

1 **Voxelwise encoding models of body stimuli reveal a representational**
2 **gradient from low-level visual features to postural features in extrastriate**
3 **body area.**

4

5 **Giuseppe Marrazzo¹, Federico De Martino^{1,3}, Agustin Lage-Castellanos^{1,4}, Maarten J.**
6 **Vaessen¹, Beatrice de Gelder^{1,2*}**

7

8 ¹ Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht
9 University, Limburg 6200 MD, Maastricht, The Netherlands

10 ² Department of Computer Science, University College London, London WC1E 6BT, UK

11 ³ Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota,
12 Minneapolis, MN 55455, United States and Department of NeuroInformatics

13 ⁴ Cuban Center for Neuroscience, Street 190 e/25 and 27 Cubanacán Playa Havana, CP 11600, Cuba

14

15 * Corresponding author

16 E-mail: b.degelder@maastrichtuniversity.nl

17

18

19

20

21 **Abstract**

22 Previous research has focused on the role of the extrastriate body area (EBA) in category-
23 specific body representation, but the specific features that are represented in this area are not
24 well understood. This study used ultra-high field fMRI and banded ridge regression to
25 investigate the coding of body images by comparing the performance of three encoding models
26 in predicting brain activity in ventral visual cortex and specifically the EBA. Our results
27 suggest that EBA represents body stimuli based on a combination of low-level visual features
28 and postural features.

29 **Author Summary**

30 Historically, research on body representation in the brain has focused on category-specific
31 representation, using fMRI to investigate the most posterior body selective region, the
32 extrastriate body area (EBA). However, the role of this area in body perception is still not well
33 understood. This study aims to clarify the role of EBA, in coding information about body
34 images. Using ultra-high field neuroimaging (fMRI) and advanced encoding techniques we
35 tested different computational hypotheses to understand how body images are represented in
36 EBA. Our results suggest that EBA represents bodies using a combination of low-level
37 properties and postural information extracted from the stimulus.

38 **Introduction**

39 Faces and bodies are amongst the most frequently encountered visual objects and provide
40 essential information about the behaviour of conspecifics. In contrast to face perception, body
41 perception is still poorly understood. Mainstream research on body representation in humans
42 has focussed on category specific body representation in the brain, investigated with fMRI to
43 identify conceptual category defined functional selectivity. Initially a body category selective

44 area was reported in the middle occipital\temporal gyrus, the extrastriate body area (EBA) (1).

45 Later a second body selective area was described in the fusiform cortex and labelled fusiform

46 body area (FBA) (2). Studies on body representation in nonhuman primates using fMRI as

47 well as invasive electrophysiology resulted in a similar situation of multiple body sensitive

48 patches in temporal cortex (3). Once multiple category selective areas were reported in human

49 as well as in nonhuman primate, the central issue is to understand how body images are coded

50 in the different body selective areas and how to account for the observed body selectivity.

51 An attractive notion that has been explored but ultimately not supported is that EBA coded

52 body parts and the more anterior FBA whole bodies, but this distinction proved inconclusive

53 (for review, (4, 5)). An earlier proposal that EBA was selective for body parts and the more

54 anterior FBA for whole bodies and their overall configuration (6, 7) is not supported by current

55 findings in humans or non-human primates (3, 5). Furthermore, this is not easy to combine

56 with findings that activity in EBA is influenced by task setting (8-10) but also by experimental

57 manipulations of semantic attributes like gender and emotional expression (11-18). The fact

58 that such stimulus attributes have an impact on the level of activity observed in EBA also

59 challenges the notion that EBA only codes for body parts.

60

61 Thus our current understanding of how body images are processed shows a gap between the

62 extraction of low-level physical features of the stimulus taking place in early visual cortex and

63 the generation of a high-order semantic concept of bodies at stake in processing information

64 about emotions or action and presumably linked to FBA activity (5). In view of its location in

65 temporal cortex it is likely that the kind of coding to expect in EBA is related to computing

66 some subsymbolic body features rather than identifiable body parts because the latter already

67 implies high level body category representations (19). Candidate subsymbolic features are

68 overall shape representation and related to that, viewpoint tolerance, an important dimension
69 in the posterior to anterior gradient of object recognition. Studies in non-human primates that
70 use single cell recordings indicate that moving from posterior to anterior temporal cortex, body
71 patch neurons increase their selectivity for body identity and posture, while there is a decrease
72 in viewpoint selectivity. Specifically, recordings in body selective patches, middle superior
73 temporal body (MSB) and anterior superior temporal body (ASB) showed strong viewpoint
74 selectivity for the former and conversely, high tolerance for the latter (20). Furthermore,
75 Caspari and colleagues using the same set of category stimuli as Kumar and colleagues,
76 showed similar decoding pattern between monkeys and humans in body selective regions,
77 suggesting an homology between the human EBA and monkey MSB as well as the human
78 FBA and monkey ASB (20, 21).

79 This suggests a general principle of object coding in the inferior temporal cortex (IT): a greater
80 tolerance to image transformations that preserve identity (22) and, in the case of bodies,
81 posture, for more anterior patches. The monkey data fits human fMRI work that found
82 viewpoint-invariant decoding of body identity in FBA but not EBA (14), but as noted above,
83 results of between-area differences in fMRI multi voxel pattern analysis (MVPA) are difficult
84 to interpret (23).

85
86 An important question is whether a similar posterior to anterior organisation can be found for
87 EBA by using ultra high field fMRI in combination with computational hypotheses. One
88 popular approach to test and compare different computational hypotheses of brain function is
89 to use (linearized) encoding (24, 25) approaches. In these approaches brain activity (e.g. the
90 blood oxygen level dependent (BOLD) signals in a voxel or an brain area in fMRI) is predicted
91 from the features of (different) computational models, and their accuracy can be compared to

92 adjudicate between competing models or partitioned with the respect to the variance explained
93 by each of the models ([26-32](#)).

94 We used ultra-high field fMRI and linearized encoding to evaluate to what extent the response
95 in extrastriate body areas can be explained on the one hand by low-level visual features (Gabor)
96 ([33](#)) and on the other by the features extracted by two computational models that represent the
97 postural features of the body (kp2d, kp3d) ([34, 35](#)) (see Material and Methods).

98

99

100 **Results**

101 **Behavioural analysis**

102 The analysis of the responses to the questionnaires revealed that no action was recognised for
103 92% of the stimuli (298 out of 324). Likewise, no emotion was recognised for 97% of the
104 stimuli (314 out of 324). Participants reported that they focused on the overall body pose in
105 65% of the cases (211 out of 324), on the hands in 20% (64 out of 324) of the cases and on the
106 arms for 11% (38 out of 324). The full report on the behavioural results is found in the
107 supplementary material.

108 **Univariate analysis and voxels selection for encoding**

109 In each subject, voxels that significantly ($q(FDR) < 0.05$) responded to the localizer conditions
110 (main effect) were selected for the encoding analysis (Fig. 2a). At the group level, we observed
111 significant ($q(FDR) < 0.01$) activation in occipital-temporal cortex as well as parietal cortex in
112 the occipital gyrus (superior/middle/inferior) (SOG/MOG/IOG), fusiform gyrus (FG), lingual
113 gyrus (LG), middle

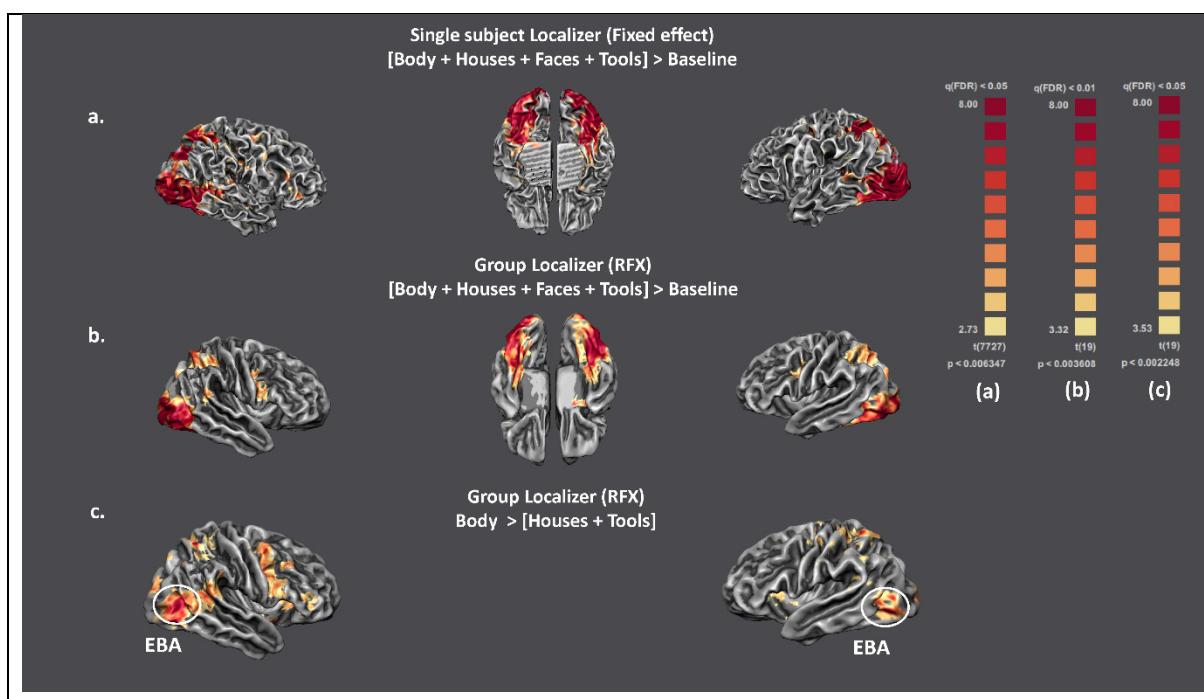


Figure 2 Univariate analysis.

(a) Brain maps showing the responses for the main effect of the localizer in a single subject computed with a fixed-effect GLM. This map was created in volume space ($q(FDR) < 0.05$) and overlaid on the subject mesh for visualization purposes.

(b) Brain activation for the main effect of the localizer obtained when including all the subjects in a RFX GLM. The activation map is corrected for multiple comparison at $q(FDR) < 0.01$ and is cluster thresholded (cluster size = 25).

(c) Body selective regions obtained by contrasting the localizer conditions Body > Objects (Houses + Tools). As in (a), the statistical thresholding of the map was performed in volume space ($q(FDR) < 0.05$) and then overlaid on the group average mesh for visualization purposes. We used this contrast to obtain a group definition of EBA which was intersected with single subjects' activation maps for the subsequent ROI analysis.

114

115 temporal gyrus (MTG), superior parietal lobule (SPL), intraparietal sulcus (IPS), inferior
116 temporal sulcus (ITS), lateral occipital sulcus (LOS), superior temporal sulcus (STS) (Fig 2b).

117 Subtracting the response to object stimuli from the response to body stimuli allowed us to
118 define EBA. This cluster spanned the MOG, MTG as well as the ITS (Fig 2c). The voxels
119 selection for the encoding analysis was performed at the individual level and based on the main
120 effect. A probabilistic map (computed by counting the number of subjects for which a given
121 voxel was included in the analysis) showed a consistent overlap with the functionally defined
122 EBA (Fig 3).

123

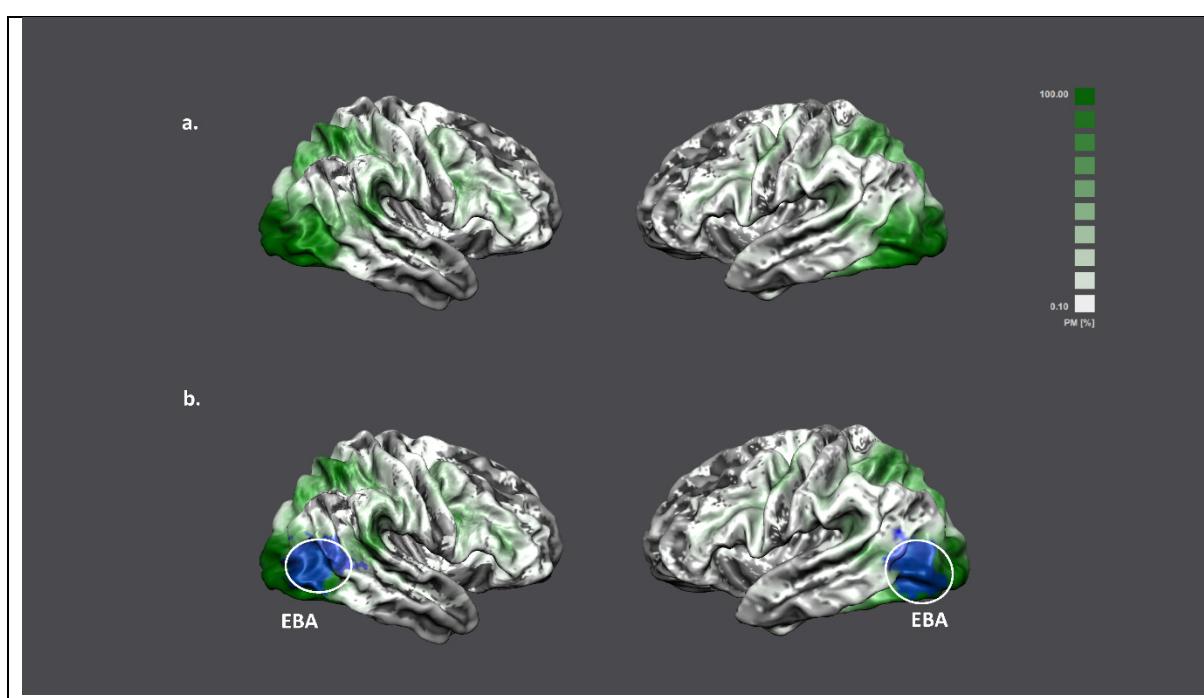


Figure 3. Probabilistic map of the main effect of the localizer.

(a) This brain map shows the extent of the overlap between participants within the main effect of the localizer computed for each participant across all runs via a fixed-effect GLM. This overlap is expressed via a probability map where at each spatial location the percentage of the relative number of subjects leading to significant activity is reported (low probability → high probability: white → green).

(b) In the second row, we overlay the binarized (suprathreshold voxels $q(\text{FDR}) < 0.05 = 1$) group definition of EBA (in blue) (see Fig. 2c) on the probabilistic map. This shows that most (90-100%) of the participants shared significant responses ($q(\text{FDR}) < 0.05$) within the region of interest.

124

125 **Encoding results**

126 The voxels selected using the response to the localizer were submitted to the encoding analysis.
127 The response to the body stimuli presented in the main experiment (data independent from the
128 localizer) were modelled using banded ridge regression. The group performance of the joint
129 (three) encoding model is shown in Fig. 4. The accuracy of the joint (kp2d, kp3d, Gabor)
130 encoding model at the group level (after statistical testing and correction for multiple
131 comparisons) is shown in Fig. 4. We found that when combining information from the three
132 models we could significantly predict responses to novel stimuli

133

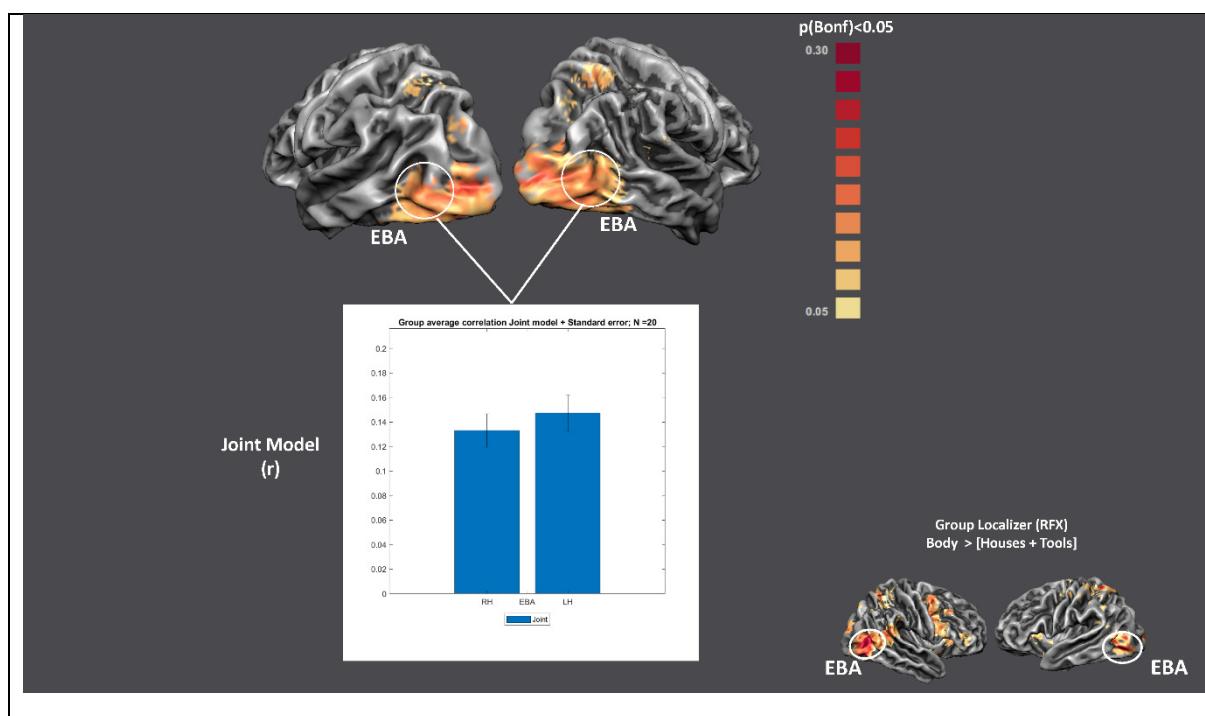


Figure 4. Joint model performance.

Group Prediction accuracy for the joint model (kp2d, kp3d, Gabor). Statistical significance was assessed via permutation test (subject wise sign-flipping, 10000 times), and correction for multiple comparison was performed using Bonferroni correction ($p < 0.05$). The bar plot depicts the group (mean + standard error) correlation coefficient between the joint model predictions and brain response to novel stimuli (test stimuli) across participants in bilateral EBA. We did not find any significant difference across hemispheres (two-sample t-test, $p = 0.481$). For reference, the bottom right corner shows the functional definition of EBA already presented in Fig. 2c.

134

135 (Fig. 4) throughout the ventral visual cortex (SOG, MOG, IOG, ITG, MTG, FG, LOS), and in
136 parietal cortex (SPL). We assessed spatial differences in how models contributed to the fMRI
137 response by colour coding the relative contribution of each of the models to the overall
138 prediction accuracy (Fig. 5). The response to bodies in early visual cortical areas was in average
139 better explained by the Gabor model (blue-purple-dark magenta).

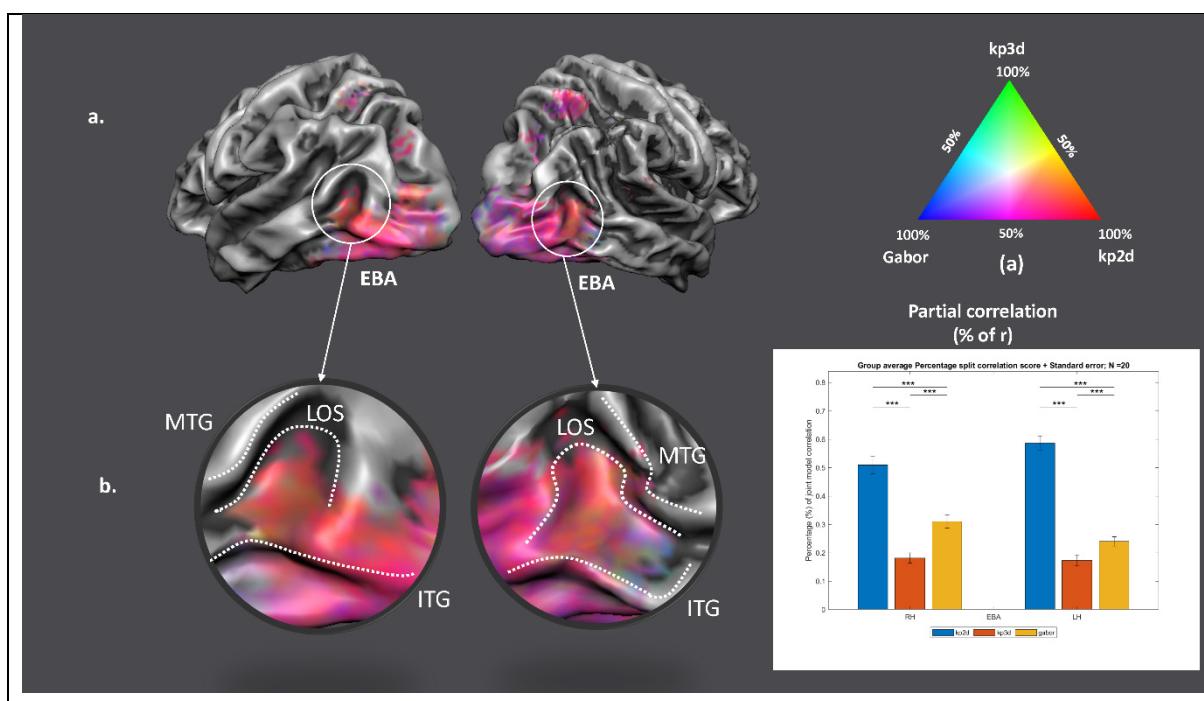


Figure 5. Comparison between encoding models.

(a) RGB map in which each vertex is colour coded according to the relative contribution of each model to the accuracy of the joint model (red = 100% kp2d; blue = 100% Gabor; green = 100% kp3d).

(b) In EBA, the information contained in the joint model predictions which significantly correlates with BOLD activity is split across models with kp2d accounting for 50-60% of the variance, Gabor approximately 25-30% of the variance and kp3d the remaining 15-20%. We tested for statistical difference across models' pair (solid lines at the top), using a two-sample t-test (** p < 0.0001) (see bar plot). Additionally, the variance explained follows a gradient from the posterior part (posterior ITG/LOS) to the anterior (anterior LOS) of EBA, with darker shades of magenta in the posterior part indicating higher representation of low-level body features (Gabor), and lighter shades of magenta in the anterior part indicating higher representation of mid-level features (kp2d-kp3d).

ITG = inferior temporal gyrus; MTG = middle temporal gyrus; LOS = lateral occipital sulcus.

141 Moving to higher visual cortical areas corresponded to a shift in the relative contribution
142 towards a combination of kp2d and Gabor (magenta), while in EBA the model that contributed
143 most to the prediction accuracy was kp2d (magenta - light magenta - pink). When considering
144 EBA (Fig. 5), the joint model significantly predicted brain responses to test stimuli (Fig. 4),
145 and the kp2d model accounts for approximately 50-60% of the variance of this prediction (Fig.
146 5b). It is worth noting that when considering the spatial distribution of relative model
147 contributions to the prediction accuracy (Fig. 5), the posterior part of EBA, specifically the
148 posterior part of lateral occipital sulcus (LOS) was best explained by the Gabor model (dark
149 magenta area), while the anterior part of LOS showed lighter shades of magenta indicating that
150 the leading representation is kp2d.

151

152 **Discussion**

153 In this study, we used ultra-high field fMRI to determine the main (stimulus) features that drive
154 brain responses to still body stimuli, with a particular focus to the responses in the extrastriate
155 body selective area (EBA). We compared the performance of three encoding models using
156 banded ridge regression. We observed that a combination of the three models (kp2d, kp3d,
157 Gabor) could significantly predict fMRI BOLD responses in ventral cortex and in parietal
158 cortex (SPL). The partial correlation analysis revealed that, in EBA, approximately 50% of the
159 variance of the prediction accuracy is explained by kp2d, 30% by Gabor and 20% by kp3d.
160 These results lead us to conclude that EBA represents body stimuli based on the combination
161 of low-level visual features and postural features.

162

163 EBA was originally defined as a category selective area associated with body representation
164 but the computations underlying this selective response are not yet well understood. Previous

165 proposals stressed the role of EBA for individual body parts but not whole body images (1, 36,
166 37). These results are difficult to combine with evidence that EBA is selective for human
167 bodies when only represented as stick figures, line drawings or silhouettes (38). Our findings
168 are consistent with the latter hypothesis as the kp2d/3d model explain approximately 70% of
169 the accuracy in EBA.

170

171 The Gabor model proposed by (33) was specifically constructed to encode low-level visual
172 features such as spatial frequency, location, size and object orientation. Gabor based models
173 have been shown to be powerful tool for inferring (encoding/decoding) (25, 26, 28, 30, 31, 33,
174 39-42) brain activity inside and outside early visual cortex. Our findings suggest that the
175 variance explained by the Gabor model shows a decreasing gradient from early to higher-level
176 visual cortex. This suggests that within early sensory regions (superior occipital gyrus, blue
177 patches in Fig. 4b) Gabor features are critical for predicting BOLD responses to body stimuli.
178 Conversely, the variance explained by kp2d shows the opposite gradient, and it is highest in
179 EBA. This suggests that postural features are critical in driving the response to body pictures
180 in EBA. Interestingly, the transition between low-level features driving the response in early
181 areas and mid-level (postural) features driving the response in high-level visual cortex (EBA)
182 at the group level is smooth and suggests a dynamic, stimulus dependent, representation of
183 bodies (5). Likewise, similar patterns can be seen at the single subject level (see Supplementary
184 material).

185 Another important point is the performance difference between kp2d and kp3d. These models
186 represent body poses as the spatial location of specific keypoints (joints, hand, head etc). In the
187 case of kp3d, the keypoints represent the 3D coordinates used by VPoser to pose the mesh (34,
188 35) and construct the actual stimulus. Similarly, kp2d represents the orthogonal projection of

189 the 3D coordinates on the camera plane. Therefore, the only difference between the models is
190 that kp3d is isotropic (invariant across viewpoints), whereas the features of kp2d change across
191 different view of the same pose. Our findings show that between kp2d/3d, banded ridge almost
192 always selects the former as predictive and consider the latter as redundant. This is reflected in
193 the percentage maps where on average kp2d outperforms kp3d. One possible explanation for
194 this result is that the information contained in the 3rd dimension of kp3d was not needed to
195 explain the variance in the data and, as a result, the selected feature space was kp2d for most
196 of the voxels, suggesting that the viewpoint information is encoded in EBA. Previous research
197 has shown that EBA is sensitive to body orientation (11-14, 16), although we did not find
198 significant differences in brain activity when looking at differences between viewpoints
199 (RFXGLM with three viewpoints as predictors of interest). This result is in line with what has
200 been shown in single cell recordings on primates, where the MSB (analogous of the EBA in
201 humans) showed strong viewpoint selectivity (20).

202 It is worth mentioning that our stimuli were specifically controlled for the presence of high-
203 level stimulus attributes (i.e. emotion, action information) and validated using behavioural
204 ratings (see behavioural analysis). Many previous studies have shown that activity in EBA is
205 modulated by emotional body expressions (43-50). Moreover, a recent study has shown that
206 unique information from the posture feature limb contractions is involved in fearful body
207 expression perception (51). This indicates that body expression may be based on body posture
208 and movement features rather than implicating body representation as a high-level semantic
209 category (5).

210 Our results corroborate the notion that the functional EBA definition spans several anatomical
211 regions with potentially different roles. Specifically, the EBA may be subdivided in three
212 anatomical regions (52) located respectively in the inferior temporal gyrus (ITG), middle
213 temporal gyrus (MTG) and lateral occipital sulcus (LOS). When looking closely at the partial

214 correlation patterns in EBA around the anatomical landmarks ITG, MTG, LOS (Fig. 5b and
215 the barplot Fig. 5b) we see that not all the variance can be explained by combining the kp2d
216 model with the Gabor model. This is graphically represented in figure 5b, where we find a
217 green (or green derived) colour in the anterior part of EBA (anterior LOS/ITG), indicating that
218 the variance explained by kp3d model is on average located in the more anterior portion of
219 EBA. Specifically, bodies in the anterior portion of EBA are represented as a combination of
220 kp2d/Gabor features with the kp3d model (yellow/light-blue patches in Fig. 5b). This finding
221 might indicate that, as shown for early sensory regions, body representation in EBA is
222 differentially encoded, going from a low-level representation (Gabor like/blue patches) in
223 pITG/pLOS, to a mid-level (viewpoint dependent) postural representation (kp2d, light-
224 magenta, orange, pink patches) in the (middle) LOS to a high-level (viewpoint independent)
225 postural representation (kp3d) in aITG/aLOS (green, light-blue, yellow patches).

226 Concerning the other major body selective region FBA, we observed that for the voxels
227 significantly responding to localizer stimuli, the group definition of this region was not
228 consistent across participants. Moreover, among the voxels functionally identified as part of
229 the FBA, only few survived the statistical correction for multiple comparison of the encoding
230 analysis. For completeness, we include the results of the encoding compared to EBA in the
231 supplementary information. Briefly, the joint model performs significantly worse in FBA than
232 in EBA, this could be due to low signal to noise ratio in the area. Nonetheless, the barplot
233 depicting the percentage of the correlation explained by each model reveals a similar behaviour
234 to what has been presented for EBA. The main difference is that kp3d model has an increase
235 (from 20 to 25%) in percentage of correlation explained in FBA, at the expense of the
236 correlation explained by kp2d. This is consistent with the fact that FBA has higher viewpoint
237 tolerance than EBA as is expected if FBA is more involved in higher cognitive processing of
238 body information like personal identity ([13-15](#)).

239 Taken together, these results suggest that the EBA encodes features pertaining specifically to
240 posture. This representation appears to be viewpoint dependent posteriorly (pITG/pLOS)
241 whereas greater viewpoint tolerance arises anteriorly (aITG/aLOS). On this account, the body
242 selectivity observed in many studies in EBA is rooted in body specific feature representation
243 that is not yet dependent of high order body categorisation processes. Future research must
244 investigate whether these body selective features are rooted in uniquely defined biomechanical
245 constraints, in human skeleton keypoint priors or also in sensorimotor processes.

246 **Material and methods**

247 **Participants**

248 20 right-handed subjects (8 males, mean age = 24.4 ± 3.4 years) participated in this study. They
249 all had normal (or corrected to normal) vision and were recruited from Maastricht University
250 student cohorts. All subjects were naïve to the task and the stimuli and received monetary
251 compensation for their participation (7.5 € VVV vouchers/per hour or a bank transfer for the
252 same amount; 4h in total, 30 €). Scanning sessions took place at the neuroimaging facility
253 Scannexus at Maastricht University. All experimental procedure conformed to the Declaration
254 of Helsinki and the study was approved by the Ethics Committee of Maastricht University.

255 **Stimuli**

256 *Main experiment stimuli*

257 The stimulus set consisted of 108 pictures of 3D rendered body meshes shown in different
258 orientations: 0° (frontal), -45° (left rotated) and 45° (right rotated) for a total of 324 unique
259 images. Examples of the stimuli in the different orientation are shown in Fig 1a. 3D rendered
260 body meshes were generated via VPoser, a variational autoencoder (VAE) trained to learn a
261 32-dimensional (normal distribution) latent representation of Skinned Multi-Person Linear

262 Model (SMPL) parameters (34, 35). The stimuli used in the study were generated via randomly
263 sampling the latent space and generating via the decoder part of the VPoser the associated body
264 image. To also sample images sufficiently distant from the mean image (and thus maintain a
265 sufficiently large variability of poses in the stimulus set), we sampled the latent space within
266 three distinct shells defined by the standard deviations from the mean pose (Fig. 1a).
267 Ultimately, the body images were generated by transferring the decoded SMPL parameters to
268 a posed mesh. The resulting body poses had mean widths and heights of $2.43^\circ \times 5.22^\circ$ of visual
269 angle and were colour rendered (mean RGB: 120,157,144).

270

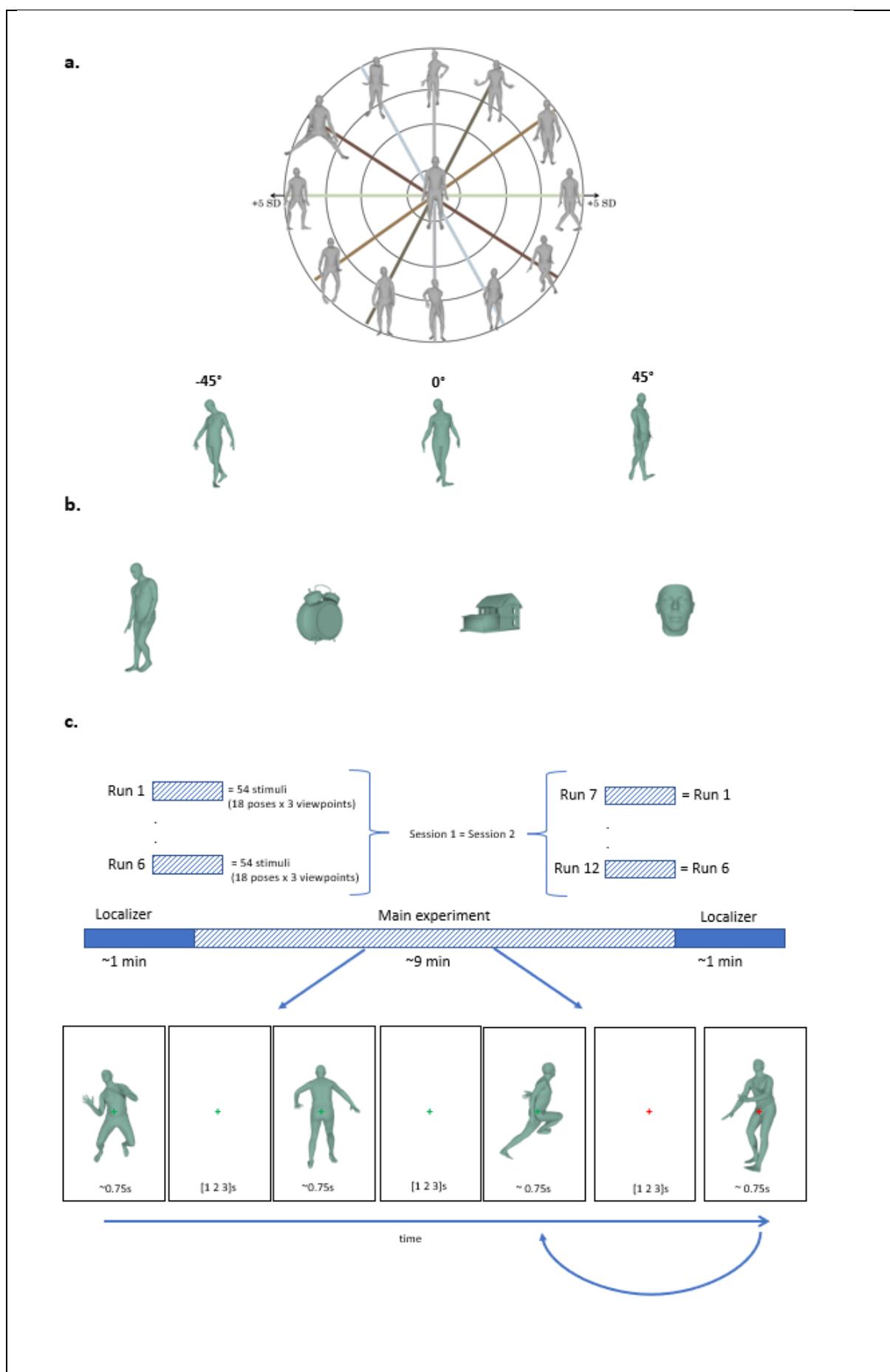


Figure 1. Stimuli and experimental procedure

(a) (top) Stimuli were generated by randomly sampling the latent space of the VAE (34, 35).

The 32-dimensional latent space was sampled in three shells, defined by the value of the standard deviation from the mean pose, to ensure variability among the generated poses. (a)

(bottom) 108 unique poses were generated from three different viewpoints: 0° (frontal), -45°

(left rotated) and 45° (right rotated) for a total of 324 unique stimuli. **(b)** Body sensitive

areas were identified by mean of a localizer using stimuli selected from four different object

categories: bodies, tools, houses, and faces. These stimuli underwent the same rendering

process as the stimuli of the main experiment. **(c)** During the main experiment participants

performed a one-back task. They fixated on the green cross and were presented with pictures

of body poses each for approximately 750 ms followed by a blank screen which appeared

for 1, 2 or 3 s. When the fixation cross turned red, they had to report by button press whether

the current stimulus matched the previously presented one.

271

272 *Localizer stimuli*

273 Stimuli for the localizer experiment consisted of 3D rendered images depicting four object
274 categories: faces, bodies, tools, and houses (Fig. 1b). The stimuli were colour rendered using
275 the same colour for the main experiment stimuli (mean RGB: 120,157,144). None of the stimuli
276 from the localizer were used in the main experiment.

277 **Behavioural validation**

278 Stimuli used in the main experiment were generated via the VAE. Random sampling from the
279 latent space allowed us to produce a varied set of body poses but did not allow us to control
280 the stimuli for the possible presence of semantic body attributes like action or emotion.
281 Therefore, we asked 113 participants (25 excluded for missing data, 88 in total: 29 males, mean

282 age = 23 ± 4 years, 72 right handed) to rate the stimuli using a questionnaire consisting of both
283 categorical and likert-scale questions. Participants were presented with 1/3 (108) of the total
284 stimuli (324) for 750 ms each. For each participant, the stimuli were pseudo-randomized (108
285 stimuli randomly selected for each participant, but evenly distributed so that each stimulus got
286 approximately the same number of answers). After each presentation, participants were asked
287 to answer 6 questions about the emotional expression, action content; salience of specific body
288 parts; implied body movement and realism of the posture (see supplementary material).

289

290 **MRI acquisition and experimental procedure**

291 Participants viewed the stimuli while lying supine in the scanner. Stimuli were presented on a
292 screen positioned behind participant's head at the end of the scanner bore (distance screen/eye
293 = 99 cm) which the participants could see via a mirror attached to the head coil. The screen had
294 a resolution of 1920x1200 pixels, and its angular size was 16° (horizontal) x 10° (vertical). The
295 experiment was coded in Matlab (v2018b The MathWorks Inc., Natick, MA, USA) using the
296 Psychophysics Toolbox extensions ([53-55](#)).

297 Each participant underwent two MRI sessions, we collected a total of twelve functional runs
298 (six runs per session) and one set of anatomical images. Images were acquired in a 7T MR
299 scanner (Siemens Magnetom) using a 32-channel (NOVA) head coil. Anatomical images were
300 collected via a T1-weighted MP2RAGE: 0.7 mm isotropic, repetition time (TR) = 5000 ms,
301 echo time (TE) = 2.47 ms, matrix size= 320 x 320, number of slices = 240. The functional
302 dataset covered the entire brain and was acquired via T2*-weighted Multi-Band accelerated
303 2D-EPI BOLD sequence, multiband acceleration factor = 3, voxel size = 1.6 mm isotropic, TR
304 = 1000 ms, TE = 20 ms, number of slices = 68 without gaps; matrix size = 128 x 128.

305 Each run consisted of three main sections: 1) two short localizers parts (approximately one
306 minute at the beginning and at the end of the run), during which images were presented in
307 blocks of categories (faces, bodies, tools, and houses), and 2) a main experimental part where
308 stimuli (body images different from the ones used in the localizer) were presented following a
309 fast event-related design. Participants were asked to fixate at all times on the green cross at the
310 centre of the screen.

311 Each localizer block each contained six images which were presented for 750 ms and followed
312 by 250 ms blank screen. Each block lasted six seconds followed by a fixation period of eight
313 seconds and each category block was presented once at the beginning and once at the end of
314 each run (24 blocks per condition across the 12 runs). During the localizer participants did not
315 perform any task.

316 During the main experiment, stimuli were presented for 750 ms with an inter stimulus interval
317 that was pseudo-randomised to be 1, 2 or 3 TRs. To keep attention on the stimuli, participants
318 performed a one-back task on stimulus identity. Following a visual cue (colour change of the
319 fixation cross), they were asked report via a button press whether the current stimulus was the
320 same as the previous one (Fig. 1c). Within each run, the experimental section consisted of the
321 presentation of 54 stimuli (18 unique poses x 3 viewpoints) repeated 3 times each. Six target
322 trials were added for a total of 168 trials. Across the two sessions each of the 108 unique poses
323 were repeated 18 times (3 repetitions x 3 viewpoints x 2 sessions) across the 12 runs, whereas
324 the 324 unique stimuli were repeated 6 times (3 repetitions x 2 sessions).

325 Preprocessing was performed using BrainVoyager software (v22.2, Brain Innovation B.V.,
326 Maastricht, the Netherlands) and FSL ([56-58](#)). The following steps were performed in
327 BrainVoyager unless indicated otherwise. EPI Distortion was corrected using the Correction
328 based on Opposite Phase Encoding (COPE) plugin in BrainVoyager, where the amount of

329 distortion is estimated based on volumes acquired with opposite phase-encoding (PE) with
330 respect to the PE direction of the main experiment volumes (59), after which subsequent
331 corrections is applied to the functional volumes. Other preprocessing steps included: scan slice
332 time correction using cubic spline, 3D motion correction using trilinear/sinc interpolation and
333 high-pass filtering (GLM Fourier) cut off 3 cycles per run. During the 3D motion correction
334 all the runs were aligned to the first volume of the first run. Anatomical images were resampled
335 at 0.5mm isotropic resolution using sinc interpolation and then normalized to Talairach space
336 (60). To ensure a correct functional-anatomical and functional-functional alignment, the first
337 volume of the first run was coregistered to the anatomical data in native space using boundary
338 based registration (61). Volume Time Courses (VTCs) were created for each run in the
339 normalized space (sinc interpolation) and exported in nifti format for further processing in FSL.
340 To further reduce non-linear intersession distortions, functional images were additionally
341 corrected using the fnirt command in FSL (62) using as template the first volume of the first
342 run in normalized space. Prior to the encoding analysis (and following an initial general linear
343 model [GLM] analysis aimed at identifying regions of interest based on the response to the
344 localizer blocks), we performed an additional denoising step of the functional time series by
345 regressing out the stimulus onset (convolved with a canonical hemodynamic response function
346 [HRF]) and the motion parameters.
347 Segmentation of white matter (WM) and gray matter (GM) boundary was performed in
348 BrainVoyager using the deep learning-based segmentation algorithm and in house Matlab
349 scripts. The resulting boundaries were then inflated to a reference sphere and aligned using
350 cortex based alignment (CBA) (63). The aligned meshes were averaged to create a group WM-
351 GM mesh for each hemisphere.
352

353 **Voxels selection for encoding analysis**

354 The functional time series of each participant were analysed using a fixed-effect GLM with 5
355 predictors (4 for the localizer blocks and 1 modelling the responses to all the stimuli in the
356 main experiment). Motion parameters were included in the design matrix as nuisance
357 regressors. The estimated regressor coefficients representing the response to the localizer
358 blocks were used for voxel selection. A voxel was selected for the encoding analysis if
359 significantly active ($q(FDR) < 0.05$) within the main effect of the localizer (Body, Houses,
360 Tools, Faces – Fig. 2). Note that this selection is unbiased to the response to the main stimuli
361 presented in the experimental section of each run.

362 To assess the spatial consistency of activation to the localizer across subjects, we created a
363 probabilistic functional map depicting, at each spatial location, the percentage of subjects for
364 which that location was significantly ($q(FDR) < 0.05$) modulated by the localizer blocks (Fig
365 3a).

366

367 **Functional ROI definition**

368 We defined body selective regions at the group level using a random-effect GLM (RFX-GLM),
369 in which EBA was defined using the localizer contrast Body > Objects([Houses + Tools]) (64)
370 with a statistical threshold of $q(FDR) < 0.05$. Functional images from every participant were
371 spatially smoothed using a gaussian filter (FWHM = 4mm) and then entered the RFX GLM in
372 which we defined 5 predictors of interest (4 for the localizer 1 for modelling the responses to
373 the main experiment). For each participant, we regressed out signals coming from head motion
374 by including motion parameters in the design matrix. Responses from each subject were
375 selected via intersection with the group ROI definition of EBA and the single subject localizer's
376 main effect map (see previous paragraph). Figure 3b projects the group definition of EBA onto
377 the probabilistic functional map of the localizer's main effect.

378 The group level body sensitive ROIs were intersected with the single subject activation maps
379 (see previous section) to obtain individual ROIs. Note again that while this procedure makes
380 use of the same data (localizer) twice, its purpose was to define single subject regions to be
381 subsequently used for encoding analysis which was performed on an independent portion of
382 the data set. Figure 3b reports the overlap between EBA defined at the group level and the
383 probabilistic activation maps of the localizer's main effect.

384

385 **Encoding models**

386 In order to understand what determines the response to body images we tested several
387 hypotheses, represented by different computational models, using fMRI encoding ([24](#), [25](#), [29](#),
388 [65](#)). We compared the performance (accuracy in predicting left out data) of three encoding
389 models. The first represented body stimuli using the position of joints in two dimensions (kp2d)
390 using 54 keypoints (joints, hand and facial features like eyeballs, neck and jaw) plus one
391 keypoint for global rotation extracted during the stimulus creation using VPoser ([35](#)). This
392 encoding model extracts for each pose the orthogonal projection of the pose's spatial
393 coordinates on the camera plane which ultimately constitutes the image coordinates (i.e. x,y)
394 of the keypoints. Therefore, this model has 110 features (55 kp * 2 dimensions). The second
395 model represented body stimuli using the three-dimensional position of the keypoints (kp3d)
396 extracted from VPoser. This representation differs from the kp2d one by adding the third
397 dimension (no projection on the camera plane), resulting in an encoding model with 165
398 features (55 kp * 3 dimensions). It is important to note that the main difference between the
399 kp2d and kp3d representations is that the latter is viewpoint invariant as the position of the
400 joints is independent from the angle under which the object is observed.

401 The last encoding model we tested is a Gabor filtering of the images ([33](#), [66-68](#)). In this
402 procedure, each stimulus was transformed into the Commission internationale de l'éclairage

403 (CIE) L*A*B* color space and the luminance signals then passed through a bank of 1425
404 spatial Gabor filters differing in position, orientation, and spatial frequency (33, 69, 70).
405 Ultimately, the filters output underwent a logarithmic non-linear compression in which large
406 values were scaled down more than small values. For details on this procedure we refer to the
407 original publication (33).

408

409 **Banded ridge regression and model estimates'**

410 Generally, in the linearized encoding framework (as applied in fMRI) the information
411 explained in brain activity is obtained via L2-regularized (ridge) regression (71). Ridge
412 regression is a powerful tool which allows to improve performance of encoding models whose
413 features are nearly collinear, and it minimizes overfitting. When dealing with more than one
414 encoding model, ridge regression can either estimate parameters of a joint feature space
415 (combining all feature spaces in one encoding model) or obtain model estimates from each
416 encoding model separately. Fitting a joint model with ridge regression allows considering the
417 complementarity of different feature spaces but subjects all models (feature sets) to a unique
418 regularization. As the optimal regularization required when fitting each individual feature
419 space may differ (since it depends, among others, on factors such as number of features and
420 features covariances) (27), fitting a joint model with one regularization parameter may be
421 suboptimal and can be extended to banded ridge regression. In banded ridge regression,
422 separate regularization per parameters for each feature space are optimized, which ultimately
423 improves model performance by reducing spurious correlations and ignoring non-predictive
424 feature spaces (27, 28). In the present work we used banded ridge regression to fit the three
425 encoding models and performed a decomposition of the variance explained by each of the
426 models following established procedures (27). All analyses were performed using a publicly
427 available repository in Python (Himalaya, <https://github.com/gallantlab/himalaya>).

428 Model training and testing were performed in cross-validation (3-folds: training on 8 runs [216
429 stimuli] and testing on 4 runs [108 stimuli]). For each fold, the training data were additionally
430 split in training set and validation set using split-half crossvalidation. Within the (split-half)
431 training set a combination of random search and gradient descent ([27](#)) was used to choose the
432 model (regularization strength and model parameters) that maximized the prediction accuracy
433 on the validation set. Ultimately, the best model over the two (split-half) folds was selected to
434 be tested on the yield out test data (4 runs). The fMRI predicted time courses were estimated
435 as follows. Within each fold, the models' representations of the training stimuli were
436 normalized (each feature was standardized to zero mean and unit variance withing the training
437 set). The feature matrices representing the stimuli were then combined with the information of
438 the stimuli onset during the experimental runs. This resulted in an experimental design matrix
439 (nrTRs x NrFeatures) in which each stimulus was described by its representation by each of
440 the models. To account for the hemodynamic response, we delayed each feature of the
441 experimental design matrix (15 delays spanning 15 seconds). The same procedure was applied
442 to the test data, with the only difference that when standardizing the model matrices, the mean
443 and standard deviation obtained from the training data were used. We used banded ridge
444 regression to determine the relationship between the fMRI response at each voxel, which
445 significantly responded to the localizer stimuli ($p(FDR) < 0.05$), and the features of the encoding
446 models (stimulus representations).

447 For each cross-validation, we assessed the accuracy of the model in predicting fMRI time series
448 by computing the correlation between the predicted fMRI response to novel stimuli (4 runs,
449 108 stimuli) and the actual responses. The accuracy obtained across the three folds were then
450 averaged. To obtain the contribution of each of the models to the overall accuracy we computed
451 the partial correlation between the measured time series and the prediction obtained when
452 considering each of the models individually ([27](#)).

453

454 **Group maps and statistical inference**

455 To evaluate the statistical significance of the model fittings, accuracy maps of each subject
456 were projected on the cortex based aligned group WM-GM mesh. We computed the probability
457 of the mean accuracy (across subjects) to be higher than chance by sign flipping (10000 times)
458 the correlations. This procedure allowed estimating a non-parametric null distribution for each
459 vertex, which was used to obtain a significance value for the mean accuracy. We accounted for
460 the multiple comparisons by correcting the p-values using Bonferroni correction (i.e. dividing
461 by the number of tests, equal to the number of vertices in the analysis).

462

463 **Acknowledgements**

464 The authors are grateful to Rufin Vogels and Giancarlo Valente for fruitful discussion and
465 comments on the original draft. The authors declare no competing financial interests.

466 **Data availability statement**

467 Data and code are being prepared to be shared.

468 **CRediT authorship contribution statement**

469 **Giuseppe Marrazzo:** Conceptualization, Investigation, Software, Formal analysis, Validation,
470 Visualization, Writing – Original Draft Preparation, Writing - review & editing. **Federico De**
471 **Martino:** Conceptualization, Investigation, Supervision, Validation, Writing - review &
472 editing. **Agustin Lage-Castellanos:** Conceptualization, Supervision, Validation, Writing -
473 review & editing. **Maarten J. Vaessen:** Conceptualization, Investigation, Software. **Beatrice**
474 **de Gelder:** Conceptualization, Project Administration, Resources, Supervision, Funding
475 Acquisition, Writing – Original Draft Preparation, Writing - review & editing

476 References

- 477 1. Downing PE, Jiang Y, Shuman M, Kanwisher N. A cortical area selective for visual
478 processing of the human body. *Science*. 2001;293(5539):2470-3.
- 479 2. Peelen MV, Downing PE. Selectivity for the human body in the fusiform gyrus.
480 *Journal of Neurophysiology*. 2005;93(1):603-8.
- 481 3. Vogels R. More Than the Face: Representations of Bodies in the Inferior Temporal
482 Cortex. *Annual Review of Vision Science*. 2022;8(1):383-405.
- 483 4. Downing PE, Peelen MV. Body selectivity in occipitotemporal cortex: Causal
484 evidence. *Neuropsychologia*. 2016;83:138-48.
- 485 5. de Gelder B, Poyo Solanas M. A computational neuroethology perspective on body
486 and expression perception. *Trends in Cognitive Sciences*. 2021;25(9):744-56.
- 487 6. Taylor JC, Downing PE. Division of labor between lateral and ventral extrastriate
488 representations of faces, bodies, and objects. *J Cogn Neurosci*. 2011;23(12):4122-37.
- 489 7. Taylor JC, Wiggett AJ, Downing PE. Functional MRI analysis of body and body part
490 representations in the extrastriate and fusiform body areas. *J Neurophysiol*. 2007;98(3):1626-
491 33.
- 492 8. Marrazzo G, Vaessen MJ, de Gelder B. Decoding the difference between explicit and
493 implicit body expression representation in high level visual, prefrontal and inferior parietal
494 cortex. *NeuroImage*. 2021;243:118545.
- 495 9. Bugatus L, Weiner KS, Grill-Spector K. Task alters category representations in
496 prefrontal but not high-level visual cortex. *NeuroImage*. 2017;155:437-49.
- 497 10. Bracci S, Daniels N, De Beeck HO. Task context overrules object- And category-
498 related representational content in the human parietal cortex. *Cerebral Cortex*.
499 2017;27(1):310-21.
- 500 11. Taylor JC, Wiggett AJ, Downing PE. fMRI-Adaptation Studies of Viewpoint Tuning
501 in the Extrastriate and Fusiform Body Areas. *Journal of Neurophysiology*. 2010;103(3):1467-
502 77.
- 503 12. Chan AWY, Peelen MV, Downing PE. The effect of viewpoint on body
504 representation in the extrastriate body area. *NeuroReport*. 2004;15(15).
- 505 13. Ewbank MP, Lawson RP, Henson RN, Rowe JB, Passamonti L, Calder AJ. Changes
506 in “Top-Down” Connectivity Underlie Repetition Suppression in the Ventral Visual Pathway.
507 *The Journal of Neuroscience*. 2011;31(15):5635-42.

508 14. Foster C, Zhao M, Bolkart T, Black MJ, Bartels A, Bülthoff I. The neural coding of
509 face and body orientation in occipitotemporal cortex. *NeuroImage*. 2022;246:118783.

510 15. Foster C, Zhao M, Romero J, Black MJ, Mohler BJ, Bartels A, et al. Decoding
511 subcategories of human bodies from both body- and face-responsive cortical regions.
512 *NeuroImage*. 2019;202:116085.

513 16. Vangeneugden J, Peelen MV, Tadin D, Battelli L. Distinct Neural Mechanisms for
514 Body Form and Body Motion Discriminations. *The Journal of Neuroscience*. 2014;34(2):574-
515 85.

516 17. Peelen MV, Atkinson AP, Andersson F, Vuilleumier P. Emotional modulation of
517 body-selective visual areas. *Social Cognitive and Affective Neuroscience*. 2007;2(4):274-83.

518 18. Kanwisher N. The quest for the FFA and where it led. *Journal of Neuroscience*.
519 2017;37(5):1056-61.

520 19. Bracci S, Ritchie JB, Kalfas I, De Beeck HO. The Ventral Visual Pathway Represents
521 Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks. *The
522 Journal of Neuroscience*. 2019;39(33):6513-25.

523 20. Kumar S, Popivanov ID, Vogels R. Transformation of Visual Representations Across
524 Ventral Stream Body-selective Patches. *Cerebral Cortex*. 2019;29(1):215-29.

525 21. Caspari N, Popivanov ID, De Mazière PA, Vanduffel W, Vogels R, Orban GA, et al.
526 Fine-grained stimulus representations in body selective areas of human occipito-temporal
527 cortex. *NeuroImage*. 2014;102:484-97.

528 22. Bao P, She L, McGill M, Tsao DY. A map of object space in primate inferotemporal
529 cortex. *Nature*. 2020;583(7814):103-8.

530 23. Dubois J, de Berker AO, Tsao DY. Single-Unit Recordings in the Macaque Face
531 Patch System Reveal Limitations of fMRI MVPA. *The Journal of Neuroscience*.
532 2015;35(6):2791-802.

533 24. Naselaris T, Kay KN, Nishimoto S, Gallant JL. Encoding and decoding in fMRI.
534 *Neuroimage*. 2011;56(2):400-10.

535 25. Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human
536 brain activity. *Nature*. 2008;452(7185):352-5.

537 26. Dumoulin SO, Wandell BA. Population receptive field estimates in human visual
538 cortex. *Neuroimage*. 2008;39(2):647-60.

539 27. Dupré la Tour T, Eickenberg M, Gallant J. Feature-space selection with banded ridge
540 regression. *Neuroimage*. 2022;264:119728.

541 28. Nunez-Elizalde AO, Huth AG, Gallant JL. Voxelwise encoding models with non-
542 spherical multivariate normal priors. *Neuroimage*. 2019;197:482-92.

543 29. Santoro R, Moerel M, De Martino F, Goebel R, Ugurbil K, Yacoub E, et al. Encoding
544 of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory
545 Cortex. *PLOS Computational Biology*. 2014;10(1):e1003412.

546 30. Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB, Lebihan D, et al. Inverse
547 retinotopy: inferring the visual content of images from brain activation patterns. *Neuroimage*.
548 2006;33(4):1104-16.

549 31. Wandell BA, Dumoulin SO, Brewer AA. Visual field maps in human cortex. *Neuron*.
550 2007;56(2):366-83.

551 32. Moerel M, De Martino F, Formisano E. Processing of natural sounds in human
552 auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. *The Journal of
553 neuroscience : the official journal of the Society for Neuroscience*. 2012;32(41):14205-16.

554 33. Nishimoto S, Vu AT, Naselaris T, Benjamini Y, Yu B, Gallant JL. Reconstructing
555 visual experiences from brain activity evoked by natural movies. *Curr Biol*.
556 2011;21(19):1641-6.

557 34. Loper M, Mahmood N, Romero J, Pons-Moll G, Black MJ. SMPL: a skinned multi-
558 person linear model. *ACM Trans Graph*. 2015;34(6):Article 248.

559 35. Pavlakos G, Choutas V, Ghorbani N, Bolkart T, Osman AA, Tzionas D, et al., editors.
560 Expressive body capture: 3d hands, face, and body from a single image. *Proceedings of the
561 IEEE/CVF Conference on Computer Vision and Pattern Recognition*; 2019.

562 36. Peelen MV, Downing PE. The neural basis of visual body perception. *Nature Reviews
563 Neuroscience*. 2007;8(8):636-48.

564 37. Downing PE, Peelen MV. The role of occipitotemporal body-selective regions in
565 person perception. *Cognitive Neuroscience*. 2011;2(3-4):186-203.

566 38. Atkinson AP, Vuong QC, Smithson HE. Modulation of the face- and body-selective
567 visual regions by the motion and emotion of point-light face and body stimuli. *Neuroimage*.
568 2012;59(2):1700-12.

569 39. Haynes JD, Rees G. Decoding mental states from brain activity in humans. *Nat Rev
570 Neurosci*. 2006;7(7):523-34.

571 40. Kamitani Y, Tong F. Decoding the visual and subjective contents of the human brain.
572 *Nat Neurosci*. 2005;8(5):679-85.

573 41. Miyawaki Y, Uchida H, Yamashita O, Sato MA, Morito Y, Tanabe HC, et al. Visual
574 image reconstruction from human brain activity using a combination of multiscale local
575 image decoders. *Neuron*. 2008;60(5):915-29.

576 42. Naselaris T, Prenger RJ, Kay KN, Oliver M, Gallant JL. Bayesian reconstruction of
577 natural images from human brain activity. *Neuron*. 2009;63(6):902-15.

578 43. Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani GL, et al. Neural
579 Systems Underlying Observation of Humanly Impossible Movements: An fMRI Study.
580 *Cerebral Cortex*. 2005;15(11):1761-7.

581 44. Marsh AA, Kozak MN, Wegner DM, Reid ME, Yu HH, Blair RJR. The neural
582 substrates of action identification. *Social Cognitive and Affective Neuroscience*.
583 2010;5(4):392-403.

584 45. Moro V, Urgesi C, Pernigo S, Lanteri P, Pazzaglia M, Aglioti SM. The Neural Basis
585 of Body Form and Body Action Agnosia. *Neuron*. 2008;60(2):235-46.

586 46. Pichon S, de Gelder B, Grèzes J. Threat Prompts Defensive Brain Responses
587 Independently of Attentional Control. *Cerebral Cortex*. 2012;22(2):274-85.

588 47. Saxe R, Jamal N, Powell L. My Body or Yours? The Effect of Visual Perspective on
589 Cortical Body Representations. *Cerebral Cortex*. 2006;16(2):178-82.

590 48. de Gelder B, de Borst AW, Watson R. The perception of emotion in body
591 expressions. *WIREs Cognitive Science*. 2015;6(2):149-58.

592 49. Tamietto M, Cauda F, Celeghin A, Diano M, Costa T, Cossa FM, et al. Once you feel
593 it, you see it: Insula and sensory-motor contribution to visual awareness for fearful bodies in
594 parietal neglect. *Cortex*. 2015;62:56-72.

595 50. Van den Stock J, Hortensius R, Sinke C, Goebel R, de Gelder B. Personality traits
596 predict brain activation and connectivity when witnessing a violent conflict. *Scientific
597 Reports*. 2015;5(1):13779.

598 51. Poyo Solanas M, Vaessen M, de Gelder B. Computation-Based Feature
599 Representation of Body Expressions in the Human Brain. *Cerebral Cortex*.
600 2020;30(12):6376-90.

601 52. Weiner KS, Grill-Spector K. Not one extrastriate body area: using anatomical
602 landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human
603 lateral occipitotemporal cortex. *Neuroimage*. 2011;56(4):2183-99.

604 53. Brainard DH. The Psychophysics Toolbox. *Spat Vis*. 1997;10(4):433-6.

605 54. Kleiner M, Brainard D, Pelli D. What's new in Psychtoolbox-3? 2007.

606 55. Pelli DG. The VideoToolbox software for visual psychophysics: Transforming
607 numbers into movies. *Spatial vision*. 1997;10:437-42.

608 56. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl.
609 *Neuroimage*. 2012;62(2):782-90.

610 57. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg
611 H, et al. Advances in functional and structural MR image analysis and implementation as
612 FSL. *Neuroimage*. 2004;23 Suppl 1:S208-19.

613 58. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al.
614 Bayesian analysis of neuroimaging data in FSL. *Neuroimage*. 2009;45(1 Suppl):S173-86.

615 59. Fritz L, Mulders J, Breman H, Peters J, Bastiani M, Roebroeck A, et al., editors.
616 Comparison of EPI distortion correction methods at 3T and 7T. Annual Meeting of the
617 Organization for Human Brain Mapping; 2014.

618 60. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain: 3-
619 Dimensional proportional system: An approach to cerebral imaging.: Thieme Medical
620 Publishers, Inc., New York.; 1988.

621 61. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-
622 based registration. *Neuroimage*. 2009;48(1):63-72.

623 62. Andersson JL, Jenkinson M, Smith S. Non-linear registration, aka Spatial
624 normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University
625 of Oxford. 2007;2(1):e21.

626 63. Goebel R, Esposito F, Formisano E. Analysis of functional image analysis contest
627 (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general
628 linear model analysis and self-organizing group independent component analysis. *Human*
629 *brain mapping*. 2006;27(5):392-401.

630 64. Ross P, de Gelder B, Crabbe F, Grosbras M-H. A dynamic body-selective area
631 localizer for use in fMRI. *MethodsX*. 2020;7:100801.

632 65. Allen EJ, Moerel M, Lage-Castellanos A, De Martino F, Formisano E, Oxenham AJ.
633 Encoding of natural timbre dimensions in human auditory cortex. *NeuroImage*. 2018;166:60-
634 70.

635 66. Watson AB, Ahumada AJ. Model of human visual-motion sensing. *J Opt Soc Am A*.
636 1985;2(2):322-42.

637 67. Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion.
638 *J Opt Soc Am A*. 1985;2(2):284-99.

639 68. Nishimoto S, Gallant JL. A Three-Dimensional Spatiotemporal Receptive Field
640 Model Explains Responses of Area MT Neurons to Naturalistic Movies. *The Journal of*
641 *Neuroscience*. 2011;31(41):14551-64.

642 69. Jones JP, Palmer LA. An evaluation of the two-dimensional Gabor filter model of
643 simple receptive fields in cat striate cortex. *J Neurophysiol*. 1987;58(6):1233-58.

644 70. DeAngelis GC, Ohzawa I, Freeman RD. Spatiotemporal organization of simple-cell
645 receptive fields in the cat's striate cortex. I. General characteristics and postnatal
646 development. *J Neurophysiol*. 1993;69(4):1091-117.

647 71. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal
648 Problems. *Technometrics*. 1970;12(1):55-67.

649