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24 Author summary

25 Tuberculosis (TB) is a top global health concern and treatment for TB requires multiple 

26 antibiotics taken for long periods of time, which is challenging for TB patients. Therefore, 

27 identifying regimens that are more effective and more patient-friendly than the standard 

28 treatment is urgently needed. It is also known that non-compliance leads to the 

29 development of drug resistant TB. In this work, we pair computational and experimental 

30 models to predict new regimens for the treatment of TB that optimize how fast bacteria 

31 are cleared using minimal dosage. We apply novel approaches to this goal and validate 

32 our predictions using a non-human primate model. Our findings suggest that systems 

33 pharmacological modeling should be employed as a method to narrow the design space 

34 for drug regimens for tuberculosis and other diseases as well.

35

36 Abstract

37 Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, 

38 causing ~1.5 million deaths every year. The World Health Organization initiated an End 

39 TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research 

40 goals have focused on discovering more effective and more patient-friendly antibiotic drug 

41 regimens to increase patient compliance and decrease emergence of resistant TB. 

42 Moxifloxacin is one promising antibiotic that may improve the current standard regimen 

43 by shortening treatment time. Clinical trials and in vivo mouse studies suggest that 

44 regimens containing moxifloxacin have better bactericidal activity. However, testing every 

45 possible combination regimen with moxifloxacin either in vivo or clinically is not feasible 
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46 due to experimental and clinical limitations. To identify better regimens more 

47 systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens 

48 (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions 

49 to both clinical trials and nonhuman primate studies performed herein. We used GranSim, 

50 our well-established hybrid agent-based model that simulates granuloma formation and 

51 antibiotic treatment, for this task. In addition, we established a multiple-objective 

52 optimization pipeline using GranSim to discover optimized regimens based on treatment 

53 objectives of interest, i.e., minimizing total drug dosage and lowering time needed to 

54 sterilize granulomas. Our approach can efficiently test many regimens and successfully 

55 identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately 

56 accelerate the TB regimen discovery process.

57

58 Introduction

59 Tuberculosis (TB) is one of the deadliest infectious diseases in the world, with 1.6 million 

60 deaths in 2021 [1], and World Health Organization (WHO) aims to reduce the number of 

61 TB-related deaths by 95% by 2035 [1]. While vaccination efforts can reduce the number 

62 of new TB cases and deaths, a shorter but highly efficacious and safe drug regimen is 

63 needed to treat TB. Although new and efficacious drugs have been discovered for drug-

64 resistant TB [2, 3], drug-susceptible TB disease has been treated with the same regimen 

65 for close to 50 years, namely 6-9 months of treatment with isoniazid (H), rifampin (R), 

66 ethambutol (E) and pyrazinamide (Z) [4]. Likely, changes to the existing standard regimen 

67 for drug-susceptible TB will help achieve WHO’s goal.
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68    Improving existing TB treatment involves finding regimens that account for the 

69 complexities of TB. The structure of the granuloma influences antibiotic distribution and 

70 can result in lower concentrations within granulomas [5-8]. Moreover, microenvironments 

71 within granulomas can promote the infecting bacteria, Mycobacterium tuberculosis (Mtb), 

72 to shift phenotypic states that are tolerant towards antibiotics [9-11]. Host-to-host 

73 variability in drug absorption and metabolism kinetics leads to pharmacokinetic (PK) 

74 variability that has been clinically linked to worse outcomes in TB treatment [12]. 

75 Furthermore, the lengthy treatment makes compliance challenging. While compliance 

76 yields high levels of success, intermittent treatment can lead to the development of drug 

77 resistance [13]. In short, by addressing these complications (heterogeneity in granulomas 

78 and antibiotic distribution, antibiotic-tolerant Mtb, host-to-host PK variability and long 

79 treatment times), a better regimen – one that would successfully treat more individuals 

80 with a shorter treatment duration – can be identified.  

81 Due to these challenges, identifying new regimens for TB is a complex process 

82 that requires a combination of approaches to accurately capture different aspects of TB 

83 treatment [14]. Studies have classified the pharmacokinetic/ pharmacodynamic (PK/PD) 

84 features of individual TB antibiotics with in vitro methods, such as hollow fiber systems 

85 [15-17] and bactericidal assays in different growth conditions [18-20], and in vivo methods 

86 via HPLC coupled to tandem mass spectrometry (LC-MS/MS) and MALDI mass 

87 spectrometry imaging (MALDI-MSI) analyses [21-23]. However, these studies were 

88 mostly performed using single antibiotics and, due to heterogeneity among granulomas, 

89 variability of Mtb metabolic states and the propensity for Mtb to develop drug resistance, 

90 TB treatments with more than one antibiotic (i.e. combination therapy) are essential. To 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520959doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/


5

91 quantify drug interactions and assess the efficacy of combination therapies, many studies 

92 have been performed: in vitro with checkerboard assays [24-26], in vivo with mouse [27, 

93 28], using a non-human primate (NHP) animal models [29, 30], as well as in silico 

94 approaches applying machine learning algorithms [31, 32]. Moreover, many clinical 

95 studies have been performed with antibiotic combinations, which is crucial to assessing 

96 toxicity as well as long term outcomes of treatments [33-36]. These valuable studies are 

97 time-consuming and expensive, often prohibitively so.

98 Computational modeling can efficiently predict regimen efficacy and optimal 

99 doses, which is essential due to the high number of combinations of drug regimens in this 

100 large regimen design space (on the order of 1017 [37]). We have previously shown that 

101 our validated computational simulations of granuloma formation, function and treatment, 

102 called GranSim, can simulate efficacies of different TB regimens (c.f. [6, 8, 38]) and we 

103 can utilize surrogate-assisted optimization algorithms to accurately and efficiently predict 

104 optimal regimens [37].

105 Previous studies in murine models suggested that moxifloxacin (M) is a promising 

106 antibiotic to improve the standard regimen and decrease the duration of TB treatment due 

107 to its strong bactericidal activity [39-44]. To this end, a recent clinical trial, REMoxTB, 

108 attempted to shorten treatment from 6 months to 4 months by altering the standard HRZE 

109 regimen to HRZM or RMZE. However, the study failed to show noninferiority of 

110 moxifloxacin-containing regimens to the standard regimen due to higher relapse rates of 

111 these regimens [33]; after careful reanalysis, some patient populations were shown to be 

112 cured successfully with these moxifloxacin-containing regimens in a shorter treatment 

113 window [45]. In our study, we elaborate an approach toward identifying drug regimens 
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114 that are more effective in treating TB granulomas and that require shorter treatment times 

115 compared to the standard regimen. We used our computational model GranSim to create 

116 an in silico biorepository of hundreds of granulomas, combined with in vivo data 

117 generated from a NHP model and applied a surrogate-assisted optimization algorithm to 

118 identify regimen success and failure. We first simulated moxifloxacin-containing regimens 

119 using GranSim and identified regimens that are superior to the standard treatment based 

120 on sterilization times. Informed by our simulation results, we performed an in vivo study 

121 in NHPs to test our predicted regimens that haven’t been studied before, validating our 

122 simulation predictions. Thus, our study identifies new regimens that can inform pre-clinical 

123 trials to shorten treatment times and minimize dosages. This highlights the importance of 

124 using modeling prior to pre-clinical trials as a step towards a more efficient and directed 

125 regimen design for TB.

126

127 Results

128 In silico library of granulomas for treatment simulations and dose optimization

129 We first generated an in silico library of 750 granulomas over 300 days that matches NHP 

130 dataset of 600 granulomas [46, 47]. To do that, we sampled 250 granuloma parameter 

131 sets within biological feasible ranges using the LHS method and simulating three 

132 replications with each parameter set to capture both types of uncertainty present [48]. We 

133 then classified granulomas that have nonzero bacterial loads (those that did not sterilize) 

134 by measuring their colony forming units (CFUs) as either low-CFU or high-CFU 

135 granulomas, depending on their CFU trends (Fig 1) In this work, we simulated different 

136 treatments on subsets of granulomas from this library of both high- and low-CFU 
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137 granulomas as well as combined. This follows as humans and NHPs have multiple 

138 granulomas within their lungs, and ensures that we test each regimen on a variety of 

139 granuloma types and multiple granulomas, making it relevant to both experimental data 

140 and clinical TB outcomes. Here, low-CFU granulomas represent the state where the 

141 immune system controls bacterial growth within a granuloma, whereas within high-CFU 

142 granulomas, bacteria grow to large numbers and can disseminate [8, 49, 50]. Specifically, 

143 if the number of CFUs within a granuloma is less than 104 at the end of the simulation 

144 and has not increased more than 50 CFUs in the last 20 days of simulation, we label it as 

145 a low-CFU granuloma (Fig 1, blue curves). If the number of CFUs in a granuloma is 

146 between 104 and 107 at the end of the simulation or it has increased by more than 50 

147 CFUs in the last 20 days of simulation, we label it as a high-CFU granuloma (Fig 1, red 

148 curves). We proposed 104 CFUs/granuloma as a threshold for low-CFU granulomas, 

149 based on the observed CFU trends of the 750 granulomas we simulated: granulomas 

150 with CFUs lower than this threshold tend to stabilize in our simulations (Fig 1, blue 

151 curves), representing controlled growth. However, granulomas with CFUs higher than this 

152 threshold tend to grow uncontrollably (Fig 1, red curves).  We can alter this threshold 

153 without loss of generality.
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154

155 Fig 1. CFU trends within the in silico repository of simulated granuloma generated by GranSim after 
156 the start of infection. Each curve represents a single granuloma simulation with a single parameter set 
157 using GranSim, and black dots are data from NHP studies [46, 47]. Based on their CFU trajectories, we 
158 categorize granulomas into low-CFU (blue curves) and high-CFU (red curves) granulomas. Low-CFU 
159 granulomas represent granulomas that have controlled bacterial burden; high-CFU granulomas are those 
160 where bacterial growth is uncontrollable by the immune system, respectively [8, 49, 50]. 
161
162 Simulations capture the rapid rate of sterilization with moxifloxacin-containing 

163 regimens that is observed in clinical trials 

164 We first compare the standard regimen for TB, i.e., HRZE, with various moxifloxacin-

165 containing regimens. A recent clinical trial (REMoxTB) compared the 6-month standard 

166 regimen HRZE treatment (control group) to 4-month treatment with two moxifloxacin-

167 containing regimens, HRZM (termed the “isoniazid group” in the original study) and RMZE 

168 (termed the “ethambutol group” in the original study) (see Table 1 for the protocol) [33]. 

169 Regimens with moxifloxacin were not found to be suitable replacements for the standard 

170 regimen, as they had a higher rate of relapse in patients after the end of treatment, even 
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171 though they decreased the bacterial load in patients’ sputum more rapidly at the beginning 

172 of the treatment (Fig 2A). 

173

174 Table 1. Simulation protocols used in this study. Those indicated as clinical trial correspond to the 
175 regimens used in [33], and those indicated as NHP study correspond to the regimens tested in NHPs herein. 
176 HRZEM combinations refer solely to the computational studies.  Optimization refers to the regimens we 
177 further tested with our optimization protocol to determine dosing and sterilization time to predict the best 
178 performers. 

179
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180

181 Fig 2. Comparison of moxifloxacin-containing regimens to the standard regimen for the human 
182 study and GranSim. (A) Results from the REMoxTB clinical trial [33]. Probability that a patient has a 
183 sputum culture-positive status decreases over the course of treatment, and this decline is more pronounced 
184 for moxifloxacin-containing regimens. Control (HRZE), HRZM and RMZE groups have 510, 514 and 524 
185 patients, respectively. This figure is adapted from Fig 2B of [33] (Data points (x) extracted by 
186 WebPlotDigitizer). (B,C) GranSim predictions for (B) the fraction of unsterilized granulomas and (C) average 
187 sterilization times upon treatment with HRZE, HRZM and RMZE (*p<0.001, one-tailed paired t-test). For 
188 the REMoxTB study and the simulations, in the control groups, patients/granulomas are treated with HRZE 
189 for 8 weeks, followed by an 18-week long HR treatment. In HRZM and RMZE groups, patients/granulomas 
190 are treated with HRZM and RMZE for 17 weeks, respectively (see Methods and Table 1). In (B) and (C), 
191 each group has 200 simulated granulomas.
192

193 We used GranSim to simulate the same protocol as in the REMoxTB study (see 

194 Methods and Table 1). Our results agree with the clinical trial: moxifloxacin-containing 

195 regimens reduced the bacterial load faster, as ~40% of the granulomas were sterilized 

196 within the first week (Fig 2B, dashed red and dotted green curves). By comparison, the 

197 standard regimen required more than 4 weeks to sterilize the same number of 

198 granulomas (Fig 2B, blue curve). To treat the whole set of granulomas successfully (i.e., 

199 both low-and high-CFU), HRZE, HRZM and RMZE-treated groups need 17, 8 and 12 

200 weeks of treatment, respectively. The metric “average time to sterilize a granuloma” 

201 follows a similar trend: HRZM-treated group has the shortest average sterilization time 

202 with ~14 days, followed by RMZE- (~17 days) and HRZE-treated (~35 days) groups. 

203 Therefore, our simulations suggest that the HRZM is the most effective regimen in terms 
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204 of bactericidal activity, followed by RMZE, although the difference between these two 

205 regimens is minimal yet significant (p<0.001). The control group, HRZE, is the slowest to 

206 sterilize granulomas.

207

208 Regimens HMZE, HRZE and RMZE reduce bacterial burden in both NHP studies 

209 and simulations

210 NHPs with active TB were treated with the TB standard regimen HRZE as well as two 

211 moxifloxacin-containing regimens: RMZE and HMZE (see Table 1 and Methods). Daily 

212 administration of drugs was initiated at 13 weeks post-infection and continued for 8 weeks 

213 at which time the macaques were necropsied. Total CFU was calculated by summing the 

214 CFU counts obtained from plating multiple tissue samples (lung, granulomas, LNs) from 

215 each animal. Each regimen was able to reduce bacterial burden in NHPs compared to 

216 controls (Fig 3D and E). Simulations with GranSim indicated that moxifloxacin-containing 

217 regimens, HMZE and RMZE, sterilize more granulomas in a shorter time frame than the 

218 standard regimen, HRZE (Fig 3A-C). 
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219

220 Fig 3. Comparing NHP and GranSim regimens. Comparison of the standard regimen (HRZE) to two 
221 moxifloxacin-containing regimens, HMZE and RMZE, between in silico studies with GranSim (panels A-C) 
222 and in vivo NHP studies (panels D and E). (A) The sterilization times of granulomas averaged over 200 
223 granulomas in GranSim. Note that we assign the maximum simulation time of 60 days as a sterilization 
224 time for unsterilized granulomas (*p<0.001, one-tailed paired t-test). (B, E) Percentage of granulomas that 
225 are unsterilized by treatment end for (B) NHP studies and (E) GranSim.  Colored dots in (E) represent the 
226 percentage of unsterilized granulomas per NHP. (C) The fraction of granulomas which are unsterilized as 
227 a function of simulated treatment time using GranSim. (D) The average total CFU per NHP after treatment 
228 with the corresponding regimens for two months (n=7 animals in the control group, n=3 animals in HRZE 
229 group, n=4 animals in HMZE, n=2 animals in RMZE). Statistical analyses were not performed on the NHP 
230 data due to small numbers of animals per group.
231

232 Metabolic activity within granulomas is decreased with antibiotic treatment in both 

233 NHPs and simulations

234 We used PET-CT imaging on NHPs with FDG uptake to assess how drug regimens 

235 influence inflammatory activity of granulomas. We measured standardized uptake value 
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236 ratio (SUVR), a previously developed measure to quantify the FDG avidity per granuloma 

237 [30, 51]. Treatment with HRZE or HMZE reduced FDG avidity of granulomas within 8 

238 weeks, whereas there was no change in FDG avidity in response to RMZE treatment, 

239 similar to that of the control group (Fig 4A). In GranSim, we can monitor metabolic activity 

240 of a granuloma based on the number of various cell types and inflammatory measures of 

241 activity within granulomas (see Methods for more details). Similar to the FDG PET-CT 

242 results from NHP experiments, GranSim simulations demonstrated that all treatment 

243 regimens decrease metabolic activity significantly (Fig 4B). 

244
245 Fig 4. Comparison of metabolic activity (measured by SUVR) change post treatment in NHP and 
246 GranSim. Comparison of metabolic activity changes (A) in NHP granulomas and (B) using GranSim. (A) 
247 Change in standardized uptake value ratio (SUVR) per NHP granuloma (colored dots) in 8 weeks 
248 (SUVR8weeks - SUVRpre-treatment) when NHP are treated with HRZE (n=3 animals), HMZE (n=4 animals) and 
249 RMZE (n=2 animals) for 8 weeks (n=7 animals in control case, i.e., without treatment). Color shades of the 
250 dots in each column indicate NHPs and the diamonds are the median of SUVR change/granuloma for each 
251 NHP. (B) Change in FDG avidity per granuloma simulated using GranSim (FDG avidity8weeks - FDG 
252 aviditypretreatment) averaged over 200 granulomas (*p<0.0005, one-tailed paired t-test).
253

254
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255 Simulations reveal that moxifloxacin-containing regimens have a better 

256 bactericidal activity than HRZE

257 To systematically compare the efficacy of moxifloxacin-containing regimens to the 

258 standard regimen, we used GranSim to simulate treatment with all 4-way combinations 

259 of HRZEM (HRZE, RMZE, HMZE, HRME and HRZM) for 120 days (Fig 5). We analyze 

260 simulation results distinguishing granulomas that are high-CFU (Fig 5A and D) versus 

261 low-CFU (Fig 5B and E), as well as combined (Fig 5C and F). Our simulation results 

262 indicate that all four regimens containing moxifloxacin clear Mtb within all types of 

263 granulomas (high-CFU, low-CFU, and combinations) in a shorter time than the standard 

264 regimen HRZE (blue curve in Fig 5A-C, gray box in Fig 5D-F). Moreover, simulations 

265 show that the initial decline in bacterial load for combinations of high- and low-CFU 

266 granulomas with regimens containing moxifloxacin (Fig 5C) stems from the fast 

267 sterilization of all low-CFU granulomas (Fig 5B), as the clearance rate for high-CFU 

268 granulomas is slower than that for low-CFU granulomas. In addition, the differences 

269 between various moxifloxacin-containing regimens are more pronounced in high-CFU 

270 granulomas. For example, HRZM clears all high-CFU granulomas by 51 days, which is 

271 the fastest of all 4-way combinations of HRZEM. The next best regimen is HRME, 

272 requiring 77 days to sterilize all granulomas with high-CFU. RMZE and HRZE sterilize all 

273 high-CFU granulomas by a similar time window, in 94 and 97 days, respectively. Lastly, 

274 treating all granulomas until they sterilize with HMZE takes 118 days. However, the 

275 average time required to sterilize a high-CFU granuloma (Fig 5D) is lower for 

276 moxifloxacin-containing regimens (Fig 5D, red boxes) than that for the standard regimen 

277 (Fig 5D, black box), which is consistent with the findings in Figs 2-3. 
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278

279 Fig 5. Comparison of 200 simulations for all HRZEM four-way regimens using GranSim. Comparison 
280 of (A-C) sterilizing rates and (D-F) average sterilization times of 4-way combinations of HRZEM for (A and 
281 D) 100 high-CFU, (B and E) 100 low-CFU and (C and F) a combination of 100 high- and 100 low-CFU 
282 granulomas. 
283

284 Simulations show that moxifloxacin-containing regimens are more efficacious than 

285 HRZE with fewer than four antibiotics

286 Compliance is one of the challenges of TB treatment due to the long-term use of many 

287 antibiotics with numerous side effects. To identify a more patient-friendly treatment, in line 

288 with the goals of the END TB strategy of WHO [52], we could reduce the number of 

289 antibiotics used in a regimen and/or reduce the total dose of a regimen. To test whether 

290 a regimen with fewer than four antibiotics would be as efficient as (or more efficient than) 

291 the 4-way combinations of HRZEM, we simulated all 3-way (S3 Fig) and 2-way (S4 Fig) 
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292 combinations of HRZEM in treating individual granulomas. As compared with 4-way 

293 combinations (Fig 5B and E), we also observed the fast clearance of low-CFU 

294 granulomas treated with moxifloxacin-containing regimens in 3- (S3B Fig and S3E Fig) 

295 and 2-way (S4B Fig and S4E Fig) combinations. Sterilization of high-CFU granulomas 

296 remains faster with 3-way combinations containing moxifloxacin than for regimens without 

297 moxifloxacin; however, the rate of sterilization is slower than for low-CFU granulomas 

298 (S3B Fig and S3E Fig). The trend does not always hold for treatment of high-CFU 

299 granulomas with 2-way combinations containing moxifloxacin (S4B Fig and S4E Fig). 

300 Regimens like ZM and EM cannot sterilize most of the high-CFU granulomas despite 

301 prolonged treatment (S4B Fig). These granulomas may be related to the classically 

302 defined paucibacillary granulomas which even after treatment remain difficult to sterilize 

303 [53]. 

304 Lastly, we compared treatments with all 2-way, 3-way and 4-way combinations of 

305 HRZEM to the standard regimen HRZE based on the average sterilization time for each 

306 regimen of high-CFU (Fig 6A) and low-CFU (Fig 6B) granulomas and both types of 

307 granulomas combined (Fig 6C). Our results demonstrate that regimens that are more 

308 effective in sterilizing granulomas than HRZE each contain moxifloxacin (colored curves 

309 in Fig 6). For high-CFU granulomas, a moxifloxacin-containing regimen with at least 3 

310 antibiotics is needed to achieve a better performance than HRZE (Fig 6A). However, 

311 sterilizing low-CFU granulomas faster than HRZE is possible even with regimens 

312 containing two antibiotics (HM, RM and ZM in Fig 6B). These comparisons are based 

313 only on the standard doses of regimens; optimization of doses is also possible.
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314

315 Fig 6. Simulated treatments with 4-way, 3-way, 2-way regimen comparison from HRZEM. Visually 
316 comparing all regimen combinations to HRZE (thick green curve in all panels) in (A) high-CFU, (B) low-
317 CFU and (C) all granulomas (high- and low-CFU granulomas combined). Colored curves indicate the 
318 regimens that clear granulomas faster than HRZE, i.e., they have a lower average sterilization time 
319 averaged over 100 simulations (200 simulations in (C)). Gray curves represent regimens with slower 
320 sterilization.  
321

322 Dosing optimization method identifies new doses for regimens 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.18.520959doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/


18

323 Optimizing the dose of each antibiotic in all 4-way combinations of HRZEM may reduce 

324 the total antibiotic dose, contributing to our goal of a more patient-friendly TB treatment. 

325 Here, we use Pareto optimization to predict optimal solutions that balance the trade-off 

326 between two treatment objectives: minimizing the total antibiotic dose and minimizing the 

327 average time for regimens required to sterilize all Mtb within granulomas, i.e., the average 

328 sterilization time. Based on these two objectives, our Pareto optimization pipeline predicts 

329 the Pareto front for each 4-way combination regimen of HRZEM (HRZM, HRME, HMZE, 

330 RMZE and HRZE) and outputs a set of optimized regimens that belong to the Pareto set 

331 (i.e., optimal doses) (Fig 7A-E, red dots). 

332 Fig 7. Pareto front optimization study simulating all 4-way combinations of HRZEM to find regimens 
333 that minimize both average sterilization time and total dose. Pareto front optimization identifying 
334 optimal dose and sterilization times for: (A) HRZM, (B) HRME, (C) HMZE, (D) RMZE and (E) HRZE. In 
335 each panel (A-E), red dots represent the (non-dominating) regimens that belong to the Pareto set (see S2-6 
336 Tables for the doses of each antibiotic in the regimens that belong to Pareto sets) whereas black dots are 
337 the regimens that are not optimal based on the objectives. Green dots show the regimen based on the 
338 current standard doses recommended by CDC [4]. (F) Pareto sets for all regimens (same as red dots in 
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339 panels A-E) compared to the standard regimen HRZE with CDC-recommended doses (X in Panel F). Dots 
340 in the dashed gray rectangle indicate the regimens that have lower total drug dose and lower average 
341 sterilization times (see Table 2 for the doses of each antibiotic in these regimens). Triangles indicate 
342 optimized regimens with 3-way combinations, as the optimal doses of one antibiotic (E or Z) in these 
343 regimens are predicted as 0.
344

345 In general, regimens that simulations identify as optimal (i.e., regimens in the 

346 Pareto set) span a wide range of total dose and average sterilization times. This suggests 

347 that among optimized regimens, some have very low average sterilization times at the 

348 cost of a very high antibiotic dose and some regimens have a very low total dose leading 

349 to long sterilization times. However, we are particularly interested in optimized regimens 

350 that have both lower total dose and lower average sterilization times as compared to 

351 standard regimen (HRZE with CDC-recommended doses). Our method predicts that the 

352 19 regimens in the dashed gray rectangle (Fig 7F) are all more advantageous than the 

353 standard regimen (black dot in Fig 7F) in terms of reducing both total dose and sterilization 

354 time. These regimens tend to have higher doses of rifampicin than the standard regimen 

355 yet lower total regimen dose (Table 2), resulting in shorter sterilization times, which is in 

356 line with clinical trials that showed a reduction in time to culture conversion using higher 

357 doses of rifampicin [54, 55]. Based on our earlier results, it is not surprising that these 

358 optimized regimens mostly contain moxifloxacin (Table 2). This is also expected based 

359 on clinical studies where moxifloxacin-containing regimens sterilize granulomas more 

360 efficiently (c.f. Fig 2). Further, although most of these optimal regimens contain four 

361 antibiotics, our pipeline also predicted a few optimal combinations with less than four 

362 antibiotics (see triangles in the rectangle region of Fig 7F; rows labeled with triangles in 

363 Table 2). (Our pipeline predicts the ethambutol optimal dose as 0 for HRME and RMZE 

364 regimens and the pyrazinamide optimal dose as 0 for RMZE, thus identifying HRM, RMZ 
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365 and REM as additional optimal regimens). This agrees with our systematic study of all 

366 possible combinations that determined HRM, RZM and REM as more efficient regimens 

367 than the standard regimen HRZE (c.f. Fig 6). Our optimization approach provides a more 

368 efficient way to identify regimens with different combinations of antibiotics than is possible 

369 in clinical or experimental studies.

370 Table 2. Simulated Doses of Antibiotics that optimize treatment objectives (compare with Fig 7). The 
371 doses for each antibiotic in the regimens that have lower average sterilization time and lower dosage than 
372 the standard regimen (black row) as shown in Fig 7F (i.e., all regimens in dashed gray rectangle). Optimized 
373 doses for HMZE, RMZE, HRME, HRZM and HRZE are color-coded as blue, brown, yellow, purple and 
374 green, respectively. The rows labeled with a triangle indicate optimal 3-way combinations, where the 
375 optimal dose of E or Z is predicted as 0.

Avg Sterilization Time (days) Total dose (mg/kg) H R Z E M

33.6 60 5 10 25 20 0

5.1 55.2 6.1 20.0 0 16.8 12.3

5.5 53.4 7.5 13.9 0 19.7 12.3

6.1 40.8 9.0 11.3 0 7.2 13.3

6.7 37.0 8.8 19.7 0.6 0 7.9

7.5 29.6 5.5 10.1 0 0 14.0

8.6 36.4 1.3 16.0 9.0 0 10.1

8.7 32.3 8.7 7.7 5.1 0 10.8

8.8 47.2 0 18.4 16.0 4.1 8.7

9.2 30.1 10 9.7 3.9 0 6.5

9.3 52.2 8.7 0 31.2 0.5 11.8
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 9.5 23.4 6.7 9.2 0 0 7.5

10.6 45.4 0 9.2 26.9 0 9.3

10.9 51.3 9.8 0 18.7 12.9 9.9

11.0 28.4 0 13.3 2.6 1.0 11.5

13.8 21.1 8.2 0 2.6 1.0 9.3

17.3 23.0 0 12.7 0 2.5 7.8

20.5 16.4 9.1 0.9 1.2 0 5.2

27.3 38.7 4.7 19.0 14.2 0.8 0

29.7 16.8 5.4 5.1 0 3.1 3.2

376

377 Discussion

378 One of the strategies to improve TB treatment regimens is to shorten treatment duration 

379 by introducing or substituting newer antibiotics that have better bactericidal activities than 

380 those in the current standard regimen (HRZE), for example, by considering bedaquiline, 

381 pretomanid, linezolid [56] or moxifloxacin [33]. To this end, clinical trials [33, 41, 43] and 

382 also in vivo studies with mice [39, 40, 44] have been conducted to explore a moxifloxacin-

383 containing regimen that decreases treatment duration. In this study, we employ three 

384 unique approaches to predict more patient-friendly treatment regimens for TB: replacing 

385 antibiotics in the standard regimen with moxifloxacin in vivo and in silico, reducing the 
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386 total number of antibiotics in a regimen by scanning all regimen combinations in silico, 

387 and reducing the total dosage using an in silico drug optimization pipeline. 

388 Previously, we explored regimens with and without moxifloxacin in our simulation 

389 framework, GranSim, to compare with early-phase clinical trials [57]. However, this is the 

390 first study that directly compares TB treatment simulations using GranSim to a phase 3 

391 clinical trial (REMoxTB [33]) (Fig 2). We also perform NHP studies with promising 

392 regimens predicted by GranSim. (Figs 3 and 4). Different from our previous studies, we 

393 systematically analyzed all possible combinations with or without moxifloxacin and 

394 employed a new optimization pipeline to identify optimal regimens that sterilize 

395 granulomas more efficiently than HRZE. 

396 Previous clinical trials concluded that both 4 months of HRZM treatment and 4 

397 months of RMZE had better bactericidal activity than the control group (HRZE) based on 

398 the conversion to culture negativity status of the patients (Fig 2A) [33]. In our simulations, 

399 we observe a similar trend as in the clinical trial in terms of bactericidal activity: HRZM 

400 and RMZE groups are more effective in reducing bacterial load and sterilizing granulomas 

401 than the control group (Fig 2B and C). Although the measures of the clinical trial and our 

402 simulations are at different scales (host-scale measures in clinical trials and granuloma-

403 scale measures in simulations), both studies support that moxifloxacin is a promising 

404 regimen.

405 NHP experiments with standard and moxifloxacin-containing regimens indicate 

406 that all regimens reduce the total CFU of NHPs (Fig 3D) by sterilizing the majority of NHP 

407 granulomas (Fig 3E and S5 Fig). Furthermore, granuloma metabolic activity (surrogate 

408 for inflammation) drops by treatment with HRZE and HMZE only, while RMZE does not 
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409 affect the metabolic activity. These outcomes are in agreement with our simulations; 

410 however, simulations predict that RMZE is equally effective as HMZE in sterilizing 

411 granulomas and reduces metabolic activity. This difference may stem from the small 

412 sample size in NHP studies but likely also is due to in vivo factors that are not included 

413 within GranSim. In addition, the surrogate measures used for FDG avidity in granulomas 

414 are only an approximation of the factors involved in in vivo FDG avidity. Using GranSim, 

415 we simulated 200 distinct granulomas per regimen. However, due to resource limitations, 

416 sample sizes were necessarily smaller in the NHP studies, and RMZE has the smallest 

417 sample size with only 2 animals. Moreover, unlike in silico studies where we simulate 

418 treatment with the same set of granulomas over various regimens, in vivo studies require 

419 different sets of animals to test regimens, and the outbred nature of macaques adds 

420 another level of variability, although this is also true in humans. 

421 To test the efficacy of moxifloxacin-containing regimens more systematically and 

422 to potentially reduce the number of antibiotics needed per regimen, we simulated the 

423 treatment of low- and high-CFU granulomas with all 4-way (Fig 5), 3-way (S3 Fig) and 2-

424 way (S4 Fig) combinations of HRZEM. In this study, we conclude that any 4-way, 3-way 

425 or 2-way (except EM) combinations that include moxifloxacin are more efficacious in 

426 eliminating bacteria within low-CFU granulomas than HRZE (Fig 6B). However, only 4-

427 way combinations and some of the 3-way combinations work better than HRZE for 

428 treating high-CFU granulomas (Fig 6A). This suggests that decreasing the number of 

429 antibiotics within a regimen may be challenging when treating more progressive, caseous 

430 granulomas with the 5 drugs in this study, whereas granulomas with lower CFU numbers 

431 are easier to treat with fewer antibiotics.
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432 Most of the regimens that are 2-, 3- or 4-way combinations of HRZEM consistently 

433 decrease the fraction of granulomas remaining unsterilized over the course of the 

434 treatment and, subsequently, clear them all (Fig 5A-C, S3A-C Fig, S4A-C Fig). However, 

435 some regimens cannot sterilize further, i.e., fraction of unsterilized granulomas stays the 

436 same over a prolonged treatment time, (especially high-CFU granulomas). This may 

437 follow as high-CFU granulomas are mainly caseous with bacteria trapped within that 

438 region. It is known that moxifloxacin does not homogeneously diffuse into the caseous 

439 core of granulomas [5, 58]. Therefore, a regimen containing moxifloxacin needs to be 

440 complemented with antibiotics that are effective in killing Mtb trapped within caseum of 

441 granulomas, unlike ethambutol (E) [59, 60] or pyrazinamide (Z) [20, 59]. Treatment of 

442 high-CFU granulomas with ZM or EM decreases the bacterial load initially, but eventually 

443 results in granulomas with primarily Mtb in caseum (S6 Fig) that could not be sterilized by 

444 prolonged treatments with ZM (S6A Fig) or EM (S6B Fig). This suggests that ZM or EM 

445 treatments may result in granulomas that harbor bacteria that could later lead to relapse 

446 disease [61]. Although treatment with EM or ZM could not sterilize all high-CFU 

447 granulomas, 20% and 40% of high-CFU granulomas are cleared by EM and ZM 

448 treatment, respectively (S4A Fig). 

449 Another novel approach introduced in this study is implementing an optimization 

450 pipeline into GranSim to optimize doses of the drugs within regimens using a multi-

451 objective optimization algorithm. Previously, we studied optimization in GranSim by 

452 comparing genetic algorithm and radial basis function (RBF) network surrogate models 

453 and showed that using an RBF network method is more efficient in optimizing drug 

454 regimens without losing accuracy [37]. However, the RBF network method is based on 
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455 minimizing one objective function that may consist of various weighted terms, depending 

456 on the objectives we consider in order to discover a better regimen. A Pareto set is a set 

457 of solutions that is used to minimize multiple objectives with varying levels of importance. 

458 Therefore, determining the Pareto front with a single objective function would require 

459 many iterations of optimization to obtain a wide-ranging Pareto set [62]. Thus, multi-

460 objective Pareto optimization is a more efficient approach to discover the optimal solution 

461 set.

462 To successfully optimize the doses of a regimen, it is crucial to have well defined 

463 objectives based on the factors that we would like to consider in a regimen. In this study, 

464 we assumed that the total dosage of a regimen, independent of the antibiotic, should be 

465 minimal. Moreover, the regimen should sterilize granulomas as quickly as possible. 

466 However, we can modify these objectives or add additional ones to obtain more 

467 biologically relevant optimized regimens. For instance, each antibiotic has different levels 

468 of adverse side effects and high doses should be avoided. Moreover, financial burden of 

469 each regimen should also be considered in order to identify more accessible treatments 

470 worldwide. 

471 Computational modeling studies have many advantages that are useful for drug 

472 discovery studies and that complement experimental studies. Unlike clinical trials and in 

473 vivo experiments, our computational approach has the power to evaluate the efficacy of 

474 regimens on the same set of granulomas to eliminate the variability. Moreover, due to 

475 limited resources, trying every single regimen combination in vivo experimentally or 

476 clinically, or repeating the experiment many times to achieve significance may not be 

477 feasible. Hence, promising regimens may be skipped or missed due to nonsignificant 
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478 results. Here, we predicted new and promising combination regimens that have not yet 

479 been studied clinically, such as HMZE that informed our NHP studies and was predicted 

480 to be an effective regimen via our simulations. Another drawback of clinical and in vivo 

481 studies is the risk of disease relapse. To assess the relapse rate after treatment, study 

482 subjects are observed for several months. Unlike experiments, we can track each Mtb 

483 bacilli in our simulations that gives us the power to anticipate relapse at the end of the 

484 treatment based on the sterilization status. Having unsterilized granulomas at the end of 

485 treatment is predictive of TB relapse. 

486 One limitation of our approach is that our model is at granuloma-scale. However, 

487 predicting the relapse rates requires a host-scale model.  Additionally being able to treat 

488 a collection of granulomas within a host can serve to elaborate further the studies herein. 

489 The source of relapse is not fully understood. One hypothesis suggests that bacteria 

490 within granulomas in lymph nodes could migrate to the lungs and induce reinfection or 

491 reactivation [63]. Therefore, a host-scale immune model of TB that contains multiple 

492 granulomas within lungs and lymph nodes is needed to assess regimens’ long-term 

493 efficacy and to determine relapse rates, which are crucial parameters to evaluate 

494 regimens efficiently, and we are currently adapting our host-scale TB model, HostSim [46, 

495 64], to encompass antibiotics and meet this need. These next-generation improvements 

496 will make our approach more powerful and reliable, so that in vivo experiments or clinical 

497 trials can be systematically informed by simulation results.

498

499 Methods
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500 We combined computational modeling with studies in NHPs, outlining the approaches for 

501 each below. We point out where modifications to existing protocols and models have 

502 changed in the next-generation versions used herein.

503 GranSim 

504 As a basis for studying treatment at the granuloma scale, we used our well-established 

505 computational model of granuloma formation and function, GranSim. GranSim is a hybrid 

506 agent-based model (ABM) that simulates the immune response during Mtb infection, 

507 capturing granuloma formation as an emergent behavior [6, 65-68]. Agents in this ABM 

508 include immune cells, such as macrophages and T-cells, and individual bacteria. 

509 GranSim simulates a two-dimensional section of lung tissue (6mm x 6mm) represented 

510 by dissecting a 300 x 300 grid into 90,000 grid microcompartments, each of size 20µm. 

511 Simulations begin with a single infected macrophage in the center of the grid that initiates 

512 recruitment of additional macrophages and T cells to the infection site. These immune 

513 cells interact with each other and with Mtb according to a large set of immunology-based 

514 rules that describe killing of Mtb, secretion of chemokines/cytokines, and activation and 

515 movement of cells (for a complete description of our rules, see 

516 http://malthus.micro.med.umich.edu/GranSim/). Granulomas “emerge” as a result of 

517 these interactions when simulating GranSim.  Infection is initiated with a single bacterium.

518 NHPs are highly informative animal models for TB, as TB disease and pathology, 

519 including granulomas, are similar to humans [69]. The immunological rules and cellular 

520 behaviors included in GranSim are based on datasets derived from NHP granulomas [65, 

521 66, 68]. Moreover, we validate and calibrate GranSim granulomas to both spatial and 

522 temporal datasets from NHP granulomas, including immune cells (macrophages and T 
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523 cells) and Mtb counts and the spatial distribution of cell types within a granuloma [30, 50, 

524 70]. GranSim simulates a broad range of biologically relevant outcomes that can recreate 

525 the heterogeneity of observed granulomas from NHPs and humans [66, 71] .

526 Antibiotics may have bactericidal (bacterial killing) or bacteriostatic (inhibition of 

527 bacterial growth) effects. To capture the actions of these drugs on bacteria, tracking the 

528 individual bacteria within the granuloma is key [72]. To mimic that of actual infection, we 

529 simulate three distinct subpopulations of Mtb based on their location within granulomas: 

530 replicating-extracellular Mtb, intracellular Mtb that reside and replicate within 

531 macrophages, and Mtb that are trapped within the caseous necrotic core. These caseum-

532 trapped bacteria have varying growth rates depending on the level of tissue caseation. 

533 These subpopulations differ in their abilities to replicate and move within a granuloma. 

534

535 Latin Hypercube Sampling (LHS)

536 LHS is a parameter-sampling method that samples the parameter space without 

537 replacement and covers the parameter space more uniformly than a simple random 

538 sampling. It is done by dividing each parameter distribution into N equal probability 

539 intervals and sampling from these intervals to generate N distinct parameter sets and 

540 identify epistemic uncertainty [48, 73, 74]. We used this method to generate an in silico 

541 library of granulomas in GranSim. If the system under study, as is ours, has stochastic 

542 components, it is necessary to do replicates (we choose 3) of each of the N runs to 

543 capture the aleatory uncertainty within as well (c.f. [48]). These samplings capture both 

544 epistemic and aleatory uncertainty that arise in parameter sets.

545
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546 Pharmacokinetic/pharmacodynamic (PK/PD) modeling

547 We have used GranSim previously to simulate the PK/PD of antibiotic drug treatment for 

548 TB. Specifically, we can simulate the spatial distribution of antibiotics and their sterilizing 

549 ability for different antibiotic regimens [5, 6, 8, 38].

550 Briefly, the PK/PD model within GranSim simulates the plasma concentration over 

551 time following oral doses of antibiotics, the subsequent spatial concentration in the 

552 simulated granuloma and the bactericidal activity based on the local concentration. We 

553 modeled the plasma PK using a compartmental, ordinary differential equation model to 

554 simulate absorption through transit compartments into the plasma, exchange with 

555 peripheral tissue and first-order elimination from the plasma [6, 22]. To simulate tissue 

556 PK, we referenced the concentration in the plasma and calculated flux through vascular 

557 sources on the computational grid, diffusion through tissue, binding to caseum and 

558 epithelium and partitioning into macrophages [6, 8, 38, 75].

559 We modeled the PD by using a Hill function that determines the concentration (C) 

560 dependent antibiotic killing rate constant (k), which is the rate of bacterial death per time 

561 step [76]. The general form of the Hill curve we use is:

562 𝑘(𝐶) = 𝐸𝑚𝑎𝑥
𝐶ℎ

𝐶ℎ + 𝐶50
ℎ                                                                                                     (Eq.1)

563 where Emax is the maximum killing rate constant, h is the Hill coefficient and C50 is the 

564 concentration needed to achieve the half maximal killing rate constant (Emax/2). For each 

565 antibiotic, we calibrated the parameters of the Hill curve (Emax, C50 and h) for intracellular, 

566 replicating-extracellular and caseum Mtb separately, as the pharmacodynamics of 

567 antibiotics are different in these subpopulations. The calibration is based on bactericidal 

568 assays of infected macrophages [18, 19, 77-79], Mtb in rich growth media [18, 19, 77-79] 
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569 and Mtb in caseum mimic [20], for intracellular, replicating-extracellular and Mtb in 

570 caseum, respectively. 

571 In this study, we used the effective concentration of each antibiotic (C) as the total 

572 concentration in each grid compartment rather than the free concentration, i.e., the 

573 extracellular concentration that is not bound to any macromolecules or any tissue, as we 

574 calculated in our previous studies [8, 57]. We made this change as the bactericidal assays 

575 we reference are based on the total concentration applied to the Mtb in vitro [20].

576

577 Accounting for pharmacodynamic drug interactions in the model 

578 When multiple antibiotics are used and thus present and available on our simulation grid 

579 within GranSim, we simulate their interaction by adjusting the effective concentration 

580 according to their predicted fractional inhibitory concentration (FIC) values, as we have 

581 done previously [57]. We use the FIC values predicted by an in silico tool, INDIGO-MTB 

582 (inferring drug interactions using chemogenomics and orthology optimized for Mtb) [31, 

583 32]. This tool employs a machine learning algorithm that uses known drug interactions 

584 along with drug transcriptomics data as inputs and predicts unknown drug interactions, 

585 i.e., FICs. 

586 Briefly, we first converted the concentrations of all antibiotics on a small section of 

587 the grid (microgrid) to the equipotent concentration of the antibiotic of the highest maximal 

588 killing rate constant (highest Emax). For example, if we have two antibiotics (drug 1 with 

589 the concentration C1 and drug 2 with the concentration C2) and drug 1 has a higher Emax, 

590 then we calculate the adjusted concentration for drug 2 (C2,adj), which is the concentration 
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591 of drug 1 that results in the same antibiotic killing rate constant as drug 2 with the 

592 concentration of C2, with the following equation:

593 𝐶1 = 𝐶2,𝑎𝑑𝑗 = ( 𝐶1,50
ℎ1𝐶2

ℎ2

𝐸𝑚𝑎𝑥,1
𝐸𝑚𝑎𝑥,2

(𝐶2
ℎ2 + 𝐶2,50

ℎ2) ― 𝐶2
ℎ2)1 ℎ1

                                                                 (Eq.2)

594 where C1,50 and C2,50 are the concentration of C1 and C2 at which half maximal killing is 

595 achieved, respectively, Emax,1 and Emax,2 are the maximal killing rate constants of drug 1 

596 and drug 2, respectively, and h1 and h2 are the Hill coefficients of drug 1 and drug 2, 

597 respectively. Then, we calculated the effective concentration (Ceff) as the sum of the 

598 adjusted concentrations of n antibiotics that are increased/decreased based on the FIC 

599 values (see S1 Table for a complete list of FIC values) to simulate synergistic/antagonistic 

600 effects with the following equation:

601 𝐶𝑒𝑓𝑓 = (∑𝑛
𝑖=1 𝐶𝑖,𝑎𝑑𝑗

𝐹𝐼𝐶)1 𝐹𝐼𝐶                                                                                         (Eq.3)

602 where Ci,adj is the adjusted concentration of the drug i. Then, we used Ceff to calculate the 

603 antibiotic killing rate constant k on that microgrid by using the Hill equation constants of 

604 the antibiotic with the highest Emax:

605 𝑘(𝐶𝑒𝑓𝑓) = 𝐸𝑚𝑎𝑥
𝐶𝑒𝑓𝑓

ℎ

𝐶𝑒𝑓𝑓
ℎ + 𝐶50

ℎ                                                                                            (Eq.4)

606 where Emax, h and C50 are the Hill equation parameters of the antibiotic with the highest 

607 Emax within the regimen.

608

609 Simulating antibiotic regimens in GranSim 

610 We calibrated plasma and tissue PK parameters for isoniazid, rifampicin, pyrazinamide 

611 and moxifloxacin based on human data [21] and the parameters for ethambutol from 
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612 rabbit samples [60] as human data are not available for this antibiotic. We also utilized 

613 MALDI-MS images from human [21] and rabbit [58, 60] samples that show the spatial 

614 distribution of antibiotics within granulomas as a validation for our tissue PK calibration. 

615 We simulated regimens on 200 randomly selected granulomas from our in silico 

616 granuloma library (100 low CFU and 100 high CFU granulomas). We employed different 

617 dosing protocols based on the studies shown in Table 1. First, we simulated the protocols 

618 for the REMoxTB clinical trial [33] using GranSim. There were 3 different groups in this 

619 study: control group (HRZE), HRZM group and RMZE group. To simulate the control 

620 group, we dosed granulomas with HRZE daily for 8 weeks, followed by 18 weeks of daily 

621 dosing of HR. We simulated HRZM and RMZE groups by dosing granulomas for 17 weeks 

622 daily with HRZM and RMZE, respectively, followed by 9 weeks of a placebo phase, i.e., 

623 9 weeks of no antibiotics (Table 1).

624 To compare our results to NHP studies performed herein, we simulated the 

625 regimens HRZE, HMZE and RMZE for 60 days by dosing daily. We also simulated a 

626 positive control case with the same granulomas but with no antibiotics (Table 1). 

627 Additionally, we simulated all 2-way, 3-way and 4-way combinations of HRZEM until all 

628 granulomas sterilize or reach a stable state, i.e., until the fraction of granulomas that are 

629 not sterilized doesn’t change significantly over time (120 days for 4-way combinations (5 

630 regimens), 220 days for 3-way combinations (10 regimens), 300 days for 2-way 

631 combinations (10 regimens)) (Table 1).

632

633 Average sterilization time measurement
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634 A regimen’s efficacy depends on how fast it can clear all Mtb within a granuloma. 

635 Therefore, we measured the average time a regimen needs to clear a granuloma, i.e., 

636 average sterilization time, as a way to assess regimens’ potency. The average 

637 sterilization time of a regimen i (𝑡𝑠𝑡𝑒𝑟𝑖) is

638 𝑡𝑠𝑡𝑒𝑟𝑖 =
∑𝑛

𝑘=1 𝑡𝑠𝑡𝑒𝑟𝑖𝑘

𝑛
                                                                                                         (Eq.5)

639 where n is the number of granulomas treated by i and 𝑡𝑠𝑡𝑒𝑟𝑖𝑘
 is the time that granuloma k 

640 is treated with i until total Mtb within k is zero. If a granuloma k is not sterilized by a 

641 regimen i at the end of the treatment, then we assign 𝑡𝑠𝑡𝑒𝑟𝑖𝑘
= 𝑡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 where 𝑡𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 is 

642 the duration of the treatment.

643

644 NHP granuloma FDG avidity measurement in GranSim

645 Positron Emission Tomography and Computed Tomography (PET-CT) scans are used to 

646 measure metabolic activity of granulomas within NHP by quantifying the uptake of a 

647 glucose analog FDG (2-deoxy-2-[18F]-fluoro-D-glucose) via a measure called SUVR 

648 (standardized uptake value ratio) [51]. As a proxy for capturing the SUVR per granuloma 

649 from NHP experiments within our computational model, we developed a surrogate 

650 measurement in GranSim that combines the amount of proinflammatory activity derived 

651 from both tumor necrosis factor (TNF) with activity of proinflammatory cells (such as 

652 activated T cells and macrophages) that we define as FDG avidity. This is a way to 

653 represent the metabolic activity in the in silico granulomas. Specifically, we calculate FDG 

654 avidity measure for each granuloma, i as:

655 𝐹𝐷𝐺 𝑎𝑣𝑖𝑑𝑖𝑡𝑦𝑖 = ∑𝑛
𝑘=1 (𝑇𝑁𝐹𝑘 + 𝑀𝑟𝑘 + 4𝑀𝑖𝑘 + 9𝑀𝑐𝑖𝑘 + 6𝑀𝑎𝑘 + 3𝑇𝑔𝑎𝑚𝑘 + 3𝑇𝑐𝑦𝑡𝑘

)             (Eq.6)
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656 where n is the number of grid microcompartments of the agent-based model grid in a 

657 simulation, TNFk is the TNF concentration within the microgrid k in pg/ml (with an upper 

658 bound as 30 pg/ml), 𝑀𝑟𝑘, 𝑀𝑖𝑘, 𝑀𝑐𝑖𝑘, 𝑀𝑎𝑘, 𝑇𝑔𝑎𝑚𝑘and 𝑇𝑐𝑦𝑡𝑘 are the number of resting 

659 macrophages, infected macrophages, chronically infected macrophages, active 

660 macrophages, IFN-γ producing T cells and cytotoxic T cells at microgrid k, respectively 

661 (see S1 Fig for the visualization of FDG avidity in GranSim and see 

662 http://malthus.micro.med.umich.edu/GranSim/ for more information about the roles of 

663 each cell type). The weights that each cell type contributes to the FDG avidity on a grid 

664 is determined based on the assumed inflammatory responses each cell type creates 

665 based on their in vivo activity. Because we do not know all factors or cells that contribute 

666 to the SUVR, we use levels of TNF (an inflammatory marker) as a surrogate to represent 

667 contributions from other cells to the metabolic activity within a granuloma

668

669 Objective functions for regimen optimization

670 We use two objective functions to be minimized, the average sterilization time (described 

671 above) and the total normalized dose (d). We define the total normalized dose d as 

672 𝑑(𝑥) = ∑𝑛
𝑘=1

𝐷𝑖

𝐷𝑖𝑚𝑎𝑥

,                                                                                                       (Eq.7) 

673 where k is the number of antibiotics in the regimen x, Di stands for the dose of the 

674 individual antibiotic i, and 𝐷𝑖𝑚𝑎𝑥 is the maximum allowed dose in our simulations. 

675 Minimizing drug dose will decrease potential side effects.  In our optimization pipeline, we 

676 aim to find the regimens that minimize both objective functions.

677 The sampling ranges for each dose variable were set to range from 0 mg/kg to 

678 double the standard CDC dose [4]. Maximum safe doses for each antibiotic were set to 
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679 10, 20, 40, 50 and 14 mg/kg for H, R, E, Z and M, respectively, as higher doses would 

680 increase the risk of toxicity and would not be clinically relevant [54, 80-83].

681

682 Kriging-based surrogate model

683 The goal of a multi-objective optimization is to find the optimal trade-off between two or 

684 more objectives by identifying the optimal variable combinations [84]. For example, in this 

685 study the goal is to both minimize time to sterilization and drug doses between multiple 

686 drugs. Using a surrogate-assisted framework involves predicting the objective functions 

687 based on the outcomes of the already-sampled regimens. These predictions can then be 

688 used as a computationally inexpensive alternative to predict the objective functions 

689 throughout the whole design space. 

690 Here, we use a kriging-based surrogate model to generate the objective function 

691 predictions. This kriging-based prediction and optimization algorithm is based on a set of 

692 open-source MATLAB functions developed by Forrester and Sóbester [62, 85]. This 

693 surrogate-assisted framework provides an efficient and accurate way to thoroughly 

694 investigate the regimen design space and predict optimal doses but with few iterations as 

695 compared to, for example, a genetic algorithm [37]. Based on the sampled regimens and 

696 the calculated values of the corresponding objective functions, the algorithm builds a 

697 kriging-based, surrogate model to predict the values of the objective functions at any point 

698 in the variable design space. 

699 The kriging model operates by assuming that the value of a function f of n variables 

700 at any n-dimensional vector x can be stated as the sum of some unknown mean (μ) and 

701 an error term that is a function of position 𝝐(x) [86]:
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702 𝑓(𝑥) = 𝜇 +∈ (𝑥)                                                                                                            (Eq.8)

703 We also assume that the error term 𝝐(x) is normally distributed with a mean of 0 and a 

704 standard deviation of 𝛔2. To provide an estimate for the error at any given x, we assume 

705 the errors at two points are correlated based on the distance between those two points. 

706 This means points that are closer in the variable space tend to be more related and have 

707 smaller variance than those that are farther. Hence, the correlation in error between points 

708 i and j, equal to component Rij in the correlation matrix R, exponentially decays with 

709 respect to the weighted distance between them:

710 𝑅𝑖𝑗 = 𝐶𝑜𝑟𝑟[ ∈ (𝑥(𝑖)), ∈ (𝑥(𝑗))] = 𝑒𝑥𝑝[ ― ∑𝑛
ℎ=1 𝜃ℎ|𝑥(𝑖)

ℎ ― 𝑥(𝑗)
ℎ |𝑝ℎ] (𝜃ℎ ≥ 0,𝑝ℎ ∈ [1,2])      (Eq.9)

711 where θh and ph are correlation parameters. Here, the correlation varies between 0 and 1 

712 for the farthest and closest points, respectively. The aim in this optimization algorithm is 

713 to estimate the parameters μ, 𝞼2, θh and ph   for h=1,..,n that maximizes the likelihood 

714 function L:

715 𝐿 =
1

(2𝜋𝜎2)𝑘 2|𝑹|1 2𝑒𝑥𝑝[ ― (𝒚 ― 𝟏𝜇)′𝑹―1(𝒚 ― 𝟏𝜇)

2𝜎2 ]                                                                    (Eq.10)

716 where y is a vector of length k with the values of the observed data at each of the sample 

717 points. By varying θh and ph to find their optimal values that maximizes the likelihood 

718 function L, we can calculate μ and 𝞼2 and, hence, can predict the value of f at any point 

719 x. 

720

721 Pareto optimization

722 For multi-objective optimization goals, there may be a trade-off between different 

723 objectives. For example, increasing the dose of each antibiotic in a regimen to the 

724 maximal dose would result in a minimal sterilization time at the cost of a very high dose, 
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725 which may lead to severe side effects. Similarly, a very low dose would minimize the total 

726 dose of a regimen; however, the granuloma would sterilize slowly, if at all. Both solutions 

727 are a part of a Pareto set, which contains (non-dominated) optimal solutions using 

728 different weights on the objectives. Therefore, we need to derive compromised solutions, 

729 deciding weights between the objectives within the algorithm (see S1 Appendix and S2 

730 Fig for a detailed description of a Pareto set). By using the predicted objective functions, 

731 our algorithm selects a new regimen that maximizes the likelihood of expected 

732 improvement of the Pareto set. Specifically, the expected improvement criterion seeks 

733 the regimen(s) that maximize(s) the expected distance from the points currently in the 

734 Pareto front and lies in the blue shaded area in S2 Fig, where new solutions would 

735 dominate the current Pareto set [62, 87].

736

737 Optimization pipeline in GranSim

738 Our optimization pipeline started with exploring an initial set of 40 regimens for each set 

739 of 4-way combinations (HRZE, HRZM, RMZE, HMZE, HRME). We generated these 40 

740 regimens using the LHS sampling scheme for the parameter space of doses for each 

741 individual antibiotic. These were varied between 0 to the double of the standard CDC 

742 dose [4], i.e., 10, 20, 50, 40 and 14 for H, R, Z, E and M, respectively. For each regimen, 

743 we simulated 30 granulomas (15 high-CFU and 15 low-CFU granulomas) each for 180 

744 days (Table 1) and averaged their sterilization times to evaluate the objective function for 

745 each regimen. Then, by using the multi-objective surrogate-assisted optimization 

746 algorithm, we predicted the objective functions and one regimen that is expected to 

747 improve the current Pareto set. We simulated this new regimen using GranSim on the 30 
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748 total high- and low-CFU granulomas. This iterative process continued for 20 iterations, 

749 and one optimal regimen was simulated at the end of each iteration. At the end of this 

750 pipeline, we computed the Pareto front, i.e., the optimal non-dominating regimens.

751

752 Nonhuman primate model for in vivo regimen experimental studies 

753 Nine male Chinese cynomolgus macaques (Macaca fascicularis) (4-7 years of age) were 

754 dedicated to this study and were infected with virulent M. tuberculosis strain Erdman (8-

755 21 CFU) via bronchoscopic instillation into a lower lobe. Three months post-infection, drug 

756 treatment was initiated and continued for 2 months, then the animals were necropsied. 

757 Animals were monitored daily for appetite and behavior and monthly for weight and 

758 erythrocyte sedimentation rate (a sign of inflammation). Gastric aspirate and BAL 

759 samples were cultured for Mtb to assess disease progression. An additional seven 

760 cynomolgus macaques (2 males, 3 females, 5-9 years of age, infected with Mtb Erdman) 

761 from a concurrent study were included here as historical untreated controls and 

762 necropsied 5 months post-infection. 

763 Drug treatments were 1. isoniazid (H), rifampicin (R), pyrazinamide (Z) and 

764 ethambutol (E) (HRZE, N=3); 2. isoniazid (H), moxifloxacin (M), pyrazinamide (Z) and 

765 ethambutol (E) (HMZE, N=4); or 3. rifampicin (R), moxifloxacin (M), pyrazinamide (Z) and 

766 ethambutol (E) (RMZE, N=2). Drug dosing as follows: H: 15 mg/kg; R: 20 mg/kg; Z: 150 

767 mg/kg; E 55 mg/kg; M: 35 mg/kg. Drugs were provided daily in treats or by gavage. 

768 Macaques were treated for 2 months, and drugs were stopped one day before 

769 necropsy.  See Table 1 for a list of treatment protocols.
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770 18F-fluorodeoxyglucose (FDG) PET-CT imaging was performed prior to treatment 

771 initiation and at 4- and 8-weeks post-treatment initiation. FDG is a glucose analogue, 

772 which is preferentially taken up by and retained in metabolically active cells and thus is 

773 useful as a proxy for inflammation. FDG uptake was quantified using the peak standard 

774 uptake value (SUV) associated with each granuloma, as previously described [51].

775 Detailed necropsies were performed using the final PET-CT scan as a map to 

776 isolate all lesions (granulomas, consolidations, etc.), uninvolved lung lobe samples, all 

777 thoracic lymph nodes, peripheral lymph nodes, spleen and liver. All samples were plated 

778 individually for Mtb on 7H11 plates, incubated for 3 weeks in a 5% C02 incubator. 

779 Bacterial burden for each sample was calculated based on colonies counted on plates. 

780 Sum of all samples in thoracic cavity (lung, granulomas, lymph nodes) is reported as total 

781 thoracic CFU; total lung and total thoracic LN are also calculated.

782
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