
Redefining the connectome: A multi-modal, asymmetric, weighted,
and signed description of anatomical connectivity

Jacob Tanner1,2, Joshua Faskowitz3, Andreia Sofia Teixeira4, Caio Seguin5, Ludovico
Coletta6, Alessandro Gozzi7, Bratislav Mǐsić8, and Richard F. Betzel1,2,5,9,10∗
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The macroscale connectome is the network of physical, white-matter tracts between brain areas.
The connections are generally weighted and their values interpreted as measures of communication
efficacy. In most applications, weights are either assigned based on imaging features–e.g. diffusion
parameters–or inferred using statistical models. In reality, the ground-truth weights are unknown,
motivating the exploration of alternative edge weighting schemes. Here, we explore a multi-modal
(combining diffusion and functional MRI data) regression-based, explanatory model that endows
reconstructed fiber tracts with directed and signed weights. Benchmarking this method on Human
Connectome Project data, we find that the model fits observed data well, outperforming a suite
of null models. The estimated weights are subject-specific and highly reliable, even when fit us-
ing relatively few training samples. Next, we analyze the resulting network using graph-theoretic
tools from network neuroscience, revealing bilaterally symmetric communities that span cerebral
hemispheres. These communities exhibit a clear mapping onto known functional systems. We also
study the shortest paths structure of this network, discovering that almost every edge participates
in at least one shortest path. We also find evidence of robust asymmetries in edge weights, that the
network reconfigures in response to naturalistic stimuli, and that estimated edge weights differ with
age. In summary, we offer a simple framework for weighting connectome data, demonstrating both
its ease of implementation while benchmarking its utility for typical connectome analyses, including
graph theoretic modeling and brain-behavior associations.

INTRODUCTION

The human connectome refers to the complete set
of fiber tracts that link brain regions to one another
[1]. It can be reconstructed non-invasively from diffusion
weighted images using tractography algorithms [2, 3].

The connectome is of great interest to a number of sci-
entific communities. Cognitive processes are supported
by distributed, brain-wide networks [4, 5] and many neu-
ropsychiatric disorders are thought to be disorders of
dysconnectivity [6, 7]. Mapping connectomes and un-
derstanding their organizing and operational principles
[3, 8–11] is also a key aim of network neuroscience [12]
– the nascent discipline that focuses on modeling and
analyzing brain data (micrographs, MR images, electro-
physiological recordings) as networks.

The connectome is an example of an “anatomical”
or “structural” network, in that the edges all represent
physical, material pathways [13–16]. In anatomical net-
works, connections are usually associated with weights.
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In human tractography data, these weights are frequently
assigned based on diffusion parameters – e.g. fractional
anisotropy, mean diffusivity, or streamline counts – and
are interpreted as measures of white-matter fiber in-
tegrity.

A related but distinct approach involves mapping “ef-
fective connectivity” [17, 18]. This approach uses record-
ings of brain activity – usually functional MRI data – to
model the directed influence exerted by one gray matter
region on another. Effective connectivity can be esti-
mated using measures of temporal precedence, such as
Granger causality [19–21] or transfer entropy [22, 23],
which assess whether errors/uncertainty in the predicted
activity of one region can be improved by including in-
formation about the history of another. This class also
includes dynamic causal models [24–30], which seek the
underlying circuit that, given a generative model, can
best explain observed brain activity.

These approaches for mapping anatomical and effec-
tive connections have pronounced limitations and trade
off their utility with one another. For instance, diffusion-
/tractography-based measures are incapable of resolving
directionality – i.e. the weight of the tract from re-
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FIG. 1. Fitting and characterizing weighted, signed, and asymmetric structural connectivity. (a) Here, we used
linear model to estimate regression (edge) weights. For a given region i, we identified its structurally connected neighbors and
used their past activity to predict node i’s future activity. This procedure results in a series of regression weights; one weight is
associated with each neighbor. (b) Those weights were then entered into the binary structural connectivity “mask”. When this
procedure was repeated for all i ∈ [1, . . . , 400] it generates a weighted, signed, and asymmetric matrix whose nonzero entries are
masked by structural connections (see panel c). This matrix also has dynamic interpretations; a vector of brain-wide activity
can be multiplied into the matrix to make a prediction of the activity at the subsequent time point. (d) Two-dimensional
histogram showing observed and predicted activity, pooled across all participants and scans. The colors indicate number of
samples in any bin. (e) Examples of observed and predicted activity for five select regions in a single subject and scan. (f )
Similarity of regression weights (edge weights) as a function of amount of data. Note that units on x-axis are expressed as
fraction of time points in scan, where the total number of frames was 1099. (g) Weights fit using scans from subject s are
better at predicting activity in held-out scans from s than other subjects, s′. In this figure, the blocks along the diagonal are
4 × 4 and represent the four resting-state HCP scans. (h) Distributions of errors in model fit, grouped by whether the model
is being used to predict activity in a scan of a different subject, the held-out scan from the same subject, or one of the scans
used in fitting the weights. (i) Comparison of model errors using the observed network with a minimally wired network, one in
which rows/columns were randomly reordered, and another in which time series were circularly shifted (independently across
regions, scans, and subjects). (j ) Relationship of regression weights and Euclidean distance. We also identified edges whose
regression weights were much stronger than expected (those above the dashed line). (k) Distribution of regression weights
across canonical brain systems. (l) Comparison of within- and between-system regression weights. (m): Comparison of positive
and negative weights.

gion i to j is identical to that of j to i. Also, these
same measures are indirect assessments of myelination
status (those note [31–34]) and not necessarily informa-
tive about synaptic efficacy or influence.

Measures of effective connectivity also have limita-
tions. Precedence-based measures are typically estimated
between all pairs of brain regions and not restricted to
those for which a structural connection exists. This is a
limitation shared by causal models, as well. In the case of
causal models, the space of possible network parameters

is huge, even for very small networks. This makes fitting
causal models computationally costly [35]. Although re-
cent approaches have helped reduce this burden, making
it possible to fit cortex-wide networks, scaling beyond
approximately 102 nodes is uncommon. Even for these
small networks, the computational cost remains demand-
ing enough that investigating individual differences–i.e.
fitting subject-specific models–is prohibitive [36, 37].

Here, we present a multi-modal, explanatory model for
estimating the weights of structural connections. In the
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spirit of diffusion-/tractography-based models, ours pre-
serves the brain’s sparse white-matter architecture. How-
ever, rather than assign structural weights based on dif-
fusion/imaging parameters, we assign weights based on
the parameters of multi-linear regression models. These
models are fit independently for each region, i, and pre-
dict that region’s future activity based on the weighted
histories of its connected neighbors. This allows us to
fit asymmetric and signed edge weights for networks of
hundreds of nodes in a matter of seconds.

Our manuscript aims to explore this model and its
network properties, positioning it as an intermediate
method, situated between tractography-based weight-
ing schemes and computationally expensive inferential
techniques. To this end, we find that the model pre-
dicts fMRI BOLD activity at a rate greater than chance
even when using a relatively small amount of data (ap-
proximately 1% of samples). We show that the in-
ferred edge weights exhibit subject specificity and are
aligned, broadly, with known functional systems, de-
spite the fact that edge weights exhibit imperfect align-
ments with interregional correlations (see Fig. S1). Fur-
ther, we show that this network exhibits bilaterally sym-
metric, hemisphere-spanning communities and a short-
est path structure that involves most edges (in contrast
with streamline-weighted networks that use only 15%
edges in its shortest paths backbone). Taking advan-
tage of the directed nature of links, we find evidence of
robust asymmetries in connection weights and regions’
connectivity profiles (incoming versus outgoing connec-
tions). Finally, in two applications we show that the
inferred edge weights systematically reconfigure during
movie-watching and across the human lifespan. Collec-
tively, these observations suggest that this model is a
practical alternative to existing edge-weighting schemes,
and effectively endows anatomical connections with func-
tional properties, thereby opening up avenues for future
exploration and applications.

FITTING AND BENCHMARKING
ASYMMETRIC, WEIGHTED, AND SIGNED

STRUCTURAL CONNECTIVITY

Brain regions are linked to one another via white-
matter fiber tracts. The topology and edge weights of this
network constrains interareal communication and shape
patterns of spontaneous activity. Most studies set the
weights of structural connections equal to microstruc-
tural properties estimated from diffusion weighted images
and tractography, e.g. fractional anisotropy or streamline
derivatives, or infer them using computationally demand-
ing generative models. However, the ground truth con-
nection weights are unknown, motivating the exploration
and benchmarking of alternative weighting schemes.

Here, we use a model-based framework for assigning
weights to existing structural connections. Briefly, we
follow existing modeling work [38–41] and assume that at

time t the state of region i (level of fMRI BOLD activity)
is a function of its neighbors’ states at time t− 1 plus an
offset (bias). That is:

yi(t) =
∑

j∈Γi,j ̸=i

Wjiyj(t− 1) + ci. (1)

Where Γi is region i’s connected neighbors. We use linear
regression and ordinary least squares to estimate the pa-
rameters Wji and ci separately for each node i (Fig. 1a +
b). Thus, the resulting matrix W ∈ Rn×n, is sparse and
preserves exactly the binary structure of white-matter
connectivity (Fig. 1c). However, the weights, which are
obtained from regression, can take on either positive or
negative valence, whereas weights are typically positive
only for connectomes inferred from dMRI and tractogra-
phy. We note also that this network is directed–i.e. in
general, Wij ̸= Wji.
In this section, we report the results of the fitted model.

That is, we describe basic features of the asymmetric,
weighted, and signed connectome and contrast them with
a connectome in which weights are defined using a com-
monly used metric–i.e. streamline density (streamline
count divided by geometric mean of regional volumes)
[3, 42].
We fit the model at the group level using pooled

time series data from 95 participants from the Human
Connectome Project [43] (HCP100UR, five subjects ex-
cluded due to incomplete data or quality issues) and a
group-averaged binary SC matrix [44]. We found that,
at the group level, the model performed well (correla-
tion between observed and predicted activity from in-
dividual scans, r = 0.76 ± 0.03; mean squared error,
MSE = 0.43 ± 0.05; Fig. 1d + e). We also found that
the model weights stabilize with relatively few samples.
Specifically, we randomly sub-sampled an equal number
of frames from each participant and scan and used those
frames to estimate the connection (regression) weights.
We repeated this process 100 times while varying the
number of samples from 2, 4, 8, 16, 32, 64, 128, 256, 512,
to 1099. We found that even with approximately 6% of
the total number of samples (64 samples per scan), the
estimated weights achieved a correlation with the full-
sample weights of r = 0.993; Fig. 1f).
Brain activity dynamics and its correlation structure

are deeply individualized [45, 46]. A good model of brain
activity, therefore, must also exhibit subject specificity.
To assess whether model performance was, indeed, sub-
ject specific, we estimated weights using three of every
subject’s four resting state scans, and used those weights
to predict the activity of the held-out scan (as well as
the activity of all other scans and subjects; Fig. 1g). We
found that the error (mean squared error) was lower for
the held-out scans than for the scans of any other sub-
jects (two-sample t-test; p < 10−15; Fig. 1h). Note that
here, and in all subsequent single-subject/-scan analyses,
we fit edge weights using the same group-representative
connectivity mask. This ensures that any differences be-
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tween individuals are not driven by differences in the un-
derlying anatomical connectivity, but driven jointly by
differences in edge weights and resting brain dynamics.

Next, we assessed whether the observed results, namely
the model error, was consistent with chance. Accord-
ingly, we compared the observed model fitness against
null distributions obtained under five distinct null models
[47]: 1) a minimally wired null model in which only the
shortest (least-costly) connections are preserved (while
preserving an equal number of connections), 2) a re-
ordered null model in which nodes’ orders were randomly
permuted, 3) a “spin” model in which nodes’ orders were
randomly permuted but geometry preserved, 4) a topolog-
ical null model in which nodes’ degrees (number of con-
nections and predictors) were preserved, but edge place-
ment randomized, and 5) a temporal null model in which
regional fMRI BOLD time series were circularly shifted
independently for each region and scan (see Materials
and Methods for details related to these null models).
In general, we found that the error (MSE) was signifi-
cantly lower using the intact data than in any of the null
models (two-sample t-test, p < 10−15; Fig. 1i).

Finally, we examined some of the basic properties of
the weights fit at the group level. We found that both
positive and negative connection weights decay mono-
tonically with distance (Fig. 1j). However, for any given
distance bin there was a range of edge weight values.
Examining the most extreme (z-scored weight of z > 3
relative to the other edges in the same bin), we find they
are dominated by intra-hemispheric connections (≈ 71).
Although fewer in number, the remaining 29% of connec-
tions still exceeds the baseline rate of inter-hemispheric
connections (19.5%). Next, we tested how positive and
negative connections were distributed with respect to
canonical brain systems [48]. We found that, within
systems, connections tended to be strong and positive
whereas negatively-weighted connections showed no clear
preference for falling either within or between systems.
Indeed, when we examine the weights of individual con-
nections, rather than system averages, we still find that
within-system weights tend to be stronger and more pos-
itive compared to between-system weights (two-sample
t-test, p < 10−15; Fig. 1l) and that, in general, the mean
positive connection is greater than the absolute mean
negative (two-sample t-test, p < 10−15; Fig. 1m).

In the supplementary material we perform several ad-
ditional tests. These include assessing model perfor-
mance at different lags (Fig. S2), assessing the relative
contributions of long versus short connections (Fig. S3),
comparing the estimated edge weights with other mea-
sures of functional and structural connectivity (Fig. S1),
assessing regional fitness (Fig. S4), assessing the impact
of global signal regression on results (Fig. S5), confirm-
ing that the distance dependence of edge weights is pre-
served when we use curvilinear fiber length rather than
Euclidean distance (Fig. S6), fitting edge weights with
regularization (Fig. S7), and comparing the relative per-
formance of the asymmetric, weighted, and signed ma-

trix versus the fiber density matrix in as structural con-
straints for dynamic, neural mass models (Fig. S8).
In summary, we show that this simple regression frame-

work reliably estimates structural connection weights and
requires relatively few observations to do so. The in-
ferred weights are subject-specific and result in model
fitness that exceeds chance. The strongest weights are
positive and concentrated within putative brain systems.
Collectively, these results set the stage for further explo-
rations of the asymmetric, weighted, and signed network
and the implications of the newly defined edge weights
for network analyses.

MODULAR ORGANIZATION OF THE
ASYMMETRIC, WEIGHTED, AND SIGNED

CONNECTOME

One of the hallmarks of biological neural net-
works is that they are organized into densely con-
nected sub-networks called “modules” or “communi-
ties” [10]. Although there is a shared correspondence
between anatomical modules–defined from streamline-
derived structural connectivity–and functional modules,
the alignment has, historically, been inexact [49, 50].
Here, we examine the modular structure of anatom-
ical connectivity with the newly-derived asymmetric,
weighted, and signed connectome and compare its orga-
nization with the modular structure derived from a con-
nectome in which edges are weighted based on streamline
density.
To detect communities we optimized a signed variant

of the modularity quality function [51] using the Louvain
algorithm [52]. The output of the algorithm is sensitive to
initial conditions and was optimized 1000 times for each
of the two weighting schemes. In both cases we fixed the
structural resolution parameter to γ = 1. We aggregated
and compared these results by computing coassignment
matrices for each connectome, tallying the frequency with
which node pairs were assigned to the same module across
all 1000 repetitions (Fig. 2a,b). For the sake of visu-
alization, we also calculated consensus communities for
each matrix (Fig. 2c,d). We then calculated the differ-
ence between the two co-assignment matrices (Fig. 2e).
We found that communities in the asymmetric, weighted,
and signed matrix exhibited reduced laterality [53], tend-
ing to span the cerebral hemispheres whereas communi-
ties detected using the fiber density matrix tended to
be more lateralized (t-test p < 10−15; Fig. 2g). We note
that these observations were anticipated, given that fMRI
BOLD activity was involved in the estimation of struc-
tural connection weights.
Next, we asked whether the community structure of

the asymmetric, weighted, and signed matrix was better
aligned with functional connectivity (correlation struc-
ture of resting fMRI BOLD data) than the fiber density
matrix and its system-level architecture. To address this
question, we imposed canonical brain systems (coarse-
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FIG. 2. Comparing modular structure of structural networks. Modules are cohesive subnetworks – nodes that make
more connections to other members of the same module than to other modules. Here, we compare the modular structure of
network with original weights and the same network with weighted, directed, and signed edges. Here, we examine modules
estimated with a fixed resolution parameter (γ = 1) but explore the multiscale modular structure in the supplement. Co-
assignment probability matrices for the inferred edge weight (a) and the fiber density matrices (b). (c and d) Consensus
communities for both versions of weights. (e) Element-wise difference in module co-assignment. (f ) System co-assignment
matrix for reference. Black entries refer to pairs of brain regions that are assigned to the same system in both coarse and fine-
scale system divisions. Gray entries are co-assigned to the same system for the coarse division, only. Comparison of laterality
(g) and modularity (h) of detected modules. (i) Alignment of modules with respect to coarse and fine-scale system partitions.
Each point in panels g-i represents a partition from one of 1000 runs of the Louvain algorithm for optimizing modularity.

and fine-scale intrinsic connectivity networks defined in
[48]; Fig. 2f) on each matrix and calculated the induced
modularity (Q∗). We found that the asymmetric matrix
exhibited greater modularity than the fiber density ma-
trix (t-test, p < 10−15; Fig. 2h). We also calculated the
adjusted Rand index (ARI) between detected partitions
and fine- and coarse-scale systems. ARI is a measure of
partition similarity; larger values indicate that two par-
titions are more similar. For both the fine and coarse
system partitions, we found that the ARI was greater
when compared to partitions detected using the asym-
metric and signed matrices than partitions detected using
the fiber density matrices (two-sample t-tests; maximum
p < 10−15; Fig. 2i).

For completeness, we also examined the multi-scale
and hierarchical organization of communities, allowing
for the resolution γ to vary [54] (Fig. S9). These results
suggest that the asymmetric, signed, and weighted net-
work exhibits community structure not limited to a single
topological scale [55].

Notably, the results reported here were obtained us-
ing modularity maximization and a well-established null
model [51]. We also explored an alternative “geographic”
null model that has been used in network analysis of
physical systems, e.g. granular materials [56–59] (details
of this model are described in Materials and Meth-
ods; Fig. S10). Briefly, this null model preserves the
binary network architecture exactly – the same pres-
ence/absence of links as in the observed network – but as-

signs a uniform weight across those edges. In general, we
find that this null model generates results consistent with
those described above, but also yields consensus commu-
nities that exhibit a striking correspondence to canonical
brain systems (Fig. S11).

Additionally, we compared the detected modules to a
recently aggregated set of “brain maps” [60] – annota-
tions of brain regions that describe properties ranging
from density of receptors to the relative expansion of
brain areas across development and evolution. In gen-
eral, we found evidence that the modules detected us-
ing the asymmetric, weighted, and signed network were
more strongly enriched for these annotations compared to
modules detected in the fiber density matrix (Fig. S12).
This observation was true both at the level of the entire
partition, but also at the level of individual modules.

Finally, we also repeated several of the analyses from
this and the previous section using mouse anatomical
connectivity data made available by the Allen Brain In-
stitute [13] that was reprocessed and parcellated into
N = 182 regions of interest (see Materials and Meth-
ods for processing details). Unlike dMRI and tractog-
raphy, these connectivity data were acquired invasively
using tract-tracing and are considered the “gold stan-
dard” for mapping of anatomical connectivity. The re-
sulting networks have some shared features in common
with networks reconstructed from dMRI [11], but are also
directed and hyper-dense (of the possible 32942 connec-
tions, 32936 exist; 99.98% density). In parallel, we also

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.519033doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.519033
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

analyzed fMRI data acquired from a cohort of N = 18
anaesthetized mice, with data parcellated into the same
N = 182 regions of interest (see Materials and Meth-
ods for details regarding acquisition, processing, and par-
cellation). In general, the results obtained using the
mouse data were consistent with those reported using
the human imaging data (see Fig. S13), including greater
similarity between the community structure of the newly
defined connectome weights and anatomically defined re-
gions of mouse cortex.

GRAPH THEORETIC PROPERTIES OF THE
ASYMMETRIC, WEIGHTED, AND SIGNED

CONNECTOME

In the previous section, we explored the modular ar-
chitecture of the newly-derived asymmetric, weighted,
and signed matrix, comparing it with analogous mea-
sures made on the fiber density matrix. Modular struc-
ture, however, is but one example of a network metric –
it assesses a network’s organization at the “meso-scale”.
However, other measures can be meaningfully applied to
probe global (whole-network) and local (regional) prop-
erties. In this section, we investigate a subset of those
measures.

First, we compared shortest-paths structure. Shortest
paths in weighted networks refer to the least-costly route
from a source node, s, to a target node, t. Typically,
the length or cost of a shortest path is interpreted as a
measure of communication capacity [61]; networks where
the average shortest path is low (or the average reciprocal
shortest path is large) are considered better-suited for
communication.

To detect shortest paths we first mapped weights to
costs. In the fiber density matrix, this mapping was ac-
complished by taking the reciprocal of an edge’s weight
(cost = 1

weight ) before applying a shortest paths algo-

rithm. In the directed and signed network, however, we
performed an additional step to rectify edge weights as
the shortest paths algorithm is not compliant with neg-
ative edges. Briefly, we subtracted min(βij) and added
ε to every edge, where min(βij) = −0.43 is the small-
est (most negative) weight among all edges weights and
ε = 0.0027 was the weight of the weakest edge in the fiber
density network. This transformation ensures that all ex-
isting white-matter edges have weights that are nonzero
and positive. Following this transformation, we used the
reciprocal transform to map weights to cost.

The shortest paths matrices for both networks are
shown in Fig. 3a,b. Strikingly, the number of steps in
the least-costly paths was much greater for the fiber
density matrix than for the asymmetric, weighted, and
signed network (Fig. 3e,f). This likely is a consequence
of the heavy-tailed fiber density distribution; because a
small number of connections exhibit orders of magni-
tude stronger weights than the others, the cost of includ-
ing those edges in shortest path is exceptionally small.

From the perspective of the shortest paths algorithm, it
is optimal to direct paths through these ultra low-cost
edges, possibly even at the expense of direct connections
[11, 62]. Further evidence for this claim comes from the
shortest paths usage; in the fiber density matrix, the frac-
tion of edges that are used in at least one shortest path
is only 14.2% (Fig. 3c,d), whereas in the asymmetric,
weighted, and signed networks, 97.5% of all edges get
used at least once (Fig. 3).
The signed nature of the network means that we can

also examine and compare properties of positive and neg-
ative edges to one another. That is, we can construct
two versions of the same network: one in which nodes
are linked via positive connections only and another with
negative connections. Interestingly, we find that the posi-
tive network exhibits greater local clustering (paired sam-
ple t-test, p < 10−15; Fig. 3i). That is, positive connec-
tions tend to form dense triangles and cliques around
nodes at a greater rate than negative connections. Ad-
ditionally, we find that nodes’ positive weighted degrees
(total weight of all incident positive connections) exceeds
that of their negative strength (Fig. 3j).
In summary, we calculate a series of network statis-

tics and show that their values differ, sometimes dra-
matically, depending on whether we weight edges us-
ing our regression-based framework or using more tra-
ditional diffusion/imaging parameters. In some specific
cases, we find that statistics calculated on the asymmet-
ric, weighted, and signed network are better aligned with
our intuition about network function than statistics cal-
culated based on fiber density. Collectively, these results
underscore the impact of user decisions on network prop-
erties and our interpretation of network organization and
function.

ASYMMETRIES IN CONNECTION WEIGHTS

Due to technological limitations, structural connection
weights estimated in vivo using diffusion imaging and
tractography methods lack directionality–i.e. Wij = Wji.
Here, however, the regression framework we use allows
for asymmetries, such that the weights of incoming and
outgoing connections can deviate from one another. In
this section, we describe a select set of asymmetries in
greater detail.
We measured asymmetry using a simple statistical

test. Specifically, we identified pairs of regions whose
weights were consistently asymmetric across 95 Human
Connectome Project participants. This involved fitting
weights independently for each subject and edge, and
for every pair of nodes i and j, identifying connections
where the distribution of asymmetry values, Wij −Wji,
excluded zero (false discovery rate fixed at q = 0.05 re-
sulting in padj = 0.015; Fig. 4a,b) [63]. We found that,
of 29024 possible connections, 8850 (approximately 30%)
exhibited significant asymmetries.
Next, we asked whether edges whose weights were sig-
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FIG. 3. Network statistics for signed, weighted, and asymmetric matrix. (a) Path length (number of steps) between
all pairs of nodes derived from the fiber density matrix (Cij = 1

Wij
). (b) Path length for new matrix (Cij = 1

Wij+1+ε
). (c)

Edge usage matrix for fiber density network. (d) Edge usage matrix for new matrix. Panels e, f, and g compare percentage of
edges used in shortest paths, characteristic path length, and network efficiency between matrices. Panels h and i compare local
clustering and strength (weighted degree) between the two matrices. We grouped edges into percentiles (deciles; lowest deciles
include negative weights) based on their weights and calculated how frequently edges in each decile are involved in shortest
paths. Panel j depicts the breakdown of edge usage by decile–e.g. top decile accounts for 33% of edges used on shortest paths.

FIG. 4. Asymmetries of influence between brain regions as assessed by inferred structural weights. (a) Significant
asymmetries, and (b) absolute value of significant asymmetries were reorganized into system by system matrices (c) and (d)
respectively. Note the increased absolute asymmetries within functionally defined systems in panel (d). As illustrated in the
schematic in panel (e) next we measured in/out similarity as the correlation between incoming and outgoing weights per region.
(f ) Here we show an example of in/out similarity plotted to the brains surface. (g) Finally, we plot the per-system distribution
of in/out similarity values across subjects. Boxplots on the right divide these systems into unimodal and heteromodal regions
to show that there is more in/out similarity in unimodal systems.

nificantly asymmetric were preferentially concentrated
within or between specific brain systems (Fig. 4c,d). To
assess whether this was the case, we created a “mask” of
edges that exhibited statistically significant asymmetries
and aggregated (summed) these connections within and
between every pair of systems. We performed this pro-
cedure first using the signed difference in edge weights

and again using the absolute difference. These summed
values were compared against a null distribution gen-
erated via a geometry-preserving null model [64]. We
found that a number of system pairs exhibited greater
than expected asymmetries, including connections that
fall within control, default, and visual networks (ContC,
DMNa, DMNc, central visual), as well as connections

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.519033doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.519033
http://creativecommons.org/licenses/by-nc-nd/4.0/


8

that fall between systems (ContC-DMNa, DMNa-DMNb,
temporo-parietal and both ContC and DMNa, central vi-
sual and SMNb, and peripheral visual with DANb).

As a second measure of asymmetry, we compared the
weights of nodes’ incoming and outgoing connection pro-
files – the extent to which its activity is predicted by
versus predicts the activity of its neighbors. To do this,
we calculated the linear product-moment correlation be-
tween vectors associated with row and column i in the
asymmetric, weighted, and signed connectivity matrix
(Fig. 4e). This procedure resulted in a single similar-
ity score (correlation) for each brain region. In general,
we found that in-out similarity was region-specific and
varied between putative brain systems (Fig. 4f), with re-
gions in sensorimotor systems exhibiting greater in/out
similarity (Fig. 4g). Indeed, when we grouped systems
based on unimodal (visual + somatomotor) and hetero-
modal (all other systems) labels, we found that unimodal
systems exhibited greater similarity (two-sample t-test,
p < 10−15; Fig. 4h).
As a final test, we also identified node pairs, i and j,

where sign(Wij) ̸= sign(Wji) (Fig. S14). We performed
this analysis at the level of individual subjects and cal-
culated the proportion of edges with an asymmetry of
sign that fall either within or between brain systems
(Fig. S14a). We repeated this analysis for every indi-
vidual and found that between-system edges were more
likely to exhibit an asymmetry of sign than within-system
edges (two-sample t-test, p < 10−15; Fig. S14b).

Collectively, these results suggest that local asymme-
tries are well circumscribed by canonically defined brain
systems. Additionally, our results suggest that asymme-
try in regional incoming and outgoing connection weights
run along a unimodal-heteromodal axis.

WEIGHTS ARE MODULATED BY STATE

In the previous sections we validated and characterized
structural networks whose edge weights were fit using a
regression-based procedure. In those sections, all weights
were fit to maximize the correspondence of predicted and
observed activity during the resting-state. Here, we as-
sess whether weights estimated at rest are dissociable
from those estimated during movie-watching.

To address this question, we used resting-state and
movie-watching data from the Human Connectome
Project’s 7T dataset, focusing on a subset of 117 partic-
ipants whose data passed quality checks and for whom
all four scans were available. Using the same SC bi-
nary mask, we fit edge weights at the group level, pool-
ing data across all subjects and scans to generate two
asymmetric, weighted, and signed matrices: one based
on resting-state and the other based on movie-watching
data (Fig. 5a,b). In parallel, we also fit models at the
level of individual subjects, pooling scans from the same
subject to generate estimates of resting-state and movie-
watching edges weights. In both cases, we found com-

parable performance (mean squared error) between both
rest and movie data, with movies exhibiting slightly bet-
ter performance than resting state (paired sample t-test;
subject-level, p < 10−15; group-level p = 1.2 × 10−12;
Fig. 5f-h).
First, we calculated the difference between edge

weights for each subject and averaged the differences
across subjects (Fig. 5c,d). At each edge, we performed
a paired-sample t-test on the differenced edge weight
distributions. We found that, out of m = 29204 total
edges, 2463 exhibited significant state-dependent differ-
ences (multiple comparisons controlled for by fixing false
discovery rate at q = 0.01 and adjusting the critical p-
value, padj = 8.5×10−4). Although these edges were dis-
tributed across the entire brain, they were significantly
concentrated within a small subset of systems (Fig. 5e;
dashed black borders around system blocks). Specifically,
we found significant system-level effects within central
and peripheral visual networks, from edges in the cen-
tral visual network to the peripheral visual network (but
not vice versa, and from the dorsal attention network
(DANa) to the central visual network (spin test, false
discovery rate fixed at q = 0.01, padj = 1.6× 10−4).
Projected into anatomical space, we find that, as ex-

pected, the connections that differ from rest to movie-
watching tend to involve regions in visual networks
(Fig. 5i). Interestingly, there are approximately as many
connections whose weights increase from rest to movies
as there are those that decrease, an effect that holds both
within the visual networks (241 increases versus 218 de-
creases) but also across the entire brain (1292 increases
versus 1171 decreases).

DIFFERENCES IN THE WEIGHTED, SIGNED,
AND DIRECTED CONNECTOME ACROSS THE

HUMAN LIFESPAN

To this point, we have estimated the weights of asym-
metric, weighted, and signed structural connections, de-
scribed properties of the resulting network, exposed
asymmetries in connections’ weights, and demonstrated
that the weights are systematically modulated by task
(rest versus movie). In this section, we investigate indi-
vidual differences in connections’ weights and associate
them with differences across the human lifespan (7-85
years).
To do so, we used data from the Nathan Kline Insti-

tute’s enhanced Rockland Sample [65], which included
both diffusion weighted and functional MRI data for
N = 542 participants. In-scanner head movement is
known to vary systematically with age. To address
motion-related concerns, we adopted the same conser-
vative procedure as reported in Esfahlani et al. [66] for
motion censoring. Specifically, for each of the remain-
ing subjects, we dropped frames in which motion ex-
ceeded a pre-defined threshold (FD > 0.15 mm). We
also dropped time points that were within two frames
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FIG. 5. Comparing matrices fit to resting-state and movie-watching data. We analyzed 7T data from 117 participants
in the Human Connectome Project. Using the same binary mask as in the previous sections, we fit edge weights for both
conditions at the group level (pooling time series data across all subjects/scans) and individual level (pooling data from the
same subjects). Weights for (a) group-level movie-watching state matrix and (b) group-level resting-state matrix. Panels c and
d show the difference in edge weights (movie minus rest); rows and columns in panel c are ordered identically to panels a and
b, whereas in panel d rows and columns are reordered by brain systems. (e) The average weight across existing connections
between every pair of systems. Here, weights were squared prior to averaging. Panels f and g depict two-dimensional histograms
of observed and predicted activity. (h) Model fitness when fit to pooled, group-level data (left) and individual data (right).
(i) Edges whose difference between movie and rest are significantly greater or less than zero plotted in anatomical space. (j )
Differences in functional connectivity (FC) between movie and rest for both the observed data (left) and the predicted (right).

of any supra-threshold frame or failed for form a con-
tiguous sequence of five frames or more. Following this
procedure, we excluded any participant for whom the
fraction of retained frames was fewer than 50% of their
total number of frames. Collectively, these procedures
left N = 474 participants with high-quality (low-motion)
data for further analysis.

For each subject, we used the regression-based frame-
work to fit weights to every structural connection, gener-
ating subject-specific asymmetric, weighted, and signed
matrices. Note that, here, we restricted every subject
to have the same binary set of consensus edges estimated
from subjects aged 18-35 years; only edges’ weights varied
across individuals. Prior to calculating age-related differ-
ences, we regressed out of each edge the following vari-
ables: sex (binary variable), gray matter volume, mean
framewise displacement of all “low-motion” frames, and
number of frames dropped due to motion contamination.

Finally, using the residuals from this procedure, we calcu-
lated their linear product-moment correlation with sub-
jects’ biological ages resulting in a (sparse) matrix of
age-related correlations (Fig. 6a). For the sake of visual-
ization, we show subsets of edges that pass uncorrected
statistical tests (Fig. 6g-i).

Previous studies have found that age-related differ-
ences in functional connectivity respect putative system
boundaries [67–69]. Accordingly, we performed statis-

tical tests at the level of systems [48]. Specifically, we
calculated the mean correlation of all edges that fell be-
tween/within every pair of systems. We then compared
these observed values with null distributions generated
using “spin tests” (1000 repetitions). System pairs for
whom the observed correlation exceeded that of the null
were considered statistically significant (false discovery
rate fixed at q = 0.05; padj = 0.0088). In line with
previous work, we found that age-related decreases in
connection weight tended to concentrate within brain
systems, whereas between-system weights were, gener-
ally, centered around a value of zero (two-sample t-test,
p = 7.65 × 10−13; Fig. 6b-f). More specifically, at the
coarse level, we found that connections within the so-
matomotor network significantly decreased their weight
with age while connections from the default mode to the
control network increased (Fig. 6b). The finer scale al-
lowed us to better localize those effects while also dis-
cover new age-related differences. In particular, we found
significant increases in connection weight from default
mode B to control B, as well as an increase in connec-
tion weights from dorsal attention network A to the cen-
tral visual module – an effect that had been previously
obscured at the coarse scale. We also detected signif-
icant decreases in connection weight with age, concen-
trated within somatomotor network B, as well as previ-
ously undetected decreases within dorsal attention net-
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FIG. 6. Age-related differences in inferred structural weights are more common within functional brain systems.
(a) Edge level correlations with age. (b and c) Matrices of significant results for the coarse- and fine-scale system spin tests,
respectively.(d and e) Boxplots comparing the z-scores from the spin-test null model with the real values. One boxplot displays
within system z-score values, and the other displays between system z-score values. (f ) Within-system z-scores from the fine-
scale system spin test mapped onto cortical parcels. Panels g-i show individual edges that exhibit age-related correlations
(p < 0.05; uncorrected). Blue and red edges correspond to edges whose weights decrease or increase with age, respectively.
Panels g-i are presented for the sake of visualization only.

work A, salience/ventral attention network A, and from
the temporo-parietal network to default mode C.

Altogether, these findings recapitulate well-known age
effects that had been previously reported using functional
connectivity data. However, our approach grounds these
effects in anatomical connectivity, forming a multi-modal
bridge between studies of anatomical and functional age-
related differences and opening up avenues for future ap-
plied studies.

DISCUSSION

The “correct” weighting of structural connections is
not known. Most strategies for assigning edge weights do
so based on microstructural or tractographic parameters.
Though commonly used, the values of these parameters
are, in general, misaligned with the interpretation that
weights reflect the efficacy of inter-regional communica-
tion. Alternatively, a number of groups have proposed
using measures of “effective” or “directed” connectiv-
ity, in which edge weights correspond to the magnitude
of directed influence in a (biophysical) generative model
of brain activity. However, due to computational com-
plexity this approach is limited to applications involv-
ing small networks. Additionally, although fitting effec-
tive connections can be restricted to only those edges for
which white-matter tracts were traced, most models are
generally unconstrained and can place effective connec-
tions between disconnected brain regions. In short, there
exists a plurality of methods for determining the weights
of structural connections and the dominant methods each
have specific strengths and weaknesses.

Here, we explored a simple regression-based model for
endowing reconstructed fiber tracts with directionality
and a signed weight. Benchmarking this method on Hu-
man Connectome Project data, we found that the model
fit observed data well, outperforming a suite of null mod-
els. The estimated weights were highly reliable even when
fit using relatively few training samples and exhibited
marked subject specificity. We next analyzed the re-
sulting network using tools from network neuroscience.
These analyses revealed communities that spanned cere-
bral hemispheres and mapped clearly onto known func-
tional systems. Almost every edge in this network was
involved in at least one shortest path. We also found
evidence of asymmetric weights, network reconfiguration
during naturalistic movie watching, and age-related dif-
ferences. We note that unlike biophysical and dynamic
causal models, our weighting scheme is not generative–
i.e. it cannot be used to generate new synthetic data.
It is, however, explanatory and represents a means of
weighting fiber tracts that is distinct from those most fre-
quently used in network neuroscience. Collectively, the
proposed framework presents opportunities for multiple
follow-up studies and applications in other neuroscience
disciplines.

A new weighting scheme yields unique insights into
brain network function

Over the past two decades, network neuroscience has
led to a number of discoveries about the organization
of brain networks. These include small-worlds [8], hubs
[3] and rich clubs [9], modules and communities [10], and
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cost-efficient wiring [70]. These “canonical” findings have
been observed not only in human brain networks recon-
structed at the macroscale, but have been reported across
phylogeny and at all spatial scales [71].

Despite this preponderance of converging evidence,
the specifics of these findings often depend critically on
whether or not to weight edges and the precise measure
used. Consider the prototypical “small world” model of
the brain, where long-distance edges are thought to rep-
resent shortcuts that allow signals to propagate long dis-
tances in relatively few hops. Although both weighted
and binary networks exhibit small-world properties–
relatively short path length and strong local clustering–
when edges are weighted based on streamline density, the
strong distance-dependence of streamlines ensures that
virtually no long-distance connections are included in the
network’s shortest path structure [11].

The example cited above represents just one instance
where a processing decision (whether and how to weight
structural connections) leads to different interpretations
of brain network function, vis a vis role of long-distance
connections in interareal communication. Interestingly,
we make a similar observation here; when edges are
weighted with regression coefficients and their signs rec-
tified, we recover a shortest path structure in which most
edges contribute to at least one shortest path and mod-
ules that are now better aligned with functional brain
systems[72]. Our work even presents challenges for how
we define connectomes [73]. When we refer to the con-
nectome, we often imagine an enumerable and finite set
of neural elements and connections [1, 74]. Here, how-
ever, edge weights are context dependent, impermanent,
and vary with task/cognitive state. Essentially, the struc-
tural edges inherit features usually reserved for functional
connections, placing our approach slightly at odds with
the perspective that structural connections are fixed over
short timescales (duration of typical scan session).

More importantly, the secrets of the connectome are
far from unlocked. Existing data and methods have not
unambiguously mapped structure to function, for exam-
ple whether graph-theoretic measures can unveil func-
tional properties of a brain (and which properties, specifi-
cally) is not clearly elucidated, and, although many stud-
ies have identified statistical associations between net-
work properties and clinical, cognitive, behavioral, and
developmental markers, the mechanisms that underlie
those associations are largely unknown. Collectively,
this motivates further neuroscientific exploration, both
of new data/connectivity modalities [75] and experimen-
tal paradigms, as well as methodological frameworks.

A network bridge between anatomical and
functional connectivity

The edge-weighting scheme that we explore here can
be used to help understand one of the central questions
of network neuroscience: how does the brain’s anatomi-

cal connectivity constrain its function? Past studies have
established a link between structural and functional con-
nectivity [49]. Empirical findings have shown that insults
to structural connections cause acute loss or reorganiza-
tion of functional connectivity [76]. Even in intact brains,
structural connection weights are correlated with their
functional analogs and pairs of brain regions that are
connected directly or via few processing steps have pro-
portionally stronger FC [3]. In parallel, in silico dynam-
ical systems models have used anatomical connectivity
to constrain simulated brain activity [77, 78], generat-
ing synthetic fMRI data whose correlation structure can
be compared with empirical FC or analytic estimates of
interregional communication capacity [61, 79].
Here, rather than compare SC to FC, we incorporate

functional information directly into the estimates of edge
weights [80]. This process generates a singular network
object whose fitness (a metric that, itself, can be inter-
preted as a measure of structure-function coupling) can
be estimated globally as the total error between observed
and predicted activity [81] or parsed into local (regional)
error terms, analogous to recent approaches for linking
anatomical and functional connectivity weights [66, 82].
We note however, that this approach is also distinct from
most studies that report structure-function correspon-
dence, in that we seek a set of parameters that maxi-
mizes that correspondence, whereas most studies report
a correlation between functional data (FC or activity)
and structural networks and their derivatives [83].
Here, we explore this alternative approach for tracking

changes in structure-function correspondence in two con-
texts: comparing edge weights between rest and movie-
watching conditions and identifying differences in edge
weight across the human lifespan.
We find robust reconfiguration of edge weights during

movie-watching. This observation is not new–a seem-
ingly limitless number of studies have reported task- or
state-induced changes in connection weights [84–87]. In
these studies, however, it is the functional connections
whose weights change, making it difficult to assess which
structural connection facilitate those changes. Our ap-
proach addresses this issue directly; changes in regression
weights at each structural edge allow for the formulation
of targeted hypotheses about the roles of specific fiber
tracts in a given task.

Possible advantages of an asymmetric, weighted, and
signed connectome

Throughout the study, we compare properties of the
asymmetric, weighted, and signed network with a net-
work in which edge weights represent fiber densities – a
more traditional measure of structural connectivity. In
general (and unsurprisingly), the properties of these net-
works are often dissimilar. That is, how we choose to
weight a network’s edges can change its graph-theoretic
profile and impact how we might interpret its func-
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tion. Although we remain agnostic as to which weighting
scheme is “superior”, we note that the asymmetric net-
work both outperforms the fiber density network on a
number of applications, and has properties that are bet-
ter aligned with intuition.

For instance, we find that the modular structure of
the asymmetric network tends to be less lateralized–
i.e. modules are more likely to contain nodes from
both hemispheres–than the fiber density network. This
observation suggests that the reweighting of the net-
work helps circumvent one of the peculiarities (or limita-
tions) of community-detection methods applied to struc-
tural brain networks. Namely, because fiber densities
and weights derived from tract-tracing experiments tend
to be heavy-tailed and distance-dependent [11, 42] and
because long-distance interhemispheric tracts are noto-
riously challenging to reconstruct from diffusion imag-
ing data [88, 89], communities tend to be spatially
contiguous and exhibit poor correspondence with sys-
tems/communities derived from functional recordings
[49].

Additionally, we take advantage of recent advances
in neuroinformatics to compare communities with brain
maps–i.e. the regional or vertex-wide expression of ge-
netic, transcriptomic, evolutionary, and developmental
markers. We find that communities obtained from the
asymmetric network tend to be significantly enriched for
many of these markers to an extent above and beyond
the communities obtained from the fiber density ma-
trix. These observations suggest that the multi-modal
network generated by endowing structural connections
with functionally-relevant information tightens the link
between network organization and brain-based markers.

Interpreting signed edges in macroscale connectome

One of the unique features of the networks we construct
here is that, unlike connectomes whose weights are deter-
mined based on microstructural/diffusion/tractography
parameters, we obtain weights that are signed (can take
on positive or negative values). How do we interpret this
feature? What are possible underlying neurophysiogical
mechanisms that explain the emergence of signed edges
in large-scale networks?

At its core, the edge weights estimated here are statis-
tical constructs; a negative weight from node i to j indi-
cates that when the activity of i increases, the activity of
j tends to decrease proportionally at the next time point.
This statistical interpretation is in line with other frame-
works for estimating effective connections [90]. Although
it is tempting to ascribe “excitatory” and “inhibitory”
labels to positive and negative edge weights, this ter-
minology is typically reserved for cell-to-cell projections
and, more specifically, pyramidal cells and interneurons,
respectively. In general, the neurochemical (e.g. gluta-
mate/excitatory and GABA/inhibitory) contributions to
the diffusion MRI and fMRI BOLD signal are not easily

parsed.
However, we can speculate about possible underlying

mechanisms that support signed edges in large-scale net-
works. One possible explanation involves feed-forward
or feedback inhibition [91], whereby excitatory inter-
regional connections cause inhibition in their target re-
gion either by directly exciting local inhibitory interneu-
rons, or by exciting local interneurons indirectly through
connecting pyramidal cells. Indeed, recent studies have
suggested that the balance of glutamate/GABA underlies
the antagonistic (anti-correlated) activity of large-scale
brain systems [92].
Irrespective of the underlying cause, the signed

edges in the networks constructed here exhibit non-
random organization in terms of their distribution across
canonical brain systems and relationship to other net-
work/geometric measures–e.g. clustering coefficient and
fiber length. These features, of course, have implica-
tions for traditional network analyses and may require
new methodologies in some cases. For instance, interre-
gional communication models rely on shortest paths and
diffusion dynamics to estimate communication efficacy
[61]. However, these dynamics are not well-defined for
networks with signed edges. Here, we circumvent this
issue by offsetting edge weights, forcing negative connec-
tions to have small (but positive) values. However, there
are likely many alternative strategies that embrace the
signed and asymmetric nature of edges that could be ex-
plored in future studies [93].

Limitations

This study has a number of limitations. Most notably,
the primary results rely on the use of diffusion weighted
MRI and tractography for reconstructing white-matter
tracts. Although these methods are still used widely,
they have well-documented drawbacks and biases that
call into questions the verisimilitude of structural connec-
tivity networks [94, 95]. We partially mitigate these con-
cerns by replicating our findings using tract-tracing data
made available through the Allen Brain Institute [13].
Unlike tractography, in which anatomical connections are
inferred non-invasively, antero-/retrograde tract-tracing
is considered the gold standard mapping large-scale con-
nectivity [96]. We expect that advances in imaging, trac-
tography algorithms [97, 98], and better alignment of
multi-scale datasets will narrow the gap between tract-
tracing and tractography in future studies [99].
Another possible limitation of the current study is its

focus on neocortex only. Doing so necessarily ignores con-
tributions from subcortical and cerebellar regions when
modeling node-level time series. Adding additional re-
gions is not computationally prohibitive and in princi-
ple could be addressed easily. However, new connections
mean including additional explanatory terms in each re-
gional multi-linear model and will, in general, lead to
new estimates of edges’ weights. That is, the regression
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coefficients will vary with additional observations (new
data) or new nodes. Future studies should investigate
this explicitly.

Future directions

Our study presents a number of opportunities for fu-
ture studies. Among the most obvious and tantalizing
opportunities is the empirical validation of edge weights
estimated here. Datasets in which stimulation is paired
with brain-wide recordings make it feasible to estimate
directed influence between brain stimulus-target pairs of
regions [100, 101]. These estimates could be compared
directly to the connection weights inferred here. Relat-
edly, modeling studies have reported whole-brain effec-
tive connectivity [36] and asymmetries in communication
patterns [63]. Here, we focused on characterizing proper-
ties of the network generated using our regression-based
framework and contrasting it with a network of edges
weighted based on fiber density; careful comparisons of
this technique to extant, already-established methods
should be carried out in the future.

Our preliminary findings using movie-watching data
suggest that our weighting scheme may be suitable for
detecting state-specific changes in structural connection
weights. Future studies should explore the sensitivity
of this approach for other state-based comparisons. We
note that, unlike unthresholded functional connectivity,
which, when used in a brain-wide association or case-
control study results in N(N−1)/2 comparisons, our ap-
proach results in much fewer connections [102]. Statisti-
cal tests only need to be performed for existing structural
connections, possibly increasing the statistical power of
these types of studies [103]. Additionally, while the edges
we weight are structurally-defined and reflect best esti-
mates of white-matter topology, we endow them with
functionally relevant edge weights (derived from fMRI
BOLD data). The multi-modal nature of this edge-
weighting scheme may, in actuality, situate our approach
somewhere between functional and anatomical connectiv-
ity. That is, it achieves what resting-state FC sometimes
is assumed to be; namely, a functionally informative mea-
sure of anatomically connectivity [104].

Brain-wide association studies are familiar analyses in
network neuroscience. In these studies, inter-individual
variation in demographic, phenotypic, clinical, or behav-
ioral data is associated with neural elements – usually
node- or edge-level properties. In general, these types of
studies are underpowered to detect small effect [102, 103].
This issue is especially problematic when tests are per-
formed at the level of edges – for a network of N nodes,
this means performing N(N−1)/2 tests – which requires
stringent corrections to control for multiple comparisons.
Our approach may partly circumvent this issue (or at
least reduce its severity); because anatomical connectiv-
ity is, in general, sparse, even if a statistical test is carried
out at every edge, the total number of tests is far smaller

than the upper limit. With fewer tests, the correction for
multiple comparisons is less severe, potentially making it
possible to resolve smaller effects.

MATERIALS AND METHODS

In this section, we describe all four datasets that we an-
alyzed. Briefly, they include three human MRI datasets:
two from the Human Connectome Project and another
from the Nathan Kline Institute. In addition, we also an-
alyzed tract-tracing and functional MRI data from mice.

Datasets: Human Connectome Project 3T
resting-state and diffusion weighted MRI

The Human Connectome Project (HCP) 3T dataset
[43] consists of structural magnetic resonance imaging
(T1w), functional magnetic resonance imaging (fMRI),
and diffusion magnetic resonance imaging (dMRI) young
adult subjects, some of which are twins. Here we use
a subset of the available subjects. These subjects were
selected as they comprise the “100 Unrelated Subjects”
released by the Connectome Coordination Facility. After
excluding data based on completeness and quality control
(4 exclusions based on excessive framewise displacement
during scanning; 1 exclusion due to software failure), the
final subset included 95 subjects (56% female, mean age
= 29.29 ± 3.66, age range = 22-36). The study was ap-
proved by the Washington University Institutional Re-
view Board and informed consent was obtained from all
subjects.
A comprehensive description of the imaging parame-

ters and image prepocessing can be found in [105]. Im-
ages were collected on a 3T Siemens Connectome Skyra
with a 32-channel head coil. Subjects underwent two T1-
weighted structural scans, which were averaged for each
subject (TR = 2400 ms, TE = 2.14 ms, flip angle =
8◦, 0.7 mm isotropic voxel resolution). Subjects under-
went four resting state fMRI scans over a two-day span.
The fMRI data was acquired with a gradient-echo planar
imaging sequence (TR = 720 ms, TE = 33.1 ms, flip angle
= 52◦, 2 mm isotropic voxel resolution, multiband factor
= 8). Each resting state run duration was 14:33 min, with
eyes open and instructions to fixate on a cross. Subjects
underwent 14 task fMRI scans over a two-day span. The
fMRI data was collected with the same sequence parame-
ters as the resting state fMRI. The fMRI runs consisted of
working memory (5:01 min, 405 frames), gambling (3:12,
253), motor (3:34, 284), language (3:57, 316), social cog-
nition (3:27, 274), relational processing (2:56, 232), and
emotional processing (2:16, 176) tasks. Finally, subjects
underwent two diffusion MRI scans, which were acquired
with a spin-echo planar imaging sequence (TR = 5520
ms, TE = 89.5 ms, flip angle = 78◦, 1.25 mm isotropic
voxel resolution, b-vales = 1000, 2000, 3000 s/mm2, 90
diffusion weighed volumes for each shell, 18 b = 0 vol-
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umes). These two scans were taken with opposite phase
encoding directions and averaged.

Structural, functional, and diffusion images were mini-
mally preprocessed according to the description provided
in [105], as implemented and shared by the Connec-
tome Coordination Facility. Briefly, T1w images were
aligned to MNI space before undergoing FreeSurfer’s
(version 5.3) cortical reconstruction workflow, as part
of the HCP Pipeline’s PreFreeSurfer, FreeSurfer, and
PostFreeSurfer steps. Functional images were corrected
for gradient distortion, susceptibility distortion, and mo-
tion, and then aligned to the corresponding T1w with
one spline interpolation step. This volume was fur-
ther corrected for intensity bias and normalized to a
mean of 10000. This volume was then projected to the
2mm 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [106]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* Atlas MSMAll hp2000 clean.dtseries.nii. These
steps are performed as part of the HCP Pipeline’s fM-
RIVolume and fMRISurface steps. Each minimally pre-
processed fMRI was linearly detrended, band-pass fil-
tered (0.008-0.008 Hz), confound regressed and standard-
ized using Nilearn’s signal.clean function, which re-
moves confounds orthogonally to the temporal filters.
The confound regression strategy included six motion es-
timates, mean signal from a white matter, cerebrospinal
fluid, and whole brain mask, derivatives of these pre-
vious nine regressors, and squares of these 18 terms.
Spike regressors were not applied. Following these pre-
processing operations, the mean signal was taken at each
time frame for each node, as defined by the Schaefer
200 parcellation [48] in 32k fs LR space. Diffusion im-
ages were normalized to the mean b0 image, corrected
for EPI, eddy current, and gradient non-linearity dis-
tortions, and motion, and aligned to subject anatom-
ical space using a boundary-based registration as part
of the HCP pipeline’s Diffusion Preprocessing step. In
addition to HCP’s minimal preprocessing, diffusion im-
ages were corrected for intensity non-uniformity with
N4BiasFieldCorrection [107]. The Dipy toolbox (ver-
sion 1.1) [108] was used to fit a multi-shell multi-tissue
constrained spherical deconvolution [109] to the data
with a spherical harmonics order of 8, using tissue maps
estimated with FSL’s fast [110]. Tractography was per-
formed using Dipy’s Local Trackingmodule [108]. Mul-
tiple instances of probabilistic tractography were run per
subject [111], varying the step size and maximum turn-
ing angle of the algorithm. Tractography was run at
step sizes of 0.25 mm, 0.4 mm, 0.5 mm, 0.6 mm, and
0.75 mm with the maximum turning angle set to 20◦.
Additionally, tractography was run at maximum turning
angles of 10◦, 16◦, 24◦, and 30◦ with the step size set to
0.5 mm. For each instance of tractography, streamlines
were randomly seeded three times within each voxel of a
white matter mask, retained if longer than 10 mm and
with valid endpoints, following Dipy’s implementation of

anatomically constrained tractography [112], and errant
streamlines were filtered based on the cluster confidence
index [113]. For each tractography instance, streamline
count between regions-of-interest were normalized by di-
viding the count between regions by the geometric aver-
age volume of the regions. Since tractography was run
nine times per subject, edge values were collapsed across
runs. To do this, the weighted mean was taken with
weights based on the proportion of total streamlines at
that edge. This operation biases edge weights towards
larger values, which reflect tractography instances better
parameterized to estimate the geometry of each connec-
tion.

Datasets: Human Connectome Project 7T
resting-state and movie-watching data

The Human Connectome Project (HCP) 7T dataset
[43] consists of structural magnetic resonance imaging
(T1w), resting state functional magnetic resonance imag-
ing (rsfMRI) data, movie watching functional magnetic
resonance imaging (mwfMRI) from 184 adult subjects.
These subjects are a subset of a larger cohort of ap-
proximately 1200 subjects additionally scanned at 3T.
Subjects’ 7T fMRI data were collected during four scan
sessions over the course of two or three days at the Cen-
ter for Magnetic Resonance Research at the University of
Minnesota. Subjects’ 3T T1w data collected at Washing-
ton University in St. Louis. The study was approved by
the Washington University Institutional Review Board
and informed consent was obtained from all subjects.
We analyzed MRI data collected from Ns = 129 sub-

jects (77 female, 52 male), after excluding subjects with
poor quality data. Our exclusion criteria was as fol-
lows: where each spike is defined as relative framewise
displacement of at least 0.25 mm, we excluded subjects
who fulfill at least 1 of the following criteria: greater than
15% of time points spike, average framewise displacement
greater than 0.2 mm; contains any spikes larger than
5mm. Following this filter, subjects who contained all
four scans were retained. At the time of their first scan,
the average subject age was 29.36 ± 3.36 years, with a
range from 22 − 36. 70 of these subjects were monozy-
gotic twins, 57 where non-monozygotic twins, and 2 were
not twins.
A comprehensive description of the imaging pa-

rameters and image preprocessing can be found in
[105] and in HCP’s online documentation (https://
www.humanconnectome.org/study/hcp-young-adult/
document/1200-subjects-data-release). T1w were
collected on a 3T Siemens Connectome Skyra scanner
with a 32-channel head coil. Subjects underwent two
T1-weighted structural scans, which were averaged for
each subject (TR = 2400 ms, TE = 2.14 ms, flip angle
= 8◦, 0.7 mm isotropic voxel resolution). fMRI were
collected on a 7T Siemens Magnetom scanner with a 32-
channel head coil. All 7T fMRI data was acquired with a
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gradient-echo planar imaging sequence (TR = 1000 ms,
TE = 22.2 ms, flip angle = 45◦, 1.6 mm isotropic voxel
resolution, multi-band factor = 5, image acceleration
factor = 2, partial Fourier sample = 7/8, echo spacing
= 0.64 ms, bandwidth = 1924 Hz/Px). Four resting
state data runs were collected, each lasting 15 minutes
(frames = 900), with eyes open and instructions to
fixate on a cross. Four movie watching data runs were
collected, each lasting approximately 15 minutes (frames
= 921, 918, 915, 901), with subjects passively viewing
visual and audio presentations of movie scenes. Movies
consisted of both freely available independent films
covered by Creative Commons licensing and Hollywood
movies prepared for analysis [114]. For both resting
state and movie watching data, two runs were acquired
with posterior-to-anterior phase encoding direction and
two runs were acquired with anterior-to-posterior phase
encoding direction.

Structural and functional images were minimally pre-
processed according to the description provided in [105],
as implemented and shared by the Connectome Coor-
dination Facility. Briefly, T1w images were aligned to
MNI space before undergoing FreeSurfer’s (version 5.3)
cortical reconstruction workflow, as part of the HCP
Pipeline’s PreFreeSurfer, FreeSurfer, and PostFreeSurfer
steps. 7T fMRI images were downloaded after correc-
tion and reprocessing announced by the HCP consor-
tium in April, 2018. fMRI images were corrected for
gradient distortion, susceptibility distortion, and mo-
tion, and then aligned to the corresponding T1w with
one spline interpolation step. This volume was fur-
ther corrected for intensity bias and normalized to a
mean of 10000. This volume was then projected to the
2mm 32k fs LR mesh, excluding outliers, and aligned to
a common space using a multi-modal surface registra-
tion [106]. The resultant cifti file for each HCP sub-
ject used in this study followed the file naming pattern:
* Atlas MSMAll hp2000 clean.dtseries.nii. These
steps are performed as part of the HCP Pipeline’s fM-
RIVolume and fMRISurface steps. Resting state and
moving watching fMRI images were nuisance regressed
in the same manner. Each minimally preprocessed fMRI
was linearly detrended, band-pass filtered (0.008-0.25
Hz), confound regressed and standardized using Nilearn’s
signal.clean function, which removes confounds or-
thogonally to the temporal filters. The confound regres-
sion strategy included six motion estimates, mean sig-
nal from a white matter, cerebrospinal fluid, and whole
brain mask, derivatives of these previous nine regressors,
and squares of these 18 terms. Spike regressors were
not applied. Following these preprocessing operations,
the mean signal was taken at each time frame for each
node, as defined by the Schaefer 400 parcellation [48] in
32k fs LR space.

Datasets: Nathan Kline Institute, Enhanced
Rockland Sample 3T resting-state and diffusion

weighted MRI

The Nathan Kline Institute Rockland Sample (NKI)
dataset consisted of structural magnetic resonance imag-
ing, resting state functional magnetic resonance imag-
ing data, as well as diffusion magnetic resonance imaging
data from 811 subjects (downloaded December 2016 from
the INDI S3 Bucket) of a community sample of partic-
ipants across the lifespan [65]. After excluding subjects
based on data and metadata completeness and quality
control, the final subset utilized included 542 subjects
(56% female, age range = 7-84). The study was ap-
proved by the Nathan Kline Institute Institutional Re-
view Board and Montclair State University Institutional
Review Board and informed consent was obtained from
all subjects. A comprehensive description of the imaging
parameters can be found online at the NKI website.

Briefly, images were collected on a Siemens Magneton
Trio with a 12-channel head coil. Subjects underwent
one T1-weighted structural scan (TR = 1900 ms, TE =
2.52 ms, flip angle = 9◦, 1 mm isotropic voxel resolu-
tion). Subjects underwent three differently parameter-
ized resting state scans, but only one acquisition is used
in the present study. The fMRI data was acquired with
a gradient-echo planar imaging sequence (TR = 645 ms,
TE = 30 ms, flip angle = 60◦, 3 mm isotropic voxel res-
olution, multiband factor = 4). This resting state run
lasted approximately 9:41 seconds, with eyes open and
instructions to fixate on a cross. Subjects underwent one
diffusion MRI scan (TR = 2400 ms, TE = 85 ms, flip
angle = 90◦, 2 mm isotropic voxel resolution, 128 diffu-
sion weighted volumes, b-value = 1500 s/mm2, 9 b = 0
volumes).

The NKI was downloaded in December of 2016 from
the INDI S3 Bucket. At the time of download, the
dataset consisted of 957 T1w (811 subjects), 914 DWI
(771 subjects), and 718 fMRI (“acquisition645”; 634 sub-
jects) images. T1w and DWI images, and tractography
results were first filtered based on visual inspection. T1w
images were filtered based on artifact, such as ringing or
ghosting (43 images) and for FreeSurfer reconstruction
failure (105 images) as assesses with the ENIGMA QC
tools, leaving 809 T1w images (699 subjects). DWI im-
ages were filtered based on corrupt data (13 images) and
artifact on fitted fractional anisotropy maps (18 images),
leaving 883 images (747 subjects). Tractography was run
on 781 images (677 subjects) that had both quality con-
trolled T1w and DWI images. Tractography results were
filtered based on artifact, which include failure to resolve
callosal, cingulum, and/or corticospinal streamlines or
errors resulting in visually sparse streamline densities,
resulting in 764 tractography runs (661 subjects). T1w,
DWI, and fMRI images were then filtered using com-
puted image quality metrics [115–117]. T1w images were
excluded if the scan was marked as an outlier (1.5x the
inter-quartile range in the adverse direction) in three or
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more of following quality metric distributions: coefficient
of joint variation, contrast-to-noise ratio, signal-to-noise
ratio, Dietrich’s SNR, FBER, and EFC. DWI images
were excluded if the percent of signal outliers, determined
by eddy qc, was greater than 15%. Furthermore, DWI
were excluded if the scan was marked as an outlier (1.5x
the inter-quartile range in the adverse direction) in two
or more of following quality metric distributions: tem-
poral signal-to-noise ratio, mean voxel intensity outlier
count, or max voxel intensity outlier count. fMRI im-
ages were excluded if greater than 15% of time frames
exceeded 0.5mm framewise displacement. Furthermore,
fMRI images were excluded the scan was marked as an
outlier (1.5x the inter-quartile range in the adverse di-
rection) in 3 or more of the following quality metric dis-
tributions: DVARS standard deviation, DVARS voxel-
wise standard deviation, temporal signal-to-noise ratio,
framewise displacement mean, AFNI’s outlier ratio, and
AFNI’s quality index. This image quality metric filtering
excluded zero T1w images, 16 DWI images, and 21 fMRI
images. Following this visual and image quality metric
filtering, 809 T1w images (699 subjects), 728 DWI im-
ages (619 subjects), and 697 fMRI images (633 subjects).
The intersection of subjects with at least one valid T1w,
DWI, and fMRI images totaled 567 subjects. Finally, age
metadata was available for 542 of these subjects.

T1-weighted images were submitted to FreeSurfer’s
cortical reconstruction workflow (version 6.0). The
FreeSurfer results were used to skull strip the T1w, which
was subsequently aligned to MNI space with 6 degrees
of freedom. fMRI preprocessing was performed using
the fMRIPrep version 1.1.8 [118]. The following de-
scription of fMRI preprocessing is based on fMRIPrep’s
documentation. This workflow utilizes ANTs (2.1.0),
FSL (5.0.9), AFNI (16.2.07), FreeSurfer (6.0.1), nipype
[119], and nilearn [120]. Each T1w was corrected using
N4BiasFieldCorrection [107] and skull-stripped using
antsBrainExtraction.sh (using the OASIS template).
The ANTs derived brain mask was refined with a custom
variation of the method to reconcile ANTs-derived and
FreeSurfer-derived segmentations of the cortical gray-
matter of Mindboggle [121]. Brain tissue segmentation
of cerebrospinal fluid (CSF), white-matter (WM) and
gray-matter (GM) was performed on the brain-extracted
T1w using fast [110]. Functional data was slice time
corrected using 3dTshift from AFNI and motion cor-
rected using FSL’s mcflirt. “Fieldmap-less” distor-
tion correction was performed by co-registering the func-
tional image to the same-subject T1w with intensity in-
verted [122] constrained with an average fieldmap tem-
plate [123], implemented with antsRegistration. This
was followed by co-registration to the corresponding T1w
using boundary-based registration [124] with 9 degrees of
freedom, using bbregister. Motion correcting transfor-
mations, field distortion correcting warp, and BOLD-to-
T1w transformation warp were concatenated and applied
in a single step using antsApplyTransforms using Lanc-
zos interpolation. Frame-wise displacement [125] was cal-

culated for each functional run using the implementation
of Nipype. The first four frames of the BOLD data in
the T1w space were discarded. Diffusion images were
preprocessed following the “DESIGNER” pipeline using
MRTrix (3.0) [126, 127], which includes denoising, Gibbs
ringing and Rician bias correction, distortion and eddy
current correction [128] and B1 field correction. DWI
were then aligned to their corresponding T1w and the
MNI space in one interpolation step with B-vectors ro-
tated accordingly. Local models of white matter orien-
tation were estimated in a recursive manner [129] using
constrained spherical deconvolution [109] with a spheri-
cal harmonics order of 8. Tractography was performed
using Dipy’s Local Tracking module [108]. Probabilis-
tic streamline tractography was seeded five times in each
white matter voxel. Streamlines were propagated with a
0.5 mm step size and a maximum turning angle set to
20◦. Streamlines were retained if longer than 10 mm and
with valid endpoints, following Dipy’s implementation of
anatomically constrained tractography [112]. Streamline
count between regions-of-interest were normalized by di-
viding the count between regions by the geometric aver-
age volume of the regions.

Estimating group-representative structural connectivity
network

The output of the tractography algorithm generated
subject-level estimates of streamlines for both the NKI
and HCP datasets. In general, subjects’ connectomes
are variable. A fraction of this variability reflects
true individual differences, while another fraction re-
flects unwanted noise, e.g. random variation. One
strategy for reducing noise is to aggregate data from
many individuals to construct a group-representative
consensus connectome. Here, we follow [44] and gen-
erate distant-dependent connectomes for both the NKI
and HCP datasets. Briefly, this procedure bins edges
by their length and, within each distance bin, identi-
fies the edges that are most consistently present across
the full set of subjects. Compared to standard ap-
proaches, which retains the most consistent edges irre-
spective of their length, consensus networks generated
using this procedure are more representative of single-
subject connectomes–i.e. has more properties in com-
mon. Note that this distance-preserving consensus pro-
cedure is applied separately to within- and between-
hemisphere edges. Note also that for the NKI dataset,
the consensus connectome was constructed using data
from subjects aged 18-35 years. Finally, we made the
decision to use the same (but dataset-specific) group-
representative for all HCP and NKI subjects. The
rationale behind this decision was that it allowed us
to discount the possibility that differences in model
performance–e.g. fitness or edge weights–was driven by
differences in the structural connectivity.
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Dataset: Mouse anatomical and functional
connectivity

Mouse resting state fMRI data

All in vivo experiments were conducted in accordance
with the Italian law (DL 2006/2014, EU 63/2010, Min-
istero della Sanitá, Roma) and the recommendations in
the Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health. Animal research pro-
tocols were reviewed and consented by the animal care
committee of the Italian Institute of Technology and Ital-
ian Ministry of Health. The rsfMRI dataset used in this
work consists of n = 19 scans in adult male C57BL/6J
mice that are publicly available [130, 131]. Animal prepa-
ration, image data acquisition, and image data prepro-
cessing for rsfMRI data have been described in greater
detail elsewhere [131]. Briefly, rsfMRI data were ac-
quired on a 7.0-T scanner (Bruker BioSpin, Ettlingen)
equipped with BGA-9 gradient set, using a 72-mm bird-
cage transmit coil, and a four-channel solenoid coil for
signal reception. Single-shot BOLD echo planar imag-
ing time series were acquired using an echo planar imag-
ing sequence with the following parameters: repetition
time/echo time, 1000/15 ms; flip angle, 30◦; matrix, 100
×100; field of view, 2 × 2 cm2; 18 coronal slices; slice
thickness, 0.50 mm; 500 (n = 21) or 1500 (n = 19) vol-
umes; and a total rsfMRI acquisition time of 30 min.

Image preprocessing has been previously described in
greater detail elsewhere [131]. Briefly, timeseries were de-
spiked, motion corrected, skull stripped and spatially reg-
istered to an in-house EPI-based mouse brain template.
Denoising and motion correction strategies involved the
regression of mean ventricular signal plus 6 motion pa-
rameters. The resulting time series were band-pass fil-
tered (0.01-0.1 Hz band) and then spatially smoothed
with a Gaussian kernel of 0.5 mm full width at half max-
imum. After preprocessing, mean regional time-series
were extracted for 182 regions of interest (ROIs) derived
from a predefined anatomical parcellation of the Allen
Brain Institute (ABI, [13, 132]).

Mouse Anatomical Connectivity Data

The mouse anatomical connectivity data used in
this work were derived from a voxel-scale model of
the mouse connectome made available by the Allen
Brain Institute [133, 134] (https://data.mendeley.
com/datasets/dxtzpvv83k/2).

Briefly, the mouse structural connectome was ob-
tained from imaging enhanced green fluorescent protein
(eGFP)–labeled axonal projections derived 428 viral mi-
croinjection experiments, and registered to a common
coordinate space [13]. Under the assumption that struc-
tural connectivity varies smoothly across major brain di-
visions, the connectivity at each voxel was modeled as
a radial basis kernel-weighted average of the projection

patterns of nearby injections [134]. Following the proce-
dure outlined in [133], we re-parcellated the voxel scale
model in the same 182 nodes used for the resting state
fMRI data, and we adopted normalized connection den-
sity (NCD) for defining connectome edges, as this nor-
malization has been shown to be less affected by regional
volume than other absolute and/or relative measure of
interregional connectivity [135].

Fitting edge weights

Here, we use a regression-based framework for assign-
ing weights to existing structural connections. Our ap-
proach is simple; we assume that at time t the state of
region i (level of fMRI BOLD activity) is a function of
its neighbors’ states at time t − 1 plus an offset (bias).
That is:

yi(t) =
∑

j∈Γi,j ̸=i

Wjiyj(t− 1) + ci. (2)

Here, yi(t) refers to the level of activity in region i at time
t, Γi is the set of i’s connected neighbors (their indices).
We use linear regression and ordinary least squares to
estimate the parameters Wji and ci separately for each
node i. Thus, the resulting matrix W ∈ Rn×n, is sparse
and preserves exactly the binary structure of the white-
matter connectivity. However, the weights can take on
both positive and negative valence. The resulting net-
work is also asymmetric–i.e. in general, the Wij ̸= Wji.

Null models

We fit the linear model using data pooled from all par-
ticipants and scans. The model fitness was quantified as
the mean squared error (MSE) of the observed activity
time series and the time series predicted by the model.
We compared the empirical MSE against five null models.

• Minimally wired null model : Generates a synthetic
structural network comprised of the m least costly
connections, where m is the same number of con-
nections as the observed network. Because this net-
work contains only short-range (low cost) connec-
tions, this null model assesses how long-distance
connections contribute to model fitness.

• Re-ordered null model: Randomly permutes node
order, effectively endowing nodes with a different
number and set of neighbors than they have in the
original network. This model assesses the contri-
butions of specific neighbors to model fitness.

• “Spin” null model: Randomly permutes node or-
der while approximately preserving inter-regional
Euclidean distances. This model can be viewed as
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a constrained versions of the re-ordered null model,
in that it only allows particular subset of permuta-
tions.

• Topological null model: In this model, each node
makes the same number of connections as in the
original network. However, those connections,
which define nodes’ neighborhoods, are formed at
random. This model assesses whether networks
with identical degree distribution yield similar fit-
ness values as the original network.

• Temporal null model: For each scan, parcel time
series are circularly shifted by some random inte-
ger. This procedure preserves temporally invariant
properties of each time series, like their mean and
standard deviation, and approximately preserves
other properties, e.g. power spectrum. However,
it destroys interregional correlations. In effect, this
model tests whether time series with similar statis-
tical properties but no correlation structure could
yield comparable fitness values as the original time
series.

Modularity maximization

Here, we used modularity maximization to detect clus-
ters (modules) in brain network data [136, 137]. Generi-
cally, modularity maximization works by assigning nodes
to non-overlapping clusters so that the within-cluster
weight of connections maximally exceeds that of a null
model. This intuition is formalized by the modularity
quality function:

Q(γ) =
∑
ij

[Wij − γPij ]δ(zi, zj). (3)

In this equation, Wij and Pij are the observed and ex-
pected weight of the connection between nodes i and j,
zi ∈ {1, . . . ,K} is a categorical variable that indicates the
community to which node i was assigned, γ is the struc-
tural resolution parameter, and δ(zi, zj) is the Kronecker
delta function, which evaluates to 1 when zi = zj and
0 otherwise. In short, modularity maximization seeks to
optimize the quantity Q(γ) by selecting the values of zi.
The modularity maximization framework is general

and can test different null hypotheses (null connectivity
models) by varying the entries of P , the matrix of ex-
pected connections and their weights. Here, we test two
different null models. The first was proposed in [51] and
is designed, specifically, to work with signed connectivity
matrices. Under this model, the modularity equation is:

Q∗(γ) =
1

k+

∑
ij

[W+
ij − γP+

ij ]δ(zi, zj)−

1

k+ + k−

∑
ij

[W−
ij − γP−

ij ]δ(zi, zj).

(4)

Here, the modularity equation includes separate terms
for the positive and negative connections. The positive
term is weighted more than the negative term (note the
scale factors before the summation). This allows mod-
ules to be detected in networks with signed connections.
However, if this same version of modularity maximiza-
tion is applied to a network with positive links only, the
second term in the equation evaluates to zero and re-
turns the standard modularity equation. Note that in

this equation, P±
ij =

k±
i k±

j

2m± .
Here, we use this quality function in two ways. In the

main text, we optimize Q∗ 1000 times for both the asym-
metric, weighted, and signed network as well as the fiber
density network. These results are shown in Fig. 2. In
the supplement, we combine this quality function with a
hierarchical consensus algorithm [54], in which we first
vary the values of γ over all possible ranges to obtain
a representative sample of communities (1,000,000 repe-
titions in total), and second, use these samples to con-
struct a hierarchical dendrogram that organizes the noisy
individual samples into hierarchically related consensus
communities. The results of this analysis are shown in
Fig. S9.
We also used a second version of the modularity equa-

tion that was originally proposed for analysis of physical
systems [59]. Briefly, the equation reads:

Q =
∑
ij

[Wij − ⟨W ⟩Aij ]δ(zi, zj). (5)

Here, the matrix A is the binary matrix of connections
that exist in the empirical and weighted connectivity ma-
trix. ⟨W ⟩ is the mean weight of existing connections.
In other words, this modularity equation preserves the
topology of the network, but assumes that edge weights
are assigned randomly and uniformly. The results of this
analysis are presented in Fig. S11. We note that, in prin-
ciple, a resolution parameter could be incorporated into
this formulation of the modularity quality function as
well by replacing ⟨W ⟩ with a tunable γ parameter.

Network statistics

In addition to modularity, we calculated several other
network metrics. These include efficiency, characteristic
path length, signed strength, and signed clustering coef-
ficient. In this section we define those measures in detail.

• Shortest paths. Both efficiency and characteris-
tic path length are defined based on a network’s
shortest path structure. Consider source and tar-
get nodes, s and t. The shortest path from the
s to t can be estimated easily using the Floyd-
Warshall algorithm. In weighted networks where
edge weights as interpreted as measures of affinities
it requires that the user first map those weights to
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measures of cost. For networks with positive con-
nections only, a straightforward way to do this is
to transform Cij = W−γ

ij , where the most common
value for the parameter is γ = 1. For signed net-
works, like the ones used here, we use the same
transformation, but only after we add an offset to
each edge so that all weights are greater than zero.
Our strategy for doing so involved first subtract the
smallest (most negative) edge weight from the net-
work. This ensures that all edges have a weight
greater than zero, except for the single edge cor-
responding to the most negative weight, which has
a cost of 0. We then add to every edge an even
smaller offset–in this case the weakest edge weight
in the fiber density matrix. This guarantees that
all pairs of nodes connected by a fiber tract have
nonzero weights.

Once a network’s affinity-based weights have been
transformed to costs, algorithms like the Floyd-
Warshall algorithm find the shortest–i.e. least
costly–path between all pairs of nodes. This al-
gorithm returns two outputs: 1) the total cost in-
curred by following said path and 2) the number
of steps (hops) along said path. Here, we use the
hop data but not that, in principle, one could re-
peat all subsequent analyses using the cost data,
instead. Let Hst be the number of hops on the
shortest path from the source s to the target t.

• Characteristic path length. The characteristic
path length of this network is calculated as:

L =
1

N(N − 1)

∑
i,j ̸=i

Hst. (6)

• Efficiency. The efficiency of this network is calcu-
lated as:

E =
1

N(N − 1)

∑
i,j ̸=i

1

Hst
. (7)

• Clustering coefficient. The local clustering co-
efficient is calculated for each node i. Intuitively, it
measures the extent to which node i’s neighbors are
also connected to one another. It can be calculated
easily for each node as the density of the subgraph
composed of those neighbors. Here, we calculate
clustering coefficients for each node in the network
based on their positive connections and negative
connections, separately. The values reported in the
main text ignore the actual weight but preserve
sign.

• Strength. Node strength – or weighted degree –
the total weight of connections incident upon node
i. For an undirected network, it is calculated as:

si =
∑

j Wij . For a directed network, we calculate
strength as the average of a nodes’ incoming and

outgoing connections, i.e. si =
∑

j Wij+
∑

j Wji

2 .

Here, we also differentiate between a node’s posi-
tive and negative strength. Let W+ and W− be
the networks of positive and negative connections
only. For the network of negative connections,
we conveniently flip the sign of each connection.
Then we calculate each nodes’ signed strength as

s±i =
∑

j W±
ij+

∑
j W±

ji

2 .

• Partition laterality. We calculated partition lat-
erality following Lohse et al. [53]. For a given com-
munity c, we calculate its uncorrected laterality as

Λc =
|Nr−Nl|

Nc
. Here, Nc is the number of nodes in c

and Nr and Nl are the number of those nodes in the
right and left hemispheres, respectively. When the
community has a balanced number of nodes from
both hemispheres its laterality is close to zero; if it
is left- or right-dominant, then the value is close to
1.

For a partition comprised of communities
c1, . . . , cK , we calculate the partition lateral-
ity as Λ = 1

N (
∑

c NcΛc − ⟨
∑

c NcΛc⟩). Here, the
term ⟨

∑
c NcΛc⟩ indicates the expected laterality

under a null model in which nodes get randomly
assigned to one hemisphere or another. Note that
here we cannot use spin tests for the permutation;
the spin tests preserves hemisphere labels and a
“spun” partition would have laterality exactly
equal to that of the original, unpermuted partition.

Neural mass models

Many studies have tried to link brain structure and
function [49]. One popular strategy for doing so is to use
an estimate of anatomical connectivity to generate syn-
thetic covariance matrices (either directly or by first gen-
erating synthetic neural time series and calculating their
covariance empirically). The synthetic covariance matri-
ces can then be compared to the empirical FC, usually as
a correlation of their edge weights. The resulting coeffi-
cient serves as a measure of structure-function coupling.
Here, we analyzed two models for generating synthetic
covariance matrices or time series based on population-
level “neural mass” models (NMMs).

• Galán model. We follow work by Honey et al.
[77] for estimating the inter-areal covariance ma-
trix, C, based on a linearization of Wilson-Cowan
dynamics for neuronal populations [138]. The el-
ement Cij ∈ C denotes the covariance of activity
in area i with that of area j. In more detail, we
let u(t) = {u1(t), . . . , uN (t)} be the vector of brain
areas’ states (activity levels) at time t. Under these
dynamics, brain areas’ states evolve as:
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u(t+∆t) = Au(t) + ξ(t), (8)

where ξ(t) is uncorrelated Gaussian noise and ∆t is
a single time step. Here, the generalized coupling
matrix, A, is based on the structural connectivity
matrix, W, and was defined as:

A = (1− α∆t)I+W∆t, (9)

where α is a leak variable within each brain area
and I is the identity matrix. As in Honey et al.
[77], we fixed α = 2.

Conveniently, Galán [138] showed that brain areas’
pairwise covariances (summarized by the matrix
C ∈ RN×N ) can be estimated directly from the
spectral properties of A and the covariance of the
noise terms ξ(t). As with covariance matrices esti-
mated from recorded time series of brain activity,
we interpret C as an estimate of functional connec-
tivity. See Galán [138] for more details.

• Reduced Wong-Wang mean field model. We
also studied a second biophysical model for fMRI
BOLD data. Unlike the Galán model, which cal-
culates the covariance structure analytically given
a structural connectivity matrix, this model gener-
ates simulated time series, first by using a reduced
spiking neural network to generate population-level
time courses, and second by convolving these data
with a hemodynamic model.

The spiking network model evolves according to the
following differential equations:

Ṡi = −Si

τS
+ r(1− Si)H(xi) + σvi(t)

H(xi) =
axi − b

1− exp(−d(axi − b))

xi = wJSi +GJ
∑
j

WijSj + I

(10)

In this equation, xi, H(xi), and Si are the total
input current, population firing rate, and synaptic
gating for region i. The input current, xi depends
on recurrent connection strength, w, excitatory in-
put, I, and inter-regional information “flow”, which
is calculated as the sum of region i’s connected
neighbors’ synaptic gating, weighted by the global
coupling constant, G, and synaptic coupling con-
stant, J . Following Wang et al. [139], we set the
parameters of the input-output function, H(xi) to
a = 270 n/C, b = 108 Hz, and d = 0.154 s. Ki-
netic parameters for synaptic activity were fixed at
r = 0.641 and τs = 0.1 s. The variable vi(t) is un-
correlated Gaussian-distributed noise whose vari-
ance is scaled by σ.

This model generates neural activity at sub-
millisecond timescales. Again, following Wang
et al. [139], population level activity is input to
the Balloon-Windkessel hemodynamic model [28],
which yields simulated fMRI BOLD time courses
for every brain region.
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tionality of cortical interactions studied by structural
analysis of electrophysiological recordings,” Biological
cybernetics 81, 199–210 (1999).

[21] Alard Roebroeck, Elia Formisano, and Rainer Goebel,
“Mapping directed influence over the brain using
granger causality and fmri,” Neuroimage 25, 230–242
(2005).

[22] Thomas Schreiber, “Measuring information transfer,”
Physical review letters 85, 461 (2000).

[23] Leonardo Novelli, Patricia Wollstadt, Pedro Mediano,
Michael Wibral, and Joseph T Lizier, “Large-scale di-
rected network inference with multivariate transfer en-
tropy and hierarchical statistical testing,” Network Neu-
roscience 3, 827–847 (2019).

[24] Karl J Friston, “Functional and effective connectivity:
a review,” Brain connectivity 1, 13–36 (2011).

[25] Karl Friston, Rosalyn Moran, and Anil K Seth,
“Analysing connectivity with granger causality and dy-
namic causal modelling,” Current opinion in neurobiol-
ogy 23, 172–178 (2013).

[26] Pedro A Valdes-Sosa, Alard Roebroeck, Jean Dau-
nizeau, and Karl Friston, “Effective connectivity: influ-
ence, causality and biophysical modeling,” Neuroimage
58, 339–361 (2011).

[27] Matthieu Gilson, Ruben Moreno-Bote, Adrián Ponce-
Alvarez, Petra Ritter, and Gustavo Deco, “Estima-

tion of directed effective connectivity from fmri func-
tional connectivity hints at asymmetries of cortical con-
nectome,” PLoS computational biology 12, e1004762
(2016).

[28] Karl J Friston, Lee Harrison, and Will Penny, “Dy-
namic causal modelling,” Neuroimage 19, 1273–1302
(2003).

[29] Jean Daunizeau, Olivier David, and Klaas E Stephan,
“Dynamic causal modelling: a critical review of the bio-
physical and statistical foundations,” Neuroimage 58,
312–322 (2011).
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FIG. S1. Similarity of edge weights. In the main text we use linear models to fit edge weights to structural connections.
Here, we different edge weighting schemes. We consider: the logarithm of fiber densities (log10SC), estimated edge weights
using all data (NoDiag), estimated edge weights using only low-motion data (NoDiagLoMo), estimated edge weights with
the inclusion of an autoregressive diagonal term (Diag), functional connectivity estimated using a full correlation (FC), and
partial correlations (ParCorr). In all cases, similarity was calculated as the Spearman correlation using only edges for which a
structural connection was observed.

FIG. S2. Effect of lag on estimated edge weights. In the main text we use linear models to fit edge weights by predicting
activity at time t+ 1 using activity at time t (one frame of lag = 0.720 seconds). Here, we investigate the effect of longer lags
on the estimated weights, increasing the lag to ≈15 seconds. (a) Model error at different lags. (b) Spatial similarity of weights
estimated at each lab. (c) Example weight matrices at different lags.

FIG. S3. Effects of connection length on model performance. We divided connections into 20 percentile bins based
on their length. Next, we created structural network backbone comprising the 5% shortest (or longest) connections, gradually
adding back the progressively longer (or shorter) connection 19 bins, until all connections were added. This allowed us to
assess the relative contributions of short versus long connections. In panel a, we plot the model error as a function across all
percentiles. We also grouped connections by percentiles (from 2 to 20) and fit the model using each percentile independently
rather cumulatively. The results in panel b suggest that short connections are more informative and lead to reduced model
error.
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FIG. S4. Model errors at the regional level. Regional mean squared error (MSE) for model fit using observed and intact
network (a) versus the mean MSE across 100 models fit using a degree-preserving rewiring model. (c) Scatterplot comparing
regional error. Points above the diagonal are regions fit better using the observed network compared to the rewired. Panels d
and e compare regional MSE with the logarithm of nodes’ degree and weighted degree. That is, nodes with fewer connections
exhibited worse fits (greater MSE).

FIG. S5. Effect of global signal regression on results. The human data analyzed in the main text was processed using a
procedure that included global signal regression (GSR). Here, we compare select results using data processed without GSR. (a)
Mean FC for GSR and non-GSR data; each point is a scan (4 scans × 95 participants yields 380 points). (b) Two-dimensional
histogram of group-level edge weights estimated using GSR and non-GSR data. (c) Subject-level model error. (d) Comparison
of regional model errors. The red line is identity (equal performance with both models). Points below the line have time series
better predicted with non-GSR data; points above the line have activity time series better predicted by GSR data. (e) Model
error as a function of lag.

FIG. S6. Dependence of distance effects on Euclidean distance versus fiber length. (a) Euclidean distance versus
fiber length. Panels b and c depict edges weighted by fiber fiber length and Euclidean distance. (d) Difference in fiber length
and Euclidean distance. Panels e and f show connection weight versus distance. Panels g-i show connections that are stronger
than expected but unique to Euclidean distance, fiber length, or are shared between both.
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FIG. S7. Comparing connectivity weights estimated with an without regularization. In the main text we used linear
regression optimized with ordinary least squares to fit weights to edges. Here, we compare those results to weights fit using lasso
regularization (implemented in MATLAB with the function lasso.m). For each node, we fits its edge weights independently.
We logarithmically sampled 10 values of the regularization parameter, λ, over the interval [10−3, 0.5]. For each value of λ, we
generate a new estimate of connection weights, with sparsity increasing monotonically. (a) Correlation of edge weight values
with the edge weights reported in the main text (no regularization). (b) Similarity of regularized connection weights to one
another. (c) Connectivity matrices.

FIG. S8. Simulated FC using linearized neural mass model. We used a linearization of a neural mass model [138] to
generate simulated covariance matrices (which are then scaled to correlation matrices; FC). We performed this procedure using
both the asymmetric, weighted, and signed version of SC as well as the traditional fiber density matrix. Panels a and b show the
resulting correlation matrices. We then compared these matrices to an empirical estimate of FC. We found that the correlation
matrix generated using asymmetric, weighted, and signed matrix was more similar to FC than the matrix generated using the
fiber density weights. Panel c shows the results of this analysis using both product-moment correlation and rank correlations
to assess similarity. We also analyzed a simplified neural mass model (reduced Wong-Wang model with implementation made
available from [139]). This procedure generates synthetic fMRI BOLD time series that can be treated identically to an empirical
time series. The correlation structure of the synthetic data can then be compared to the empirical correlation structure, i.e. FC.
Panels d-f depict correlation matrices for asymmetric, weighted, and signed structural connectivity, the fiber density matrix,
and their correlations with respect to the empirical FC matrix.
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FIG. S9. Comparing modular structure of structural networks. Modules are cohesive subnetworks – nodes that make
more connections to other members of the same module than to other modules. Here, we compare the modular structure
of network with weights defined by fiber density and the same network with asymmetric, weighted, and signed edges. Here,
we examine modules estimated with a fixed resolution parameter (γ = 1) but explore the multiscale modular structure in
the supplement. Co-assignment probability matrices for the inferred edge weight (a) and the fiber density matrices (b). (c)
Element-wise difference in module co-assignment. (d) System co-assignment matrix for reference. Comparison of modularity
(e) and laterality (f ) of detected modules. (g) Alignment of modules with respect to coarse- and fine-system partitions. (h and
i) Consensus communities for both versions of weights.

FIG. S10. Modularity maximization with alternative, “geographic” null model. In the main text, we described
the results of detecting modules using modularity maximization with an “standard” internal null model that preserved nodes’
(signed) degrees. Here, we report results using an alternative null model. Briefly, this null model preserves the same binary
“backbone” of the original network, but assigns an expected weight to each connection equal to the mean weight of all existing
connections. Modules therefore reflect groups of brain regions whose observed connections’ weights are greater than the mean
weight.
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FIG. S11. Modularity results using alternative null model. Module coassignment matrices for the signed, weighted,
and directed SC (a) and fiber density (b). (c) Difference in coassignment probability. Panels d-f show the same matrices,
but ordered by brain system. (g) Laterality of detected communities. Bilateral communities have values close to zero. (h)
Adjusted Rand index of detected partitions with respect to coarse and fine-scale system labels. (i) Consensus communities
detected in signed, weighted, and directed SC. The panel next to each surface plot depicts each community’s composition in
terms of canonical brain systems. (j ) Canonical brain systems.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.19.519033doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.519033
http://creativecommons.org/licenses/by-nc-nd/4.0/


31

FIG. S12. Enriching modules using brain maps. In the main text we performed community detection on the asymmetric,
weighted, and signed network (AWS) and fiber density network (Fiber) using two versions of modularity maximization: one that
uses a signed internal null model (RS; [51])and another that we termed a “geometric” null model, in which topology is preserved
but weights are not (geometric; [59]). Here, we further explore, validate, and compare the modules by aligning them with
respect to whole-brain maps made available as part of [60]. In total, we considered 45 maps that included receptor densities,
gene expression, myelination status, evolutionary and developmental expansion, and synaptic density (among others). Here, we
assess whether modules are “enriched” for these maps. That is, whether the module boundaries delineate spatial boundaries in
each map. The procedure for doing so is illustrated using the serotonin receptor 5HTA as an example (see panel a for spatial
distribution on cortical surface0. This map vectorized (b), and transformed into a matrix by calculating its outer product (c).
We then compare the matrix to module co-assignment matrices (and example is shown in d). Specifically, we calculate the
mean values of all within- and between-module elements (e and f ) and subsequently calculate the difference in these means
(g). In parallel, we repeat this procedure for 1000 spatially constrained permutations of the map (spin test). The spin tests
generate a null distribution against which we compare the empirical (observed) difference in means via the z-score. Larger z
values indicate greater modular “enrichment”. We perform this entire procedure for four sets of modules – signed and geometric
model for both the asymmetric, weighted, and signed matrix as well as the fiber density matrix. Panel i shows the distribution
of z-scores. In general, we find that the AWS model always outperforms the fiber density matrix–i.e. leads to greater z scores
(paired sample t-test; maximum p = 0.0017). We also tested enrichment at the level of individual models (j ). Briefly, the mean
within-module value for each brain map vector was calculated and compared to a null distribution (spin tests after excluding
modules of fewer than ten nodes). The z values were transformed into p values and p < 0.05 applied to determine statistical
significance. In the margins of j, we show the number of maps that were significantly enriched for each module.
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FIG. S13. Replication of main effects using hyper-dense tract-tracing data from mice. (a) Logarithm of anatomical
connection weights. (b) Estimated weights using linear model. (c) Functional connectivity (correlation). (d) Two-dimensional
histogram of predicted and observed activity across all regions and mice. (e) Scatterplot of estimated edge weights versus
Euclidean distance. (f ) Communities estimated by applying modularity maximization to the estimated edge weight matrix.
(g) Communities estimated by applying modularity maximization to the anatomical connectivity matrix. Panels h and i show
module coassignment matrices for the two versions of edge weights. Panel j shows the difference in edge weights. (k) Areal
coassignment matrix. Panels l-n show laterality of detected communities, similarity of detected partitions with respect to areal
labels (adjusted Rand index), and the modularity of the detected partitions.

FIG. S14. Signed asymmetry between incoming and outgoing edges is most common between functional brain
systems. (a) The number of sign asymmetric edges across 95 subjects organized by system. (b) Proportion of existing edges
that exhibit sign asymmetry within systems versus between systems.

FIG. S15. Relationship between fitness of the linear model and modularity of the functional connnectivity
matrix. (a) Relationship between modularity (Q) and mean square error (MSE). (b) Relationship between modularity (Q)
and the correlation between predicted and observed time series.
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