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Abstract 15 

The ability of bacterial pathogens to metabolically adapt to the environmental 16 

conditions of their hosts is critical to both colonization and invasive disease. Infection 17 

with Neisseria gonorrhoeae (the gonococcus, Gc) is characterized by the influx of 18 

neutrophils (PMNs), which fail to clear the bacteria and make antimicrobial products that 19 

can exacerbate tissue damage. The inability of the human host to clear Gc infection is 20 

particularly concerning in light of the emergence of strains that are resistant to all 21 

clinically recommended antibiotics. Bacterial metabolism represents a promising target 22 

for the development of new therapeutics against Gc. Here, we generated a curated 23 

genome-scale metabolic network reconstruction (GENRE) of Gc strain FA1090. This 24 

GENRE links genetic information to metabolic phenotypes and predicts Gc biomass 25 

synthesis and energy consumption. We validated this model with published data and in 26 

new results reported here. Contextualization of this model using the transcriptional 27 

profile of Gc exposed to PMNs revealed substantial rearrangements of Gc central 28 

metabolism and induction of Gc nutrient acquisition strategies for alternate carbon 29 

source use. These features enhanced the growth of Gc in the presence of neutrophils. 30 

From these results we conclude that the metabolic interplay between Gc and PMNs 31 

helps define infection outcomes. The use of transcriptional profiling and metabolic 32 

modeling to reveal new mechanisms by which Gc persists in the presence of PMNs 33 

uncovers unique aspects of metabolism in this fastidious bacterium, which could be 34 

targeted to block infection and thereby reduce the burden of gonorrhea in the human 35 

population. 36 

 37 
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Importance  38 

The World Health Organization (WHO) designated Neisseria gonorrhoeae (Gc) as a 39 

high priority pathogen for research and development of new antimicrobials. Bacterial 40 

metabolism is a promising target for new antimicrobials, as metabolic enzymes are 41 

widely conserved among bacterial strains and are critical for nutrient acquisition and 42 

survival within the human host. Here we used genome-scale metabolic modeling to 43 

characterize the core metabolic pathways of this fastidious bacterium, and to uncover 44 

the pathways used by Gc during culture with primary human immune cells. These 45 

analyses revealed that Gc relies on different metabolic pathways during co-culture with 46 

human neutrophils than in rich media. Conditionally essential genes emerging from 47 

these analyses were validated experimentally. These results show that metabolic 48 

adaptation in the context of innate immunity is important to Gc pathogenesis. Identifying 49 

the metabolic pathways used by Gc during infection can highlight new therapeutic 50 

targets for drug-resistant gonorrhea. 51 

 52 

Introduction 53 

 Neisseria gonorrhoeae (the gonococcus, Gc) is the causative agent of the 54 

sexually transmitted infection gonorrhea. Gc is a human specific pathogen that is 55 

uniquely adapted to colonize human mucosal surfaces, where it survives despite 56 

initiating a robust inflammatory response and influx of innate immune cells, specifically 57 

polymorphonuclear leukocytes (PMNs, or neutrophils) (1). The mechanisms that Gc 58 

uses to resist PMN clearance remain incompletely understood. Gc encodes a relatively 59 
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small repertoire of virulence factors compared to other pathogenic bacteria, and it has 60 

no known exotoxins (2). Instead, the success of Gc during human infection is related to 61 

its unique physiology, in particular its ability to exploit the resources in the host 62 

environment. Gc is a metabolic specialist that exhibits a limited carbon source 63 

preference, growing only on glucose, lactate, and pyruvate as sole carbon sources, 64 

suggesting that these nutrients are provided by the human host (3). As a human-65 

adapted pathogen, many of the molecular determinants driving the specificity for the 66 

human host are required for nutrient acquisition (4). Metabolic gene products involved in 67 

lactate acquisition, nutrient metal import, and anaerobiosis are all required for full Gc 68 

virulence in models of infection ranging from cell culture to murine genital colonization to 69 

experimental human urethral challenge (5-12). However, many aspects of Gc 70 

metabolism remain undefined, such as the nutrients used by Gc in different infectious 71 

contexts and the core metabolic pathways required to sustain infection.  72 

Genome-scale metabolic network reconstructions (GENREs) are a mathematical 73 

framework encompassing much of the known metabolic information on an organism 74 

(13). A draft GENRE can be generated with an annotated genome and several 75 

automated network reconstruction tools (14-17), then extensively manually curated 76 

using published literature and experimental data. GENREs can simulate all possible 77 

growth capabilities of an organism, which are then constrained by biological and 78 

physical parameters such as metabolite availability and optimized for a desired 79 

outcome, such as biomass production. GENREs enable large-scale, in silico 80 

manipulations of bacterial metabolism and have been used in a variety of applications 81 

including genome wide-knockout screens, synthetic lethal studies, and metabolic 82 
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engineering that would otherwise be time-consuming and labor intensive to conduct 83 

(18). More recently, these tools have been used for the integration and interpretation of 84 

multi-omics data and applied to studies of human health and disease, including 85 

modeling of the metabolism of prominent human pathogens including Mycobacterium 86 

tuberculosis, Staphylococcus aureus, Pseudomonas aeruginosa, Clostridioides difficile, 87 

and Salmonella typhimurium (19-21). In contrast, there is no published model of Gc 88 

metabolism; while there is a GENRE for the related N. meningitidis (22), these two 89 

species are known to have key differences in their metabolism, for instance in sugar 90 

utilization (23). Moreover, few studies to date have applied metabolic modeling to 91 

pathogens in the context of immune cells, leaving a gap in knowledge of how immune-92 

driven metabolic shifts shape bacterial metabolism. Systems-biology approaches are 93 

well suited to interrogating complex metabolic network interactions between organisms 94 

(24). These factors together make metabolic modeling an ideal platform for 95 

understanding novel metabolic drivers of Gc virulence.  96 

Here, we present iNgo_557, a GENRE of Gc metabolism. This model enables 97 

the prediction of carbon source utilization and growth yields that recapitulate the 98 

behavior of Gc when grown in rich media. Metabolic network coverage in iNgo_557 99 

includes genes, reactions, and metabolites that were initially identified by homology to a 100 

model of N. meningitidis and further curated using an automated model with support 101 

from literature evidence. The quality of iNgo_557 was further enhanced by update of 102 

standardized formatting and improving annotations. iNgo_557 was validated by 103 

comparing phenotypic predictions to experimental datasets and benchmarked with the 104 

MEMOTE test suite for assessing reconstruction quality. iNgo_557 was then 105 
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contextualized with transcriptomic data that we generated for Gc grown with and without 106 

exposure to PMNs (Gene Expression Omnibus (GEO) database GSE123434), from 107 

which we identified and characterized unique metabolic features of the bacteria during 108 

an innate immune challenge. This GENRE of a clinically important, metabolically 109 

fastidious bacterium is a new resource for the Neisseria and microbial metabolic 110 

modeling communities. The insights into immune-driven metabolic shifts in Gc revealed 111 

by this transcriptionally-guided GENRE can inform the future development of 112 

therapeutic strategies to combat antibiotic-resistant gonorrhea. 113 

 114 

Results 115 

A genome-scale network reconstruction of Neisseria gonorrhoeae metabolism 116 

We generated iNgo_557, a genome-scale metabolic network reconstruction of 117 

Gc strain FA1090, the type strain of Gc which is widely used and highly annotated. A 118 

published reconstruction of N. meningitidis M58 (Nmb_iTM560) served as the starting 119 

point (22) (Fig 1A). Nmb_iTM560 was based on the highly annotated iAF1260 120 

reconstruction for Escherichia coli and was built using the Biochemical, Genetic and 121 

Genomic knowledge base (BIGG) framework (25). We identified homologous genes 122 

between N. meningitidis M58 (AE002098.2) and N. gonorrhoeae FA1090 (AE004969.1) 123 

using an homology matrix based workflow for generating high quality multi-strain 124 

genome-scale metabolic models (26). Gc and N. meningitidis were found to share 125 

significant homology across large stretches of the genome, particularly for metabolic 126 

genes (27): Of the 560 genes, 1519 reactions, and 1297 metabolites originally present 127 
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in Nmb_iTM560, 494 genes, 1223 reactions, and 1189 metabolites were preserved in 128 

iNgo_557 based on homology (Dataset S1). Orphan reactions from Nmb_iTM560 with 129 

no corresponding gene were included in the initial Gc reconstruction and de-orphaned 130 

or removed where possible during manual curation. The format was updated to SBML 131 

Level 3, the most up-to-date community standard (28). Gene, reaction, and metabolite 132 

annotations were updated from KEGG, PATRIC, Uniprot, MetaNetX, MetaCyc, 133 

PubMLST, and BIGG databases wherever possible (25, 29-34). 134 

Characteristics of the original Nmb_iTM560 model were conserved, including the 135 

presence of a periplasmic compartment, simplified cytochrome respiration pathways, 136 

iron acquisition pathways from ferric iron and host proteins, and a biomass equation that 137 

reflects the neisserial cell composition. Targets for manual curation of the automated 138 

reconstruction in iNgo_557 included complete resolution of mass and charge balance 139 

inconsistencies, the resolution of import and export loops, removal of carbohydrate 140 

import through the phosphotransferase system (which is not functional in pathogenic 141 

Neisseria) (23), addition of amino acid catabolism pathways, curation of 142 

lipooligosaccharide synthesis for Gc and its addition to the biomass equation, 143 

modification of the biomass composition for Gc where appropriate, and simplification of 144 

lipid biosynthesis (Dataset S1). Additionally, catalytic cofactors such as biotin, thiamine 145 

pyrophosphate, pyridoxal-5-phosphate, iron, zinc, manganese, NAD, and FAD were 146 

removed. In Nmb_iTM560, these cofactors were included as consumed reactants in 147 

reactions to reflect biological requirements for biomass production (35). While useful, 148 

the presence of these artificially consumed cofactors impedes the accurate 149 

representation of reaction stoichiometries in the reconstruction.  150 
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This homology-based reconstruction process was incapable of identifying Gc-151 

specific genes that were not present in Nmb_iTM560 (26). Therefore, to expand the 152 

metabolic coverage of iNgo_557 for metabolic pathways that are unique to Gc, genes 153 

and their corresponding reactions/metabolites were added from an automated 154 

reconstruction in the BIGG namespace of Gc FA1090 that was generated using 155 

CarveMe (36). Each of the unique genes identified by CarveMe was manually 156 

evaluated. Of the 508 genes with metabolic functions predicted by CarveMe, 388 were 157 

already present in the model. CarveMe identified an additional 39 genes and 158 

corresponding reactions that were supported by manual evaluation of the literature, and 159 

they were subsequently included in iNgo_557 (Fig 1A, Dataset S1) (36). The remaining 160 

81 genes identified by CarveMe did not have sufficient evidence to support the assigned 161 

metabolic function and were not added (Dataset S1).  162 

A comparison of the overall functions captured by iNgo_557 compared to 163 

Nmb_iTM560 and CarveMe automated models, as assessed by KEGG reaction 164 

categories, is presented in Fig 1B. The overall quality of the reconstruction was 165 

assessed using MEMOTE (37). The cumulative MEMOTE score of iNgo_557 was 91% 166 

(Fig 1C).  167 

 168 

Validation of predictions in iNgo_557 with experimental phenotypes 169 

In silico predictions of biomass flux and amino acid supplementation for 170 

iNgo_557 were performed and compared to experimental data to validate the model. 171 

First, the compositions of three media used for Gc growth were determined: Gonococcal 172 
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Base Liquid (GCBL), Morse’s Defined Media (MDM), and Roswell Park Memorial 173 

Institute 1640 media (RPMI). The metabolites present in each media were assigned to 174 

corresponding model exchanges in equivalent amounts and deemed “equally-scaled” 175 

media (Dataset S2). These simulated media were used to compute biomass flux and 176 

consequent predictions of Gc doubling time. Doubling time predictions made with 177 

iNgo_557 were then compared to experimental values by conducting growth curves of 178 

FA1090 Gc in each of these media (Fig 2A and B). The bacterial doubling times 179 

predicted by iNgo_557 for equally-scaled media were within 13, 15, and 34 minutes of 180 

experimentally determined values in GCBL, MDM, and RPMI, respectively (Fig 2C). All 181 

predicted growth rates were faster than what was measured experimentally, which is 182 

consistent with the structuring of metabolic network models to predict optimal growth 183 

(38).  184 

As shown in Fig 2A, growth on RPMI was the slowest experimentally, reflecting 185 

the limited nutrient content in this media relative to MDM and GCBL (Dataset S2). 186 

Specifically, metabolite concentrations in RPMI are ~2 to 10-fold less than the 187 

concentrations in MDM and GCBL. For example, glucose is found in MDM and GCBL at 188 

27.8 and 22.2 mM respectively, but in RPMI at 11.1 mM (Dataset S2). Based on these 189 

differences, these three media were molarity-scaled for simulation in iNgo_557, which 190 

sets exchanges to be equal to the molarity of each respective metabolite, as has been 191 

done previously (39) (Fig 2C). While using molarity-scaled media for the substrate 192 

concentrations did not change growth predictions for Gc in MDM and in GCBL, the 193 

predicted doubling time of Gc in RPMI was substantially slowed, from 30 to 146 min 194 

(Fig 2C).  195 
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To identify the substrate(s) that were limiting for Gc growth in RPMI compared 196 

with MDM or GCBL, we used iNgo_557 to predict the growth rate of Gc in a revised 197 

formulation of RPMI that was supplemented with 5X the concentration of each 198 

component in the original medium (Table S1). In simulation of growth in equally-scaled 199 

RPMI, only glucose and serine were predicted to increase Gc growth rate, while in the 200 

simulation of molarity-scaled RPMI, serine, asparagine, proline, aspartate, glutamate, 201 

and glycine were predicted to increase Gc growth rate (Fig 3A, Table S2). We tested 202 

these predictions experimentally. Addition of 5X glucose, serine, or asparagine to RPMI 203 

significantly increased the growth rate of Gc compared with unmodified RPMI (Fig 3B). 204 

Addition of proline, aspartate, glutamate, or glycine exhibited a trend towards increased 205 

growth, though growth differences from unmodified RPMI were not statistically 206 

significant. As negative controls, the experimental growth rate of Gc was unaffected 207 

when RPMI was supplemented with 5X threonine or valine, which were not predicted to 208 

increase growth (Fig 3B). These findings demonstrate that iNgo_557 can accurately 209 

predict those nutrients that stimulate Gc growth.  210 

Gc is reported to be capable of growing on only three carbon sources: glucose, 211 

lactate, and pyruvate (3). While iNgo_557 successfully predicted growth of Gc on 212 

glucose, lactate, and pyruvate as carbon sources in molarity-scaled MDM (27, 43, 28 213 

min doubling times), it also predicted slow growth of Gc in their absence (247 min 214 

doubling time). Gc possesses pathways for catabolism of amino acids, which in some 215 

other bacteria serve as carbon sources. However, Gc was unable to grow in MDM that 216 

did not have one of these carbon sources added (Fig S3A), even with additional amino 217 

acids experimentally added (Fig S3B). Despite this discrepancy between predicted and 218 
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experimental growth, amino acid catabolic pathways were left intact, to account for Gc 219 

usage of amino acids in the presence of its known carbon sources. 220 

One metric commonly used for model validation is the comparison of gene 221 

essentiality predictions generated with metabolic reconstructions with those that are 222 

identified as essential through transposon mutagenesis (40). We compared gene 223 

essentiality predictions yielded by iNgo_557 on GCB to a published dataset that is 224 

comprised of essential genes, which were identified through the growth of strain MS11 225 

transposon insertion mutants on GC agar (Dataset S3) (41). In iNgo_557, a gene was 226 

predicted to be essential if less than 10% of the optimal biomass of the WT could be 227 

produced by a mutant in single-gene deletion simulations. Gene essentiality was 228 

predicted with an accuracy of 73% and a Mathews Correlation Coefficient (MCC) of 229 

0.43 (Dataset S3). Genes correctly identified as essential included those related to LOS 230 

and peptidoglycan biosynthesis, purine metabolism, and pyruvate metabolism. Of the 231 

genes identified as non-essential by iNgo_557 but essential by transposon library 232 

growth assays, many encoded participants in pyrimidine metabolism, oxidative 233 

phosphorylation, and glycolysis. We verified that one of these genes, encoding pyruvate 234 

kinase (pyk), could be deleted from Gc and that the resulting null mutant could grow in 235 

GCBL containing glucose as the sole carbon source, albeit slower than the WT parent 236 

or when pyruvate was provided (Fig S4). This discrepancy between predicted and 237 

experimental results could be due to a number of issues, including the fact that these 238 

genes could be essential for growth in a competitive setting when mixed with a library of 239 

other transposon mutants, differences in media composition between GC agar and 240 

GCBL, or differences in Gc strain background (42, 43). As such, arguments for a more 241 
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nuanced use of gene essentiality data to validate model predictions have been 242 

previously made (42). For these reasons, we did not use gene essentiality data for 243 

further curation of the reconstruction, but they are included here for reference.  244 

 245 

Transcriptome-guided modeling of Gc metabolism during co-culture with primary 246 

human neutrophils predicts a shift in the pyruvate axis 247 

GENREs serve as a tool for scaffolding complex metabolic information in human-248 

interpretable formats. One such application is the integration of transcriptional data with 249 

GENREs to develop a comprehensive picture of bacterial metabolism in complex and 250 

uncharacterized environments (44). Given that Gc is a human-specific pathogen, we 251 

sought to use the reconstruction to predict metabolic phenotypes that are consistent 252 

with Gc growth in the context of human neutrophils (PMNs), the predominant immune 253 

cell that is recruited during infection. To investigate how Gc metabolism shifts in 254 

response to co-culture with PMNs, transcriptomic data from Gc co-incubated with 255 

PMNS for 1 hour was integrated with iNgo_557 to generate contextualized models that 256 

offer insight to the metabolic state of Gc during infection.  257 

To accomplish this goal, we applied the RIPTiDe (Reaction Inclusion by 258 

Parsimony and Transcript Distribution) algorithm (45), which uses RNA-seq data to 259 

identify the most cost-effective usage of metabolism while also reflecting the organism’s 260 

transcriptional investment. RIPTiDE has been used successfully with models of 261 

Pseudomonas aeruginosa and Clostridioides difficile to uncover metabolic contributors 262 

to virulence in the context of mucin degradation, biofilm formation, murine infection 263 
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models, and co-culture with other microbes (19, 21, 46). We reasoned this approach 264 

would generate context-specific models of the metabolism of Gc when grown with and 265 

without PMN co-culture and would identify those reactions that are likely to be 266 

differentially active in each condition. The transcriptome data set we used was from a 267 

constitutively opacity protein-deficient isolate of strain FA1090 Gc, which was cultured in 268 

RPMI + 10% fetal bovine serum for 1 hour. Gc was cultured in the presence or absence 269 

of primary human PMNs that were adherent and treated with the chemokine interleukin-270 

8 to reflect the activated state of immune cells during infection (47). This isolate of Gc 271 

remains primarily extracellular when exposed to PMNs (48). RIPTiDe generated two 272 

context-specific models of Gc metabolism: one for Gc in medium without PMNs, and 273 

one for Gc with PMNs. For each of the two models, flux samples were generated to 274 

assess all possible metabolic profiles in the two environmental contexts. Flux samples 275 

generated with the models significantly correlated with the transcript abundances 276 

derived from RNAseq for each condition (r=0.242, p<0.001 for Gc without, and r=0.263, 277 

p<0.001 for Gc with PMNs), indicating that the context-specific metabolic profiles 278 

predicted with RIPTiDe align with experimental data. 279 

 Biomass flux was significantly increased in the contextualized model of Gc co-280 

cultured with PMNs, compared with Gc cultured without PMNs (Fig 4A), suggesting an 281 

overall stimulation of Gc metabolism in the presence of PMNs. Flux distributions for 282 

each model were then compared using non-metric multidimensional scaling (NMDS) of 283 

consensus reactions shared between both models to broadly identify metabolic growth 284 

patterns used by the context-specific models. NMDS revealed that the sampled flux 285 

distribution for Gc co-cultured with PMNs overlapped with, but was distinct from, the 286 
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sampled flux distribution for Gc cultured without PMNs (Fig 4B). This result reflects that 287 

the media used for growth is consistent between the two models, but co-culture with 288 

PMNs caused a shift in metabolic pathways used for growth.  289 

We further analyzed the contextualized models to better understand the shifts in 290 

metabolism that resulted in the distinctions observed in the NMDS analysis. Reactions 291 

unique to each model (non-consensus reactions) were identified, and the absolute 292 

median activity for each reaction was determined to examine the contribution of each 293 

reaction to biomass production (Fig 4C). From this analysis, we identified a set of 19 294 

reactions that were unique to Gc co-cultured with PMNs and 8 reactions unique to Gc 295 

cultured without PMNs. Several reactions involved in metabolite import and catabolism 296 

were unique to Gc co-cultured with PMNs, suggesting that there are changes to the 297 

metabolites available to Gc in this condition, possibly due to competition with or 298 

excretion by PMNs. Specifically, pyruvate and D-lactate exchange reactions were 299 

unique to Gc co-cultured with PMNs, suggesting bacterial use of these alternative 300 

carbon sources in this infection condition (Fig 4C). This observation aligns with 301 

extensive evidence that PMNs secrete lactate as a byproduct of oxidative metabolism, 302 

which stimulates Gc growth (5, 49). Similarly, Gc co-cultured with PMNs were also 303 

predicted to uniquely carry flux through nitrogen metabolism, in particular the import of 304 

nitric oxide and nitric oxide reductases (Fig 4C). These findings align with the reported 305 

production of nitric oxide (NO) via inducible nitric oxide synthase (iNOS) in stimulated 306 

PMNs (50). Although NO is used by phagocytes to directly kill pathogens, Gc can 307 

exploit this aspect of inflammation by detoxifying NO to nitrite, or using nitrite and nitric 308 

oxide as terminal electron acceptors during anerobic growth (51). Together, these 309 
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observations support the hypothesis that neutrophil byproducts mediate remodeling of 310 

Gc metabolism.  311 

We next assessed reactions that were shared between both models of Gc 312 

cultured without PMNs and Gc co-cultured with PMNs but carried different levels of flux. 313 

From this, we identified reactions that most strongly discriminated between metabolic 314 

activity of the two models. This analysis employed a supervised machine learning 315 

approach with Random Forest, a categorization algorithm that can segregate flux 316 

samples based on the contextualized models (Fig 4D). We then assessed mean 317 

decrease accuracy (MDA) to identify reactions that, when removed from the model, 318 

most affected the categorization predictions of the Random Forest. Gc grown in the 319 

presence and absence of PMNs were particularly distinguished by flux out of the 320 

pyruvate node, through acetate synthesis. Specifically, acetate exchange, acetate 321 

transport, acetate kinase, and acetate phosphotransacetylase were identified as 322 

reactions that impacted the categorization capabilities of the Random Forest (MDA 323 

~13%) (Fig 4D). Acetate production is a prominent feature of bacterial overflow 324 

metabolism, in which ATP is generated from the production of acetate from acetyl-CoA 325 

via the PTA-AckA pathway rather than shuttled into carbon backbones for biomass (52). 326 

Visualization of flux balance analysis (Fig 5A and B) demonstrated a predicted increase 327 

in acetate flux in co-culture with PMNs, consistent with increased carbon flux from the 328 

addition of alternative carbon sources, such as lactate and pyruvate.  329 

 Conditionally essential genes were predicted by conducting essential gene 330 

calculations in each model, then comparing between them (Table 1, Dataset S4). 331 

Twelve genes were predicted to be essential only when Gc was cultured without PMNs, 332 
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and 2 genes were predicted to be essential only when Gc was co-cultured with PMNs. 333 

Of the 12 genes predicted to be essential only when Gc was cultured without PMNs, 7 334 

are within a single pathway exiting the pyruvate synthesis node (Table 1): pyruvate 335 

kinase (pyk), portions of the pyruvate dehydrogenase complex (dldH), phosphate 336 

acetyltransferase (pta), citrate synthase (gltA), aconitase (acnB), and isocitrate 337 

dehydrogenase (idh) were all predicted to be essential only for Gc cultured without 338 

PMNs.  339 

To test the prediction that pyruvate synthesis genes were essential for Gc in rich 340 

growth medium but dispensable for Gc in the presence of PMNs, we generated a null 341 

mutant in pyruvate kinase (Δpyk), the first enzyme in this pathway. As expected, Δpyk 342 

had a growth defect in MDM containing glucose as the sole carbon source, while the 343 

WT parent grew in this medium (Fig 6A). Also as expected, Δpyk and WT Gc grew 344 

equally well in MDM containing either lactate or pyruvate as the sole carbon source (Fig 345 

6B and C). We then measured growth of WT and Δpyk Gc in the conditions used to 346 

collect the PMN transcriptomics data. In RPMI + 10% FBS, the Δpyk mutant stopped 347 

growing after 3 hours, and by 24 hours its viability had declined to 1% of the inoculum. 348 

In contrast, when cultured in the presence of PMNs, Δpyk Gc grew significantly better 349 

than Gc in the absence of PMNs, and in fact increased in viability over 24 hours (Fig 350 

6E, F, G, and H). WT Gc grew over this time whether or not PMNs were present (Fig 351 

6D, F, G, and H). These results suggest that Gc co-cultured with PMNs has a 352 

decreased need for flux through glycolysis and instead imply that Gc has access to 353 

alternative carbon sources such as lactate and pyruvate, which support its growth in the 354 

presence of PMNs independently of the glycolytic pathway.  355 
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Discussion 356 

Over the last twenty years, genome-scale metabolic modeling has become a 357 

powerful tool for context-specific interrogation of complex biological networks. In this 358 

study, we developed a highly curated genome-scale metabolic network reconstruction, 359 

titled iNgo_557, for Gc strain FA1090. This model predicts the use of glucose, lactate, 360 

and pyruvate as carbon sources for Gc, and an increase in growth when selected amino 361 

acids are supplemented in cell culture medium containing one of these carbon sources 362 

(3). iNgo_557 was contextualized using transcriptomics data that we recently generated 363 

(47) to identify shifts in Gc metabolism that occur in response to co-culture with PMNs. 364 

These results represent the first use of genome-scale metabolic modeling in Gc for 365 

discovery of metabolic contributors to virulence.  366 

Through the linkage of gene, reaction, and metabolite information, iNgo_557 367 

facilitates rapid and convenient manipulation of metabolic parameters to identify 368 

contributors towards Gc pathogenesis that are otherwise complicated, time-consuming, 369 

or laborious to replicate in vitro. Independently, GENREs can be used to simulate well 370 

defined environmental contexts, such as growth in laboratory media. We developed in 371 

silico representations of three commonly used media for Gc. iNgo_557 accurately 372 

reflects experimental growth phenotypes in these media and can be used to predict Gc 373 

growth phenotypes following distinct manipulations to these media. We demonstrated 374 

one such use: identification of growth-limiting nutrients in RPMI. Other applications 375 

include nutrient drop-out experiments, aerobic and anaerobic growth, and gene 376 

essentiality studies.  377 
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While the predictions generated by our model were consistent with experimental 378 

results, incorrect predictions are also informative, revealing points of obscurity in our 379 

understanding of Gc metabolism. For example, iNgo_557 predicted growth of Gc in 380 

MDM in the absence of a dedicated carbon source (glucose, lactate, pyruvate). Upon 381 

further interrogation, the predicted growth of Gc on MDM without a carbon source was 382 

due to consumption of serine and alanine as carbon sources. Although Gc encodes the 383 

genes necessary to catabolize these amino acids (ALATA_L/ NGO_1047 and 384 

SERD_L/NGO_1773 and NGO_0444), it is unable to use amino acids as a sole carbon 385 

source (Fig S3). In other bacteria, such as P. aeruginosa, transcriptional and post-386 

transcriptional regulation of serine catabolism has been found to prevent the use of 387 

serine as a sole carbon source (53). Our results suggest that a similar form of 388 

transcriptional regulation may also dictate Gc carbon source utilization. These 389 

discrepancies serve as points for further investigation and facilitate hypothesis 390 

generation.  391 

Incorporation of additional layers of regulatory information can improve model 392 

accuracy, particularly for the modeling of complex environments such as during co-393 

culture with other species or cell types, which is impeded by lack of knowledge of the 394 

metabolite environment. As a human-adapted mucosal pathogen, Gc must co-exist with 395 

a complex assortment of human microbiota, epithelial cells, and mucosal immune cells. 396 

The recruitment of PMNs and the inflammation associated with gonococcal infection 397 

further complicate an already complex metabolic environment. Transcriptomic 398 

integration with metabolic models serves to deconvolute the modeling of these complex 399 

settings through unsupervised contextualization of GENREs for a specific environment. 400 
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As such, we leveraged RIPTiDe with iNgo_557 to better understand the metabolic 401 

pathways enabling Gc growth during co-culture with PMNs and to predict the behaviors 402 

of this host-associated bacterial species. Intriguingly, several genes are predicted to be 403 

essential only when Gc is cultured without PMNs, but not in the context of PMNs. The 404 

majority of genes predicted to be essential in the absence of PMNs were downstream of 405 

pyruvate kinase (pyk) within pathways exiting the pyruvate synthesis node. We 406 

validated this prediction by showing that Gc required pyruvate kinase for growth in rich 407 

medium, but not when co-cultured with PMNs. Metabolic modeling using iNgo_557 408 

predicts that this effect is due to the bypass of pyruvate synthesis through import of 409 

alternative carbon sources, including lactate and pyruvate, when in the presence of 410 

PMNs, which is supported by our growth data. Our results align with previous reports 411 

showing the ability of Gc to consume lactate and pyruvate derived from host cells (5, 49, 412 

54). PMNs are highly glycolytic cells, consuming glucose and secreting lactate following 413 

stimulation with PAMPs (49). Use of lactate was previously reported to be required for 414 

Gc survival from PMNs, within cervical epithelial cells, and in the female mouse genital 415 

tract (5, 6, 55). The increase in biomass flux predicted for models of Gc cultured with 416 

PMNs compared to Gc cultured without PMNs is further consistent with reports that Gc 417 

growth on lactate stimulates Gc metabolism (49, 55). Together these results provide 418 

evidence that Gc utilizes addition alternative carbon sources, such as lactate and 419 

pyruvate, when co-cultured with PMNs to enhance its growth. 420 

Regardless of the source, carbon exiting the pyruvate synthesis node, can 421 

proceed in one of two pathways in Gc: acetate production or oxidation through the TCA 422 

cycle. Acetate production through the PTA-AckA pathway is a prominent feature of Gc 423 
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growth on glucose, lactate, and pyruvate (52, 56). Downstream of pyruvate kinase, 424 

iNgo_557 predicted increases in Gc acetate production when in the presence of PMNs. 425 

In N. meningitidis, acetate is secreted following growth on glucose, lactate, and 426 

pyruvate, and the highest activity of the PTA-AckA pathway occurs when all three 427 

carbon sources are present, compared with glucose alone (56). Our results are 428 

consistent with this observation. Alternatively, glucose, lactate, and pyruvate can 429 

instead be further catabolized by the TCA cycle. In N. meningitidis, pyruvate 430 

dehydrogenase (dldH), citrate synthase (gltA), aconitase (acnB), and isocitrate 431 

dehydrogenase (idh) reaction activities were all demonstrated to be high in the 432 

presence of glucose, but decreased in the presence of pyruvate (56). Consistent with 433 

the stimulation of these enzymes in the presence of glucose compared to pyruvate, 434 

iNgo_557 predicted dldH, gltA, acnB, and idh to be essential only in the absence of 435 

PMNs, in which glucose is the sole carbon source available. The alleviation of the 436 

requirement for acnB in the context of PMN co-culture is notable in light of a recent 437 

study that identified compensatory mutations within acnB that enabled the recovery of 438 

antibiotic-resistant penA mutant Gc from the mouse genital tract (57). Together our 439 

results highlight the pyruvate node as a critical pivot point in Gc metabolism, particularly 440 

in the context of an inflammatory environment created by PMNs. Overall, the predictions 441 

generated here by contextualized models of iNgo_557 reveal new insights into Gc 442 

pathogenesis, highlighting it as a viable platform for the discovery of metabolic 443 

pathways associated with virulence and antibiotic resistance. 444 

Treatment options for Gc have become increasingly limited over the last two 445 

decades, and only a single recommended antibiotic remains for the treatment of 446 
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gonorrhea (58). The development of new potential therapies is essential to avoid the 447 

threat of completely antibiotic-resistant Gc. Targeting essential bacterial metabolic 448 

pathways during infection represents a promising approach, one that was first shown 449 

decades ago in the context of sulfonamide antibiotics, which directly inhibit folate 450 

synthesis (59). Novel approaches for the treatment of antibiotic-resistant infections have 451 

included the application of metabolites to shift the metabolism of pathogens towards a 452 

less favorable state (60). There is a need for a revisitation of Gc metabolism and 453 

physiology in light of the approaching post-antibiotic era for gonorrhea (61). 454 

Technologies such as RNA-sequencing, forward and reverse genetic screens, and 455 

metabolic modeling can all provide insights into Gc metabolism. Here, the integration of 456 

transcriptomics with genome-scale metabolic modeling is synergistic, providing more 457 

insight into the remodeling of Gc metabolism in the context of PMN co-culture than 458 

could be discerned from each technique alone. In sum, this study highlights the 459 

opportunities afforded by genome-scale metabolic modeling for targeted identification of 460 

context-specific essential metabolic pathways that enable Gc to thrive within the human 461 

host, with further predictions and discoveries remaining to be made. 462 

 463 

Methods 464 

Genome-scale metabolic reconstruction 465 

To generate a GENRE for Gc, we used N. meningitidis M58 Nmb_iTM560 as an 466 

initial template for the automated multi-strain model, reconstruction pipeline (26). In 467 

brief, the pipeline used bidirectional best hit BLAST to identify genes with >80% 468 
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homology between N. meningitidis M58 (AE002098.2) and N. gonorrhoeae FA1090 469 

(AE004969.1) to generate a homology matrix for the two species. A secondary 470 

comparison using BLAST on nucleotide sequences was conducted to identify potential 471 

homologs with poor ORF annotation. These automated calls were inspected and 472 

reassessed for each gene present in Nmb_iTM560 as indicated in Dataset S1. Using 473 

the homology matrix, a draft strain-specific model was generated using COBRApy (62). 474 

Metabolic genes (and the corresponding reactions and metabolites) specific to Gc 475 

FA1090 were added to the reconstruction using CarveMe when supported by literature 476 

evidence (36). Exchange reactions that were missing for extracellular metabolites in the 477 

reconstruction were added. The model was then further manually curated to de-orphan 478 

reactions and incorporate published metabolic functions for Gc according to literature 479 

evidence where possible (Dataset S1). Final gene and reaction calls, along with 480 

decision annotations, can be found in Dataset S1. Annotation data was automatically 481 

assigned using ModelPolisher (63). Reaction and stoichiometric inconsistencies were 482 

corrected for each reaction. All formulas were mass and charge balanced using the 483 

BIGG database, when possible, in order to maintain a consistent namespace (25). A list 484 

of mass and charge imbalanced reactions and their corrections are provided in Dataset 485 

S1. Additional annotations were collected and added to the annotation field dictionary 486 

for all model components from KEGG, PATRIC, Uniprot, MetaNetX, MetaCyc, 487 

PubMLST, or BIGG databases (25, 29-33, 64). The pipeline for development of the 488 

reconstruction is available in the GitHub repository associated with this study 489 

(https://github.com/aimeepotter/Gc_GENRE_2022). 490 

 491 
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Assessing reconstruction quality 492 

Modeling assessments, including flux balance analysis, flux-variability analysis, single 493 

gene knock-out analysis, were conducted using COBRApy (62). Model quality was 494 

assessed with MEMOTE using a local installation v0.13.0 (37). Gene essentiality 495 

predictions were compared to a published dataset of essential genes for growth on 496 

solid, rich media for Gc strain MS11 (41), which was aligned to Gc FA1090 by 497 

bidirectional best hit BLAST as above. Prediction accuracy was calculated as the 498 

number of correct predictions divided by the number of total predictions for genes 499 

present in both datasets, and the Matthews correlation coefficient (MCC) was calculated 500 

as in (65).  501 

A protocol for defining realistic modeling constraints for in silico media was 502 

recently described, in which metabolite exchanges are scaled based on the maximum 503 

possible usage defined by the concentration of metabolites in mmol/L (39). We 504 

therefore generated two in silico exchange reaction constraints for each simulated 505 

media: equally-scaled, to avoid constraining the model with incorrect assumptions, and 506 

molarity-scaled, to match the maximum possible use of metabolites. The concentration 507 

of metabolites present in each media and their corresponding assignments to in silico 508 

media constraints are detailed in Dataset S2. Biomass flux and subsequent doubling 509 

times for simulated growth in GCBL, MDM, and RPMI were compared to experimental 510 

values. Predictions of Gc doubling time were calculated assuming a biomass equation 511 

scaled to 1g dry weight of bacteria based on the following formula:  512 

Doubling Time = ln(2)*60/(objective value) 513 
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Experimental doubling times were determined using GrowthCurver implemented in R for 514 

both OD and CFU/ml, with stationary phase values trimmed (66). 515 

 516 

RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution) 517 

contextualization & analysis 518 

Transcriptomic data retrieved from the Gene Expression Omnibus (GEO) database 519 

(GSE123434) for Gc cultured without and with PMNs over the course of 1 hour was 520 

mapped to the corresponding FA1090 gene IDs using the conversion table provided in 521 

Dataset S1 of (47). For RIPTiDe contextualization, an unsupervised approach was used 522 

in which all exchange reaction bounds were set to ±10, except oxygen, which was set at 523 

±20. The transcriptomic data was then integrated with the model using RIPTiDe using 524 

the maxfit_contextualize() function (minimum fraction 0.3, maximum fraction 0.8, 525 

n=1000) to produce contextualized models for Gc grown in the presence or absence of 526 

PMNs (45). Flux samples were gathered from consensus reactions between both 527 

contextualized models (n=500 samples per model). Bray-Curtis based NMDS (k=4, 528 

trymax=25) and permutational multivariate analysis of variance (PERMANOVA) 529 

(perm=999) analyses were accomplished using the Vegan R package (67). Supervised 530 

machine learning was accomplished with the implementation of AUC-Random Forest 531 

also in R (68). Statistical analysis was performed in R v4.1.0. Visualizations of flux 532 

balance analysis were performed using Escher (69).  533 

 534 

Bacterial strains and growth conditions 535 
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Opaless Gc is a non-variable Opa-deficient derivative of the FA1090 background 536 

constitutively expressing the pilin variant 1-81-S2, which served as the WT for all 537 

experiments (48, 70). Strain 130 Δpyk was generated by transformation with an overlap 538 

extension PCR product, replacing the pyk ORF with a spectinomycin resistance 539 

cassette using the following primers: Pyk Upstream F-CCGAATACGGCGACTTTACC, 540 

Pyk-SacI-Omega F- 541 

CAAAATCGTCGCCACCCTTGGAGCTCTGCCCGTTCCATACAGAAGC, Pyk upstream 542 

R-GCTTCTGTATGGAACGGGCAGAGCTCCAAGGGTGGCGACGATTTTG, Pyk 543 

downstream F- 544 

GCTCACAGCCAAACTATCAGGTGAGCTCCAGACGGAGTATCCCGAAGC, Pyk-sacI-545 

Omega R- GCTTCGGGATACTCCGTCTGGAGCTCACCTGATAGTTTGGCTGTGAGC, 546 

Pyk downstream R- ACTGTGTGCCGAAGTGGTAG. Mutation was confirmed by 547 

sequencing and PCR.  548 

WT Gc were grown on Gonococcal Medium Base (GCB, Difco) plus Kellogg’s 549 

supplements at 37°C with 5% CO2 (71, 72). Δpyk strains were grown on GCB plus 550 

Kellogg’s supplements with glucose replaced by pyruvate (36 mM) as in (54). For 551 

preparation of mid-logarithmic phase bacteria, Gc were grown in liquid medium (GCBL) 552 

or carbon matched GCBL containing pyruvate (45 mM) as the sole carbon source, 553 

where appropriate, for successive rounds of dilution, and enriched for piliation, as 554 

previously described (73). Spectinomycin was used for selection of the pyk mutation at 555 

80 µg/ml.  556 

 557 
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Growth Curves 558 

Gc in mid-logarithmic phase were pelleted, resuspended in the indicated media, 559 

and diluted to ~5*10^7 CFU/ml in 6 ml of media in 15 ml conical tubes (Sarstedt). The 560 

bacterial suspension was incubated with rotation at 37°C. Bacterial growth was 561 

measured by OD550 and CFU enumeration at specific timepoints. CFU are presented 562 

relative to 0 h (100%). Gc was grown in GCBL, HyClone RPMI 1640 media without 563 

glutamine (Catalog#SH30096.FS) (Cytivia), or carbon-matched Morse’s defined media 564 

(MDM) containing either glucose (27mM), lactate (54mM) or pyruvate (54mM) (74). 565 

Doubling times were calculated from best fit logistic curves generated with 566 

GrowthCurver (66) for the lag and exponential phase of each growth curve for at least 3 567 

experimental replicates and averaged. Significant differences for growth over time were 568 

determined by one-tailed t-test in Graphpad Prism v9. 569 

 570 

Gc-PMN co-culture 571 

PMNs were isolated from venous blood as previously described and used within 572 

2 h of isolation (73). Subjects gave informed consent in accordance with an approved 573 

protocol by the University of Virginia Institutional Review Board for Health Sciences 574 

Research (#13909). Synchronized Gc infection of PMNs in suspension was conducted 575 

as previously described (75). PMNs were resuspended in RPMI (Cytivia) containing 576 

10% heat-inactivated fetal bovine serum (Gibco) at 1×106 PMN/ml and Gc was added to 577 

each tube at a multiplicity of infection of 10. Six ml of the suspension was incubated in 578 

15 ml conical tubes with rotation at 37°C. Bacterial CFU were enumerated at specified 579 
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time points and expressed relative to the CFU at 0 h (100%). Data are expressed as the 580 

mean ± SEM of at least three replicate experiments. Significant differences were 581 

determined by two-way ANOVA with Holm-Sidak correction for multiple comparisons in 582 

Graphpad Prism v9. 583 

 584 

Data and Code Availability 585 

Python and R code/packages/scripts used to perform transcriptomics data 586 

analyses and generate figures are available on GitHub at 587 

https://github.com/aimeepotter/Gc_GENRE_2022. All RNA-seq data are available in the 588 

Gene Expression Omnibus (GEO) database under accession GSE123434 (47). 589 
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Figures 818 

 819 

Fig 1. Genome-scale metabolic model of Gc strain FA1090. (A) (Upper panel) 820 

Comparison of Gc strain FA1090 and N. meningitidis strain MC58. (Lower panel) 821 

Properties of iNgo_557, CarveMe FA1090, and Nmb_iTM560. (B) Comparison of KEGG 822 

functional annotations for genes present in the three models. Some genes have multiple 823 

functions and are assigned to multiple categories. (C) MEMOTE benchmarking scores 824 

of iNgo_557. 825 
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 827 

Fig 2. iNgo_557 predicts doubling times that reflect relative growth of Gc in three  828 

culture media. Log phase WT Gc was backdiluted into GCBL, MDM, or RPMI and 829 

grown over 5 hours. Growth was monitored by (A) enumeration of CFU/ml, reported as 830 

percent of CFU measured at 0 hours or (B) optical density at 550 nm. Optical density for 831 

Gc grown in RPMI was not determined due to the presence of phenol red indicator that 832 

interfered with the readings. n = 4-5 biological replicates. Symbols represent the mean. 833 

Error bars represent SEM. (C) Doubling time from A and B was calculated for Gc grown 834 

in each medium using GrowthCurver and compared to the predicted doubling times in 835 

silico using the equivalent concentrations of each nutrient in the different media.  836 
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 838 

Fig 3. Identification of nutrients that limit Gc growth in RPMI. A) Metabolites in 839 

RPMI that are predicted using iNgo_557 to increase Gc growth when increased by 5X 840 

the standard flux. Increase in doubling time represented by ↑ ≥ 10%, ↑↑ ≥ 20%, and ↑↑↑ 841 

≥ 30%. B) WT Gc was grown in RPMI supplemented with 5X the concentration of the 842 

indicated metabolites for 5 hours. Growth was monitored by enumeration of CFU/ml, 843 

and doubling time was calculated using GrowthCurver. Results are from n = 3 biological 844 

replicates. Bars represent the mean. Error bars represent SEM. Dotted line indicates 845 

doubling time in unmodified RPMI (black bar). Metabolites predicted to increase growth 846 

are in gray bars; control metabolites predicted to not increase growth are in hatched 847 

bars. *, P < 0.05 by one-tailed t test relative to unmodified RPMI. 848 
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 852 

Fig 4. Metabolic activity predictions differ between Gc cultured without PMNs and 853 

Gc co-cultured with PMNs. Transcriptomes from Gc cultured with and without PMNs 854 

for 1 hour were used to generate context-specific models of iNgo_557 using RIPTiDe. 855 
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Inactive reactions were pruned during contextualization. (A) Boxplot of biomass 856 

objective flux distributions (n=500) from each context-specific model. Significance 857 

determined by Wilcoxon rank sum test (P value < 0.001). (B) Axes 1 and 2 of four-858 

dimensional Bray-Curtis based NMDS ordination for flux sampling results from non-859 

biomass reactions shared between context-specific models of iNgo_557. Significant 860 

difference determined by PERMANOVA. (C) The median absolute value of reaction 861 

activities for uniquely active metabolic reactions in each context-specific model. Black 862 

boxes indicate reactions are absent in the corresponding model. (D) Random Forest 863 

supervised machine learning was used to categorize flux sample activity as Gc without 864 

PMNs and Gc with PMNs for non-biomass metabolic reactions shared between the 865 

contextualized models. The mean decrease accuracy, which predicts the impact of 866 

removal of the reaction from the model on Random Forest categorization predictions 867 

(Gc without PMNs vs Gc with PMNs), for the top 20 most differentiating reactions is 868 

shown.  869 
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 871 

Fig 5: Visualization of flux balance analysis for central carbon metabolism in 872 

contextualized models of Gc with and without PMNs. Orange circles indicate 873 

metabolites. Relevant imported and exported metabolites are indicated in bold. Arrows 874 

indicate reactions. The intensity of coloration and the arrow size indicate the degree of 875 

flux through reactions. Conditionally essential genes corresponding to reactions are 876 

indicated in italics. Schematics were generated with Escher. 877 
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 879 

Fig 6: Pyruvate kinase is conditionally essential for N. gonorrhoeae in glucose-880 

containing medium, but not for bacteria cultured with PMNs. WT Gc and isogenic 881 

Δpyk mutant were cultured in MDM containing (A) glucose, (B) pyruvate, or (C) L-lactate 882 

as the primary carbon source. Growth over 5 hours was monitored by optical density at 883 

550 nm for n = 3 biological replicates. Symbols represent the mean. Error bars 884 

represent SEM. (D-G) WT and Δpyk Gc were exposed to primary human PMNs in 885 

suspension or inoculated in RPMI + 10% FBS. CFU were enumerated at 0.5, 1, 2, 3, 886 

and 24 hours, and Gc growth is reported relative to CFU for that strain at 0 hour (100%). 887 
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(D and E) Growth curves with (D) and without (E) PMNs over 3 hours. (F and G) Gc 888 

CFU at (F) 3 and (G) 24 hours, reported as the percent of CFU for that strain at 0 hours 889 

(100%). Bars represent the mean. Error bars represent SEM. n=3 biological replicates. 890 

Significance was determined by two-way ANOVA with Holm–Sidak correction for 891 

multiple comparisons, * p < 0.05. 892 

 893 

 894 

 895 
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Table 1: Conditionally essential genes predicted by single gene deletion analysis 897 

of contextualized models of Gc without PMNs and Gc with PMNs.  898 

Ngo ID Annotation Gene ID 

 
Gc co-cultured with PMNs 

NGO0799 
inosine-5-monophosphate 
dehydrogenase imdH 

NGO2164 GMP synthase guaA 

 
Gc cultured without PMNs 

NGO0214 phosphate acetyltransferase pta 

NGO0562 dihydrolipoamide dehydrogenase dldH 

NGO0918 citrate synthase gltA 

NGO0925 dihydrolipoamide dehydrogenase dldH 

NGO1082 isocitrate dehydrogenase Idh 

NGO1231 aconitate hydratase acnB 

NGO1325 glycine dehydrogenase gcvP 

NGO1404 glycine cleavage system protein H gcvH 

NGO1406 glycine cleavage system protein T gcvT 

NGO1470 NAD(P) transhydrogenase subunit alpha pntA 

NGO1472 NAD(P) transhydrogenase subunit beta  pntB 

NGO1881 pyruvate kinase pyk 
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Supplemental Material 900 

Fig S1: Best fit logistic curves generated with GrowthCurver were used to 901 

calculate experimental doubling time for Gc grown in GCBL, MDM, and RPMI. Log 902 

phase WT Gc was backdiluted into GCBL, MDM, or RPMI. Growth over 5 hours was 903 

monitored by (A) enumeration of CFU/ml or (B) optical density at 550 nm. Optical 904 

density for Gc grown in RPMI was not reported due to phenol red indicators in the 905 

media. n = 4-5 biological replicates.  906 

Fig S2: Best fit logistic curves generated with GrowthCurver were used to 907 

calculate experimental doubling time of Gc grown in RPMI supplemented with 908 

potential limiting metabolites. Log phase WT Gc was backdiluted into RPMI 909 

supplemented with 5X the standard concentration of metabolites indicated in Fig. 3. 910 

Glucose (GLC), serine (SER), asparagine (ASN), proline (PRO), aspartate (ASP), 911 

glutamate (GLU), and glycine (GLY) were predicted to be growth limiting; threonine 912 

(THR) and valine (VAL) were not predicted to be growth limiting. Growth over 5 hours 913 

was monitored by enumeration of CFU/ml. n = 3 biological replicates per condition. 914 

Fig S3: N. gonorrhoeae requires glucose, pyruvate, or lactate as a carbon source 915 

for growth. Log phase WT Gc was backdiluted into MDM containing (A) no dedicated 916 

carbon source (no glucose, lactate, or pyruvate) or (B) with 1% Casamino acids added 917 

as the carbon source. Growth was monitored by optical density at 550 nm over 5 hours. 918 

(A) n = 3 biological replicates. Symbols represent the mean. Error bars represent SEM. 919 

(B) n = 1 biological replicate.  920 
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Fig S4: Growth dynamics of WT and Δpyk N. gonorrhoeae in GCBL with different 921 

carbon sources. Log phase WT Gc and an isogenic Δpyk mutant were backdiluted into 922 

GCBL containing (A) 22 mM glucose or (B) 45 mM pyruvate as the primary carbon 923 

source and grown for 5 hours. Growth was monitored by optical density at 550 nm for n 924 

= 1 biological replicate.  925 

Fig S5: A N. gonorrhoeae pyk mutant does not grow in RPMI containing glucose 926 

as sole carbon source. Log phase WT Gc and an isogenic Δpyk mutant were 927 

backdiluted into RPMI. Growth over 5 hours was monitored by enumeration of CFU/ml 928 

reported as percent of CFU measured at 0 hours (100%). Symbols represent the mean. 929 

Error bars represent SEM. n=3 biological replicates. 930 

Table S1: Concentrations of nutrients predicted to be limiting for Gc growth in 931 

RPMI.  932 

Table S2: Growth predictions for N. gonorrhoeae in RPMI in equally-scaled or 933 

molarity-scaled models when selected metabolites are added at five-fold the 934 

original concentration. 1 Increase in predicted growth rate when the indicated 935 

metabolite is increased by five-fold (5x), expressed relative to growth rate in unmodified 936 

RPMI. 937 

Dataset S1: Annotations on the curation of reactions, metabolites, and genes of 938 

iNgo_557.  939 

Dataset S2: In silico formulations for GCBL, MDM, and RPMI. Simulated media include 940 

an “equally-scaled” and a “molarity-scaled” formulation. “Molarity-scaled” formulation 941 

based on calculated molarities of metabolites present in GCBL, MDM, and RPMI.  942 
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Dataset S3: Essential gene predictions for iNgo_557 on simulated GCBL. Genes were 943 

deemed essential if knock-out of the gene resulted in <10% of maximal biomass 944 

production. Essential gene predictions were compared to experimentally determined 945 

essential genes from MS11.  946 

Dataset S4: Essential gene predictions with contextualized models of iNgo_557 for Gc 947 

without PMNs and Gc with PMNs. Genes were deemed essential if knock-out of the 948 

gene resulted in <10% of maximal biomass production. 949 

 950 
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