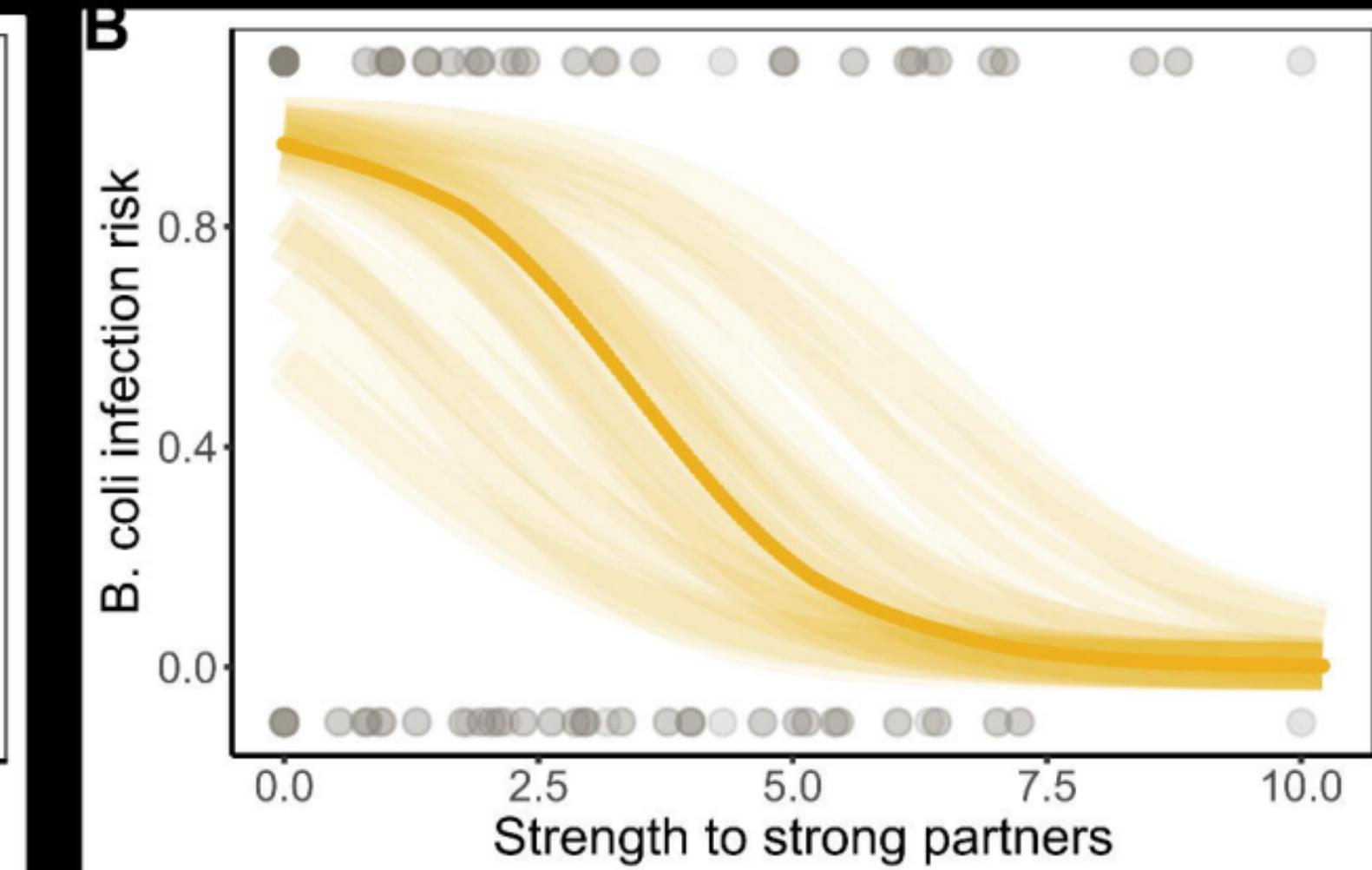
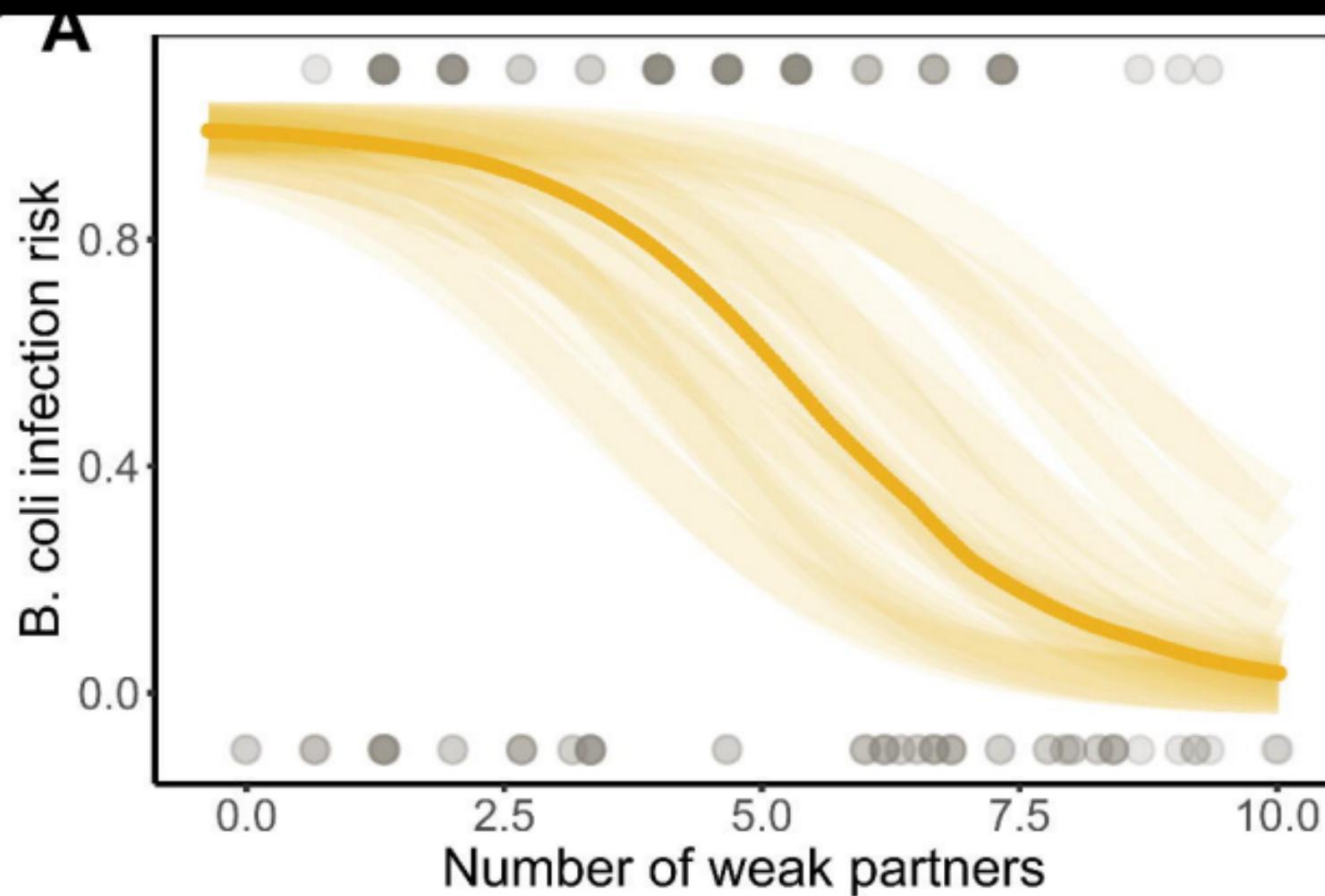
847


848

849


850


Balantidium coli

Strongyloides fuelleborni

Trichuris trichiura

