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Abstract

The success of the human body in fighting SARS-CoV-2 infection relies on lymphocytes
and their antigen receptors. Identifying and characterizing clinically relevant receptors is
of utmost importance. We report here the application of a machine learning approach,
utilizing B cell receptor repertoire sequencing data from severely and mildly infected in-
dividuals with SARS-CoV-2 compared with uninfected controls. In contrast to previous
studies, our approach successfully stratifies non-infected from infected individuals, as well
as disease level of severity. The features that drive this classification are based on somatic
hypermutation patterns, and point to alterations in the somatic hypermutation process in
COVID-19 patients. These features may be used to build and adapt therapeutic strategies
to COVID-19, in particular to quantitatively assess potential diagnostic and therapeutic
antibodies. These results constitute a proof of concept for future epidemiological chal-

lenges.

Keywords: machine learning, BCR, AIRR-seq, COVID-19,somatic hypermutation, B cell

Background

Despite the unprecedented speed of vaccine development against SARS-CoV2, the virus con-
tinues to undergo changes that cause repeated waves of COVID-19 morbidity worldwide, with
increasing infectivity. Risk factors such as age (> 60) and preexisting medical conditions can
predict to some extent whether an individual will become severely ill or not, but the prediction
is not very accurate. The early phase of infection results in direct tissue damage, followed by a
late phase when the infected cells trigger an immune response, by recruitment of immune cells
that release cytokines (reviewed in [1]). In severe patients, this may result in a “cytokine storm”
and a systemic inflammatory response. Many individuals do not respond well enough to the
vaccine, either because of old age or immune impairments. Thus, there is an ongoing search for
anti-viral therapies and passive vaccines, as well as research into the basic mechanisms related
to the virus and immunity towards it.

One useful path to investigate the immunity towards SARS-CoV-2 is adaptive immune
receptor repertoire sequencing (AIRR-seq) [2, 3, 4], revealing noticeable changes in affected

individuals in many arms of the immune system [5, 6]. Millions of B and T cell receptor
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(BCR and TCR, respectively) sequences from hundreds of individuals have been shared in

public archives such as iReceptor [7] and OAS [8]. Thousands of individual antibody sequences

validated as targeting and neutralizing SARS-CoV-2 have been published in datasets such as

CoV-AbDab [9].

In the past few years, several studies have used AIRR-seq data to train machine learning
(ML) algorithms to classify individuals who carry diseases [10], including celiac [11, 12], hepati-
tis C virus infection [13], cytomegalovirus [14], and others [15]. Finding the connection between
AIRR-seq data and health states is a highly challenging task, because of the massive volume of
AIRR-seq datasets that can include tens of millions of sequences that dilute the disease-specific
biological signals. Another difficulty is our inability to determine to which antigen(s) each
receptor can bind based solely on the receptor sequence. New methods to identify relevant
repertoire features are continuously developed [10, 16, 17]. Besides the diagnostic and prog-
nostic potential, such features can be critical in teaching us about the mechanisms behind the
disease and the successful immune response towards it. Thus far, the vast majority of efforts
to classify the health state or severity of COVID-19 have relied on TCR data [18, 19, 20, 21].
Recently, for example, a new approach to detect SARS-CoV-2 infection by TCR sequencing
has been FDA approved for clinical use [20].

B cells undergo affinity maturation after pathogen encounter, to further adapt to the specific
pathogen. Affinity maturation includes iterative cycles of somatic hypermutation (SHM) and
affinity dependent selection. While selection depends on better binding, the SHM mechanism
is independent of pathogen affinity. During SHM, different enzymatic pathways orchestrate
together to introduce mutations specifically in the genomic regions encoding the antibody [22].
Extensive investigations have been devoted to understanding the SHM mechanism [23, 24,
25, 26], but to the best of our knowledge, no connection of a specific infection to a specific
SHM pathway or pattern was made. The use of BCR sequencing is considered more difficult
than TCR, because of SHM and higher diversity in the complementary determining region 3
(CDR3). It has been reported that BCR sequencing data cannot be used to classify individuals
with COVID-19 [21]. Nevertheless, BCR data may be more informative than TCR in some
cases, as BCRs undergo affinity maturation to adapt to each pathogen.

Here, using bulk and single cell BCR sequencing data, we successfully classify SARS-CoV-
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2 infected vs. naive individuals, as well as determine disease severity. Compared with the
traditional sequence similarity clustering based approach, we obtain better classifications by
considering SHM pattern changes in SARS-CoV-2 infected individuals. SHM specific patterns

connected to decreased severity, as well as important amino acid (AA) composition in SARS-

CoV2 antibodies, were identified.

Methods

Collection of samples

The repertoires composing the dataset were collected at three medical centers. IRB approval
numbers: Rabin (Beilinson) Medical Center, 0256-20-RMC; Baruch Padeh Medical Center,
0037-20-POR;; Shaare Zedek Medical Center, 0303-20-SZMC. 28 samples of controls were col-
lected, as well as 39 mild patients with COVID-19 and 12 severely infected patients. Patients’
data can be found in Table S1. We do not have information about the SARS-CoV2 strains,
but they are almost certain to be the original strain (before Alpha (B.1.1.7)). All samples were
collected between April and early November 2020, and the earliest documented variant strains,

as well as the earliest vaccines, arrived in Israel in late December 2020.

Library preparation

Bulk: Ig repertoires were bulk sequenced according to the method described in [27]. All
controls as well as 32 COVID-19 patients were sequenced for both heavy and light chains.
These were used as the train/validation groups for the ML algorithms. For the rest of the
patients, only heavy chains were sequenced, and served as the test group. 13 more controls for
the test group were added from previously published datasets. Nine controls from dataset [28],
and four from dataset [29].

Single cell: PBMCs from 13 individuals were prepared from fresh 5ml blood samples,
and frozen according to the manufacturer’s instruction of the “Fresh Frozen Human Periph-
eral Blood Mononuclear Cells for Single Cell RNA Sequencing” protocol, document number
CG00039 Rev D, 10X Genomics. Patients’ data can be found in Table S2. We do not have

information about the SARS-CoV2 strains, as these tests were not routinely performed at that
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time (January-February 2021). Patients were not vaccinated. Libraries were prepared accord-
ing to the manufacturer’s instruction of the “Chromium Next GEM Single Cell 5" Reagent Kit
v2 (Dual Index)” protocol, document number CG000331 Rev A, 10X Genomics. Libraries were

pooled, mixed with 1% PhiX, and sequenced on an Illumina NovaSeq twice using an SP and

an S1 kits.

Data processing and statistics

FASTA files were generated using the PRESTO pipeline [30], and aligned to IMGT IGHV/D/J
genes [31] using the VDJbase pipeline. Only sequences which started at the first 30 bases of
the V gene were included. Isotype frequencies, V, D, J and combinations of V & J gene usage
and CDR3 AAs 3-mers, as well as CDR3 AA lengths and V gene identities were calculated
using a custom-designed R script (see data and code availability section). The same script
also calculated the frequencies of BCR clusters (sharing the same V and J genes and junction
AA length). Diversity was calculated using the alphaDiversity function from the Alakazam R
package [32]. All P values were calculated using Wilcox test and adjusted using the Benjamini-

Hochberg procedure [33].

Generating an SHM model

A 5-mer SHM model was built using the function createTargetingModel from the shazam R
package [23], once for silent mutations only and once for both silent and replacement mutations.
To create these metrics for one representative from each clone, we used the collapseClones
function from the same package. For each repertoire, substitutions, mutability, and targeting
values were collapsed into a single table. Tables from all repertoires were collapsed into a
single table. The tables enable both training ML algorithms and calculating mean mutability
in specific sites (WRC/GTW and WA/TW hot-spots, the SYC/GRS cold-spot and all other
sites). The table was also used to calculate single base mean mutability levels in all repertoires.
The single base mutability was calculated as the average of all 5-mers with the same base in

the middle.


https://doi.org/10.1101/2022.12.20.521139
http://creativecommons.org/licenses/by-nc/4.0/

145

146

147

148

149

150

151

152

154

155

156

157

159

160

161

162

164

165

166

167

169

170

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521139; this version posted December 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Training and estimation of ML algorithms

50 random splits to train and validation groups were made in order to estimate the F1 score,
accuracy, sensitivity, and specificity of each model. Lasso and Elastic-Net Regularized General-
ized Linear Models (GLMNET) using the caret R package [34] were trained on tables containing
data from the repertoires. Feature selection was done using t-test calculations between frequen-
cies in the different groups in the train subset only. Only features with P value below a certain
threshold were selected. The algorithm was then trained on the selected data, and classifica-
tions were made for the validation groups. F1 score, accuracy, sensitivity, and specificity were

calculated for each random split.

COVID-19 classification using A A frequencies at all V gene positions

Frequencies of each AA along 103 positions (according to the IMGT numbering) in each V
gene family were calculated for all repertoires. The train/validation samples were used to train
the same algorithm as explained above, and to estimate the F'1 score, accuracy, sensitivity,
and specificity of the algorithm. The validation group was used to estimate the parameters
of the algorithm on unseen data. Coeflicients of the algorithm were extracted and enabled to
calculate scores for single antibodies. If a certain AA was present in the sequence, it received
a frequency of 1. Otherwise, it received a frequency of 0. This equation was used to calculate
scores for all antibodies in all repertoires, as well as scores for known COVID-19 antibodies

from the CoV-AbDab database.

Single cell data analysis

Single cell data was analyzed using cell-ranger 6.0.1 with output of both VDJ recombination and
gene expression data. Cell-ranger output was then manipulated using the Seurat R package [35].
Cells with more than 5% mitochondrial gene expression were removed. Data was normalized,
and PCA and UMAP on the top 10 PCAs were done using standard Seurat functions. Cell
identity was determined using the SingleR R package against a sorted dataset from the celldex

R package [36]. Barcodes of VDJ data and gene expression data were matched using R.
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Results

BCR gene usage cannot classify SARS-CoV2 infection

To assess changes in BCR repertoires of COVID-19 patients, we collected 79 blood samples and
sequenced their BCR repertoires. Samples were split to three groups: uninfected individuals,
mildly and severely COVID-19 infected patients. For each group we characterized several whole
repertoire features, such as CDR3 AA length distribution, V gene mutation distribution, clonal
diversity, V, D, J and combination of V and J gene usage. We also calculated frequencies of
BCR clusters (same V and J gene as well as same CDR3 AA length). These measurements are
shown in Fig. 1 and in Fig. S1 for heavy chains, and for kappa and lambda light chains in
Figs. S2 and S3. As expected, the diversity of BCR clones is significantly lower in COVID-19
patients compared with controls (Fig.1C). No significant difference was observed in CDR3 AA
length (Fig.1A), and only slight increase was seen in V gene mutation distribution (Fig.1B). For
many V genes we observed significantly reduced usage in COVID-19 patients (Fig.1D). Three
exceptions are IGHV4-34, IGHV4-39 and IGHV4-59 that demonstrate increased usage upon
infection, which is further increased in severe patients compared with mild ones. These results
support previously published COVID-19 data [37, 38|, and suggest that antibodies against
SARS-CoV2 mainly comprise those genes. To further validate these conclusions, we tried to
build ML classifiers based on V, V & J gene usage, or V & J gene usage and 85% similarity in
the CDR3 AAs. However, these models yielded less than 70% accuracy, suggesting low impact
of Vor V & J gene usage on the response to SARS-CoV2 infection.

We explored further whole repertoire features, and compared isotype frequencies between the
different groups. While we observed a reduction in the frequencies of IGD and IGM upon SARS-
CoV2 infection, the levels of IGG increased (Fig.1E), and those of IGA remained unchanged.
We also measured silent mutability frequencies for each isotype (Fig. 1F). These measurements
avoid changes which are caused by antibodies selective pressure. In contrast to the IGG and
IGA class switched isotypes, in which mutability upon infection is reduced, in IGD and IGM
mutability is increased. In severe patients, the IGD and IGM mutability was even higher

(Fig.1F).
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BCR V gene AA composition successfully classifies SARS-CoV2 in-
fection and may reveal important features of antibodies against the

virus

We continued exploring classification approaches to stratify COVID-19 patients and uninfected
individuals. To this end, we explored AA frequencies along the V gene, aggregated by V gene
family. We generated a table with 10,300 columns, counting AA frequencies along 103 V gene
positions (aligned according to IMGT numbering), for the 5 most highly used V gene families
(IGHV1-5). Using this approach we obtained a high F1 score of more than 0.85, and similar
levels of accuracy, sensitivity,and specificity (Fig.2A). The test set resulted in an F1 score of
above 0.85 (Fig. 2B). We then extracted the coefficient used by the algorithm, corresponding
to the contribution of each AA frequency to the classification of the disease (Fig. 2D).

To further validate that these changes are unique to COVID-19 patients, we downloaded
a dataset of more than 450 repertoires from cAb-rep data collection [39]. These data include
repertoire sequencing results from a wide variety of clinical conditions such as Hepatitis B
virus infection, vaccinations against Hepatitis B virus and influenza, and several autoimmune
diseases. Applying our algorithm to these data to classify COVID-19 infection resulted in a false
positive rate of only 6%, indicating that our classification is specific to COVID-19 infection.

These results were obtained for the repertoire level, and we sought to test their applicability
to the single BCR sequence level. For this, we transferred the features selected for the repertoire
level model, i.e., AA frequencies along the V gene families, to calculate a score for single BCR
sequences. We calculated such scores for a list of more than 5,000 known antibodies against
SARS-CoV2 from the CoV-AbDab database [40]. The scores of the known antibodies were
higher than those came from whole repertoires of control patients as well as most of the COVID-
19 infected repertoires (Fig. 2C), suggesting that these coefficients are meaningful not only for
the repertoire level, but also for single BCR sequences. Our attempts to classify the severity of
COVID-19 using this method were not successful, so for this purpose, we explored other sets

of features. The coefficients of the algorithm can be seen in Fig. 2D.
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Mutation bias in class-switched B cells of COVID-19 patients

As reduced levels of overall BCR mutability were seen upon SARS-CoV2 infection only in the
class switched isotypes (Fig 1F), we quantified single base mutability patterns in these isotypes.
As seen in figure 3A, the mean relative mutability is reduced in COVID-19 patients at Cytosine
and Guanine (C and G), but increases in Adenine and Thymine (A and T). The same results
were obtained when considering silent mutations only (Fig. 3B). Five main pathways are
responsible for introducing mutations during SHM [41]. Three introduce mutations in C and
G, and the other two involve the low fidelity DNA polymerase poln, which mutates A and
T. The significant differences in mutability observed in COVID-19 patients suggest altered
activity of those arms. To further investigate SHM in SARS-CoV2 infection, we applied a
commonly used 5-mers SHM mutability model [23]. In general, two highly mutated hot-spot
motifs are commonly observed in SHM. One is WRC/GYW (where W = {A, T}, Y = {C, T}
R = {G, A}, and the mutated position is underlined), and the other is WA /TW. In addition,
SYC/GRS (where S = {C, G}), is considered as a cold-spot sequence motif. We first built
a H-mer mutability model based on both silent and replacement mutations. Such a model
combines the effects of SHM and antigen-driven selection. We divided the 5-mers to those
occurring in the two hot-spots, in the cold-spot, and in all other neutral sites, and show their
levels for IGD/IGM and for IGA/IGG (Fig. 3C and E). The most significant changes between
the different groups are a decrease in the WRC/GYW site and an increase in SYC/GRS in
IGA/IGG of COVID-19 patients. This increase is not seen in severely infected patients.

To understand whether these patterns stem from SHM or from antigen-driven selection, we
built another model, taking only silent mutations into consideration. Fig. 3D and F shows
the resulting mutability scores for the same sequence motifs. The observed pattern resembles
the one observed in Fig. 3C and E, suggesting that the alteration between the groups results
from altered SHM characteristics. To avoid the effect of clonal expansion on mutability calcula-
tions, we repeated all calculations, taking into account only one representative from each clone.
Similar results were obtained using this approach (Fig. S4). Moreover, using SHM matrices
based only on a specific V family resulted in a much lower signal (Fig. S5F). Importantly, the
mentioned SHM patterns reflect the relative likelihood for each mutation pattern and do not

indicate the overall mutability level.
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Silent SHM patterns classify SARS-CoV2 infection and severity

To estimate the level of connection between changes in SHM patterns and SARS-CoV2 infection,
we tried again to build a classifier of samples’ origin. We built two models, one using all
mutations (Fig. 4A, S5, S6A and S8), and one using silent mutations only (Fig. 4B, S6B).
Taking all mutations into account, we obtained an F'1 score of over 0.85, as well as accuracy,
sensitivity, and specificity values. Taking only silent mutations into account, we obtained a
slightly lower result of ~ 0.8 F1 score and accuracy. These results strengthen our hypothesis
that the differences between the repertoires emerge mainly from SHM itself and not from
antigen-driven selection. Using only light chain sequences for the mutability model reaches
much lower results, as expected (Fig. STA and B). A model based on the combination of light
and heavy chains does not obtain better results than using the heavy chain only (Fig. S8).

Next, we tried to classify COVID-19 severity using SHM patterns. Since the mutability in
the cold-spot motif changes the most between severe and mild patients, we built a model using
mutability scores of this cold-spot only. We obtained an F1 score and accuracy of about 0.75
in severity classifications (Fig. 4C).

All patterns with non-zero coefficients have much higher mutability frequencies in mild
patients compared with severe patients ((Fig. 4D). Again, to avoid the effect of clonal expansion
and selective pressure on the inferred mutability model, we repeated the mutability model
inference taking into account only one representative from each clone. As shown in Fig. S5,

the results were comparable to those obtained using all sequences.

Known SARS-CoV2 antibodies are enriched in plasmablasts from

COVID-19 patients

We thought to find in our sequencing data, antibodies that may be related to the known
COVID-19 antibodies. As mentioned above, during the COVID-19 pandemic a new database
summarizing all known SARS-CoV2 antibodies was published, containing more than 5,000
antibody A A sequences of both heavy and light chains. For each of our repertoires, we calculated
and summarized the frequencies of sequences that are similar to known antibodies. We defined
similar antibodies by 85% identity in the CDR3 AAs, and the same V and J genes. As expected,

the frequencies of similar to known antibodies in COVID-19 patients were higher than those in

10
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control individuals (Fig. 5A. Histograms summarizing the sizes and numbers of samples having
at least one representation in the clones can be found in Fig. S9A and B). Using the sum of
frequencies of similar to known COVID-19 clones, we reached an accuracy of above 70% in
repertoire classification and an AUC of 0.81 (Fig. 5B). Even lower results were obtained when
training the algorithm to count the frequencies of shared clones between samples (Fig. S10).
Although significant, this result is lower than that achieved by considering mutations along the
V gene.

To further explore the similarity to known antibodies, we performed 10X Genomics single
cell sequencing including V(D)J and gene expression, on blood samples from additional 13 mild
COVID-19 patients. Using single cell sequencing data enables matching of heavy and light
chains, which cannot be done with bulk sequencing. Moreover, single cell sequencing provides
the ability to identify cell type using gene expression signatures. We found similar to known
antibodies in 7 out of the 13 repertoires. The frequencies were overall lower compared with
those seen in the bulk RNA sequencing cohort (Fig. 5C). This could be due to the differences in
sequencing methods, or because in the single cell cohort the patients were diagnosed on average
more recently than the bulk cohort and thus may have had lower levels of SARS-CoV2 specific
antibodies.

We then applied the SingleR R package to classify cell types by single cell expression pro-
files. Two-dimensional UMAP reduced plots are shown in Fig. 5D, demonstrating a distinct
cluster of plasmablasts. We summarized the frequency of known SARS-CoV2 clusters in bulk
sequenced COVID-19 patients, bulk controls, single cell unsorted data, and single cell plas-
mablasts only. As shown in Fig. 5E, COVID-19 patients show enriched levels of similarity
to known SARS-CoV2 antibody compared with controls. Single cells show higher levels than
controls but lower than bulk, as discussed above. Among plasmablasts of COVID-19 patients,
we see the highest frequency of known antibody clusters, indicating a stereotypical response to
SARS-CoV2. Lastly, to validate our observation that WRC/GYW hot-spots mutability scores
decrease upon COVID-19 infection, and SYC/GRS cold-spots increase (Fig. 3), we split the
single cell data into plasmablasts vs. all other B cell types. We built a mutability SHM matrix
for each of these subsets, and indeed found a reduction in the mutability scores of WRC/GYW

hot-spots in plasmablasts (0.00168) compared with the other B cell types (0.00178), and an
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increase in the mutability scores of the SYC/GRS cold-spots (0.0003 and 0.0002, respectively).

Discussion

The COVID-19 pandemic, caused by evolving variants of SARS-CoV2, has infected a large
proportion of the population worldwide. Antibodies play a critical role in eliminating the virus
from the body. Serological tests are routinely used to estimate immunity of individuals against
SARS-CoV2, convalescent plasma donations were used to treat severely ill COVID-19 patients,
and many monoclonal antibodies were developed as candidate passive vaccinations.

Although the pandemic has caused a huge health and economic burden, it brought several
important advantages for biomedical research. With so many researchers and funding oppor-
tunities focusing on a single topic, the pandemic facilitated both broad and profound analyses
of the virus and the immune responses towards it. During the past two and a half years,
thousands of COVID-19 binding/neutralizing antibodies have been published and deposited
in public datasets[42, 43]. This huge amount of data facilitates finding BCR sequences that
are similar to known antibody sequences, and searching for common features. Such features
may be used in the clinic for diagnosis of the disease, but in the case of COVID-19 there are
easier, faster and cheaper ways to do that. Much more importantly, it can teach us about the
development of the immune response towards the virus.

Here, in contrast to previous reports[21], we were able to stratify COVID-19 patients and
healthy individuals based on shared clusters of BCR sequences. The moderate classification
results of such approach led us to explore different sets of features that turned out to be more
informative. AA frequencies at all V gene positions served as a basis for an ML model that
produced a high F1 score (~ 85%) in classifying COVID-19 infection.

The patterns of AA alterations in BCRs arise during the process of affinity maturation, that
includes two iterative processes, namely SHM and affinity-dependent selection. These patterns
can stem from the antibodies against SARS-COV2 or from overall altered SHM mechanism in
COVID-19 patients.

An important question that may arise when inspecting the presented approach is whether
it is specific to COVID-19, or perhaps it simply detects general signals related to an adaptive

immune response towards a new pathogen. We believe that the presented approach is specific
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to COVID-19 because: 1. The signal does not disappear when choosing a single representative
per clone, which eliminates the effect of general clonal expansion. 2. The signal is based on an
SHM pattern, which is subject to an antigen-specific affinity maturation. 3. Our lab has a lot
of experience in ML-based classification of different clinical conditions[44, 17, 28|, and for each
condition the features identified by the algorithm as the most essential for classification were
different. SHM patterns have never been previously identified as a feature, as far as we know
(but see our recent publication [45]). To test this, we applied our algorithm to data from ~450
samples, including infection with Hepatitis B virus, vaccinations against Hepatitis B virus and
influenza, and several autoimmune diseases. 94% of these repertoires were classified as healthy,
indicating that our algorithm does not classify any neo-response as COVID-19.

Extensive research has been devoted to study SHM mechanisms affecting other regions
in the antibody besides the CDR3[46, 23]. Yet, this knowledge has not been used for disease
classifications, nor for improving antibody engineering. We sought to follow the SHM machinery
during SARS-CoV2 infection, starting with the whole repertoire level. It is well established
that antibodies binding SARS-CoV?2 are very close to the germline[47, 5, 48, 49]. Surprisingly,
even at the repertoire level, we detected a decrease in mutability of IGG BCRs. To explore
whether the AA frequency-based signal results from alterations in SHM or affinity dependent
selection, we followed the mutability rates of silent mutations only. These mutations are not
subjected to affinity dependent selection pressure, thus reflecting changes in the machinery of
SHM. We found that most SHM changes upon SARS-CoV2 infection were observed even when
counting only silent mutations, which are not subject to affinity selection, suggesting dramatic
changes in the SHM machinery upon SARS-CoV2 infection. To further pinpoint the effects
on the SHM machinery, we repeated the calculations taking only one representative from each
clone into account, thereby abolishing the effect of clonal expansion (Fig. S5). This step slightly
reduced the F1 score, in a non-significant way. The fact that eliminating the effect of clonal
expansion on our findings did not abolish the differences suggests that there are true changes
in the SHM machinery. Moreover, the moderate performance reduction when taking only one
representative per clone, hints that the SHM changes during SARS-CoV2 infection may be
further enhanced by clonal expansion, potentially aiding the battle with the virus.

Many pathways are involved in the introduction of mutations to BCR sequences. In par-
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ticular, two common SHM hot-spots, WRC/GYW and WA /TW, are affected by two different
pathways. While mutations in WRC/GYW motifs are mediated by the activation induced
deaminase, mutability at WA /TW motifs also involve the low fidelity DNA polymerase pol.

In the class switched IGA and IGG isotypes, we observed decreased mutability levels with
increasing severity of COVID-19 at WRC/GYW motifs, and increased mutability at WA /TW
sites. Again, these changes were observed even when counting silent mutations only, further
supporting an impact of the virus on the SHM introduction mechanism. The reduced mutability
in WRC/GYW motifs and the mildly increased mutability in WA /TW motifs may hint that
AID levels could be decreased upon COVID-19 infection. This possibility will need to be
validated in future studies. Another future direction is to test for possible SHM positional
effects. The presence of such an effect was lately suggested [50], and it will be very interesting
to inspect whether this is relevant to our results.

Another specific SHM target is the cold-spot SYC/GRS. Surprisingly, we found an increase
in mutability rates of this cold-spot in COVID-19 repertoires. Moreover, this increase was
not observed in severely infected patients, suggesting that this mechanism may be critical for
production of efficient antibodies and thereby for prevention of severe illness.

Building on our success in classifying patients from healthy individuals, we sought to de-
velop an ML-based algorithm to classify disease severity. This could have important clinical
outcomes, since medications and passive vaccines now exist that can prevent deterioration if
diagnosed individuals are treated rapidly. However, these treatments have side effects and are
not given to the wide population. Prediction of disease severity by the known risk factors is
highly inaccurate, and there are currently no other means to classify severity. Using mutability
patterns from silent mutations only, we estimate our ability to classify COVID-19 severity at
approximately 75%(Fig. 4C). The known risk factors to develop severe COVID-19 are mostly
preexisting conditions such as older age, hypertension, obesity, diabetes. Here, we suggest
another risk biomarker that involves basic features of the adaptive immune system. Many
more steps are needed to enable prediction of COVID-19 infection and severity based on BCR
sequencing data. We provide here a first step towards it.

AA frequency patterns along the V genes at the whole repertoire level is a sufficient feature

for relatively good classification of COVID-19. Looking at the identity of AA along the V gene
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of a single BCR sequence may reveal its affinity towards the virus. To explore the connec-
tion between the new BCR repertoire data generated here and known SARS-CoV2 antibody
sequences we took a two way approach. Building on the hypothesis that the whole reper-
toire level signal responsible for the classification stems from individual SARS-CoV2-specific
antibodies generated during the infection, we derived a single sequence score based on the
repertoire classification signal. Although sequences with high scores are scarce in both healthy
and COVID-19 repertoires, their prevalence in the CoV-abDab data is significantly higher (Fig.
2C). As such, the features (detailed in Fig. 2D) may be used for more rational antibody design
towards the virus. In addition, we explored the presence of similar sequences to the validated
CoV-abDab antibodies in both bulk and in single cell sequenced repertoires. We found a higher
fraction of sequences with high similarity to known antibodies in COVID-19 patients compared
with controls. This can also be used for successful classification of the repertoires. Notably,
a group of COVID-19 patients had no similar antibodies to those in the list, suggesting that
despite the massive efforts so far, the list is incomplete. On the other hand, in some control
samples we found few sequences similar to known antibodies. These antibodies may provide a

basis for protection from COVID-19 symptoms or complications to individuals who carry them.
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Figure 1: Characterization of the COVID-19 heavy chain BCR cohort

A. 10,50 and 90 percentiles of AA CDR3 length in individuals with corona at indicated
severity and controls. B. 10,50 and 90 percentiles of V gene distances from germline in
COVID-19 infected individuals at indicated severity and controls.C. Boxplot showing

calculated Hill diversity indexes upon different g values between individuals infected by

COVID-19 at indicated severity and controls. D. Boxplots showing V gene usage in

individuals infected by COVID-19 at indicated severity and controls, shown top 50’s mean
frequencies. E. Boxplots showing the isotype frequencies in individuals infected by COVID-19
at indicated severity and controls. F. Boxplots showing silent mutations’ frequencies along the
V gene in different isotypes of individuals infected by COVID-19 at indicated severity and
controls . In the whole figure, * marks P value less than 0.05. ** marks P value less than 0.01

and *** marks P value less than 0.001.
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Figure 2: COVID-19 classification using A A frequencies at all V gene positions
A. Boxplots showing the F1 score, accuracy, sensitivity, and specificity for COVID-19
classification by AA frequency at each position in each V family. Shown are values calculated
for 50 random splits to train and validation groups. B. Bar plots showing the indicated scores
on the external test group. C. COVID-19 single antibody scores were calculated using the
coefficients of the algorithm described in panel A. Boxplos showing the fraction of antibody
sequences with scores above 0 in control and COVID-19 infected repertoires, as well as in
CoV-AbDab COVID-19 antibodies, are shown. D. Logl0 coefficients of the algorithm
described in A and B.
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Figure 3: Silent and replacement mutability in SHM single base mutability, 5-mers
hot-spots and cold-spots
A. A single base mutability model was built based on IGA /G isotypes of COVID-19 patients
and controls. Shown are boxplots representing the normalized sum of single base mutability.
B. The same plot as in A but for silent mutations only. C-D. An 5-mer SHM model based on
both silent and replacement mutations in C, or silent only mutations in D, was built using the
IGD and IGM isotypes of COVID-19 patients at different severity levels and controls. Shown
mutability of the two known SHM hot-spots, SHM cold-spots, and the rest of the sites. E-F.
An 5-mer SHM model based on both silent and replacement mutations in E, or silent only
mutations in F, was built using the IGA and IGG isotypes of COVID-19 patients at different
severity levels and controls. Shown mutability of the two known SHM hot-spots, SHM
cold-spots, and the rest of the sites. In the whole figure, * marks P value less than 0.05. **
marks P value less than 0.01 and *** marks P value less than 0.001.

26


https://doi.org/10.1101/2022.12.20.521139
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521139; this version posted December 21, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

A B C D
1.0 T T 1.0 T ° 1.0 0.00124 o mid
E s N @ severe
1 e
08 - . 0.8 0.8 = T, 00007 N
- ' e e @ 0.0008 ' -
0.6 Lo 064 1 +~ 1 064+ 1+ 1| 2 T ' -
! ° -+ : : : | ! : a4 ¢ g - : ! |
' oo + + o <. 0.0006- T ' ' !
I . ' \ o = ' !
0.4 ' 0.4 ~ 4 0.4 ° 5 ! - TQ
X ° £ 0.0004+ E j ' i
-~ ' '
0.2 0.2 0.2 = + i ' | . o+
o - . . 4 1
0.0002 -+ i e i e
o —_
0.0 0.0 0.0 0.0000-]
T T T T T T T T T T T T | | I 'I_ |
S 2 2> T J o2 2 o> 8 8 3 o B
L 8 3 B L8 3 & L 8 3 B 0 3] Q o Q
2% % 2 % % 2 % % 5 5 8§ © =&
S ¢ o S ¢ @ S ¢ o o o © o
T 3 & s 3 & T 3 &

Figure 4: SHM Heavy chain enables classification of both SARS-CoV2 infection and
COVID-19 severity

A. An ML algorithm was trained on the substitutions matrix of the 5-mer SHM model, which
was created for the IGA /G isotypes. Boxplots representing F1 score, accuracy, specificity, and
sensitivity of 50 random splits to train and test groups are shown. B. The same algorithm as

in A was trained on silent mutations only. Shown are Boxplots representing the F1 score,
accuracy, specificity, and sensitivity of 50 random splits to train and test groups. C. Boxplots
showing F'1 score, accuracy, specificity, and sensitivity of 20 leave-one-out cross validation of
severity classification. Each leave-one-out was on 12 severe COVID-19 patients and 12
randomly selected mild COVID-19 patients. The ML algorithm was trained on the mutability
matrix of the SHM cold-spots in these groups. D. Frequency of mutability in mild and severe
individuals with COVID-19. Boxplots of frequencies of repeating coefficients of the algorithm
explained in C are shown.
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Figure 5: Clones of antibodies in our sequencing close to known COVID-19

bodies from CoV-AbDab database.

anti-

A. Sum of frequencies of clones (same V and J genes and 85% similarity in AA of CDR3)
close to known COVID-19 antibodies (from CoV-AbDab data base) in COVID-19 patients
and controls. B. ROC curve summarizing the results shown in A. C. Sum frequencies of
clones close to COVID-19 antibodies in 13 single cell COVID-19 patients data. D. UMAP on
gene expressions of B cells isolated from 13 patients showing differences between naive,
memory and plasmablast cells. Cell type identification was done using SinglR. E. Sum of
frequencies of antibodies close to known COVID-19 antibodies in bulk sequencing of
COVID-19 patients and control as well as in sequences from single cell sequences of

COVID-19 patients and in cells identified as plasmablast cells.
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