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Abstract

Previous research has focused on the role of the extrastriate body area (EBA) in category-
specific body representation, but the specific features that are represented in this area are not
well understood. This study used ultra-high field fMRI and banded ridge regression to
investigate the coding of body images by comparing the performance of three encoding models
in predicting brain activity in ventral visual cortex and specifically the EBA. Our results
suggest that EBA represents body stimuli based on a combination of low-level visual features

and postural features.

Author Summary

Historically, research on body representation in the brain has focused on category-specific
representation, using fMRI to investigate the most posterior body selective region, the
extrastriate body area (EBA). However, the role of this area in body perception is still not well
understood. This study aims to clarify the role of EBA, in coding information about body
images. Using ultra-high field neuroimaging (fMRI) and advanced encoding techniques we
tested different computational hypotheses to understand how body images are represented in
EBA. Our results suggest that EBA represents bodies using a combination of low-level

properties and postural information extracted from the stimulus.
Introduction

Faces and bodies are amongst the most frequently encountered visual objects and provide
essential information about the behaviour of conspecifics. In contrast to face perception, body
perception is still poorly understood. Mainstream research on body representation in humans
has focussed on category specific body representation in the brain, investigated with fMRI to

identify conceptual category defined functional selectivity. Initially a body category selective
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area was reported in the middle occipital\temporal gyrus, the extrastriate body area (EBA) (1).
Later a second body selective area was described in the fusiform cortex and labelled fusiform
body area (FBA) (2). Studies on body representation in nonhuman primates using fMRI as
well as invasive electrophysiology resulted in a similar situation of multiple body sensitive
patches in temporal cortex (3). Once multiple category selective areas were reported in human
as well as in nonhuman primate, the central issue is to understand how body images are coded

in the different body selective areas and how to account for the observed body selectivity.

An attractive notion that has been explored but ultimately not supported is that EBA coded
body parts and the more anterior FBA whole bodies, but this distinction proved inconclusive
(for review, (4, 5)). An earlier proposal that EBA was selective for body parts and the more
anterior FBA for whole bodies and their overall configuration (6, 7) is not supported by current
findings in humans or non-human primates (3, 5). Furthermore, this is not easy to combine
with findings that activity in EBA is influenced by task setting (8-10) but also by experimental
manipulations of semantic attributes like gender and emotional expression (11-18). The fact
that such stimulus attributes have an impact on the level of activity observed in EBA also

challenges the notion that EBA only codes for body parts.

Thus our current understanding of how body images are processed shows a gap between the
extraction of low-level physical features of the stimulus taking place in early visual cortex and
the generation of a high-order semantic concept of bodies at stake in processing information
about emotions or action and presumably linked to FBA activity (5). In view of its location in
temporal cortex it is likely that the kind of coding to expect in EBA is related to computing
some subsymbolic body features rather than identifiable body parts because the latter already

implies high level body category representations (19). Candidate subsymbolic features are
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overall shape representation and related to that, viewpoint tolerance, an important dimension
in the posterior to anterior gradient of object recognition. Studies in non-human primates that
use single cell recordings indicate that moving from posterior to anterior temporal cortex, body
patch neurons increase their selectivity for body identity and posture, while there is a decrease
in viewpoint selectivity. Specifically, recordings in body selective patches, middle superior
temporal body (MSB) and anterior superior temporal body (ASB) showed strong viewpoint
selectivity for the former and conversely, high tolerance for the latter (20). Furthermore,
Caspari and colleagues using the same set of category stimuli as Kumar and colleagues,
showed similar decoding pattern between monkeys and humans in body selective regions,
suggesting an homology between the human EBA and monkey MSB as well as the human

FBA and monkey ASB (20, 21).

This suggests a general principle of object coding in the inferior temporal cortex (IT): a greater
tolerance to image transformations that preserve identity (22) and, in the case of bodies,
posture, for more anterior patches. The monkey data fits human fMRI work that found
viewpoint-invariant decoding of body identity in FBA but not EBA (14), but as noted above,
results of between-area differences in fMRI multi voxel pattern analysis (MVPA) are difficult

to interpret (23).

An important question is whether a similar posterior to anterior organisation can be found for
EBA by using ultra high field fMRI in combination with computational hypotheses. One
popular approach to test and compare different computational hypotheses of brain function is
to use (linearized) encoding (24, 25) approaches. In these approaches brain activity (e.g. the
blood oxygen level dependent (BOLD) signals in a voxel or an brain area in fMRI) is predicted

from the features of (different) computational models, and their accuracy can be compared to
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92  adjudicate between competing models or partitioned with the respect to the variance explained

93 by each of the models (26-32).

94  We used ultra-high field fMRI and linearized encoding to evaluate to what extent the response
95 inextrastriate body areas can be explained on the one hand by low-level visual features (Gabor)
96  (33) and on the other by the features extracted by two computational models that represent the

97  postural features of the body (kp2d, kp3d) (34, 35) (see Material and Methods).

98

99

100 Results

101  Behavioural analysis

102  The analysis of the responses to the questionnaires revealed that no action was recognised for
103 92% of the stimuli (298 out of 324). Likewise, no emotion was recognised for 97% of the
104  stimuli (314 out of 324). Participants reported that they focused on the overall body pose in
105  65% of the cases (211 out of 324), on the hands in 20% (64 out of 324) of the cases and on the
106 arms for 11% (38 out of 324). The full report on the behavioural results is found in the

107  supplementary material.

108  Univariate analysis and voxels selection for encoding

109  In each subject, voxels that significantly (q(FDR)<0.05) responded to the localizer conditions
110 (main effect) were selected for the encoding analysis (Fig. 2a). At the group level, we observed
111 significant (q(FDR<0.01) activation in occipital-temporal cortex as well as parietal cortex in
112 the occipital gyrus (superior/middle/inferior) (SOG/MOG/IOG), fusiform gyrus (FG), lingual

113 gyrus (LG), middle
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Single subject Localizer (Fixed effect)
[Body + Houses + Faces + Tools] > Baseline
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\\q% Wz (a) ) {o)
7"" ‘

Group Localizer {RFX)
Body > [Houses + Tools]

Figure 2 Univariate analysis.

(a) Brain maps showing the responses for the main effect of the localizer in a single subject
computed with a fixed-effect GLM. This map was created in volume space (q(FDR)<0.05)
and overlaid on the subject mesh for visualization purposes.

(b) Brain activation for the main effect of the localizer obtained when including all the
subjects in a RFX GLM. The activation map is corrected for multiple comparison at
q(FDR)<0.01 and is cluster thresholded (cluster size = 25).

(c) Body selective regions obtained by contrasting the localizer conditions Body > Objects
(Houses + Tools). As in (a), the statistical thresholding of the map was performed in volume
space (q(FDR)<0.05) and then overlaid on the group average mesh for visualization
purposes. We used this contrast to obtain a group definition of EBA which was intersected

with single subjects’ activation maps for the subsequent ROI analysis.

114

115  temporal gyrus (MTG), superior parietal lobule (SPL), intraparietal sulcus (IPS), inferior

116  temporal sulcus (ITS), lateral occipital sulcus (LOS), superior temporal sulcus (STS) (Fig 2b).
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117  Subtracting the response to object stimuli from the response to body stimuli allowed us to
118  define EBA. This cluster spanned the MOG, MTG as well as the ITS (Fig 2¢). The voxels
119  selection for the encoding analysis was performed at the individual level and based on the main
120  effect. A probabilistic map (computed by counting the number of subjects for which a given
121 voxel was included in the analysis) showed a consistent overlap with the functionally defined

122 EBA (Fig 3).

123

Figure 3. Probabilistic map of the main effect of the localizer.

(a) This brain map shows the extent of the overlap between participants within the main
effect of the localizer computed for each participant across all runs via a fixed-effect GLM.
This overlap is expressed via a probability map where at each spatial location the percentage
of the relative number of subjects leading to significant activity is reported (low probability

- high probability: white > green).
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(b) In the second row, we overlay the binarized (suprathreshold voxels q(FDR)<0.05 = 1)
group definition of EBA (in blue) (see Fig. 2¢) on the probabilistic map. This shows that
most (90-100%) of the participants shared significant responses (q(FDR)<0.05) within the

region of interest.

Encoding results

The voxels selected using the response to the localizer were submitted to the encoding analysis.
The response to the body stimuli presented in the main experiment (data independent from the
localizer) were modelled using banded ridge regression. The group performance of the joint
(three) encoding model is shown in Fig. 4. The accuracy of the joint (kp2d, kp3d, Gabor)
encoding model at the group level (after statistical testing and correction for multiple
comparisons) is shown in Fig. 4. We found that when combining information from the three

models we could significantly predict responses to novel stimuli

p(Bonf)<0.05

Group average correlation Joint model + Standard error; N =20

Joint Model

{r)

Group Localizer (RFX)
Body > [Houses + Toals]
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Figure 4. Joint model performance.

Group Prediction accuracy for the joint model (kp2d, kp3d, Gabor). Statistical significance
was assessed via permutation test (subject wise sign-flipping, 10000 times), and correction
for multiple comparison was performed using Bonferroni correction (p<0.05). The bar plot
depicts the group (mean + standard error) correlation coefficient between the joint model
predictions and brain response to novel stimuli (test stimuli) across participants in bilateral
EBA. We did not find any significant difference across hemispheres (two-sample t-test,
p=0.481). For reference, the bottom right corner shows the functional definition of EBA

already presented in Fig. 2c.

(Fig. 4) throughout the ventral visual cortex (SOG, MOG, IOG, ITG, MTG, FG, LOS), and in
parietal cortex (SPL). We assessed spatial differences in how models contributed to the fMRI
response by colour coding the relative contribution of each of the models to the overall
prediction accuracy (Fig. 5). The response to bodies in early visual cortical areas was in average

better explained by the Gabor model (blue-purple-dark magenta).
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100%
Gabor

Partial correlation
(% of r)

Parosntage %) of joirt motl correlstion

Figure 5. Comparison between encoding models.

(a) RGB map in which each vertex is colour coded according to the relative contribution of
each model to the accuracy of the joint model (red = 100% kp2d; blue = 100% Gabor; green
=100% kp3d).

(b) In EBA, the information contained in the joint model predictions which significantly
correlates with BOLD activity is split across models with kp2d accounting for 50-60% of
the variance, Gabor approximately 25-30% of the variance and kp3d the remaining 15-20%.
We tested for statistical difference across models’ pair (solid lines at the top), using a two-
sample t-test (*** p<0.0001) (see bar plot). Additionally, the variance explained follows a
gradient from the posterior part (posterior ITG/LOS) to the anterior (anterior LOS) of EBA,
with darker shades of magenta in the posterior part indicating higher representation of low-
level body features (Gabor), and lighter shades of magenta in the anterior part indicating
higher representation of mid-level features (kp2d-kp3d).

ITG = inferior temporal gyrus; MTG = middle temporal gyrus; LOS = lateral occipital

sulcus.

140
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141 Moving to higher visual cortical areas corresponded to a shift in the relative contribution
142 towards a combination of kp2d and Gabor (magenta), while in EBA the model that contributed
143  most to the prediction accuracy was kp2d (magenta - light magenta - pink). When considering
144  EBA (Fig. 5), the joint model significantly predicted brain responses to test stimuli (Fig. 4),
145  and the kp2d model accounts for approximately 50-60% of the variance of this prediction (Fig.
146  5b). It is worth noting that when considering the spatial distribution of relative model
147  contributions to the prediction accuracy (Fig. 5), the posterior part of EBA, specifically the
148  posterior part of lateral occipital sulcus (LOS) was best explained by the Gabor model (dark
149  magenta area), while the anterior part of LOS showed lighter shades of magenta indicating that

150 the leading representation is kp2d.

151

152  Discussion

153  In this study, we used ultra-high field fMRI to determine the main (stimulus) features that drive
154  brain responses to still body stimuli, with a particular focus to the responses in the extrastriate
155  body selective area (EBA). We compared the performance of three encoding models using
156  banded ridge regression. We observed that a combination of the three models (kp2d, kp3d,
157  Gabor) could significantly predict fMRI BOLD responses in ventral cortex and in parietal
158  cortex (SPL). The partial correlation analysis revealed that, in EBA, approximately 50% of the
159  variance of the prediction accuracy is explained by kp2d, 30% by Gabor and 20% by kp3d.
160  These results lead us to conclude that EBA represents body stimuli based on the combination

161  of low-level visual features and postural features.

162

163  EBA was originally defined as a category selective area associated with body representation

164  but the computations underlying this selective response are not yet well understood. Previous
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165  proposals stressed the role of EBA for individual body parts but not whole body images (1, 36,
166  37). These results are difficult to combine with evidence that EBA is selective for human
167  bodies when only represented as stick figures, line drawings or silhouettes (38). Our findings
168  are consistent with the latter hypothesis as the kp2d/3d model explain approximately 70% of

169  the accuracy in EBA.

170

171 The Gabor model proposed by (33) was specifically constructed to encode low-level visual
172 features such as spatial frequency, location, size and object orientation. Gabor based models
173 have been shown to be powerful tool for inferring (encoding/decoding) (25, 26, 28, 30, 31, 33,
174  39-42) brain activity inside and outside early visual cortex. Our findings suggest that the
175  variance explained by the Gabor model shows a decreasing gradient from early to higher-level
176  visual cortex. This suggests that within early sensory regions (superior occipital gyrus, blue
177  patches in Fig. 4b) Gabor features are critical for predicting BOLD responses to body stimuli.
178  Conversely, the variance explained by kp2d shows the opposite gradient, and it is highest in
179  EBA. This suggests that postural features are critical in driving the response to body pictures
180 in EBA. Interestingly, the transition between low-level features driving the response in early
181  areas and mid-level (postural) features driving the response in high-level visual cortex (EBA)
182  at the group level is smooth and suggests a dynamic, stimulus dependent, representation of

183  Dbodies (5). Likewise, similar patterns can be seen at the single subject level (see Supplementary

184  material).

185  Another important point is the performance difference between kp2d and kp3d. These models
186  represent body poses as the spatial location of specific keypoints (joints, hand, head etc). In the
187  case of kp3d, the keypoints represent the 3D coordinates used by VPoser to pose the mesh (34,

188  35) and construct the actual stimulus. Similarly, kp2d represents the orthogonal projection of


https://doi.org/10.1101/2022.12.19.521151
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.521151; this version posted December 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

189  the 3D coordinates on the camera plane. Therefore, the only difference between the models is
190 that kp3dis isotropic (invariant across viewpoints), whereas the features of kp2d change across
191  different view of the same pose. Our findings show that between kp2d/3d, banded ridge almost
192  always selects the former as predictive and consider the latter as redundant. This is reflected in
193  the percentage maps where on average kp2d outperforms kp3d. One possible explanation for
194  this result is that the information contained in the 3™ dimension of kp3d was not needed to
195  explain the variance in the data and, as a result, the selected feature space was kp2d for most
196  of the voxels, suggesting that the viewpoint information is encoded in EBA. Previous research
197  has shown that EBA is sensitive to body orientation (11-14, 16), although we did not find
198  significant differences in brain activity when looking at differences between viewpoints
199 (RFXGLM with three viewpoints as predictors of interest). This result is in line with what has
200  been shown in single cell recordings on primates, where the MSB (analogous of the EBA in

201  humans) showed strong viewpoint selectivity (20).

202 It i1s worth mentioning that our stimuli were specifically controlled for the presence of high-
203  level stimulus attributes (i.e. emotion, action information) and validated using behavioural
204  ratings (see behavioural analysis). Many previous studies have shown that activity in EBA is
205 modulated by emotional body expressions (43-50). Moreover, a recent study has shown that
206  unique information from the posture feature limb contractions is involved in fearful body
207  expression perception (51). This indicates that body expression may be based on body posture
208 and movement features rather than implicating body representation as a high-level semantic

209  category (5).

210  Our results corroborate the notion that the functional EBA definition spans several anatomical
211 regions with potentially different roles. Specifically, the EBA may be subdivided in three
212 anatomical regions (52) located respectively in the inferior temporal gyrus (ITG), middle

213 temporal gyrus (MTG) and lateral occipital sulcus (LOS). When looking closely at the partial
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214  correlation patterns in EBA around the anatomical landmarks ITG, MTG, LOS (Fig. 5b and
215  the barplot Fig. 5b) we see that not all the variance can be explained by combining the kp2d
216  model with the Gabor model. This is graphically represented in figure 5b, where we find a
217  green (or green derived) colour in the anterior part of EBA (anterior LOS/ITG), indicating that
218  the variance explained by kp3d model is on average located in the more anterior portion of
219  EBA. Specifically, bodies in the anterior portion of EBA are represented as a combination of
220  kp2d/Gabor features with the kp3d model (yellow/light-blue patches in Fig. 5b). This finding
221  might indicate that, as shown for early sensory regions, body representation in EBA is
222 differentially encoded, going from a low-level representation (Gabor like/blue patches) in
223 pITG/pLOS, to a mid-level (viewpoint dependent) postural representation (kp2d, light-
224  magenta, orange, pink patches) in the (middle) LOS to a high-level (viewpoint independent)

225  postural representation (kp3d) in alTG/aLOS (green, light-blue, yellow patches).

226 Concerning the other major body selective region FBA, we observed that for the voxels
227  significantly responding to localizer stimuli, the group definition of this region was not
228  consistent across participants. Moreover, among the voxels functionally identified as part of
229 the FBA, only few survived the statistical correction for multiple comparison of the encoding
230  analysis. For completeness, we include the results of the encoding compared to EBA in the
231  supplementary information. Briefly, the joint model performs significantly worse in FBA than
232 in EBA, this could be due to low signal to noise ratio in the area. Nonetheless, the barplot
233 depicting the percentage of the correlation explained by each model reveals a similar behaviour
234 to what has been presented for EBA. The main difference is that kp3d model has an increase
235  (from 20 to 25%) in percentage of correlation explained in FBA, at the expense of the
236  correlation explained by kp2d. This is consistent with the fact that FBA has higher viewpoint
237  tolerance than EBA as is expected if FBA is more involved in higher cognitive processing of

238  body information like personal identity (13-15).
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239  Taken together, these results suggest that the EBA encodes features pertaining specifically to
240 posture. This representation appears to be viewpoint dependent posteriorly (pITG/pLOS)
241  whereas greater viewpoint tolerance arises anteriorly (alITG/aLOS). On this account, the body
242 selectivity observed in many studies in EBA is rooted in body specific feature representation
243  that is not yet dependent of high order body categorisation processes. Future research must
244  investigate whether these body selective features are rooted in uniquely defined biomechanical

245  constraints, in human skeleton keypoint priors or also in sensorimotor processes.

246  Material and methods

247  Participants

248 20 right-handed subjects (8 males, mean age = 24.4 + 3.4 years) participated in this study. They
249  all had normal (or corrected to normal) vision and were recruited from Maastricht University
250  student cohorts. All subjects were naive to the task and the stimuli and received monetary
251  compensation for their participation (7.5 € VVV vouchers/per hour or a bank transfer for the
252  same amount; 4h in total, 30 €). Scanning sessions took place at the neuroimaging facility
253  Scannexus at Maastricht University. All experimental procedure conformed to the Declaration

254  of Helsinki and the study was approved by the Ethics Committee of Maastricht University.

255  Stimuli

256  Main experiment stimuli

257  The stimulus set consisted of 108 pictures of 3D rendered body meshes shown in different
258  orientations: 0° (frontal), -45° (left rotated) and 45° (right rotated) for a total of 324 unique
259  images. Examples of the stimuli in the different orientation are shown in Fig 1a. 3D rendered
260  body meshes were generated via VPoser, a variational autoencoder (VAE) trained to learn a

261  32-dimensional (normal distribution) latent representation of Skinned Multi-Person Linear
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Model (SMPL) parameters (34, 35). The stimuli used in the study were generated via randomly
sampling the latent space and generating via the decoder part of the VPoser the associated body
image. To also sample images sufficiently distant from the mean image (and thus maintain a
sufficiently large variability of poses in the stimulus set), we sampled the latent space within
three distinct shells defined by the standard deviations from the mean pose (Fig. 1a).
Ultimately, the body images were generated by transferring the decoded SMPL parameters to
a posed mesh. The resulting body poses had mean widths and heights of 2.43° x 5.22° of visual

angle and were colour rendered (mean RGB: 120,157,144).
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Figure 1. Stimuli and experimental procedure

(a) (top) Stimuli were generated by randomly sampling the latent space of the VAE (34, 35).
The 32-dimensional latent space was sampled in three shells, defined by the value of the
standard deviation from the mean pose, to ensure variability among the generated poses. (a)
(bottom) 108 unique poses were generated from three different viewpoints: 0° (frontal), -45°
(left rotated) and 45° (right rotated) for a total of 324 unique stimuli. (b) Body sensitive
areas were identified by mean of a localizer using stimuli selected from four different object
categories: bodies, tools, houses, and faces. These stimuli underwent the same rendering
process as the stimuli of the main experiment. (¢) During the main experiment participants
performed a one-back task. They fixated on the green cross and were presented with pictures
of body poses each for approximately 750 ms followed by a blank screen which appeared
for 1, 2 or 3 s. When the fixation cross turned red, they had to report by button press whether

the current stimulus matched the previously presented one.

Localizer stimuli

Stimuli for the localizer experiment consisted of 3D rendered images depicting four object
categories: faces, bodies, tools, and houses (Fig. 1b). The stimuli were colour rendered using
the same colour for the main experiment stimuli (mean RGB: 120,157,144). None of the stimuli

from the localizer were used in the main experiment.

Behavioural validation

Stimuli used in the main experiment were generated via the VAE. Random sampling from the
latent space allowed us to produce a varied set of body poses but did not allow us to control
the stimuli for the possible presence of semantic body attributes like action or emotion.

Therefore, we asked 113 participants (25 excluded for missing data, 88 in total: 29 males, mean
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282  age =23 +4 years, 72 right handed) to rate the stimuli using a questionnaire consisting of both
283  categorical and likert-scale questions. Participants were presented with 1/3 (108) of the total
284  stimuli (324) for 750 ms each. For each participant, the stimuli were pseudo-randomized (108
285  stimuli randomly selected for each participant, but evenly distributed so that each stimulus got
286  approximately the same number of answers). After each presentation, participants were asked
287  to answer 6 questions about the emotional expression, action content; salience of specific body
288  parts; implied body movement and realism of the posture (see supplementary material).

289

290  MRI acquisition and experimental procedure

291  Participants viewed the stimuli while lying supine in the scanner. Stimuli were presented on a
292  screen positioned behind participant’s head at the end of the scanner bore (distance screen/eye
293 =99 cm) which the participants could see via a mirror attached to the head coil. The screen had
294  aresolution of 1920x1200 pixels, and its angular size was 16° (horizontal) x 10° (vertical). The
295  experiment was coded in Matlab (v2018b The MathWorks Inc., Natick, MA, USA) using the

296  Psychophysics Toolbox extensions (53-55).

297  Each participant underwent two MRI sessions, we collected a total of twelve functional runs
298  (six runs per session) and one set of anatomical images. Images were acquired in a 7T MR
299  scanner (Siemens Magnetom) using a 32-channel (NOVA) head coil. Anatomical images were
300 collected via a T1-weighted MP2RAGE: 0.7 mm isotropic, repetition time (TR) = 5000 ms,
301 echo time (TE) = 2.47 ms, matrix size= 320 x 320, number of slices = 240. The functional
302  dataset covered the entire brain and was acquired via T2*-weighted Multi-Band accelerated
303 2D-EPI BOLD sequence, multiband acceleration factor = 3, voxel size = 1.6 mm isotropic, TR

304 =1000 ms, TE =20 ms, number of slices = 68 without gaps; matrix size = 128 x 128.
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305 Each run consisted of three main sections: 1) two short localizers parts (approximately one
306 minute at the beginning and at the end of the run), during which images were presented in
307  blocks of categories (faces, bodies, tools, and houses), and 2) a main experimental part where
308  stimuli (body images different from the ones used in the localizer) were presented following a
309 fast event-related design. Participants were asked to fixate at all times on the green cross at the

310 centre of the screen.

311  Each localizer block each contained six images which were presented for 750 ms and followed
312 by 250 ms blank screen. Each block lasted six seconds followed by a fixation period of eight
313  seconds and each category block was presented once at the beginning and once at the end of
314  each run (24 blocks per condition across the 12 runs). During the localizer participants did not

315  perform any task.

316  During the main experiment, stimuli were presented for 750 ms with an inter stimulus interval
317  that was pseudo-randomised to be 1, 2 or 3 TRs. To keep attention on the stimuli, participants
318  performed a one-back task om stimulus identity. Following a visual cue (colour change of the
319 fixation cross), they were asked report via a button press whether the current stimulus was the
320 same as the previous one (Fig. 1¢). Within each run, the experimental section consisted of the
321  presentation of 54 stimuli (18 unique poses x 3 viewpoints) repeated 3 times each. Six target
322 trials were added for a total of 168 trials. Across the two sessions each of the 108 unique poses
323 were repeated 18 times (3 repetitions x 3 viewpoints x 2 sessions) across the 12 runs, whereas

324  the 324 unique stimuli were repeated 6 times (3 repetitions x 2 sessions).

325  Preprocessing was performed using BrainVoyager software (v22.2, Brain Innovation B.V.,
326  Maastricht, the Netherlands) and FSL (56-58). The following steps were performed in
327  BrainVoyager unless indicated otherwise. EPI Distortion was corrected using the Correction

328 based on Opposite Phase Encoding (COPE) plugin in BrainVoyager, where the amount of
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329  distortion is estimated based on volumes acquired with opposite phase-encoding (PE) with
330 respect to the PE direction of the main experiment volumes (59), after which subsequent
331  corrections is applied to the functional volumes. Other preprocessing steps included: scan slice
332 time correction using cubic spline, 3D motion correction using trilinear/sinc interpolation and
333  high-pass filtering (GLM Fourier) cut off 3 cycles per run. During the 3D motion correction
334  all the runs were aligned to the first volume of the first run. Anatomical images were resampled
335 at 0.5mm isotropic resolution using sinc interpolation and then normalized to Talairach space
336  (60). To ensure a correct functional-anatomical and functional-functional alignment, the first
337  volume of the first run was coregistered to the anatomical data in native space using boundary
338  based registration (61). Volume Time Courses (VTCs) were created for each run in the
339  normalized space (sinc interpolation) and exported in nifti format for further processing in FSL.
340 To further reduce non-linear intersession distortions, functional images were additionally
341  corrected using the fnirt command in FSL (62) using as template the first volume of the first
342  run in normalized space. Prior to the encoding analysis (and following an initial general linear
343  model [GLM] analysis aimed at identifying regions of interest based on the response to the
344  localizer blocks), we performed an additional denoising step of the functional time series by
345  regressing out the stimulus onset (convolved with a canonical hemodynamic response function
346  [HRF]) and the motion parameters.

347  Segmentation of white matter (WM) and gray matter (GM) boundary was performed in
348  BrainVoyager using the deep learning-based segmentation algorithm and in house Matlab
349  scripts. The resulting boundaries were then inflated to a reference sphere and aligned using
350 cortex based alignment (CBA) (63). The aligned meshes were averaged to create a group WM-
351  GM mesh for each hemisphere.

352

353  Voxels selection for encoding analysis
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354  The functional time series of each participant were analysed using a fixed-effect GLM with 5
355  predictors (4 for the localizer blocks and 1 modelling the responses to all the stimuli in the
356 main experiment). Motion parameters were included in the design matrix as nuisance
357 regressors. The estimated regressor coefficients representing the response to the localizer
358 blocks were used for voxel selection. A voxel was selected for the encoding analysis if
359  significantly active (q(FDR)<0.05) within the main effect of the localizer (Body, Houses,
360 Tools, Faces — Fig. 2). Note that this selection is unbiased to the response to the main stimuli
361  presented in the experimental section of each run.

362  To assess the spatial consistency of activation to the localizer across subjects, we created a
363  probabilistic functional map depicting, at each spatial location, the percentage of subjects for
364  which that location was significantly (q(FDR)<0.05) modulated by the localizer blocks (Fig
365  3a).

366

367  Functional ROI definition

368  We defined body selective regions at the group level using a random-effect GLM (RFX-GLM),
369  in which EBA was defined using the localizer contrast Body > Objects([Houses + Tools]) (64)
370  with a statistical threshold of q(FDR) < 0.05. Functional images from every participant were
371  spatially smoothed using a gaussian filter (FWHM = 4mm) and then entered the RFX GLM in
372 which we defined 5 predictors of interest (4 for the localizer 1 for modelling the responses to
373  the main experiment). For each participant, we regressed out signals coming from head motion
374 by including motion parameters in the design matrix. Responses from each subject were
375  selected via intersection with the group ROI definition of EBA and the single subject localizer’s
376  main effect map (see previous paragraph). Figure 3b projects the group definition of EBA onto

377  the probabilistic functional map of the localizer’s main effect.
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378  The group level body sensitive ROIs were intersected with the single subject activation maps
379  (see previous section) to obtain individual ROIs. Note again that while this procedure makes
380 use of the same data (localizer) twice, its purpose was to define single subject regions to be
381  subsequently used for encoding analysis which was performed on an independent portion of
382  the data set. Figure 3b reports the overlap between EBA defined at the group level and the
383  probabilistic activation maps of the localizer’s main effect.

384

385 Encoding models

386 In order to understand what determines the response to body images we tested several
387 hypotheses, represented by different computational models, using fMRI encoding (24, 25, 29,
388  65). We compared the performance (accuracy in predicting left out data) of three encoding
389  models. The first represented body stimuli using the position of joints in two dimensions (kp2d)
390 using 54 keypoints (joints, hand and facial features like eyeballs, neck and jaw) plus one
391  keypoint for global rotation extracted during the stimulus creation using VPoser (35). This
392 encoding model extracts for each pose the orthogonal projection of the pose’s spatial
393  coordinates on the camera plane which ultimately constitutes the image coordinates (i.e. X,y)
394  of the keypoints. Therefore, this model has 110 features (55 kp * 2 dimensions). The second
395  model represented body stimuli using the three-dimensional position of the keypoints (kp3d)
396  extracted from VPoser. This representation differs from the kp2d one by adding the third
397 dimension (no projection on the camera plane), resulting in an encoding model with 165
398  features (55 kp * 3 dimensions). It is important to note that the main difference between the
399  kp2d and kp3d representations is that the latter is viewpoint invariant as the position of the
400  joints is independent from the angle under which the object is observed.

401  The last encoding model we tested is a Gabor filtering of the images (33, 66-68). In this

402  procedure, each stimulus was transformed into the Commission internationale de 1'éclairage
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403 (CIE) L*A*B* color space and the luminance signals then passed through a bank of 1425
404  spatial Gabor filters differing in position, orientation, and spatial frequency (33, 69, 70).
405  Ultimately, the filters output underwent a logarithmic non-linear compression in which large
406  values were scaled down more than small values. For details on this procedure we refer to the
407  original publication (33).

408

409 Banded ridge regression and model estimates’

410  Generally, in the linearized encoding framework (as applied in fMRI) the information
411  explained in brain activity is obtained via L2-regularized (ridge) regression (71). Ridge
412  regression is a powerful tool which allows to improve performance of encoding models whose
413  features are nearly collinear, and it minimizes overfitting. When dealing with more than one
414  encoding model, ridge regression can either estimate parameters of a joint feature space
415  (combining all feature spaces in one encoding model) or obtain model estimates from each
416  encoding model separately. Fitting a joint model with ridge regression allows considering the
417  complementarity of different feature spaces but subjects all models (feature sets) to a unique
418  regularization. As the optimal regularization required when fitting each individual feature
419  space may differ (since it depends, among others, on factors such as number of features and
420  features covariances) (27), fitting a joint model with one regularization parameter may be
421  suboptimal and can be extended to banded ridge regression. In banded ridge regression,
422  separate regularization per parameters for each feature space are optimized, which ultimately
423  improves model performance by reducing spurious correlations and ignoring non-predictive
424  feature spaces (27, 28). In the present work we used banded ridge regression to fit the three
425  encoding models and performed a decomposition of the variance explained by each of the
426  models following established procedures (27). All analyses were performed using a publicly

427  available repository in Python (Himalaya, https://github.com/gallantlab/himalaya).
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428  Model training and testing were performed in cross-validation (3-folds: training on 8 runs [216
429  stimuli] and testing on 4 runs [108 stimuli]). For each fold, the training data were additionally
430  split in training set and validation set using split-half crossvalidation. Within the (split-half)
431  training set a combination of random search and gradient descent (27) was used to choose the
432  model (regularization strength and model parameters) that maximized the prediction accuracy
433  on the validation set. Ultimately, the best model over the two (split-half) folds was selected to
434  be tested on the yield out test data (4 runs). The fMRI predicted time courses were estimated
435 as follows. Within each fold, the models’ representations of the training stimuli were
436  normalized (each feature was standardized to zero mean and unit variance withing the training
437  set). The feature matrices representing the stimuli were then combined with the information of
438  the stimuli onset during the experimental runs. This resulted in an experimental design matrix
439  (nrTRs x NrFeatures) in which each stimulus was described by its representation by each of
440  the models. To account for the hemodynamic response, we delayed each feature of the
441  experimental design matrix (15 delays spanning 15 seconds). The same procedure was applied
442  to the test data, with the only difference that when standardizing the model matrices, the mean
443  and standard deviation obtained from the training data were used. We used banded ridge
444  regression to determine the relationship between the fMRI response at each voxel, which
445  significantly responded to the localizer stimuli (p(FDR)<0.05), and the features of the encoding
446  models (stimulus representations).

447  For each cross-validation, we assessed the accuracy of the model in predicting fMRI time series
448 by computing the correlation between the predicted fMRI response to novel stimuli (4 runs,
449 108 stimuli) and the actual responses. The accuracy obtained across the three folds were then
450  averaged. To obtain the contribution of each of the models to the overall accuracy we computed
451  the partial correlation between the measured time series and the prediction obtained when

452  considering each of the models individually (27).
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453

454  Group maps and statistical inference

455  To evaluate the statistical significance of the model fittings, accuracy maps of each subject
456  were projected on the cortex based aligned group WM-GM mesh. We computed the probability
457  of the mean accuracy (across subjects) to be higher than chance by sign flipping (10000 times)
458  the correlations. This procedure allowed estimating a non-parametric null distribution for each
459  vertex, which was used to obtain a significance value for the mean accuracy. We accounted for
460  the multiple comparisons by correcting the p-values using Bonferroni correction (i.e. dividing
461 by the number of tests, equal to the number of vertices in the analysis).
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