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Abstract 1 

Background: Mean diffusivity (MD) and fractional anisotropy (FA) obtained with 2 

diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy 3 

across tumors, but it is unknown whether these associations persist at the 4 

microscopic level. 5 

Purpose: To quantify the degree to which cell density (CD) and structure anisotropy 6 

(SA), as determined from histology, account for the intra-tumor variability of MD and 7 

FA in meningioma tumors. Furthermore, to clarify whether histological features other 8 

than cell density account for additional intra-tumor variability of MD. 9 

Materials and Methods: We performed ex-vivo dMRI at 200 μm isotropic resolution 10 

and histological imaging on 16 excised meningioma tumor samples. Diffusion tensor 11 

imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FAIP). 12 

Histology images were analyzed in terms of cell nuclei density and structure 13 

anisotropy (obtained from structure tensor analysis) and were used separately in a 14 

regression analysis to predict MD and FAIP, respectively. A convolutional neural 15 

network (CNN) was also trained to predict the dMRI maps from histology patches. 16 

The association between MRI and histology was analyzed in terms of coefficient of 17 

determination (R2). Regions showing unexplained variance (large residuals) were 18 

analyzed to identify features apart from cell density and structure anisotropy that 19 

could influence MD and FAIP. 20 

Results: Cell density assessed by histology poorly explained intra-tumor variability 21 

at the mesoscopic level (200 μm) in MD (median R2 = 0.06, interquartile range 0.01 - 22 

0.29) or FAIP (median R2 = 0.19, 0.09 - 0.29). Samples with low R2 for FAIP exhibited 23 

low variations throughout the samples and thus low explainable variability, however, 24 

this was not the case for MD. Across tumors, cell density and structure anisotropy 25 
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were associated with MD (R2 = 0.58) and FAIP (R2 = 0.82), respectively. In 37% of 1 

the samples (6 out of 16), cell density did not explain intra-tumor variability of MD 2 

when compared to the degree explained by the CNN. Tumor vascularization, 3 

psammoma bodies, microcysts, and tissue cohesivity were associated with bias in 4 

MD prediction when solely CD was considered. Our results support that FAIP is high 5 

in the presence of elongated and aligned cell structures, but low otherwise. 6 

Conclusion: Cell density and structure anisotropy account for variability in MD and 7 

FAIP across tumors but cell density does not explain MD variations within the tumor, 8 

which means that low or high values of MD locally may not always reflect high or low 9 

tumor cell density. Features beyond cell density need to be considered when 10 

interpreting MD. 11 
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Keywords 1 
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Abbreviations 1 

CD  Cell density or cellularity 2 

CNN  Convolutional neuronal network 3 

DEC  Directionally encoded color maps 4 

dMRI  Diffusion magnetic resonance imaging 5 

DTI  Diffusion tensor imaging 6 

EPI  Echo-planar imaging 7 

FA  Fractional anisotropy 8 

FAIP  In-plane fractional anisotropy 9 

H&E  Hematoxylin & eosin 10 

ICVF  Intracellular volume fraction 11 

MD  Mean diffusivity 12 

SA  Structure anisotropy 13 

WHO  World Health Organization 14 
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Highlights 1 

 2 

1. Cell density accounts for MD variability across but not within meningioma 3 

tumors. 4 

2. Structure anisotropy accounts for in-plane FA variability across and within 5 

tumors 6 

3. Vascularization, psammoma bodies, and microcysts influence the MD. 7 

4. High and low meningioma tumor cell density can yield similar MD. 8 

5. Features beyond cell density need to be considered when interpreting MD. 9 
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Introduction 1 

Diffusion MRI (dMRI) is the primary modality for obtaining information on tumor 2 

microstructure non-invasively (Stejskal and Tanner, 1965;Brown et al., 2014). 3 

Diffusion tensor imaging (DTI) is widely applied in patients with intracranial tumors 4 

and yields two key parameters: the mean diffusivity (MD) and the fractional 5 

anisotropy (FA) (Basser et al., 1994). MD correlates negatively with cell density (CD) 6 

in a wide range of tumor types (Sugahara et al., 1999;Gauvain et al., 2001;Chen et 7 

al., 2013;LaViolette et al., 2014;Surov et al., 2017). Decreased MD is therefore often 8 

interpreted as indicative of viable tumor regions with high CD. Furthermore, the FA 9 

reflects the voxel-level diffusion anisotropy and is generally high in white matter due 10 

to its highly anisotropic tissue structure. Therefore FA can be used to identify tracts 11 

displaced, disrupted or infiltrated by a tumor (Price et al., 2004;Yen et al., 12 

2009;Jütten et al., 2019). 13 

 14 

Although established on the whole-tumor level, it is not clear to which degree the 15 

correlation between MD and cell density, or FA and tissue anisotropy, holds 16 

quantitatively on a mesoscopic level within individual tumors. There are reasons to 17 

believe that both MD and FA can be affected by microstructural features other than 18 

cell density and tissue anisotropy. In the case of MD, cellular features such as size 19 

(Szafer et al., 1995), size of their nucleus (Xu et al., 2009), or membrane 20 

permeability (Colvin et al., 2011) are known to have an impact. MD can also be 21 

impacted by larger-scale mesoscopic features such as the presence of necrosis 22 

(Patterson et al., 2008) or stromal architecture (Squillaci et al., 2004;Yoshikawa et 23 

al., 2008). The features of the stroma may be tissue inhomogeneity, presence of 24 

large interstitial spaces, trabecula, nests and tubular formations or other complexity 25 
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of intercellular spaces and junctions. Note that MD did not correlate with cell density 1 

in renal tumors and breast tumors (Squillaci et al., 2004;Yoshikawa et al., 2008). 2 

Furthermore, FA is known to merely reflect macroscopic (voxel-level) anisotropy, 3 

which is lower than the microscopic diffusion anisotropy due to the presence of 4 

orientation dispersion (Pierpaoli et al., 1996;Szczepankiewicz et al., 2016). This has 5 

been shown to be important in meningiomas, which tend to have high microscopic 6 

anisotropy but high orientation dispersion and thus low voxel-level anisotropy 7 

(Szczepankiewicz et al., 2016;Nilsson et al., 2020). Thus the interpretation of FA in 8 

meningiomas as an indication of tissue anisotropy could be biased by the orientation 9 

dispersion of the tumor microstructure (Szczepankiewicz et al., 2015;Brabec et al., 10 

2022). Consequently, it is crucial to understand what affects MD and FA at the 11 

mesoscopic level when interpreting local changes of these parameters. However, 12 

few studies have investigated the relation between tumor microstructure as seen by 13 

microscopy to what is measured by dMRI on a voxel-to-voxel basis. 14 

 15 

Meningiomas are the most prevalent primary intracranial tumor (34% of all 16 

intracranial tumors) (Louis et al., 2021). It has been proposed that DTI can be used 17 

for preoperative meningioma classification and consistency estimation, but results 18 

have been contradictory (Pistolesi et al., 2002;Gurkanlar et al., 2005;Hsu et al., 19 

2010;Santelli et al., 2010;Lin et al., 2018;Yao et al., 2018). For example, some 20 

studies have shown that firm tumors are associated with lower MD values (Yogi et 21 

al., 2014;Miyoshi et al., 2020) or with MD values similar to gray matter (Romani et 22 

al., 2014). Other studies were not able to reproduce this result (Watanabe et al., 23 

2016) or found that lower MD values are associated with variable consistency 24 

(Brabec et al., 2022). Furthermore, higher FA values have been associated with firm 25 
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consistency (Kashimura et al., 2007;Tropine et al., 2007;Romani et al., 2014), 1 

suggesting that firm tumors may contain mainly anisotropic tissue with high 2 

microscopic diffusion anisotropy (Kashimura et al., 2007). Other studies, however, 3 

did not find such an association (Ortega-Porcayo et al., 2015;Brabec et al., 2022). 4 

DTI has also been proposed for differentiation of atypical, fibroblastic, and other 5 

meningioma subtypes (Jolapara et al., 2010;Surov et al., 2015), but both MD and FA 6 

have been reported as being similar across a wide range of meningioma types and 7 

grades (Brabec et al., 2022). To understand these divergent results, and if possible 8 

advise on ways to explain differences between studies, a better understanding of the 9 

link between meningioma microstructure and diffusion MRI results is needed. 10 

 11 

In this work, we investigated the association between information derived from 12 

histology with that obtained from diffusion microimaging of the same specimen 13 

across six different types of meningiomas. We examined quantitatively to which 14 

degree cell density (CD) and structure anisotropy (SA) can account for the local 15 

intra-tumor variability in MD and in-plane FA (FAIP), respectively, as observed with 16 

dMRI with a voxel-to-voxel coregistered histology. The FAIP is defined similarly to the 17 

FA but it disregards the trough-plane anisotropy making comparisons with thin 18 

histological slices more straightforward. Similarly to diffusion tensor analysis, the SA 19 

reflects the anisotropy in an image and is obtained from structure tensor analysis, 20 

which is similar to diffusion tensor analysis, analysis except that the diffusion 21 

encodings are replaced by spatial derivatives (Budde and Frank, 2012). To 22 

investigate if there were features beyond CD and SA that could explain MD and FA, 23 

we also trained a convolutional neural network (CNN) to predict MD and FAIP from 24 

the histology slides. In addition, we qualitatively investigated voxels associated with 25 
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large prediction errors in order to identify key microstructure features of 1 

meningiomas that drive a large change in the dMRI parameters.   2 
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Materials and Methods 1 

Patients 2 

This study included 16 patients with radiologically diagnosed meningioma tumors 3 

scheduled for surgical treatment between 2016 and 2018 at Skåne University 4 

Hospital, Lund, Sweden. Inclusion criteria were age above 18 years, histologically 5 

confirmed meningioma and signed informed consent. The study was approved by 6 

the Swedish Ethical Review Authority, and all subjects gave their written informed 7 

consent to participate in accordance with the Declaration of Helsinki. Table 1 and 2 8 

provides a summary of the histopathological evaluation. 9 

 10 

MR imaging and processing 11 

In total 16 tumor samples were obtained after neurosurgical excision and fixated in 12 

formaldehyde solution (4%). The tissue was cut into blocks of approximately 13 

35×20×2 mm3 (Figure 1A and 2B) to fit a 3D printed mold (Figure 2A) and scanned 14 

at a Bruker 9.4 T BioSpec Avance III scanner. DTI (Basser et al., 1994) was 15 

performed using a 3D-EPI sequence with TR = 2.5 s, TE = 30 ms, slices = 41, 16 

averages = 10, resolution=200×200×200 μm3, and with b-values of 100, 1000 and 17 

3000 s/mm2 applied in six directions. 18 

 19 

DTI analysis was performed with linear least squares fitting, as implemented in the 20 

multidimensional dMRI toolbox (Nilsson et al., 2018b) in order to extract maps of the 21 

FA, MD, and directionally encoded color (DEC) maps. Moreover, the FAIP was 22 

calculated by utilizing only the in-plane eigenvalues of the diffusion tensor, according 23 

to 24 

 25 
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FA�� � �����

�����
,         (Eq. 1) 1 

 2 

where λ1 and λ2 (λ1 > λ2) are eigenvalues of the diffusion tensor, reduced to in-plane 3 

(x-y plane) by setting Dxz = Dyz = Dzz = 0, 4 

 5 

� � ���� ��� 0��� ��� 00 0 0�.        (Eq. 2) 6 

 7 

Histopathology 8 

The blocks on which MRI had been performed were embedded in paraffin, sectioned 9 

into 5 µm slices, and stained with hematoxylin & eosin (H&E). Each tumor specimen 10 

had been diagnosed for tumor type and malignancy grade. This diagnostic 11 

procedure adhered to the prevailing WHO criteria of 2016 as part of the clinical 12 

routine (Louis et al., 2016) because the data collection took place between the years 13 

2016 and 2018. Sections were then digitalized at a resolution of 0.5×0.5 μm2. To 14 

facilitate coregistration, the sections were consistently taken from one side of the 15 

tumor block from the sample holder (Figure 2AB), which later allowed voxels from 16 

MR to be obtained from a similar location. 17 

 18 

Coregistration, cell density and structure anisotropy maps 19 

H&E-stained histology images were coregistered to MR by, first, a rigid coregistration 20 

and, second, by a non-linear landmark-based approach. The landmarks were 21 

defined on the MD and FAIP maps and then on the corresponding structures in the 22 

histology sections. Landmarks were placed at the corners and edges of the sections 23 
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and also in tumor microscopic features, such as tumor microvasculature, readily 1 

discernible in both the histology sections and MR images. 2 

 3 

Cell nuclei were segmented from H&E stained images using QuPath (version 0.23) 4 

cell detection algorithm (Bankhead et al., 2017). The segmentation was performed 5 

using the open-source code available at https://github.com/qupath. Furthermore, CD 6 

was obtained by exporting the cell nuclei centroid positions into a MATLAB 7 

environment where the cell nuclei counts were downsampled to match the MR 8 

resolution. This was achieved by summing of cell nuclei count over an area 9 

corresponding to a single MR voxel and, consequently, the CD map was normalized 10 

by dividing by the maximum CD value within the whole sample. 11 

 12 

Structure anisotropy was obtained from a structure tensor analysis at the high 13 

histology resolution using on a previously described approach (Budde and Frank, 14 

2012). This consists of computing a structure tensor H (Bigun, 1987;Budde and 15 

Frank, 2012), 16 

 17 

	 � 
��� ������ ���
�,        (Eq. 3) 18 

 19 

where Hxx, Hyy and Hxy are partial spatial image derivatives along x or y directions. 20 

These were computed as convolutions of the histology image with derivative filters 21 

along either the x or y directions and blurred with a Gaussian filter (σ = 0.25 μm). 22 

Finally, the obtained structure tensor H was smoothed by another Gaussian filter (σ 23 

= 15 μm) and downsampled to match the MR resolution (200 µm) which was 24 

performed by averaging its eigenvalues within an area corresponding to a single MR 25 
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voxel. SA was calculated from the eigenvalues λ1 and λ2 of the downsampled 1 

structure tensor H as 2 

 3 

SA � �����

�����
,         (Eq. 4) 4 

 5 

where λ1 > λ2. Finally, the SA maps were smoothed with the same Gaussian kernel 6 

as the dMRI maps (σ = 40 μm) to reduce the impact of small coregistration errors. 7 

Note that the calculation of SA and FAIP are similar (compare Eq. 1-4). 8 

 9 

Prediction of MD and FAIP from CD and IA 10 

Since scatter plots between MD and CD or between FAIP and SA values showed 11 

non-linear relationships (shown in Supplementary material Figure 1 and Figure 2), 12 

analyses were conducted to identify the function that best explained the relation 13 

between them. Five functions were tested: first-degree, second-degree, and third-14 

degree polynomials, and in the case of MD, a second-degree polynomial constrained 15 

to be monotonically decreasing with maximal value at minimal CD to mimic the 16 

proposed negative association between CD and MD. In the case of FAIP, a first-17 

degree polynomial constrained to the origin was tested instead. Results are shown in 18 

the Supplementary material Figures 1 and 2. It was observed that a second-degree 19 

polynomial was best suited in all cases and both modalities. 20 

 21 

We quantitatively assessed to what degree CD and SA could explain the variability 22 

of the MD and FAIP, respectively, by using the coefficient of determination (R2) 23 

between the measured and predicted maps. This was calculated by randomly 24 

selecting 80% of the voxels as a training set. A second order polynomial in CD or SA 25 
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was then fitted to MD or FAIP, respectively, for each modality and each sample. The 1 

explained variability in the remaining 20% of the voxels was then evaluated using R2. 2 

This procedure was used to unify the evaluation methods between the prediction by 3 

histology features and the one by the CNN (explained later). Furthermore, the 4 

process was repeated 1000 times with different random selections of the 80/20 split 5 

in order to estimate the uncertainty in R2. 6 

 7 

We also investigated whether a lack of variability in MD or FAIP within the sample 8 

could explain a poor association between intra-tumor predicted and measured dMRI 9 

maps. We quantified this by calculating R2 between R2 of the intra-tumor predicted 10 

versus measured MD or FAIP and standard deviation of the MD or FAIP across the 11 

sample, respectively. 12 

 13 

Quantitative comparison by convolutional neural network 14 

We also quantified the variability in MD and FAIP using a convolutional neural 15 

network (CNN) that was composed of an EfficientNetV2 network pretrained on the 16 

ImageNet dataset (Tan and Le, 2021) and fine-tuned with additional layers (network 17 

architecture overview in Supplementary material Figure 3). The CNN was designed 18 

to solve a patch-to-value regression task with the aim to predict either MD or FAIP 19 

per voxel using a spatially corresponding patch of 360×360 color pixels from the 20 

histology images. We used horizontal and vertical image flipping for data 21 

augmentation and a train-validation-test split of 60/20/20%, 25 training epochs with 22 

early stopping and batch size of 32. The number of trainable parameters was 117 23 

787 873. During training as a loss function the mean squared error was used and 24 

then the performance was evaluated on the test set using R2. The objective of this 25 
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investigation was to determine whether a convolutional neural network could identify 1 

histological features that have an impact on the variability within MD or FAIP. Since 2 

the purpose was not to learn a general mapping from histology to DTI, the training 3 

and testing were conducted in a generous setting (within each sample rather than 4 

across all samples). 5 

 6 

Qualitative analysis by residual maps 7 

To investigate additional features apart from CD contributing to the variability of MD, 8 

we studied residual maps (the difference between measured MD and predicted MD 9 

by CD). These maps were displayed using a color map where black corresponds to 10 

MR voxels without residual, green to voxels where the prediction was overestimated 11 

and red where it was underestimated. This approach revealed that the voxels where 12 

predicted MD was overestimated by CD (green color) would necessitate additional 13 

microstructure features causing “restrictions” with lower apparent diffusivity to 14 

counterbalance the effect of overestimation whereas the voxels where MD was 15 

underestimated (red color) would rather need a “free compartment” with high 16 

apparent diffusivity. 17 

 18 

Similarly, we generated residual maps between MD predicted by the CNN and 19 

measured MD and compared them to those obtained by considering CD only. The 20 

purpose was to identify features impacting MD apart from CD. Attention was given to 21 

regions where the more general CNN approach had lower residuals than the less 22 

flexible CD-based regression approach, as this would indicate the CNN found in that 23 

region a feature to explain an MD deviation whereas the CD-based approach did not.  24 

 25 
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Data and code accessibility 1 

Analysis code and details of the MRI protocols are available at 2 

https://github.com/jan-brabec/microimaging_vs_histology_in_meningeomas. The 3 

dMRI data were processed by a software package for diffusion MRI available at 4 

https://github.com/markus-nilsson/md-dmri (Nilsson et al., 2018b). Additional data 5 

are available from the corresponding author upon request. Code for cell nuclei 6 

detection is available at https://github.com/qupath (Bankhead et al., 2017). 7 
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Results 1 

In total, 16 meningioma samples of six different types and two different grades were 2 

investigated (Table 1 and 2). An overview of sectioned blocks is shown in Figure 1, 3 

together with a display of the microstructural features of the different meningioma 4 

types. The histology and dMRI maps of MD, FA, and FAIP were coregistered (Figure 5 

2C). Note the difference between the conventional FA and FAIP maps (Figure 2D). 6 

The latter captures the diffusion anisotropy within the imaging plane. Regions with 7 

high FA but low FAIP indicate the presence of elongated cell structures pointing in the 8 

direction through the imaging plane. Examples of CD and SA maps obtained by 9 

analyzing histology slides (H&E stained) are shown in Figure 2D. Note that the SA 10 

map is highly similar to the FAIP map but not to the FA map. 11 

 12 

In the voxel-by-voxel within-sample analysis, CD poorly explained the intra-tumor 13 

variability in MD (Figure 3A), with R2 = 0.06 (0.01 - 0.29); median (interquartile 14 

range). The intra-tumor variability was better explained by the CNN, with R2 = 0.19 15 

(0.09 - 0.29). In 37% of the samples (6 out of 16 samples; samples 5, 6, 9, 11, 13, 16 

and 16), CD explained much less of the variability than the CNN (the median ratio of 17 

the R2 of the CD vs CNN-based predictions was 7%). In the remaining samples, the 18 

CD-based approach explained a similar amount of variability as the CNN. The intra-19 

tumor variability was weakly correlated with the standard deviation of MD within the 20 

sample (r = 0.51, p < 0.05, Pearson’s correlation coefficient), meaning that samples 21 

with lower variation in MD showed a weak tendency towards a weaker association 22 

with CD. When averaging the values of both CD and MD across the whole-sample 23 

and testing for an association across tumors we found a strong linear association 24 
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with R2 = 0.58 (n = 16), although it is noteworthy that 5 out of the 16 samples with 1 

low CD and high MD stood out from the rest (Figure 3B). 2 

 3 

To study the relation between meningioma microstructure and MD, individual 4 

samples were investigated. One sample showed a clear negative association 5 

between CD and MD within the sample (R2 = 0.36, Figure 3C). A closer inspection of 6 

two voxels with either intermediate or high CD is shown in Figure 3D. The voxel with 7 

intermediate CD and higher MD contains tumor stroma, vessels, and microcysts 8 

whereas the one with high CD and lower MD is characterized by a clearer tumor 9 

mass and fewer microcysts and vessels. Another sample showed no discernible 10 

association between MD and CD (R2 = 0.00, Figure 3E). A closer inspection of two 11 

voxels with similar MD but either low or high CD from that sample showed that the 12 

one with low CD contains cells with a larger cytoplasm volume than the one with high 13 

CD (Figure 3F). 14 

 15 

To understand which features could affect MD beyond CD, residual maps were 16 

examined. This procedure led to the identification of five types of microstructure 17 

features of importance to MD. First, tumor vasculature was associated with an 18 

underestimated MD. This is shown in Figure 4A where an MRI voxel associated with 19 

a high residual shows the presence of vessels (histology with blue border) while a 20 

voxel with low residuals lacks them and rather features a solid tumor mass (purple 21 

border). Second, tightly packed microcysts were associated with an overestimated 22 

MD. This is shown in Figure 4B, where a voxel containing microcysts (blue border) is 23 

compared to a voxel with a denser tumor mass (purple border). This indicates that 24 

microcysts act as diffusion restrictions similar to cell bodies. Furthermore, the 25 
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overestimation from CD is not present when MD is predicted by the CNN (Figure 4B, 1 

residual map �CNN), indicating that the CNN to some extent captures microcysts as a 2 

relevant feature. Third, psammoma bodies were associated with an MD 3 

overestimated from CD (Figure 4C). Similar to the case for the microcysts, this bias 4 

is absent for the prediction by CNN. Finally, tissue cohesivity may also be relevant 5 

for explanation of the MD. Figure 4D shows a voxel with tightly-packed tissue with 6 

collagen featuring an underestimated MD (blue border) and a voxel with loose tissue 7 

and few vessels with overestimated MD (purple border). This overestimation is more 8 

pronounced for the CD-based regression than for the CNN. An overview of residual 9 

maps of all samples can be found in the Supplementary material in Figures 4 and 5. 10 

 11 

Just as for CD and MD, the SA explained FAIP relatively poorly with R2 = 0.16 (0.06 – 12 

0.20). However, here the per-sample R2 was strongly correlated with the standard 13 

deviation of FAIP within samples (r = 0.94, p < 10–5, Pearson’s correlation 14 

coefficient), meaning that SA did predict FAIP where there was sufficient feature-15 

driven variation in FAIP within the sample. The CNN displayed similar numbers as the 16 

SA-based regression, with R2 = 0.18 (0.09 – 0.34), however, there were a few 17 

samples where the performance of the CNN was much higher than that of the SA (3 18 

samples: 11, 13, and 16). On the whole-tumor level, the association between FAIP 19 

and SA was high with R2 = 0.82 (Figure 5C). From a visual perspective, the 20 

appearance of SA and FAIP was similar, as illustrated for a sample with a high R2 of 21 

0.32 (Figure 5D). The directionally encoded maps from dMRI and histology were 22 

also similar, as shown in two examples (Figure 5E). Corresponding maps for all 23 

tumors can be found in the Supplementary material. 24 

 25 
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To analyze the mechanism of the association between FAIP and SA, histology 1 

images associated with MRI voxels with high or low FAIP and SA were examined. 2 

Voxels with both high SA and high FAIP featured elongated tissue structures oriented 3 

more or less along a single direction (Figure 6A), whereas voxels with both low SA 4 

and low FAIP tended to feature high orientation dispersion where the mesoscopic 5 

organization appeared more disorganized (Figure 6B). Furthermore, some voxels 6 

featured high SA but low FAIP. Such voxels featured boundaries between tumor and 7 

vessels, transitions from tumor tissue to microcysts, or loose tissue with white 8 

transparent areas (Figure 6C), which yield high SA due to the strong contrast in the 9 

image but are in themselves not likely to have a strong effect on the diffusion. These 10 

voxels reflect a limitation in the use of SA as a proxy for tissue anisotropy. 11 
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Discussion 1 

We examined meningiomas ex vivo using both dMRI and histology in order to 2 

understand what microscopic and mesoscopic features of the tumor tissue that 3 

influences MD and FA from DTI. The analysis was applied to meningiomas of two 4 

different grades and six different types (Figure 1AB), which together displayed the 5 

highly heterogeneous microstructure typical for meningiomas (Wiemels et al., 2010). 6 

The data allowed us to test the common hypotheses that MD reflects cell density 7 

(CD) and that FA reflects tissue anisotropy as quantified by the structure anisotropy 8 

(SA). Results were in line with these hypotheses when analyzing data across 9 

tumors, however, the hypothesis did not hold within tumors. The cause of the 10 

discrepancy was different for MD and FA, however. 11 

 12 

Regarding MD, the results indicate that CD alone is insufficient to explain the 13 

observed intra-tumor variability in MD. This is exemplified in Figure 3, where panels 14 

C and D show a case where CD is associated with MD whereas panels E and F 15 

show a case where it is not. In the third of the samples (6 out of 16), the CD was an 16 

exceedingly poor predictor of MD (R2 < 0.1). Across tumors, however, the MD did 17 

correlate negatively with CD (R2 = 0.58). The lack of an ability of CD to explain the 18 

intra-tumor variability in MD could be that the factor that determines MD is the 19 

intracellular volume fraction (ICVF) rather than cell density as defined as the number 20 

of cells per volume unit (example of histology shown in Figure 3F) (Szafer et al., 21 

1995;Chenevert et al., 2000;Nilsson et al., 2018a;Novikov et al., 2019). This is 22 

because the MD is determined by the volume-weighted average of diffusivities in the 23 

intra- and extracellular spaces. For cells smaller than approximately 10–15 µm, the 24 

intracellular MD is close to zero (Szafer et al., 1995). Therefore the MD on a voxel-25 
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level is given by the product between the extracellular volume fraction (given as 1–1 

ICVF) and the extracellular MD. Voxels with intermediate and high CD could have 2 

similar ICVF if their cell sizes were different (e.g. Figure 3F), and thus similar MD 3 

according to this conceptual model. Voxels with very low CD, however, tend to 4 

feature loose and necrotic tissue, which leads to lower ICVF and thus higher MD. 5 

The comparison across tumors on the whole-sample level supports this idea since 6 

on this level the association between CD and MD is driven by the tumors with low to 7 

intermediate CD while for intermediate to high CD there is no discernable 8 

association (Figure 3B). Another reason why CD generally failed to explain MD could 9 

be that for many samples the measured MD showed little to no variations across the 10 

sample, which means that there was no variation to explain (coefficient of variation in 11 

MD was below 0.2 for 10 out of 16 samples; see Figures 1 and 2 in the 12 

Supplementary material). This means that any microscopic feature would yield low 13 

R2. However, the CD showed considerable variation in many such cases (coefficient 14 

of variation in CD was below 0.2 for only 5 out of 16 samples; see also 15 

Supplementary material). This means different CD gives highly similar MD in many 16 

samples, which emphasizes the argument raised above. Furthermore, the CNN 17 

explained more variance in MD than the CD, which suggests that features apart from 18 

CD contribute to the variation in MD. Examples of such features, identified by 19 

inspection of residual maps, include tumor vasculature, psammoma bodies, 20 

microcysts, and tissue cohesivity (Figure 4). We hypothesize that these are relevant 21 

features for MD because MD is poorly explained by CD alone, as well as because 22 

MD prediction is less biased when the more general and flexible CNN approach is 23 

used. This is also in agreement with other studies arguing that features of the 24 

mesoscopic stromal architecture influence MD more than CD (Squillaci et al., 25 
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2004;Yoshikawa et al., 2008). Furthermore, stromal collagen content (Egnell et al., 1 

2020) or the presence of necrosis may also influence MD (Patterson et al., 2008). 2 

Modelling work shows that MD can also be influenced by features of the cells such 3 

as their size (Szafer et al., 1995), nuclear size (Xu et al., 2009), or membrane 4 

permeability (Colvin et al., 2011). This work hypothesizes that other microstructural 5 

features are of importance (Figure 4) but quantifying their effects will be the subject 6 

of future work. 7 

 8 

The results concerning anisotropy were seemingly similar to those concerning cell 9 

density, but subtle differences offer a different interpretation. Similar to MD and CD, 10 

FAIP was better explained by SA on the inter-tumor level than on the intra-tumor level 11 

(Figure 5AC). Samples with fewer variations of FAIP had markedly lower R2 values 12 

(Figure 5B). This is because the relative importance of noise is higher for samples 13 

with low FAIP variability. On the other hand, samples with high FAIP variability have 14 

more true variation that needs to be explained compared to noise. Importantly, 15 

samples with a uniform and low FA also showed uniform values and low values of 16 

the SA. Note the difference from the case of MD and CD, where a uniform MD was 17 

found even in samples with a non-uniform CD. Furthermore, high SA and high FAIP 18 

were associated with the presence of anisotropic tissue structures, and low SA and 19 

low FAIP with either isotropic tissue structures or anisotropic tissue structures with 20 

high orientation dispersion (Figure 6AB). This is aligned with prior research (Pierpaoli 21 

et al., 1996;Szczepankiewicz et al., 2016), because FA corresponds to the voxel-22 

level average diffusion anisotropy, which is high only in the presence of aligned and 23 

elongated microscopic structures and low if either microscopic diffusion anisotropy is 24 

low or orientation dispersion is high or both (Szczepankiewicz et al., 2016). 25 
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 1 

Gaining detailed knowledge of tumor microstructure non-invasively by diffusion MRI 2 

is a desirable goal, however, our results show that MD and FA are affected by a 3 

multitude of different microstructure features and thus lack specific interpretations. 4 

To enable the separation of the many features that affect MD of FA, we need to use 5 

diffusion protocols that encode more information than standard DTI protocols 6 

(Nilsson et al., 2018a). For example, time-dependent diffusion (Stepišnik, 1993) 7 

could potentially be used to distinguish microcysts from CD because microcysts are 8 

circumscribed by an endothelial layer, and their sizes are on average larger than 9 

cells. Strong effects of diffusion time could thus indicate the presence of microcysts. 10 

Tensor-valued diffusion encoding may also be used to encode for microscopic 11 

anisotropy that is independent of tissue orientation dispersion (Szczepankiewicz et 12 

al., 2015;Szczepankiewicz et al., 2016;Westin et al., 2016). 13 

 14 

In this study, we identified six potential limitations of the present work. First, the 15 

ability to use histology to predict dMRI parameters depends on the accuracy of 16 

image coregistration. Herein lies an intrinsic limitation as the MRI voxels were 200 17 

µm thick, whereas the histology sections were only 5 µm thick. The sections were 18 

also somewhat deformed during preparation. The influence of the latter limitation 19 

was limited by performing both linear and non-linear registration between the 20 

histology images and the dMRI maps. Nonetheless, some of the large residuals seen 21 

in highly heterogeneous samples (e.g. Figure 3C) could be due to a spatial mismatch 22 

in the through-slice direction between the two modalities. However, such a mismatch 23 

is unlikely to have affected the residual maps in Figure 4A, 4C and 4D, where highly 24 

localized and sample-specific features were clearly related to the residuals. 25 
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Furthermore, potential registration errors are unlikely to have affected the low R2 in 1 

samples with uniform MD or FAIP, as these simply lacked variance to be explained. A 2 

second limitation is that features beyond CD that affects MD were identified only 3 

qualitatively. Further work is needed to enable quantification of those features in 4 

order to quantify the strength of their association with MD. A third limitation is that the 5 

meningioma classification was based on Louis et al. (2016) although a newer 6 

classification was proposed after the study was closed (Louis et al., 2021). However, 7 

the classification was not used in the analysis. A fourth limitation is that the analysis 8 

used a second order polynomial to relate histological image features with measured 9 

dMRI parameters. Such a polynomial lacks a biophysical foundation but explained 10 

the data reasonably well and served our goal to test for an association between CD 11 

and MD or SA and FAIP. Future work could possibly use biophysical modelling to 12 

better relate histology to MRI. A fifth limitation is that the training of the CNN only 13 

adjusted a limited number of parameters in the final prediction layers. Training a 14 

convolutional neural network without using pre-trained network could yield better 15 

performance, but prior work reported that fine tuning of networks pretrained on large 16 

sets of images yields better performance for a histology classification task (Vesal et 17 

al., 2018). Finally, the results were obtained ex-vivo which may not fully generalize to 18 

the in-vivo situation. 19 

  20 
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Conclusion 1 

The association between MD and cell density was present only when comparing 2 

across tumors. On the mesoscopic level within tumors, the MD in meningiomas was 3 

not determined by the cell density, as several samples with highly variable cell 4 

density but uniform MD were found. We argue that, on the mesoscopic level, the MD 5 

may be influenced by the intracellular volume fraction rather than the cellularity. The 6 

MD is also influenced by other features such as the presence of large vessels, 7 

microcysts, psammoma bodies, and the looseness of the tissue. Furthermore, FA 8 

was linked to the tissue structure anisotropy and we found support that it is elevated 9 

in the presence of elongated and aligned cell structures in line with previous 10 

knowledge. 11 

  12 
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Figures 1 

 2 

Figure 1. Histology overview. Panel A shows the 16 meningioma samples that 3 

were investigated. Panel B shows zoom-ins on different meningiomas types. Six 4 

were transitional, two fibroblastic, two microcystic/angiomatous, three meningothelial 5 

(WHO II), one meningothelial (WHO I), one clear-cell, and one chordoid. 6 

Microstructural assessment was performed according to the 2016 WHO criteria 7 

(Louis et al., 2016).  8 
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 1 

Figure 2. Methods overview. Panel A shows the schematics of the 3D-printed 2 

sample holder that was used to facilitate voxel-to-voxel coregistration. Panel B 3 

shows a meningioma (sample 5) in the holder. Panel C shows obtained dMRI maps: 4 

mean diffusivity (MD), fractional anisotropy (FA) and in-plane fractional anisotropy 5 

(FAIP). The latter captures only anisotropy within the imaging plane. The upper right 6 

part of the tumor has diffusion anisotropy that is dominant in the through-plane 7 

direction and therefore FA is high but FAIP low (yellow arrows). Panel D shows a 8 

coregistered histology section (H&E stained) that was processed to obtain cell 9 

density (CD, cell nuclei count density) and structure anisotropy (SA from structure 10 

tensor analysis).  11 
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 1 

Figure 3. Association between MD and CD. Panel A shows the intra-tumor sample 2 

variability in MD explained by a second order polynomial in CD (R2; blue bars 3 

correspond to median, black error bars show interquartile range) and by the 4 

convolutional neural network (CNN; red bars), respectively. Panel B shows the inter-5 

tumor whole-sample average of MD and CD (each blue dot corresponds to a single 6 

sample). The variability in MD across tumors is explained well by CD with R2 = 0.58. 7 

Panel C shows on the left a scatter plot from sample 3 where a strong correlation 8 

between MD and CD is present (R2 median ± interquartile range is displayed). High 9 

data density is marked by yellow color. A residual map is shown to the right. A voxel 10 

of intermediate CD (blue point) and another one with high CD (purple point) are 11 

indicated. Panel D shows their corresponding histology. The voxel with intermediate 12 
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CD (blue inset) contains tumor stroma with vessels and microcysts, while the one 1 

with high CD (purple inset) has a clearer tumor mass and fewer microcysts and 2 

vessels. Panel E shows the same features but for sample 5. Here, the two voxels 3 

have similar MD despite having different CD (low versus high CD as indicated by the 4 

arrows in the MD-versus-CD plot). The voxel with low CD appears to have larger 5 

cells with larger cytoplasmic volumes than the cells in the voxel with high CD. 6 
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 1 

Figure 4. MD is influenced by histological features beyond CD. Columns show 2 

maps of the tumor sample and histology zoom-ins of a voxel with a feature 3 

associated with an MD poorly predicted by CD (Histology1) and a control voxel with 4 

an MD well-predicted by CD (Histology2). Two residual maps are shown – the first 5 

with the residual computed from MD predicted by CD (�CD) and the second with MD 6 

predicted by the CNN (�CNN). The color of the border of the zoom-ins matches the 7 

color of the circles, which indicate their origin in the sample. Panel A shows that a 8 

voxel with underestimated MD (red on the residual map; sample 7) contains tumor 9 

vasculature (blue marker), while the control voxel (purple marker) contains no large 10 

vessels but only tumor mass. Panel B shows a region with overestimated MD (green 11 

color on the residual map; sample 3) that can be linked to tightly packed microcysts 12 

(blue). The control voxel (purple) also features microcysts, but fewer. The residual 13 

around the microcysts (blue) appears to be dominant when CD is considered for its 14 

prediction (�CD) but not for CNN (�CNN). Panel C shows a region with overestimated 15 
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MD (green on the residual map; sample 9) that could be attributed to psammoma 1 

bodies (blue). The control shows no psammoma bodies (purple). Panel D shows that 2 

MD can be linked to tissue cohesivity (sample 6). The overestimated voxel (green in 3 

the residual map) is associated with tightly-packed tissue with collagen (blue) 4 

whereas the underestimated region rather features loose tissue with few vessels 5 

(purple). 6 
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 1 

Figure 5. Association between FA and SA. Panel A shows the intra-tumor sample 2 

variability in FAIP explained by SA (R2; blue bars correspond to median, black error 3 

bars show interquartile range) and by the convolutional neural network (CNN; red 4 

bars). Panel B shows R2 from the SA-based regression versus standard deviation of 5 

FAIP values across the whole sample (each blue dot corresponds to a single sample; 6 

R2 = 0.89). Panel C shows FAIP versus SA averaged across the whole sample and 7 

that SA explains FAIP better than the intra-sample analysis (R2 = 0.82). Panel D 8 

shows a visual comparison of SA and FAIP (sample 5). Panel E shows a comparison 9 

between the directionality of SA and FAIP. Colors indicate directions, while the 10 

intensity is modulated by scaling the values by �FA�� and √SA. Visually, the 11 
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predicted and measured anisotropy and directionality of the samples are in strong 1 

agreement.  2 
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 1 

Figure 6. Histology that corresponds to MR voxels with high or low SA and 2 

FAIP. Panel A illustrates that tissue with elongated structures that are dominantly 3 

oriented along one direction yields high diffusion anisotropy (high SA and high FAIP). 4 

Panel B shows tissue structures oriented without any single preferential direction, 5 

which yield low diffusion anisotropy, and thus appear as isotropic tissue (low SA 6 

across the whole voxel and low FAIP). Panel C shows tissues with boundaries 7 

between tumor and vessels (left), transition from tumor tissue to microcysts (middle), 8 

or tissue looseness with white transparent areas (right). These yield high SA but the 9 

structures have little influence on the diffusion and thus yield low to intermediate 10 

FAIP. This illustrates a limitation of the structure tensor analysis technique.  11 
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Tables 1 

 2 

Table 1. Overview of histopathological classification of meningiomas samples. 3 

In total 16 samples were collected. The microstructural assessment was done 4 

according to the WHO criteria of 2016 (Louis et al., 2016). 5 

SAMPLE TYPE GRADE 
1 Transitional I 
2 Chordoid II 
3 Microcystic/Angiomatous I 
4 Meningothelial II 
5 Transitional I 
6 Meningothelial II 
7 Transitional I 
8 Meningothelial I 
9 Fibroblastic I 
10 Clear-cell II 
11 Transitional I 
12 Fibroblastic I 
13 Transitional I 
14 Microcystic/Angiomatous I 
15 Meningothelial II 
16 Transitional I 
  6 
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Table 2. Overview of histopathological classification. In total 16 samples have 1 

been investigated from which 11 were of WHO grade I and 5 of grade II. 6 different 2 

meningioma types were included and the most common was a transitional type of 3 

grade WHO I. Microstructural assessment was done according to the WHO criteria 4 

of 2016 (Louis et al., 2016). 5 

TYPE GRADE # 
Transitional I 6 
Fibroblastic I 2 
Microcystic/Angiomatous I 2 
Meningothelial I 1 
Meningothelial II 3 
Chordoid II 1 
Clear-cell II 1 
  6 
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Table 3. Coefficient of determination values from the test sets between 1 

measured and predicted values. R2 values are in the format median ± interquartile 2 

range. 3 

SAMPLE R2 MD R2 FAIP 
CD CNN SA CNN 

1 0.33 ± 0.09 0.32 0.19 ± 0.05 0.15 
2 0.27 ± 0.11 0.26 0.03 ± 0.04 0.07 
3 0.36 ± 0.06 0.30 0.10 ± 0.03 0.14 
4 0.44 ± 0.10 0.27 0.20 ± 0.04 0.28 
5 0.00 ± 0.00 0.16 0.32 ± 0.04 0.39 
6 0.01 ± 0.01 0.15 0.22 ± 0.03 0.31 
7 0.19 ± 0.05 0.11 0.00 ± 0.00 -0.04 
8 0.03 ± 0.02 0.06 0.14 ± 0.03 0.17 
9 0.01 ± 0.01 0.26 0.30 ± 0.04 0.36 
10 0.04 ± 0.02 0.08 0.09 ± 0.02 0.11 
11 0.11 ± 0.04 0.39 0.10 ± 0.03 0.33 
12 0.03 ± 0.01 0.03 0.02 ± 0.01 -0.01 
13 0.31 ± 0.04 0.61 0.20 ± 0.03 0.34 
14 0.00 ± 0.00 0.01 0.00 ± 0.00 0.01 
15 0.08 ± 0.04 0.12 0.23 ± 0.03 0.18 
16 0.02 ± 0.01 0.21 0.19 ± 0.04 0.36 

 4 
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