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1 Abstract

2 Background: Mean diffusivity (MD) and fractional anisotropy (FA) obtained with
3 diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy
4 across tumors, but it is unknown whether these associations persist at the
5 microscopic level.
6 Purpose: To quantify the degree to which cell density (CD) and structure anisotropy
7 (SA), as determined from histology, account for the intra-tumor variability of MD and
8 FA in meningioma tumors. Furthermore, to clarify whether histological features other
9 than cell density account for additional intra-tumor variability of MD.
10 Materials and Methods: We performed ex-vivo dMRI at 200 pm isotropic resolution
11  and histological imaging on 16 excised meningioma tumor samples. Diffusion tensor
12 imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAp).
13 Histology images were analyzed in terms of cell nuclei density and structure
14  anisotropy (obtained from structure tensor analysis) and were used separately in a
15 regression analysis to predict MD and FAp, respectively. A convolutional neural
16 network (CNN) was also trained to predict the dMRI maps from histology patches.
17 The association between MRI and histology was analyzed in terms of coefficient of
18  determination (R?. Regions showing unexplained variance (large residuals) were
19 analyzed to identify features apart from cell density and structure anisotropy that
20  could influence MD and FAp.
21 Results: Cell density assessed by histology poorly explained intra-tumor variability
22  at the mesoscopic level (200 pm) in MD (median R? = 0.06, interquartile range 0.01 -
23 0.29) or FAjp (median R? = 0.19, 0.09 - 0.29). Samples with low R? for FA exhibited
24 low variations throughout the samples and thus low explainable variability, however,

25 this was not the case for MD. Across tumors, cell density and structure anisotropy
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1  were associated with MD (R* = 0.58) and FA (R® = 0.82), respectively. In 37% of
2 the samples (6 out of 16), cell density did not explain intra-tumor variability of MD
3 when compared to the degree explained by the CNN. Tumor vascularization,
4  psammoma bodies, microcysts, and tissue cohesivity were associated with bias in
5 MD prediction when solely CD was considered. Our results support that FAp is high
6 in the presence of elongated and aligned cell structures, but low otherwise.
7 Conclusion: Cell density and structure anisotropy account for variability in MD and
8 FAp across tumors but cell density does not explain MD variations within the tumor,
9 which means that low or high values of MD locally may not always reflect high or low
10 tumor cell density. Features beyond cell density need to be considered when
11 interpreting MD.
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1 Abbreviations

2 CD Cell density or cellularity
3 CNN Convolutional neuronal network
4 DEC Directionally encoded color maps
5 dMRI Diffusion magnetic resonance imaging
6 DTI Diffusion tensor imaging
7 EPI Echo-planar imaging
8 FA Fractional anisotropy
9 FAp In-plane fractional anisotropy

10 H&E Hematoxylin & eosin

11 ICVF Intracellular volume fraction

12 MD Mean diffusivity

13 SA Structure anisotropy

14 WHO World Health Organization

15
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1 Highlights

2

3 1. Cell density accounts for MD variability across but not within meningioma
4 tumors.

5 2. Structure anisotropy accounts for in-plane FA variability across and within
6 tumors

7 3. Vascularization, psammoma bodies, and microcysts influence the MD.

8 4. High and low meningioma tumor cell density can yield similar MD.

9 5. Features beyond cell density need to be considered when interpreting MD.
10
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1 Introduction

2 Diffusion MRI (dMRI) is the primary modality for obtaining information on tumor
3 microstructure non-invasively (Stejskal and Tanner, 1965;Brown et al., 2014).
4  Diffusion tensor imaging (DTI) is widely applied in patients with intracranial tumors
5 and yields two key parameters: the mean diffusivity (MD) and the fractional
6 anisotropy (FA) (Basser et al., 1994). MD correlates negatively with cell density (CD)
7 in a wide range of tumor types (Sugahara et al., 1999;Gauvain et al., 2001;Chen et
8 al., 2013;LaViolette et al., 2014;Surov et al., 2017). Decreased MD is therefore often
9 interpreted as indicative of viable tumor regions with high CD. Furthermore, the FA
10 reflects the voxel-level diffusion anisotropy and is generally high in white matter due
11 to its highly anisotropic tissue structure. Therefore FA can be used to identify tracts
12 displaced, disrupted or infiltrated by a tumor (Price et al.,, 2004;Yen et al.,
13 2009;Jitten et al., 2019).
14
15 Although established on the whole-tumor level, it is not clear to which degree the
16 correlation between MD and cell density, or FA and tissue anisotropy, holds
17 quantitatively on a mesoscopic level within individual tumors. There are reasons to
18 Dbelieve that both MD and FA can be affected by microstructural features other than
19 cell density and tissue anisotropy. In the case of MD, cellular features such as size
20 (Szafer et al., 1995), size of their nucleus (Xu et al., 2009), or membrane
21 permeability (Colvin et al., 2011) are known to have an impact. MD can also be
22 impacted by larger-scale mesoscopic features such as the presence of necrosis
23 (Patterson et al., 2008) or stromal architecture (Squillaci et al., 2004;Yoshikawa et
24  al., 2008). The features of the stroma may be tissue inhomogeneity, presence of

25 large interstitial spaces, trabecula, nests and tubular formations or other complexity
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1 of intercellular spaces and junctions. Note that MD did not correlate with cell density
2 in renal tumors and breast tumors (Squillaci et al., 2004;Yoshikawa et al., 2008).
3 Furthermore, FA is known to merely reflect macroscopic (voxel-level) anisotropy,
4 which is lower than the microscopic diffusion anisotropy due to the presence of
5 orientation dispersion (Pierpaoli et al., 1996;Szczepankiewicz et al., 2016). This has
6 been shown to be important in meningiomas, which tend to have high microscopic
7 anisotropy but high orientation dispersion and thus low voxel-level anisotropy
8 (Szczepankiewicz et al., 2016;Nilsson et al., 2020). Thus the interpretation of FA in
9 meningiomas as an indication of tissue anisotropy could be biased by the orientation
10 dispersion of the tumor microstructure (Szczepankiewicz et al., 2015;Brabec et al.,
11  2022). Consequently, it is crucial to understand what affects MD and FA at the
12 mesoscopic level when interpreting local changes of these parameters. However,
13 few studies have investigated the relation between tumor microstructure as seen by
14  microscopy to what is measured by dMRI on a voxel-to-voxel basis.
15
16 Meningiomas are the most prevalent primary intracranial tumor (34% of all
17 intracranial tumors) (Louis et al., 2021). It has been proposed that DTI can be used
18 for preoperative meningioma classification and consistency estimation, but results
19 have been contradictory (Pistolesi et al., 2002;Gurkanlar et al., 2005;Hsu et al.,
20 2010;Santelli et al., 2010;Lin et al., 2018;Yao et al., 2018). For example, some
21 studies have shown that firm tumors are associated with lower MD values (Yogi et
22 al., 2014;Miyoshi et al., 2020) or with MD values similar to gray matter (Romani et
23 al., 2014). Other studies were not able to reproduce this result (Watanabe et al.,
24  2016) or found that lower MD values are associated with variable consistency

25 (Brabec et al., 2022). Furthermore, higher FA values have been associated with firm
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1 consistency (Kashimura et al.,, 2007;Tropine et al., 2007;Romani et al., 2014),
2 suggesting that firm tumors may contain mainly anisotropic tissue with high
3 microscopic diffusion anisotropy (Kashimura et al., 2007). Other studies, however,
4  did not find such an association (Ortega-Porcayo et al., 2015;Brabec et al., 2022).
5 DTI has also been proposed for differentiation of atypical, fibroblastic, and other
6 meningioma subtypes (Jolapara et al., 2010;Surov et al., 2015), but both MD and FA
7 have been reported as being similar across a wide range of meningioma types and
8 grades (Brabec et al., 2022). To understand these divergent results, and if possible
9 advise on ways to explain differences between studies, a better understanding of the
10 link between meningioma microstructure and diffusion MRI results is needed.
11
12 In this work, we investigated the association between information derived from
13 histology with that obtained from diffusion microimaging of the same specimen
14 across six different types of meningiomas. We examined quantitatively to which
15 degree cell density (CD) and structure anisotropy (SA) can account for the local
16 intra-tumor variability in MD and in-plane FA (FAp), respectively, as observed with
17 dMRI with a voxel-to-voxel coregistered histology. The FAjp is defined similarly to the
18 FA but it disregards the trough-plane anisotropy making comparisons with thin
19 histological slices more straightforward. Similarly to diffusion tensor analysis, the SA
20 reflects the anisotropy in an image and is obtained from structure tensor analysis,
21 which is similar to diffusion tensor analysis, analysis except that the diffusion
22 encodings are replaced by spatial derivatives (Budde and Frank, 2012). To
23 investigate if there were features beyond CD and SA that could explain MD and FA,
24  we also trained a convolutional neural network (CNN) to predict MD and FAp from

25 the histology slides. In addition, we qualitatively investigated voxels associated with

10
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1 large prediction errors in order to identify key microstructure features of

2 meningiomas that drive a large change in the dMRI parameters.

11
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1 Materials and Methods

2 Patients
3 This study included 16 patients with radiologically diagnosed meningioma tumors
4  scheduled for surgical treatment between 2016 and 2018 at Skane University
5 Hospital, Lund, Sweden. Inclusion criteria were age above 18 years, histologically
6 confirmed meningioma and signed informed consent. The study was approved by
7 the Swedish Ethical Review Authority, and all subjects gave their written informed
8 consent to participate in accordance with the Declaration of Helsinki. Table 1 and 2
9 provides a summary of the histopathological evaluation.
10
11 MR imaging and processing
12 In total 16 tumor samples were obtained after neurosurgical excision and fixated in
13 formaldehyde solution (4%). The tissue was cut into blocks of approximately
14  35x20x2 mm?® (Figure 1A and 2B) to fit a 3D printed mold (Figure 2A) and scanned
15 at a Bruker 9.4 T BioSpec Avance Ill scanner. DTI (Basser et al.,, 1994) was
16 performed using a 3D-EPI sequence with TR = 2.5 s, TE = 30 ms, slices = 41,
17 averages = 10, resolution=200x200x200 ym?®, and with b-values of 100, 1000 and
18 3000 s/mm? applied in six directions.
19
20 DTI analysis was performed with linear least squares fitting, as implemented in the
21  multidimensional dMRI toolbox (Nilsson et al., 2018b) in order to extract maps of the
22 FA, MD, and directionally encoded color (DEC) maps. Moreover, the FAp was
23 calculated by utilizing only the in-plane eigenvalues of the diffusion tensor, according
24 to
25

12
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A,—-2
1 FAIP = li+ﬂi’ (Eq 1)

3 where A and A, (A1 > Ay) are eigenvalues of the diffusion tensor, reduced to in-plane

4  (x-y plane) by setting Dy, = Dy, = D,; = 0,

5
Dyx Dy O

6 D=|Dy Dy 0] (Eq. 2)
0 0 O

.

8 Histopathology

9 The blocks on which MRI had been performed were embedded in paraffin, sectioned
10 into 5 um slices, and stained with hematoxylin & eosin (H&E). Each tumor specimen
11 had been diagnosed for tumor type and malignancy grade. This diagnostic
12  procedure adhered to the prevailing WHO criteria of 2016 as part of the clinical
13 routine (Louis et al., 2016) because the data collection took place between the years
14 2016 and 2018. Sections were then digitalized at a resolution of 0.5x0.5 pm?. To
15 facilitate coregistration, the sections were consistently taken from one side of the
16 tumor block from the sample holder (Figure 2AB), which later allowed voxels from
17 MR to be obtained from a similar location.

18

19 Coregistration, cell density and structure anisotropy maps

20 H&E-stained histology images were coregistered to MR by, first, a rigid coregistration
21 and, second, by a non-linear landmark-based approach. The landmarks were
22 defined on the MD and FAr maps and then on the corresponding structures in the

23  histology sections. Landmarks were placed at the corners and edges of the sections

13
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1 and also in tumor microscopic features, such as tumor microvasculature, readily

2 discernible in both the histology sections and MR images.

4 Cell nuclei were segmented from H&E stained images using QuPath (version 0.23)
5 cell detection algorithm (Bankhead et al., 2017). The segmentation was performed

6 using the open-source code available at https://github.com/qupath. Furthermore, CD

7 was obtained by exporting the cell nuclei centroid positions into a MATLAB
8 environment where the cell nuclei counts were downsampled to match the MR
9 resolution. This was achieved by summing of cell nuclei count over an area
10 corresponding to a single MR voxel and, consequently, the CD map was normalized
11 by dividing by the maximum CD value within the whole sample.

12

13  Structure anisotropy was obtained from a structure tensor analysis at the high
14  histology resolution using on a previously described approach (Budde and Frank,
15 2012). This consists of computing a structure tensor H (Bigun, 1987;Budde and

16  Frank, 2012),

17
H. H

18 H:<XX Xy), Eq. 3
al (Eq. 3

19

20 where Hy, Hyy and Hy, are partial spatial image derivatives along x or y directions.
21 These were computed as convolutions of the histology image with derivative filters
22 along either the x or y directions and blurred with a Gaussian filter (¢ = 0.25 pm).
23  Finally, the obtained structure tensor H was smoothed by another Gaussian filter (o
24 = 15 ym) and downsampled to match the MR resolution (200 um) which was
25 performed by averaging its eigenvalues within an area corresponding to a single MR

14
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1 voxel. SA was calculated from the eigenvalues A; and A, of the downsampled

2 structure tensor H as

3
Ay

4 SA = Y (Eq. 4)

5

6 where A; > A,. Finally, the SA maps were smoothed with the same Gaussian kernel
7 as the dMRI maps (o = 40 ym) to reduce the impact of small coregistration errors.

8 Note that the calculation of SA and FAr are similar (compare Eq. 1-4).

10 Prediction of MD and FA; from CD and IA

11  Since scatter plots between MD and CD or between FAp and SA values showed
12 non-linear relationships (shown in Supplementary material Figure 1 and Figure 2),
13 analyses were conducted to identify the function that best explained the relation
14  between them. Five functions were tested: first-degree, second-degree, and third-
15 degree polynomials, and in the case of MD, a second-degree polynomial constrained
16 to be monotonically decreasing with maximal value at minimal CD to mimic the
17 proposed negative association between CD and MD. In the case of FAp, a first-
18 degree polynomial constrained to the origin was tested instead. Results are shown in
19 the Supplementary material Figures 1 and 2. It was observed that a second-degree
20 polynomial was best suited in all cases and both modalities.

21

22  We quantitatively assessed to what degree CD and SA could explain the variability
23 of the MD and FAp, respectively, by using the coefficient of determination (R?
24  between the measured and predicted maps. This was calculated by randomly
25 selecting 80% of the voxels as a training set. A second order polynomial in CD or SA

15
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1 was then fitted to MD or FAp, respectively, for each modality and each sample. The
2  explained variability in the remaining 20% of the voxels was then evaluated using R?.
3  This procedure was used to unify the evaluation methods between the prediction by
4 histology features and the one by the CNN (explained later). Furthermore, the
5 process was repeated 1000 times with different random selections of the 80/20 split

6 in order to estimate the uncertainty in R?.

8 We also investigated whether a lack of variability in MD or FAp within the sample

9 could explain a poor association between intra-tumor predicted and measured dMRI
10 maps. We quantified this by calculating R? between R? of the intra-tumor predicted
11 versus measured MD or FAp and standard deviation of the MD or FAp across the
12  sample, respectively.

13

14 Quantitative comparison by convolutional neural network

15 We also quantified the variability in MD and FAj using a convolutional neural
16 network (CNN) that was composed of an EfficientNetV2 network pretrained on the
17 ImageNet dataset (Tan and Le, 2021) and fine-tuned with additional layers (network
18 architecture overview in Supplementary material Figure 3). The CNN was designed
19 to solve a patch-to-value regression task with the aim to predict either MD or FAp
20 per voxel using a spatially corresponding patch of 360x360 color pixels from the
21 histology images. We used horizontal and vertical image flipping for data
22 augmentation and a train-validation-test split of 60/20/20%, 25 training epochs with
23 early stopping and batch size of 32. The number of trainable parameters was 117
24 787 873. During training as a loss function the mean squared error was used and

25 then the performance was evaluated on the test set using R%. The objective of this

16
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1 investigation was to determine whether a convolutional neural network could identify
2 histological features that have an impact on the variability within MD or FAe. Since
3 the purpose was not to learn a general mapping from histology to DTI, the training
4  and testing were conducted in a generous setting (within each sample rather than

5 across all samples).

7 Qualitative analysis by residual maps

8 To investigate additional features apart from CD contributing to the variability of MD,

9 we studied residual maps (the difference between measured MD and predicted MD
10 by CD). These maps were displayed using a color map where black corresponds to
11 MR voxels without residual, green to voxels where the prediction was overestimated
12  and red where it was underestimated. This approach revealed that the voxels where
13 predicted MD was overestimated by CD (green color) would necessitate additional
14  microstructure features causing “restrictions” with lower apparent diffusivity to
15 counterbalance the effect of overestimation whereas the voxels where MD was
16 underestimated (red color) would rather need a “free compartment” with high
17  apparent diffusivity.
18
19 Similarly, we generated residual maps between MD predicted by the CNN and
20 measured MD and compared them to those obtained by considering CD only. The
21  purpose was to identify features impacting MD apart from CD. Attention was given to
22  regions where the more general CNN approach had lower residuals than the less
23 flexible CD-based regression approach, as this would indicate the CNN found in that
24 region a feature to explain an MD deviation whereas the CD-based approach did not.

25

17
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1 Dataand code accessibility

2 Analysis code and details of the MRI protocols are available at

3  https://github.com/jan-brabec/microimaging vs histology in meningeomas. The

4 dMRI data were processed by a software package for diffusion MRI available at

5  https://github.com/markus-nilsson/md-dmri (Nilsson et al., 2018b). Additional data

6 are available from the corresponding author upon request. Code for cell nuclei

7  detection is available at https://github.com/qupath (Bankhead et al., 2017).

18
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1 Results

2 Intotal, 16 meningioma samples of six different types and two different grades were
3 investigated (Table 1 and 2). An overview of sectioned blocks is shown in Figure 1,
4  together with a display of the microstructural features of the different meningioma
5 types. The histology and dMRI maps of MD, FA, and FAr were coregistered (Figure
6 2C). Note the difference between the conventional FA and FAr maps (Figure 2D).
7 The latter captures the diffusion anisotropy within the imaging plane. Regions with
8 high FA but low FAp indicate the presence of elongated cell structures pointing in the
9 direction through the imaging plane. Examples of CD and SA maps obtained by
10 analyzing histology slides (H&E stained) are shown in Figure 2D. Note that the SA

11  map is highly similar to the FAr map but not to the FA map.

12

13 In the voxel-by-voxel within-sample analysis, CD poorly explained the intra-tumor
14  variability in MD (Figure 3A), with R?> = 0.06 (0.01 - 0.29); median (interquartile
15 range). The intra-tumor variability was better explained by the CNN, with R? = 0.19
16 (0.09 - 0.29). In 37% of the samples (6 out of 16 samples; samples 5, 6, 9, 11, 13,
17 and 16), CD explained much less of the variability than the CNN (the median ratio of
18 the R? of the CD vs CNN-based predictions was 7%). In the remaining samples, the
19 CD-based approach explained a similar amount of variability as the CNN. The intra-
20 tumor variability was weakly correlated with the standard deviation of MD within the
21 sample (r = 0.51, p < 0.05, Pearson’s correlation coefficient), meaning that samples
22  with lower variation in MD showed a weak tendency towards a weaker association
23 with CD. When averaging the values of both CD and MD across the whole-sample

24  and testing for an association across tumors we found a strong linear association
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1 with R®=0.58 (n = 16), although it is noteworthy that 5 out of the 16 samples with

2 low CD and high MD stood out from the rest (Figure 3B).

4 To study the relation between meningioma microstructure and MD, individual
5 samples were investigated. One sample showed a clear negative association
6 between CD and MD within the sample (R? = 0.36, Figure 3C). A closer inspection of
7  two voxels with either intermediate or high CD is shown in Figure 3D. The voxel with
8 intermediate CD and higher MD contains tumor stroma, vessels, and microcysts
9 whereas the one with high CD and lower MD is characterized by a clearer tumor
10 mass and fewer microcysts and vessels. Another sample showed no discernible
11  association between MD and CD (R? = 0.00, Figure 3E). A closer inspection of two
12  voxels with similar MD but either low or high CD from that sample showed that the
13 one with low CD contains cells with a larger cytoplasm volume than the one with high
14  CD (Figure 3F).
15
16 To understand which features could affect MD beyond CD, residual maps were
17 examined. This procedure led to the identification of five types of microstructure
18 features of importance to MD. First, tumor vasculature was associated with an
19 underestimated MD. This is shown in Figure 4A where an MRI voxel associated with
20 a high residual shows the presence of vessels (histology with blue border) while a
21 voxel with low residuals lacks them and rather features a solid tumor mass (purple
22  border). Second, tightly packed microcysts were associated with an overestimated
23  MD. This is shown in Figure 4B, where a voxel containing microcysts (blue border) is
24  compared to a voxel with a denser tumor mass (purple border). This indicates that

25 microcysts act as diffusion restrictions similar to cell bodies. Furthermore, the
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1 overestimation from CD is not present when MD is predicted by the CNN (Figure 4B,
2 residual map TJcnn), indicating that the CNN to some extent captures microcysts as a
3 relevant feature. Third, psammoma bodies were associated with an MD
4  overestimated from CD (Figure 4C). Similar to the case for the microcysts, this bias
5 is absent for the prediction by CNN. Finally, tissue cohesivity may also be relevant
6 for explanation of the MD. Figure 4D shows a voxel with tightly-packed tissue with
7 collagen featuring an underestimated MD (blue border) and a voxel with loose tissue
8 and few vessels with overestimated MD (purple border). This overestimation is more
9 pronounced for the CD-based regression than for the CNN. An overview of residual
10 maps of all samples can be found in the Supplementary material in Figures 4 and 5.
11
12  Just as for CD and MD, the SA explained FA relatively poorly with R? = 0.16 (0.06 —
13 0.20). However, here the per-sample R* was strongly correlated with the standard
14  deviation of FAp within samples (r = 0.94, p < 107, Pearson’s correlation
15 coefficient), meaning that SA did predict FAp where there was sufficient feature-
16  driven variation in FA;p within the sample. The CNN displayed similar numbers as the
17  SA-based regression, with R?> = 0.18 (0.09 — 0.34), however, there were a few
18 samples where the performance of the CNN was much higher than that of the SA (3
19 samples: 11, 13, and 16). On the whole-tumor level, the association between FAp
20 and SA was high with R?> = 0.82 (Figure 5C). From a visual perspective, the
21 appearance of SA and FAr was similar, as illustrated for a sample with a high R? of
22 0.32 (Figure 5D). The directionally encoded maps from dMRI and histology were
23 also similar, as shown in two examples (Figure 5E). Corresponding maps for all
24 tumors can be found in the Supplementary material.

25
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1 To analyze the mechanism of the association between FAp and SA, histology
2 images associated with MRI voxels with high or low FAr and SA were examined.
3 Voxels with both high SA and high FAr featured elongated tissue structures oriented
4 more or less along a single direction (Figure 6A), whereas voxels with both low SA
5 and low FAp tended to feature high orientation dispersion where the mesoscopic
6 organization appeared more disorganized (Figure 6B). Furthermore, some voxels
7 featured high SA but low FAp. Such voxels featured boundaries between tumor and
8 vessels, transitions from tumor tissue to microcysts, or loose tissue with white
9 transparent areas (Figure 6C), which yield high SA due to the strong contrast in the
10 image but are in themselves not likely to have a strong effect on the diffusion. These

11  voxels reflect a limitation in the use of SA as a proxy for tissue anisotropy.
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1 Discussion

2 We examined meningiomas ex vivo using both dMRI and histology in order to
3 understand what microscopic and mesoscopic features of the tumor tissue that
4 influences MD and FA from DTI. The analysis was applied to meningiomas of two
5 different grades and six different types (Figure 1AB), which together displayed the
6 highly heterogeneous microstructure typical for meningiomas (Wiemels et al., 2010).
7 The data allowed us to test the common hypotheses that MD reflects cell density
8 (CD) and that FA reflects tissue anisotropy as quantified by the structure anisotropy
9 (SA). Results were in line with these hypotheses when analyzing data across
10 tumors, however, the hypothesis did not hold within tumors. The cause of the
11  discrepancy was different for MD and FA, however.
12
13 Regarding MD, the results indicate that CD alone is insufficient to explain the
14  observed intra-tumor variability in MD. This is exemplified in Figure 3, where panels
15 C and D show a case where CD is associated with MD whereas panels E and F
16 show a case where it is not. In the third of the samples (6 out of 16), the CD was an
17  exceedingly poor predictor of MD (R? < 0.1). Across tumors, however, the MD did
18 correlate negatively with CD (R? = 0.58). The lack of an ability of CD to explain the
19 intra-tumor variability in MD could be that the factor that determines MD is the
20 intracellular volume fraction (ICVF) rather than cell density as defined as the number
21  of cells per volume unit (example of histology shown in Figure 3F) (Szafer et al.,
22 1995;Chenevert et al., 2000;Nilsson et al., 2018a;Novikov et al., 2019). This is
23 because the MD is determined by the volume-weighted average of diffusivities in the
24  intra- and extracellular spaces. For cells smaller than approximately 10-15 um, the

25 intracellular MD is close to zero (Szafer et al., 1995). Therefore the MD on a voxel-

23


https://doi.org/10.1101/2022.12.20.521068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521068; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 level is given by the product between the extracellular volume fraction (given as 1—
2 ICVF) and the extracellular MD. Voxels with intermediate and high CD could have
3 similar ICVF if their cell sizes were different (e.g. Figure 3F), and thus similar MD
4 according to this conceptual model. Voxels with very low CD, however, tend to
5 feature loose and necrotic tissue, which leads to lower ICVF and thus higher MD.
6 The comparison across tumors on the whole-sample level supports this idea since
7 on this level the association between CD and MD is driven by the tumors with low to
8 intermediate CD while for intermediate to high CD there is no discernable
9 association (Figure 3B). Another reason why CD generally failed to explain MD could
10 be that for many samples the measured MD showed little to no variations across the
11 sample, which means that there was no variation to explain (coefficient of variation in
12 MD was below 0.2 for 10 out of 16 samples; see Figures 1 and 2 in the
13 Supplementary material). This means that any microscopic feature would yield low
14  R? However, the CD showed considerable variation in many such cases (coefficient
15 of variation in CD was below 0.2 for only 5 out of 16 samples; see also
16  Supplementary material). This means different CD gives highly similar MD in many
17 samples, which emphasizes the argument raised above. Furthermore, the CNN
18 explained more variance in MD than the CD, which suggests that features apart from
19 CD contribute to the variation in MD. Examples of such features, identified by
20 inspection of residual maps, include tumor vasculature, psammoma bodies,
21  microcysts, and tissue cohesivity (Figure 4). We hypothesize that these are relevant
22 features for MD because MD is poorly explained by CD alone, as well as because
23  MD prediction is less biased when the more general and flexible CNN approach is
24 used. This is also in agreement with other studies arguing that features of the

25 mesoscopic stromal architecture influence MD more than CD (Squillaci et al.,
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1 2004;Yoshikawa et al., 2008). Furthermore, stromal collagen content (Egnell et al.,
2 2020) or the presence of necrosis may also influence MD (Patterson et al., 2008).
3 Modelling work shows that MD can also be influenced by features of the cells such
4 as their size (Szafer et al., 1995), nuclear size (Xu et al., 2009), or membrane
5 permeability (Colvin et al., 2011). This work hypothesizes that other microstructural
6 features are of importance (Figure 4) but quantifying their effects will be the subject

7  of future work.

9 The results concerning anisotropy were seemingly similar to those concerning cell
10 density, but subtle differences offer a different interpretation. Similar to MD and CD,
11  FAp was better explained by SA on the inter-tumor level than on the intra-tumor level
12  (Figure 5AC). Samples with fewer variations of FAp had markedly lower R? values
13 (Figure 5B). This is because the relative importance of noise is higher for samples
14  with low FAp variability. On the other hand, samples with high FAp variability have
15 more true variation that needs to be explained compared to noise. Importantly,
16 samples with a uniform and low FA also showed uniform values and low values of
17 the SA. Note the difference from the case of MD and CD, where a uniform MD was
18 found even in samples with a non-uniform CD. Furthermore, high SA and high FAp
19 were associated with the presence of anisotropic tissue structures, and low SA and
20 low FAjr with either isotropic tissue structures or anisotropic tissue structures with
21  high orientation dispersion (Figure 6AB). This is aligned with prior research (Pierpaoli
22 et al., 1996;Szczepankiewicz et al., 2016), because FA corresponds to the voxel-
23 level average diffusion anisotropy, which is high only in the presence of aligned and
24  elongated microscopic structures and low if either microscopic diffusion anisotropy is

25 low or orientation dispersion is high or both (Szczepankiewicz et al., 2016).
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2 Gaining detailed knowledge of tumor microstructure non-invasively by diffusion MRI
3 is a desirable goal, however, our results show that MD and FA are affected by a
4  multitude of different microstructure features and thus lack specific interpretations.
5 To enable the separation of the many features that affect MD of FA, we need to use
6 diffusion protocols that encode more information than standard DTI protocols
7 (Nilsson et al., 2018a). For example, time-dependent diffusion (StepiSnik, 1993)
8 could potentially be used to distinguish microcysts from CD because microcysts are
9 circumscribed by an endothelial layer, and their sizes are on average larger than
10 cells. Strong effects of diffusion time could thus indicate the presence of microcysts.
11 Tensor-valued diffusion encoding may also be used to encode for microscopic
12  anisotropy that is independent of tissue orientation dispersion (Szczepankiewicz et
13 al., 2015;Szczepankiewicz et al., 2016;Westin et al., 2016).
14
15 In this study, we identified six potential limitations of the present work. First, the
16 ability to use histology to predict dMRI parameters depends on the accuracy of
17 image coregistration. Herein lies an intrinsic limitation as the MRI voxels were 200
18 um thick, whereas the histology sections were only 5 um thick. The sections were
19 also somewhat deformed during preparation. The influence of the latter limitation
20 was limited by performing both linear and non-linear registration between the
21 histology images and the dMRI maps. Nonetheless, some of the large residuals seen
22 in highly heterogeneous samples (e.g. Figure 3C) could be due to a spatial mismatch
23 in the through-slice direction between the two modalities. However, such a mismatch
24 s unlikely to have affected the residual maps in Figure 4A, 4C and 4D, where highly

25 localized and sample-specific features were clearly related to the residuals.
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1  Furthermore, potential registration errors are unlikely to have affected the low R? in
2  samples with uniform MD or FAp, as these simply lacked variance to be explained. A
3 second limitation is that features beyond CD that affects MD were identified only
4  qualitatively. Further work is needed to enable quantification of those features in
5 order to quantify the strength of their association with MD. A third limitation is that the
6 meningioma classification was based on Louis et al. (2016) although a newer
7 classification was proposed after the study was closed (Louis et al., 2021). However,
8 the classification was not used in the analysis. A fourth limitation is that the analysis
9 used a second order polynomial to relate histological image features with measured
10 dMRI parameters. Such a polynomial lacks a biophysical foundation but explained
11 the data reasonably well and served our goal to test for an association between CD
12 and MD or SA and FAp. Future work could possibly use biophysical modelling to
13 Dbetter relate histology to MRI. A fifth limitation is that the training of the CNN only
14  adjusted a limited number of parameters in the final prediction layers. Training a
15 convolutional neural network without using pre-trained network could yield better
16 performance, but prior work reported that fine tuning of networks pretrained on large
17 sets of images yields better performance for a histology classification task (Vesal et
18 al., 2018). Finally, the results were obtained ex-vivo which may not fully generalize to

19 the in-vivo situation.

20
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1 Conclusion

2 The association between MD and cell density was present only when comparing
3 across tumors. On the mesoscopic level within tumors, the MD in meningiomas was
4 not determined by the cell density, as several samples with highly variable cell
5 density but uniform MD were found. We argue that, on the mesoscopic level, the MD
6 may be influenced by the intracellular volume fraction rather than the cellularity. The
7 MD is also influenced by other features such as the presence of large vessels,
8 microcysts, psammoma bodies, and the looseness of the tissue. Furthermore, FA
9 was linked to the tissue structure anisotropy and we found support that it is elevated
10 in the presence of elongated and aligned cell structures in line with previous
11  knowledge.

12
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1 Figures

A) Overview of all samples B) Zoom-in on different meningioma types

3 Figure 1. Histology overview. Panel A shows the 16 meningioma samples that
4  were investigated. Panel B shows zoom-ins on different meningiomas types. Six
5 were transitional, two fibroblastic, two microcystic/angiomatous, three meningothelial
6 (WHO II), one meningothelial (WHO 1), one clear-cell, and one chordoid.
7  Microstructural assessment was performed according to the 2016 WHO criteria

8 (Louis et al., 2016).
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A) Sample holder B) Meningioma sample
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D) Overview of pathology image analysis
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2 Figure 2. Methods overview. Panel A shows the schematics of the 3D-printed
3 sample holder that was used to facilitate voxel-to-voxel coregistration. Panel B
4  shows a meningioma (sample 5) in the holder. Panel C shows obtained dMRI maps:
5 mean diffusivity (MD), fractional anisotropy (FA) and in-plane fractional anisotropy
6 (FAp). The latter captures only anisotropy within the imaging plane. The upper right
7 part of the tumor has diffusion anisotropy that is dominant in the through-plane
8 direction and therefore FA is high but FAp low (yellow arrows). Panel D shows a
9 coregistered histology section (H&E stained) that was processed to obtain cell

10 density (CD, cell nuclei count density) and structure anisotropy (SA from structure

11 tensor analysis).

12
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A) Intra-tumor voxel-level sample variability B) Inter-tumor whole-sample level variability
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2 Figure 3. Association between MD and CD. Panel A shows the intra-tumor sample
3 variability in MD explained by a second order polynomial in CD (R% blue bars
4 correspond to median, black error bars show interquartile range) and by the
5 convolutional neural network (CNN; red bars), respectively. Panel B shows the inter-
6 tumor whole-sample average of MD and CD (each blue dot corresponds to a single
7  sample). The variability in MD across tumors is explained well by CD with R? = 0.58.
8 Panel C shows on the left a scatter plot from sample 3 where a strong correlation
9 between MD and CD is present (R* median + interquartile range is displayed). High
10 data density is marked by yellow color. A residual map is shown to the right. A voxel
11 of intermediate CD (blue point) and another one with high CD (purple point) are

12 indicated. Panel D shows their corresponding histology. The voxel with intermediate
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1 CD (blue inset) contains tumor stroma with vessels and microcysts, while the one
2 with high CD (purple inset) has a clearer tumor mass and fewer microcysts and
3 vessels. Panel E shows the same features but for sample 5. Here, the two voxels
4 have similar MD despite having different CD (low versus high CD as indicated by the
5 arrows in the MD-versus-CD plot). The voxel with low CD appears to have larger

6 cells with larger cytoplasmic volumes than the cells in the voxel with high CD.
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2 Figure 4. MD is influenced by histological features beyond CD. Columns show
3 maps of the tumor sample and histology zoom-ins of a voxel with a feature
4  associated with an MD poorly predicted by CD (Histology:) and a control voxel with
5 an MD well-predicted by CD (Histology2). Two residual maps are shown — the first
6  with the residual computed from MD predicted by CD (" ¢p) and the second with MD
7  predicted by the CNN (Tlcnn). The color of the border of the zoom-ins matches the
8 color of the circles, which indicate their origin in the sample. Panel A shows that a
9 voxel with underestimated MD (red on the residual map; sample 7) contains tumor
10 vasculature (blue marker), while the control voxel (purple marker) contains no large
11 vessels but only tumor mass. Panel B shows a region with overestimated MD (green
12  color on the residual map; sample 3) that can be linked to tightly packed microcysts
13 (blue). The control voxel (purple) also features microcysts, but fewer. The residual
14  around the microcysts (blue) appears to be dominant when CD is considered for its

15 prediction (Ccp) but not for CNN (Ccnn). Panel C shows a region with overestimated
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1 MD (green on the residual map; sample 9) that could be attributed to psammoma
2 bodies (blue). The control shows no psammoma bodies (purple). Panel D shows that
3 MD can be linked to tissue cohesivity (sample 6). The overestimated voxel (green in
4 the residual map) is associated with tightly-packed tissue with collagen (blue)

5 whereas the underestimated region rather features loose tissue with few vessels

6 (purple).

40


https://doi.org/10.1101/2022.12.20.521068
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521068; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.
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2 Figure 5. Association between FA and SA. Panel A shows the intra-tumor sample
3 variability in FAp explained by SA (R? blue bars correspond to median, black error
4  bars show interquartile range) and by the convolutional neural network (CNN; red
5 bars). Panel B shows R? from the SA-based regression versus standard deviation of
6 FAp values across the whole sample (each blue dot corresponds to a single sample;
7 R%=0.89). Panel C shows FAp versus SA averaged across the whole sample and
8 that SA explains FAp better than the intra-sample analysis (R?> = 0.82). Panel D
9 shows a visual comparison of SA and FAp (sample 5). Panel E shows a comparison

10 between the directionality of SA and FAp. Colors indicate directions, while the

11 intensity is modulated by scaling the values by /FAp and vSA. Visually, the
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1 predicted and measured anisotropy and directionality of the samples are in strong

2 agreement.
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1 dMRI voxel
1 = 200x200 pm?

2 Figure 6. Histology that corresponds to MR voxels with high or low SA and
3 FAp. Panel A illustrates that tissue with elongated structures that are dominantly
4  oriented along one direction yields high diffusion anisotropy (high SA and high FAp).
5 Panel B shows tissue structures oriented without any single preferential direction,
6 which yield low diffusion anisotropy, and thus appear as isotropic tissue (low SA
7 across the whole voxel and low FAp). Panel C shows tissues with boundaries
8 between tumor and vessels (left), transition from tumor tissue to microcysts (middle),
9 ortissue looseness with white transparent areas (right). These yield high SA but the
10 structures have little influence on the diffusion and thus yield low to intermediate

11  FAp. This illustrates a limitation of the structure tensor analysis technique.
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1 Tables

3 Table 1. Overview of histopathological classification of meningiomas samples.
4 In total 16 samples were collected. The microstructural assessment was done

5 according to the WHO criteria of 2016 (Louis et al., 2016).

SAMPLE TYPE GRADE
1 Transitional |
2 Chordoid ]
3 Microcystic/Angiomatous |
4 Meningothelial I
5 Transitional [
6 Meningothelial I
7 Transitional [
8 Meningothelial I
9 Fibroblastic I
10 Clear-cell 1
11 Transitional |
12 Fibroblastic [
13 Transitional [
14 Microcystic/Angiomatous |
15 Meningothelial [l
16 Transitional [
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1 Table 2. Overview of histopathological classification. In total 16 samples have
2  been investigated from which 11 were of WHO grade | and 5 of grade Il. 6 different
3 meningioma types were included and the most common was a transitional type of
4  grade WHO I. Microstructural assessment was done according to the WHO criteria

5 of 2016 (Louis et al., 2016).

TYPE GRADE #
Transitional I 6
Fibroblastic I 2
Microcystic/Angiomatous | 2
1
3
1
1

Meningothelial I
Meningothelial Il
Chordoid Il
Clear-cell Il
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1 Table 3. Coefficient of determination values from the test sets between

2 measured and predicted values. R? values are in the format median + interquartile

3 range.

SAMPLE R*MD R? FApp

CD CNN SA CNN
1 0.33+0.09 0.32 0.19+0.05 0.15
2 0.27 +0.11 0.26 0.03+0.04 0.07
3 0.36 +0.06 0.30 0.10+0.03 0.14
4 0.44 +0.10 0.27 0.20+0.04 0.28
5 0.00+0.00 0.16 0.32+0.04 0.39
6 0.01+0.01 0.15 0.22+0.03 0.31
7 0.19+0.05 0.11 0.00+0.00 -0.04
8 0.03+0.02 0.06 0.14+0.03 0.17
9 0.01+0.01 0.26 0.30+0.04 0.36
10 0.04 £+0.02 0.08 0.09+0.02 0.11
11 0.11+0.04 0.39 0.10+0.03 0.33
12 0.03+0.01 0.03 0.02+0.01 -0.01
13 0.31+0.04 0.61 0.20+0.03 0.34
14 0.00+0.00 0.01 0.00+0.00 0.01
15 0.08 £+0.04 0.12 0.23+0.03 0.18
16 0.02+0.01 0.21 0.19+0.04 0.36

4
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