

## Rapid recall and *de novo* T cell responses during SARS-CoV-2 breakthrough infection

Marios Koutsakos<sup>1\*</sup>, Arnold Reynaldi<sup>2</sup>, Wen Shi Lee<sup>1</sup>, Julie Nguyen<sup>1</sup>, Thakshila Amarasena<sup>1</sup>, George Taiaroa<sup>3,4</sup>, Paul Kinsella<sup>3</sup>, Kwee Chin Liew<sup>3</sup>, Thomas Tran<sup>3</sup>, Helen E Kent<sup>1</sup>, Hyon-Xhi Tan<sup>1</sup>, Louise C Rountree<sup>1</sup>, Thi H O Nguyen<sup>1</sup>, Paul G Thomas<sup>5</sup>, Katherine Kedzierska<sup>1,6</sup>, Jan Petersen<sup>7</sup>, Jamie Rossjohn<sup>7,8</sup>, Deborah A Williamson<sup>3,9</sup>, David Khoury<sup>2</sup>, Miles P Davenport<sup>2</sup>, Stephen J Kent<sup>1,9</sup>, Adam K Wheatley<sup>1</sup>, Jennifer A Juno<sup>1\*</sup>

## Affiliations

<sup>1</sup>Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, VIC, Australia.

<sup>2</sup>Kirby Institute, University of New South Wales, NSW, Australia.

<sup>3</sup>Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, VIC, Australia.

<sup>4</sup>Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.

<sup>5</sup>Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.

<sup>6</sup>Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan

<sup>7</sup>Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia.

<sup>8</sup>Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.

<sup>9</sup>Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia. (lead contact)

**\*Correspondence:** Marios Koutsakos, [marios.koutsakos@unimelb.edu.au](mailto:marios.koutsakos@unimelb.edu.au); Jennifer Juno, [Jennifer.juno@unimelb.edu.au](mailto:Jennifer.juno@unimelb.edu.au) (lead contact)

29 **Abstract**

30 While the protective role of neutralising antibodies against COVID-19 is well-established,  
31 questions remain about the relative importance of cellular immunity. Using 6 pMHC-multimers in  
32 a cohort with early and frequent sampling we define the phenotype and kinetics of recalled and  
33 primary T cell responses following Delta or Omicron breakthrough infection. Recall of spike-  
34 specific CD4<sup>+</sup> T cells was rapid, with cellular proliferation and extensive activation evident as early  
35 as 1 day post-symptom onset. Similarly, spike-specific CD8<sup>+</sup> T cells were rapidly activated but  
36 showed variable levels of expansion. Strikingly, high levels of SARS-CoV-2-specific CD8<sup>+</sup> T cell  
37 activation at baseline and peak were strongly correlated with reduced peak SARS-CoV-2 RNA  
38 levels in nasal swabs and accelerated clearance of virus. Our study demonstrates rapid and  
39 extensive recall of memory T cell populations occurs early after breakthrough infection and  
40 suggests that CD8<sup>+</sup> T cells contribute to the control of viral replication in breakthrough SARS-  
41 CoV-2 infections.

42 **Introduction**

43 COVID-19 vaccines provide a degree of protection against acquisition of infection but  
44 robustly protect against severe disease in the event of vaccine breakthrough infection  
45 (BTI)(Lauring et al., 2022), even in the face of antibody-evasive viral variants such as BA.1 and  
46 BA.2(Buchan et al., 2022; Kirsebom et al., 2022). Neutralising antibody titres in blood are well  
47 established as a correlate of protection from both SARS-CoV-2 infection and severe COVID-19  
48 disease(Cromer et al., 2022; Khoury et al., 2021), with evidence for a mechanistic protective role  
49 supported by the clinical utility of monoclonal antibody treatments(Stadler et al., 2022).  
50 Nonetheless, studies in humans and animal models suggest that multiple immunological effectors  
51 likely contribute to viral control and clearance(Liu et al., 2022; Zhuang et al., 2021). In particular,  
52 it has been proposed that CD4<sup>+</sup> and CD8<sup>+</sup> T cell memory are important mediators of vaccine-  
53 associated protection from severe outcomes (Bertoletti et al., 2022b; Scurr et al., 2022; Wherry  
54 and Barouch, 2022). Interestingly, although unvaccinated and vaccinated cohorts show similar  
55 peak viral load after infection, vaccinated individuals exhibit accelerated viral clearance in the  
56 upper respiratory tract (URT) beginning four to six days after symptom onset(Chia et al., 2022;  
57 Garcia-Knight et al., 2022; Puhach et al., 2022; Singanayagam et al., 2022). While the  
58 mechanisms of vaccine-associated viral decline are yet to be defined, a role is plausible for both  
59 CD8<sup>+</sup> T cells, which may induce cytolysis or produce antiviral cytokines (Rha et al., 2021; Sekine  
60 et al., 2020) as well as CD4<sup>+</sup> T cells, which may support the recall of humoral immunity or  
61 potentially exert cytotoxic activity (Kaneko et al., 2022; Meckiff et al., 2020). There is, however, a  
62 paucity of data directly linking CD8<sup>+</sup> and/or CD4<sup>+</sup> T cell recall to viral clearance in human SARS-  
63 CoV-2 infections.

64 Previous studies of BTI have demonstrated the recall of spike (S)-specific memory T cells  
65 established by prior immunisation, as well as the induction of primary T cell responses against  
66 non-vaccine encoded viral antigens such as nucleocapsid (Collier et al., 2022; Kared et al., 2022;  
67 Lim et al., 2022; Minervina et al., 2022). To have a meaningful impact on either the rate of viral  
68 clearance or the likelihood of progressing to severe disease, memory T cell responses must be  
69 efficiently activated, likely within the first few days, following BTI(Bertoletti et al., 2022a). While  
70 cross-sectional studies of BTI cohorts have provided evidence for variable activation or expansion  
71 of S-specific T cells(Collier et al., 2022; Kared et al., 2022), early longitudinal sampling in cohorts  
72 with well-defined exposure history is rare(Kedzierska and Thomas, 2022; Koutsakos et al., 2022;  
73 Reinscheid et al., 2022). Additional work is therefore required to understand how quickly T cell  
74 activation, proliferation and effector function can occur relative to viral clearance.

75 In addition to the paucity of immunological studies that are temporally aligned with viral  
76 kinetics, determination of T cell activation and *ex vivo* phenotype requires direct detection of  
77 antigen-specific T cells without *in vitro* restimulation. The use of fluorescently conjugated pMHC-  
78 multimers can allow for sensitive detection of antigen-specific T cells and their ex-vivo phenotypic  
79 characterisation in cohorts with known HLA alleles(Altman et al., 1996). Indeed, the analyses of  
80 antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells using pMHC multimers have provided novel insights into  
81 the biogenesis and maintenance of T cell responses following SARS-CoV-2 vaccination and  
82 primary infection(Jung et al., 2022; Mudd et al., 2022; Oberhardt et al., 2021; Wragg et al., 2022).  
83 Here, we use 6 pMHC-I and pMHC-II multimers presenting known immunodominant SARS-COV-  
84 2 viral epitopes(Habel et al., 2020; Minervina et al., 2022; Mudd et al., 2022; Nguyen et al., 2021;  
85 Peng et al., 2022; Rountree et al., 2021; Wragg et al., 2022) to precisely define the frequency  
86 and phenotypes of SARS-CoV-2 specific CD8<sup>+</sup> and CD4<sup>+</sup> T cells during both the earliest events  
87 post-BTI and over extended timelines of periodic antigen re-exposure. Further, we compare the  
88 kinetics of CD8<sup>+</sup> T cell recall to the induction of a primary CD8<sup>+</sup> T cell response to SARS-CoV-2  
89 nucleocapsid, a non-vaccine encoded viral antigen. These data define the relationship between  
90 viral replication in the upper respiratory tract and T cell activation, proliferation, and initiation of  
91 effector programs, shedding light on the dynamics of human adaptive immunity to respiratory  
92 virus infection in a highly vaccinated population.

93 **Results**

94 **Kinetics of viral clearance and antibody recall following SARS-CoV-2 breakthrough**  
95 **infections.**

96 To understand the kinetics of T cell recall in relation to viral clearance and humoral  
97 immunity, we recruited a cohort of 23 individuals with PCR-confirmed SARS-CoV-2 breakthrough  
98 infection (BTI) with Delta (n= 6), Omicron BA.1 (n= 7) or Omicron BA.2 (n= 10) strains (Figure 1A,  
99 Table S1). Frequent longitudinal nasal swabs and peripheral blood samples were obtained 0-14  
100 days post-symptom onset (PSO) with additional follow-up blood samples obtained up to day 44  
101 PSO. Each individual provided on average 9 (range 4-13) samples with a total of 150 nasal swabs  
102 and 138 blood samples analysed. All BTIs were mild in severity and occurred on average 100  
103 days from last vaccination (for the 21/23 participants with exact date of vaccination available).

104 Viral load was determined in nasal swabs by qPCR of nucleocapsid (N) gene (Figure 1B).  
105 Viral load peaked early after symptom onset (median day 3 PSO but often at the earliest sample  
106 collected), with no significant difference in peak viral load across the three VOCs. Analysis of the  
107 rate of viral clearance determined by linear regression showed significantly faster viral decay  
108 among Delta breakthroughs compared to Omicron (Supp Table 2).

109 The recall of neutralising antibodies was analysed using a live virus neutralisation assay  
110 (Figure 1C). The kinetics of immune recall following BTI were estimated using piecewise linear  
111 regression to estimate: (1) duration of time between symptom onset and earliest change in  
112 neutralising antibody titre (2) time of peak response relative to symptom onset, and (3) rates of  
113 growth and decay. Antibody titres against the infecting VOC (or an antigenically similar strain)  
114 increased from day 4.3 PSO (95% CI = 2.2 – 8.4) (Supp Table 2), and peaked around day 14.6  
115 (95% CI = 12.2 – 17.4) (similar to previous reports(Koutsakos *et al.*, 2022)). There were no  
116 significant differences in neutralising antibody kinetics between subjects infected with the Delta,  
117 BA.1 or BA.2 VOCs when assessed by piecewise linear regression modelling (Supp Table 2).

118

119 **Characterisation of antigen-specific T cell responses using pMHC multimers**

120 To conduct a detailed characterisation of CD4<sup>+</sup> and CD8<sup>+</sup> T cell recall, we selected four  
121 CD8<sup>+</sup> and two CD4<sup>+</sup> T cell epitopes from SARS-CoV-2 that are restricted by HLA-alleles found at  
122 high frequency in our cohort. Three immunoprominent MHC class I restricted S derived epitopes  
123 (HLA-A\*02:01-S<sub>269-277</sub>, HLA-A\*03:01-S<sub>378-386</sub>, HLA-A\*24:02-S<sub>1208-1216</sub>) and one N derived epitope  
124 (HLA-B\*07:02-N<sub>105-113</sub>) were assessed for CD8<sup>+</sup> T cells, while two MHC class II restricted S  
125 derived epitopes (HLA-DRB1\*15:01-S<sub>751-767</sub>, HLA-DPB1\*04:01-S<sub>167-180</sub>) were assessed for CD4<sup>+</sup>

126 T cells. All multimers have been previously verified for specificity(Mudd *et al.*, 2022; Nguyen *et*  
127 *al.*, 2021; Oberhardt *et al.*, 2021; Rowntree *et al.*, 2021; Wragg *et al.*, 2022), with epitope-specific  
128 cells readily detected *ex vivo* in samples from infected individuals (Figure 1D, gating in Supp Fig  
129 1). All peptides are well conserved across the relevant infecting VOCs in this study, with only one  
130 mutation (N764K) found for the DR15-restricted S<sub>751</sub> peptide in BA.1 and BA.2 sequences (Figure  
131 1E), which is not predicted to alter MHC binding (predicted affinity 97.06nM vs 80.03nM,  
132 NetMHCIIPan-3.2(Jensen *et al.*, 2018)).

133

#### 134 **Robust expansion and activation of S-specific CD4<sup>+</sup> T cells after breakthrough infection.**

135 S-specific memory CD4<sup>+</sup> T cells were detected using the DR15-S<sub>751</sub>- and DP04-S<sub>167</sub> pMHC  
136 multimers in all participants carrying the relevant HLA alleles (Figure 2A). Longitudinal tracking  
137 showed a clear expansion of the number of S-specific CD4<sup>+</sup> T cells following BTI. Analysis of T  
138 cell kinetics with piecewise linear model estimated that frequencies of S-specific CD4<sup>+</sup> T cells rise  
139 at 2.5 days PSO (95% CI = 1.9-3.4), peaking on day 5.4 (95% CI = 4.8-6.1), and slowly contracting  
140 thereafter (Figure 2B-C, Supp Table 3). Strikingly, the appearance of activated (CD38<sup>+</sup>ICOS<sup>+</sup>)  
141 Tet<sup>+</sup> cells in the circulation occurred in a synchronised manner across the cohort (Figure 2A-C)  
142 with evidence of activation estimated to be initiated around 1.1 days PSO (95% CI = 0.7-1.8) and  
143 peaking by day 3.6 (95% CI = 3.2-4.01). Over this period the proportion of activated pMHC-II<sup>+</sup>  
144 CD4<sup>+</sup> T cells rose from 2.44% (95% CI = 1.1-5.4) at initial sampling to a peak of 74.5% (95% CI =  
145 68 – 81%)(Supp Table 3). Other markers of activation including CD71 and PD-1 were similarly  
146 upregulated following BTI (Figure 2D), with maximal expression between 1.6 and 4.0 days PSO  
147 (Supp Table 4). The kinetics of expansion and activation were broadly comparable between the  
148 two MHC-II epitopes, with only minor differences in the decay kinetics of some markers Supp  
149 Table 4).

150 Previous studies of DR15-S<sub>751</sub> and DP04-S<sub>167</sub> responses demonstrated recruitment into  
151 both conventional CD4<sup>+</sup> memory T cell pools and circulating T follicular helper (cTFH) cell pools  
152 following primary vaccination or infection(Mudd *et al.*, 2022; Wragg *et al.*, 2022). Surprisingly, we  
153 found minimal evidence of recalled T cells exhibiting a cTFH phenotype during BTI (Supp Figure  
154 2A-B), even among individuals where CXCR5<sup>+</sup> S-specific cells were clearly detected after primary  
155 vaccination. Accordingly, we found no correlation between the peak or growth rate of neutralising  
156 antibody titres and the kinetics of S-specific CD4<sup>+</sup> T cell recall/memory across the cohort (Supp  
157 Figure 2C).

158 Phenotypically, both DR15-S<sub>751</sub>- and DP04-S<sub>167</sub>-specific cells exhibited a mixture of T<sub>CM</sub>-  
159 like (CD45RA<sup>-</sup>CCR7<sup>+</sup>) and T<sub>EM</sub>-like (CD45RA<sup>-</sup>CCR7<sup>-</sup>) profiles, with a transient increase in the

160 relative proportion of CCR7<sup>+</sup> cells occurring around the peak of T cell proliferation (Supp Figure  
161 3A). Previously, nasopharyngeal swabs collected during mild/moderate COVID-19 revealed the  
162 upregulation of multiple inflammatory mediators, including the CXCR3 ligand  
163 CXCL10(Rajagopala et al., 2022), which may facilitate trafficking of activated T cells to the lung  
164 or nasal mucosa. S-specific CD4<sup>+</sup> T cells showed upregulation of both CXCR3 and CCR5 during  
165 BTI, suggesting the potential for these cells to migrate to inflamed tissues (Figure 2D, Supp Figure  
166 3B-C). We further observed a modest increase in granzyme B (GzmB) expression among S-  
167 specific CD4<sup>+</sup> T cells by day 2 PSO (Supp Figure 3D), in line with previous reports of GZMB  
168 upregulation following *in vitro* culture of S-specific CD4<sup>+</sup> T cells(Dong et al., 2022). Overall, we  
169 find rapid activation and expansion of S-specific CD4<sup>+</sup> T cells following BTI, characterised by  
170 transient upregulation of tissue/lymphatic-homing markers.

171

172 **Variable expansion but universal activation of S-specific CD8<sup>+</sup> T cells after breakthrough  
173 infection.**

174 S-specific CD8<sup>+</sup> T cells, regardless of epitope specificity, expanded during BTI from day  
175 4.4 PSO (95% CI = 3.4-5.7), peaking on day 5.8 (95% CI =4.9-6.9) and maintaining relatively  
176 stable frequencies thereafter (Figure 3A, Supp Figure 4A, Supp Table 5). We note, however, the  
177 variability in recall between individuals, with a subset of participants (12/18) showing considerable  
178 expansion in the number of S-specific CD8<sup>+</sup> T cells (median 3.6-fold peak expansion relative to  
179 earliest timepoint available). The remaining six participants had comparatively stable frequencies  
180 of spike-specific cells over the course of follow-up (median 1.1-fold peak expansion relative to  
181 earliest timepoint available; Supp Figure 4B). Participants with limited CD8<sup>+</sup> T cell expansion were  
182 significantly more likely to have received 3 vaccines compared to the rest of the cohort (p=0.038,  
183 Supp Figure 4C), and exhibited significantly higher frequencies of S-specific CD8<sup>+</sup> T cells at the  
184 earliest timepoint available (p=0.017, Supp Figure 4D). There was not, however, any difference  
185 in the time interval from last vaccination to BTI between the two groups (median 74 vs 84 days,  
186 p>0.05, Supp Figure 4E).

187 Despite the variable changes in T cell frequency among individuals, we observed universal  
188 upregulation of CD38 on S-specific CD8<sup>+</sup> T cells, estimated to occur soon after the onset of  
189 symptoms (0.24 days PSO) and peaking at 7.1 days (Figure 3B, C). All six individuals with limited  
190 T cell expansion exhibited activation of S-specific cells, with 3 of those participants showing  
191 relatively high frequencies of CD38<sup>+</sup> cells at their initial sample that declined during follow-up  
192 (Supp Figure 4F). It is therefore possible that the onset of CD8<sup>+</sup> T cell activation and proliferation

193 occurred prior to the first available sample in these individuals (i.e. before day 2 PSO), either due  
194 to a lag between infection and symptom onset, or rapid T cell recall.

195 In addition to CD38, we observed similar upregulation of activation marker PD-1 and  
196 proliferation marker CD71, which peaked on day 3.3 (95% CI =2.1-5.1) and day 5.4 (95% CI =4.3-  
197 6.8) PSO, respectively (Figure 3D, Supp Table 6). Consistent with our observations of S-specific  
198 CD4<sup>+</sup> T cells, BTI drove upregulation of CCR5 and CXCR3 on CD8<sup>+</sup> T cells (Figure 3D, Supp  
199 Figure 5A-B). During the course of infection, S-specific CD8<sup>+</sup> T cells transiently changed from a  
200 CCR7<sup>+</sup>CD45RA<sup>+</sup> to a CCR7<sup>-</sup>CD45RA<sup>-</sup> phenotype (Supp Figure 5C). The expression of granzyme  
201 B was dynamic, with clearly detectable GzmB<sup>+</sup> populations at the earliest timepoints post-BTI and  
202 considerable upregulation observed in some donors (Figure 3D, Supp Figure 5A). We did not  
203 note any major differences in relative immunodominance, recall kinetics or phenotype between  
204 the three S-derived pMHC-I epitopes, although the current study is not powered for a formal  
205 comparative analysis. Overall, despite variability between donors in the expansion in the number  
206 of S-specific CD8<sup>+</sup> T cells, these cells consistently show high levels of activation at early  
207 timepoints after BTI.

208

## 209 **Concomitant expansion of primary N-specific CD8<sup>+</sup> T cells and recall of S-specific CD8<sup>+</sup> T 210 cells after breakthrough infection.**

211 All individuals in the BTI cohort were previously immunised with SARS-CoV-2 vaccines  
212 encoding only the S antigen (BNT162b2, ChAdOx-nCoV19 or mRNA-1273). Consequently, recall  
213 of vaccine-induced immunological memory targeting S could be compared to the primary immune  
214 response generated against other viral antigens. Among the 23 individuals in the BTI cohort, 9  
215 carried both an S peptide- (A2-S<sub>269-277</sub>, A3-S<sub>378</sub>, or A24-S<sub>1208</sub>) and N peptide- (B7-N<sub>105</sub>) restricting  
216 HLA allele. Furthermore, longitudinal PBMC samples were available from four of these individuals  
217 over the course of primary vaccination, allowing us to characterise the nature of S- and N-specific  
218 CD8<sup>+</sup> T cell populations prior to their BTI.

219 Analysis of pre-BTI samples validated previous observations of low baseline frequencies  
220 of naïve (CD45RA<sup>+</sup>CCR7<sup>+</sup>CD95<sup>-</sup>) S-specific CD8<sup>+</sup> T cells, which increase in frequency and  
221 acquire a CD45RA<sup>-</sup>CCR7<sup>+</sup>CD95<sup>+</sup> phenotype following vaccination (Figure 4A). At baseline, B7-  
222 N<sub>105</sub>-specific CD8<sup>+</sup> T cells similarly presented with a naïve-like phenotype (CD45RA<sup>+</sup>CCR7<sup>+</sup>)  
223 which lacked expression of the stem-cell memory marker CD95. The frequency and naïve  
224 phenotype of these cells was stable throughout vaccination (Figure 4A), consistent with the lack  
225 of N antigen in the vaccine formulations received by these individuals. These data align with  
226 previous observations that in SARS-CoV-2 naïve donors the majority of B7-N<sub>105</sub>-specific CD8<sup>+</sup> T

227 cells detected *ex vivo* are antigen-inexperienced, with no evidence of priming by cross-reactive  
228 human coronavirus epitopes(Lineburg *et al.*, 2021; Nguyen *et al.*, 2021).

229 N-specific cells were also found at low frequency and with a naïve phenotype at early  
230 timepoints post-BTI among the wider cohort. Memory S-specific CD8<sup>+</sup> T cells were ~8 times  
231 greater in frequency than naïve N-specific CD8<sup>+</sup> T cells at the first available timepoint, despite the  
232 high precursor frequency of naïve B7-N<sub>105</sub> T cells observed in this and other studies(Lineburg *et*  
233 *al.*, 2021; Nguyen *et al.*, 2021) (Figure 4A). Over the course of BTI, we observed the progressive  
234 differentiation of B7-N<sub>105</sub>-specific T cells as they proliferated, downregulated CD45RA and  
235 acquired expression of CD95 (Figure 4A). Initiation of an effector program among N-specific CD8<sup>+</sup>  
236 T cells was characterised by the concurrent upregulation of CD38, CCR5, CXCR3, GzmB and  
237 CD71 (Figure 4B). Surprisingly, however, despite the prior exposure to S-antigen and the  
238 difference in overall frequency of S- and N-specific cells, the activation kinetics of S- and N-  
239 specific CD8<sup>+</sup> T cells were largely similar, with both populations exhibiting similar delay, growth  
240 rate and peak time of CD38, CD71, CXCR3, CCR5 and GzmB expression (Supp Table 7-8).  
241 Nonetheless, at early timepoints, S-specific cells expressed significantly higher levels of GzmB  
242 and CCR5 than naïve N-specific cells (Supp Table 8), providing them with the immediate effector  
243 and trafficking potential classically ascribed to memory T cells. Despite the similar kinetics,  
244 vaccine-primed S-specific CD8<sup>+</sup> T cells were present at a higher frequency than N-specific CD8<sup>+</sup>  
245 T cells throughout BTI. This was in contrast to a primary SARS-CoV-2 infection, where B7-N<sub>105</sub>-  
246 specific CD8<sup>+</sup> T cells were shown to be numerically dominant population over the S-specific  
247 populations included in our analysis (Supp Fig 5E). Overall, we find both recall and primary CD8<sup>+</sup>  
248 T cell responses occur at early timepoints after symptom-onset, confirming that *de novo* T cell  
249 responses to infection are not impaired in vaccinated individuals(Minervina *et al.*, 2022).

250

## 251 **S-specific CD8<sup>+</sup> T cell activation correlates with viral clearance.**

252 Studies of SARS-CoV-2 dynamics in the URT have demonstrated that while peak viral  
253 load is similar between vaccinated and unvaccinated individuals, prior vaccination is associated  
254 with accelerated viral clearance starting between days 4-6 PSO(Chia *et al.*, 2022; Garcia-Knight  
255 *et al.*, 2022; Puhach *et al.*, 2022; Singanayagam *et al.*, 2022). To understand the relationship  
256 between viral decline and the onset of humoral and cellular recall, we compared the kinetics of  
257 nasal viral load, CD4<sup>+</sup> and CD8<sup>+</sup> T cell activation, and neutralising antibody titres. Our kinetic  
258 analysis clearly indicated that activation of SARS-CoV-2 specific T cells occurs concurrently to  
259 viral clearance, and considerably earlier than recall of neutralising antibodies (Figure 5A). To  
260 further define the potential role of T cell recall in viral clearance, we performed an exploratory

261 analysis to understand whether T cell recall kinetics correlate with levels and rate of viral  
262 clearance in the URT.

263 We investigated the relationship between viral dynamics (peak viral load and rate of viral  
264 clearance) with either the total frequency of antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells or the  
265 activation of antigen-specific populations. The frequency of S-specific CD8<sup>+</sup> T cells did not  
266 correlate with viral load or viral clearance rate (Supp Figure 6A). Notably, however, we identified  
267 a relationship between of S-specific CD8<sup>+</sup> T cell activation and viral clearance. Specifically, the  
268 frequency of CD38<sup>+</sup> S-specific cells at the time of symptom onset and at peak response both  
269 positively correlated with the rate of viral clearance ( $p=0.019$  and  $0.009$ , respectively, Figure 5B).  
270 Conversely, both measures of S-specific T cell activation were inversely associated with peak  
271 viral load ( $p=0.001$  and  $0.002$  for initial and peak CD8<sup>+</sup> T cell activation, respectively; Figure 5B).  
272 Neither the frequency nor activation of the primary N-specific CD8<sup>+</sup> T cell response was  
273 significantly associated with viral peak or clearance (Supp Figure 6B-C), although this analysis is  
274 limited due to a small sample size. Additionally, we did not observe a correlation between the  
275 frequency or activation of S-specific CD4<sup>+</sup> T cells and viral peak or clearance (Supp Figure 6D-  
276 E).

277 The association between S-specific CD8<sup>+</sup> T cell activation and viral kinetics is intriguing,  
278 suggesting that a greater magnitude of S-specific T cell recall may be associated with a more  
279 rapid clearance of virus in the URT. However, studies of monoclonal antibody administration  
280 indicate that antibody titres may also accelerate viral clearance(Weinreich et al., 2021). Therefore,  
281 we explored whether neutralising antibody levels (to the infecting or antigenically similar strain)  
282 was also associated with viral kinetics in this cohort. We found no significant association between  
283 initial or peak neutralising antibody levels and viral peak or clearance rate in this cohort (Supp  
284 Figure 6F). Overall, the association between activation of recalled S-specific CD8<sup>+</sup> T cells in blood  
285 and viral kinetics suggest that T cell activation may be an informative correlate of viral clearance  
286 following BTI.

287

#### 288 **Long-term stability of T cell responses following multiple antigen exposures.**

289 As the SARS-CoV-2 pandemic progresses, the lived experience of many individuals will  
290 include recurrent exposure to the viral S protein through a combination of vaccination and  
291 infection. Seven individuals in our BTI cohort were longitudinally sampled for up to 875 days over  
292 the course of the pandemic, providing a novel insight into the long-term maintenance and recall

293 of S-specific T cell immunity (Figure 6). This included two individuals infected with ancestral (Hu-  
294 1) virus, subsequently immunised twice with S-encoding vaccines and then acquiring an Omicron  
295 BTI (Figure 6A), and five individuals who received three doses of S-encoding vaccines and  
296 subsequently infected with Omicron (Figure 6B). While each exposure had a variable impact on  
297 the frequency of S-specific T cells, the cumulative impact of multiple vaccinations/infections was  
298 the durable maintenance of memory T cell populations substantially above pre-vaccination levels  
299 (Figure 6B). At the end of follow-up, S-specific CD8<sup>+</sup> T cell frequencies were 3 to 240-fold higher  
300 compared to pre-vaccination baseline samples, with S-specific CD4<sup>+</sup> T cells 22 to 83-fold higher.  
301 Notably, two participants with high S-specific T cell frequencies and limited CD8<sup>+</sup> T cell expansion  
302 following BTI (COR039 and COR281) exhibited particularly high frequencies of S-specific CD8<sup>+</sup>  
303 T cell following the 3<sup>rd</sup> vaccine dose, comprising 0.6-1.3% of the CD8<sup>+</sup> T cell compartment at peak  
304 (Figure 6B). Across the cohort, each exposure to S also resulted in striking but transient activation  
305 of both CD4<sup>+</sup> (ICOS<sup>+</sup>CD38<sup>+</sup>) and CD8<sup>+</sup> (CD38<sup>+</sup>) S-specific T cells. Although the sample size limits  
306 formal comparisons, breakthrough infection with BA.1 or BA.2 virus did not appear to boost  
307 circulating S-specific T cell frequencies, or their activation phenotype to a as great an extent as  
308 observed after the 3<sup>rd</sup> vaccine dose (Figure 6A-B). Taken together, our longitudinal follow-up over  
309 an extended period of time demonstrates the durability and long-term maintenance of circulating  
310 vaccine-induced S-specific CD4<sup>+</sup> and CD8<sup>+</sup> T memory cells.

311 **Discussion**

312 As SARS-CoV-2 variants increasingly escape neutralizing antibody responses, T cell  
313 responses that target conserved epitopes are likely to be of increasing immunological  
314 importance(Wherry and Barouch, 2022). Here, we characterised multiple epitope-specific CD4<sup>+</sup>  
315 and CD8<sup>+</sup> T cells in a longitudinal cohort of finely sampled individuals early after BTI. Our kinetic  
316 analyses clearly demonstrate rapid activation of both CD4<sup>+</sup> and CD8<sup>+</sup> T cells that precedes  
317 serological increases in neutralizing antibodies. Further, we find an association between high  
318 levels of S-specific CD8<sup>+</sup> T cell activation and more rapid viral decline in SARS-CoV-2 RNA levels  
319 in the URT.

320 While mechanistic roles have been established for neutralizing antibodies in protection  
321 from acquisition of infection and progression to severe disease(Khoury *et al.*, 2021; Stadler *et al.*,  
322 2022), questions have persisted over the contributions of CD4<sup>+</sup> or CD8<sup>+</sup> T cells (Kent *et al.*, 2022).  
323 Identification of immune correlates that predict avoidance of severe outcomes following BTI is  
324 challenging due to the relatively low frequency of severe infections. For this reason, studies of the  
325 correlation between T cell responses and viral kinetics have been proposed(Kent *et al.*, 2022) . It  
326 is pertinent to note that in mild/moderate BTI, vaccination has no apparent impact on peak viral  
327 load(Chia *et al.*, 2022; Garcia-Knight *et al.*, 2022; Singanayagam *et al.*, 2022), with SARS-CoV-2  
328 viral replication being curtailed at or prior to the onset of symptoms in most individuals(Koutsakos  
329 *et al.*, 2022). Nonetheless, the significantly faster decline of viral load in the upper respiratory tract  
330 among vaccinated individuals in the first week post-onset(Chia *et al.*, 2022; Garcia-Knight *et al.*,  
331 2022; Puhach *et al.*, 2022; Singanayagam *et al.*, 2022) suggests that vaccine-induced immune  
332 memory contributes to viral clearance. Our study therefore places the activation of S-specific  
333 CD4<sup>+</sup> and CD8<sup>+</sup> memory T cells in an immunologically relevant window following BTI.

334 Further support for a protective role for T cells comes from our observation that higher  
335 CD8<sup>+</sup> T cell activation level in peripheral blood was associated with lower peak viral load and a  
336 faster rate of viral clearance in the URT. Importantly, being based on the estimated kinetic  
337 parameters of viral load and T cell immunity this association does not simply reflect temporal  
338 relationships between an activated immune response and declining virus. Our findings are also  
339 consistent with animal studies in which CD8<sup>+</sup> T cell depletion results in delayed viral clearance(Liu  
340 *et al.*, 2022). While data derived from peripheral blood may not necessarily reflect T cell responses  
341 in tissues, we find that activated S-specific T cells express chemokine receptors that should  
342 facilitate trafficking to inflamed tissues, as well as effector molecules such as GzmB that can lead  
343 to clearance of infected cells. It is important to note that we were unable to assess the role of T  
344 cell activation in the context of diverse clinical outcomes, which will need to be addressed in future

345 studies. A key issue that remains poorly understood is whether or how accelerated viral clearance  
346 in the URT is related to protection from severe disease among vaccinated individuals. It is possible  
347 that immune responses contributing to viral clearance in the URT also prevent spread of virus to  
348 the lower respiratory tract and thus mitigate disease progression(Wherry and Barouch, 2022); in  
349 this context, both antibodies and cytolytic T cells could contribute to the containment of viral  
350 replication.

351 Parallel tracking of CD4<sup>+</sup> and CD8<sup>+</sup> T cell responses revealed the extent to which memory  
352 T cell pools can be reactivated following antigen exposure. In particular, the rapid appearance of  
353 highly activated S-specific CD4<sup>+</sup> T cells in the periphery (often within a 24 hour sampling window)  
354 demonstrated the remarkable efficiency of CD4<sup>+</sup> T cell recall during BTI. Furthermore, long-term  
355 tracking of S-specific T cell populations through multiple vaccinations and infections demonstrated  
356 the ability of memory cells to be established and recalled multiple times over the course of one to  
357 two years with no evidence for progressive exhaustion or anergy. There may, however, be a  
358 'ceiling' of epitope-specific T cell frequencies, such that repeated antigen exposure largely  
359 maintains a stable population of memory T cells rather than progressively increasing the memory  
360 pool with each restimulation.

361 Previous characterization of nucleoprotein- (B7-N<sub>105</sub>-) specific CD8<sup>+</sup> T cells in pre-  
362 pandemic samples and uninfected individuals has indicated that the majority of these cells have  
363 a naïve phenotype(Nguyen *et al.*, 2021; Peng *et al.*, 2022), which is further supported by our  
364 analysis. Thus, the analysis of Spike- and Nucleoprotein-specific CD8<sup>+</sup> T cells in our S-vaccinated  
365 BTI cohort provides an opportunity to analyse both primary and recall CD8<sup>+</sup> T cell responses  
366 together. Intriguingly, we did not find any major differences in the kinetics of primary and recalled  
367 responses, consistent with a previous report on recalled Yellow Fever Virus-specific CD8<sup>+</sup> T  
368 cells(Minervina *et al.*, 2020). We do note that the high degree of variability for S-specific CD8<sup>+</sup> T  
369 cell recall in this cohort could mask subtle kinetic differences between primary and recall  
370 responses. Additionally, as the high naïve-precursor frequency of B7-N<sub>105</sub> observed in our study  
371 and by others(Lineburg *et al.*, 2021; Nguyen *et al.*, 2021) may not apply to other pMHC-I  
372 specificities and may bias response kinetics, analysis of primary responses to other epitopes  
373 could be informative. Nevertheless, our data suggest that the protective benefit of circulating T  
374 cell memory may be more related to the maintenance of an expanded population of T cells with  
375 immediate effector function rather than accelerated activation or proliferation kinetics compared  
376 to a primary response. Given, however, that both the activation time and response peak time of  
377 primary N-specific CD8<sup>+</sup> T cells in peripheral blood occur early after symptom onset, it is plausible  
378 that both primary and recalled responses contribute to viral clearance.

379 *In vitro* restimulation assays have typically been employed to enumerate vaccine- or  
380 infection-elicited T cells prior to BTI(Scurr *et al.*, 2022; Tan *et al.*, 2021a). However, the use of  
381 pMHC multimers allowed us to quantitatively and qualitatively track epitope-specific T cells at  
382 markedly augmented resolution. For example, we noted a subset of individuals with no observable  
383 change in frequency of S-specific CD8<sup>+</sup> T cells throughout BTI, but with robust evidence of  
384 activation. Restimulation-based T cell assays may be confounded during acute infection due to a  
385 combination of *in vivo* T cell activation and a lack of sensitivity to detect subtle changes in antigen-  
386 specific T cell frequency. Furthermore, our observation of a correlation between viral clearance  
387 and T cell recall was based on the measurement of activation, rather than T cell frequency. The  
388 ability to accurately determine the phenotype of antigen-specific CD8<sup>+</sup> T cells directly ex-vivo has  
389 therefore provided critical insights into the recall of immunological memory and viral clearance  
390 that were not captured by simply enumerating such cells. A key consideration for future research  
391 will be to define how functional attributes of CD8<sup>+</sup> T cells, like cytokine production or cytolytic  
392 potential, compare to phenotypic activation during BTI, which may guide the selection of optimal  
393 readouts for monitoring T cell recall and correlates of protection in larger cohorts.

394 We and others have previously described how cTFH responses serve as correlates of  
395 humoral immunity during viral infection and vaccination, including for SARS-CoV-2(Juno *et al.*,  
396 2020; Koutsakos *et al.*, 2019; Koutsakos *et al.*, 2018; Wragg *et al.*, 2022). The low frequency of  
397 S-specific cTFH cells in our BTI cohort was therefore intriguing. It is possible that the interval  
398 between antigen exposures affects the emergence of cTFH, as second and third doses of mRNA-  
399 encoded spike also result in a limited induction of CXCR5<sup>+</sup> S-specific CD4<sup>+</sup> T cells relative to the  
400 first dose(Wragg *et al.*, 2022). Similarly, analyses of influenza HA-specific CD4<sup>+</sup> T cells after  
401 vaccination indicated limited induction of a cTFH response in individuals who were vaccinated  
402 within the past 12 months compared to those who were not(Wild *et al.*, 2021). In addition to the  
403 limited S-specific cTFH phenotype, the lack of correlation between CD4<sup>+</sup> T cell and antibody recall  
404 among our cohort was also surprising. This may reflect an overall less stringent involvement of T  
405 cell help in recall humoral responses, consistent with animal models(Hebeis *et al.*, 2004; Zabel *et*  
406 *al.*, 2017). Given evidence of germinal center activity following SARS-CoV-2 infection(Tan *et al.*,  
407 2022), further studies are thus needed to characterize lymphoid TFH and cTFH activity during  
408 recall following BTI with SARS-CoV-2 and its utility as a biomarker of humoral immunity in this  
409 context.

410 We note that our analysis is limited to specific HLA allotypes that may not be  
411 representative of the global population. Further studies are needed to establish equivalent pMHC  
412 multimer reagents across different HLA allotypes and antigens, as well as to develop strategies

413 that may allow for their application in larger cohorts of genetically diverse populations. Although  
414 our study is focused on 26 individuals, the thorough kinetic analyses of 150 nasal swabs and 138  
415 blood samples may facilitate more targeted sampling of larger cohorts at key timepoints defined  
416 in our study. Analysis of more diverse cohorts may facilitate further dissection of factors affecting  
417 immune recall and viral clearance including previous antigen exposures, age or disease severity,  
418 which was not possible in our cohort. Nonetheless, our study provides considerable evidence that  
419 T cell activation occurs before detectable expansion in the number of cells, and is correlated with  
420 virological control during BTI with SARS-CoV-2. This emphasizes the need to further understand  
421 the role of vaccine-elicited T cell immunity both mechanistically and as a correlate of protection.

422 **Acknowledgments**

423 We thank the participants for their generous involvement and provision of samples. We thank  
424 molecular staff at the Victorian Infectious Diseases Reference Laboratory for performing RT-PCR,  
425 and Ms Grace Gare for technical assistance. We thank Dr. Julian Druce and Dr. Leon Caly at the  
426 Victorian Infectious Diseases Reference Laboratory for isolating and distributing SARS-CoV-2  
427 virus isolates. We thank A/Prof Stuart Turville from the Kirby Institute, University of New South  
428 Wales for technical expertise and sharing the HAT-24 cell line. We acknowledge the Melbourne  
429 Cytometry Platform for provision of flow cytometry services. The work has been generously  
430 supported by the Morningside Foundation and by the Australian National Health and Medical  
431 Research Council grants 1149990, 1162760, 1194036 and 2004398; Australian Medical  
432 Research Future Fund grants 2005544, 2016062 and 2013870; The Victorian Government; and  
433 Australian National Health and Medical Research Council Investigator or Fellowship grants (M.K.,  
434 A.K.W., J.A.J., H.-X.T., D.A.W., M.P.D., K.K, T.H.O.N. and S.J.K.).

435

436 **Author contributions**

437 M.K. and J.A.J conceived and supervised the study. M.K., J.A.J, W.S.L., H.X.T. and A.K.W.  
438 designed experiments. M.K., J.A.J, W.S.L., G.T., P.K., K.C.L., T.T. performed experiments. J.N.,  
439 T.A., H.E.K. and S.K. recruited, collected and processed participant samples. M.K., J.A.J, W.S.L.,  
440 H.X.T., A.K.W., A.R., D.K., and M.P.D, contributed to data analysis. L.C.R, T.H.O.N., P.G.T, K.K.,  
441 J.P, J.R. and D.A.W. contributed to methodology design. M.K., J.A.J, W.S.L., H.X.T., A.R., M.P.D  
442 and S.K. drafted the manuscript. All authors reviewed the final version of the manuscript.

443

444 **Competing interests**

445 MK has acted as a consultant for Sanofi group of companies. The other authors declare no  
446 competing interests.

447

448

449

450

451 **Figure legends**

452

453 **Figure 1. Fine longitudinal sampling of SARS-CoV-2 breakthrough infection and study**  
454 **design.**

455 (A) Schematic of longitudinal sample collection following breakthrough infection with Delta,  
456 Omicron BA.1 or Omicron BA.2. Each line represents a single donor and each point represents a  
457 sample collection (blue, nasal swab; red, blood; purple, both swab and blood). (B) Kinetics of viral  
458 load measured by Ct values for SARS-CoV-2 N gene in serial nasal swabs. Green, Delta  
459 breakthrough infection; grey, BA.1; pink, BA.2. (C) Kinetics of neutralizing antibodies measured  
460 by a live virus microneutralization assay using an antigenically similar virus to the infecting VOC.  
461 For (B) and (C) n = 6 participants for Delta, n = 7 for Omicron BA.1 and n=10 for Omicron BA.2.  
462 For (C) the bold black line represents the mean estimate from the piecewise linear regression  
463 model using the estimated parameters. (D) Representative flow cytometry plots for each pMHC  
464 multimer used for the detection of antigen-specific CD8<sup>+</sup> and CD4<sup>+</sup> T cells. Data were collected  
465 from cryopreserved PBMC following SARS-CoV-2 infection. (E) Sequence alignment of peptides  
466 with HLA restriction used for the detection of antigen-specific CD8<sup>+</sup> and CD4<sup>+</sup> T cells across  
467 selected SARS-CoV-2 VOCs.

468

469 **Figure 2. Robust expansion and activation of spike-specific CD4<sup>+</sup> T cells after**  
470 **breakthrough infection.**

471 (A) Representative flow cytometry plots and kinetics of HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-  
472 specific CD4<sup>+</sup> T cells from a single participant and co-expression of ICOS and CD38. (B)  
473 Representative flow cytometry plots of HLA-DR\*15-S<sub>751</sub> -specific CD4<sup>+</sup> T cells and kinetics of  
474 phenotypic markers for both pMHC-II populations, n=19 for DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>.  
475 (C) Estimated kinetics of pMHC-II<sup>+</sup> CD4<sup>+</sup> T cell frequency and activated (CD38<sup>+</sup>ICOS<sup>+</sup>) phenotype.  
476 The lines indicate the mean estimate for measurement from the piecewise linear regression  
477 model, using pooled data from both pMHC-II populations (as no significant differences were found  
478 between the two). (D) Representative flow cytometry plots of phenotypic markers for DR\*15-S<sub>751</sub>  
479 (left) and kinetics marker expression for both pMHC-II populations (right). Throughout the figure,  
480 coloured lines represent individual donors for each pMHC-II-specific population, n=19 for DP\*04-  
481 S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>.

482

483 **Figure 3. Early but variable recall of spike-specific CD8<sup>+</sup> T cells after breakthrough**  
484 **infection.**

485 (A) Representative flow cytometry plots for HLA-A\*3-S<sub>378</sub> and kinetics of HLA-A\*02-S<sub>269</sub>, HLA-  
486 A\*03-S<sub>378</sub> and HLA-A\*24-S<sub>1208</sub> -specific CD8<sup>+</sup> T cells. (B) Representative flow cytometry plots for  
487 HLA-A\*3-S<sub>378</sub> and kinetics of activated (CD38<sup>+</sup>) cells for HLA-A\*02-S<sub>269</sub>, HLA-A\*03-S<sub>378</sub> and HLA-  
488 A\*24-S<sub>1208</sub> -specific CD8<sup>+</sup> T cells. (C) Estimated kinetics of pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell frequency and  
489 activated (CD38<sup>+</sup>) phenotype. The lines indicate the mean estimate for measurement from the  
490 piecewise linear regression model, using pooled data from all 3 pMHC populations. (D)  
491 Representative flow cytometry plots of phenotypic markers for HLA-A\*3-S<sub>378</sub> and kinetics marker  
492 expression for all 3 pMHC-I populations. Throughout the figure, coloured lines represent individual  
493 donors for each pMHC-I-specific population, n=11 for A\*02-S<sub>269</sub>, n=4 A\*03-S<sub>378</sub> and n=4 for A\*24-  
494 S<sub>1208</sub>.

495

496 **Figure 4. Early expansion of primary nucleocapsid-specific CD8<sup>+</sup> T cells and recall of spike-  
497 specific CD8<sup>+</sup> T cells after breakthrough infection.**

498 (A) Representative flow cytometry plots of HLA-A\*02-S<sub>269</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T  
499 cells and their phenotypic analysis based on CCR7, CD45RA and CD95 from baseline throughout  
500 vaccination and subsequent SARS-CoV-2 breakthrough infection. Kinetics are shown for n=9  
501 donors with paired analysis spike-specific CD8<sup>+</sup> T cells (either A\*02, A\*03 and A\*24) and B\*07-  
502 N<sub>105</sub>, for 4 of which pre-breakthrough samples were available. (B) Representative flow cytometry  
503 plots for HLA-A\*3-S<sub>378</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T cells. Frequencies of single marker<sup>+</sup>  
504 cells are shown in red for B7-N105 only. Kinetics of phenotypic markers for S- or N- specific CD8<sup>+</sup>  
505 T cells following SARS-CoV-2 breakthrough infection, n=9 donors with paired spike-specific CD8<sup>+</sup>  
506 T cells (either A\*02, A\*03 and A\*24) and B\*07-N<sub>105</sub>. Throughout the figure, coloured lines  
507 represent individual donors for each pMHC-specific population.

508

509 **Figure 5. S-specific CD8<sup>+</sup> T cell activation correlates with viral clearance.** (A) Summary of  
510 estimated kinetics viral clearance and of relevant immunological parameters determined in this  
511 study. (B) Correlations between the initial or peak frequency of CD38<sup>+</sup> S-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells  
512 and viral clearance rate or peak Ct value (amongst available timepoints). Spearman correlation  
513 coefficient and p-values along with a linear regression line are shown for statistically significant  
514 comparisons (p<0.05), n=19.

515

516

517 **Figure 6. Long-term stability of T cell responses following multiple antigen exposures.** (A)  
518 Kinetics for two participants with an initial Hu-1 infection. (B) Kinetics for 5 participants after

519 vaccination, with no prior exposure. The horizontal line indicates the pre-exposure levels for each  
520 epitope-specific T cell population. Throughout the figure, each plot represents longitudinal data  
521 from one donor, with the frequency of pMHC<sup>+</sup> cells within CD4<sup>+</sup> or CD8<sup>+</sup> T cells (top) and the  
522 frequency of activated (CD38<sup>+</sup>ICOS<sup>+</sup> for pMHC-II<sup>+</sup>CD4<sup>+</sup> T cells or CD38<sup>+</sup> for pMHC-I<sup>+</sup>CD8<sup>+</sup> T cells)  
523 cells within pMHC<sup>+</sup> cells (bottom). Each arrow on the top of the plot indicates an exposure to spike  
524 antigen by infection or vaccination.

525

## 526 **Supplementary Figure legends**

527

528 **Figure S1. Gating strategy for the identification of pMHC-specific CD4<sup>+</sup> and CD8<sup>+</sup> T cells**  
529 **and their phenotypic characterisation.** **(A)** Lymphocytes were identified by FSC-A vs SSC-A  
530 gating, followed by doublet exclusion (FSC- A vs FSC-H), a time gate and then gating on live T  
531 cells (CD3<sup>+</sup>CD19<sup>-</sup>) and subsequently CD4<sup>+</sup>CD8<sup>-</sup> cells. HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-  
532 specific cells were identified within CD4<sup>+</sup> T cells, and phenotyped as indicated, with the total CD4<sup>+</sup>  
533 T cell population serving as a reference for gating of phenotypic markers. **(B)** CD8<sup>+</sup> T cell were  
534 identified as CD4<sup>-</sup>CD8<sup>+</sup> within live T cells gated as in (A). HLA-A\*02-S<sub>269</sub>, HLA-A\*03-S<sub>378</sub> and HLA-  
535 A\*24-S<sub>1208</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T cells were identified within CD8<sup>+</sup> T cells and  
536 phenotyped as indicated, with the total CD8<sup>+</sup> T cell population serving as a reference for gating  
537 of phenotypic markers.

538 **Figure S2. Limited cTFH phenotype following BTI.** **(A)** Representative flow cytometry plots of  
539 the cTFH phenotype (CXCR5<sup>+</sup>CD45RA<sup>-</sup>) for HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells. A post-  
540 vaccination sample was included in acquisition and analysis, serving as a reference for the cTFH  
541 activation and cTFH activation (CD38/ICOS expression). **(B)** Kinetics of CXCR5<sup>+</sup> cells for both  
542 pMHC-II populations, n=19 for DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>. **(C)** Correlations between the  
543 initial or peak frequency of S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells and initial or peak frequency of ICOS<sup>+</sup>CD38<sup>+</sup>  
544 S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells with the growth rate and peak value of neutralising antibody titres.  
545 Spearman correlation coefficient and p-values along with a linear regression line are shown for  
546 statistically significant comparisons (p<0.05), n=29 datapoints, pooled for both S-pMHC-II<sup>+</sup> CD4<sup>+</sup>  
547 T cell populations.

548

549 **Figure S3. Phenotype of S-specific CD4<sup>+</sup> T cells.** **(A)** Representative flow cytometry plots of  
550 HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant showing co-

551 expression of CCR7 and CD45RA. Kinetics of  $T_{CM}$  and  $T_{EM}$  for both pMHC-II populations. **(B)** Flow  
552 cytometry plots of HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant for CCR5 and  
553 CXCR5 expression, representative of the data shown in Fig 2. **(C)** Estimated kinetics of CCR5  
554 and CXCR3 expression. The lines indicate the mean estimate for measurement from the  
555 piecewise linear regression model, using pooled data from both pMHC-II populations as no  
556 significant differences were found between the two. **(D)** Flow cytometry plots of HLA-DR\*15-S<sub>751</sub>  
557 and HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant showing expression of  
558 Granzyme B, with kinetics from all participants shown both pMHC-II populations. Throughout the  
559 figure, coloured lines represent individual donors for each pMHC-specific population, n=19 for  
560 DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>.

561

562

563 **Figure S4. CD8<sup>+</sup> T cell responses following BTI.** **(A)** Representative flow cytometry plots of  
564 HLA-A\*02-S<sub>269</sub> and HLA-A\*24-S<sub>1208</sub>-specific CD8<sup>+</sup> T cell kinetics. **(B)** pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell kinetics  
565 colour coded for individuals with an observable expansion and those without. **(C)** Vaccination  
566 history of individuals with an observable expansion and those without. **(D)** pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell  
567 frequency at earliest available timepoint for individuals with an observable expansion and those  
568 without. **(E)** Time from last vaccination to BTI for individuals with an observable and those without.  
569 **(F)** CD38<sup>+</sup> phenotype for pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell kinetics colour coded for individuals with an  
570 observable expansion and those without.

571

572 **Figure S5. Phenotype of S-specific CD8<sup>+</sup> T cells.** **(A)** Flow cytometry plots of HLA-A\*02-S<sub>269</sub>  
573 and HLA-A\*24-S<sub>1208</sub>-specific CD8<sup>+</sup> T cells from a single participant for different phenotypic  
574 markers, representative of the data shown in Fig 3. **(B)** Estimated kinetics of CCR5, CXCR3,  
575 CD71 and GzmB expression. The lines indicate the mean estimate for measurement from the  
576 piecewise linear regression model, using pooled data from both pMHC-I populations as no  
577 significant differences were found between the two. **(C)** Representative flow cytometry plots of  
578 HLA-A\*03-S<sub>378</sub>-specific CD8<sup>+</sup> T cells from a single participant showing co-expression of CCR7  
579 and CD45RA. Kinetics of  $T_{CM}$   $T_{EM}$  and  $T_{EMRA}$  for all 3 pMHC-I populations. Throughout the figure,  
580 coloured lines represent individual donors for each pMHC-I-specific population, n=11 for A\*02-  
581 S<sub>269</sub>, n=4 A\*03-S<sub>378</sub> and n=4 for A\*24-S<sub>1208</sub>. **(D)** Frequency of spike-specific and nucleoprotein-  
582 specific CD8<sup>+</sup> T cells in convalescent samples from primary SARS-CoV-2 infection. For (C), n=6

583 donors with paired analysis of spike-specific CD8<sup>+</sup> T cells (either A\*02, A\*03 and A\*24) and B\*07-  
584 N<sub>105</sub>.

585

586 **Figure S6. Correlations between immune recall and viral clearance.** Correlations between  
587 the initial or peak frequency of **(A)** S-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells, **(B)** N-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells or **(C)**  
588 CD38<sup>+</sup> N-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells, **(D)** S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells, **(E)** ICOS<sup>+</sup>CD38<sup>+</sup>S-pMHC-II<sup>+</sup> CD4<sup>+</sup>  
589 T cells, **(F)** neutralisation IC<sub>50</sub> titre against infecting or antigenically similar live virus and viral  
590 clearance rate or peak Ct value (amongst available timepoints). Throughout the figure Spearman  
591 correlation coefficient and p-values along with a linear regression line are shown for statistically  
592 significant comparisons (p<0.05), n=19 for (A), n=9 for (B-C), n=29 datapoints, pooled for both S-  
593 pMHC-II<sup>+</sup> CD4<sup>+</sup> T cell populations for (D-E), n=23 for (F).

594

595

596 **Methods**

597 **Study Participants.** A cohort of previously vaccinated participants with a nasal PCR-confirmed  
598 breakthrough COVID-19 were recruited through contacts with the investigators and invited to  
599 provide serial blood samples following symptom onset (Table S1), some of whom were previously  
600 described in (Koutsakos *et al.*, 2022). For all participants, whole blood was collected with sodium  
601 heparin anticoagulant. Plasma was collected and stored at -80°C, and PBMCs were isolated via  
602 Ficoll-Paque separation, cryopreserved in 10% DMSO/FCS and stored in liquid nitrogen. For  
603 some individuals, additional PBMC samples were available from participation in previous vaccine  
604 or SARS-CoV-2 infection studies(Juno *et al.*, 2020; Wheatley *et al.*, 2021; Wragg *et al.*, 2022).  
605 Study protocols were approved by the University of Melbourne Human Research Ethics  
606 Committee (2021-21198-15398-3, 2056689), and all associated procedures were carried out in  
607 accordance with approved guidelines. All participants provided written informed consent in  
608 accordance with the Declaration of Helsinki. HLA typing was performed by the Victorian  
609 Transplantation and Immunogenetics Service.

610 **pHLA Production and Staining.** Pro5 MHC Class I pentamers for HLA-A\*02:01 (S<sub>269-277</sub>  
611 YLQPRTFLL), HLA-A\*03:01 (S<sub>378-386</sub> KCYGVSPYK), and HLA-A\*24:02 (S<sub>1205-1213</sub> QYIKWPWYI)  
612 pre-conjugated to PE were purchased from Proimmune. ProT2 MHC Class II monomers for HLA-  
613 DRB1\*15:01 (S<sub>751-767</sub> NLLLQYGSFCTQLNRAL) were purchased from Proimmune and  
614 conjugated to Streptavidin-PE (BD Biosciences) at a molar ratio of 8:1 monomer:S-PE. HLA-  
615 B\*07:02 (N<sub>105-113</sub> SPRWYFYYL) and HLA-DP\*04:01 (S<sub>167-180</sub> TFEYVSQPFLMDLE) monomers  
616 were produced as described previously(Mudd *et al.*, 2022; Nguyen *et al.*, 2021). Monomers were  
617 conjugated to Streptavidin-APC at a molar ratio of 8:1 monomer:S-APC.

618 Cryopreserved PBMC were thawed in RPMI-1640 with 10% fetal calf serum (FCS) and  
619 penicillin-streptomycin (RF10), and washed. 7 – 13x10<sup>6</sup> cells were washed in PBS with 2% FCS  
620 before incubation in 50nM dasatinib (Sigma) at 37°C for 30 minutes. HLA class II and HLA-  
621 B\*07:02 tetramers were added directly to the tubes and stained at a final concentration of 2ug/mL  
622 for 60 minutes at 37°C. Class I pentamers were then added (final concentration 2ug/mL) and  
623 incubated for 15 minutes at room temperature in the dark. Cells were washed in PBS, stained  
624 with Live/Dead green (Life Technologies), and incubated for 30 minutes at 4°C with an antibody  
625 cocktail including: CD20 FITC (2H7), CD3 BUV805 (SK7), CD8 BUV496 (RPA-T8), CD71  
626 BUV395 (M-A712), CD38 BUV737 (HB7, all from BD Biosciences), ICOS PerCP-Cy5.5  
627 (C398.4A), CD4 APC-Cy7 (RPA-T4), CCR5 BV421 (J418F1), CXCR3 Pe-Dazzle (G02H57), PD-  
628 1 BV605 (EH12.2H7), CD45RA AlexaFluor700 (HI100, all from Biolegend), and CXCR5 PeCy7

629 (MU5UBEE; ThermoFisher). Cells were washed in PBS+2% FCS and permeabilised for 10  
630 minutes in 70ul of Cytofix/Cytoperm (BD Biosciences). After washing in 2mL of PermWash, cells  
631 were incubated with anti-GzmB BV510 (GB11, BD Biosciences) for 30 minutes at 4°C. Cells were  
632 washed, resuspended in PBS+2% FCS, and acquired on a BD Fortessa using BD FACS Diva  
633 software.

634

### 635 **SARS-CoV-2 virus propagation and titration**

636 Ancestral SARS-CoV-2 (VIC01) isolate was grown in Vero cells in serum-free DMEM with 1µg/ml  
637 TPCK trypsin while Omicron BA.1 and BA.2 strains were grown in Calu3 cells in DMEM with 2%  
638 FCS. Cell culture supernatants containing infectious virus were harvested on Day 3 for VIC01 and  
639 Day 4 for Omicron strains, clarified via centrifugation, filtered through a 0.45µM cellulose acetate  
640 filter and stored at -80°C. Infectivity of VIC01 stocks was determined by titration on Vero cells via  
641 cytopathic effect observation and calculated using the Reed-Muench method, as previously  
642 described(Juno *et al.*, 2020). Infectivity of Omicron stocks was determined by titration on HAT-24  
643 cells (a clone of transduced HEK293T cells stably expressing human ACE2 and TMPRSS2(Tea  
644 *et al.*, 2021)). In a 96-well flat bottom plate, virus stocks were serially diluted five-fold (1:5-  
645 1:78,125) in DMEM with 5% FCS, added with 30,000 freshly trypsinised HAT-24 cells per well  
646 and incubated at 37°C. After 46 hours, 10µl of alamarBlue™ Cell Viability Reagent  
647 (ThermoFisher) was added into each well and incubated at 37°C for 1 hour. The reaction was  
648 then stopped with 1% SDS and read on a FLUOstar Omega plate reader (excitation wavelength  
649 560nm, emission wavelength 590nm). The relative fluorescent units (RFU) measured were used  
650 to calculate %viability ('sample' ÷ 'no virus control' × 100), which was then plotted as a sigmoidal  
651 dose response curve on Graphpad Prism to obtain the virus dilution that induces 50% cell death  
652 (50% lethal infectious dose; LD<sub>50</sub>). Each virus was titrated in quintuplicate in three independent  
653 experiments to obtain mean LD<sub>50</sub> values.

654

### 655 **SARSCoV-2 microneutralization assay with ELISA-based readout**

656 For Delta breakthrough infections, plasma neutralization activity against ancestral SARS-CoV-2  
657 (CoV/Australia/VIC/01/2020 strain) was measured using a microneutralization assay as  
658 previously described(Koutsakos *et al.*, 2022). 96-well flat bottom plates were seeded with Vero  
659 cells (20,000 cells per well in 100µl). The next day, Vero cells were washed once with 200 µl  
660 serum-free DMEM and added with 150µl of infection media (serum-free DMEM with 1.33 µg/ml  
661 TPCK trypsin). 2.5-fold serial dilutions of heat-inactivated plasma (1:20-1:12207) were incubated

662 with SARS-CoV-2 virus at 2000 TCID<sub>50</sub>/ml at 37°C for 1 hour. Next, plasma-virus mixtures (50µl)  
663 were added to Vero cells in duplicate and incubated at 37°C for 48 hours. 'Cells only' and  
664 'virus+cells' controls were included to represent 0% and 100% infectivity respectively. After 48  
665 hours, all cell culture media were carefully removed from wells and 200 µl of 4% formaldehyde  
666 was added to fix the cells for 30 mins at room temperature. The plates were then dunked in a 1%  
667 formaldehyde bath for 30 minutes to inactivate any residual virus prior to removal from the BSL3  
668 facility. Cells were washed once in PBS and then permeabilized with 150µl of 0.1% Triton-X for  
669 15 minutes. Following one wash in PBS, wells were blocked with 200µl of blocking solution (4%  
670 BSA with 0.1% Tween-20) for 1 hour. After three washes in PBST (PBS with 0.05% Tween-20),  
671 wells were incubated with 100µl of rabbit polyclonal anti-SARS-CoV N antibody (Rockland, #200-  
672 401-A50) at a 1:8000 dilution in dilution buffer (PBS with 0.2% Tween-20, 0.1% BSA and 0.5%  
673 NP-40) for 1 hour. Plates were then washed six times in PBST and added with 100µl of goat anti-  
674 rabbit IgG (Abcam, #ab6721) at a 1:8000 dilution for 1 hour. After six washes in PBST, plates  
675 were developed with TMB and stopped with 0.15M H<sub>2</sub>SO<sub>4</sub>. OD values read at 450nm were then  
676 used to calculate %neutralization with the following formula: ('Virus + cells' – 'sample') ÷ ('Virus +  
677 cells' – 'Cells only') × 100. IC<sub>50</sub> values were determined using four-parameter nonlinear regression  
678 in GraphPad Prism with curve fits constrained to have a minimum of 0% and maximum of 100%  
679 neutralization.

680

### 681 **SARS-CoV-2 microneutralisation assay with viability dye readout**

682 For Omicron breakthrough infections, plasma neutralization activity against Omicron BA.1 and  
683 BA.2 was measured in HAT-24 cells using a viability dye readout. In 96-well flat bottom plates,  
684 heat-inactivated plasma samples were diluted 2.5-fold (1:20-1:12,207) in duplicate and incubated  
685 with SARS-CoV-2 virus at a final concentration of 2× LD50 at 37°C for 1 hour. Next, 30,000 freshly  
686 trypsinised HAT-24 cells in DMEM with 5% FCS were added and incubated at 37°C. 'Cells only'  
687 and 'Virus+Cells' controls were included to represent 0% and 100% infectivity respectively. After  
688 46 hours, 10µl of alamarBlue™ Cell Viability Reagent (ThermoFisher) was added into each well  
689 and incubated at 37°C for 1 hour. The reaction was then stopped with 1% SDS and read on a  
690 FLUOstar Omega plate reader (excitation wavelength 560nm, emission wavelength 590nm). The  
691 relative fluorescent units (RFU) measured were used to calculate %neutralisation with the  
692 following formula: ('Sample' – 'Virus+Cells') ÷ ('Cells only' – 'Virus+Cells') × 100. IC<sub>50</sub> values  
693 were determined using four-parameter non-linear regression in GraphPad Prism with curve fits  
694 constrained to have a minimum of 0% and maximum of 100% neutralisation.

695

## 696 **Analysis of viral RNA load by qPCR**

697 For viral RNA extraction, 200  $\mu$ L of nasal swab sample was extracted with the QIAamp 96 Virus  
698 QIAcube HT kit (Qiagen, Germany) on the QIAcube HT System (Qiagen) according to  
699 manufacturer's instructions. Purified nucleic acid was then immediately converted to cDNA by  
700 reverse transcription with random hexamers using the SensiFAST cDNA Synthesis Kit (Bioline  
701 Reagents, UK) according to manufacturer's instructions. cDNA was used immediately in the rRT-  
702 PCR or stored at -20oC. Three microlitres of cDNA was added to a commercial real-time PCR  
703 master mix (PrecisionFast qPCR Master Mix; Primer Design, UK) in a 20  $\mu$ L reaction mix  
704 containing primers and probe with a final concentration of 0.8 $\mu$ M and 0.1 $\mu$ M for each primer and  
705 the probe, respectively. Samples were tested for the presence of SARS-CoV-2 nucleocapsid (N)  
706 genes using previously described primers and probes (Chan et al., 2020; Corman et al., 2020).  
707 Thermal cycling and rRT-PCR analyses for all assays were performed on the ABI 7500 FAST  
708 real-time PCR system (Applied Biosystems, USA) with the following thermal cycling profile: 95oC  
709 for 2 min, followed by 45 PCR cycles of 95oC for 5 s and 60oC for 30 s for N gene.

## 710 **Modelling of viral and immune kinetics**

711 We used a piecewise model to estimate the activation time and growth rate of various immune  
712 responses following breakthrough infections. The model of the immune response  $y$  for subject  $i$   
713 at time  $y_i$  can be written as:

$$714 y_i(t) = \begin{cases} (B + b_i); t \geq T_1 + \tau_{1i} \\ (B + b_i)e^{(G+g_i)(t-(T_1+\tau_{1i}))}; T_1 + \tau_{1i} \leq t < T_2 + \tau_{2i} \\ (B + b_i)e^{(G+g_i)((T_2+\tau_{2i})-(T_1+\tau_{1i}))} \times e^{-(D+d_i)(t-(T_2+\tau_{2i}))}; t \geq T_2 + \tau_{2i}. \end{cases}$$

715 The model has 5 parameters;  $B$ ,  $G$ ,  $T_1$ ,  $D$ , and  $T_2$ . For a period before  $T_1$ , we assumed a constant  
716 baseline value  $B$  for the immune response. After the activation time  $T_1$ , the immune response will  
717 grow at a rate of  $G$  until  $T_2$ . From  $T_2$ , the immune response will decay at a rate of  $D$ . For each  
718 subject  $i$ , the parameters were taken from a normal distribution, with each parameter having its  
719 own mean (fixed effect). A diagonal random effect structure was used, where we assumed there  
720 was no correlation within the random effects. The model was fitted to the log-transformed data  
721 values, with a constant error model distributed around zero with a standard deviation  $\sigma$ . Model  
722 fitting was performed using MonolixR2019b. A binary covariate was used to quantify the  
723 difference in parameters between different groups (i.e. S-specific CD8 vs N-specific CD8  
724 responses), and significance was determined based on the value of this binary covariate using a

725 Wald test. Spearman correlation analyses were conducted based on the estimated parameters  
726 for each individual in GraphPad Prism 9.

727

728 **Supplementary material**

729 **Supplementary Table 1. Cohort demographics**

| Subject | Gender | Age | # Prior Vaccine doses | Last vaccine to symptom onset (days) | Class I Alleles (relevant to this study) | Class II Alleles (relevant to this study) | VOC   |
|---------|--------|-----|-----------------------|--------------------------------------|------------------------------------------|-------------------------------------------|-------|
| CP105   | M      | 29  | 2                     | N.D.                                 | A*02:01                                  | --                                        | Delta |
| CP106   | F      | 30  | 2                     | 139                                  | --                                       | DP*04:01                                  | Delta |
| CP107   | F      | 31  | 2                     | 77-106                               | A*02:01                                  | DP*04:01                                  | Delta |
| CP108   | M      | 29  | 2                     | 132                                  | --                                       | DP*04:01                                  | Delta |
| COR034  | M      | 31  | 2                     | 126                                  | A*02:01, B*07:02                         | DR*15:01, DP*04:01                        | Delta |
| COR136  | F      | 50  | 2                     | 158                                  | A*02:01, A*03:01                         | DP*04:01                                  | Delta |
| COR015  | F      | 27  | 3                     | 39                                   | A*02:01                                  | --                                        | BA.1  |
| COR032  | F      | 23  | 3                     | 33                                   | A*24:02, B*07:02                         | DR*15:01, DP*04:01                        | BA.1  |
| CP110   | M      | 24  | 2                     | 84                                   | A*02:01                                  | DP*04:01                                  | BA.1  |
| CP111   | M      | 34  | 2                     | 83                                   | A*24:02                                  | --                                        | BA.1  |
| CP112   | F      | 35  | 2                     | 90                                   | A*02:01^                                 | DP*04:01                                  | BA.1  |
| COR198  | F      | 60  | 3                     | 39                                   | A*02:01                                  | DP*04:02                                  | BA.1  |
| CP69*   | F      | 36  | 2                     | 111                                  | A*02:01                                  | DR*15:01, DP*04:01                        | BA.1  |
| CP40*   | M      | 63  | 3                     | 49                                   | --                                       | DR*15:01, DP*04:01                        | BA.2  |
| COR291  | M      | 50  | 3                     | 134                                  | A*02:01                                  | DR*15:01                                  | BA.2  |
| COR043  | F      | 55  | 3                     | 64                                   | A*02:01                                  | DP*04:01                                  | BA.2  |
| CP117   | M      | 40  | 3                     | 52                                   | A*03:01, B*07:02                         | DR*15:01, DP*04:01                        | BA.2  |
| COR281  | F      | 43  | 3                     | 129                                  | A*03:01, B*07:02                         | DR*15:01, DP*04:01                        | BA.2  |
| CP118   | M      | 66  | 3                     | 100                                  | --                                       | DP*04:01                                  | BA.2  |
| COR274  | F      | 57  | 3                     | 155                                  | A*03:01                                  | DP*04:01, 04:02                           | BA.2  |
| COR275  | M      | 62  | 3                     | 83                                   | A*02:01, B*07:02                         | DR*15:01, DP*04:01                        | BA.2  |
| COR215  | F      | 55  | 3                     | 125                                  | A*24:02, B*07:02                         | DR*15:01, DP*04:01                        | BA.2  |
| COR039  | F      | 58  | 3                     | 169                                  | A*24:02, B*07:02                         | DR*15:01, DP*04:01                        | BA.2  |

730 \*Previously infected during Hu-1 wave. ^Data not shown, due to lack of A\*02:01 pentamer in  
731 any longitudinal samples from participant; N.D., not determined.

732

733

734

735

736

737

738

739

740

741 **Supplementary Table 2.** Piecewise linear regression parameters of viral kinetics and neutralising  
 742 antibodies (with 95% CI). Values in bold indicate a significant difference between VOCs.

|                           |                         | Initial value         | Delay (days PSO) | Growth Rate (per day) | Peak Time (days PSO)  | Decay Rate (per day)      |
|---------------------------|-------------------------|-----------------------|------------------|-----------------------|-----------------------|---------------------------|
| Viral RNA ( $\Delta Ct$ ) | Delta                   | 36.5 (44.71 – 28.29)  | N/A              | 5.47 (2.83 – 10.57)   | 3.22 (2.53 – 4.1)     | <b>3.97</b> (3.03 – 5.22) |
|                           | BA.1                    | 31.79 (49.98 – 13.6)  | N/A              | 4.41 (0.82 – 23.77)   | 2.43 (1.24 – 4.78)*   | <b>2.13</b> (1.03 – 4.43) |
|                           | BA.2                    | 24.2 (49.5 – 1.1)     | N/A              | 6.73 (0.32 – 139.23)  | 1.12 (0.47 – 2.63)    | <b>2.04</b> (1.12 – 3.73) |
|                           | Nab (IC <sub>50</sub> ) | 51.29 (30.52 – 86.18) | 4.3 (2.2 – 8.42) | 0.12 (0.084 – 0.18)   | 14.58 (12.23 – 17.39) | N/A                       |

743  
 744 **Supplementary Table 3.** Estimates of spike-specific CD4<sup>+</sup> T cell expansion and activation. Pooled  
 745 estimates from both epitopes are shown as the epitope-specific estimates were not significantly  
 746 different for any parameter.

747

|                                                           | Initial (%)             | Delay (days PSO)  | Growth Rate (per day) | Peak Time (days PSO) | Decay Rate (per day)  |
|-----------------------------------------------------------|-------------------------|-------------------|-----------------------|----------------------|-----------------------|
| %pMCH <sup>+</sup> of CD4 <sup>+</sup>                    | 0.0093 (0.0071 – 0.012) | 2.51 (1.86 – 3.4) | 0.24 (0.16 – 0.35)    | 5.42 (4.81 – 6.1)    | 0.014 (0.01 – 0.019)  |
| %CD38 <sup>+</sup> ICOS <sup>+</sup> of pMCH <sup>+</sup> | 2.44 (1.1 – 5.42)       | 1.12 (0.7 – 1.8)  | 0.62 (0.5 – 0.76)     | 3.60 (3.22 – 4.01)   | 0.057 (0.051 – 0.063) |

748

749 **Supplementary Table 4.** Estimates of spike-specific CD4<sup>+</sup> T cell phenotypic parameters (with 95%  
 750 CI). Pooled estimates from both epitopes are shown if the epitope-specific estimates were not  
 751 significantly different for any parameter. Separate epitope-specific estimates are shown if at least one  
 752 of the parameters of that makers were significantly different between epitopes. Values in bold indicate  
 753 a significant difference between epitopes for the indicated marker.

754

|                                       | Initial (%)           | Growth Rate (per day)  | Peak Time (days PSO) | Decay Rate (per day)              |
|---------------------------------------|-----------------------|------------------------|----------------------|-----------------------------------|
| %CCR5 <sup>+</sup> (pooled epitopes)  | 16.59 (12 – 22.96)    | 0.26 (0.19 – 0.35)     | 2.48 (2.15 – 2.85)   | 0.0064 (0.0043 – 0.0095)          |
| %CXCR3 <sup>+</sup> (pooled epitopes) | 14.4 (7.51 – 27.8)    | 0.27 (0.13 – 0.54)     | 1.93 (1.25 – 2.96)   | 0.0064 (0.0032 – 0.013)           |
| %GzmB <sup>+</sup> (pooled epitopes)  | 7.34 (4.27 – 12.62)   | 0.13 (0.04 – 0.4)      | 1.97 (0.88 – 4.38)   | 0.019 (0.013 – 0.029)             |
| %PD-1 <sup>+</sup> (DP04)             | 22.38 (10.49 – 47.78) | 0.11 (0.05 – 0.26)     | 4.05 (3.29 – 5)      | <b>0.0078</b> (0.004 – 0.015)     |
| %PD-1 <sup>+</sup> (DR15)             | 34.04 (6.7 – 172.82)  | 0.12 (0.019 – 0.78)    | 2.71 (1.46 – 5.03)   | <b>0.00047</b> (0.00023 – 0.0093) |
| %CD71 <sup>+</sup> (DP04)             | 1.05 (0.39 – 2.86)    | 0.38 (0.23 – 0.62)     | 3.35 (2.73 – 4.11)   | <b>0.077</b> (0.056 – 0.11)       |
| %CD71 <sup>+</sup> (DR15)             | 1.32 (0.08 – 21.71)   | 0.45 (0.00011 – 1.821) | 1.64 (0.001 – 2.588) | <b>0.038</b> (0.014 – 0.1)        |

755 **Supplementary Table 5.** Estimates of S-specific CD8<sup>+</sup> T cell expansion and activation (with 95% CI).  
756 Pooled estimates from all three epitopes are shown as the epitope-specific estimates were not  
757 significantly different for any parameter.  
758

|                                         | Initial (%)           | Delay (days PSO)    | Growth Rate (per day) | Peak Time (days PSO) | Decay Rate (per day)    |
|-----------------------------------------|-----------------------|---------------------|-----------------------|----------------------|-------------------------|
| %pMCH <sup>+</sup> of CD8 <sup>+</sup>  | 0.055 (0.024 – 0.12)  | 4.39 (3.4 – 5.68)   | 0.15 (0.07 – 0.3)     | 5.81 (4.87 – 6.94)   | 0.00068 (4.7e-7 – 0.98) |
| %CD38 <sup>+</sup> of pMCH <sup>+</sup> | 15.85 (10.82 – 23.21) | 0.24 (0.019 – 3.06) | 0.082 (0.055 – 0.12)  | 7.1 (5.86 – 8.6)     | 0.036 (0.028 – 0.046)   |

759  
760 **Supplementary Table 6.** Estimates of S-specific CD8<sup>+</sup> T cell phenotypic parameters (with 95% CI).  
761 Pooled estimates from all three epitopes are shown.  
762

|                     | Initial (%)           | Growth Rate (per day) | Peak Time (days PSO) | Decay Rate (per day)     |
|---------------------|-----------------------|-----------------------|----------------------|--------------------------|
| %CCR5 <sup>+</sup>  | 40.74 (34.41 – 48.23) | 0.031 (0.018 – 0.052) | 6.89 (5.17 – 9.17)   | 0.0032 (0.0015 – 0.0068) |
| %CXCR3 <sup>+</sup> | 6.68 (2.93 – 15.26)   | 0.2 (0.12 – 0.34)     | 3.49 (2.56 – 4.75)   | 0.0093 (0.0049 – 0.017)  |
| %GzmB <sup>+</sup>  | 23.99 (13.77 – 41.79) | 0.12 (0.007 – 2.14)   | 1.4 (0.15 – 12.58)   | 0.0069 (0.0039 – 0.012)  |
| %CD71 <sup>+</sup>  | 0.64 (0.2 – 2)        | 0.23 (0.14 – 0.38)    | 5.36 (4.25 – 6.77)   | 0.033 (0.022 – 0.049)    |
| %PD-1 <sup>+</sup>  | 7.52 (4.53 – 12.46)   | 0.096 (0.04 – 0.23)   | 3.32 (2.14 – 5.16)   | 0.0079 (0.0047 – 0.013)  |

763  
764 **Supplementary Table 7.** Estimates of S- and N-specific CD8<sup>+</sup> T cell expansion and activation (with  
765 95% CI). Values in bold indicate a significant difference between epitopes for the indicated marker.  
766

|                                            | Initial (%)                     | Delay (days PSO)        | Growth Rate (per day)    | Peak Time (days PSO)   | Decay Rate (per day)            |
|--------------------------------------------|---------------------------------|-------------------------|--------------------------|------------------------|---------------------------------|
| %pMCH <sup>+</sup> of CD8 <sup>+</sup> (S) | <b>0.098</b><br>(0.012 – 0.82)  | 6.29<br>(1.49 – 26.46)  | 0.087<br>(0.013 – 0.556) | 7.69<br>(3.56 – 16.57) | 0 (NA)                          |
| %pMCH <sup>+</sup> of CD8 <sup>+</sup> (N) | <b>0.012</b><br>(0.0048 – 0.03) | 3.06<br>(1.62 – 5.81)   | 0.12<br>(0.071 – 0.2)    | 8.17<br>(6.32 – 10.56) | 0 (NA)                          |
| %CD38 <sup>+</sup> (S)                     | 10.16<br>(1.66 – 62.36)         | 0.95<br>(0.001 – 86.85) | 0.073 (0.01 – 0.52)      | 8.29<br>(4.45 – 15.43) | <b>0.047</b><br>(0.014 – 0.16)  |
| %CD38 <sup>+</sup> (N)                     | 17.78<br>(9.58 – 33)            | 3.63<br>(2.28 – 5.79)   | 0.19<br>(0.077 – 0.45)   | 6.89<br>(5.26 – 9.02)  | <b>0.019</b><br>(0.011 – 0.034) |

767  
768  
769  
770  
771  
772  
773  
774  
775

776

777 **Supplementary Table 8.** Estimates of S- and N-specific CD8<sup>+</sup> T cell phenotypic parameters (with 95%  
778 CI) for individuals presented in Figure 4. Estimates for N-specific CD8<sup>+</sup> T cells only are shown if the S-  
779 and N-specific estimates were not significantly different for any parameter (estimates for S only are  
780 shown in Supplementary Table 6. Separate epitope-specific estimates are shown if at least one of the  
781 parameters of that makers were significantly different between epitopes. Values in bold indicate a  
782 significant difference between epitopes for the indicated marker. Growth and decay parameters for  
783 PD-1 expression kinetics could not be determined.

784

785

|                                  | Initial (%)                      | Growth Rate (per day)            | Peak Time (days PSO)    | Decay Rate (per day)       |
|----------------------------------|----------------------------------|----------------------------------|-------------------------|----------------------------|
| %GzmB <sup>+</sup> ( <b>S</b> )  | <b>22.75</b><br>(4.81 – 135.88)  | 0.100<br>(0.0002 – 5.43)         | 1.22<br>(0.01 – 141.04) | 0.0081<br>(0.0015 – 0.042) |
| %GzmB <sup>+</sup> ( <b>N</b> )  | <b>6.83</b><br>(3.4 – 13.76)     | 0.08<br>(0.045 – 0.17)           | 5.26<br>(3.14 – 8.81)   | 0.021<br>(0.012 – 0.038)   |
| %CCR5 <sup>+</sup> ( <b>S</b> )  | <b>40.93</b><br>(14.96 – 111.96) | <b>0.017</b><br>(0.0043 – 0.071) | 7.52<br>(2.69 – 21.05)  | 0.0002<br>(1e-13 – 3.6)    |
| %CCR5 <sup>+</sup> ( <b>N</b> )  | <b>2.15</b><br>(1.32 – 3.48)     | <b>0.29</b><br>(0.2 – 0.41)      | 4.95<br>(3.75 – 6.52)   | 0.01<br>(0.0066 – 0.016)   |
| %CD71 <sup>+</sup> ( <b>N</b> )  | 0.74 (0.11 - 5.05)               | 0.36 (0.16 - 0.85)               | 4.13 (3.09 - 5.54)      | 0.045 (0.027 - 0.073)      |
| %CXCR3 <sup>+</sup> ( <b>N</b> ) | 12.89 (6.79 - 24.45)             | 0.13 (0.062 - 0.28)              | 4.75 (3.08 - 7.33)      | 0.0038 (0.0006 - 0.025)    |

786

787 **References**

788

789 Altman, J.D., Moss, P.A., Goulder, P.J., Barouch, D.H., McHeyzer-Williams, M.G., Bell, J.I., McMichael, A.J.,  
790 and Davis, M.M. (1996). Phenotypic analysis of antigen-specific T lymphocytes. *Science* (New York, N.Y.)  
791 274, 94-96. 10.1126/science.274.5284.94.

792 Bentebibel, S.E., Lopez, S., Obermoser, G., Schmitt, N., Mueller, C., Harrod, C., Flano, E., Mejias, A.,  
793 Albrecht, R.A., Blankenship, D., et al. (2013). Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with  
794 antibody responses to influenza vaccination. *Sci Transl Med* 5, 176ra132. 10.1126/scitranslmed.3005191.

795 Bertoletti, A., Le Bert, N., and Tan, A.T. (2022a). Act Early and at the Right Location: SARS-CoV-2 T Cell  
796 Kinetics and Tissue Localization. *International journal of molecular sciences* 23. 10.3390/ijms231810679.

797 Bertoletti, A., Le Bert, N., and Tan, A.T. (2022b). SARS-CoV-2-specific T cells in the changing landscape of  
798 the COVID-19 pandemic. *Immunity* 55, 1764-1778. 10.1016/j.immuni.2022.08.008.

799 Buchan, S.A., Chung, H., Brown, K.A., Austin, P.C., Fell, D.B., Gubbay, J.B., Nasreen, S., Schwartz, K.L.,  
800 Sundaram, M.E., Tadrous, M., et al. (2022). Estimated Effectiveness of COVID-19 Vaccines Against Omicron  
801 or Delta Symptomatic Infection and Severe Outcomes. *JAMA Netw Open* 5, e2232760.  
802 10.1001/jamanetworkopen.2022.32760.

803 Chia, P.Y., Ong, S.W.X., Chiew, C.J., Ang, L.W., Chavatte, J.M., Mak, T.M., Cui, L., Kalimuddin, S., Chia, W.N.,  
804 Tan, C.W., et al. (2022). Virological and serological kinetics of SARS-CoV-2 Delta variant vaccine  
805 breakthrough infections: a multicentre cohort study. *Clin Microbiol Infect* 28, 612.e611-612.e617.  
806 10.1016/j.cmi.2021.11.010.

807 Collier, A.Y., Brown, C.M., McMahan, K.A., Yu, J., Liu, J., Jacob-Dolan, C., Chandrashekhar, A., Tierney, D.,  
808 Ansel, J.L., Rowe, M., et al. (2022). Characterization of immune responses in fully vaccinated individuals  
809 after breakthrough infection with the SARS-CoV-2 delta variant. *Science translational medicine* 14,  
810 eabn6150. 10.1126/scitranslmed.abn6150.

811 Cromer, D., Steain, M., Reynaldi, A., Schlub, T.E., Sasson, S.C., Kent, S.J., Khoury, D.S., and Davenport, M.P.  
812 (2022). Neutralising antibodies predict protection from severe COVID-19. *medRxiv*,  
813 2022.2006.2009.22275942. 10.1101/2022.06.09.22275942.

814 Dong, T., Liu, G., Felce, S., Yao, X., Yin, Z., Fries, A., Mentzer, A., Dong, D., Wang, W., Dejnirattisai, W., et  
815 al. (2022). Memory cytotoxic SARS-CoV-2 spike protein-specific CD4+ T cells associate with viral control.  
816 Research Square.

817 Garcia-Knight, M., Anglin, K., Tassetto, M., Lu, S., Zhang, A., Goldberg, S.A., Catching, A., Davidson, M.C.,  
818 Shak, J.R., Romero, M., et al. (2022). Infectious viral shedding of SARS-CoV-2 Delta following vaccination:  
819 A longitudinal cohort study. *PLoS pathogens* 18, e1010802. 10.1371/journal.ppat.1010802.

820 Habel, J.R., Nguyen, T.H.O., van de Sandt, C.E., Juno, J.A., Chaurasia, P., Wragg, K., Koutsakos, M., Hensen,  
821 L., Jia, X., Chua, B., et al. (2020). Suboptimal SARS-CoV-2-specific CD8(+) T cell response associated with  
822 the prominent HLA-A\*02:01 phenotype. *Proc Natl Acad Sci U S A* 117, 24384-24391.  
823 10.1073/pnas.2015486117.

824 Hebeis, B.J., Klenovsek, K., Rohwer, P., Ritter, U., Schneider, A., Mach, M., and Winkler, T.H. (2004).  
825 Activation of virus-specific memory B cells in the absence of T cell help. *The Journal of experimental  
826 medicine* 199, 593-602. 10.1084/jem.20030091.

827 Jensen, K.K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J.A., Yan, Z., Sette, A., Peters, B., and  
828 Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules.  
829 *Immunology* 154, 394-406. 10.1111/imm.12889.

830 Jung, S., Jung, J.H., Noh, J.Y., Kim, W.J., Yoon, S.Y., Jung, J., Kim, E.S., Kim, H.B., Cheong, H.J., Kim, W.J., et  
831 al. (2022). The generation of stem cell-like memory cells early after BNT162b2 vaccination is associated  
832 with durability of memory CD8(+) T cell responses. *Cell reports* 40, 111138. 10.1016/j.celrep.2022.111138.

833 Juno, J.A., Tan, H.X., Lee, W.S., Reynaldi, A., Kelly, H.G., Wragg, K., Esterbauer, R., Kent, H.E., Batten, C.J.,  
834 Mordant, F.L., et al. (2020). Humoral and circulating follicular helper T cell responses in recovered patients  
835 with COVID-19. *Nature medicine* 26, 1428-1434. 10.1038/s41591-020-0995-0.

836 Kaneko, N., Boucau, J., Kuo, H.H., Perugino, C., Mahajan, V.S., Farmer, J.R., Liu, H., Diefenbach, T.J.,  
837 Piechocka-Trocha, A., Lefteri, K., et al. (2022). Temporal changes in T cell subsets and expansion of  
838 cytotoxic CD4+ T cells in the lungs in severe COVID-19. *Clinical immunology (Orlando, Fla.)* 237, 108991.  
839 10.1016/j.clim.2022.108991.

840 Kared, H., Wolf, A.S., Alirezaylavasani, A., Ravussin, A., Solum, G., Tran, T.T., Lund-Johansen, F., Vaage, J.T.,  
841 Nissen-Meyer, L.S., Nygaard, U.C., et al. (2022). Immune responses in Omicron SARS-CoV-2 breakthrough  
842 infection in vaccinated adults. *Nature communications* 13, 4165. 10.1038/s41467-022-31888-y.

843 Kedzierska, K., and Thomas, P.G. (2022). Count on us: T cells in SARS-CoV-2 infection and vaccination. *Cell*  
844 *Rep Med* 3, 100562. 10.1016/j.xcrm.2022.100562.

845 Kent, S.J., Khouri, D.S., Reynaldi, A., Juno, J.A., Wheatley, A.K., Stadler, E., John Wherry, E., Triccas, J.,  
846 Sasson, S.C., Cromer, D., and Davenport, M.P. (2022). Disentangling the relative importance of T cell  
847 responses in COVID-19: leading actors or supporting cast? *Nature reviews. Immunology* 22, 387-397.  
848 10.1038/s41577-022-00716-1.

849 Khouri, D.S., Cromer, D., Reynaldi, A., Schlub, T.E., Wheatley, A.K., Juno, J.A., Subbarao, K., Kent, S.J.,  
850 Triccas, J.A., and Davenport, M.P. (2021). Neutralizing antibody levels are highly predictive of immune  
851 protection from symptomatic SARS-CoV-2 infection. *Nature medicine* 27, 1205-1211. 10.1038/s41591-  
852 021-01377-8.

853 Kirsebom, F.C.M., Andrews, N., Stowe, J., Toffa, S., Sachdeva, R., Gallagher, E., Groves, N., O'Connell, A.M.,  
854 Chand, M., Ramsay, M., and Bernal, J.L. (2022). COVID-19 vaccine effectiveness against the omicron (BA.2)  
855 variant in England. *The Lancet. Infectious diseases* 22, 931-933. 10.1016/s1473-3099(22)00309-7.

856 Koutsakos, M., Lee, W.S., Reynaldi, A., Tan, H.X., Gare, G., Kinsella, P., Liew, K.C., Taiaroa, G., Williamson,  
857 D.A., Kent, H.E., et al. (2022). The magnitude and timing of recalled immunity after breakthrough infection  
858 is shaped by SARS-CoV-2 variants. *Immunity* 55, 1316-1326.e1314. 10.1016/j.immuni.2022.05.018.

859 Koutsakos, M., Nguyen, T.H.O., and Kedzierska, K. (2019). With a Little Help from T Follicular Helper  
860 Friends: Humoral Immunity to Influenza Vaccination. *J Immunol* 202, 360-367.  
861 10.4049/jimmunol.1800986.

862 Koutsakos, M., Wheatley, A.K., Loh, L., Clemens, E.B., Sant, S., Nüssing, S., Fox, A., Chung, A.W., Laurie,  
863 K.L., Hurt, A.C., et al. (2018). Circulating T(FH) cells, serological memory, and tissue compartmentalization  
864 shape human influenza-specific B cell immunity. *Science translational medicine* 10.  
865 10.1126/scitranslmed.aan8405.

866 Lauring, A.S., Tenforde, M.W., Chappell, J.D., Gaglani, M., Ginde, A.A., McNeal, T., Ghamande, S., Douin,  
867 D.J., Talbot, H.K., Casey, J.D., et al. (2022). Clinical severity of, and effectiveness of mRNA vaccines against,  
868 covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective  
869 observational study. *BMJ* 376, e069761. 10.1136/bmj-2021-069761.

870 Lim, J.M.E., Tan, A.T., Le Bert, N., Hang, S.K., Low, J.G.H., and Bertoletti, A. (2022). SARS-CoV-2  
871 breakthrough infection in vaccinees induces virus-specific nasal-resident CD8+ and CD4+ T cells of broad  
872 specificity. *The Journal of experimental medicine* 219. 10.1084/jem.20220780.

873 Lineburg, K.E., Grant, E.J., Swaminathan, S., Chatzileontiadou, D.S.M., Szeto, C., Sloane, H., Panikkar, A.,  
874 Raju, J., Crooks, P., Rehan, S., et al. (2021). CD8(+) T cells specific for an immunodominant SARS-CoV-2  
875 nucleocapsid epitope cross-react with selective seasonal coronaviruses. *Immunity* 54, 1055-1065.e1055.  
876 10.1016/j.immuni.2021.04.006.

877 Liu, J., Yu, J., McMahan, K., Jacob-Dolan, C., He, X., Giffin, V., Wu, C., Sciacca, M., Powers, O., Nampanya,  
878 F., et al. (2022). CD8 T Cells Contribute to Vaccine Protection Against SARS-CoV-2 in Macaques. *Science*  
879 *immunology*, eabq7647. 10.1126/sciimmunol.abq7647.

880 Meckiff, B.J., Ramírez-Suástequi, C., Fajardo, V., Chee, S.J., Kusnadi, A., Simon, H., Eschweiler, S., Grifoni, A., Pelosi, E., Weiskopf, D., et al. (2020). Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4(+) T Cells in COVID-19. *Cell* 183, 1340-1353.e1316. 10.1016/j.cell.2020.10.001.

881 Minervina, A.A., Pogorelyy, M.V., Kirk, A.M., Crawford, J.C., Allen, E.K., Chou, C.H., Mettelman, R.C., Allison, K.J., Lin, C.Y., Brice, D.C., et al. (2022). SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8(+) T cells. *Nature immunology* 23, 781-790. 10.1038/s41590-022-01184-4.

882 Minervina, A.A., Pogorelyy, M.V., Komech, E.A., Karnaughov, V.K., Bacher, P., Rosati, E., Franke, A., Chudakov, D.M., Mamedov, I.Z., Lebedev, Y.B., et al. (2020). Primary and secondary anti-viral response captured by the dynamics and phenotype of individual T cell clones. *eLife* 9. 10.7554/eLife.53704.

883 Mudd, P.A., Minervina, A.A., Pogorelyy, M.V., Turner, J.S., Kim, W., Kalaidina, E., Petersen, J., Schmitz, A.J., Lei, T., Haile, A., et al. (2022). SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. *Cell* 185, 603-613.e615. 10.1016/j.cell.2021.12.026.

884 Nguyen, T.H.O., Rowntree, L.C., Petersen, J., Chua, B.Y., Hensen, L., Kedzierski, L., van de Sandt, C.E., Chaurasia, P., Tan, H.X., Habel, J.R., et al. (2021). CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. *Immunity* 54, 1066-1082.e1065. 10.1016/j.immuni.2021.04.009.

885 Oberhardt, V., Luxenburger, H., Kemming, J., Schulien, I., Ciminski, K., Giese, S., Csernalabics, B., Lang-Meli, J., Janowska, I., Staniek, J., et al. (2021). Rapid and stable mobilization of CD8(+) T cells by SARS-CoV-2 mRNA vaccine. *Nature* 597, 268-273. 10.1038/s41586-021-03841-4.

886 Peng, Y., Felce, S.L., Dong, D., Penkava, F., Mentzer, A.J., Yao, X., Liu, G., Yin, Z., Chen, J.-L., Lu, Y., et al. (2022). An immunodominant NP105–113-B\*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. *Nature immunology* 23, 50-61. 10.1038/s41590-021-01084-z.

887 Puhach, O., Adea, K., Hulo, N., Sattonnet, P., Genecand, C., Iten, A., Jacquérioz, F., Kaiser, L., Vetter, P., Eckerle, I., and Meyer, B. (2022). Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. *Nature medicine* 28, 1491-1500. 10.1038/s41591-022-01816-0.

888 Rajagopala, S.V., Strickland, B.A., Pakala, S.B., Kimura, K.S., Shilts, M.H., Rosas-Salazar, C., Brown, H.M., Freeman, M.H., Wessinger, B.C., Gupta, V., et al. (2022). Mucosal gene expression in response to SARS-CoV-2 is associated with early viral load. *bioRxiv*, 2022.2008.2023.504908. 10.1101/2022.08.23.504908.

889 Reinscheid, M., Luxenburger, H., Karl, V., Graeser, A., Giese, S., Ciminski, K., Reeg, D.B., Oberhardt, V., Roehlen, N., Lang-Meli, J., et al. (2022). COVID-19 mRNA booster vaccine induces transient CD8+ T effector cell responses while conserving the memory pool for subsequent reactivation. *Nature communications* 13, 4631. 10.1038/s41467-022-32324-x.

890 Rha, M.S., Jeong, H.W., Ko, J.H., Choi, S.J., Seo, I.H., Lee, J.S., Sa, M., Kim, A.R., Joo, E.J., Ahn, J.Y., et al. (2021). PD-1-Expressing SARS-CoV-2-Specific CD8(+) T Cells Are Not Exhausted, but Functional in Patients with COVID-19. *Immunity* 54, 44-52.e43. 10.1016/j.immuni.2020.12.002.

891 Rowntree, L.C., Petersen, J., Juno, J.A., Chaurasia, P., Wragg, K., Koutsakos, M., Hensen, L., Wheatley, A.K., Kent, S.J., Rossjohn, J., et al. (2021). SARS-CoV-2-specific CD8(+) T-cell responses and TCR signatures in the context of a prominent HLA-A\*24:02 allomorph. *Immunol Cell Biol* 99, 990-1000. 10.1111/imcb.12482.

892 Rydznski Moderbacher, C., Ramirez, S.I., Dan, J.M., Grifoni, A., Hastie, K.M., Weiskopf, D., Belanger, S., Abbott, R.K., Kim, C., Choi, J., et al. (2020). Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. *Cell* 183, 996-1012.e1019. 10.1016/j.cell.2020.09.038.

893 Scurr, M.J., Lippiatt, G., Capitani, L., Bentley, K., Lauder, S.N., Smart, K., Somerville, M.S., Rees, T., Stanton, R.J., Gallimore, A., et al. (2022). Magnitude of venous or capillary blood-derived SARS-CoV-2-specific T cell response determines COVID-19 immunity. *Nature communications* 13, 5422. 10.1038/s41467-022-32985-8.

928 Sekine, T., Perez-Potti, A., Rivera-Ballesteros, O., Strålin, K., Gorin, J.B., Olsson, A., Llewellyn-Lacey, S.,  
929 Kamal, H., Bogdanovic, G., Muschiol, S., et al. (2020). Robust T Cell Immunity in Convalescent Individuals  
930 with Asymptomatic or Mild COVID-19. *Cell* 183, 158-168.e114. 10.1016/j.cell.2020.08.017.  
931 Singanayagam, A., Hakki, S., Dunning, J., Madon, K.J., Crone, M.A., Koycheva, A., Derqui-Fernandez, N.,  
932 Barnett, J.L., Whitfield, M.G., Varro, R., et al. (2022). Community transmission and viral load kinetics of  
933 the SARS-CoV-2 delta (B.1.617.2) variant in vaccinated and unvaccinated individuals in the UK: a  
934 prospective, longitudinal, cohort study. *The Lancet. Infectious diseases* 22, 183-195. 10.1016/s1473-  
935 3099(21)00648-4.  
936 Stadler, E., Chai, K.L., Schlub, T.E., Cromer, D., Polizzotto, M.N., Kent, S.J., Beecher, C., White, H., Turner,  
937 T., Skoetz, N., et al. (2022). Determinants of passive antibody efficacy in SARS-CoV-2 infection. *medRxiv*,  
938 2022.2003.2021.22272672. 10.1101/2022.03.21.22272672.  
939 Tan, A.T., Lim, J.M.E., Le Bert, N., Kunasegaran, K., Chia, A., Qui, M.D.C., Tan, N., Chia, W.N., de Alwis, R.,  
940 Ying, D., et al. (2021a). Rapid measurement of SARS-CoV-2 spike T cells in whole blood from vaccinated  
941 and naturally infected individuals. *The Journal of clinical investigation* 131. 10.1172/JCI152379.  
942 Tan, A.T., Linster, M., Tan, C.W., Le Bert, N., Chia, W.N., Kunasegaran, K., Zhuang, Y., Tham, C.Y.L., Chia,  
943 A., Smith, G.J.D., et al. (2021b). Early induction of functional SARS-CoV-2-specific T cells associates with  
944 rapid viral clearance and mild disease in COVID-19 patients. *Cell Rep* 34, 108728.  
945 10.1016/j.celrep.2021.108728.  
946 Tan, H.X., Wragg, K.M., Kelly, H.G., Esterbauer, R., Dixon, B.J., Lau, J.S.Y., Flanagan, K.L., van de Sandt, C.E.,  
947 Kedzierska, K., McMahon, J.H., et al. (2022). Cutting Edge: SARS-CoV-2 Infection Induces Robust Germinal  
948 Center Activity in the Human Tonsil. *J Immunol* 208, 2267-2271. 10.4049/jimmunol.2101199.  
949 Tarke, A., Potesta, M., Varchetta, S., Fenoglio, D., Iannetta, M., Sarmati, L., Mele, D., Dentone, C., Bassetti,  
950 M., Montesano, C., et al. (2022). Early and Polyantigenic CD4 T Cell Responses Correlate with Mild Disease  
951 in Acute COVID-19 Donors. *International journal of molecular sciences* 23, 7155.  
952 Tea, F., Ospina Stella, A., Aggarwal, A., Ross Darley, D., Pilli, D., Vitale, D., Merheb, V., Lee, F.X.Z.,  
953 Cunningham, P., Walker, G.J., et al. (2021). SARS-CoV-2 neutralizing antibodies: Longevity, breadth, and  
954 evasion by emerging viral variants. *PLoS medicine* 18, e1003656. 10.1371/journal.pmed.1003656.  
955 Weinreich, D.M., Sivapalasingam, S., Norton, T., Ali, S., Gao, H., Bhore, R., Xiao, J., Hooper, A.T., Hamilton,  
956 J.D., Musser, B.J., et al. (2021). REGEN-COV Antibody Combination and Outcomes in Outpatients with  
957 Covid-19. *New England Journal of Medicine* 385, e81. 10.1056/NEJMoa2108163.  
958 Wheatley, A.K., Juno, J.A., Wang, J.J., Selva, K.J., Reynaldi, A., Tan, H.-X., Lee, W.S., Wragg, K.M., Kelly,  
959 H.G., Esterbauer, R., et al. (2021). Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-  
960 19. *Nature communications* 12, 1162. 10.1038/s41467-021-21444-5.  
961 Wherry, E.J., and Barouch, D.H. (2022). T cell immunity to COVID-19 vaccines. *Science (New York, N.Y.)*  
962 377, 821-822. 10.1126/science.add2897.  
963 Wild, K., Smits, M., Killmer, S., Strohmeier, S., Neumann-Haefelin, C., Bengsch, B., Krammer, F.,  
964 Schwemmle, M., Hofmann, M., Thimme, R., et al. (2021). Pre-existing immunity and vaccine history  
965 determine hemagglutinin-specific CD4 T cell and IgG response following seasonal influenza vaccination.  
966 *Nature communications* 12, 6720. 10.1038/s41467-021-27064-3.  
967 Wragg, K.M., Lee, W.S., Koutsakos, M., Tan, H.X., Amarasena, T., Reynaldi, A., Gare, G., Konstandopoulos,  
968 P., Field, K.R., Esterbauer, R., et al. (2022). Establishment and recall of SARS-CoV-2 spike epitope-specific  
969 CD4(+) T cell memory. *Nat Immunol* 23, 768-780. 10.1038/s41590-022-01175-5.  
970 Zabel, F., Fettelschoss, A., Vogel, M., Johansen, P., Kündig, T.M., and Bachmann, M.F. (2017). Distinct T  
971 helper cell dependence of memory B-cell proliferation versus plasma cell differentiation. *Immunology*  
972 150, 329-342. 10.1111/imm.12688.  
973 Zhuang, Z., Lai, X., Sun, J., Chen, Z., Zhang, Z., Dai, J., Liu, D., Li, Y., Li, F., Wang, Y., et al. (2021). Mapping  
974 and role of T cell response in SARS-CoV-2-infected mice. *The Journal of experimental medicine* 218.  
975 10.1084/jem.20202187.

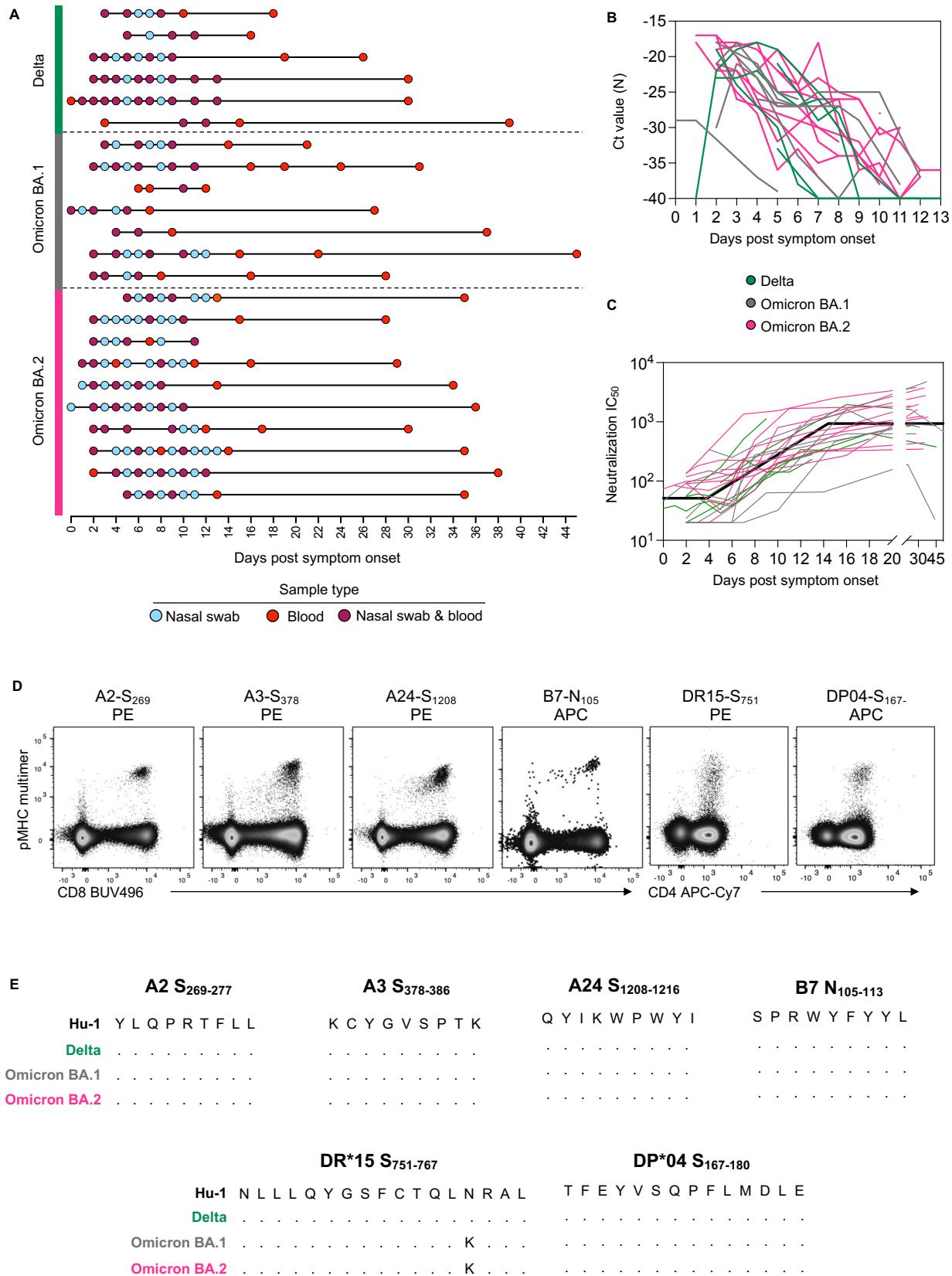



Figure 1

## Figure 1. Fine longitudinal sampling of SARS-CoV-2 breakthrough infection and study design.

**(A)** Schematic of longitudinal sample collection following breakthrough infection with Delta, Omicron BA.1 or Omicron BA.2. Each line represents a single donor and each point represents a sample collection (blue, nasal swab; red, blood; purple, both swab and blood). **(B)** Kinetics of viral load measured by Ct values for SARS-CoV-2 N gene in serial nasal swabs. Green, Delta breakthrough infection; grey, BA.1; pink, BA.2. **(C)** Kinetics of neutralizing antibodies measured by a live virus microneutralization assay using an antigenically similar virus to the infecting VOC. For (B) and (C) n = 6 participants for Delta, n = 7 for Omicron BA.1 and n=10 for Omicron BA.2. For (C) the bold black line represents the mean estimate from the piecewise linear regression model using the estimated parameters. **(D)** Representative flow cytometry plots for each pMHC multimer used for the detection of antigen-specific CD8<sup>+</sup> and CD4<sup>+</sup> T cells. Data were collected from cryopreserved PBMC following SARS-CoV-2 infection. **(E)** Sequence alignment of peptides with HLA restriction used for the detection of antigen-specific CD8<sup>+</sup> and CD4<sup>+</sup> T cells across selected SARS-CoV-2 VOCs.

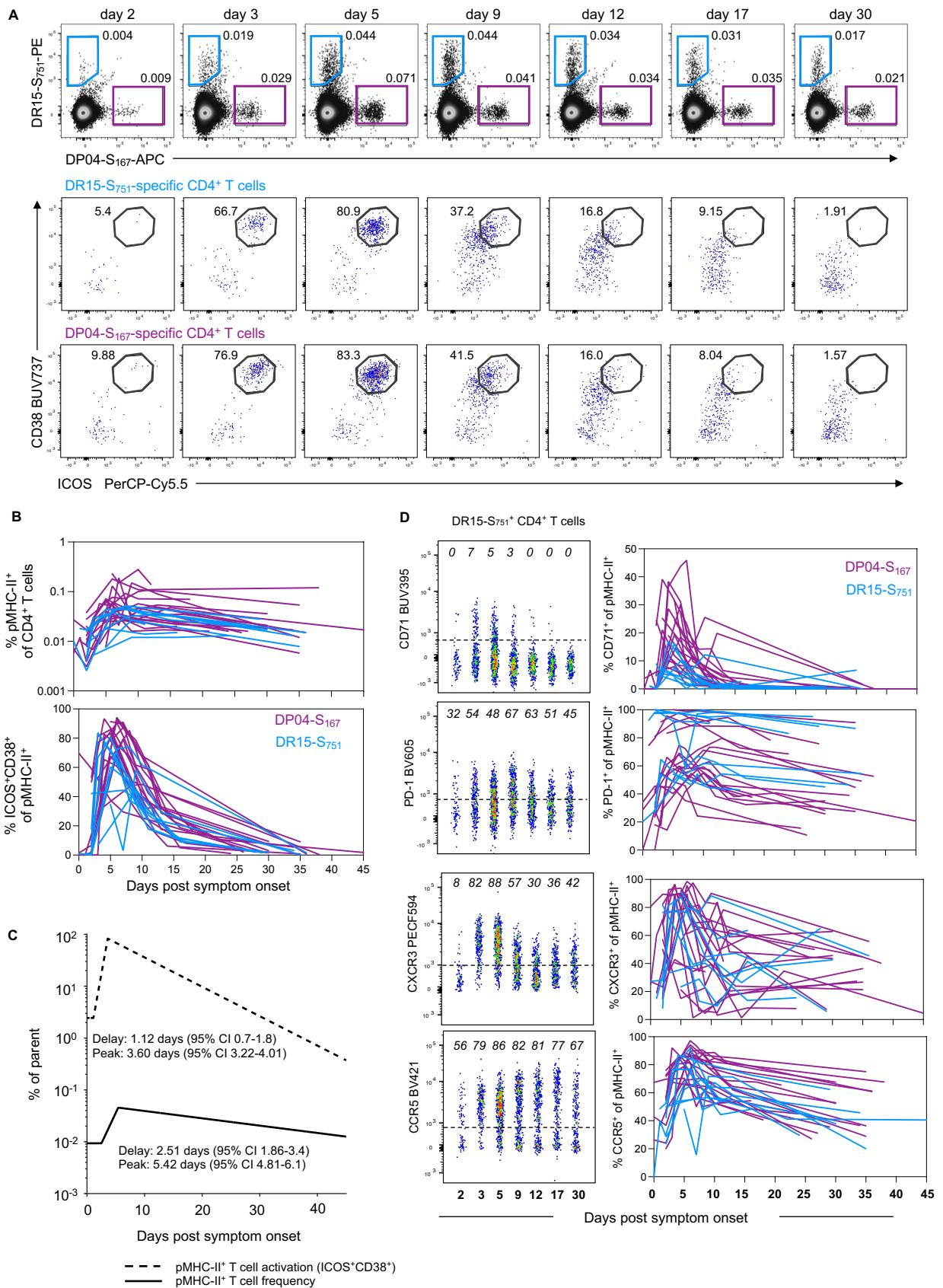



Figure 2

**Figure 2. Robust expansion and activation of spike-specific CD4<sup>+</sup> T cells after breakthrough infection.**

**(A)** Representative flow cytometry plots and kinetics of HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant and co-expression of ICOS and CD38. **(B)** Representative flow cytometry plots of HLA-DR\*15-S<sub>751</sub> - specific CD4<sup>+</sup> T cells and kinetics of phenotypic markers for both pMHC-II populations, n=19 for DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>. **(C)** Estimated kinetics of pMHC-II<sup>+</sup> CD4<sup>+</sup> T cell frequency and activated (CD38<sup>+</sup>ICOS<sup>+</sup>) phenotype. The lines indicate the mean estimate for measurement from the piecewise linear regression model, using pooled data from both pMHC-II populations (as no significant differences were found between the two). **(D)** Representative flow cytometry plots of phenotypic markers for DR\*15-S<sub>751</sub> (left) and kinetics marker expression for both pMHC-II populations (right). Throughout the figure, coloured lines represent individual donors for each pMHC-II-specific population, n=19 for DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>.

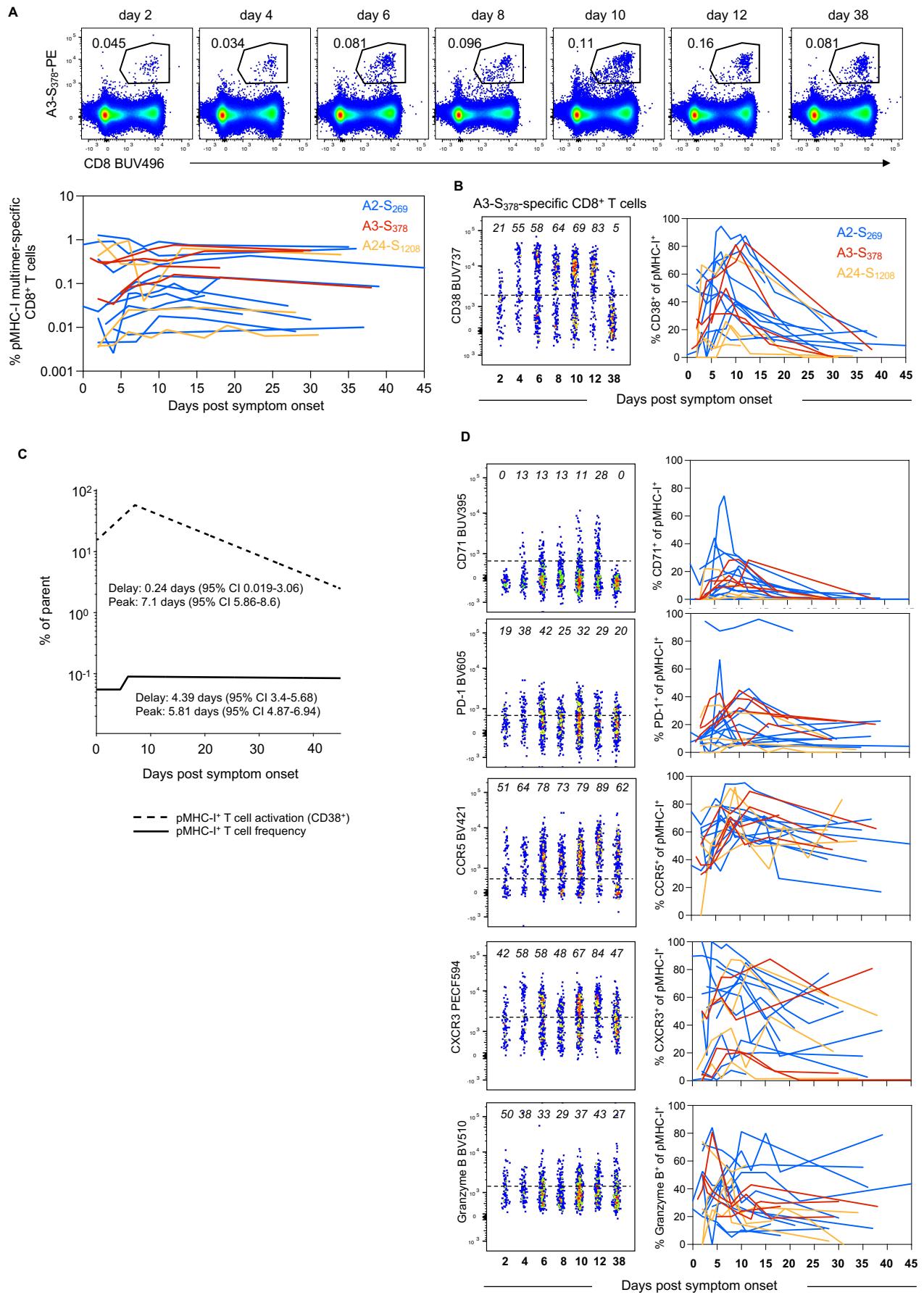
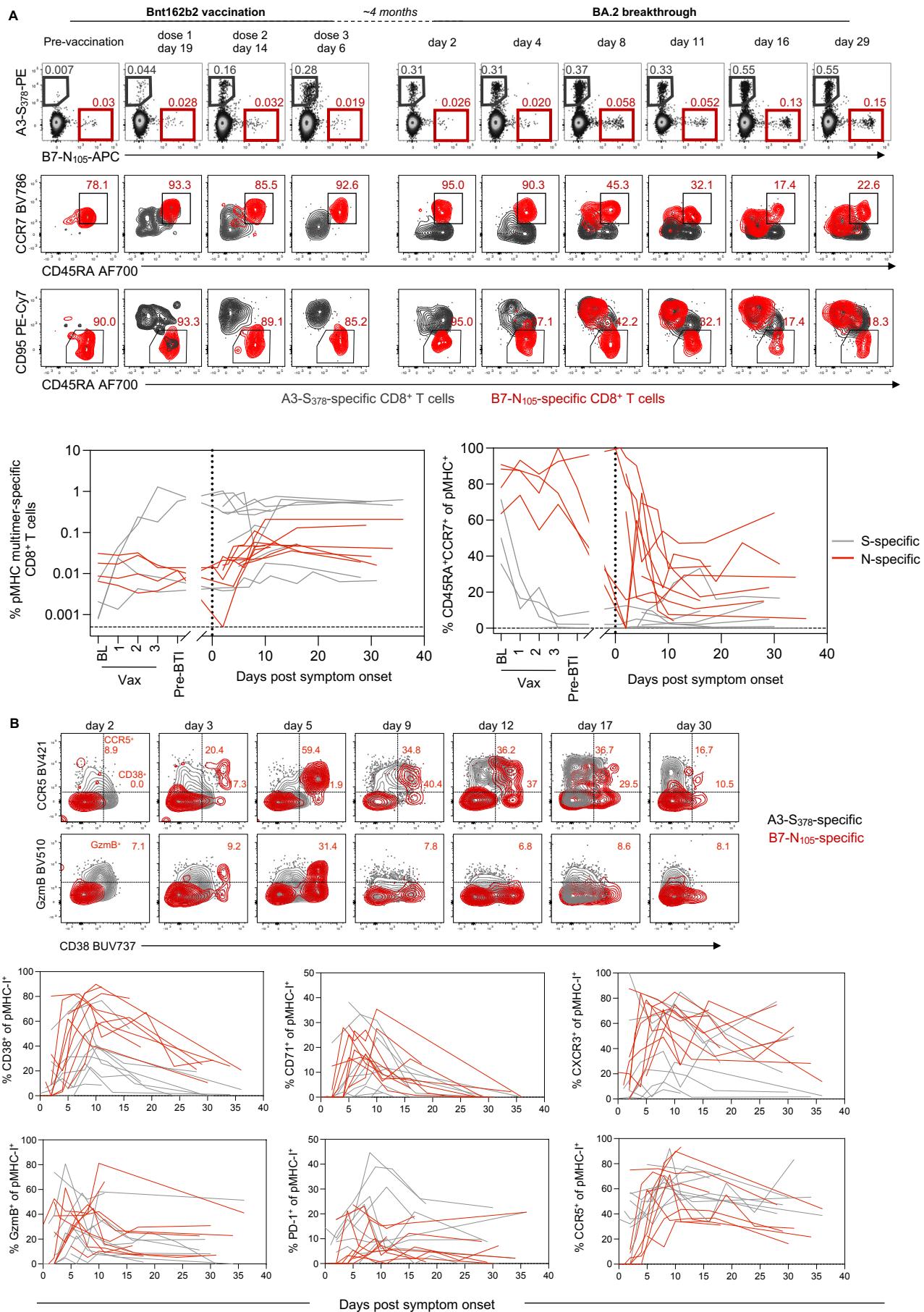
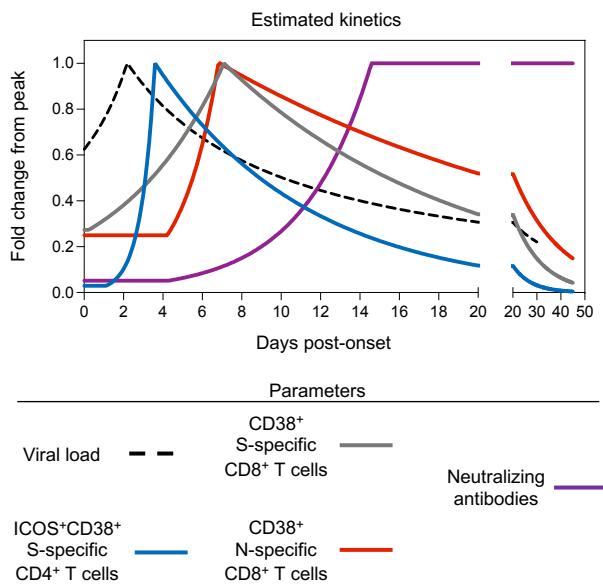
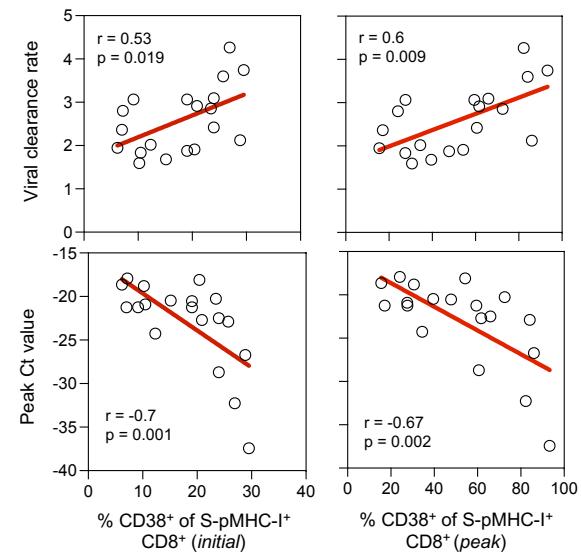
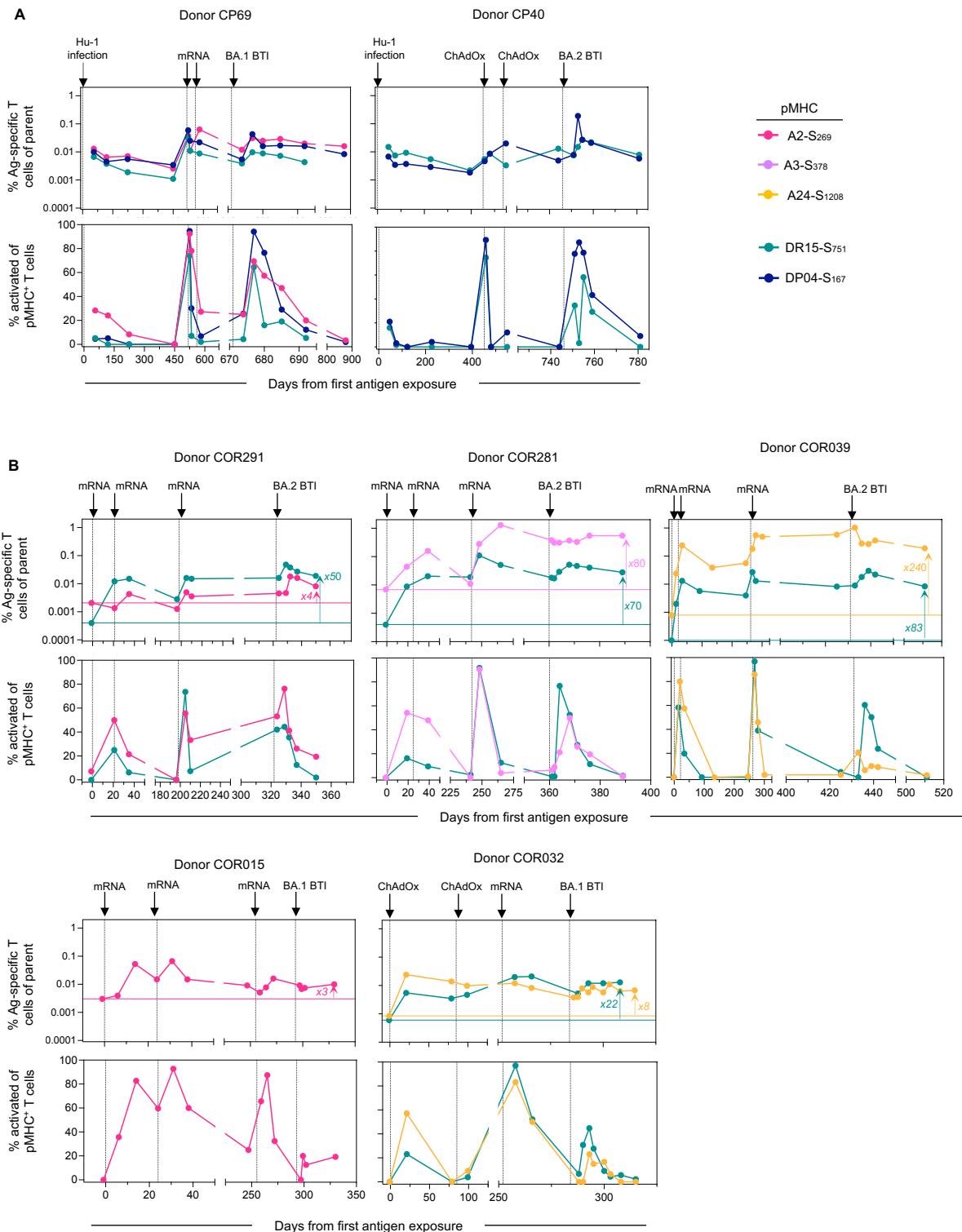



Figure 3

**Figure 3. Early but variable recall of spike-specific CD8<sup>+</sup> T cells after breakthrough infection.**

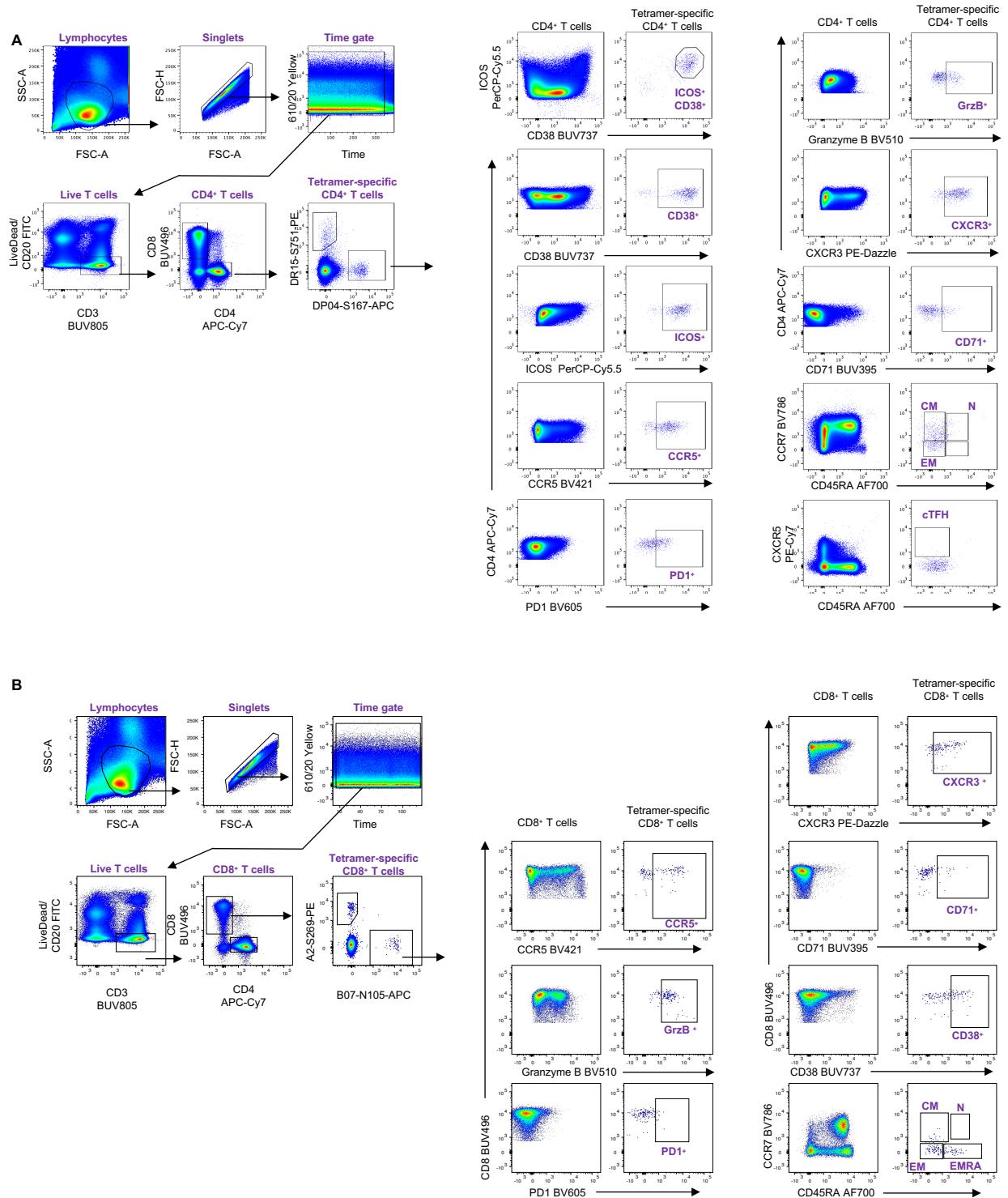
**(A)** Representative flow cytometry plots for HLA-A\*3-S<sub>378</sub> and kinetics of HLA-A\*02-S<sub>269</sub>, HLA-A\*03-S<sub>378</sub> and HLA-A\*24-S<sub>1208</sub> -specific CD8<sup>+</sup> T cells. **(B)** Representative flow cytometry plots for HLA-A\*3-S<sub>378</sub> and kinetics of activated (CD38<sup>+</sup>) cells for HLA-A\*02-S<sub>269</sub>, HLA-A\*03-S<sub>378</sub> and HLA-A\*24-S<sub>1208</sub> -specific CD8<sup>+</sup> T cells. **(C)** Estimated kinetics of pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell frequency and activated (CD38<sup>+</sup>) phenotype. The lines indicate the mean estimate for measurement from the piecewise linear regression model, using pooled data from all 3 pMHC populations. **(D)** Representative flow cytometry plots of phenotypic markers for HLA-A\*3-S<sub>378</sub> and kinetics marker expression for all 3 pMHC-I populations. Throughout the figure, coloured lines represent individual donors for each pMHC-I-specific population, n=11 for A\*02-S<sub>269</sub>, n=4 A\*03-S<sub>378</sub> and n=4 for A\*24-S<sub>1208</sub>.

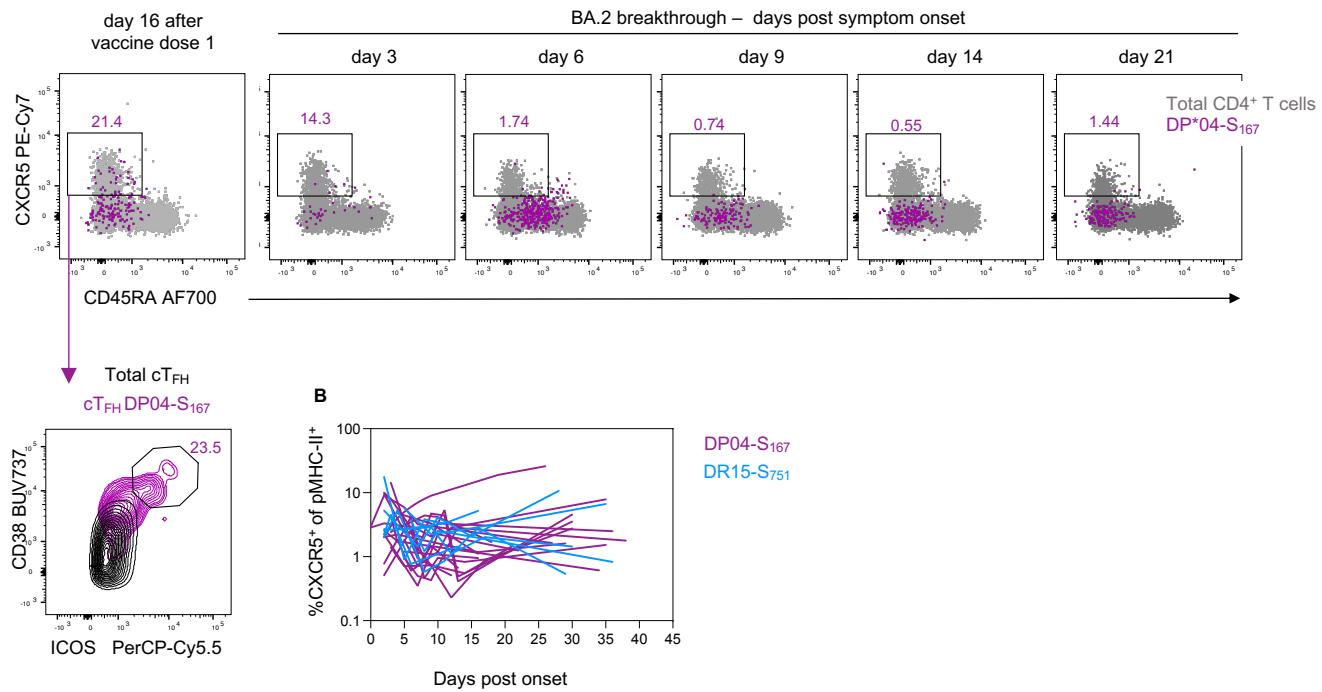


Figure 4

**Figure 4. Early expansion of primary nucleocapsid-specific CD8<sup>+</sup> T cells and recall of spike-specific CD8<sup>+</sup> T cells after breakthrough infection.**

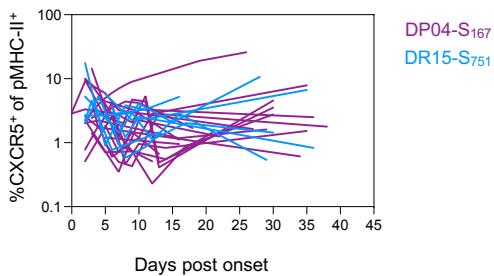
**(A)** Representative flow cytometry plots of HLA-A\*02-S<sub>269</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T cells and their phenotypic analysis based on CCR7, CD45RA and CD95 from baseline throughout vaccination and subsequent SARS-CoV-2 breakthrough infection. Kinetics are shown for n=9 donors with paired analysis spike-specific CD8<sup>+</sup> T cells (either A\*02, A\*03 and A\*24) and B\*07-N<sub>105</sub>, for 4 of which pre-breakthrough samples were available. **(B)** Representative flow cytometry plots for HLA-A\*3-S<sub>378</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T cells. Frequencies of single marker<sup>+</sup> cells are shown in red for B7-N105 only. Kinetics of phenotypic markers for S- or N- specific CD8<sup>+</sup> T cells following SARS-CoV-2 breakthrough infection, n=9 donors with paired spike-specific CD8<sup>+</sup> T cells (either A\*02, A\*03 and A\*24) and B\*07-N<sub>105</sub>. Throughout the figure, coloured lines represent individual donors for each pMHC-specific population.


**A****B**

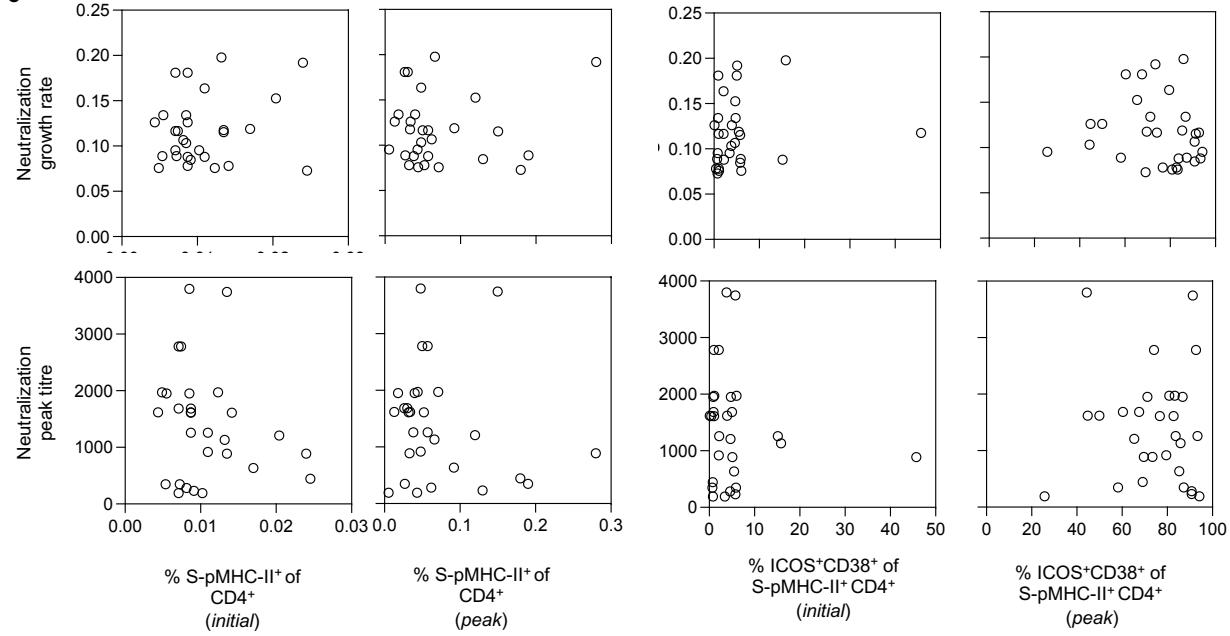
**Figure 5. S-specific CD8<sup>+</sup> T cell activation correlates with viral clearance. (A)** Summary of estimated kinetics viral clearance and of relevant immunological parameters determined in this study. **(B)** Correlations between the initial or peak frequency of CD38<sup>+</sup> S-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells and viral clearance rate or peak Ct value (amongst available timepoints). Spearman correlation coefficient and p-values along with a linear regression line are shown for statistically significant comparisons ( $p < 0.05$ ),  $n=19$ .



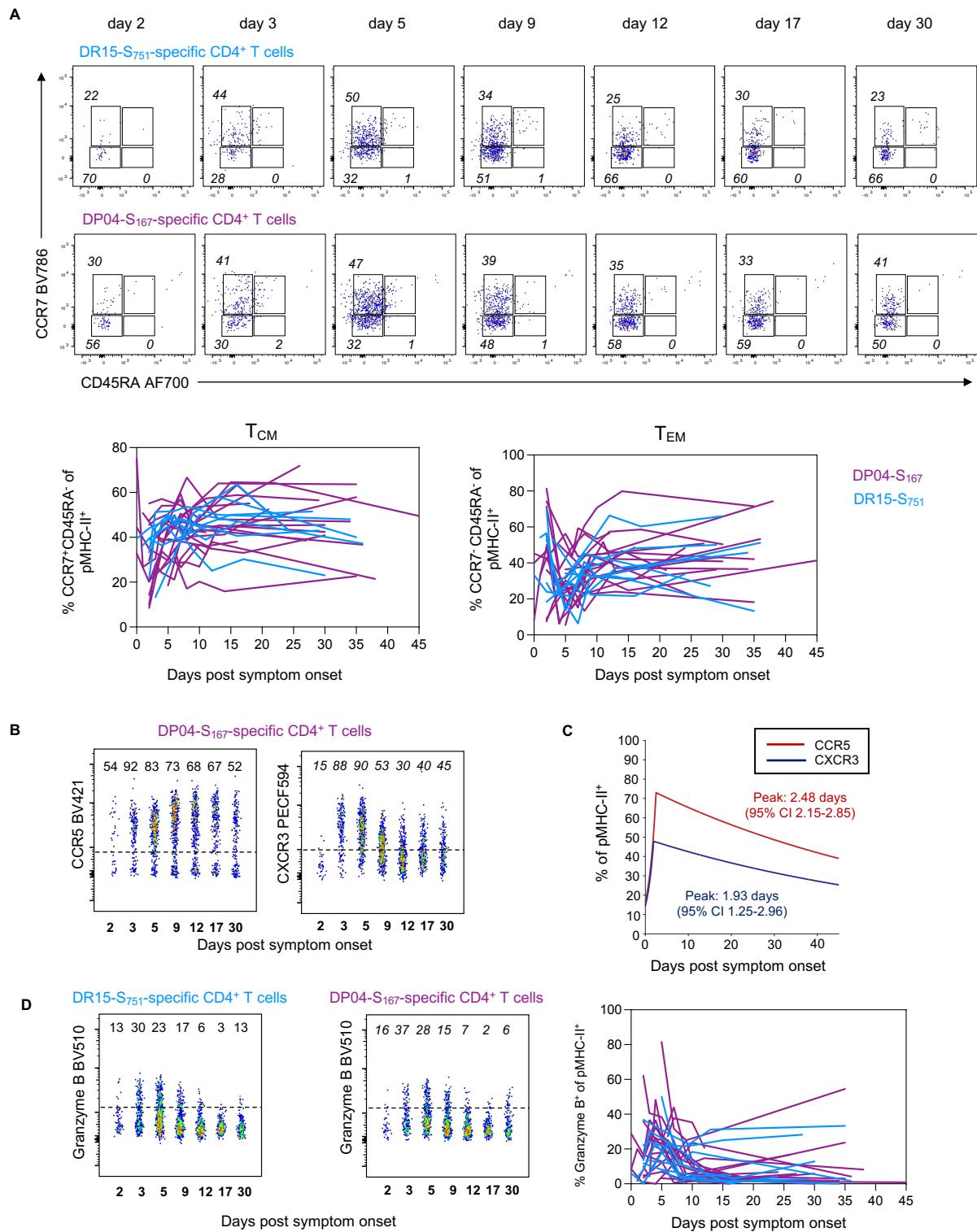

**Figure 6. Long-term stability of T cell responses following multiple antigen exposures.** (A) Kinetics for two participants with an initial Hu-1 infection. (B) Kinetics for 5 participants after vaccination, with no prior exposure. The horizontal line indicates the pre-exposure levels for each epitope-specific T cell population. Throughout the figure, each plot represents longitudinal data from one donor, with the frequency of pMHC<sup>+</sup> cells within CD4<sup>+</sup> or CD8<sup>+</sup> T cells (top) and the frequency of activated (CD38<sup>+</sup>ICOS<sup>+</sup> for pMHC-II<sup>+</sup>CD4<sup>+</sup> T cells or CD38<sup>+</sup> for pMHC-I<sup>+</sup>CD8<sup>+</sup> T cells) cells within pMHC<sup>+</sup> cells (bottom). Each arrow on the top of the plot indicates an exposure to spike antigen by infection or vaccination.


# SUPPLEMENTARY FIGURES



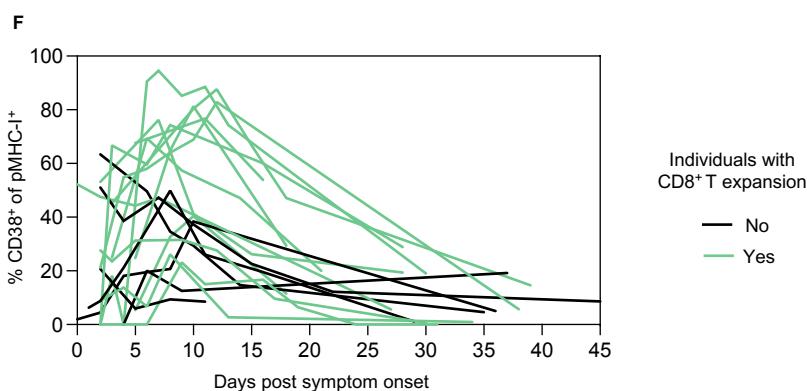
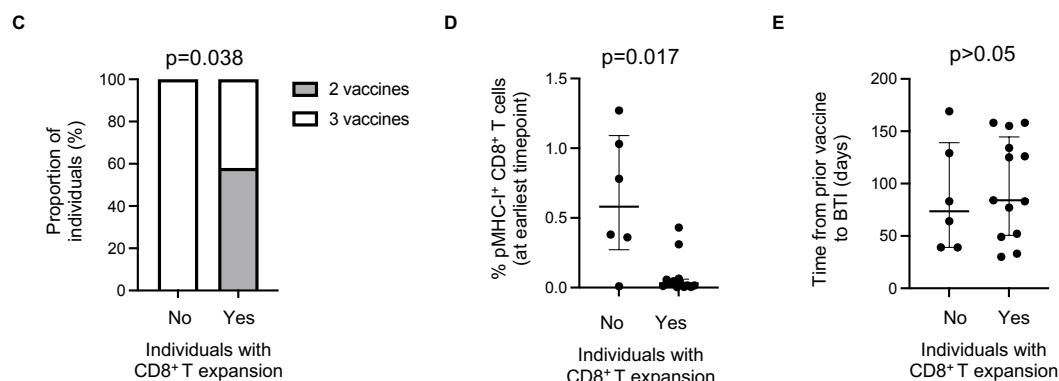
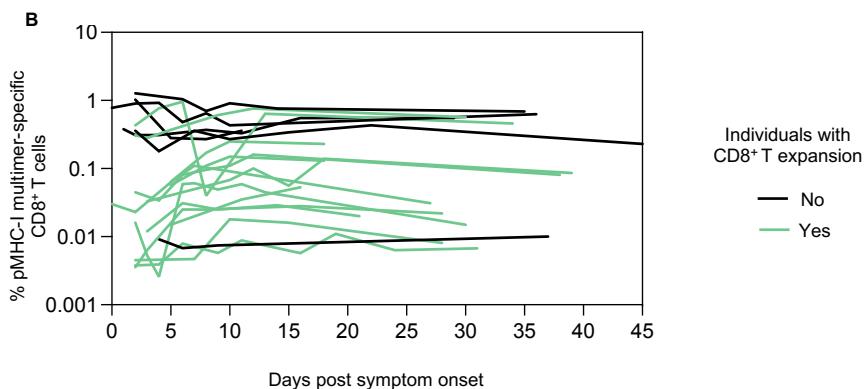
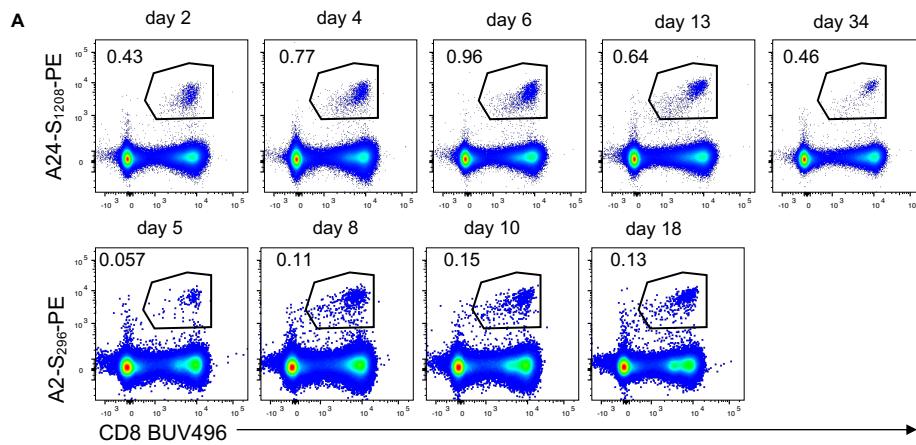

**Figure S1. Gating strategy for the identification of pMHC-specific CD4<sup>+</sup> and CD8<sup>+</sup> cells and their phenotypic characterisation.** (A) Lymphocytes were identified by FSC-A vs SSC-A gating, followed by doublet exclusion (FSC-A vs FSC-H), a time gate and then gating on live T cells (CD3<sup>+</sup>CD19<sup>-</sup>) and subsequently CD4<sup>+</sup>CD8<sup>-</sup> cells. HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-specific cells were identified within CD4<sup>+</sup> T cells, and phenotyped as indicated, with the total CD4<sup>+</sup> T cell population serving as a reference for gating of phenotypic markers. (B) CD8<sup>+</sup> T cell were identified as CD4<sup>-</sup>CD8<sup>+</sup> within live T cells gated as in (A). HLA-A\*02-S<sub>269</sub>, HLA-A\*03-S<sub>378</sub> and HLA-A\*24-S<sub>1208</sub> and HLA-B\*07-N<sub>105</sub>-specific CD8<sup>+</sup> T cells were identified within CD8<sup>+</sup> T cells and phenotyped as indicated, with the total CD8<sup>+</sup> T cell population serving as a reference for gating of phenotypic markers.




B

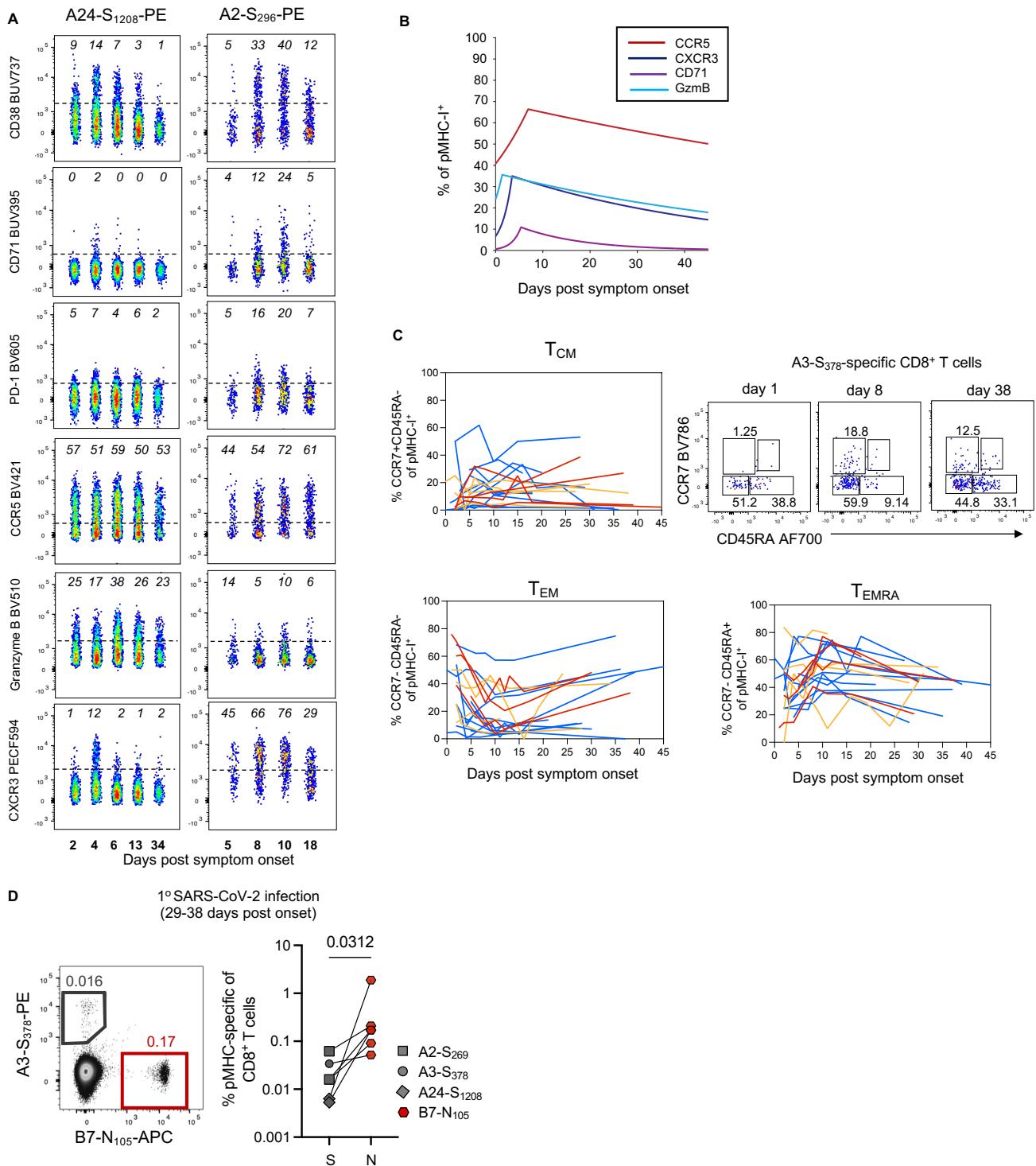


C

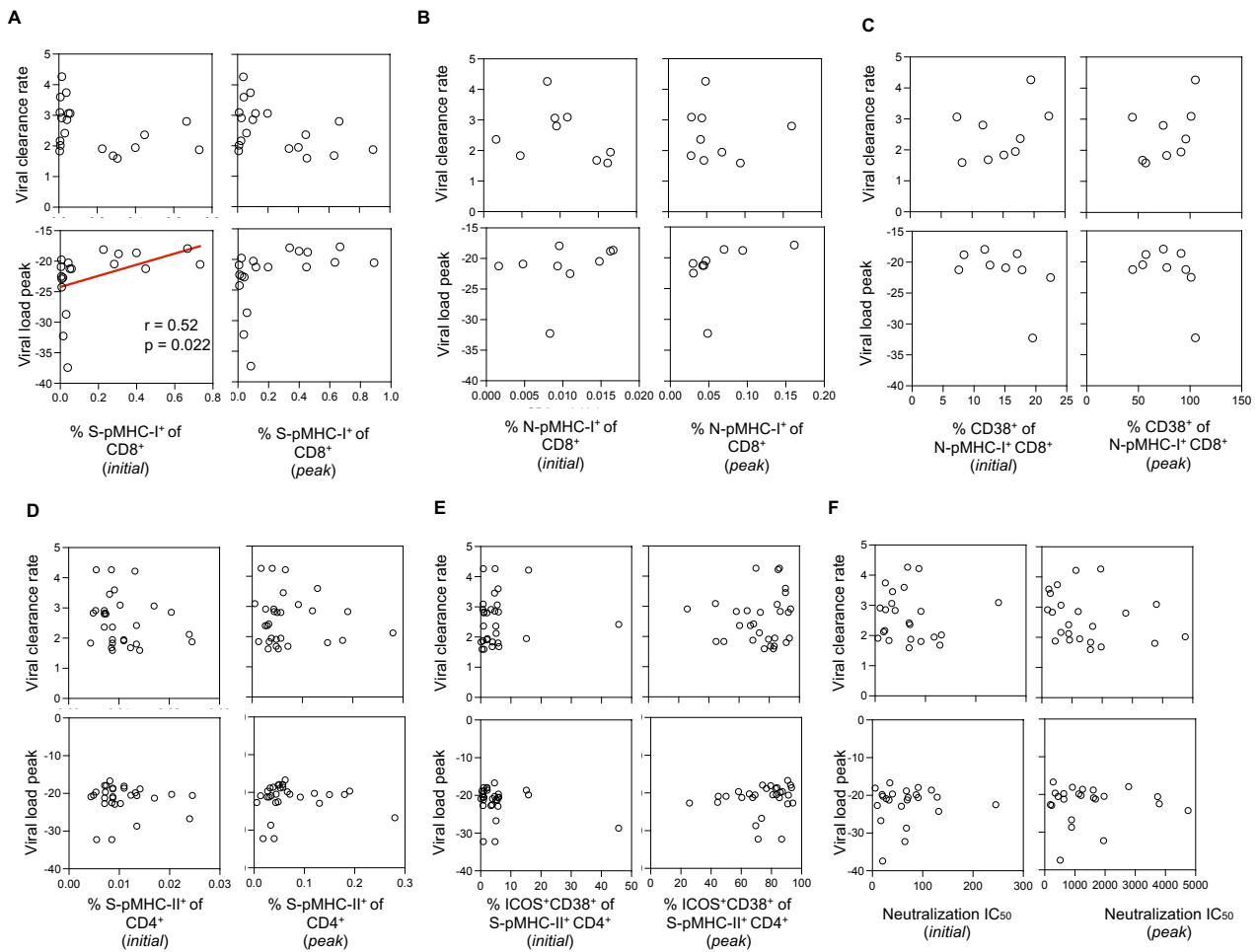

**Figure S2. Limited cTFH phenotype following BTI. (A)** Representative flow cytometry plots of the cTFH phenotype ( $\text{CXCR5}^+ \text{CD45RA}^-$ ) for HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells. A post-vaccination sample was included in acquisition and analysis, serving as a reference for the cTFH activation and cTFH activation (CD38/ICOS expression). **(B)** Kinetics of CXCR5<sup>+</sup> cells for both pMHC-II populations,  $n=19$  for DP\*04-S<sub>167</sub> and  $n=9$  for DR\*15-S<sub>751</sub>. **(C)** Correlations between the initial or peak frequency of S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells and initial or peak frequency of ICOS<sup>+</sup>CD38<sup>+</sup> S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells with the growth rate and peak value of neutralising antibody titres. Spearman correlation coefficient and p-values along with a linear regression line are shown for statistically significant comparisons ( $p<0.05$ ),  $n=29$  datapoints, pooled for both S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cell populations.




Sup figure 3.

**Figure S3. Phenotype of S-specific CD4<sup>+</sup> T cells.** **(A)** Representative flow cytometry plots of HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant showing co-expression of CCR7 and CD45RA. Kinetics of T<sub>CM</sub> and T<sub>EM</sub> for both pMHC-II populations. **(B)** Flow cytometry plots of HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant for CCR5 and CXCR5 expression, representative of the data shown in Fig 2. **(C)** Estimated kinetics of CCR5 and CXCR3 expression. The lines indicate the mean estimate for measurement from the piecewise linear regression model, using pooled data from both pMHC-II populations as no significant differences were found between the two. **(D)** Flow cytometry plots of HLA-DR\*15-S<sub>751</sub> and HLA-DP\*04-S<sub>167</sub>-specific CD4<sup>+</sup> T cells from a single participant showing expression of Granzyme B, with kinetics from all participants shown both pMHC-II populations. Throughout the figure, coloured lines represent individual donors for each pMHC-specific population, n=19 for DP\*04-S<sub>167</sub> and n=9 for DR\*15-S<sub>751</sub>.




Supp Fig 4.

**Figure S4. CD8<sup>+</sup> T cell responses following BTI.** **(A)** Representative flow cytometry plots of HLA-A\*02-S<sub>269</sub> and HLA-A\*24-S<sub>1208</sub> -specific CD8<sup>+</sup> T cell kinetics. **(B)** pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell kinetics colour coded for individuals with an observable expansion and those without. **(C)** Vaccination history of individuals with an observable expansion and those without. **(D)** pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell frequency at earliest available timepoint for individuals with an observable expansion and those without. **(E)** Time from last vaccination to BTI for individuals with an observable and those without. **(F)** CD38<sup>+</sup> phenotype for pMHC-I<sup>+</sup> CD8<sup>+</sup> T cell kinetics colour coded for individuals with an observable expansion and those without.



### Supp Fig 5.

**Figure S5. Phenotype of S-specific CD8<sup>+</sup> T cells.** **(A)** Flow cytometry plots of HLA-A\*02-S<sub>269</sub> and HLA-A\*24-S<sub>1208</sub>-specific CD8<sup>+</sup> T cells from a single participant for different phenotypic markers, representative of the data shown in Fig 3. **(B)** Estimated kinetics of CCR5, CXCR3, CD71 and GzmB expression. The lines indicate the mean estimate for measurement from the piecewise linear regression model, using pooled data from both pMHC-I populations as no significant differences were found between the two. **(C)** Representative flow cytometry plots of HLA-A\*03-S<sub>378</sub> -specific CD8<sup>+</sup> T cells from a single participant showing co-expression of CCR7 and CD45RA. Kinetics of T<sub>CM</sub> T<sub>EM</sub> and T<sub>EMRA</sub> for all 3 pMHC-I populations. Throughout the figure, coloured lines represent individual donors for each pMHC-I-specific population, n=11 for A\*02-S<sub>269</sub>, n=4 A\*03-S<sub>378</sub> and n=4 for A\*24-S<sub>1208</sub>. **(D)** Frequency of spike-specific and nucleoprotein-specific CD8<sup>+</sup> T cells in convalescent samples from primary SARS-CoV-2 infection. For (C), n=6 donors with paired analysis of spike-specific CD8<sup>+</sup> T cells (either A\*02, A\*03 and A\*24) and B\*07-N<sub>105</sub>.



**Figure S6. Correlations between immune recall and viral clearance.** Correlations between the initial or peak frequency of (A) S-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells, (B) N-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells or (C) CD38<sup>+</sup> N-pMHC-I<sup>+</sup> CD8<sup>+</sup> T cells, (D) S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells, (E) ICOS<sup>+</sup>CD38<sup>+</sup>S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cells, (F) neutralisation IC<sub>50</sub> titre against infecting or antigenically similar live virus and viral clearance rate or peak Ct value (amongst available timepoints). Throughout the figure Spearman correlation coefficient and p-values along with a linear regression line are shown for statistically significant comparisons ( $p < 0.05$ ),  $n=19$  for (A),  $n=9$  for (B-C),  $n=29$  datapoints, pooled for both S-pMHC-II<sup>+</sup> CD4<sup>+</sup> T cell populations for (D-E),  $n=23$  for (F).