

1 Altered somatic hypermutation patterns in COVID-19 2 patients classifies disease severity

3 Modi Safra^{1,2}, Zvi Tamari^{1,2}, Pazit Polak^{1,2}, Shachaf Shiber^{3,4}, Moshe Matan⁵,
4 Hani Karameh⁸, Yigal Helviz⁹, Adva Levy-Barda¹¹, Vered Yahalom^{4,12}, Avi
5 Peretz^{5,6}, Eli Ben-Chetrit⁷, Baruch Brenner^{4,10}, Tamir Tuller¹³, Meital
6 Gal-Tanamy⁶, and Gur Yaari^{1,2,*}

7 ¹Bio-engineering, Faculty of Engineering, Bar Ilan University, Ramat Gan,
8 Israel

9 ²Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan
10 University, Ramat Gan, Israel

11 ³Emergency Department, Rabin Medical Center- Belinson campus, Petah
12 Tikva, Israel

13 ⁴Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

14 ⁵Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya,
15 Israel

16 ⁶The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel

17 ⁷Infectious Diseases Unit, Shaare Zedek Medical Center, Hebrew University
18 School of Medicine, Jerusalem, Israel

19 ⁸Jesselson Integrated Heart Center, Shaare Zedek Medical Center, Hebrew
20 University School of Medicine, Jerusalem, Israel

21 ⁹Intensive Care Unit, Shaare Zedek Medical Center, Hebrew University School
22 of Medicine, Jerusalem, Israel

23 ¹⁰Institute of Oncology, Rabin Medical Center- Belinson campus, Petah Tikva,
24 Israel

25 ¹¹Biobank, Department of pathology, Rabin Medical Center- Belinson campus,
26 Petah Tikva, Israel

27 ¹²Blood Services & Apheresis Institute Director, Rabin Medical Center-
28 Belinson campus, Petah Tikva, Israel

29 ¹³Department of Biomedical Engineering and The Sagol School of
30 Neuroscience, Tel Aviv University, Tel Aviv, Israel

31 *Correspondence: Gur Yaari, gur.yaari@biu.ac.il

32 December 20, 2022

33

Abstract

34 The success of the human body in fighting SARS-CoV-2 infection relies on lymphocytes
35 and their antigen receptors. Identifying and characterizing clinically relevant receptors is
36 of utmost importance. We report here the application of a machine learning approach,
37 utilizing B cell receptor repertoire sequencing data from severely and mildly infected in-
38 dividuals with SARS-CoV-2 compared with uninfected controls. In contrast to previous
39 studies, our approach successfully stratifies non-infected from infected individuals, as well
40 as disease level of severity. The features that drive this classification are based on somatic
41 hypermutation patterns, and point to alterations in the somatic hypermutation process in
42 COVID-19 patients. These features may be used to build and adapt therapeutic strategies
43 to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic
44 antibodies. These results constitute a proof of concept for future epidemiological chal-
45 lenges.

46 **Keywords:** machine learning, BCR, AIRR-seq, COVID-19,somatic hypermutation, B cell

47 Background

48 Despite the unprecedented speed of vaccine development against SARS-CoV2, the virus con-
49 tinues to undergo changes that cause repeated waves of COVID-19 morbidity worldwide, with
50 increasing infectivity. Risk factors such as age (> 60) and preexisting medical conditions can
51 predict to some extent whether an individual will become severely ill or not, but the prediction
52 is not very accurate. The early phase of infection results in direct tissue damage, followed by a
53 late phase when the infected cells trigger an immune response, by recruitment of immune cells
54 that release cytokines (reviewed in [1]). In severe patients, this may result in a “cytokine storm”
55 and a systemic inflammatory response. Many individuals do not respond well enough to the
56 vaccine, either because of old age or immune impairments. Thus, there is an ongoing search for
57 anti-viral therapies and passive vaccines, as well as research into the basic mechanisms related
58 to the virus and immunity towards it.

59 One useful path to investigate the immunity towards SARS-CoV-2 is adaptive immune
60 receptor repertoire sequencing (AIRR-seq) [2, 3, 4], revealing noticeable changes in affected
61 individuals in many arms of the immune system [5, 6]. Millions of B and T cell receptor

62 (BCR and TCR, respectively) sequences from hundreds of individuals have been shared in
63 public archives such as iReceptor [7] and OAS [8]. Thousands of individual antibody sequences
64 validated as targeting and neutralizing SARS-CoV-2 have been published in datasets such as
65 CoV-AbDab [9].

66 In the past few years, several studies have used AIRR-seq data to train machine learning
67 (ML) algorithms to classify individuals who carry diseases [10], including celiac [11, 12], hepati-
68 tis C virus infection [13], cytomegalovirus [14], and others [15]. Finding the connection between
69 AIRR-seq data and health states is a highly challenging task, because of the massive volume of
70 AIRR-seq datasets that can include tens of millions of sequences that dilute the disease-specific
71 biological signals. Another difficulty is our inability to determine to which antigen(s) each
72 receptor can bind based solely on the receptor sequence. New methods to identify relevant
73 repertoire features are continuously developed [10, 16, 17]. Besides the diagnostic and prog-
74 nostic potential, such features can be critical in teaching us about the mechanisms behind the
75 disease and the successful immune response towards it. Thus far, the vast majority of efforts
76 to classify the health state or severity of COVID-19 have relied on TCR data [18, 19, 20, 21].
77 Recently, for example, a new approach to detect SARS-CoV-2 infection by TCR sequencing
78 has been FDA approved for clinical use [20].

79 B cells undergo affinity maturation after pathogen encounter, to further adapt to the specific
80 pathogen. Affinity maturation includes iterative cycles of somatic hypermutation (SHM) and
81 affinity dependent selection. While selection depends on better binding, the SHM mechanism
82 is independent of pathogen affinity. During SHM, different enzymatic pathways orchestrate
83 together to introduce mutations specifically in the genomic regions encoding the antibody [22].
84 Extensive investigations have been devoted to understanding the SHM mechanism [23, 24,
85 25, 26], but to the best of our knowledge, no connection of a specific infection to a specific
86 SHM pathway or pattern was made. The use of BCR sequencing is considered more difficult
87 than TCR, because of SHM and higher diversity in the complementary determining region 3
88 (CDR3). It has been reported that BCR sequencing data cannot be used to classify individuals
89 with COVID-19 [21]. Nevertheless, BCR data may be more informative than TCR in some
90 cases, as BCRs undergo affinity maturation to adapt to each pathogen.

91 Here, using bulk and single cell BCR sequencing data, we successfully classify SARS-CoV-

92 2 infected vs. naive individuals, as well as determine disease severity. Compared with the
93 traditional sequence similarity clustering based approach, we obtain better classifications by
94 considering SHM pattern changes in SARS-CoV-2 infected individuals. SHM specific patterns
95 connected to decreased severity, as well as important amino acid (AA) composition in SARS-
96 CoV2 antibodies, were identified.

97 Methods

98 Collection of samples

99 The repertoires composing the dataset were collected at three medical centers. IRB approval
100 numbers: Rabin (Beilinson) Medical Center, 0256-20-RMC; Baruch Padeh Medical Center,
101 0037-20-POR; Shaare Zedek Medical Center, 0303-20-SZMC. 28 samples of controls were col-
102 lected, as well as 39 mild patients with COVID-19 and 12 severely infected patients. Patients'
103 data can be found in Table S1. We do not have information about the SARS-CoV2 strains,
104 but they are almost certain to be the original strain (before Alpha (B.1.1.7)). All samples were
105 collected between April and early November 2020, and the earliest documented variant strains,
106 as well as the earliest vaccines, arrived in Israel in late December 2020.

107 Library preparation

108 **Bulk:** Ig repertoires were bulk sequenced according to the method described in [27]. All
109 controls as well as 32 COVID-19 patients were sequenced for both heavy and light chains.
110 These were used as the train/validation groups for the ML algorithms. For the rest of the
111 patients, only heavy chains were sequenced, and served as the test group. 13 more controls for
112 the test group were added from previously published datasets. Nine controls from dataset [28],
113 and four from dataset [29].

114 **Single cell:** PBMCs from 13 individuals were prepared from fresh 5ml blood samples,
115 and frozen according to the manufacturer's instruction of the "Fresh Frozen Human Periph-
116 eral Blood Mononuclear Cells for Single Cell RNA Sequencing" protocol, document number
117 CG00039 Rev D, 10X Genomics. Patients' data can be found in Table S2. We do not have
118 information about the SARS-CoV2 strains, as these tests were not routinely performed at that

119 time (January–February 2021). Patients were not vaccinated. Libraries were prepared accord-
120 ing to the manufacturer’s instruction of the “Chromium Next GEM Single Cell 5’ Reagent Kit
121 v2 (Dual Index)” protocol, document number CG000331 Rev A, 10X Genomics. Libraries were
122 pooled, mixed with 1% PhiX, and sequenced on an Illumina NovaSeq twice using an SP and
123 an S1 kits.

124 Data processing and statistics

125 FASTA files were generated using the PRESTO pipeline [30], and aligned to IMGT IGHV/D/J
126 genes [31] using the VDJbase pipeline. Only sequences which started at the first 30 bases of
127 the V gene were included. Isotype frequencies, V, D, J and combinations of V & J gene usage
128 and CDR3 AAs 3-mers, as well as CDR3 AA lengths and V gene identities were calculated
129 using a custom-designed R script (see data and code availability section). The same script
130 also calculated the frequencies of BCR clusters (sharing the same V and J genes and junction
131 AA length). Diversity was calculated using the alphaDiversity function from the Alakazam R
132 package [32]. All P values were calculated using Wilcox test and adjusted using the Benjamini-
133 Hochberg procedure [33].

134 Generating an SHM model

135 A 5-mer SHM model was built using the function createTargetingModel from the shazam R
136 package [23], once for silent mutations only and once for both silent and replacement mutations.
137 To create these metrics for one representative from each clone, we used the collapseClones
138 function from the same package. For each repertoire, substitutions, mutability, and targeting
139 values were collapsed into a single table. Tables from all repertoires were collapsed into a
140 single table. The tables enable both training ML algorithms and calculating mean mutability
141 in specific sites (WRC/GTW and WA/TW hot-spots, the SYC/GRS cold-spot and all other
142 sites). The table was also used to calculate single base mean mutability levels in all repertoires.
143 The single base mutability was calculated as the average of all 5-mers with the same base in
144 the middle.

145 Training and estimation of ML algorithms

146 50 random splits to train and validation groups were made in order to estimate the F1 score,
147 accuracy, sensitivity, and specificity of each model. Lasso and Elastic-Net Regularized General-
148 ized Linear Models (GLMNET) using the caret R package [34] were trained on tables containing
149 data from the repertoires. Feature selection was done using t-test calculations between frequen-
150 cies in the different groups in the train subset only. Only features with P value below a certain
151 threshold were selected. The algorithm was then trained on the selected data, and classifica-
152 tions were made for the validation groups. F1 score, accuracy, sensitivity, and specificity were
153 calculated for each random split.

154 COVID-19 classification using AA frequencies at all V gene positions

155 Frequencies of each AA along 103 positions (according to the IMGT numbering) in each V
156 gene family were calculated for all repertoires. The train/validation samples were used to train
157 the same algorithm as explained above, and to estimate the F1 score, accuracy, sensitivity,
158 and specificity of the algorithm. The validation group was used to estimate the parameters
159 of the algorithm on unseen data. Coefficients of the algorithm were extracted and enabled to
160 calculate scores for single antibodies. If a certain AA was present in the sequence, it received
161 a frequency of 1. Otherwise, it received a frequency of 0. This equation was used to calculate
162 scores for all antibodies in all repertoires, as well as scores for known COVID-19 antibodies
163 from the CoV-AbDab database.

164 Single cell data analysis

165 Single cell data was analyzed using cell-ranger 6.0.1 with output of both VDJ recombination and
166 gene expression data. Cell-ranger output was then manipulated using the Seurat R package [35].
167 Cells with more than 5% mitochondrial gene expression were removed. Data was normalized,
168 and PCA and UMAP on the top 10 PCAs were done using standard Seurat functions. Cell
169 identity was determined using the SingleR R package against a sorted dataset from the celldex
170 R package [36]. Barcodes of VDJ data and gene expression data were matched using R.

171 Results

172 BCR gene usage cannot classify SARS-CoV2 infection

173 To assess changes in BCR repertoires of COVID-19 patients, we collected 79 blood samples and
174 sequenced their BCR repertoires. Samples were split to three groups: uninfected individuals,
175 mildly and severely COVID-19 infected patients. For each group we characterized several whole
176 repertoire features, such as CDR3 AA length distribution, V gene mutation distribution, clonal
177 diversity, V, D, J and combination of V and J gene usage. We also calculated frequencies of
178 BCR clusters (same V and J gene as well as same CDR3 AA length). These measurements are
179 shown in Fig. 1 and in Fig. S1 for heavy chains, and for kappa and lambda light chains in
180 Figs. S2 and S3. As expected, the diversity of BCR clones is significantly lower in COVID-19
181 patients compared with controls (Fig.1C). No significant difference was observed in CDR3 AA
182 length (Fig.1A), and only slight increase was seen in V gene mutation distribution (Fig.1B). For
183 many V genes we observed significantly reduced usage in COVID-19 patients (Fig.1D). Three
184 exceptions are IGHV4-34, IGHV4-39 and IGHV4-59 that demonstrate increased usage upon
185 infection, which is further increased in severe patients compared with mild ones. These results
186 support previously published COVID-19 data [37, 38], and suggest that antibodies against
187 SARS-CoV2 mainly comprise those genes. To further validate these conclusions, we tried to
188 build ML classifiers based on V, V & J gene usage, or V & J gene usage and 85% similarity in
189 the CDR3 AAs. However, these models yielded less than 70% accuracy, suggesting low impact
190 of V or V & J gene usage on the response to SARS-CoV2 infection.

191 We explored further whole repertoire features, and compared isotype frequencies between the
192 different groups. While we observed a reduction in the frequencies of IGD and IGM upon SARS-
193 CoV2 infection, the levels of IGG increased (Fig.1E), and those of IGA remained unchanged.
194 We also measured silent mutability frequencies for each isotype (Fig. 1F). These measurements
195 avoid changes which are caused by antibodies selective pressure. In contrast to the IGG and
196 IGA class switched isotypes, in which mutability upon infection is reduced, in IGD and IGM
197 mutability is increased. In severe patients, the IGD and IGM mutability was even higher
198 (Fig.1F).

199 **BCR V gene AA composition successfully classifies SARS-CoV2 in-**
200 **fection and may reveal important features of antibodies against the**
201 **virus**

202 We continued exploring classification approaches to stratify COVID-19 patients and uninfected
203 individuals. To this end, we explored AA frequencies along the V gene, aggregated by V gene
204 family. We generated a table with 10,300 columns, counting AA frequencies along 103 V gene
205 positions (aligned according to IMGT numbering), for the 5 most highly used V gene families
206 (IGHV1-5). Using this approach we obtained a high F1 score of more than 0.85, and similar
207 levels of accuracy, sensitivity, and specificity (Fig. 2A). The test set resulted in an F1 score of
208 above 0.85 (Fig. 2B). We then extracted the coefficient used by the algorithm, corresponding
209 to the contribution of each AA frequency to the classification of the disease (Fig. 2D).

210 To further validate that these changes are unique to COVID-19 patients, we downloaded
211 a dataset of more than 450 repertoires from cAb-rep data collection [39]. These data include
212 repertoire sequencing results from a wide variety of clinical conditions such as Hepatitis B
213 virus infection, vaccinations against Hepatitis B virus and influenza, and several autoimmune
214 diseases. Applying our algorithm to these data to classify COVID-19 infection resulted in a false
215 positive rate of only 6%, indicating that our classification is specific to COVID-19 infection.

216 These results were obtained for the repertoire level, and we sought to test their applicability
217 to the single BCR sequence level. For this, we transferred the features selected for the repertoire
218 level model, i.e., AA frequencies along the V gene families, to calculate a score for single BCR
219 sequences. We calculated such scores for a list of more than 5,000 known antibodies against
220 SARS-CoV2 from the CoV-AbDab database [40]. The scores of the known antibodies were
221 higher than those came from whole repertoires of control patients as well as most of the COVID-
222 19 infected repertoires (Fig. 2C), suggesting that these coefficients are meaningful not only for
223 the repertoire level, but also for single BCR sequences. Our attempts to classify the severity of
224 COVID-19 using this method were not successful, so for this purpose, we explored other sets
225 of features. The coefficients of the algorithm can be seen in Fig. 2D.

226 Mutation bias in class-switched B cells of COVID-19 patients

227 As reduced levels of overall BCR mutability were seen upon SARS-CoV2 infection only in the
228 class switched isotypes (Fig 1F), we quantified single base mutability patterns in these isotypes.
229 As seen in figure 3A, the mean relative mutability is reduced in COVID-19 patients at Cytosine
230 and Guanine (C and G), but increases in Adenine and Thymine (A and T). The same results
231 were obtained when considering silent mutations only (Fig. 3B). Five main pathways are
232 responsible for introducing mutations during SHM [41]. Three introduce mutations in C and
233 G, and the other two involve the low fidelity DNA polymerase $\text{pol}\eta$, which mutates A and
234 T. The significant differences in mutability observed in COVID-19 patients suggest altered
235 activity of those arms. To further investigate SHM in SARS-CoV2 infection, we applied a
236 commonly used 5-mers SHM mutability model [23]. In general, two highly mutated hot-spot
237 motifs are commonly observed in SHM. One is WRC/GYW (where W = {A, T}, Y = {C, T}
238 R = {G, A}), and the mutated position is underlined), and the other is WA/TW. In addition,
239 SYC/GRS (where S = {C, G}), is considered as a cold-spot sequence motif. We first built
240 a 5-mer mutability model based on both silent and replacement mutations. Such a model
241 combines the effects of SHM and antigen-driven selection. We divided the 5-mers to those
242 occurring in the two hot-spots, in the cold-spot, and in all other neutral sites, and show their
243 levels for IGD/IGM and for IGA/IGG (Fig. 3C and E). The most significant changes between
244 the different groups are a decrease in the WRC/GYW site and an increase in SYC/GRS in
245 IGA/IGG of COVID-19 patients. This increase is not seen in severely infected patients.

246 To understand whether these patterns stem from SHM or from antigen-driven selection, we
247 built another model, taking only silent mutations into consideration. Fig. 3D and F shows
248 the resulting mutability scores for the same sequence motifs. The observed pattern resembles
249 the one observed in Fig. 3C and E, suggesting that the alteration between the groups results
250 from altered SHM characteristics. To avoid the effect of clonal expansion on mutability calcula-
251 tions, we repeated all calculations, taking into account only one representative from each clone.
252 Similar results were obtained using this approach (Fig. S4). Moreover, using SHM matrices
253 based only on a specific V family resulted in a much lower signal (Fig. S5F). Importantly, the
254 mentioned SHM patterns reflect the relative likelihood for each mutation pattern and do not
255 indicate the overall mutability level.

256 **Silent SHM patterns classify SARS-CoV2 infection and severity**

257 To estimate the level of connection between changes in SHM patterns and SARS-CoV2 infection,
258 we tried again to build a classifier of samples' origin. We built two models, one using all
259 mutations (Fig. 4A, S5, S6A and S8), and one using silent mutations only (Fig. 4B, S6B).
260 Taking all mutations into account, we obtained an F1 score of over 0.85, as well as accuracy,
261 sensitivity, and specificity values. Taking only silent mutations into account, we obtained a
262 slightly lower result of ~ 0.8 F1 score and accuracy. These results strengthen our hypothesis
263 that the differences between the repertoires emerge mainly from SHM itself and not from
264 antigen-driven selection. Using only light chain sequences for the mutability model reaches
265 much lower results, as expected (Fig. S7A and B). A model based on the combination of light
266 and heavy chains does not obtain better results than using the heavy chain only (Fig. S8).

267 Next, we tried to classify COVID-19 severity using SHM patterns. Since the mutability in
268 the cold-spot motif changes the most between severe and mild patients, we built a model using
269 mutability scores of this cold-spot only. We obtained an F1 score and accuracy of about 0.75
270 in severity classifications (Fig. 4C).

271 All patterns with non-zero coefficients have much higher mutability frequencies in mild
272 patients compared with severe patients (Fig. 4D). Again, to avoid the effect of clonal expansion
273 and selective pressure on the inferred mutability model, we repeated the mutability model
274 inference taking into account only one representative from each clone. As shown in Fig. S5,
275 the results were comparable to those obtained using all sequences.

276 **Known SARS-CoV2 antibodies are enriched in plasmablasts from** 277 **COVID-19 patients**

278 We thought to find in our sequencing data, antibodies that may be related to the known
279 COVID-19 antibodies. As mentioned above, during the COVID-19 pandemic a new database
280 summarizing all known SARS-CoV2 antibodies was published, containing more than 5,000
281 antibody AA sequences of both heavy and light chains. For each of our repertoires, we calculated
282 and summarized the frequencies of sequences that are similar to known antibodies. We defined
283 similar antibodies by 85% identity in the CDR3 AAs, and the same V and J genes. As expected,
284 the frequencies of similar to known antibodies in COVID-19 patients were higher than those in

285 control individuals (Fig. 5A. Histograms summarizing the sizes and numbers of samples having
286 at least one representation in the clones can be found in Fig. S9A and B). Using the sum of
287 frequencies of similar to known COVID-19 clones, we reached an accuracy of above 70% in
288 repertoire classification and an AUC of 0.81 (Fig. 5B). Even lower results were obtained when
289 training the algorithm to count the frequencies of shared clones between samples (Fig. S10).
290 Although significant, this result is lower than that achieved by considering mutations along the
291 V gene.

292 To further explore the similarity to known antibodies, we performed 10X Genomics single
293 cell sequencing including V(D)J and gene expression, on blood samples from additional 13 mild
294 COVID-19 patients. Using single cell sequencing data enables matching of heavy and light
295 chains, which cannot be done with bulk sequencing. Moreover, single cell sequencing provides
296 the ability to identify cell type using gene expression signatures. We found similar to known
297 antibodies in 7 out of the 13 repertoires. The frequencies were overall lower compared with
298 those seen in the bulk RNA sequencing cohort (Fig. 5C). This could be due to the differences in
299 sequencing methods, or because in the single cell cohort the patients were diagnosed on average
300 more recently than the bulk cohort and thus may have had lower levels of SARS-CoV2 specific
301 antibodies.

302 We then applied the SingleR R package to classify cell types by single cell expression pro-
303 files. Two-dimensional UMAP reduced plots are shown in Fig. 5D, demonstrating a distinct
304 cluster of plasmablasts. We summarized the frequency of known SARS-CoV2 clusters in bulk
305 sequenced COVID-19 patients, bulk controls, single cell unsorted data, and single cell plas-
306 mablasts only. As shown in Fig. 5E, COVID-19 patients show enriched levels of similarity
307 to known SARS-CoV2 antibody compared with controls. Single cells show higher levels than
308 controls but lower than bulk, as discussed above. Among plasmablasts of COVID-19 patients,
309 we see the highest frequency of known antibody clusters, indicating a stereotypical response to
310 SARS-CoV2. Lastly, to validate our observation that WRC/GYW hot-spots mutability scores
311 decrease upon COVID-19 infection, and SYC/GRS cold-spots increase (Fig. 3), we split the
312 single cell data into plasmablasts vs. all other B cell types. We built a mutability SHM matrix
313 for each of these subsets, and indeed found a reduction in the mutability scores of WRC/GYW
314 hot-spots in plasmablasts (0.00168) compared with the other B cell types (0.00178), and an

315 increase in the mutability scores of the SYC/GRS cold-spots (0.0003 and 0.0002, respectively).

316 Discussion

317 The COVID-19 pandemic, caused by evolving variants of SARS-CoV2, has infected a large
318 proportion of the population worldwide. Antibodies play a critical role in eliminating the virus
319 from the body. Serological tests are routinely used to estimate immunity of individuals against
320 SARS-CoV2, convalescent plasma donations were used to treat severely ill COVID-19 patients,
321 and many monoclonal antibodies were developed as candidate passive vaccinations.

322 Although the pandemic has caused a huge health and economic burden, it brought several
323 important advantages for biomedical research. With so many researchers and funding oppor-
324 tunities focusing on a single topic, the pandemic facilitated both broad and profound analyses
325 of the virus and the immune responses towards it. During the past two and a half years,
326 thousands of COVID-19 binding/neutralizing antibodies have been published and deposited
327 in public datasets[42, 43]. This huge amount of data facilitates finding BCR sequences that
328 are similar to known antibody sequences, and searching for common features. Such features
329 may be used in the clinic for diagnosis of the disease, but in the case of COVID-19 there are
330 easier, faster and cheaper ways to do that. Much more importantly, it can teach us about the
331 development of the immune response towards the virus.

332 Here, in contrast to previous reports[21], we were able to stratify COVID-19 patients and
333 healthy individuals based on shared clusters of BCR sequences. The moderate classification
334 results of such approach led us to explore different sets of features that turned out to be more
335 informative. AA frequencies at all V gene positions served as a basis for an ML model that
336 produced a high F1 score ($\sim 85\%$) in classifying COVID-19 infection.

337 The patterns of AA alterations in BCRs arise during the process of affinity maturation, that
338 includes two iterative processes, namely SHM and affinity-dependent selection. These patterns
339 can stem from the antibodies against SARS-COV2 or from overall altered SHM mechanism in
340 COVID-19 patients.

341 An important question that may arise when inspecting the presented approach is whether
342 it is specific to COVID-19, or perhaps it simply detects general signals related to an adaptive
343 immune response towards a new pathogen. We believe that the presented approach is specific

344 to COVID-19 because: 1. The signal does not disappear when choosing a single representative
345 per clone, which eliminates the effect of general clonal expansion. 2. The signal is based on an
346 SHM pattern, which is subject to an antigen-specific affinity maturation. 3. Our lab has a lot
347 of experience in ML-based classification of different clinical conditions[44, 17, 28], and for each
348 condition the features identified by the algorithm as the most essential for classification were
349 different. SHM patterns have never been previously identified as a feature, as far as we know
350 (but see our recent publication [45]). To test this, we applied our algorithm to data from ~450
351 samples, including infection with Hepatitis B virus, vaccinations against Hepatitis B virus and
352 influenza, and several autoimmune diseases. 94% of these repertoires were classified as healthy,
353 indicating that our algorithm does not classify any neo-response as COVID-19.

354 Extensive research has been devoted to study SHM mechanisms affecting other regions
355 in the antibody besides the CDR3[46, 23]. Yet, this knowledge has not been used for disease
356 classifications, nor for improving antibody engineering. We sought to follow the SHM machinery
357 during SARS-CoV2 infection, starting with the whole repertoire level. It is well established
358 that antibodies binding SARS-CoV2 are very close to the germline[47, 5, 48, 49]. Surprisingly,
359 even at the repertoire level, we detected a decrease in mutability of IGG BCRs. To explore
360 whether the AA frequency-based signal results from alterations in SHM or affinity dependent
361 selection, we followed the mutability rates of silent mutations only. These mutations are not
362 subjected to affinity dependent selection pressure, thus reflecting changes in the machinery of
363 SHM. We found that most SHM changes upon SARS-CoV2 infection were observed even when
364 counting only silent mutations, which are not subject to affinity selection, suggesting dramatic
365 changes in the SHM machinery upon SARS-CoV2 infection. To further pinpoint the effects
366 on the SHM machinery, we repeated the calculations taking only one representative from each
367 clone into account, thereby abolishing the effect of clonal expansion (Fig. S5). This step slightly
368 reduced the F1 score, in a non-significant way. The fact that eliminating the effect of clonal
369 expansion on our findings did not abolish the differences suggests that there are true changes
370 in the SHM machinery. Moreover, the moderate performance reduction when taking only one
371 representative per clone, hints that the SHM changes during SARS-CoV2 infection may be
372 further enhanced by clonal expansion, potentially aiding the battle with the virus.

373 Many pathways are involved in the introduction of mutations to BCR sequences. In par-

374 ticular, two common SHM hot-spots, WRC/GYW and WA/TW, are affected by two different
375 pathways. While mutations in WRC/GYW motifs are mediated by the activation induced
376 deaminase, mutability at WA/TW motifs also involve the low fidelity DNA polymerase pol η .

377 In the class switched IGA and IGG isotypes, we observed decreased mutability levels with
378 increasing severity of COVID-19 at WRC/GYW motifs, and increased mutability at WA/TW
379 sites. Again, these changes were observed even when counting silent mutations only, further
380 supporting an impact of the virus on the SHM introduction mechanism. The reduced mutability
381 in WRC/GYW motifs and the mildly increased mutability in WA/TW motifs may hint that
382 AID levels could be decreased upon COVID-19 infection. This possibility will need to be
383 validated in future studies. Another future direction is to test for possible SHM positional
384 effects. The presence of such an effect was lately suggested [50], and it will be very interesting
385 to inspect whether this is relevant to our results.

386 Another specific SHM target is the cold-spot SYC/GRS. Surprisingly, we found an increase
387 in mutability rates of this cold-spot in COVID-19 repertoires. Moreover, this increase was
388 not observed in severely infected patients, suggesting that this mechanism may be critical for
389 production of efficient antibodies and thereby for prevention of severe illness.

390 Building on our success in classifying patients from healthy individuals, we sought to de-
391 velop an ML-based algorithm to classify disease severity. This could have important clinical
392 outcomes, since medications and passive vaccines now exist that can prevent deterioration if
393 diagnosed individuals are treated rapidly. However, these treatments have side effects and are
394 not given to the wide population. Prediction of disease severity by the known risk factors is
395 highly inaccurate, and there are currently no other means to classify severity. Using mutability
396 patterns from silent mutations only, we estimate our ability to classify COVID-19 severity at
397 approximately 75%(Fig. 4C). The known risk factors to develop severe COVID-19 are mostly
398 preexisting conditions such as older age, hypertension, obesity, diabetes. Here, we suggest
399 another risk biomarker that involves basic features of the adaptive immune system. Many
400 more steps are needed to enable prediction of COVID-19 infection and severity based on BCR
401 sequencing data. We provide here a first step towards it.

402 AA frequency patterns along the V genes at the whole repertoire level is a sufficient feature
403 for relatively good classification of COVID-19. Looking at the identity of AA along the V gene

404 of a single BCR sequence may reveal its affinity towards the virus. To explore the connec-
405 tion between the new BCR repertoire data generated here and known SARS-CoV2 antibody
406 sequences we took a two way approach. Building on the hypothesis that the whole reper-
407toire level signal responsible for the classification stems from individual SARS-CoV2-specific
408 antibodies generated during the infection, we derived a single sequence score based on the
409 repertoire classification signal. Although sequences with high scores are scarce in both healthy
410 and COVID-19 repertoires, their prevalence in the CoV-abDab data is significantly higher (Fig.
411 2C). As such, the features (detailed in Fig. 2D) may be used for more rational antibody design
412 towards the virus. In addition, we explored the presence of similar sequences to the validated
413 CoV-abDab antibodies in both bulk and in single cell sequenced repertoires. We found a higher
414 fraction of sequences with high similarity to known antibodies in COVID-19 patients compared
415 with controls. This can also be used for successful classification of the repertoires. Notably,
416 a group of COVID-19 patients had no similar antibodies to those in the list, suggesting that
417 despite the massive efforts so far, the list is incomplete. On the other hand, in some control
418 samples we found few sequences similar to known antibodies. These antibodies may provide a
419 basis for protection from COVID-19 symptoms or complications to individuals who carry them.

420 **Declarations**

421 **Ethics approval and consent to participate**

422 The repertoires composing the dataset were collected at three medical centers. IRB approval
423 numbers: Rabin (Beilinson) Medical Center, 0256-20-RMC; Baruch Padeh Medical Center,
424 0037-20-POR; Shaare Zedek Medical Center, 0303-20-SZMC. All participants received an ex-
425 planation about the study from a medical doctor, and signed an informed consent form.

426 **Consent for publication**

427 Not applicable.

428 Availability of data and code

429 Our sequencing data will be available on NCBI upon publication, under BioProject PR-
430 JNA839749. All code will be available on github.

431 Competing interests

432 The authors declare that they have no competing interests.

433 Funding

434 We thank the Israeli Ministry of Science grant 3-16909, the Israeli Science Foundation grant
435 3768/19, the United States–Israel Binational Science Foundation (2017253), and the European
436 Union’s Horizon 2020 research and innovation program (825821). The contents of this document
437 are the sole responsibility of the iReceptor Plus Consortium and can under no circumstances
438 be regarded as reflecting the position of the European Union.

439 Authors’ contributions

440 GY, MGT, and TT conceived the research; GY supervised the work; MS performed the com-
441 putational analyses; ZT prepared and sequenced the BCR libraries; PP coordinated between
442 all the parties and transferred the samples from the hospitals to the lab at Bar Ilan University;
443 SS, MM, HK, YH, AP, EBC, BB collected the samples from COVID-19 patients; ALB, VY
444 collected the samples from healthy volunteers; MS, PP, GY wrote the manuscript; all authors
445 edited the manuscript and approved it for publication.

446 Acknowledgements

447 Not applicable.

448 References

449 [1] Marco Cascella, Michael Rajnik, Abdul Aleem, Scott C Dulebohn, and Raffaela Di Napoli.
450 Features, evaluation, and treatment of coronavirus (covid-19). *Statpearls [internet]*, 2022.

451 [2] Christoph Schultheiß, Lisa Paschold, Donjete Simnica, Malte Mohme, Edith Willscher,
452 Lisa von Wenserski, Rebekka Scholz, Imke Wieters, Christine Dahlke, Eva Tolosa, et al.
453 Next-generation sequencing of t and b cell receptor repertoires from covid-19 patients
454 showed signatures associated with severity of disease. *Immunity*, 53(2):442–455, 2020.

455 [3] Aurélien Sokal, Pascal Chappert, Giovanna Barba-Spaeth, Anais Roeser, Slim Fourati,
456 Imane Azzaoui, Alexis Vandenberghe, Ignacio Fernandez, Annalisa Meola, Magali Bouvier-
457 Alias, et al. Maturation and persistence of the anti-sars-cov-2 memory b cell response. *Cell*,
458 184(5):1201–1213, 2021.

459 [4] Mrunal Sakharkar, C Garrett Rappazzo, Wendy F Wieland-Alter, Ching-Lin Hsieh, Daniel
460 Wrapp, Emma S Esterman, Chengzi I Kaku, Anna Z Wec, James C Geoghegan, Jason S
461 McLellan, et al. Prolonged evolution of the human b cell response to sars-cov-2 infection.
462 *Science immunology*, 6(56), 2021.

463 [5] Christoph Kreer, Matthias Zehner, Timm Weber, Meryem S Ercanoglu, Lutz Gieselmann,
464 Cornelius Rohde, Sandro Halwe, Michael Korenkov, Philipp Schommers, Kanika Vanshylla,
465 et al. Longitudinal isolation of potent near-germline sars-cov-2-neutralizing antibodies from
466 covid-19 patients. *Cell*, 182(4):843–854, 2020.

467 [6] Jacob D Galson, Sebastian Schaetzle, Rachael JM Bashford-Rogers, Matthew IJ Raybould,
468 Aleksandr Kovaltsuk, Gavin J Kilpatrick, Ralph Minter, Donna K Finch, Jorge Dias,
469 Louisa K James, et al. Deep sequencing of b cell receptor repertoires from covid-19 patients
470 reveals strong convergent immune signatures. *Frontiers in immunology*, page 3283, 2020.

471 [7] Brian D Corrie, Nishanth Marthandan, Bojan Zimonja, Jerome Jaglale, Yang Zhou, Emily
472 Barr, Nicole Knoetze, Frances MW Breden, Scott Christley, Jamie K Scott, et al. ireceptor:
473 A platform for querying and analyzing antibody/b-cell and t-cell receptor repertoire data
474 across federated repositories. *Immunological reviews*, 284(1):24–41, 2018.

475 [8] Tobias H Olsen, Fergus Boyles, and Charlotte M Deane. Observed antibody space: A
476 diverse database of cleaned, annotated, and translated unpaired and paired antibody se-
477 quences. *Protein Science*, 31(1):141–146, 2022.

478 [9] Matthew IJ Raybould, Aleksandr Kovaltsuk, Claire Marks, and Charlotte M Deane. Cov-
479 abdab: the coronavirus antibody database. *BioRxiv*, 2020.

480 [10] Victor Greiff, Gur Yaari, and Lindsay Cowell. Mining adaptive immune receptor repertoires
481 for biological and clinical information using machine learning. *Current Opinion in Systems
482 Biology*, 2020.

483 [11] Or Shemesh, Pazit Polak, Knut E. A. Lundin, Ludvig M. Sollid, and Gur
484 Yaari. Machine learning analysis of naïve b-cell receptor repertoires strat-
485 ifies celiac disease patients and controls. *Frontiers in Immunology*, 12:
486 633, 2021. ISSN 1664-3224. doi: 10.3389/fimmu.2021.627813. URL
487 <https://www.frontiersin.org/article/10.3389/fimmu.2021.627813>.

488 [12] Andrew D Foers, M Saad Shoukat, Oliver E Welsh, Killian Donovan, Russell Petry, Shel-
489 ley C Evans, Michael EB FitzPatrick, Nadine Collins, Paul Klenerman, Anna Fowler, et al.
490 Classification of intestinal t-cell receptor repertoires using machine learning methods can
491 identify patients with coeliac disease regardless of dietary gluten status. *The Journal of
492 pathology*, 253(3):279–291, 2021.

493 [13] Jason A Carter, Jonathan B Preall, Kristina Grigaityte, Stephen J Goldfless, Eric Jeffery,
494 Adrian W Briggs, Francois Vigneault, and Gurinder S Atwal. Single t cell sequencing
495 demonstrates the functional role of $\alpha\beta$ tcr pairing in cell lineage and antigen specificity.
496 *Frontiers in immunology*, 10:1516, 2019.

497 [14] Ryan O Emerson, William S DeWitt, Marissa Vignali, Jenna Gravley, Joyce K Hu, Ed-
498 ward J Osborne, Cindy Desmarais, Mark Klinger, Christopher S Carlson, John A Hansen,
499 et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and
500 hla-mediated effects on the t cell repertoire. *Nature genetics*, 49(5):659–665, 2017.

501 [15] Ramy Arnaout, Nina Luning Prak, Nicholas Schwab, and Florian Rubelt. The future of
502 blood testing is the immunome. *Frontiers in Immunology*, 12:228, 2021.

503 [16] Milena Pavlović, Lonneke Scheffer, Keshav Motwani, Chakravarthi Kanduri, Radmila
504 Kompova, Nikolay Vazov, Knut Waagan, Fabian LM Bernal, Alexandre Almeida Costa,

505 Brian Corrie, et al. The immuneml ecosystem for machine learning analysis of adaptive
506 immune receptor repertoires. *Nature Machine Intelligence*, 3(11):936–944, 2021.

507 [17] Miri Ostrovsky-Berman, Boaz Frankel, Pazit Polak, and Gur Yaari. Immune2vec: Em-
508 bedding b/t cell receptor sequences in r^n using natural language processing. *Frontiers in*
509 *immunology*, page 2706, 2021.

510 [18] Rebecca Elyanow, Thomas M. Snyder, Sudeb C. Dalai, Rachel M. Gittelman, Jim Boon-
511 yaratantanakornkit, Anna Wald, Stacy Selke, Mark H. Wener, Chihiro Morishima, Alex L.
512 Greninger, Michael R. Holbrook, Ian M. Kaplan, H. Jabran Zahid, Jonathan M. Carlson,
513 Lance Baldo, Thomas Manley, Harlan S. Robins, and David M. Koelle. T-cell recep-
514 tor sequencing identifies prior sars-cov-2 infection and correlates with neutralizing anti-
515 body titers and disease severity. *medRxiv*, 2021. doi: 10.1101/2021.03.19.21251426. URL
516 <https://www.medrxiv.org/content/early/2021/03/22/2021.03.19.21251426>.

517 [19] Rachel M. Gittelman, Enrico Lavezzo, Thomas M. Snyder, H. Jabran Zahid, Rebecca
518 Elyanow, Sudeb Dalai, Ilan Kirsch, Lance Baldo, Laura Manuto, Elisa Franchin, Clau-
519 dia Del Vecchio, Monia Pacenti, Caterina Boldrin, Margherita Cattai, Francesca Saluzzo,
520 Andrea Padoan, Mario Plebani, Fabio Simeoni, Jessica Bordini, Nicola I. Lorè, Dejan
521 Lazarevic, Daniela M. Cirillo, Paolo Ghia, Stefano Toppo, Jonathan M. Carlson, Har-
522 lan S. Robins, Giovanni Tonon, and Andrea Crisanti. Diagnosis and tracking of sars-cov-2
523 infection by t-cell receptor sequencing. *medRxiv*, 2021. doi: 10.1101/2020.11.09.20228023.
524 URL <https://www.medrxiv.org/content/early/2021/02/10/2020.11.09.20228023>.

525 [20] Sudeb C Dalai, Jennifer N Dines, Thomas M Snyder, Rachel M Gittelman, Tera Eerkes,
526 Pashmi Vaney, Sally Howard, Kipp Akers, Lynell Skewis, Anthony Monteforte, et al. Clin-
527 ical validation of a novel t-cell receptor sequencing assay for identification of recent or prior
528 sars-cov-2 infection. *medRxiv*, 2021. doi: <https://doi.org/10.1101/2021.01.06.21249345>.

529 [21] M Saad Shoukat, Andrew D Foers, Stephen Woodmansey, Shelley C Evans, Anna Fowler,
530 and Elizabeth J Soilleux. Use of machine learning to identify a t cell response to sars-cov-2.
531 *Cell Reports Medicine*, 2(2):100192, 2021.

532 [22] Bas Pilzecker and Heinz Jacobs. Mutating for good: Dna damage responses during somatic
533 hypermutation. *Frontiers in immunology*, 10:438, 2019.

534 [23] Gur Yaari, Jason Vander Heiden, Mohamed Uduman, Daniel Gadala-Maria, Namita
535 Gupta, Joel NH Stern, Kevin O'Connor, David Hafler, Uri Laserson, Francois Vigneault,
536 et al. Models of somatic hypermutation targeting and substitution based on synonymous
537 mutations from high-throughput immunoglobulin sequencing data. *Frontiers in immunol-*
538 *ogy*, 4:358, 2013.

539 [24] Chaim A Schramm and Daniel C Douek. Beyond hot spots: biases in antibody somatic
540 hypermutation and implications for vaccine design. *Frontiers in immunology*, page 1876,
541 2018.

542 [25] Natanael Spisak, Aleksandra M Walczak, and Thierry Mora. Learning the heterogeneous
543 hypermutation landscape of immunoglobulins from high-throughput repertoire data. *Nu-*
544 *cleic acids research*, 48(19):10702–10712, 2020.

545 [26] Thomas MacCarthy, Susan L Kalis, Sergio Roa, Phuong Pham, Myron F Goodman,
546 Matthew D Scharff, and Aviv Bergman. V-region mutation in vitro, in vivo, and in silico
547 reveal the importance of the enzymatic properties of aid and the sequence environment.
548 *Proceedings of the National Academy of Sciences*, 106(21):8629–8634, 2009.

549 [27] MA Turchaninova, A Davydov, OV Britanova, Mikhail Shugay, Vasileios Bikos, ES Egorov,
550 VI Kirgizova, EM Merzlyak, DB Staroverov, DA Bolotin, et al. High-quality full-length
551 immunoglobulin profiling with unique molecular barcoding. *Nature protocols*, 11(9):1599–
552 1616, 2016.

553 [28] Sivan Eliyahu, Oz Sharabi, Shiri Elmedvi, Reut Timor, Ateret Davidovich, Francois Vi-
554 gneault, Chris Clouser, Ronen Hope, Assy Nimer, Marius Braun, et al. Antibody repertoire
555 analysis of hepatitis c virus infections identifies immune signatures associated with spon-
556 taneous clearance. *Frontiers in immunology*, 9:3004, 2018.

557 [29] Jason A Vander Heiden, Panos Stathopoulos, Julian Q Zhou, Luan Chen, Tamara J
558 Gilbert, Christopher R Bolen, Richard J Barohn, Mazen M Dimachkie, Emma Ciafaloni,
559 Teresa J Broering, et al. Dysregulation of b cell repertoire formation in myasthenia gravis

560 patients revealed through deep sequencing. *The Journal of Immunology*, 198(4):1460–1473,
561 2017.

562 [30] Jason A Vander Heiden, Gur Yaari, Mohamed Uduman, Joel NH Stern, Kevin C O'Connor,
563 David A Hafler, Francois Vigneault, and Steven H Kleinstein. presto: a toolkit for pro-
564 cessing high-throughput sequencing raw reads of lymphocyte receptor repertoires. *Bioin-
565 formatics*, 30(13):1930–1932, 2014.

566 [31] Xavier Brochet, Marie-Paule Lefranc, and Véronique Giudicelli. Imgt/v-quest: the highly
567 customized and integrated system for ig and tr standardized vj and vdj sequence analysis.
568 *Nucleic acids research*, 36(suppl_2):W503–W508, 2008.

569 [32] Namita T Gupta, Jason A Vander Heiden, Mohamed Uduman, Daniel Gadala-Maria,
570 Gur Yaari, and Steven H Kleinstein. Change-o: a toolkit for analyzing large-scale b cell
571 immunoglobulin repertoire sequencing data. *Bioinformatics*, 31(20):3356–3358, 2015.

572 [33] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and
573 powerful approach to multiple testing. *Journal of the Royal statistical society: series B
574 (Methodological)*, 57(1):289–300, 1995.

575 [34] M Kuhn, J Wing, S Weston, A Williams, C Keefer, A Engelhardt, T Cooper, Z Mayer,
576 B Kenkel, and M Benesty. R package caret: Classification and regression training, 2019.

577 [35] Yuhan Hao, Stephanie Hao, Erica Andersen-Nissen, William M Mauck III, Shiwei Zheng,
578 Andrew Butler, Maddie J Lee, Aaron J Wilk, Charlotte Darby, Michael Zager, et al.
579 Integrated analysis of multimodal single-cell data. *Cell*, 184(13):3573–3587, 2021.

580 [36] Dvir Aran, Agnieszka P Looney, Leqian Liu, Esther Wu, Valerie Fong, Austin Hsu, Suzanna
581 Chak, Ram P Naikawadi, Paul J Wolters, Adam R Abate, et al. Reference-based anal-
582 ysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. *Nature
583 immunology*, 20(2):163–172, 2019.

584 [37] Bing He, Shuning Liu, Yuanyuan Wang, Mengxin Xu, Wei Cai, Jia Liu, Wendi Bai, Shupei
585 Ye, Yong Ma, Hengrui Hu, et al. Rapid isolation and immune profiling of sars-cov-2 specific
586 memory b cell in convalescent covid-19 patients via libra-seq. *Signal transduction and
587 targeted therapy*, 6(1):1–12, 2021.

588 [38] Prasanti Kotagiri, Federica Mescia, William M Rae, Laura Bergamaschi, Zewen K Tuong,
589 Lorinda Turner, Kelvin Hunter, Pehuén P Gerber, Myra Hosmillo, Christoph Hess, et al.
590 B cell receptor repertoire kinetics after sars-cov-2 infection and vaccination. *Cell reports*,
591 38(7):110393, 2022.

592 [39] Yicheng Guo, Kevin Chen, Peter D Kwong, Lawrence Shapiro, and Zizhang Sheng. cab-rep:
593 a database of curated antibody repertoires for exploring antibody diversity and predicting
594 antibody prevalence. *Frontiers in immunology*, 10:2365, 2019.

595 [40] Matthew I J Raybould, Aleksandr Kovaltsuk, Claire Marks, and Charlotte M
596 Deane. CoV-AbDab: the coronavirus antibody database. *Bioinformatics*, 37(5):
597 734–735, 08 2020. ISSN 1367-4803. doi: 10.1093/bioinformatics/btaa739. URL
598 <https://doi.org/10.1093/bioinformatics/btaa739>.

599 [41] Bas Pilzecker and Heinz Jacobs. Mutating for good: Dna dam-
600 age responses during somatic hypermutation. *Frontiers in Immunol-*
601 *ogy*, 10, 2019. ISSN 1664-3224. doi: 10.3389/fimmu.2019.00438. URL
602 <https://www.frontiersin.org/article/10.3389/fimmu.2019.00438>.

603 [42] Sandra CA Nielsen, Fan Yang, Katherine JL Jackson, Ramona A Hoh, Katharina Röltgen,
604 Grace H Jean, Bryan A Stevens, Ji-Yeun Lee, Arjun Rustagi, Angela J Rogers, et al.
605 Human b cell clonal expansion and convergent antibody responses to sars-cov-2. *Cell host*
606 & *microbe*, 28(4):516–525, 2020.

607 [43] Yiquan Wang, Meng Yuan, Huibin Lv, Jian Peng, Ian A Wilson, and Nicholas C Wu.
608 A large-scale systematic survey reveals recurring molecular features of public antibody
609 responses to sars-cov-2. *Immunity*, 2022.

610 [44] Or Shemesh, Pazit Polak, Knut EA Lundin, Ludvig M Sollid, and Gur Yaari. Machine
611 learning analysis of naïve b-cell receptor repertoires stratifies celiac disease patients and
612 controls. *Frontiers in immunology*, page 633, 2021.

613 [45] Modi Safra, Lael Werner, Pazit Polak, Ayelet Peres, Naomi Salamon, Michael Schwimer,
614 Batia Weiss, Iris Barshack, Dror S Shouval, and Gur Yaari. A somatic hypermutation-

615 based machine learning model stratifies individuals with crohn's disease and controls.

616 *Genome Research*, pages gr-276683, 2022.

617 [46] Valerie H Odegard and David G Schatz. Targeting of somatic hypermutation. *Nature*
618 *Reviews Immunology*, 6(8):573–583, 2006.

619 [47] Michael Mor, Michal Werbner, Joel Alter, Modi Safra, Elad Chomsky, Smadar Hada-
620 Neeman, Ksenia Polonsky, Cameron J Nowell, Alex E Clark, Anna Roitburd-Berman,
621 et al. Multi-clonal live sars-cov-2 in vitro neutralization by antibodies isolated from severe
622 covid-19 convalescent donors. *BioRxiv*, 2020.

623 [48] Yongbing Pan, Jianhui Du, Jia Liu, Hai Wu, Fang Gui, Nan Zhang, Xiaojie Deng, Gang
624 Song, Yufeng Li, Jia Lu, et al. Screening of potent neutralizing antibodies against sars-
625 cov-2 using convalescent patients-derived phage-display libraries. *Cell Discovery*, 7(1):
626 1–19, 2021.

627 [49] Roy A Ehling, Cédric R Weber, Derek M Mason, Simon Friedensohn, Bastian Wagner,
628 Florian Bieberich, Edo Kapetanovic, Rodrigo Vazquez-Lombardi, Raphaël B Di Roberto,
629 Kai-Lin Hong, et al. Sars-cov-2 reactive and neutralizing antibodies discovered by single-
630 cell sequencing of plasma cells and mammalian display. *Cell reports*, 38(3):110242, 2022.

631 [50] JQ Zhou and SH Kleinstein. Position-dependent differential targeting of somatic hyper-
632 mutation. *the journal of immunology. ji*, 2000496, 2020.

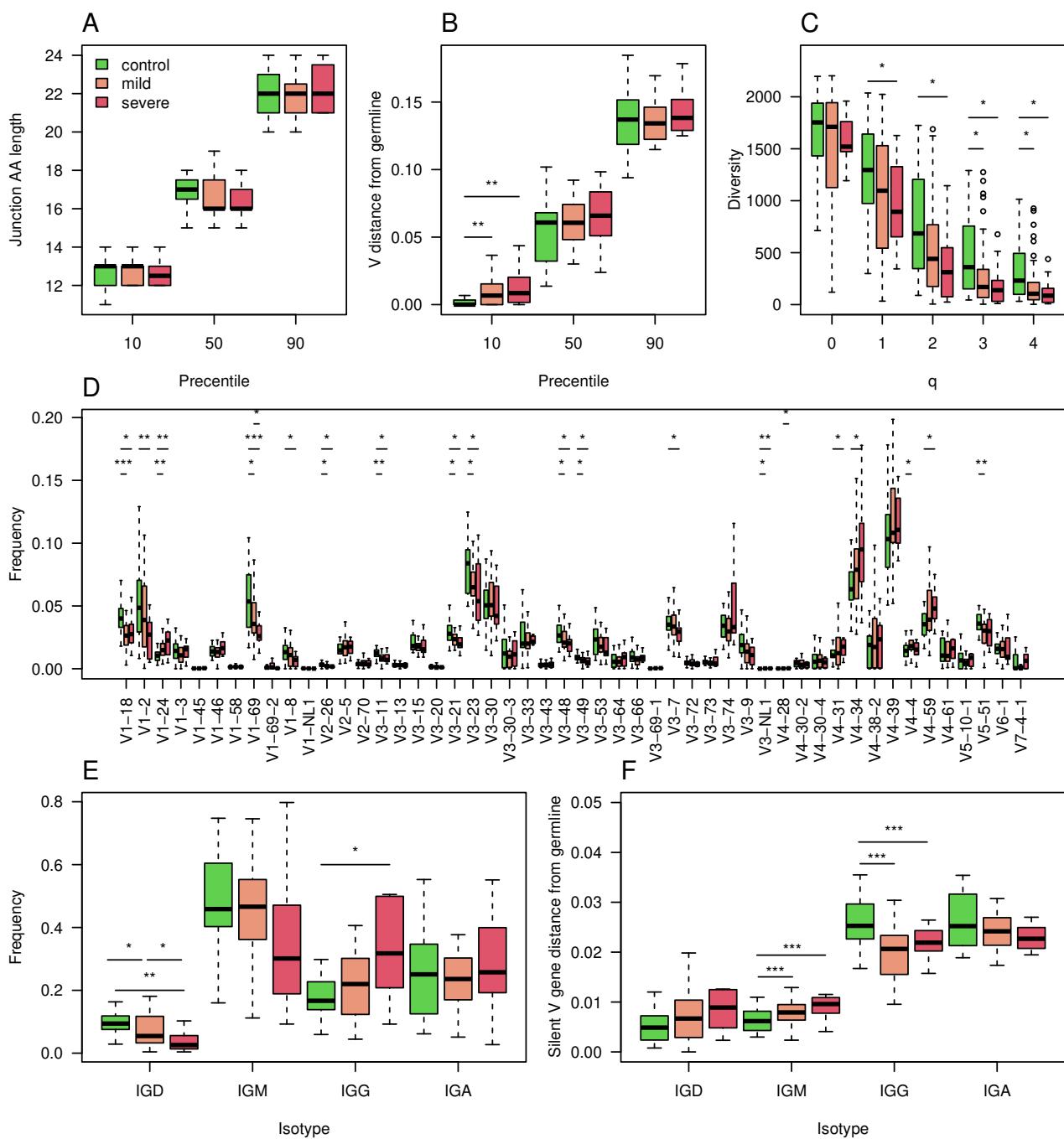


Figure 1: Characterization of the COVID-19 heavy chain BCR cohort

A. 10,50 and 90 percentiles of AA CDR3 length in individuals with corona at indicated severity and controls. B. 10,50 and 90 percentiles of V gene distances from germline in COVID-19 infected individuals at indicated severity and controls. C. Boxplot showing calculated Hill diversity indexes upon different q values between individuals infected by COVID-19 at indicated severity and controls. D. Boxplots showing V gene usage in individuals infected by COVID-19 at indicated severity and controls, shown top 50's mean frequencies. E. Boxplots showing the isotype frequencies in individuals infected by COVID-19 at indicated severity and controls. F. Boxplots showing silent mutations' frequencies along the V gene in different isotypes of individuals infected by COVID-19 at indicated severity and controls. In the whole figure, * marks P value less than 0.05. ** marks P value less than 0.01 and *** marks P value less than 0.001.

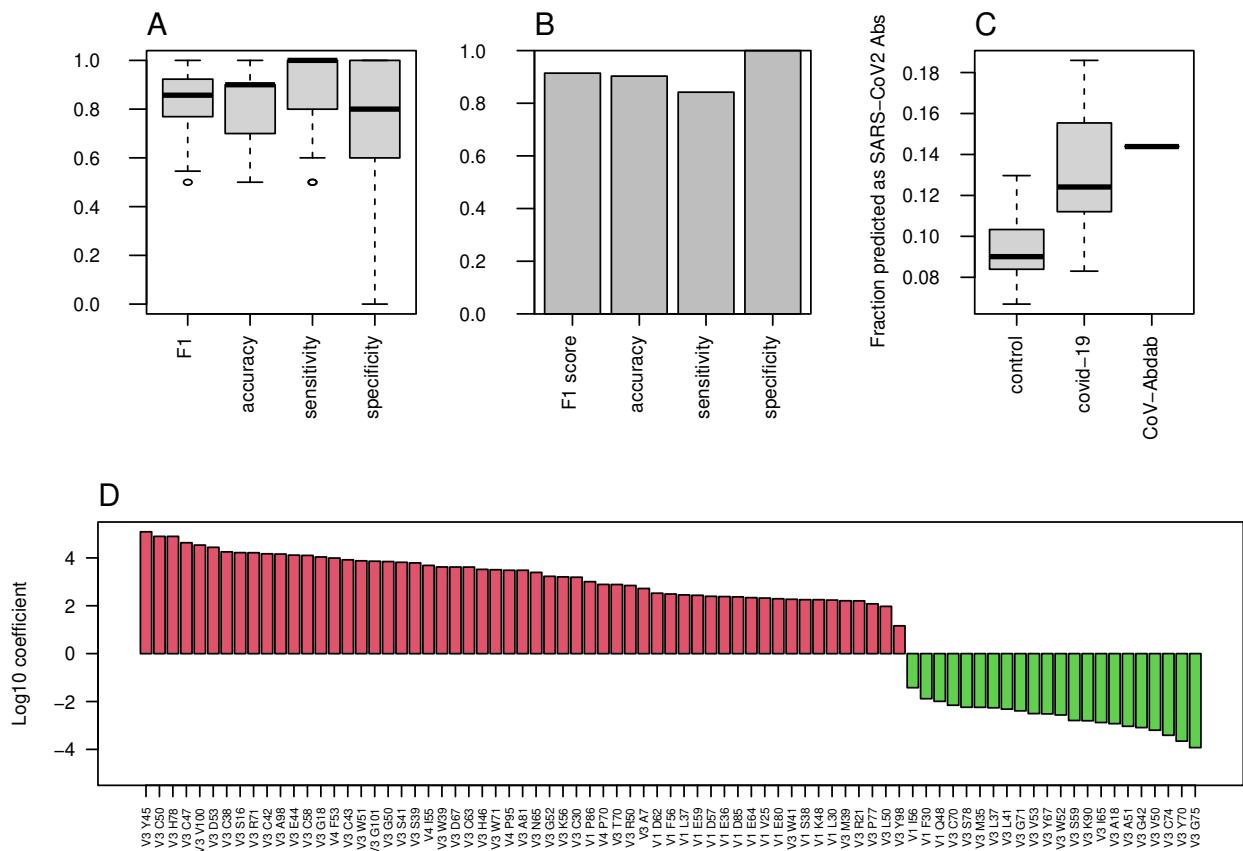


Figure 2: COVID-19 classification using AA frequencies at all V gene positions

A. Boxplots showing the F1 score, accuracy, sensitivity, and specificity for COVID-19 classification by AA frequency at each position in each V family. Shown are values calculated for 50 random splits to train and validation groups. B. Bar plots showing the indicated scores on the external test group. C. COVID-19 single antibody scores were calculated using the coefficients of the algorithm described in panel A. Boxplots showing the fraction of antibody sequences with scores above 0 in control and COVID-19 infected repertoires, as well as in CoV-AbDab COVID-19 antibodies, are shown. D. Log10 coefficients of the algorithm described in A and B.

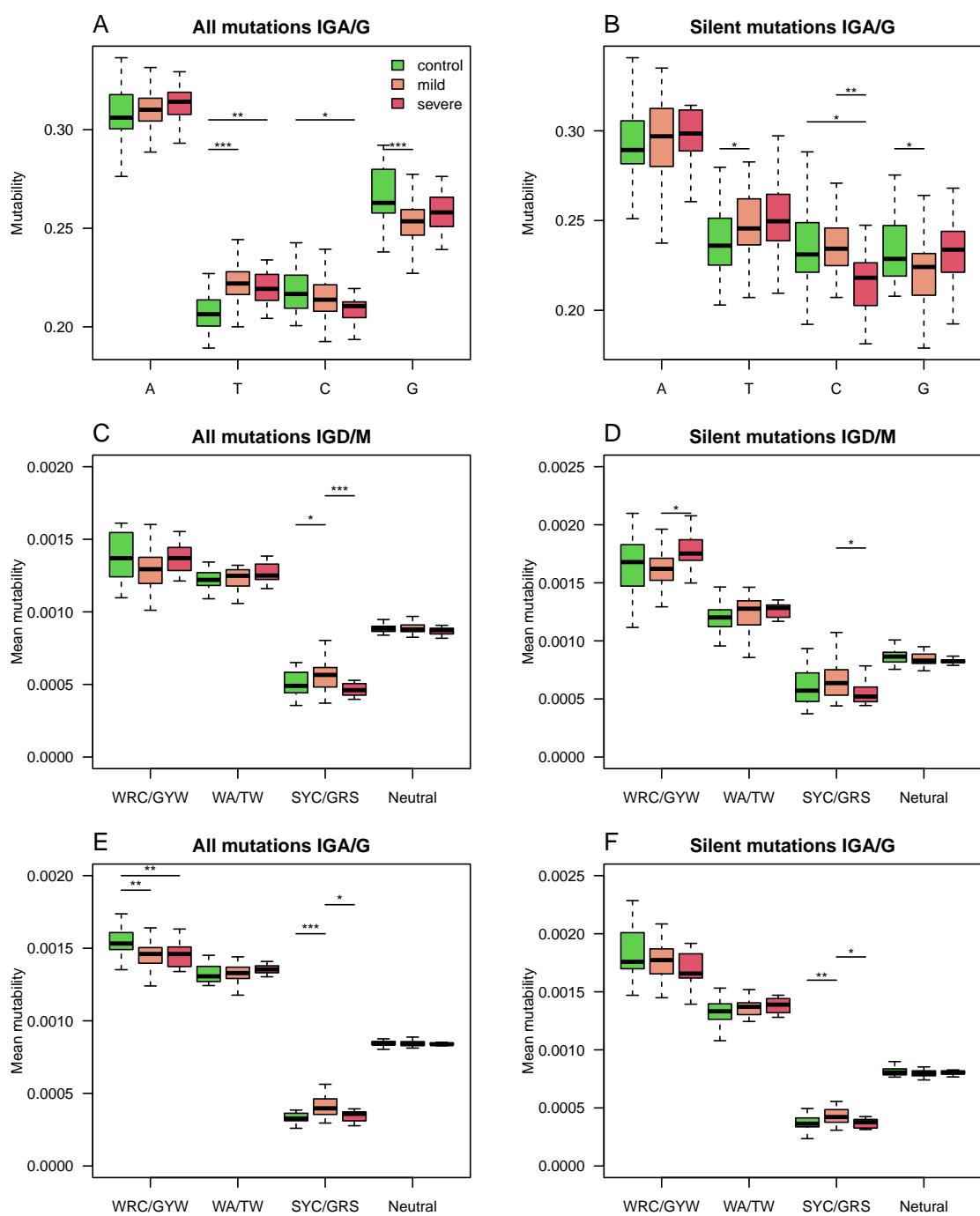


Figure 3: **Silent and replacement mutability in SHM single base mutability, 5-mers hot-spots and cold-spots**

A. A single base mutability model was built based on IGA/G isotypes of COVID-19 patients and controls. Shown are boxplots representing the normalized sum of single base mutability. B. The same plot as in A but for silent mutations only. C-D. A 5-mer SHM model based on both silent and replacement mutations in C, or silent only mutations in D, was built using the IGD and IGM isotypes of COVID-19 patients at different severity levels and controls. Shown mutability of the two known SHM hot-spots, SHM cold-spots, and the rest of the sites. E-F.

An 5-mer SHM model based on both silent and replacement mutations in E, or silent only mutations in F, was built using the IGA and IGG isotypes of COVID-19 patients at different severity levels and controls. Shown mutability of the two known SHM hot-spots, SHM cold-spots, and the rest of the sites. In the whole figure, * marks P value less than 0.05. ** marks P value less than 0.01 and *** marks P value less than 0.001.

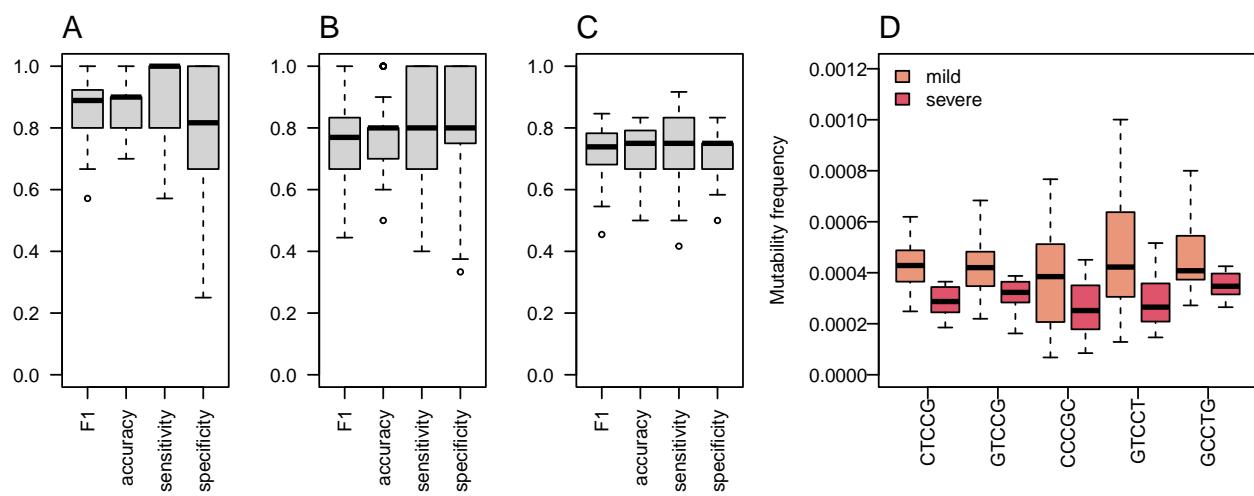


Figure 4: SHM Heavy chain enables classification of both SARS-CoV2 infection and COVID-19 severity

A. An ML algorithm was trained on the substitutions matrix of the 5-mer SHM model, which was created for the IGA/G isotypes. Boxplots representing F1 score, accuracy, specificity, and sensitivity of 50 random splits to train and test groups are shown. B. The same algorithm as in A was trained on silent mutations only. Shown are Boxplots representing the F1 score, accuracy, specificity, and sensitivity of 50 random splits to train and test groups. C. Boxplots showing F1 score, accuracy, specificity, and sensitivity of 20 leave-one-out cross validation of severity classification. Each leave-one-out was on 12 severe COVID-19 patients and 12 randomly selected mild COVID-19 patients. The ML algorithm was trained on the mutability matrix of the SHM cold-spots in these groups. D. Frequency of mutability in mild and severe individuals with COVID-19. Boxplots of frequencies of repeating coefficients of the algorithm explained in C are shown.

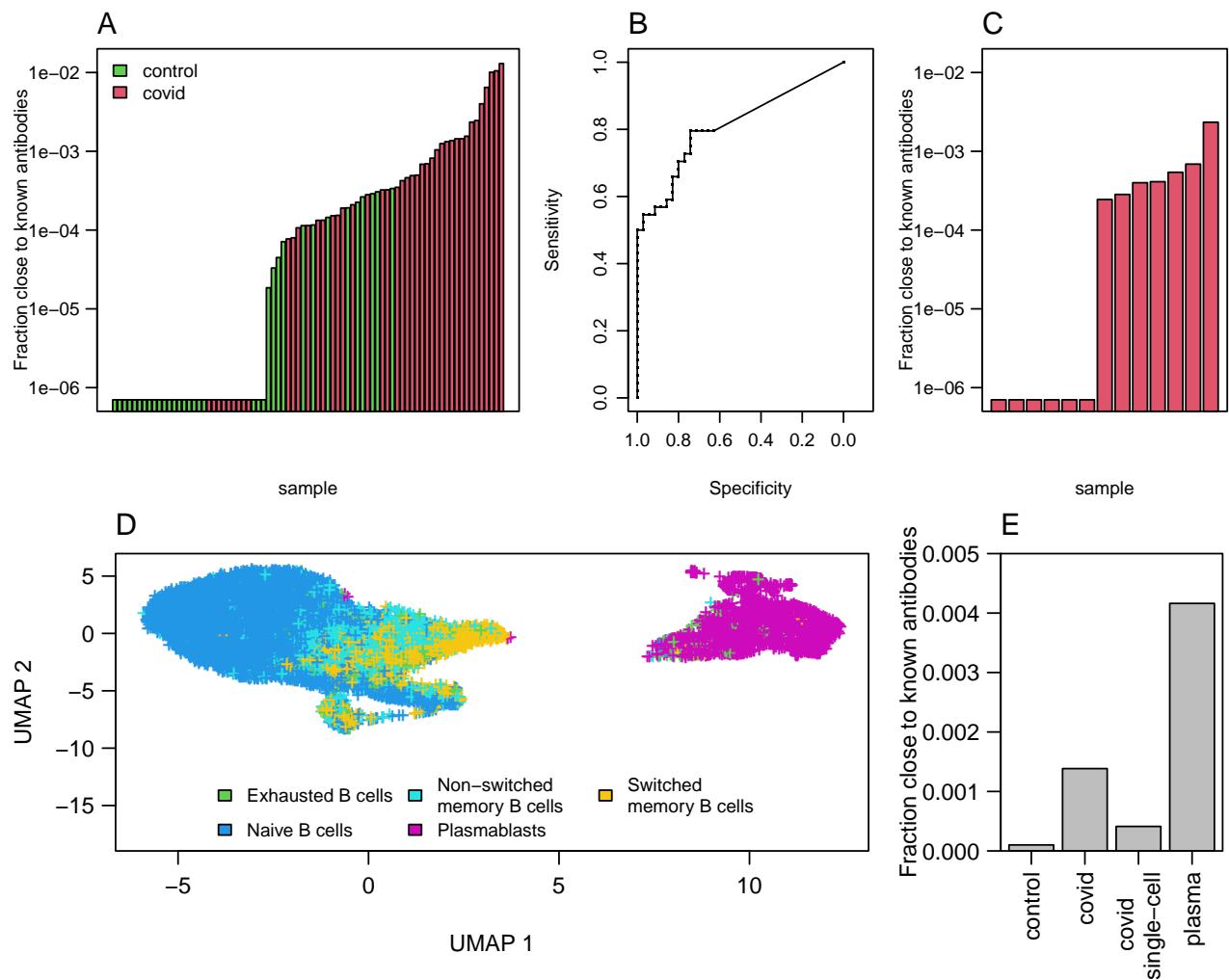


Figure 5: **Clones of antibodies in our sequencing close to known COVID-19 antibodies from CoV-AbDab database.**

A. Sum of frequencies of clones (same V and J genes and 85% similarity in AA of CDR3) close to known COVID-19 antibodies (from CoV-AbDab data base) in COVID-19 patients and controls. B. ROC curve summarizing the results shown in A. C. Sum frequencies of clones close to COVID-19 antibodies in 13 single cell COVID-19 patients data. D. UMAP on gene expressions of B cells isolated from 13 patients showing differences between naive, memory and plasmablast cells. Cell type identification was done using SinglR. E. Sum of frequencies of antibodies close to known COVID-19 antibodies in bulk sequencing of COVID-19 patients and control as well as in sequences from single cell sequences of COVID-19 patients and in cells identified as plasmablast cells.

