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The identification of material parameters accurately
describing the region-dependent mechanical be-
havior of human brain tissue is crucial for compu-
tational models used to assist, e.g., the develop-
ment of safety equipment like helmets or the plan-
ning and execution of brain surgery. While the di-
vision of the human brain into different anatomi-
cal regions is well established, knowledge about re-
gions with distinct mechanical properties remains
limited. Here, we establish an inverse parameter
identification scheme using a hyperelastic Ogden
model and experimental data from multi-modal test-
ing of tissue from 19 anatomical human brain re-
gions to identify mechanically distinct regions and
provide the corresponding material parameters. We
assign the 19 anatomical regions to nine govern-
ing regions based on similar parameters and mi-
crostructures. Statistical analyses confirm differ-
ences between the regions and indicate that at least
the corpus callosum and the corona radiata should
be assigned different material parameters in com-
putational models of the human brain. We provide
a total of four parameter sets based on the two ini-
tial Poisson’s ratios of 0.45 and 0.49 as well as the
pre- and unconditioned experimental responses, re-
spectively. Our results highlight the close interrela-
tion between the Poisson’s ratio and the remaining
model parameters.
The identified parameters will contribute to more
precise computational models enabling spatially re-
solved predictions of the stress and strain states
in human brains under complex mechanical loading
conditions.
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Introduction
As powerful computational resources have become
available, it is now feasible to run complex mechanical
simulation models of the brain. An emerging applica-
tion of mechanical models for brain tissue is the simu-
lation of neurosurgeries that enable surgeons to learn
the procedures ’in the dry’ without any risk of harming
the patient (Sase et al., 2015; Hansen et al., 2004; De-

lorme et al., 2012). Another application is the design of
protective equipment. Brain injuries are a major health
issue. A study conducted by Majdan et al., 2017 re-
ported a total number of 17.049 deaths related to trau-
matic brain injury (TBI) in 16 european countries during
the year 2013. The development of new as well as the
improvement of existing protective measures like hel-
mets can contribute to reduce this number. An overview
of currently used brain biomechanical models is given
in the review by Ji et al., 2022. Besides the simula-
tion of external loads in the aforementioned scenarios,
there are also models predicting phenomena linked to
internal processes, such as (abnormal) cortical folding
during brain development (Garcia et al., 2018), asso-
ciated cellular processes (Budday et al., 2015; Zarzor
et al., 2021) and diseases like epilepsy (Blumcke et al.,
2021) or Alzheimer’s (Weickenmeier et al., 2018).

A key prerequisite for accurate simulation models are
constitutive relations to solve the underlying boundary
value problem arising from Cauchy’s equation of motion.
Constitutive equations themselves require the identifica-
tion of appropriate material parameters. Their ability to
approximate the actual mechanical behavior has a sig-
nificant influence on the accuracy of the output of the
whole model. Most of the currently used models as-
sume homogeneous material properties for brain tissue
as a whole (Zong et al., 2006; Yan et al., 2011; Fer-
nandes et al., 2018; Horgan et al., 2003; Kang et al.,
1997). Only some distinguish between brain and brain-
stem (Ho et al., 2009; Ghajari et al., 2017) or between
gray and white matter (Mao et al., 2013). Other ap-
proaches have incorporated a more heterogeneous dis-
tribution of material properties, for example by utilizing
data from magnet resonance elastography (MRE) (Zhao
et al., 2022; Giudice et al., 2021), or have accounted
for axon fiber tracts (Wu et al., 2019; Li et al., 2021).
It is commonly assumed that brain tissue is nearly in-
compressible, which is often implemented in terms of
a compressible formulation with a high bulk modulus
in finite element models (Zong et al., 2006; Yan et al.,
2011; Fernandes et al., 2018; Kang et al., 1997). Dif-
ferent values for the initial value of the Poisson’s ratio
ν have been used for such simulations, e.g., 0.49995
(MacManus et al., 2018), 0.495 (Pierrat et al., 2018),
and 0.49 (Shafieian et al., 2009).

There have been numerous experimental studies char-
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acterizing the mechanical behavior of brain tissue. An
overview of experiments is given in the review by Faber
et al., 2022. Material parameters can be identified by
fitting a mechanical model with an underlying param-
eterized constitutive relation (a material model) to the
experimental data. Budday et al., 2017a showed the im-
portance of simultaneously considering multiple loading
modes when aiming to calibrate reliable material param-
eters. Due to the observed heterogeneity in mechani-
cal properties, it is also desirable to test each specimen
under all loading modes as opposed to using separate
samples for the different tested modes. Although there
have been more experiments on human brain tissue in
recent years (Karimi et al., 2019; Forte et al., 2017; Jin
et al., 2013; Chatelin et al., 2012; Zhu et al., 2010;
Jin et al., 2013; MacManus et al., 2020; Finan et al.,
2017; Greiner et al., 2021; Budday et al., 2017a), there
are still only a few testing human brains under multi-
ple loading modes (Budday et al., 2017a; Greiner et
al., 2021; Jin et al., 2013). There are also significant
differences regarding the spatial resolution of experi-
mental studies, i.e., the classification into different re-
gions. While some report experimental results for gray
and white matter (Forte et al., 2017), others differen-
tiate into three regions, i.e., corona radiata, thalamus
and brainstem (Chatelin et al., 2012), or up to four re-
gions, i.e., corpus callosum, corona radiata, basal gan-
glia and cortex (Budday et al., 2017a). The distinction
of these regions has so far been based on anatomical
knowledge. However, to what extent anatomically dis-
tinct regions coincide with mechanically distinct regions
remains largely unknown.

Most material parameters for brain tissue have been
identified based on the assumption of homogeneous
deformation states during experiments (Budday et al.,
2017a; Laksari et al., 2012; Mihai et al., 2017a). In ex-
perimental tests other than compression, however, the
specimens need to be fixed to the specimen holders,
which is usually achieved by gluing. The thereby intro-
duced non-slipping boundary conditions lead to an in-
homogeneous deformation state. By running finite ele-
ment simulations with realistic boundary conditions us-
ing parameters obtained based on the assumption of
a homogeneous deformation, it has been shown that
this assumption introduces a notable error in the model
predictions (Budday et al., 2019; Felfelian et al., 2019;
Voyiadjis et al., 2018).

In this paper, we aim to identify mechanically distinct
regions that should be accounted for in finite element
models of the human brain and provide correspond-
ing hyperelastic material parameters. To this end, we
test human brain tissue extracted from a total of 19
anatomical regions under cyclic compression, tension,
as well as torsional shear. To capture the inhomoge-
neous deformation state during testing caused by non-
slip boundary conditions, we implement a quasistatic fi-
nite element model that simulates the testing procedure.
We use a hyperelastic one-term Ogden model based

on previous results of different groups who successfully
used Ogden-type models to model the mechanical be-
havior of brain tissue (Mihai et al., 2015; Miller et al.,
2000; Budday et al., 2017a; Hosseini-Farid et al., 2019).
By coupling our simulation model with an optimization
routine, we identify the optimal set of material parame-
ters. We fit parameters for the first and third loading cy-
cle separately to represent the un- and preconditioned
response, respectively. Furthermore, we used two dif-
ferent initial Poisson’s ratios of 0.45 and 0.49 to compare
how a different assumed compressibility affects the re-
sults.

Methods
Human brains
We obtained seven whole human brains including the
cerebrum, cerebellum and brainstem from three female
and four male body donors who had given their written
consent to donate their body to research. Table 1 gives
an overview of the obtained brains including the age
of the respective body donor and the cause of death.
None of the body donors had suffered from any neuro-
logical disease known to affect the microstructure of the
brain. We note that we could not find metastases in the
brain from donors 3, 5, and 6, who had died from can-
cer. In brain number 7, however, we found one metas-
tasis in the left cerebellar peduncle. The remaining tis-
sue did not show any visible abnormalities. The brains
1-3 and 5-6 were immersed in cerebrospinal fluid sur-
rogate (CSFS) during transport. Brain 4 was kept in
phosphate buffered saline solution (PBS) and brain 7 in
Ringer’s solution, as the otherwise preferred CSFS was
not available on short notice. CSFS closely matches
the electrolyte concentrations of cerebrospinal fluid and
is prepared from high purity water and analytical grade
reagents. The constituents of all three solutions are
listed in Table 2. We received the brains between 9 and
24 h post mortem and directly cut them into 1 cm thick
coronal slices that we kept refrigerated at 4◦C in the so-
lution they had arrived in (CSFS, PBS, or Ringer’s so-
lution) until mechanical testing. The mechanical experi-
ments were completed within 72 hours post mortem.

Specimen preparation
We used a biopsy punch to extract cylindrical samples
of 8 mm diameter, as shown in Figure 2a and b. To en-
sure that the specimens only experienced small defor-
mations before being probed mechanically, we punched
them out of coronal slices while the slices were im-
mersed in CSFS, PBS, or Ringer’s solution. Like this,
the cylindrical specimens could slide out of the biopsy
punch without adhering to it. If the small cylinders had a
height of more than 6 mm, we carefully shortened them
with a surgical scalpel. The final specimen height as
recorded by the rheometer (see also Figure ) varied be-
tween 2.7 mm and 7.2 mm with a mean of 4.9 mm. For
most regions, it was possible to extract homogeneous
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Brain Sex Age Cause of death

1 male 92 cardiovascular failure
2 female 62 liver and kidney failure
3 male 68 metastasizing bronchial carcinoma
4 male 75 cardiac insufficiency
5 male 75 metastasizing bronchial carcinoma
6 female 77 metastasizing pancreas carcinoma
7 female 69 metastasizing breast cancer

Table 1. Human brains.

Solutions Constituents (in mM/100ml)

CSFS Na+ 150, K+ 3.0, Ca2+1.4, Mg2+ 0.8, P 1.0,
Cl- 155

PBS NaCl 137, KCl 2.7, Phosphate buffer 11.9
Ringer’s NaCl 1.24×1e-4, NaH2PO4 1.25, MgSO4

1.8, CaCl2 1.6, KCl 3.0, Glucose 10

Table 2. Storage solutions.

Abbreviation Full name

Am Amygdala
CC Corpus callosum
CI Cortex, insula
CR Corona radiata
FC Frontal cortex
Hi Hippocampus
M Midbrain
MC Motor cortex
Me Medulla
NC Nucleus caudatus
P Pons
Pa Pallidum
Pu Putamen
TL Temporal lobe
Th Thalamus
VC Visual cortex
WM White matter
cN Cerebellar nucleus
cWM Cerebellar white matter

Table 3. Regions and their abbreviations.

specimens of this size. Exceptions are brain regions
that contain both white and gray matter tissue, such as
the midbrain, pons, and medulla. Samples of the deep
cerebellar nuclei contained a certain amount of cere-
bellar white matter because the cerebellar nuclei are
too small to be probed separately. Figure 1 gives an
overview of samples extracted from each brain region.
The corresponding abbreviations are introduced in Ta-
ble 3.

Experimental setup
We used a Discovery HR-3 rheometer from TA instru-
ments (New Castle, Delaware, USA) to measure the
tissue response under compression, tension, and tor-
sional shear (see Figure 2c and d). After gluing sand-
paper to the specimen holders and calibrating the in-

strument, we fixed the specimens to the sandpaper on
the upper and lower specimen holders using super-
glue. We waited 30 to 60 s to let the glue dry before
adding PBS to immerse the specimen and keep it hy-
drated during the experiment. We conducted all tests
at 37 ◦C. Figure 2c shows a specimen that has been
fixed to the upper specimen holder. The testing pro-
tocol is summarized in Table 4. We first applied three
cycles of compression and tension with a loading veloc-
ity of 40 µm/s and minimum and maximum stretches of
λ = [H +∆z]/H = 0.85 and λ = 1.15, where H denotes
the initial specimen height and ∆z the displacement in
the direction of loading. Subsequently, we performed a
compression relaxation test at λ = 0.85 with a loading
velocity of 100 µm/s and a holding period of 300 s, and a
tension relaxation test at λ = 1.15, with the same load-
ing velocity and holding period. Then, we performed two
sets of cyclic torsional shear tests with three cycles and
a maximum shear strain of γ = 0.15 and γ = 0.3, respec-
tively. For compression and tension tests, we recorded
the corresponding force fz and determined the nominal
stress as Pexp = fz/A, where A is the cross-sectional
area of the specimen in the undeformed configuration.
For torsional shear tests, we recorded the correspond-
ing torque t and determined the torsional shear stress
as τ = 2t/πr3.

Finite element model
Boundary value problem. The balance of linear momen-
tum in a quasistatic setting can be written as divσ+b =
0, where σ denotes the Cauchy stress tensor and b the
vector of volume forces. The deformation map φ(X)
maps the tissue from the undeformed (material) con-
figuration X to the deformed configuration x. To de-
scribe the deformation of our specimens during testing,
we introduce the deformation gradient as F = ∇Xφ(X),
which maps line elements from the material configura-
tion X to the spatial configuration x. F can be uniquely
decomposed into a rotation tensor R and a stretch ten-
sor v so that F = vR with RTR = I and v = vT. The
eigenvalues of v are identified as the principal stretches
λa and can be obtained as the square root of the eigen-
values of the left Cauchy-Green strain tensor b = FFT .
Our goal is to find the displacement field u, defined as
u = x −X, that solves divσ + b = 0 on the region Ω,
representing our specimen. The boundary surface ∂Ω
can be split into a part ∂Ωu, where we prescribe the
displacements as Dirichlet boundary conditions u = ū,
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1Figure 1. Number of specimens extracted from the different regions in the individual brains.

1 Frequency sweep at 1 % strain
2 Cyclic compression/tension in z-direction up to 15 % strain
3 Compression relaxation in z-direction at 15 % strain; hold time=300 s
4 Tension relaxation in z-direction at 15 % strain; hold time=300 s
5 Cyclic torsional shear 3 Cycles up to an amount of shear of γ = 0.15
6 Cyclic torsional shear 3 Cycles up to an amount of shear of γ = 0.3

Table 4. Testing protocol.

Y
X

Z

D ≈ 8mm

H ≈ 5mm

a b c

compression tension torsional shear

d

Figure 2. Specimen preparation and experimental setup. (a) Idealized geom-
etry and dimensions of the specimens. (b) Extracted brain tissue specimen
prepared for testing. (c) Specimen glued to the upper specimen holder of the
rheometer. (d) Tested loading modes. Adapted from Faber et al., 2022.

and a part ∂Ωσ, where we prescribe the tractions as
Neumann boundary conditions t = σn = t̄. As we ne-
glect the influence of volume forces, we set b = 0 and
obtain the boundary value problem in its strong form

divσ = 0
∂Ω = ∂Ωu ∪∂Ωσ

u = ū on ∂Ωu

t = σn = t̄ on ∂Ωσ.

(1)

After reformulation in its weak form and a subsequent
linearization, we use the finite element method (FEM)
to solve this set of equations. The high strain values
(up to 15 % nominal strain) applied in the experiments
in conjunction with the nonlinear stress-strain relation

of the used constitutive model results in a highly non-
linear problem. Therefore, we employ an iterative so-
lution scheme based on the Newton-Raphson method.
We implement the finite element model using the open
source finite element library deal.ii (Arndt et al., 2021).

Hyperelastic constitutive model: modified one-term Og-
den model . To solve the boundary value problem (Equa-
tion 1), we need to specify the constitutive equation re-
lating displacements u to the stresses σ (Nair, 2009).
In this study, we neglect time-dependent effects and fo-
cus on the time-independent, hyperelastic material re-
sponse of brain tissue. In this case, the stress response
depends only on the deformation state. To character-
ize the constitutive behavior of a hyperelastic material,
a strain energy function Ψ is defined. It is then possi-
ble to obtain from the second law of thermodynamics
(Holzapfel, 2000) the relation

σ = J−1 ∂Ψ
∂F FT , (2)

where J denotes the volume ratio J = detF. A common
approach is to split the strain energy function into an
isochoric and a volumetric part

Ψ = Ψiso +Ψvol, (3)

based on the assumption that the material behaves dif-
ferent in shear and bulk. Based on our previous works
(Budday et al., 2017a; Budday et al., 2019), we use a re-
formulated version of the Ogden model (Ogden, 1972)
in terms of the shear modulus µ for the isochoric part

Ψiso = 2µ

α2 (λ̄α
1 + λ̄α

2 + λ̄α
3 −3), (4)
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with the isochoric principal stretches λ̄a = J−1/3λa,
and the nonlinearity parameter α. The one-term Og-
den model achieved promising results when fitting an
incompressible analytical implementation of the model
simultaneously to compression, tension, and shear ex-
perimental data (Budday et al., 2017a). In particular,
it is capable of capturing the pronounced compression-
tension asymmetry observed in experiments.
By applying the chain rule, it is possible to write Equa-
tion 2 in terms of the principal stretches

σ =
3∑

a=1
J−1λa

∂Ψ
∂λa

n̂a ⊗ n̂a (5)

which can be interpreted as spectral form of σ with the
principal values σa = J−1λa

∂Ψ
∂λa

and the eigenvectors
of the left Cauchy-Green tensor n̂a. For the principal
values of the isochoric stress σiso a, we obtain

σiso a = J−1

(
λ̄a

∂Ψiso

∂λ̄a

− 1
3

3∑
b=1

λ̄b
∂Ψiso

∂λ̄b

)
. (6)

For the volumetric part of the strain energy, we choose
a formulation proposed by Ogden, 1972,

Ψvol = κ
1
4(J2 −1−2lnJ), (7)

where the empirical coefficient in the original formula-
tion has been set to 2, as introduced by Simo et al.,
1992. The bulk modulus κ characterizes the resistance
of the material against volume changes and is here cal-
culated from the shear modulus and the initial Poisson’s
ratio ν through the relation

κ = µ
2(1+ν)
3(1−2ν) , (8)

taken from the linear elastic regime. We note that
we use this initial Poisson’s ratio in this context to ob-
tain feasible estimates for the bulk modulus κ, where
ν serves as a measure of the compressiblity with ν =
0.5 representing the incompressible limit resulting in
limν→0.5κ = ∞. While as per definition in the finite
regime, a Poisson’s ratio of ν = 0.5 is not necessar-
ily indicating incompressible behavior (Voyiadjis et al.,
2018), we here treat it as a constant rather than a func-
tion depending on the chosen strain measure and the
current deformation. A constant Poisson’s ratio is often
used in the literature in the context of parameter iden-
tification for brain tissue (MacManus et al., 2018; Pier-
rat et al., 2018; Shafieian et al., 2009; Hosseini-Farid
et al., 2019). Still, it has to be noted that the interpre-
tation of its meaning remains questionable when it is
applied to different constitutive formulations. A compre-
hensive overview of constitutive parameters, including
the Poisson’s ratio, in the context of finite elasticity and
their relation to the partly available linear counterparts
is given by Mihai et al., 2017b. In our case, we relate κ

to the shear modulus by Equation 8, as the available ex-
perimental data does not contain information about the
volumetric deformation of the specimens and we can,
therefore, not expect to obtain reasonable values when
fitting κ to the data.
As it is common for soft tissues, brain tissue is of-
ten assumed to behave incompressibly (Budday et al.,
2017a; Feng et al., 2017). This enables the use of
available closed form solutions for simple load cases.
In this work, we fitted the compressible one-term Og-
den model with different levels of compressibility, i.e.,
ν = {0.45,0.49}. A slightly compressible formulation
circumvents numerical problems associated with incom-
pressibility.

Boundary conditions: "glued" vs. "slipping". In our ex-
periments, the specimens have to be glued to the spec-
imen holders to enable tensile testing. Therefore, the
bottom and upper surface are fixed, which results in an
inhomogeneous deformation state. To check the influ-
ence of the glued in comparison to ideal slipping bound-
ary conditions we ran finite element simulations for both
scenarios. In the case of ’glued’, non-slipping bound-
ary conditions, all nodes on the top and bottom surface
are held fixed. For the slipping boundary conditions,
nodes are only fixated in all directions along the center-
line of the cylinder and can freely move in the plane of
the bottom and top surface, where only the axial direc-
tion is fixed. Furthermore, they are fixed in the normal
directions of the planes orthogonal to the cylinder axis
to prevent rigid body motion.

Data preprocessing: The hyperelastic response
As we limit ourselves to a hyperelastic material model
(neglecting poro- and viscoelastic effects), we need to
extract the hyperelastic response from the experimental
data, which shows a considerable hysteresis (see Fig-
ure 3). The (theoretically infinitely) high or low strain
rates that would be needed to obtain a purely hyper-
elastic response are not feasible in experiments. Fig-
ure 3 gives a short overview over the data after the pro-
cessing steps from the raw data as it is obtained from
the rheometer to the final processed data. We adopt
here the assumption that the averaged loading and un-
loading curves approximate the hyperelastic response
(Budday et al., 2017a). The initial moving average and
lowpass filtering helps to filter out the high frequency
noises in the measured signal. A resampling along the
displacement axes enables the averaging of loading and
unloading to finally obtain our desired results. The num-
ber of points is reduced to 60 points per mode so that
the computational costs for the simulation are lowered,
while the characteristic shape of the curve is preserved.
We use either the data from the first or the third loading
cycle to represent the un- and preconditioned material
response, respectively. Together with the two used Pois-
son’s ratios ν = {0.45,0.49} this leads to a total of four
parameter sets for each specimen.
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Figure 3. Preprocessing steps from raw data (top row) to the averaged unloading and loading curves representing the hyperelastic response (bottom row), exemplary
shown for data from the first cycle of compression-tension, and torsional shear for one representative specimen from the putamen (Pu).

Inverse parameter identification
To characterize the mechanical behavior of the tested
human brain specimens, we inversely determine mate-
rial parameters for the modified one-term Ogden model,
as summarized in Figure 4. In the generalized prob-
lem, the model G(m) depends on the parameters m
and produces the results d,

G(m) = d. (9)

In the real setup, our measured experimental output dif-
fers from the output produced using the ’true’ parameter
set mtrue by the error η

G(mtrue)+η = dexp. (10)

Our goal is now to find the optimal parameter set m∗

that best reproduces the output of our experiments
dexp. We assume the error to be normally distributed
η ∼ N (0,σ2) with the mean at 0 and the standard de-
viation σ. The solution of the identification problem will
then approximate mtrue when an L2-Norm is used to
measure the error between the simulated values and
the experimental data following the maximum likelihood
principle (Seber et al., 2005). We measure the good-
ness of fit by the normalized squared error of experi-
mental and model output values

χ2 =
∑N

i=1(yexp
i −ysim

i )2∑N
i=1(yexp

i )2
, (11)

where ysim and yexp denote the simulation output and
the corresponding value measured during the experi-
ment, respectively. The approach of normalizing the

squared error was taken from Gavrus et al., 1996 and
helps to tackle numerical problems like vanishing gradi-
ents that may arise for low values of χ2.

start parameter identification

initialize parameters
m̄ = m̄ init

run FE simulation
G(m̄) = d̄ sim

calculate error
χ2 =

∑
i

(d exp
i − d sim

i )2

check convergence

parameters found

update parameters
m̄ = m̄ + m̄ update

y

n

Figure 4. Parameter identification scheme. The set of material parameters m̄ is
updated in each iteration by the used optimization algorithm until a convergence
criterion is met.

The parameter identification is implemented in Python
and coupled with the finite element simulation using
the .prm file format of the deal.ii library. We use the
implementations of optimization routines in the SciPy
Python-module (Virtanen et al., 2020) and adapt them
to improve computational efficiency by the parallel eval-
uation of finite element simulations. We note that we
have initially used the gradient-free Nelder-Mead algo-
rithm (for brain 1,2 and 3 using scipy.optimize.minimize
with the options method=’Nelder-Mead’, xatol= 10−3
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and fatol= 10−4) described by Nelder et al., 1965, as
we had problems with vanishing gradients which did not
allow us to use gradient-based algorithms. This algo-
rithm has already been used successfully for the param-
eter identification of brain tissue (Prevost et al., 2011;
Hosseini-Farid et al., 2019). After the introduction of
the aforementioned normalization factor

∑N
i=1(yexp

i )2

in χ2, those problems were overcome. Consequently,
we switched to the trust region reflective algorithm, for-
mulated by Branch et al., 1999, which can handle con-
straints and appears to be faster, as less iterations were
needed to fulfill the set convergence criterion. Our
adaptation of the algorithm is mainly the switch to an
eager evaluation of function values. This means that
a new simulation run will be started as a new asyn-
chronous thread as soon as we know that this value
will be needed although the output might not be pro-
cessed at the same place in the code. When the out-
put is then actually needed in a later step, the return
of the asynchronous process is awaited. Furthermore,
simulation outputs are cached to prevent unnecessary
simulation runs. The gradient is calculated using a finite
forward difference scheme. Importantly, a preliminary
global optimality study, where the optimization algorithm
was started with varying initial parameters, showed no
problems of multiple local minima (Supplementary Fig-
ure S14).

In a first step, we apply the inverse parameter iden-
tification scheme to the data from each of the 182
human brain specimens individually. Statistical meth-
ods allow us to quantify significant differences between
parameter sets and their subgroups (regions, brains).
We use the Python module pandas (McKinney, 2010)
for data analysis and the modules seaborn (Waskom,
2021) and matplotlib (Hunter, 2007) for visualizations.
For each of the specimens, we consider the data from
three loading modes simultaneously, i.e., compression
and tension loading up to 15 % nominal strain as well
as torsional shear loading up to an amount of shear of
γ = {0.15,0.3}. We do not introduce any explicit weigh-
ing mechanisms into the cost function χ2. As all three
modes contribute with the same number of data points
to the residual vector, in fact, shear loading is implicitely
weighed with a ratio of 2 : 1 compared to the compres-
sion and tension loadings. We achieved good results
using this approach that can be justified by the maxi-
mum compression stresses reaching a multiple in mag-
nitude compared to the shear stresses. We note that
the weighing of the loading modes has an important in-
fluence on the identification of material parameters and
can be adjusted to the intended purpose. As we aim
to identify a universal parameter set without having a
specific application in mind, we did not use any explicit
weighing. This could be reasonable, however, if a spe-
cific application has a known dominant loading mode.

Statistical analyses
We first check if our data is normally distributed as para-
metric statistical tests that rely on the assumption that
the tested data is drawn from a normal distribution are
favored for their higher statistical power (King et al.,
2019). To this end, we apply a Shapiro-Wilk test us-
ing the implementation provided by the SciPy Python
module (Virtanen et al., 2020) to the material parame-
ters of the Ogden model α and µ as well as the error of
the fit in terms of the root mean square error (RMSE).
As this analysis lead us to reject the assumption of a
normal distribution for the material parameters, we will
introduce the used non-parameteric tests in the follow-
ing. The Kruskal-Wallis H-test is employed as a non-
parametric equivalent of an ANOVA to determine if the
means of the groups defined as the anatomical regions,
governing regions and brains are significantly different.
The test is run for both material parameters α and µ, for
each group and for all four parameter sets separately
as they are not independent. To identify, which govern-
ing regions should be treated as different regarding their
hyperelastic behavior, we conduct pairwise post hoc
tests in terms of Mann-Whitney-U tests. Additionally,
the same test is used to quantify pairwise differences
between the parameters of the tested brains. We use
the implementation of the method in the Python module
scikit_posthocs (Terpilowski, 2019), where we use the
Holm-Bonferroni method to control the family-wise error
rate. By calculating the pairwise differences between
the four parameter sets we are able to quantify the influ-
ence of preconditioning and the two Poisson’s ratios on
the material parameters. To this end, we use a Wilcoxon
signed-rank test. The returned p-value is an estimate on
the probability that these observations come from a dis-
tribution with a mean value different from 0. We use the
wilcoxon function in the SciPy Python module (Virtanen
et al., 2020). We consider a p-value lower than 0.05 to
be significant for all conducted tests.

Results
The effect of inhomogeneous deformation states
during testing
Figure 5 demonstrates the significant influence of the
boundary conditions during compression and tension
loadings, where the absolute nominal stresses for glued
boundary conditions are twice as high as for slipping
boundary conditions – corresponding to homogeneous
deformation states. The maximum local stresses visual-
ized in Figure 5c are an order of magnitude higher than
in Figure 5b, which can be attributed to the singularity
at the edge of the fixed surface. We note that we only
present results for compression and tension loadings,
as the torsional loading will not be influenced by the
two types of boundary conditions. These results high-
light the importance of performing an inverse parameter
identification scheme, as presented in the following, in-
stead of using closed form analytical solutions based on
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the assumption of homogeneous deformation states.

Performance of parameter identification scheme
and general trends
Figure 6 shows an exemplary model fit for one of the
specimens compared to the preprocessed experimen-
tal data. The model well captures the experimental re-
sponse, including the pronounced compression-tension
asymmetry. Differences between the four parameter
sets clearly appear in the scatter plots in Figure 7,
where the parameters of each specimen are repre-
sented by a dot. While the nonlinearity parameter α
shows no clear trend, the change in the shear mod-
ulus µ is already visible in this representation. For
both values of the Poisson’s ratio ν, we observe lower
shear moduli when the model is fitted to preconditioned
data. Furthermore, the higher Poisson’s ratio leads to
a more incompressible and therefore stiffer behavior of
the model, which is countered by lower shear moduli in
the parameter sets for a Poisson’s ratio of 0.49.

Abbreviation Full name Assigned regions

Am Amygdala Am
BG Basal ganglia Pa,Pu,NC
BS Brain stem Me,P
C Cortex MC,VC,CI,FC,TL
CB Cerebellum cWM,cN
CC Corpus callosum CC
CR Corona radiata CR,WM
Hi Hippocampus Hi
M Midbrain M,Th

Table 5. Governing regions and their abbreviations with corresponding anatom-
ical regions.

Regional dependency
Figure 8 (top) shows the material parameters that were
fitted to the unconditioned data (first cycle) using a Pois-
son’s ratio of 0.45 averaged over the 19 anatomical re-
gions introduced in Table 3. We only plot this data
set here as the other three cases (Poisson’s ratio 0.49
and preconditioned) show the same qualitative behav-
ior (see also Supplementary Figures S1 and S2). The
(anatomical) region-wise averaged values of the model
parameters can be found in Supplementary Table S2.
From the overlapping bars indicating the standard de-
viation in Figure 8 (top), it is clear that this partitioning
is too detailed to identify regions with distinct hypere-
lastic properties. Therefore, we subsequently group re-
gions with similar parameters as well as comparable mi-
crostructures and location into what we define as nine
’governing’ regions. Table 5 lists the used abbreviations
as well as the assignment of regions to governing re-
gions. The distribution of governing regions over the
tested brains is shown in Figure 9. The distribution over
the tested brains is similar besides the Amygdala (Am)
region, for which the data set contains only samples
from the brains 3, 4, 5, and 7. An equal distribution

is important for the conducted statistical analyses. The
resulting distribution of parameters in Figure 8 (bottom)
shows a slight improvement in terms of reducing over-
lapping, but especially the samples from the midbrain
(M), the brainstem (BS) and the basal ganglia (BG) gov-
erning regions are still close in the parameter space and
show overlapping standard deviations. The correspond-
ing averaged material parameter values can be found in
Supplementary Table S1.
Table 6 and Table 7 list the H-statistics of the Kruskal-
Wallis H-test as well as the corresponding p-values
when the detailed anatomical and governing regions
were used as grouping variable, respectively. All p-
values are below the significance level. While the p-
values for the governing regions are lower than the cor-
responding values for the detailed regions, it is difficult
to directly interpret this qualitative difference, as the re-
sults of the statistical test are influenced by the number
of groups as well as the number of observations inside
each group. To identify, which governing regions should
be treated as different regarding their hyperelastic be-
havior, we subsequently conduct pairwise post hoc tests
in terms of Mann-Whitney-U tests. Figure 10 shows the
corresponding results as matrix plots for unconditioned
data and a Poisson’s ratio of 0.45. Specimens from
the corpus callosum (CC) governing region show signif-
icantly different shear moduli in all comparisons. Shear
moduli for the corona radiata (CR) are significantly dif-
ferent compared to the basal ganglia (BG), cortex (C),
corpus callosum (CC) and midbrain (M), but not to the
other governing regions. The shear moduli of the re-
maining seven governing regions do not appear to be
significantly different in the conducted statistical tests.
Multiple comparison tests for the nonlinearity parame-
ter α did not show any of the governing regions to have
significantly different values. The other three parame-
ter sets, for which the results of the multiple compari-
son tests are presented in Supplementary Figures S5
and S6, show the same qualitative behavior with only
small variations in the number of significant compar-
isons. One exception are two significant comparisons
for α for the parameter set of the preconditioned data
and a Poisson’s ratio of 0.45, which do not appear for
any of the other parameter sets.

Inter-individual variation

When aiming to choose material parameters for hu-
man brain models, an important question is whether the
parameters can be generalized or need to be patient-
specific. Figure 11 shows an overview of the parame-
ters identified for the seven different brains. Again, we
only discuss the parameter set of the unconditioned re-
sponse using a Poissons’s ratio of 0.45 in detail, while
the results of the remaining parameters can be found
in Supplementary Figure S7. The shear moduli range
from 185 Pa for brain 3 to 365 Pa for brain 4 and the
nonlinearity parameter α ranges from −18 for brain 4
to −13 for brain 7. The brain-specific parameters are
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Figure 5. The direct comparison shows that ’glued’, non-slipping boundary conditions lead to a stiffer response than ’slipping’ boundary conditions. (a) Simulated
stress-stretch results for the ’glued’ and ’slipping’ boundary conditions. (b) ’Slipping’ boundary conditions lead to a homogeneous deformation state. (c) ’Glued’
boundary conditions lead to an inhomogeneous deformation state.

ν preconditioned α µ
H p H p

0.45 preconditioned 3.27e+01 1.83e-02 9.20e+01 6.31e-12
0.45 unconditioned 3.92e+01 2.67e-03 8.72e+01 4.61e-11
0.49 preconditioned 3.57e+01 7.67e-03 1.05e+02 2.38e-14
0.49 unconditioned 4.27e+01 8.79e-04 9.20e+01 6.25e-12

Table 6. Results for the Kruskal-Wallis H-test with the anatomical region as independent variable

ν preconditioned α µ
H p H p

0.45 preconditioned 1.92e+01 1.38e-02 8.07e+01 3.61e-14
0.45 unconditioned 2.48e+01 1.65e-03 7.85e+01 9.78e-14
0.49 preconditioned 2.35e+01 2.73e-03 9.53e+01 3.85e-17
0.49 unconditioned 2.86e+01 3.67e-04 8.30e+01 1.21e-14

Table 7. Results for the Kruskal-Wallis H-test with the governing region as independent variable

not spread evenly throughout the parameter space with
brains 1,4,5 and 6 having relatively high shear moduli
and lying close together, while brain 3 and 7 show lower
shear moduli. Brain 2 is somewhere in between these
two groups. The p-values returned by a Kruskal-Wallis
H-Test with the individual brains as independent vari-
able in Table 8 are below the significance level for both
parameters α and µ and for all four parameter sets. The
results of pairwise Mann-Whitney-U tests in Figure 12
show that mainly the shear moduli for brain 3 signifi-
cantly differed from all other brains, excluding 2 and 7.
Another significant comparison is found between 4 and
7. For the nonlinearity parameter α, most significant dif-
ferences are found for brain 7. Furthermore, the com-
parison of brain 4 and 6 is reported as significant. The
results for the other three parameter sets can be found
in Supplementary Figures S8 and S9.

Effect of compressibility

We fitted the experimental results using different com-
pressibilities, quantified through the Poisson’s ratio ν,
which we relate to the shear modulus µ of the modified
one-term Ogden model by Equation 8 known from the
linear regime. We use the Poisson’s ratios 0.45 and 0.49
to enable the comparison with similar studies but would

like to note that this does not directly conform to the def-
inition in terms of the ratio of transverse and axial strain.
With these two parameter sets, we are able to evaluate
the effect of a prefixed Poisson’s ratio on obtained ma-
terial parameters for each specimen and to see whether
one of those leads to lower RMSE and thus better qual-
ity of the fit. In the following, we only focus on the uncon-
ditioned data as the found relations also hold qualita-
tively for the preconditioned data. The complete results
can be found in Supplementary Figure S10. Figure 13
shows the histograms of the pairwise differences for the
unconditioned data with their median. The boxplot of
the RMSE values puts the calculated differences into
perspective. RMSE values for unconditioned data have
a mean of 48 Pa for a Poisson’s ratio of 0.45 and 34 Pa
for 0.49. The p-values of a Wilcoxon signed-rank test in
Table 9 indicate all observed differences as significant.
The median of the difference is −71 Pa for the shear
modulus, 4 for the nonlinearity parameter α and −12 Pa
for the RMSE. A negative difference corresponds to a
higher value for a Poisson’s ratio of 0.45.

Hinrichsen et al. | | 9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.521022doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.521022
http://creativecommons.org/licenses/by-nc-nd/4.0/


ν preconditioned α µ
H p H p

0.45 preconditioned 1.95e+01 3.41e-03 3.65e+01 2.16e-06
0.45 unconditioned 2.48e+01 3.65e-04 3.31e+01 1.02e-05
0.49 preconditioned 1.59e+01 1.43e-02 2.42e+01 4.78e-04
0.49 unconditioned 3.16e+01 1.93e-05 3.10e+01 2.57e-05

Table 8. Results for the Kruskal-Wallis H-test with the brain as independent variable

preconditioned H0 := ∆α = 0 H0 := ∆µ = 0 H0 := ∆RMSE = 0
W p W p W p

preconditioned 2.88e+03 2.03e-14 1.13e+02 8.24e-31 2.61e+03 1.00e-15
unconditioned 7.30e+01 4.28e-31 1.62e+02 1.83e-30 2.58e+03 6.56e-16

Table 9. Results of the Wilcoxon signed-rank test comparing the datasets for the Poisson’s ratios ν = {0.45,0.49}.
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Figure 6. Exemplary fitting results for one specimen from the midbrain, where
the preconditioned response was fitted using a Poisson’s ratio of 0.45.

H0 := ∆α = 0 H0 := ∆µ = 0
ν W p W p

0.45 1.76e+03 2.62e-20 8.00e+01 4.80e-31
0.49 1.24e+03 2.25e-23 8.20e+01 4.96e-31

Table 10. Results of the Wilcoxon signed-rank tests comparing the datasets for
un- and preconditioned data.

Preconditioned versus unconditioned material pa-
rameters

We obtained separate parameter sets for the uncondi-
tioned and preconditioned material responses by fitting
the first and third loading cycle of all loading modes,
respectively. Figure 14 shows the histogram of the
pairwise differences between material parameters for a

Poisson’s ratio of 0.45. The results for a Poisson’s ratio
of 0.49 show the same qualitative trends and are visual-
ized in Supplementary Figure S11. Table 10 shows the
results of a Wilcoxon signed-rank test, indicating all ob-
served differences as significant. The differences for the
shear moduli and nonlinearity parameter α have both
negative medians with ∆µ = −74Pa and ∆α = −2.7,
indicating lower values for the preconditioned data.

Averaging material parameters versus averaging
experimental data
While we fitted the experimental output of every single
specimen separately in a first step to perform statistical
analyses, this approach is not accurate when aiming to
provide material parameters representing the averaged
response of each of the defined regions. Therefore, in
a second step, we applied the parameter identification
scheme after averaging the experimental data over the
governing regions. Figure 15 compares the parameters
from both approaches for the unconditioned data using
a Poisson’s ratio of 0.45. The maximum absolute rel-
ative differences are 13% for µ and 33% for α. The
differences for the other three data sets can be found
in Supplementary Figures S12 and S13. Over all data
sets, the maximum absolute relative difference for µ is
32 %. All parameters obtained from fitting the averaged
experimental results were within the standard deviation
of averaging the individual specimen-specific parame-
ters. Interestingly, the averaged data resulted in consis-
tently higher absolute values of the nonlinearity param-
eter α, but lower shear moduli µ. The parameter values
obtained when fitting the averaged experimental results
in the governing regions are summarized in Table 11.

Discussion
In this work, we have performed multi-modal large-
strain mechanical testing of human brain tissue and
have implemented an inverse parameter identification
scheme utilizing a finite element implementation of the
modified one-term Ogden model to (i) identify me-
chanically distinct human brain regions, and (ii) pro-
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vide the corresponding hyperelastic material parame-
ters for future finite element simulations. Each spec-
imen was tested under multiple consecutive loading
modes, namely cyclic compression and tension load-
ing as well as cyclic torsional shear, which required to
glue the specimens to the specimen holders during test-
ing. Therefore, we have carefully analyzed the validity
of assuming a homogeneous deformation state, as of-
ten done in the literature. In addition, we have inves-

tigated the effect of predefining different Poisson’s ra-
tios, and have provided separate parameter sets for the
unconditioned and preconditioned material responses,
respectively.

The importance of an inverse parameter identifica-
tion scheme

It is common to characterize the mechanical proper-
ties of materials by testing them under simple loading
modes, where it is possible to obtain analytical solu-
tions based on certain assumptions. If the deforma-
tion gradient F is assumed to be homogeneous (there-
fore describing an affine deformation) for a hyperelas-
tic material, the stress will also be homogeneous and
can be directly obtained from a constitutive relation by
using Equation 5. Whenever possible, the application
of such closed form solutions is favorable over compu-
tationally expensive approaches like the finite element
method. However, it needs to be checked how well
the assumption of homogeneous deformation approxi-
mates the real conditions during the experiment. The
model outputs in Figure 5 for slipping and non-slipping
boundary conditions show a strong influence with ap-
proximately two times higher nominal stresses for the
case when specimens are glued on the top and bottom
surfaces. These results emphasize the importance of
using an inverse parameter identification scheme based
on a model that can accurately capture the boundary
conditions during testing. Similar results were obtained
by other researchers (Miller, 2005; Voyiadjis et al., 2018;
Felfelian et al., 2019; Budday et al., 2019).
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Figure 10. p-values from pairwise post hoc Mann-Whitney-U tests comparing
material parameters for different governing regions for a Poisson’s ratio of 0.45
fitted to the unconditioned data.

Mechanically distinct brain regions
From the initially considered 19 anatomically different
brain regions, we were able to assign nine governing
regions grouping specimens that were extracted from
anatomical regions with comparable microstructures as
well as similar mechanical parameters. Our results indi-
cate that from these governing regions at least the cor-
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Figure 11. Parameter values and their standard deviation after averaging over
different individual brains for the unconditioned response and a Poissons’s ratio
of 0.45.

pus callosum and the corona radiata should be mod-
eled as distinct regions in mechanical models of the hu-
man brain. The corpus callosum yields the lowest shear
moduli for all four datasets. While we obtain the cor-
tex (C) as region with the highest shear moduli for a
Poisson’s ratio of 0.45, the Amygdala (Am) is the stiffest
region for 0.49. Interestingly, as the significant differ-
ences were only found for the shear modulus µ, the
use of a constant value for α over all regions may be
justified when using a one-term Ogden model. The ob-
served trends generally agree with previous studies in-
vestigating a limited number of brain regions. For in-
stance, Budday et al., 2017a showed significant differ-
ences between the corpus callosum and both the basal
ganglia as well as the cortex from compression, tension,
and shear tests. Interestingly, differences between the
corona radiata and corpus callosum were also reported
as significant by pairwise tests but could not be con-
firmed by multiple comparisons. Another study iden-
tified viscoelastic parameters from indentation experi-
ments distinguishing 12 regions with six of them being
subregions of the cortex (Menichetti et al., 2020). Multi-
ple comparison tests were conducted, where the instan-
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Figure 12. p-values from pairwise post hoc Mann-Whitney-U tests comparing
material parameters from different brains for a Poisson’s ratio of 0.45 fitted to
the unconditioned data.

taneous shear modulus µ0 for every region was signif-
icantly different from at least three other regions. Most
significant comparisons were found for the corona radi-
ata and the cerebellum with seven, whereas only three
were found for the corpus callosum. The reported differ-
ence in the region-specific mechanical behavior of brain
tissue when comparing indentation with compression,
tension and shear loadings could explain the differences
in the identified mechanically distinct regions. Still, the
corona radiata was identified as a mechanically distinct
region in both cases.

Region-specific parameters
After we have identified mechanically distinct regions
by means of statistical analyses of the parameters ob-
tained for each specimen individually, we subsequently
provide (governing) region-specific hyperelastic param-
eters based on the averaged data of all specimens
within the respective region, as reported in Table 11.
The qualitative regional trends are comparable to our
previous results in (Budday et al., 2017a), where we had
reported one-term Ogden parameters fitted to compres-
sion, tension and shear data for the corpus callosum,
basal ganglia, cortex and the corona radiata. Still, the
shear moduli were substantially higher ranging from 4.1
fold for the basal ganglia to 9.3 fold for the corpus cal-
losum in comparison to our dataset for a Poisson’s ratio
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Figure 13. Pairwise difference for the parameters µ and α and the RMSE
between samples fitted with a Poisson’s ratio of 0.45 and 0.49. Results are
shown for the unconditioned data set. The boxplot (bottom right) visualizes the
distribution of RMSE values.

of 0.49 and preconditioned data. This can be attributed
to the different modeling approaches as we had used
an incompressible analytical implementation assuming
slipping boundary conditions. Another study (Moran et
al., 2014) reported parameters for a two-term Ogden
model fitted to tension, compression and shear tests
of human brain tissue, where they distinguished the
corona radiata as well as gray and white matter. The
shear moduli, calculated as µ = µ1 + µ2, were higher
for gray matter than for white matter, which can be con-
sidered to be in agreement with our study. We identified
the lowest shear moduli for the white matter regions cor-
pus callosum and corona radiata, while the highest val-
ues were found for the gray matter regions cortex and
amygdala. Their reported values for the corona radiata,
which is already contained in the white matter data but
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again introduced as a separate region, are the highest.
All values reach more than three fold of our values.
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Table 11. Material parameters fitted to the experimental response averaged
over governing regions.

mean std
preconditioned ν

preconditioned 0.45 -21.52 1.84
0.49 -17.91 3.95

unconditioned 0.45 -18.27 2.57
0.49 -12.59 1.90

Table 12. Averaged α parameter for the parameter sets fitted to the averaged
experimental response in governing regions.

Influence of compressibility
By fitting the experimental data with the two different
fixed Poisson’s ratios 0.45 and 0.49, we were able to
firstly investigate whether one of them fitted the data
better and, secondly, how the chosen Poisson’s ratio
affects the identified remaining free model parameters.
We note that the Poisson’s ratio is here used to relate
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the shear modulus µ to the bulk modulus κ in terms of
Equation 8, thus actually denoting the initial Poisson’s
ratio in the finite strain regime.

A potential influence on the quality of the fitting re-
sults is quantified in terms of differences in the root
mean squared error (RMSE) between experimental
data and model output for each specimen and all load-
ing modes. Although the reported negative median in-
dicates a slightly better fit for a Poisson’s ratio of 0.49,
the long tails in the histogram of the differences in Fig-
ure 13 and Supplementary Figure S10 as well as the
large spread in the obtained RMSE values, visualized
by the boxplots, do not support a systematic depen-
dency. This shows that the available experimental data
does not contain enough information to characterize the
volumetric part of the constitutive model. A parame-
ter study on a neo-Hookean model replicating inden-
tation experiments varied the Poisson’s ratio between
0.452−0.49995 (MacManus et al., 2018). The increase
in maximum indentation force by 6 % was below the co-
efficient of variation of the experimental data, also indi-
cating that the available measurements are not suited
to characterize the compressible behavior. In another
study, the volumetric part of a two-term compressible
Ogden model was included in the fitting of tension, com-
pression and shear data of human brains and a good fit
(R2 > 0.92) was achieved with an initial Poisson’s ratio
of ≈ 0.42 (Moran et al., 2014). While these results first
seem to be contradictory to others also achieving low
fitting errors using quasi-incompressible formulations
(MacManus et al., 2018; Pierrat et al., 2018; Shafieian
et al., 2009; Hosseini-Farid et al., 2019), they are again
explained by the lack of volumetric measurements that
will cause non-unique solution if the compressible part
is also fitted. Previous studies using image-based tech-
niques come to the conclusion that the assumption of
incompressible behavior can be justified for brain tissue
(Felfelian et al., 2019; Eskandari et al., 2021).

Due to the aforementioned issues, we decided to prede-
fine two different Poisson’s ratios and our results in Fig-
ure 13 show that a lower compressibility for a Poisson’s
ratio of 0.49 comes along with significantly lower shear
moduli than for 0.45, as the model yields higher forces
for the same shear modulus and a higher bulk modu-
lus under deformations causing volume changes, such
as compression loading. As the obtained α values are
mostly negative to capture the stiffer behavior in com-
pression than in tension, the positive difference of the
obtained values for a Poisson’s ratio of 0.49 in compar-
ison to 0.45 mean that also the compression-stiffening
behavior is less pronounced for a lower compressibility.

Importantly, both parameter sets obtained by us us-
ing the Poisson’s ratios 0.45 and 0.49 are considered
valid as they are able to replicate the measured experi-
mental data. We therefore suggest to use the parame-
ter set for a Poisson’s ratio of 0.49 representing quasi-
incompressible behavior or, if the choice of the Pois-
son’s ratio is already fixed due to other constraints, the

one with the closest value.

Unconditioned and preconditioned material behav-
ior
While we have only focused on the hyperelastic re-
sponse of brain tissue in this study and have neglected
poro- and viscoelastic effects, we have identified dif-
ferent parameter sets using the first and third cycle to
represent the un- and preconditioned response, respec-
tively. The results in Figure 14 and Supplementary Fig-
ure S11 show substantially lower shear moduli for ex-
perimental data from preconditioned specimens. This
agrees well with previous studies highlighting the sig-
nificant preconditioning effect of brain tissue (Budday et
al., 2017a; Prevost et al., 2011; Labus et al., 2016). Al-
though our statistical tests also confirm a significant dif-
ference in the nonlinearity parameter α, the low abso-
lute values of the differences indicate a similar behavior
in terms of the nonlinearity with the preconditioned pa-
rameters yielding only slightly more nonlinear behavior
than the unconditioned parameters.
The appropriate parameter set for individual use cases
can then be chosen based on the application. We
note here, that the loading velocity of 40 µm/s (trans-
lating to a strain rate of ≈10−2 1/s) in the experiments
is comparably low. The obtained hyperelastic param-
eters are therefore approximating the equilibrium re-
sponse. Thus, they are especially suited to model pro-
cesses on the medium to longer time scale, such as
brain growth and development or neurosurgery. The be-
havior of brain tissue in the aforementioned scenarios
is best captured by the parameters using the precondi-
tioned response. Nevertheless, if one wants to model
impact scenarios related to, e.g., traumatic brain injury
(TBI), and use a hyperelastic constitutive model, the pa-
rameters obtained from unconditioned data should be
used. As the statistical analysis justifies the use of a
constant α value, we provide the averaged values for
the parameter sets obtained by fitting the averaged ex-
perimental response in different regions in Table 12.

Limitations
Its complex mechanical behavior and ultrasoft nature
make the mechanical characterization of human brain
tissue a challenging task. By choosing a hyperelastic
model, we neglect the complex time-dependent behav-
ior that can be observed in experiments (Budday et al.,
2017b). An alternative are poro-viscoelastic models that
capture also the biphasic nature of brain tissue (Greiner
et al., 2021). However, currently the experimental data
to accurately calibrate such complex models are not
available and the assessment of regional trends – the
main focus of this work – would be much more diffi-
cult. One of the pressing questions remaining for the
mechanical characterization of brain tissue is to what
extent parameters obtained from ex vivo tests can be
applied to the prediction of the in vivo situation. In the
latter, blood circulation and the restriction in its mobility
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by the bony skull capsule might play an important role.
The differences in obtained material parameters be-
tween tested brains in Figure 11 and Supplementary
Figure S7 were also confirmed as significant for sin-
gle brains by the statistical tests. A potential reason
for changes in properties could be metastases, as the
cause of death for the concerned brains was metasta-
sizing cancer. Still, other brains with the same cause
of death did not show significantly different properties.
Another reason could be the influence of different stor-
age solutions as we obtained different nonlinearity pa-
rameters for the brain kept in Ringer’s solution. With
the testing of more human brains in the future, it will
be possible to better understand such effects, including
person-specific data, such as age, sex, and cause of
death.
A concern regarding parameter identification studies is
the non-uniqueness of obtained solutions. Although we
ran a global optimality study, shown in Supplementary
Figure S14 to check if this behavior is observed in our
case, this is just an empirical approach and not a rig-
orous mathematical analysis of the problem. Therefore,
there is still the potential of occurring local minima for
different experimental values.
Finally, to conclusively characterize the compressibility
of human brain tissue, it would be necessary to capture
the deformation of the specimens during testing, e.g.
by using a camera. However, with the current testing
setup, this is not easy to implement due to the bath of
PBS required to control the temperature and hydration
of the sample.

Conclusion
The main goals of this work were to identify mechani-
cally distinct regions in the human brain tissue and to
subsequently provide region-specific parameters for fi-
nite element simulations. We tested human brain spec-
imens under compression, tension and torsional shear
in the finite strain regime. By fitting the response of a
finite element model implementation of a modified one-
term Ogden model to the experimental data, we have in-
versely identified material parameter sets. We have as-
signed the 19 anatomical regions from which the spec-
imens were extracted to nine governing regions based
on comparable microstructures and parameters. Sta-
tistical analyses show that at least the corona radiata
and the corpus callosum should be modeled as me-
chanically distinct regions with different shear moduli.
Interestingly the nonlinearity parameter α did not show
significant differences. By fitting the first and third cy-
cle of all loading modes separately, we have provided
different parameter sets for the un- and preconditioned
material responses, respectively. Varying the fixed ini-
tial Poisson’s ratio from 0.45 to 0.49 leads to a signifi-
cant difference in the identified material parameters. In
this respect, additional measurements are indespensi-
ble to reliably characterize the volumetric response of

brain tissue in the future. In total, we have provided
four parameter sets with distinct material parameters
for the defined nine governing regions in Table 11 that
can be used for mechanical simulations of the human
brain. The most relevant parameter set can be selected
based on the application at hand. Due to the relatively
low loading velocity during our experiments, the param-
eter sets will be especially suited for mechanical models
capturing effects that are occurring on a medium to long
time scale.
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