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Abstract

The ability of bacterial pathogens to metabolically adapt to the environmental
conditions of their hosts is critical to both colonization and invasive disease. Infection
with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of
neutrophils (PMNSs), which fail to clear the bacteria and make antimicrobial products that
can exacerbate tissue damage. The inability of the human host to clear Gc infection is
particularly concerning in light of the emergence of strains that are resistant to all
clinically recommended antibiotics. Bacterial metabolism represents a promising target
for the development of new therapeutics against Gc. Here, we generated a curated
genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This
GENRE links genetic information to metabolic phenotypes and predicts Gc biomass
synthesis and energy consumption. We validated this model with published data and in
new results reported here. Contextualization of this model using the transcriptional
profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central
metabolism and induction of Gc nutrient acquisition strategies for alternate carbon
source use. These features enhanced the growth of Gc in the presence of neutrophils.
From these results we conclude that the metabolic interplay between Gc and PMNs
helps define infection outcomes. The use of transcriptional profiling and metabolic
modeling to reveal new mechanisms by which Gc persists in the presence of PMNs
uncovers unique aspects of metabolism in this fastidious bacterium, which could be
targeted to block infection and thereby reduce the burden of gonorrhea in the human

population.
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Importance

The World Health Organization (WHO) designated Neisseria gonorrhoeae (Gc) as a
high priority pathogen for research and development of new antimicrobials. Bacterial
metabolism is a promising target for new antimicrobials, as metabolic enzymes are
widely conserved among bacterial strains and are critical for nutrient acquisition and
survival within the human host. Here we used genome-scale metabolic modeling to
characterize the core metabolic pathways of this fastidious bacterium, and to uncover
the pathways used by Gc during culture with primary human immune cells. These
analyses revealed that Gc relies on different metabolic pathways during co-culture with
human neutrophils than in rich media. Conditionally essential genes emerging from
these analyses were validated experimentally. These results show that metabolic
adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying
the metabolic pathways used by Gc during infection can highlight new therapeutic

targets for drug-resistant gonorrhea.

Introduction

Neisseria gonorrhoeae (the gonococcus, Gc) is the causative agent of the
sexually transmitted infection gonorrhea. Gc is a human specific pathogen that is
uniquely adapted to colonize human mucosal surfaces, where it survives despite
initiating a robust inflammatory response and influx of innate immune cells, specifically
polymorphonuclear leukocytes (PMNSs, or neutrophils) (1). The mechanisms that Gc

uses to resist PMN clearance remain incompletely understood. Gc encodes a relatively
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small repertoire of virulence factors compared to other pathogenic bacteria, and it has
no known exotoxins (2). Instead, the success of Gc during human infection is related to
its unique physiology, in particular its ability to exploit the resources in the host
environment. Gc is a metabolic specialist that exhibits a limited carbon source
preference, growing only on glucose, lactate, and pyruvate as sole carbon sources,
suggesting that these nutrients are provided by the human host (3). As a human-
adapted pathogen, many of the molecular determinants driving the specificity for the
human host are required for nutrient acquisition (4). Metabolic gene products involved in
lactate acquisition, nutrient metal import, and anaerobiosis are all required for full Gc
virulence in models of infection ranging from cell culture to murine genital colonization to
experimental human urethral challenge (5-12). However, many aspects of Gc
metabolism remain undefined, such as the nutrients used by Gc in different infectious

contexts and the core metabolic pathways required to sustain infection.

Genome-scale metabolic network reconstructions (GENRES) are a mathematical
framework encompassing much of the known metabolic information on an organism
(13). A draft GENRE can be generated with an annotated genome and several
automated network reconstruction tools (14-17), then extensively manually curated
using published literature and experimental data. GENREs can simulate all possible
growth capabilities of an organism, which are then constrained by biological and
physical parameters such as metabolite availability and optimized for a desired
outcome, such as biomass production. GENREs enable large-scale, in silico
manipulations of bacterial metabolism and have been used in a variety of applications

including genome wide-knockout screens, synthetic lethal studies, and metabolic
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83 engineering that would otherwise be time-consuming and labor intensive to conduct

84  (18). More recently, these tools have been used for the integration and interpretation of
85 multi-omics data and applied to studies of human health and disease, including

86 modeling of the metabolism of prominent human pathogens including Mycobacterium
87 tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa, Clostridioides difficile,
88 and Salmonella typhimurium (19-21). In contrast, there is no published model of Gc

89  metabolism; while there is a GENRE for the related N. meningitidis (22), these two

90 species are known to have key differences in their metabolism, for instance in sugar

91 utilization (23). Moreover, few studies to date have applied metabolic modeling to

92  pathogens in the context of immune cells, leaving a gap in knowledge of how immune-
93 driven metabolic shifts shape bacterial metabolism. Systems-biology approaches are
94  well suited to interrogating complex metabolic network interactions between organisms
95 (24). These factors together make metabolic modeling an ideal platform for

96 understanding novel metabolic drivers of Gc virulence.

97 Here, we present iNgo_557, a GENRE of G¢c metabolism. This model enables

98 the prediction of carbon source utilization and growth yields that recapitulate the

99  behavior of Gc when grown in rich media. Metabolic network coverage in iNgo_557
100 includes genes, reactions, and metabolites that were initially identified by homology to a
101  model of N. meningitidis and further curated using an automated model with support
102 from literature evidence. The quality of iNgo_ 557 was further enhanced by update of
103 standardized formatting and improving annotations. iNgo_557 was validated by
104 comparing phenotypic predictions to experimental datasets and benchmarked with the

105 MEMOTE test suite for assessing reconstruction quality. iNgo_557 was then
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106 contextualized with transcriptomic data that we generated for Gc grown with and without
107 exposure to PMNs (Gene Expression Omnibus (GEO) database GSE123434), from

108  which we identified and characterized unique metabolic features of the bacteria during
109 an innate immune challenge. This GENRE of a clinically important, metabolically

110 fastidious bacterium is a new resource for the Neisseria and microbial metabolic

111 modeling communities. The insights into immune-driven metabolic shifts in Gc revealed
112 by this transcriptionally-guided GENRE can inform the future development of

113  therapeutic strategies to combat antibiotic-resistant gonorrhea.

114

115 Results

116 A genome-scale network reconstruction of Neisseria gonorrhoeae metabolism

117 We generated iNgo_557, a genome-scale metabolic network reconstruction of
118 Gc strain FA1090, the type strain of Gc which is widely used and highly annotated. A
119  published reconstruction of N. meningitidis M58 (Nmb_iTM560) served as the starting
120  point (22) (Fig 1A). Nmb_iTM560 was based on the highly annotated iAF1260

121  reconstruction for Escherichia coli and was built using the Biochemical, Genetic and
122  Genomic knowledge base (BIGG) framework (25). We identified homologous genes
123  between N. meningitidis M58 (AE002098.2) and N. gonorrhoeae FA1090 (AE004969.1)
124  using an homology matrix based workflow for generating high quality multi-strain

125 genome-scale metabolic models (26). Gec and N. meningitidis were found to share

126  significant homology across large stretches of the genome, particularly for metabolic

127 genes (27): Of the 560 genes, 1519 reactions, and 1297 metabolites originally present
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128 in Nmb_iTM560, 494 genes, 1223 reactions, and 1189 metabolites were preserved in

129 iNgo_557 based on homology (Dataset S1). Orphan reactions from Nmb_iTM560 with
130 no corresponding gene were included in the initial Gc reconstruction and de-orphaned
131 or removed where possible during manual curation. The format was updated to SBML
132  Level 3, the most up-to-date community standard (28). Gene, reaction, and metabolite
133 annotations were updated from KEGG, PATRIC, Uniprot, MetaNetX, MetaCyc,

134  PubMLST, and BIGG databases wherever possible (25, 29-34).

135 Characteristics of the original Nmb_iTM560 model were conserved, including the
136  presence of a periplasmic compartment, simplified cytochrome respiration pathways,
137  iron acquisition pathways from ferric iron and host proteins, and a biomass equation that
138 reflects the neisserial cell composition. Targets for manual curation of the automated
139 reconstruction in iNgo_557 included complete resolution of mass and charge balance
140 inconsistencies, the resolution of import and export loops, removal of carbohydrate

141  import through the phosphotransferase system (which is not functional in pathogenic
142  Neisseria) (23), addition of amino acid catabolism pathways, curation of

143  lipooligosaccharide synthesis for Gc and its addition to the biomass equation,

144  modification of the biomass composition for G¢c where appropriate, and simplification of
145  lipid biosynthesis (Dataset S1). Additionally, catalytic cofactors such as biotin, thiamine
146  pyrophosphate, pyridoxal-5-phosphate, iron, zinc, manganese, NAD, and FAD were
147  removed. In Nmb_iTM560, these cofactors were included as consumed reactants in
148 reactions to reflect biological requirements for biomass production (35). While useful,
149 the presence of these artificially consumed cofactors impedes the accurate

150 representation of reaction stoichiometries in the reconstruction.
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151 This homology-based reconstruction process was incapable of identifying Gc-
152  specific genes that were not present in Nmb_iTM560 (26). Therefore, to expand the

153 metabolic coverage of iNgo_ 557 for metabolic pathways that are unique to Gc, genes
154  and their corresponding reactions/metabolites were added from an automated

155 reconstruction in the BIGG namespace of Gc FA1090 that was generated using

156 CarveMe (36). Each of the unique genes identified by CarveMe was manually

157 evaluated. Of the 508 genes with metabolic functions predicted by CarveMe, 388 were
158 already present in the model. CarveMe identified an additional 39 genes and

159 corresponding reactions that were supported by manual evaluation of the literature, and
160 they were subsequently included in iNgo_557 (Fig 1A, Dataset S1) (36). The remaining
161 81 genes identified by CarveMe did not have sufficient evidence to support the assigned

162  metabolic function and were not added (Dataset S1).

163 A comparison of the overall functions captured by iINgo_557 compared to
164 Nmb_iTM560 and CarveMe automated models, as assessed by KEGG reaction
165 categories, is presented in Fig 1B. The overall quality of the reconstruction was
166 assessed using MEMOTE (37). The cumulative MEMOTE score of iNgo_557 was 91%

167  (Fig 1C).

168

169 Validation of predictions in iNgo_557 with experimental phenotypes

170 In silico predictions of biomass flux and amino acid supplementation for
171  iNgo_557 were performed and compared to experimental data to validate the model.

172  First, the compositions of three media used for Gc growth were determined: Gonococcal
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Base Liquid (GCBL), Morse’s Defined Media (MDM), and Roswell Park Memorial
Institute 1640 media (RPMI). The metabolites present in each media were assigned to
corresponding model exchanges in equivalent amounts and deemed “equally-scaled”
media (Dataset S2). These simulated media were used to compute biomass flux and
consequent predictions of Gc doubling time. Doubling time predictions made with
iINgo_557 were then compared to experimental values by conducting growth curves of
FA1090 Gc in each of these media (Fig 2A and B). The bacterial doubling times
predicted by iNgo_557 for equally-scaled media were within 13, 15, and 34 minutes of
experimentally determined values in GCBL, MDM, and RPMI, respectively (Fig 2C). All
predicted growth rates were faster than what was measured experimentally, which is
consistent with the structuring of metabolic network models to predict optimal growth

(38).

As shown in Fig 2A, growth on RPMI was the slowest experimentally, reflecting
the limited nutrient content in this media relative to MDM and GCBL (Dataset S2).
Specifically, metabolite concentrations in RPMI are ~2 to 10-fold less than the
concentrations in MDM and GCBL. For example, glucose is found in MDM and GCBL at
27.8 and 22.2 mM respectively, but in RPMI at 11.1 mM (Dataset S2). Based on these
differences, these three media were molarity-scaled for simulation in iNgo_557, which
sets exchanges to be equal to the molarity of each respective metabolite, as has been
done previously (39) (Fig 2C). While using molarity-scaled media for the substrate
concentrations did not change growth predictions for G¢c in MDM and in GCBL, the
predicted doubling time of Gc in RPMI was substantially slowed, from 30 to 146 min

(Fig 2C).


https://doi.org/10.1101/2022.12.19.521143
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.521143; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

196 To identify the substrate(s) that were limiting for Gc growth in RPMI compared
197  with MDM or GCBL, we used iNgo_557 to predict the growth rate of Gc in a revised
198 formulation of RPMI that was supplemented with 5X the concentration of each

199 component in the original medium (Table S1). In simulation of growth in equally-scaled
200 RPMI, only glucose and serine were predicted to increase Gc growth rate, while in the
201 simulation of molarity-scaled RPMI, serine, asparagine, proline, aspartate, glutamate,
202 and glycine were predicted to increase Gc growth rate (Fig 3A, Table S2). We tested
203 these predictions experimentally. Addition of 5X glucose, serine, or asparagine to RPMI
204  significantly increased the growth rate of Gc compared with unmodified RPMI (Fig 3B).
205 Addition of proline, aspartate, glutamate, or glycine exhibited a trend towards increased
206  growth, though growth differences from unmodified RPMI were not statistically

207  significant. As negative controls, the experimental growth rate of Gc was unaffected
208 when RPMI was supplemented with 5X threonine or valine, which were not predicted to
209 increase growth (Fig 3B). These findings demonstrate that iNgo_557 can accurately

210  predict those nutrients that stimulate Gc growth.

211 Gc is reported to be capable of growing on only three carbon sources: glucose,
212 lactate, and pyruvate (3). While iNgo_557 successfully predicted growth of Gc on

213 glucose, lactate, and pyruvate as carbon sources in molarity-scaled MDM (27, 43, 28
214  min doubling times), it also predicted slow growth of Gc in their absence (247 min

215 doubling time). Gc possesses pathways for catabolism of amino acids, which in some
216  other bacteria serve as carbon sources. However, Gc was unable to grow in MDM that
217 did not have one of these carbon sources added (Fig S3A), even with additional amino

218 acids experimentally added (Fig S3B). Despite this discrepancy between predicted and

10
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219  experimental growth, amino acid catabolic pathways were left intact, to account for Gc

220 usage of amino acids in the presence of its known carbon sources.

221 One metric commonly used for model validation is the comparison of gene

222  essentiality predictions generated with metabolic reconstructions with those that are

223 identified as essential through transposon mutagenesis (40). We compared gene

224  essentiality predictions yielded by iNgo_557 on GCB to a published dataset that is

225 comprised of essential genes, which were identified through the growth of strain MS11
226  transposon insertion mutants on GC agar (Dataset S3) (41). In iNgo_557, a gene was
227  predicted to be essential if less than 10% of the optimal biomass of the WT could be
228 produced by a mutant in single-gene deletion simulations. Gene essentiality was

229  predicted with an accuracy of 73% and a Mathews Correlation Coefficient (MCC) of

230 0.43 (Dataset S3). Genes correctly identified as essential included those related to LOS
231 and peptidoglycan biosynthesis, purine metabolism, and pyruvate metabolism. Of the
232 genes identified as non-essential by iNgo_557 but essential by transposon library

233 growth assays, many encoded participants in pyrimidine metabolism, oxidative

234  phosphorylation, and glycolysis. We verified that one of these genes, encoding pyruvate
235 kinase (pyk), could be deleted from Gc and that the resulting null mutant could grow in
236  GCBL containing glucose as the sole carbon source, albeit slower than the WT parent
237  or when pyruvate was provided (Fig S4). This discrepancy between predicted and

238 experimental results could be due to a number of issues, including the fact that these
239 genes could be essential for growth in a competitive setting when mixed with a library of
240  other transposon mutants, differences in media composition between GC agar and

241  GCBL, or differences in Gc strain background (42, 43). As such, arguments for a more

11
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nuanced use of gene essentiality data to validate model predictions have been
previously made (42). For these reasons, we did not use gene essentiality data for

further curation of the reconstruction, but they are included here for reference.

Transcriptome-guided modeling of Gc metabolism during co-culture with primary

human neutrophils predicts a shift in the pyruvate axis

GENREsS serve as a tool for scaffolding complex metabolic information in human-
interpretable formats. One such application is the integration of transcriptional data with
GENRESs to develop a comprehensive picture of bacterial metabolism in complex and
uncharacterized environments (44). Given that Gc is a human-specific pathogen, we
sought to use the reconstruction to predict metabolic phenotypes that are consistent
with Gc growth in the context of human neutrophils (PMNs), the predominant immune
cell that is recruited during infection. To investigate how Gc metabolism shifts in
response to co-culture with PMNs, transcriptomic data from Gc co-incubated with
PMNS for 1 hour was integrated with iNgo_557 to generate contextualized models that

offer insight to the metabolic state of Gc during infection.

To accomplish this goal, we applied the RIPTiDe (Reaction Inclusion by
Parsimony and Transcript Distribution) algorithm (45), which uses RNA-seq data to
identify the most cost-effective usage of metabolism while also reflecting the organism’s
transcriptional investment. RIPTIDE has been used successfully with models of
Pseudomonas aeruginosa and Clostridioides difficile to uncover metabolic contributors

to virulence in the context of mucin degradation, biofilm formation, murine infection

12
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264  models, and co-culture with other microbes (19, 21, 46). We reasoned this approach
265 would generate context-specific models of the metabolism of Gc when grown with and
266  without PMN co-culture and would identify those reactions that are likely to be

267 differentially active in each condition. The transcriptome data set we used was from a
268  constitutively opacity protein-deficient isolate of strain FA1090 Gc, which was cultured in
269 RPMI + 10% fetal bovine serum for 1 hour. Gc was cultured in the presence or absence
270  of primary human PMNs that were adherent and treated with the chemokine interleukin-
271 8 to reflect the activated state of immune cells during infection (47). This isolate of Gc
272  remains primarily extracellular when exposed to PMNs (48). RIPTiDe generated two
273  context-specific models of Gc metabolism: one for Gec in medium without PMNSs, and
274  one for Gc with PMNs. For each of the two models, flux samples were generated to

275 assess all possible metabolic profiles in the two environmental contexts. Flux samples
276  generated with the models significantly correlated with the transcript abundances

277  derived from RNAseq for each condition (r=0.242, p<0.001 for Gc without, and r=0.263,
278  p<0.001 for Gc with PMNSs), indicating that the context-specific metabolic profiles

279  predicted with RIPTiDe align with experimental data.

280 Biomass flux was significantly increased in the contextualized model of Gc co-
281  cultured with PMNs, compared with Gc cultured without PMNs (Fig 4A), suggesting an
282  overall stimulation of Gc metabolism in the presence of PMNSs. Flux distributions for
283  each model were then compared using non-metric multidimensional scaling (NMDS) of
284  consensus reactions shared between both models to broadly identify metabolic growth
285 patterns used by the context-specific models. NMDS revealed that the sampled flux

286  distribution for Gc co-cultured with PMNs overlapped with, but was distinct from, the

13
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sampled flux distribution for Gc cultured without PMNs (Fig 4B). This result reflects that
the media used for growth is consistent between the two models, but co-culture with

PMNs caused a shift in metabolic pathways used for growth.

We further analyzed the contextualized models to better understand the shifts in
metabolism that resulted in the distinctions observed in the NMDS analysis. Reactions
unique to each model (hon-consensus reactions) were identified, and the absolute
median activity for each reaction was determined to examine the contribution of each
reaction to biomass production (Fig 4C). From this analysis, we identified a set of 19
reactions that were unique to Gc¢ co-cultured with PMNs and 8 reactions unique to Gc
cultured without PMNs. Several reactions involved in metabolite import and catabolism
were unique to Gc co-cultured with PMNSs, suggesting that there are changes to the
metabolites available to Gc in this condition, possibly due to competition with or
excretion by PMNSs. Specifically, pyruvate and D-lactate exchange reactions were
unique to Gc co-cultured with PMNSs, suggesting bacterial use of these alternative
carbon sources in this infection condition (Fig 4C). This observation aligns with
extensive evidence that PMNs secrete lactate as a byproduct of oxidative metabolism,
which stimulates Gc growth (5, 49). Similarly, Gc co-cultured with PMNs were also
predicted to uniquely carry flux through nitrogen metabolism, in particular the import of
nitric oxide and nitric oxide reductases (Fig 4C). These findings align with the reported
production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) in stimulated
PMNs (50). Although NO is used by phagocytes to directly kill pathogens, Gc can
exploit this aspect of inflammation by detoxifying NO to nitrite, or using nitrite and nitric

oxide as terminal electron acceptors during anerobic growth (51). Together, these

14
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310 observations support the hypothesis that neutrophil byproducts mediate remodeling of

311 Gc metabolism.

312 We next assessed reactions that were shared between both models of Gc

313  cultured without PMNs and Gc co-cultured with PMNs but carried different levels of flux.
314  From this, we identified reactions that most strongly discriminated between metabolic
315 activity of the two models. This analysis employed a supervised machine learning

316 approach with Random Forest, a categorization algorithm that can segregate flux

317 samples based on the contextualized models (Fig 4D). We then assessed mean

318 decrease accuracy (MDA) to identify reactions that, when removed from the model,

319 most affected the categorization predictions of the Random Forest. Gc grown in the

320 presence and absence of PMNs were particularly distinguished by flux out of the

321 pyruvate node, through acetate synthesis. Specifically, acetate exchange, acetate

322  transport, acetate kinase, and acetate phosphotransacetylase were identified as

323 reactions that impacted the categorization capabilities of the Random Forest (MDA

324 ~13%) (Fig 4D). Acetate production is a prominent feature of bacterial overflow

325 metabolism, in which ATP is generated from the production of acetate from acetyl-CoA
326  via the PTA-AckA pathway rather than shuttled into carbon backbones for biomass (52).
327  Visualization of flux balance analysis (Fig 5A and B) demonstrated a predicted increase
328 in acetate flux in co-culture with PMNSs, consistent with increased carbon flux from the

329 addition of alternative carbon sources, such as lactate and pyruvate.

330 Conditionally essential genes were predicted by conducting essential gene
331 calculations in each model, then comparing between them (Table 1, Dataset S4).

332 Twelve genes were predicted to be essential only when Gc was cultured without PMNSs,
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333 and 2 genes were predicted to be essential only when Gc was co-cultured with PMNs.
334  Of the 12 genes predicted to be essential only when Gc was cultured without PMNs, 7
335 are within a single pathway exiting the pyruvate synthesis node (Table 1): pyruvate
336  kinase (pyk), portions of the pyruvate dehydrogenase complex (dldH), phosphate

337 acetyltransferase (pta), citrate synthase (gltA), aconitase (acnB), and isocitrate

338 dehydrogenase (idh) were all predicted to be essential only for Gc cultured without

339 PMNs.

340 To test the prediction that pyruvate synthesis genes were essential for Gc in rich
341  growth medium but dispensable for Gc in the presence of PMNs, we generated a null
342  mutant in pyruvate kinase (Apyk), the first enzyme in this pathway. As expected, Apyk
343 had a growth defect in MDM containing glucose as the sole carbon source, while the
344  WT parent grew in this medium (Fig 6A). Also as expected, Apyk and WT Gc grew

345 equally well in MDM containing either lactate or pyruvate as the sole carbon source (Fig
346 6B and C). We then measured growth of WT and Apyk Gc in the conditions used to
347  collect the PMN transcriptomics data. In RPMI + 10% FBS, the Apyk mutant stopped
348 growing after 3 hours, and by 24 hours its viability had declined to 1% of the inoculum.
349 In contrast, when cultured in the presence of PMNs, Apyk Gc grew significantly better
350 than Gc in the absence of PMNs, and in fact increased in viability over 24 hours (Fig
351 6E, F, G, and H). WT Gc grew over this time whether or not PMNs were present (Fig
352 6D, F, G, and H). These results suggest that Gc co-cultured with PMNs has a

353 decreased need for flux through glycolysis and instead imply that Gc has access to

354  alternative carbon sources such as lactate and pyruvate, which support its growth in the

355 presence of PMNs independently of the glycolytic pathway.
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356 Discussion

357 Over the last twenty years, genome-scale metabolic modeling has become a

358 powerful tool for context-specific interrogation of complex biological networks. In this
359 study, we developed a highly curated genome-scale metabolic network reconstruction,
360 titled iINgo_557, for Gc strain FA1090. This model predicts the use of glucose, lactate,
361 and pyruvate as carbon sources for Gc, and an increase in growth when selected amino
362 acids are supplemented in cell culture medium containing one of these carbon sources
363 (3).iNgo_557 was contextualized using transcriptomics data that we recently generated
364  (47) to identify shifts in Gc metabolism that occur in response to co-culture with PMNs.
365 These results represent the first use of genome-scale metabolic modeling in Gc for

366 discovery of metabolic contributors to virulence.

367 Through the linkage of gene, reaction, and metabolite information, iNgo_ 557
368 facilitates rapid and convenient manipulation of metabolic parameters to identify

369 contributors towards Gc pathogenesis that are otherwise complicated, time-consuming,
370 orlaborious to replicate in vitro. Independently, GENRESs can be used to simulate well
371 defined environmental contexts, such as growth in laboratory media. We developed in
372  silico representations of three commonly used media for Gc. iINgo 557 accurately

373 reflects experimental growth phenotypes in these media and can be used to predict Gc
374  growth phenotypes following distinct manipulations to these media. We demonstrated
375 one such use: identification of growth-limiting nutrients in RPMI. Other applications

376 include nutrient drop-out experiments, aerobic and anaerobic growth, and gene

377 essentiality studies.
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378 While the predictions generated by our model were consistent with experimental
379 results, incorrect predictions are also informative, revealing points of obscurity in our
380 understanding of Gc metabolism. For example, iNgo_557 predicted growth of Gc in
381 MDM in the absence of a dedicated carbon source (glucose, lactate, pyruvate). Upon
382  further interrogation, the predicted growth of Gc on MDM without a carbon source was
383 due to consumption of serine and alanine as carbon sources. Although Gc encodes the
384 genes necessary to catabolize these amino acids (ALATA L/ NGO_1047 and

385 SERD_L/NGO_1773 and NGO_0444), it is unable to use amino acids as a sole carbon
386 source (Fig S3). In other bacteria, such as P. aeruginosa, transcriptional and post-

387 transcriptional regulation of serine catabolism has been found to prevent the use of
388 serine as a sole carbon source (53). Our results suggest that a similar form of

389 transcriptional regulation may also dictate Gc carbon source utilization. These

390 discrepancies serve as points for further investigation and facilitate hypothesis

391 generation.

392 Incorporation of additional layers of regulatory information can improve model
393 accuracy, particularly for the modeling of complex environments such as during co-

394  culture with other species or cell types, which is impeded by lack of knowledge of the
395 metabolite environment. As a human-adapted mucosal pathogen, Gc must co-exist with
396 a complex assortment of human microbiota, epithelial cells, and mucosal immune cells.
397  The recruitment of PMNs and the inflammation associated with gonococcal infection
398 further complicate an already complex metabolic environment. Transcriptomic

399 integration with metabolic models serves to deconvolute the modeling of these complex

400  settings through unsupervised contextualization of GENRESs for a specific environment.
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401  As such, we leveraged RIPTiDe with iNgo_557 to better understand the metabolic

402  pathways enabling Gc growth during co-culture with PMNs and to predict the behaviors
403  of this host-associated bacterial species. Intriguingly, several genes are predicted to be
404  essential only when Gc is cultured without PMNSs, but not in the context of PMNSs. The
405 majority of genes predicted to be essential in the absence of PMNs were downstream of
406  pyruvate kinase (pyk) within pathways exiting the pyruvate synthesis node. We

407  validated this prediction by showing that Gc required pyruvate kinase for growth in rich
408  medium, but not when co-cultured with PMNs. Metabolic modeling using iNgo_557

409 predicts that this effect is due to the bypass of pyruvate synthesis through import of

410 alternative carbon sources, including lactate and pyruvate, when in the presence of

411  PMNSs, which is supported by our growth data. Our results align with previous reports
412  showing the ability of Gc to consume lactate and pyruvate derived from host cells (5, 49,
413  54). PMNs are highly glycolytic cells, consuming glucose and secreting lactate following
414  stimulation with PAMPs (49). Use of lactate was previously reported to be required for
415  Gc survival from PMNSs, within cervical epithelial cells, and in the female mouse genital
416 tract (5, 6, 55). The increase in biomass flux predicted for models of Gc cultured with
417  PMNs compared to Gc cultured without PMNSs is further consistent with reports that Gc
418 growth on lactate stimulates Gc metabolism (49, 55). Together these results provide
419 evidence that Gc utilizes addition alternative carbon sources, such as lactate and

420 pyruvate, when co-cultured with PMNSs to enhance its growth.

421 Regardless of the source, carbon exiting the pyruvate synthesis node, can
422  proceed in one of two pathways in Gc: acetate production or oxidation through the TCA

423  cycle. Acetate production through the PTA-AckA pathway is a prominent feature of Gc
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424  growth on glucose, lactate, and pyruvate (52, 56). Downstream of pyruvate kinase,

425 iNgo_557 predicted increases in Gc acetate production when in the presence of PMNSs.
426  In N. meningitidis, acetate is secreted following growth on glucose, lactate, and

427  pyruvate, and the highest activity of the PTA-AckA pathway occurs when all three

428  carbon sources are present, compared with glucose alone (56). Our results are

429  consistent with this observation. Alternatively, glucose, lactate, and pyruvate can

430 instead be further catabolized by the TCA cycle. In N. meningitidis, pyruvate

431 dehydrogenase (dIdH), citrate synthase (gltA), aconitase (acnB), and isocitrate

432  dehydrogenase (idh) reaction activities were all demonstrated to be high in the

433  presence of glucose, but decreased in the presence of pyruvate (56). Consistent with
434  the stimulation of these enzymes in the presence of glucose compared to pyruvate,

435 iNgo_557 predicted dldH, gltA, acnB, and idh to be essential only in the absence of

436  PMNSs, in which glucose is the sole carbon source available. The alleviation of the

437  requirement for acnB in the context of PMN co-culture is notable in light of a recent

438  study that identified compensatory mutations within acnB that enabled the recovery of
439  antibiotic-resistant penA mutant Gc from the mouse genital tract (57). Together our

440 results highlight the pyruvate node as a critical pivot point in Gc metabolism, particularly
441  in the context of an inflammatory environment created by PMNs. Overall, the predictions
442  generated here by contextualized models of iNgo_557 reveal new insights into Gc

443  pathogenesis, highlighting it as a viable platform for the discovery of metabolic

444  pathways associated with virulence and antibiotic resistance.

445 Treatment options for G¢c have become increasingly limited over the last two

446  decades, and only a single recommended antibiotic remains for the treatment of
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447  gonorrhea (58). The development of new potential therapies is essential to avoid the
448  threat of completely antibiotic-resistant Gc. Targeting essential bacterial metabolic

449  pathways during infection represents a promising approach, one that was first shown
450 decades ago in the context of sulfonamide antibiotics, which directly inhibit folate

451  synthesis (59). Novel approaches for the treatment of antibiotic-resistant infections have
452  included the application of metabolites to shift the metabolism of pathogens towards a
453 less favorable state (60). There is a need for a revisitation of Gc metabolism and

454  physiology in light of the approaching post-antibiotic era for gonorrhea (61).

455  Technologies such as RNA-sequencing, forward and reverse genetic screens, and

456  metabolic modeling can all provide insights into Gc metabolism. Here, the integration of
457  transcriptomics with genome-scale metabolic modeling is synergistic, providing more
458 insight into the remodeling of Gc metabolism in the context of PMN co-culture than

459  could be discerned from each technique alone. In sum, this study highlights the

460 opportunities afforded by genome-scale metabolic modeling for targeted identification of
461  context-specific essential metabolic pathways that enable Gc to thrive within the human

462  host, with further predictions and discoveries remaining to be made.

463

464 Methods

465 Genome-scale metabolic reconstruction

466 To generate a GENRE for Gc, we used N. meningitidis M58 Nmb_iTM560 as an
467 initial template for the automated multi-strain model, reconstruction pipeline (26). In

468  brief, the pipeline used bidirectional best hit BLAST to identify genes with >80%
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469  homology between N. meningitidis M58 (AE002098.2) and N. gonorrhoeae FA1090
470 (AE004969.1) to generate a homology matrix for the two species. A secondary

471  comparison using BLAST on nucleotide sequences was conducted to identify potential
472  homologs with poor ORF annotation. These automated calls were inspected and

473  reassessed for each gene present in Nmb_iTM560 as indicated in Dataset S1. Using
474  the homology matrix, a draft strain-specific model was generated using COBRApy (62).
475  Metabolic genes (and the corresponding reactions and metabolites) specific to Gc

476  FA1090 were added to the reconstruction using CarveMe when supported by literature
477  evidence (36). Exchange reactions that were missing for extracellular metabolites in the
478  reconstruction were added. The model was then further manually curated to de-orphan
479  reactions and incorporate published metabolic functions for Gc according to literature
480 evidence where possible (Dataset S1). Final gene and reaction calls, along with

481  decision annotations, can be found in Dataset S1. Annotation data was automatically
482  assigned using ModelPolisher (63). Reaction and stoichiometric inconsistencies were
483  corrected for each reaction. All formulas were mass and charge balanced using the

484  BIGG database, when possible, in order to maintain a consistent namespace (25). A list
485 of mass and charge imbalanced reactions and their corrections are provided in Dataset
486  S1. Additional annotations were collected and added to the annotation field dictionary
487  for all model components from KEGG, PATRIC, Uniprot, MetaNetX, MetaCyc,

488 PubMLST, or BIGG databases (25, 29-33, 64). The pipeline for development of the

489  reconstruction is available in the GitHub repository associated with this study

490 (https://github.com/aimeepotter/Gc_ GENRE_2022).

491
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492  Assessing reconstruction quality

493 Modeling assessments, including flux balance analysis, flux-variability analysis, single
494  gene knock-out analysis, were conducted using COBRApy (62). Model quality was

495 assessed with MEMOTE using a local installation v0.13.0 (37). Gene essentiality

496  predictions were compared to a published dataset of essential genes for growth on

497  solid, rich media for Gc strain MS11 (41), which was aligned to Gc FA1090 by

498  bidirectional best hit BLAST as above. Prediction accuracy was calculated as the

499 number of correct predictions divided by the number of total predictions for genes

500 presentin both datasets, and the Matthews correlation coefficient (MCC) was calculated

501 asin (65).

502 A protocol for defining realistic modeling constraints for in silico media was

503 recently described, in which metabolite exchanges are scaled based on the maximum
504 possible usage defined by the concentration of metabolites in mmol/L (39). We

505 therefore generated two in silico exchange reaction constraints for each simulated

506 media: equally-scaled, to avoid constraining the model with incorrect assumptions, and
507 molarity-scaled, to match the maximum possible use of metabolites. The concentration
508 of metabolites present in each media and their corresponding assignments to in silico
509 media constraints are detailed in Dataset S2. Biomass flux and subsequent doubling
510 times for simulated growth in GCBL, MDM, and RPMI were compared to experimental
511 values. Predictions of Gc doubling time were calculated assuming a biomass equation

512 scaled to 1g dry weight of bacteria based on the following formula:

513 Doubling Time = In(2)*60/(objective value)

23


https://doi.org/10.1101/2022.12.19.521143
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.521143; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

514  Experimental doubling times were determined using GrowthCurver implemented in R for

515 both OD and CFU/ml, with stationary phase values trimmed (66).

516

517 RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution)

518 contextualization & analysis

519  Transcriptomic data retrieved from the Gene Expression Omnibus (GEO) database

520 (GSE123434) for Gc cultured without and with PMNs over the course of 1 hour was

521  mapped to the corresponding FA1090 gene IDs using the conversion table provided in
522  Dataset S1 of (47). For RIPTiDe contextualization, an unsupervised approach was used
523 in which all exchange reaction bounds were set to +10, except oxygen, which was set at
524  +20. The transcriptomic data was then integrated with the model using RIPTiDe using
525 the maxfit_contextualize() function (minimum fraction 0.3, maximum fraction 0.8,

526  n=1000) to produce contextualized models for Gc grown in the presence or absence of
527 PMNs (45). Flux samples were gathered from consensus reactions between both

528 contextualized models (n=500 samples per model). Bray-Curtis based NMDS (k=4,

529 trymax=25) and permutational multivariate analysis of variance (PERMANOVA)

530 (perm=999) analyses were accomplished using the Vegan R package (67). Supervised
531 machine learning was accomplished with the implementation of AUC-Random Forest
532 alsoin R (68). Statistical analysis was performed in R v4.1.0. Visualizations of flux

533 balance analysis were performed using Escher (69).

534

535 Bacterial strains and growth conditions
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536 Opaless Gc is a non-variable Opa-deficient derivative of the FA1090 background

537  constitutively expressing the pilin variant 1-81-S2, which served as the WT for all

538 experiments (48, 70). Strain 130 Apyk was generated by transformation with an overlap
539 extension PCR product, replacing the pyk ORF with a spectinomycin resistance

540 cassette using the following primers: Pyk Upstream F-CCGAATACGGCGACTTTACC,
541  Pyk-Sacl-Omega F-

542 CAAAATCGTCGCCACCCTTGGAGCTCTGCCCGTTCCATACAGAAGC, Pyk upstream
543 R-GCTTCTGTATGGAACGGGCAGAGCTCCAAGGGTGGCGACGATTTTG, Pyk

544  downstream F-

545 GCTCACAGCCAAACTATCAGGTGAGCTCCAGACGGAGTATCCCGAAGC, Pyk-sacl-
546 Omega R- GCTTCGGGATACTCCGTCTGGAGCTCACCTGATAGTTTGGCTGTGAGC,
547  Pyk downstream R- ACTGTGTGCCGAAGTGGTAG. Mutation was confirmed by

548 sequencing and PCR.

549 WT Gc were grown on Gonococcal Medium Base (GCB, Difco) plus Kellogg’s
550 supplements at 37°C with 5% CO2 (71, 72). Apyk strains were grown on GCB plus

551  Kellogg’s supplements with glucose replaced by pyruvate (36 mM) as in (54). For

552  preparation of mid-logarithmic phase bacteria, Gc were grown in liquid medium (GCBL)
553 or carbon matched GCBL containing pyruvate (45 mM) as the sole carbon source,

554  where appropriate, for successive rounds of dilution, and enriched for piliation, as

555 previously described (73). Spectinomycin was used for selection of the pyk mutation at

556 80 pg/ml.

557
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558 Growth Curves

559 Gc in mid-logarithmic phase were pelleted, resuspended in the indicated media,
560 and diluted to ~5*10"7 CFU/ml in 6 ml of media in 15 ml conical tubes (Sarstedt). The
561 bacterial suspension was incubated with rotation at 37°C. Bacterial growth was

562 measured by ODsso and CFU enumeration at specific timepoints. CFU are presented
563 relative to 0 h (100%). Gc was grown in GCBL, HyClone RPMI 1640 media without

564 glutamine (Catalog#SH30096.FS) (Cytivia), or carbon-matched Morse’s defined media
565 (MDM) containing either glucose (27mM), lactate (54mM) or pyruvate (54mM) (74).

566  Doubling times were calculated from best fit logistic curves generated with

567  GrowthCurver (66) for the lag and exponential phase of each growth curve for at least 3
568 experimental replicates and averaged. Significant differences for growth over time were

569 determined by one-tailed t-test in Graphpad Prism v9.

570

571 Gc-PMN co-culture

572 PMNs were isolated from venous blood as previously described and used within
573 2 hofisolation (73). Subjects gave informed consent in accordance with an approved
574  protocol by the University of Virginia Institutional Review Board for Health Sciences

575 Research (#13909). Synchronized Gc infection of PMNs in suspension was conducted
576 as previously described (75). PMNs were resuspended in RPMI (Cytivia) containing

577 10% heat-inactivated fetal bovine serum (Gibco) at 1x10% PMN/ml and Gc was added to
578 each tube at a multiplicity of infection of 10. Six ml of the suspension was incubated in

579 15 ml conical tubes with rotation at 37°C. Bacterial CFU were enumerated at specified
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580 time points and expressed relative to the CFU at 0 h (100%). Data are expressed as the
581 mean + SEM of at least three replicate experiments. Significant differences were

582 determined by two-way ANOVA with Holm-Sidak correction for multiple comparisons in
583  Graphpad Prism v9.

584

585 Data and Code Availability

586 Python and R code/packages/scripts used to perform transcriptomics data

587 analyses and generate figures are available on GitHub at

588 https://github.com/aimeepotter/Gc_GENRE_2022. All RNA-seq data are available in the
589 Gene Expression Omnibus (GEO) database under accession GSE123434 (47).

590
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820 Fig 1. Genome-scale metabolic model of Gc strain FA1090. (A) (Upper panel)
821 Comparison of Gc strain FA1090 and N. meningitidis strain MC58. (Lower panel)
822  Properties of iINgo_557, CarveMe FA1090, and Nmb_iTM560. (B) Comparison of KEGG
823 functional annotations for genes present in the three models. Some genes have multiple
824  functions and are assigned to multiple categories. (C) MEMOTE benchmarking scores
825 of iINgo_557.
826

37


https://doi.org/10.1101/2022.12.19.521143
http://creativecommons.org/licenses/by-nc/4.0/

827

828

829

830

831

832

833

834

835

836

837

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.521143; this version posted December 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

fhe

1000

Percent of TO

100

GCBL
MDM

B 1.0

0D550

—o— GCBL

6 6
Hour Hour
c Doubling Time (Min)
Experimental In Silico
Media Media
CFU/ml 0D550 (Equally- (Molarity-

Scaled) Scaled)
GCBL 43 53 30 28
MDM 44 58 29 27
RPMI 74 - 30 146

Fig 2. iINgo_557 predicts doubling times that reflect relative growth of Gc in three

culture media. Log phase WT Gc was backdiluted into GCBL, MDM, or RPMI and

grown over 5 hours. Growth was monitored by (A) enumeration of CFU/mI, reported as

percent of CFU measured at 0 hours or (B) optical density at 550 nm. Optical density for

Gc grown in RPMI was not determined due to the presence of phenol red indicator that

interfered with the readings. n = 4-5 biological replicates. Symbols represent the mean.

Error bars represent SEM. (C) Doubling time from A and B was calculated for Gc grown

in each medium using GrowthCurver and compared to the predicted doubling times in

silico using the equivalent concentrations of each nutrient in the different media.
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838

839 Fig 3. Identification of nutrients that limit Gc growth in RPMI. A) Metabolites in

840 RPMI that are predicted using iNgo_557 to increase Gc growth when increased by 5X
841 the standard flux. Increase in doubling time represented by 1 = 10%, 11 = 20%, and 111
842 =2 30%. B) WT Gc was grown in RPMI supplemented with 5X the concentration of the
843 indicated metabolites for 5 hours. Growth was monitored by enumeration of CFU/ml,
844  and doubling time was calculated using GrowthCurver. Results are from n = 3 biological
845  replicates. Bars represent the mean. Error bars represent SEM. Dotted line indicates
846  doubling time in unmodified RPMI (black bar). Metabolites predicted to increase growth
847  are in gray bars; control metabolites predicted to not increase growth are in hatched

848  bars. *, P < 0.05 by one-tailed t test relative to unmodified RPMI.

849
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853 Fig 4. Metabolic activity predictions differ between Gc cultured without PMNs and
854 Gc co-cultured with PMNs. Transcriptomes from Gc cultured with and without PMNs

855 for 1 hour were used to generate context-specific models of iINgo_557 using RIPTiDe.
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856 Inactive reactions were pruned during contextualization. (A) Boxplot of biomass

857  objective flux distributions (n=500) from each context-specific model. Significance
858 determined by Wilcoxon rank sum test (P value <0.001). (B) Axes 1 and 2 of four-
859 dimensional Bray-Curtis based NMDS ordination for flux sampling results from non-
860 biomass reactions shared between context-specific models of iNgo_557. Significant
861 difference determined by PERMANOVA. (C) The median absolute value of reaction
862  activities for uniquely active metabolic reactions in each context-specific model. Black
863  boxes indicate reactions are absent in the corresponding model. (D) Random Forest
864  supervised machine learning was used to categorize flux sample activity as Gc without
865 PMNs and Gc with PMNSs for non-biomass metabolic reactions shared between the
866  contextualized models. The mean decrease accuracy, which predicts the impact of
867 removal of the reaction from the model on Random Forest categorization predictions
868  (Gc without PMNs vs Gc with PMNSs), for the top 20 most differentiating reactions is

869 shown.

870
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872 Fig 5: Visualization of flux balance analysis for central carbon metabolism in

873 contextualized models of Gc with and without PMNs. Orange circles indicate

874 metabolites. Relevant imported and exported metabolites are indicated in bold. Arrows
875 indicate reactions. The intensity of coloration and the arrow size indicate the degree of
876  flux through reactions. Conditionally essential genes corresponding to reactions are

877 indicated in italics. Schematics were generated with Escher.

878
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880 Fig 6: Pyruvate kinase is conditionally essential for N. gonorrhoeae in glucose-
881 containing medium, but not for bacteria cultured with PMNs. WT Gc and isogenic
882  Apyk mutant were cultured in MDM containing (A) glucose, (B) pyruvate, or (C) L-lactate
883 as the primary carbon source. Growth over 5 hours was monitored by optical density at
884 550 nm for n = 3 biological replicates. Symbols represent the mean. Error bars

885 represent SEM. (D-G) WT and Apyk Gc were exposed to primary human PMNs in

886  suspension or inoculated in RPMI + 10% FBS. CFU were enumerated at 0.5, 1, 2, 3,

887 and 24 hours, and Gc growth is reported relative to CFU for that strain at O hour (100%).
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888 (D and E) Growth curves with (D) and without (E) PMNs over 3 hours. (F and G) Gc
889 CFU at (F) 3 and (G) 24 hours, reported as the percent of CFU for that strain at O hours
890 (100%). Bars represent the mean. Error bars represent SEM. n=3 biological replicates.
891  Significance was determined by two-way ANOVA with Holm-Sidak correction for

892  multiple comparisons, * p < 0.05.

893

894
895
896
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897 Table 1: Conditionally essential genes predicted by single gene deletion analysis

898 of contextualized models of Gc without PMNs and Gc with PMNSs.

Ngo ID ‘ Annotation ‘ Gene ID
Gc co-cultured with PMNs

inosine-5-monophosphate
NGO0799 dehydrogenase imdH
NGO2164 GMP synthase guaA
Gc cultured without PMNs
NG00214 phosphate acetyltransferase pta
NGO0562 dihydrolipoamide dehydrogenase didH
NGO0918 citrate synthase gltA
NGO0925 dihydrolipoamide dehydrogenase didH
NG01082 isocitrate dehydrogenase Idh
NGO1231 aconitate hydratase acnB
NGO1325 glycine dehydrogenase gcvP
NGO1404 glycine cleavage system protein H gcvH
NGO1406 glycine cleavage system protein T gevT
NGO1470 NAD(P) transhydrogenase subunit alpha pntA
NGQO1472 NAD(P) transhydrogenase subunit beta pntB
NG01881 pyruvate kinase pyk

899
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900 Supplemental Material

901 Fig S1: Best fit logistic curves generated with GrowthCurver were used to

902 calculate experimental doubling time for Gc grown in GCBL, MDM, and RPMI. Log
903 phase WT Gc was backdiluted into GCBL, MDM, or RPMI. Growth over 5 hours was
904 monitored by (A) enumeration of CFU/mI or (B) optical density at 550 nm. Optical

905 density for Gc grown in RPMI was not reported due to phenol red indicators in the

906 media. n = 4-5 biological replicates.

907 Fig S2: Best fit logistic curves generated with GrowthCurver were used to

908 calculate experimental doubling time of Gc grown in RPMI supplemented with
909 potential limiting metabolites. Log phase WT Gc was backdiluted into RPMI

910 supplemented with 5X the standard concentration of metabolites indicated in Fig. 3.
911 Glucose (GLC), serine (SER), asparagine (ASN), proline (PRO), aspartate (ASP),
912 glutamate (GLU), and glycine (GLY) were predicted to be growth limiting; threonine
913 (THR) and valine (VAL) were not predicted to be growth limiting. Growth over 5 hours

914  was monitored by enumeration of CFU/ml. n = 3 biological replicates per condition.

915 Fig S3: N. gonorrhoeae requires glucose, pyruvate, or lactate as a carbon source
916 for growth. Log phase WT Gc was backdiluted into MDM containing (A) no dedicated
917 carbon source (no glucose, lactate, or pyruvate) or (B) with 1% Casamino acids added
918 as the carbon source. Growth was monitored by optical density at 550 nm over 5 hours.
919 (A) n = 3 biological replicates. Symbols represent the mean. Error bars represent SEM.

920 (B) n =1 biological replicate.
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921 Fig S4: Growth dynamics of WT and Apyk N. gonorrhoeae in GCBL with different

922 carbon sources. Log phase WT Gc and an isogenic Apyk mutant were backdiluted into
923  GCBL containing (A) 22 mM glucose or (B) 45 mM pyruvate as the primary carbon

924  source and grown for 5 hours. Growth was monitored by optical density at 550 nm for n

925 =1 biological replicate.

926 Fig S5: A N. gonorrhoeae pyk mutant does not grow in RPMI containing glucose
927 as sole carbon source. Log phase WT Gc and an isogenic Apyk mutant were

928 backdiluted into RPMI. Growth over 5 hours was monitored by enumeration of CFU/ml
929 reported as percent of CFU measured at 0 hours (100%). Symbols represent the mean.

930 Error bars represent SEM. n=3 biological replicates.

931 Table S1: Concentrations of nutrients predicted to be limiting for Gc growth in

932 RPML.

933 Table S2: Growth predictions for N. gonorrhoeae in RPMI in equally-scaled or
934 molarity-scaled models when selected metabolites are added at five-fold the

935 original concentration. ! Increase in predicted growth rate when the indicated

936 metabolite is increased by five-fold (5x), expressed relative to growth rate in unmodified

937 RPMIL.

938 Dataset S1: Annotations on the curation of reactions, metabolites, and genes of

939 iNgo_557.

940 Dataset S2: In silico formulations for GCBL, MDM, and RPMI. Simulated media include
941 an “equally-scaled” and a “molarity-scaled” formulation. “Molarity-scaled” formulation

942  based on calculated molarities of metabolites present in GCBL, MDM, and RPMI.
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943 Dataset S3: Essential gene predictions for iNgo_557 on simulated GCBL. Genes were
944  deemed essential if knock-out of the gene resulted in <10% of maximal biomass
945 production. Essential gene predictions were compared to experimentally determined

946  essential genes from MS11.

947 Dataset S4: Essential gene predictions with contextualized models of iNgo_557 for Gc
948  without PMNs and Gc with PMNs. Genes were deemed essential if knock-out of the

949 gene resulted in <10% of maximal biomass production.

950
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