

1 Optimizing tuberculosis treatment efficacy: comparing the

2 standard regimen with Moxifloxacin-containing regimens

3

4 Maral Budak¹, Joseph M. Cicchese², Pauline Maiello³, H. Jacob Borish³, Alexander G.
5 White³, Harris B. Chishti³, Jaime Tomko³, L. James Frye³, Daniel Fillmore³, Kara
6 Kracinovsky³, Jennifer Sakal³, Charles A. Scanga³, Philana Ling Lin³, Véronique
7 Dartois^{4,5}, Jennifer J. Linderman², JoAnne L. Flynn³, Denise E. Kirschner^{1*}

8

9 ¹ Department of Microbiology and Immunology, University of Michigan Medical School,
10 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620

11 ² Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800
12 Plymouth Rd, Ann Arbor, MI 48109-2136

13 ³ Department of Microbiology and Molecular Genetics and Center for Vaccine Research,
14 University of Pittsburgh School of Medicine, Pittsburgh, PA 15261.

15 ⁴ Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way,
16 Nutley, NJ 07110, USA

17 ⁵ Department of Medical Sciences, Hackensack Meridian School of Medicine,
18 Interprofessional Health Sciences Campus, 123 Metro Boulevard, Nutley, NJ 07110, USA

19

20 * Corresponding Author:

21 Denise E. Kirschner, Department of Microbiology and Immunology, University of Michigan
22 Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI
23 48109-5620, kirschne@umich.edu

24 **Author summary**

25 Tuberculosis (TB) is a top global health concern and treatment for TB requires multiple
26 antibiotics taken for long periods of time, which is challenging for TB patients. Therefore,
27 identifying regimens that are more effective and more patient-friendly than the standard
28 treatment is urgently needed. It is also known that non-compliance leads to the
29 development of drug resistant TB. In this work, we pair computational and experimental
30 models to predict new regimens for the treatment of TB that optimize how fast bacteria
31 are cleared using minimal dosage. We apply novel approaches to this goal and validate
32 our predictions using a non-human primate model. Our findings suggest that systems
33 pharmacological modeling should be employed as a method to narrow the design space
34 for drug regimens for tuberculosis and other diseases as well.

35

36 **Abstract**

37 Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world,
38 causing ~1.5 million deaths every year. The World Health Organization initiated an *End*
39 *TB Strategy* that aims to reduce TB-related deaths in 2035 by 95%. Recent research
40 goals have focused on discovering more effective and more patient-friendly antibiotic drug
41 regimens to increase patient compliance and decrease emergence of resistant TB.
42 Moxifloxacin is one promising antibiotic that may improve the current standard regimen
43 by shortening treatment time. Clinical trials and *in vivo* mouse studies suggest that
44 regimens containing moxifloxacin have better bactericidal activity. However, testing every
45 possible combination regimen with moxifloxacin either *in vivo* or clinically is not feasible

46 due to experimental and clinical limitations. To identify better regimens more
47 systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens
48 (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions
49 to both clinical trials and nonhuman primate studies performed herein. We used *GranSim*,
50 our well-established hybrid agent-based model that simulates granuloma formation and
51 antibiotic treatment, for this task. In addition, we established a multiple-objective
52 optimization pipeline using *GranSim* to discover optimized regimens based on treatment
53 objectives of interest, i.e., minimizing total drug dosage and lowering time needed to
54 sterilize granulomas. Our approach can efficiently test many regimens and successfully
55 identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately
56 accelerate the TB regimen discovery process.

57

58 **Introduction**

59 Tuberculosis (TB) is one of the deadliest infectious diseases in the world, with 1.6 million
60 deaths in 2021 [1], and World Health Organization (WHO) aims to reduce the number of
61 TB-related deaths by 95% by 2035 [1]. While vaccination efforts can reduce the number
62 of new TB cases and deaths, a shorter but highly efficacious and safe drug regimen is
63 needed to treat TB. Although new and efficacious drugs have been discovered for drug-
64 resistant TB [2, 3], drug-susceptible TB disease has been treated with the same regimen
65 for close to 50 years, namely 6-9 months of treatment with isoniazid (H), rifampin (R),
66 ethambutol (E) and pyrazinamide (Z) [4]. Likely, changes to the existing standard regimen
67 for drug-susceptible TB will help achieve WHO's goal.

68 Improving existing TB treatment involves finding regimens that account for the
69 complexities of TB. The structure of the granuloma influences antibiotic distribution and
70 can result in lower concentrations within granulomas [5-8]. Moreover, microenvironments
71 within granulomas can promote the infecting bacteria, *Mycobacterium tuberculosis* (Mtb),
72 to shift phenotypic states that are tolerant towards antibiotics [9-11]. Host-to-host
73 variability in drug absorption and metabolism kinetics leads to pharmacokinetic (PK)
74 variability that has been clinically linked to worse outcomes in TB treatment [12].
75 Furthermore, the lengthy treatment makes compliance challenging. While compliance
76 yields high levels of success, intermittent treatment can lead to the development of drug
77 resistance [13]. In short, by addressing these complications (heterogeneity in granulomas
78 and antibiotic distribution, antibiotic-tolerant Mtb, host-to-host PK variability and long
79 treatment times), a better regimen – one that would successfully treat more individuals
80 with a shorter treatment duration – can be identified.

81 Due to these challenges, identifying new regimens for TB is a complex process
82 that requires a combination of approaches to accurately capture different aspects of TB
83 treatment [14]. Studies have classified the pharmacokinetic/ pharmacodynamic (PK/PD)
84 features of individual TB antibiotics with *in vitro* methods, such as hollow fiber systems
85 [15-17] and bactericidal assays in different growth conditions [18-20], and *in vivo* methods
86 via HPLC coupled to tandem mass spectrometry (LC-MS/MS) and MALDI mass
87 spectrometry imaging (MALDI-MSI) analyses [21-23]. However, these studies were
88 mostly performed using single antibiotics and, due to heterogeneity among granulomas,
89 variability of Mtb metabolic states and the propensity for Mtb to develop drug resistance,
90 TB treatments with more than one antibiotic (i.e. combination therapy) are essential. To

91 quantify drug interactions and assess the efficacy of combination therapies, many studies
92 have been performed: *in vitro* with checkerboard assays [24-26], *in vivo* with mouse [27,
93 28], using a non-human primate (NHP) animal models [29, 30], as well as *in silico*
94 approaches applying machine learning algorithms [31, 32]. Moreover, many clinical
95 studies have been performed with antibiotic combinations, which is crucial to assessing
96 toxicity as well as long term outcomes of treatments [33-36]. These valuable studies are
97 time-consuming and expensive, often prohibitively so.

98 Computational modeling can efficiently predict regimen efficacy and optimal
99 doses, which is essential due to the high number of combinations of drug regimens in this
100 large regimen design space (on the order of 10^{17} [37]). We have previously shown that
101 our validated computational simulations of granuloma formation, function and treatment,
102 called *GranSim*, can simulate efficacies of different TB regimens (c.f. [6, 8, 38]) and we
103 can utilize surrogate-assisted optimization algorithms to accurately and efficiently predict
104 optimal regimens [37].

105 Previous studies in murine models suggested that moxifloxacin (M) is a promising
106 antibiotic to improve the standard regimen and decrease the duration of TB treatment due
107 to its strong bactericidal activity [39-44]. To this end, a recent clinical trial, REMoxTB,
108 attempted to shorten treatment from 6 months to 4 months by altering the standard HRZE
109 regimen to HRZM or RMZE. However, the study failed to show noninferiority of
110 moxifloxacin-containing regimens to the standard regimen due to higher relapse rates of
111 these regimens [33]; after careful reanalysis, some patient populations were shown to be
112 cured successfully with these moxifloxacin-containing regimens in a shorter treatment
113 window [45]. In our study, we elaborate an approach toward identifying drug regimens

114 that are more effective in treating TB granulomas and that require shorter treatment times
115 compared to the standard regimen. We used our computational model *GranSim* to create
116 an *in silico* biorepository of hundreds of granulomas, combined with *in vivo* data
117 generated from a NHP model and applied a surrogate-assisted optimization algorithm to
118 identify regimen success and failure. We first simulated moxifloxacin-containing regimens
119 using *GranSim* and identified regimens that are superior to the standard treatment based
120 on sterilization times. Informed by our simulation results, we performed an *in vivo* study
121 in NHPs to test our predicted regimens that haven't been studied before, validating our
122 simulation predictions. Thus, our study identifies new regimens that can inform pre-clinical
123 trials to shorten treatment times and minimize dosages. This highlights the importance of
124 using modeling prior to pre-clinical trials as a step towards a more efficient and directed
125 regimen design for TB.

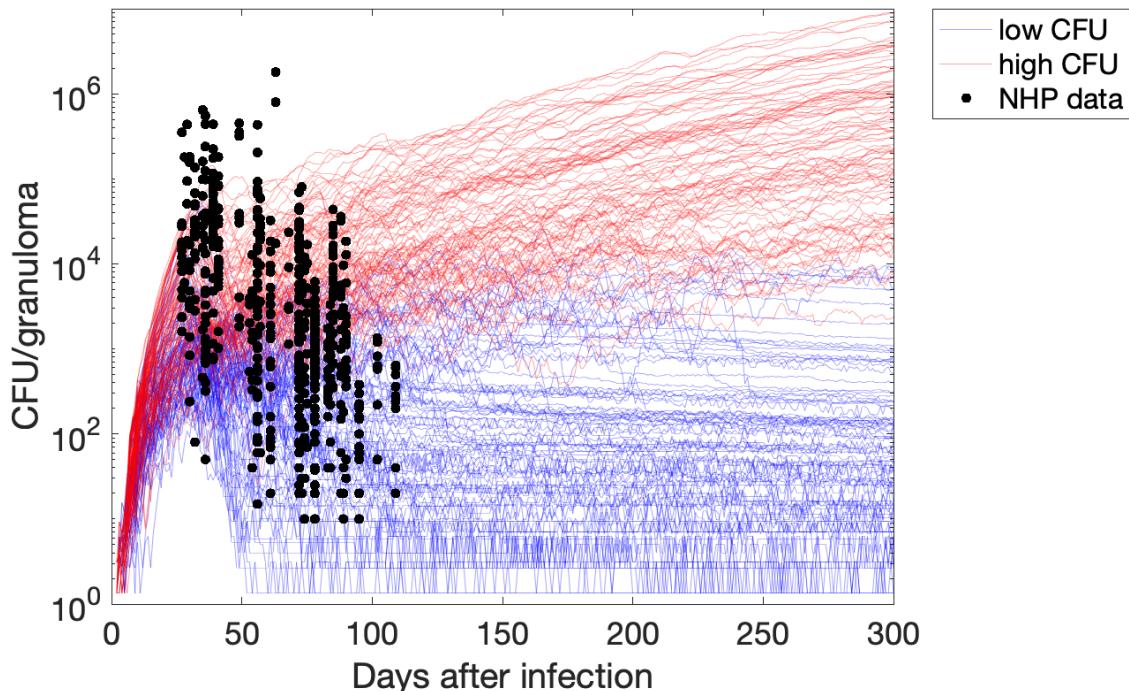
126

127 **Results**

128 ***In silico* library of granulomas for treatment simulations and dose optimization**

129 We first generated an *in silico* library of 750 granulomas over 300 days that matches NHP
130 dataset of 600 granulomas [46, 47]. To do that, we sampled 250 granuloma parameter
131 sets within biological feasible ranges using the LHS method and simulating three
132 replications with each parameter set to capture both types of uncertainty present [48]. We
133 then classified granulomas that have nonzero bacterial loads (those that did not sterilize)
134 by measuring their colony forming units (CFUs) as either *low-CFU* or *high-CFU*
135 *granulomas*, depending on their CFU trends (Fig 1) In this work, we simulated different
136 treatments on subsets of granulomas from this library of both high- and low-CFU

137 granulomas as well as combined. This follows as humans and NHPs have multiple
138 granulomas within their lungs, and ensures that we test each regimen on a variety of
139 granuloma types and multiple granulomas, making it relevant to both experimental data
140 and clinical TB outcomes. Here, low-CFU granulomas represent the state where the
141 immune system controls bacterial growth within a granuloma, whereas within high-CFU
142 granulomas, bacteria grow to large numbers and can disseminate [8, 49, 50]. Specifically,
143 if the number of CFUs within a granuloma is less than 10^4 at the end of the simulation
144 and has not increased more than 50 CFUs in the last 20 days of simulation, we label it as
145 a *low-CFU granuloma* (Fig 1, blue curves). If the number of CFUs in a granuloma is
146 between 10^4 and 10^7 at the end of the simulation or it has increased by more than 50
147 CFUs in the last 20 days of simulation, we label it as a *high-CFU granuloma* (Fig 1, red
148 curves). We proposed 10^4 CFUs/granuloma as a threshold for low-CFU granulomas,
149 based on the observed CFU trends of the 750 granulomas we simulated: granulomas
150 with CFUs lower than this threshold tend to stabilize in our simulations (Fig 1, blue
151 curves), representing controlled growth. However, granulomas with CFUs higher than this
152 threshold tend to grow uncontrollably (Fig 1, red curves). We can alter this threshold
153 without loss of generality.



154

155 **Fig 1. CFU trends within the *in silico* repository of simulated granuloma generated by *GranSim* after**

156 **the start of infection.** Each curve represents a single granuloma simulation with a single parameter set

157 using *GranSim*, and black dots are data from NHP studies [46, 47]. Based on their CFU trajectories, we

158 categorize granulomas into low-CFU (blue curves) and high-CFU (red curves) granulomas. Low-CFU

159 granulomas represent granulomas that have controlled bacterial burden; high-CFU granulomas are those

160 where bacterial growth is uncontrollable by the immune system, respectively [8, 49, 50].

161

162 **Simulations capture the rapid rate of sterilization with moxifloxacin-containing**

163 **regimens that is observed in clinical trials**

164 We first compare the standard regimen for TB, i.e., HRZE, with various moxifloxacin-

165 containing regimens. A recent clinical trial (REMOxTB) compared the 6-month standard

166 regimen HRZE treatment (control group) to 4-month treatment with two moxifloxacin-

167 containing regimens, HRZM (termed the “isoniazid group” in the original study) and RMZE

168 (termed the “ethambutol group” in the original study) (see Table 1 for the protocol) [33].

169 Regimens with moxifloxacin were not found to be suitable replacements for the standard

170 regimen, as they had a higher rate of relapse in patients after the end of treatment, even

171 though they decreased the bacterial load in patients' sputum more rapidly at the beginning
172 of the treatment (Fig 2A).

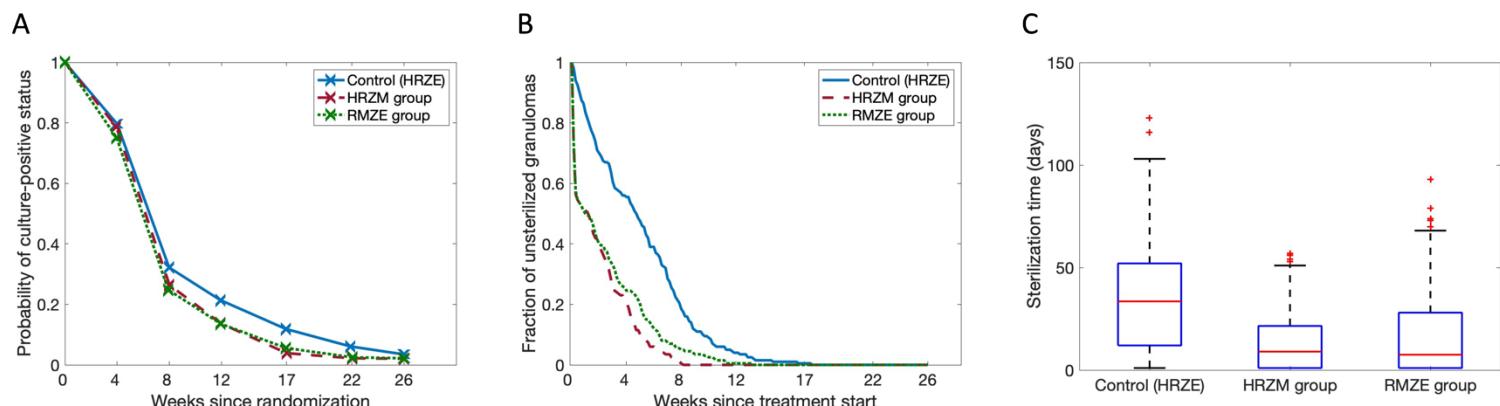
173

174 **Table 1. Simulation protocols used in this study.** Those indicated as clinical trial correspond to the
175 regimens used in [33], and those indicated as NHP study correspond to the regimens tested in NHPs herein.
176 HRZEM combinations refer solely to the computational studies. Optimization refers to the regimens we
177 further tested with our optimization protocol to determine dosing and sterilization time to predict the best
178 performers.

STUDY	GROUP	REGIMENT	
Clinical trial	Control (HRZE)	8 wk HRZE	18 wk HR
	HRZM	17 wk HRZM	9 wk placebo
	RMZE	17 wk RMZE	9 wk placebo
NHP study	Control (no drug)	60 days	
	HMZE	60 days	
	HRZE	60 days	
	RMZE	60 days	
HRZEM combinations	4-way combinations	120 days	
	3-way combinations	220 days	
	2-way combinations	300 days	
Optimization	4-way combinations	180 days	

179

180



181 **Fig 2. Comparison of moxifloxacin-containing regimens to the standard regimen for the human**
182 **study and GranSim.** (A) Results from the REMoxTB clinical trial [33]. Probability that a patient has a
183 sputum culture-positive status decreases over the course of treatment, and this decline is more pronounced
184 for moxifloxacin-containing regimens. Control (HRZE), HRZM and RMZE groups have 510, 514 and 524
185 patients, respectively. This figure is adapted from Fig 2B of [33] (Data points (x) extracted by
186 WebPlotDigitizer). (B,C) *GranSim* predictions for (B) the fraction of unsterilized granulomas and (C) average
187 sterilization times upon treatment with HRZE, HRZM and RMZE (* $p<0.001$, one-tailed paired t-test). For
188 the REMoxTB study and the simulations, in the control groups, patients/granulomas are treated with HRZE
189 for 8 weeks, followed by an 18-week long HR treatment. In HRZM and RMZE groups, patients/granulomas
190 are treated with HRZM and RMZE for 17 weeks, respectively (see Methods and Table 1). In (B) and (C),
191 each group has 200 simulated granulomas.

192

193 We used *GranSim* to simulate the same protocol as in the REMoxTB study (see
194 Methods and Table 1). Our results agree with the clinical trial: moxifloxacin-containing
195 regimens reduced the bacterial load faster, as ~40% of the granulomas were sterilized
196 within the first week (Fig 2B, dashed red and dotted green curves). By comparison, the
197 standard regimen required more than 4 weeks to sterilize the same number of
198 granulomas (Fig 2B, blue curve). To treat the whole set of granulomas successfully (i.e.,
199 both low-and high-CFU), HRZE, HRZM and RMZE-treated groups need 17, 8 and 12
200 weeks of treatment, respectively. The metric “average time to sterilize a granuloma”
201 follows a similar trend: HRZM-treated group has the shortest average sterilization time
202 with ~14 days, followed by RMZE- (~17 days) and HRZE-treated (~35 days) groups.
203 Therefore, our simulations suggest that the HRZM is the most effective regimen in terms

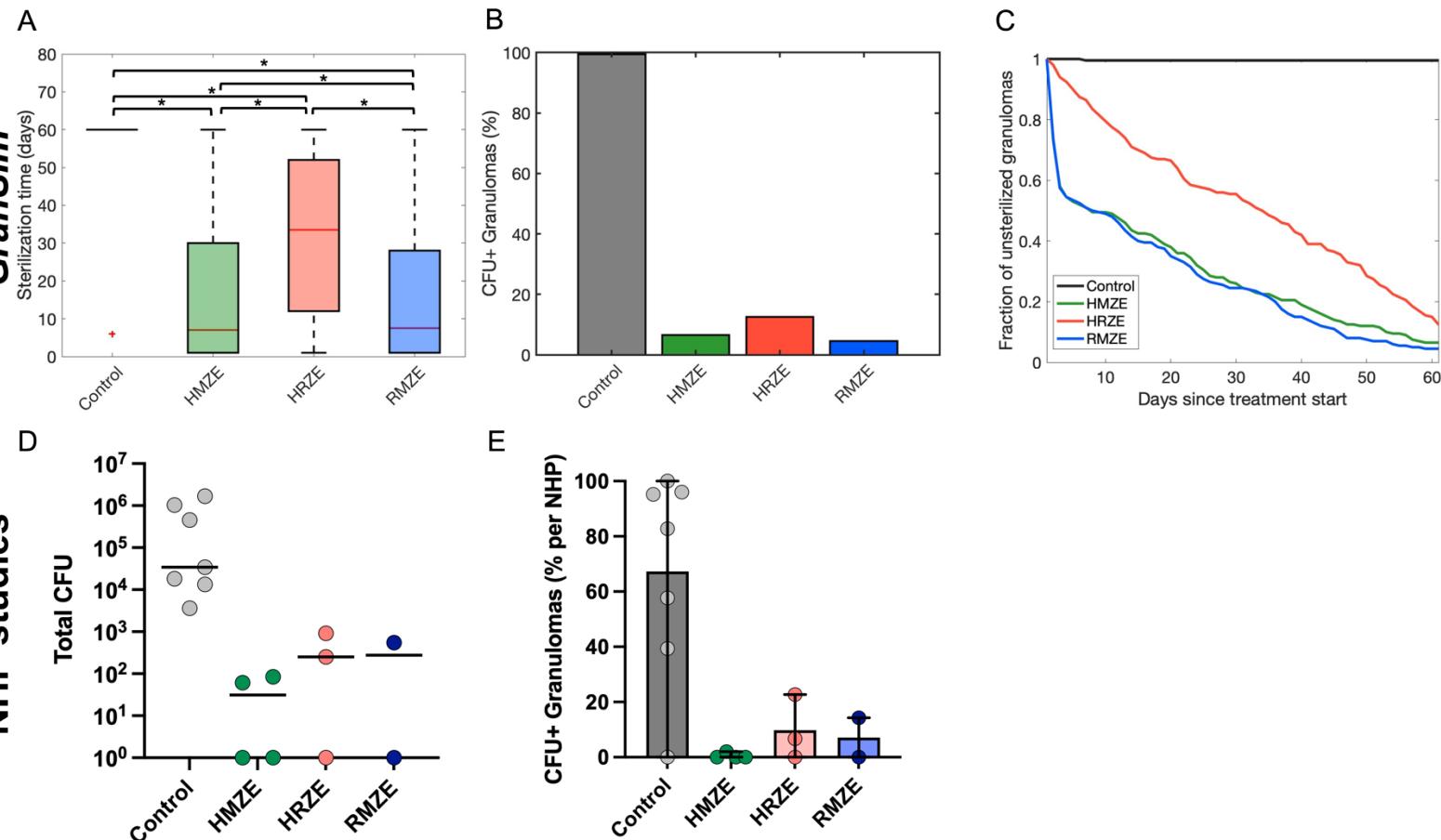
204 of bactericidal activity, followed by RMZE, although the difference between these two
205 regimens is minimal yet significant ($p<0.001$). The control group, HRZE, is the slowest to
206 sterilize granulomas.

207

208 **Regimens HMZE, HRZE and RMZE reduce bacterial burden in both NHP studies
209 and simulations**

210 NHPs with active TB were treated with the TB standard regimen HRZE as well as two
211 moxifloxacin-containing regimens: RMZE and HMZE (see Table 1 and Methods). Daily
212 administration of drugs was initiated at 13 weeks post-infection and continued for 8 weeks
213 at which time the macaques were necropsied. Total CFU was calculated by summing the
214 CFU counts obtained from plating multiple tissue samples (lung, granulomas, LNs) from
215 each animal. Each regimen was able to reduce bacterial burden in NHPs compared to
216 controls (Fig 3D and E). Simulations with *GranSim* indicated that moxifloxacin-containing
217 regimens, HMZE and RMZE, sterilize more granulomas in a shorter time frame than the
218 standard regimen, HRZE (Fig 3A-C).

219



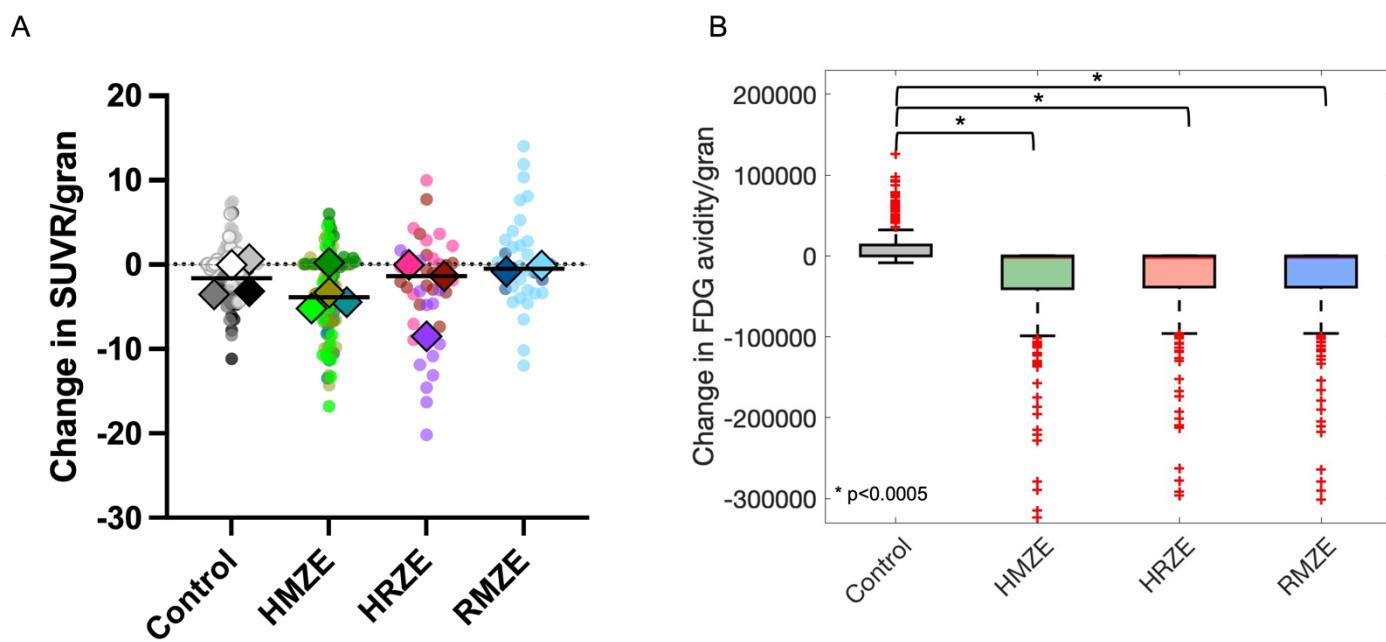
220 **Fig 3. Comparing NHP and *GranSim* regimens.** Comparison of the standard regimen (HRZE) to two
 221 moxifloxacin-containing regimens, HMZE and RMZE, between *in silico* studies with *GranSim* (panels A-C)
 222 and *in vivo* NHP studies (panels D and E). (A) The sterilization times of granulomas averaged over 200
 223 granulomas in *GranSim*. Note that we assign the maximum simulation time of 60 days as a sterilization
 224 time for unsterilized granulomas (* $p<0.001$, one-tailed paired t-test). (B, E) Percentage of granulomas that
 225 are unsterilized by treatment end for (B) NHP studies and (E) *GranSim*. Colored dots in (E) represent the
 226 percentage of unsterilized granulomas per NHP. (C) The fraction of granulomas which are unsterilized as
 227 a function of simulated treatment time using *GranSim*. (D) The average total CFU per NHP after treatment
 228 with the corresponding regimens for two months (n=7 animals in the control group, n=3 animals in HRZE
 229 group, n=4 animals in HMZE, n=2 animals in RMZE). Statistical analyses were not performed on the NHP
 230 data due to small numbers of animals per group.

231

232 **Metabolic activity within granulomas is decreased with antibiotic treatment in both
 233 NHPs and simulations**

234 We used PET-CT imaging on NHPs with FDG uptake to assess how drug regimens
 235 influence inflammatory activity of granulomas. We measured standardized uptake value

236 ratio (SUVR), a previously developed measure to quantify the FDG avidity per granuloma
237 [30, 51]. Treatment with HRZE or HMZE reduced FDG avidity of granulomas within 8
238 weeks, whereas there was no change in FDG avidity in response to RMZE treatment,
239 similar to that of the control group (Fig 4A). In *GranSim*, we can monitor metabolic activity
240 of a granuloma based on the number of various cell types and inflammatory measures of
241 activity within granulomas (see Methods for more details). Similar to the FDG PET-CT
242 results from NHP experiments, *GranSim* simulations demonstrated that all treatment
243 regimens decrease metabolic activity significantly (Fig 4B).



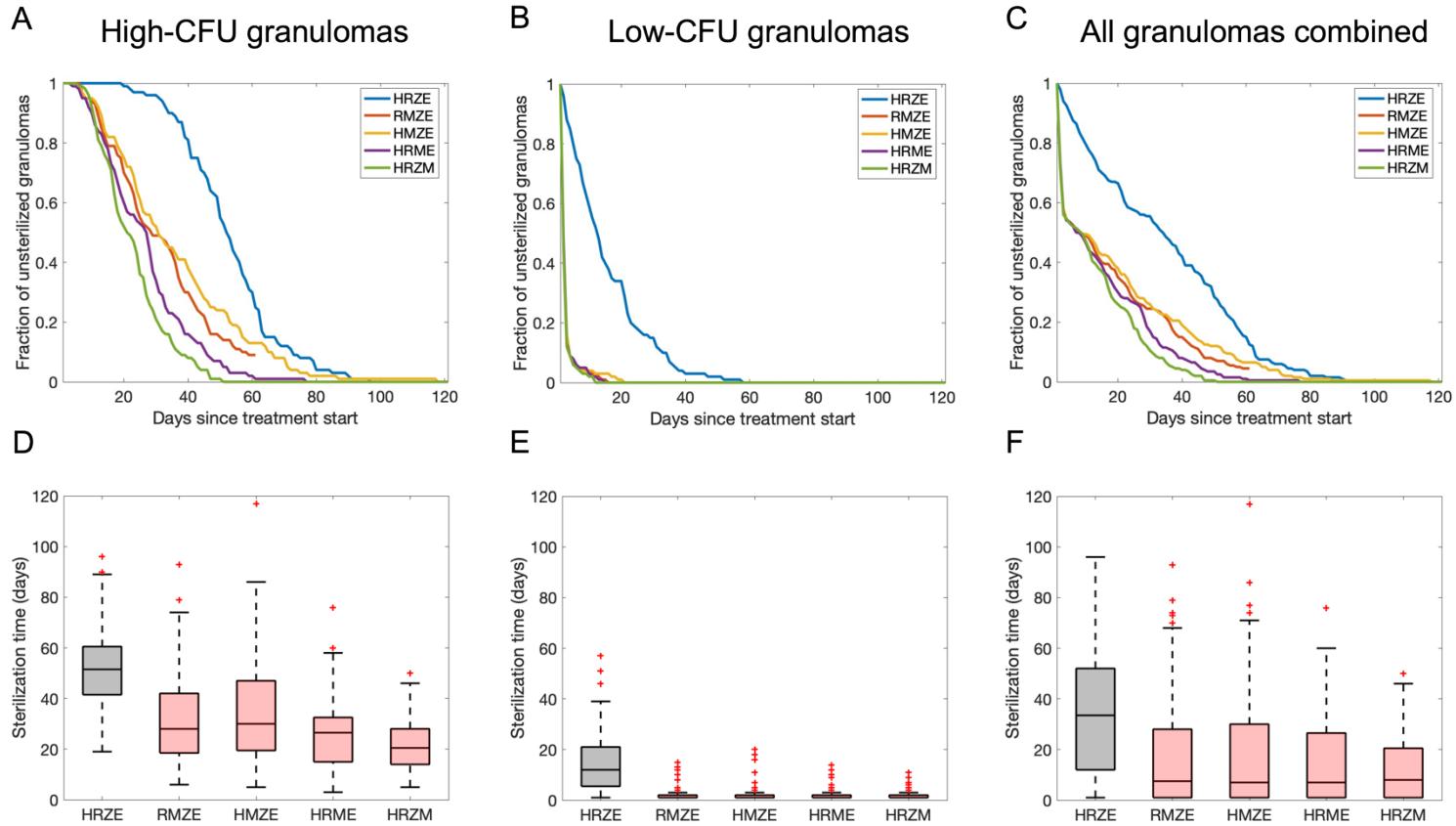
244
245 **Fig 4. Comparison of metabolic activity (measured by SUVR) change post treatment in NHP and**
246 ***GranSim*.** Comparison of metabolic activity changes (A) in NHP granulomas and (B) using *GranSim*. (A)
247 Change in standardized uptake value ratio (SUVR) per NHP granuloma (colored dots) in 8 weeks
248 ($SUVR_{8\text{weeks}} - SUVR_{\text{pre-treatment}}$) when NHP are treated with HRZE (n=3 animals), HMZE (n=4 animals) and
249 RMZE (n=2 animals) for 8 weeks (n=7 animals in control case, i.e., without treatment). Color shades of the
250 dots in each column indicate NHPs and the diamonds are the median of SUVR change/granuloma for each
251 NHP. (B) Change in FDG avidity per granuloma simulated using *GranSim* ($FDG\text{ avidity}_{8\text{weeks}} - FDG\text{ avidity}_{\text{pretreatment}}$) averaged over 200 granulomas (* $p<0.0005$, one-tailed paired t-test).

253

254

255 **Simulations reveal that moxifloxacin-containing regimens have a better**
256 **bactericidal activity than HRZE**

257 To systematically compare the efficacy of moxifloxacin-containing regimens to the
258 standard regimen, we used *GranSim* to simulate treatment with all 4-way combinations
259 of HRZEM (HRZE, RMZE, HMZE, HRME and HRZM) for 120 days (Fig 5). We analyze
260 simulation results distinguishing granulomas that are high-CFU (Fig 5A and D) versus
261 low-CFU (Fig 5B and E), as well as combined (Fig 5C and F). Our simulation results
262 indicate that all four regimens containing moxifloxacin clear Mtb within all types of
263 granulomas (high-CFU, low-CFU, and combinations) in a shorter time than the standard
264 regimen HRZE (blue curve in Fig 5A-C, gray box in Fig 5D-F). Moreover, simulations
265 show that the initial decline in bacterial load for combinations of high- and low-CFU
266 granulomas with regimens containing moxifloxacin (Fig 5C) stems from the fast
267 sterilization of all low-CFU granulomas (Fig 5B), as the clearance rate for high-CFU
268 granulomas is slower than that for low-CFU granulomas. In addition, the differences
269 between various moxifloxacin-containing regimens are more pronounced in high-CFU
270 granulomas. For example, HRZM clears all high-CFU granulomas by 51 days, which is
271 the fastest of all 4-way combinations of HRZEM. The next best regimen is HRME,
272 requiring 77 days to sterilize all granulomas with high-CFU. RMZE and HRZE sterilize all
273 high-CFU granulomas by a similar time window, in 94 and 97 days, respectively. Lastly,
274 treating all granulomas until they sterilize with HMZE takes 118 days. However, the
275 average time required to sterilize a high-CFU granuloma (Fig 5D) is lower for
276 moxifloxacin-containing regimens (Fig 5D, red boxes) than that for the standard regimen
277 (Fig 5D, black box), which is consistent with the findings in Figs 2-3.



278

279 **Fig 5. Comparison of 200 simulations for all HRZEM four-way regimens using GranSim.** Comparison
280 of (A-C) sterilizing rates and (D-F) average sterilization times of 4-way combinations of HRZEM for (A and
281 D) 100 high-CFU, (B and E) 100 low-CFU and (C and F) a combination of 100 high- and 100 low-CFU
282 granulomas.

283

284 **Simulations show that moxifloxacin-containing regimens are more efficacious than**
285 **HRZE with fewer than four antibiotics**

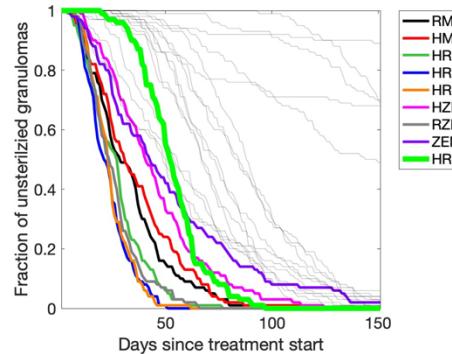
286 Compliance is one of the challenges of TB treatment due to the long-term use of many
287 antibiotics with numerous side effects. To identify a more patient-friendly treatment, in line
288 with the goals of the END TB strategy of WHO [52], we could reduce the number of
289 antibiotics used in a regimen and/or reduce the total dose of a regimen. To test whether
290 a regimen with fewer than four antibiotics would be as efficient as (or more efficient than)
291 the 4-way combinations of HRZEM, we simulated all 3-way (S3 Fig) and 2-way (S4 Fig)

292 combinations of HRZEM in treating individual granulomas. As compared with 4-way
293 combinations (Fig 5B and E), we also observed the fast clearance of low-CFU
294 granulomas treated with moxifloxacin-containing regimens in 3- (S3B Fig and S3E Fig)
295 and 2-way (S4B Fig and S4E Fig) combinations. Sterilization of high-CFU granulomas
296 remains faster with 3-way combinations containing moxifloxacin than for regimens without
297 moxifloxacin; however, the rate of sterilization is slower than for low-CFU granulomas
298 (S3B Fig and S3E Fig). The trend does not always hold for treatment of high-CFU
299 granulomas with 2-way combinations containing moxifloxacin (S4B Fig and S4E Fig).
300 Regimens like ZM and EM cannot sterilize most of the high-CFU granulomas despite
301 prolonged treatment (S4B Fig). These granulomas may be related to the classically
302 defined paucibacillary granulomas which even after treatment remain difficult to sterilize
303 [53].

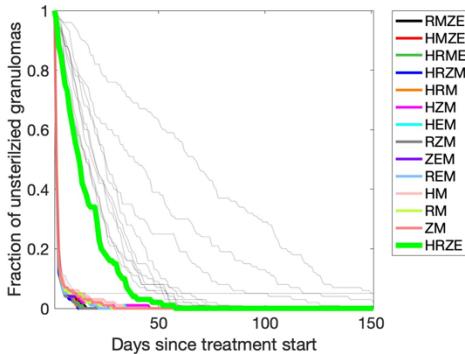
304 Lastly, we compared treatments with all 2-way, 3-way and 4-way combinations of
305 HRZEM to the standard regimen HRZE based on the average sterilization time for each
306 regimen of high-CFU (Fig 6A) and low-CFU (Fig 6B) granulomas and both types of
307 granulomas combined (Fig 6C). Our results demonstrate that regimens that are more
308 effective in sterilizing granulomas than HRZE each contain moxifloxacin (colored curves
309 in Fig 6). For high-CFU granulomas, a moxifloxacin-containing regimen with at least 3
310 antibiotics is needed to achieve a better performance than HRZE (Fig 6A). However,
311 sterilizing low-CFU granulomas faster than HRZE is possible even with regimens
312 containing two antibiotics (HM, RM and ZM in Fig 6B). These comparisons are based
313 only on the standard doses of regimens; optimization of doses is also possible.

314

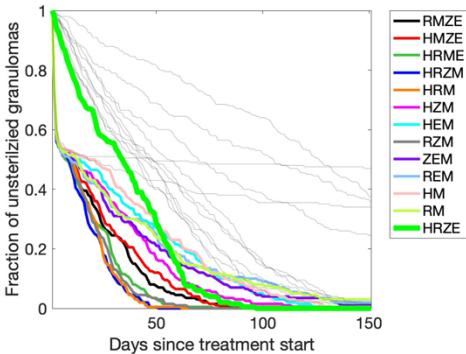
A



B



C

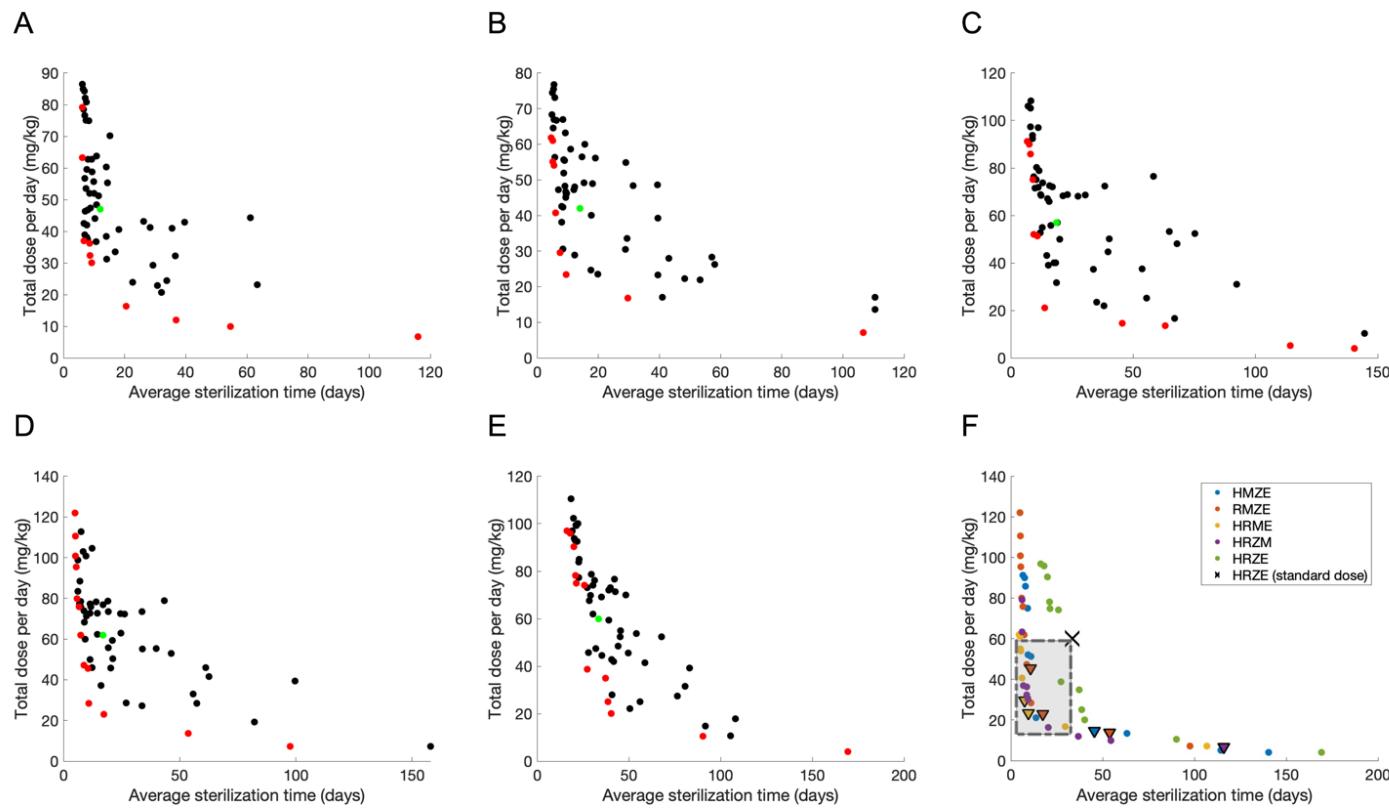


315 **Fig 6. Simulated treatments with 4-way, 3-way, 2-way regimen comparison from HRZEM.** Visually
316 comparing all regimen combinations to HRZE (thick green curve in all panels) in (A) high-CFU, (B) low-
317 CFU and (C) all granulomas (high- and low-CFU granulomas combined). Colored curves indicate the
318 regimens that clear granulomas faster than HRZE, i.e., they have a lower average sterilization time
319 averaged over 100 simulations (200 simulations in (C)). Gray curves represent regimens with slower
320 sterilization.

321

322 **Dosing optimization method identifies new doses for regimens**

323 Optimizing the dose of each antibiotic in all 4-way combinations of HRZEM may reduce
324 the total antibiotic dose, contributing to our goal of a more patient-friendly TB treatment.
325 Here, we use Pareto optimization to predict optimal solutions that balance the trade-off
326 between two treatment objectives: minimizing the total antibiotic dose and minimizing the
327 average time for regimens required to sterilize all Mtb within granulomas, i.e., the *average*
328 *sterilization time*. Based on these two objectives, our Pareto optimization pipeline predicts
329 the Pareto front for each 4-way combination regimen of HRZEM (HRZM, HRME, HMZE,
330 RMZE and HRZE) and outputs a set of optimized regimens that belong to the Pareto set
331 (i.e., optimal doses) (Fig 7A-E, red dots).



332 **Fig 7. Pareto front optimization study simulating all 4-way combinations of HRZEM to find regimens**
333 **that minimize both average sterilization time and total dose.** Pareto front optimization identifying
334 optimal dose and sterilization times for: (A) HRZM, (B) HRME, (C) HMZE, (D) RMZE and (E) HRZE. In
335 each panel (A-E), red dots represent the (non-dominating) regimens that belong to the Pareto set (see S2-6
336 Tables for the doses of each antibiotic in the regimens that belong to Pareto sets) whereas black dots are
337 the regimens that are not optimal based on the objectives. Green dots show the regimen based on the
338 current standard doses recommended by CDC [4]. (F) Pareto sets for all regimens (same as red dots in

339 panels A-E) compared to the standard regimen HRZE with CDC-recommended doses (**X** in Panel F). Dots
340 in the dashed gray rectangle indicate the regimens that have lower total drug dose and lower average
341 sterilization times (see Table 2 for the doses of each antibiotic in these regimens). Triangles indicate
342 optimized regimens with 3-way combinations, as the optimal doses of one antibiotic (E or Z) in these
343 regimens are predicted as 0.

344

345 In general, regimens that simulations identify as optimal (i.e., regimens in the
346 Pareto set) span a wide range of total dose and average sterilization times. This suggests
347 that among optimized regimens, some have very low average sterilization times at the
348 cost of a very high antibiotic dose and some regimens have a very low total dose leading
349 to long sterilization times. However, we are particularly interested in optimized regimens
350 that have both lower total dose and lower average sterilization times as compared to
351 standard regimen (HRZE with CDC-recommended doses). Our method predicts that the
352 19 regimens in the dashed gray rectangle (Fig 7F) are all more advantageous than the
353 standard regimen (black dot in Fig 7F) in terms of reducing *both* total dose and sterilization
354 time. These regimens tend to have higher doses of rifampicin than the standard regimen
355 yet lower total regimen dose (Table 2), resulting in shorter sterilization times, which is in
356 line with clinical trials that showed a reduction in time to culture conversion using higher
357 doses of rifampicin [54, 55]. Based on our earlier results, it is not surprising that these
358 optimized regimens mostly contain moxifloxacin (Table 2). This is also expected based
359 on clinical studies where moxifloxacin-containing regimens sterilize granulomas more
360 efficiently (c.f. Fig 2). Further, although most of these optimal regimens contain four
361 antibiotics, our pipeline also predicted a few optimal combinations with less than four
362 antibiotics (see triangles in the rectangle region of Fig 7F; rows labeled with triangles in
363 Table 2). (Our pipeline predicts the ethambutol optimal dose as 0 for HRME and RMZE
364 regimens and the pyrazinamide optimal dose as 0 for RMZE, thus identifying HRM, RMZ

365 and REM as additional optimal regimens). This agrees with our systematic study of all
366 possible combinations that determined HRM, RZM and REM as more efficient regimens
367 than the standard regimen HRZE (c.f. Fig 6). Our optimization approach provides a more
368 efficient way to identify regimens with different combinations of antibiotics than is possible
369 in clinical or experimental studies.

370 **Table 2. Simulated Doses of Antibiotics that optimize treatment objectives (compare with Fig 7).** The
371 doses for each antibiotic in the regimens that have lower average sterilization time and lower dosage than
372 the standard regimen (black row) as shown in Fig 7F (i.e., all regimens in dashed gray rectangle). Optimized
373 doses for HMZE, RMZE, HRME, HRZM and HRZE are color-coded as blue, brown, yellow, purple and
374 green, respectively. The rows labeled with a triangle indicate optimal 3-way combinations, where the
375 optimal dose of E or Z is predicted as 0.

Avg Sterilization Time (days)	Total dose (mg/kg)	H	R	Z	E	M
33.6	60	5	10	25	20	0
5.1	55.2	6.1	20.0	0	16.8	12.3
5.5	53.4	7.5	13.9	0	19.7	12.3
6.1	40.8	9.0	11.3	0	7.2	13.3
6.7	37.0	8.8	19.7	0.6	0	7.9
▼7.5	29.6	5.5	10.1	0	0	14.0
8.6	36.4	1.3	16.0	9.0	0	10.1
8.7	32.3	8.7	7.7	5.1	0	10.8
8.8	47.2	0	18.4	16.0	4.1	8.7
9.2	30.1	10	9.7	3.9	0	6.5
9.3	52.2	8.7	0	31.2	0.5	11.8

▼ 9.5	23.4	6.7	9.2	0	0	7.5
▼ 10.6	45.4	0	9.2	26.9	0	9.3
10.9	51.3	9.8	0	18.7	12.9	9.9
11.0	28.4	0	13.3	2.6	1.0	11.5
13.8	21.1	8.2	0	2.6	1.0	9.3
▼ 17.3	23.0	0	12.7	0	2.5	7.8
20.5	16.4	9.1	0.9	1.2	0	5.2
27.3	38.7	4.7	19.0	14.2	0.8	0
29.7	16.8	5.4	5.1	0	3.1	3.2

376

377 Discussion

378 One of the strategies to improve TB treatment regimens is to shorten treatment duration
379 by introducing or substituting newer antibiotics that have better bactericidal activities than
380 those in the current standard regimen (HRZE), for example, by considering bedaquiline,
381 pretomanid, linezolid [56] or moxifloxacin [33]. To this end, clinical trials [33, 41, 43] and
382 also *in vivo* studies with mice [39, 40, 44] have been conducted to explore a moxifloxacin-
383 containing regimen that decreases treatment duration. In this study, we employ three
384 unique approaches to predict more patient-friendly treatment regimens for TB: replacing
385 antibiotics in the standard regimen with moxifloxacin *in vivo* and *in silico*, reducing the

386 total number of antibiotics in a regimen by scanning all regimen combinations *in silico*,
387 and reducing the total dosage using an *in silico* drug optimization pipeline.

388 Previously, we explored regimens with and without moxifloxacin in our simulation
389 framework, *GranSim*, to compare with early-phase clinical trials [57]. However, this is the
390 first study that directly compares TB treatment simulations using *GranSim* to a phase 3
391 clinical trial (REMOxTB [33]) (Fig 2). We also perform NHP studies with promising
392 regimens predicted by *GranSim*. (Figs 3 and 4). Different from our previous studies, we
393 systematically analyzed all possible combinations with or without moxifloxacin and
394 employed a new optimization pipeline to identify optimal regimens that sterilize
395 granulomas more efficiently than HRZE.

396 Previous clinical trials concluded that both 4 months of HRZM treatment and 4
397 months of RMZE had better bactericidal activity than the control group (HRZE) based on
398 the conversion to culture negativity status of the patients (Fig 2A) [33]. In our simulations,
399 we observe a similar trend as in the clinical trial in terms of bactericidal activity: HRZM
400 and RMZE groups are more effective in reducing bacterial load and sterilizing granulomas
401 than the control group (Fig 2B and C). Although the measures of the clinical trial and our
402 simulations are at different scales (host-scale measures in clinical trials and granuloma-
403 scale measures in simulations), both studies support that moxifloxacin is a promising
404 regimen.

405 NHP experiments with standard and moxifloxacin-containing regimens indicate
406 that all regimens reduce the total CFU of NHPs (Fig 3D) by sterilizing the majority of NHP
407 granulomas (Fig 3E and S5 Fig). Furthermore, granuloma metabolic activity (surrogate
408 for inflammation) drops by treatment with HRZE and HMZE only, while RMZE does not

409 affect the metabolic activity. These outcomes are in agreement with our simulations;
410 however, simulations predict that RMZE is equally effective as HMZE in sterilizing
411 granulomas and reduces metabolic activity. This difference may stem from the small
412 sample size in NHP studies but likely also is due to *in vivo* factors that are not included
413 within *GranSim*. In addition, the surrogate measures used for FDG avidity in granulomas
414 are only an approximation of the factors involved in *in vivo* FDG avidity. Using *GranSim*,
415 we simulated 200 distinct granulomas per regimen. However, due to resource limitations,
416 sample sizes were necessarily smaller in the NHP studies, and RMZE has the smallest
417 sample size with only 2 animals. Moreover, unlike *in silico* studies where we simulate
418 treatment with the same set of granulomas over various regimens, *in vivo* studies require
419 different sets of animals to test regimens, and the outbred nature of macaques adds
420 another level of variability, although this is also true in humans.

421 To test the efficacy of moxifloxacin-containing regimens more systematically and
422 to potentially reduce the number of antibiotics needed per regimen, we simulated the
423 treatment of low- and high-CFU granulomas with all 4-way (Fig 5), 3-way (S3 Fig) and 2-
424 way (S4 Fig) combinations of HRZEM. In this study, we conclude that any 4-way, 3-way
425 or 2-way (except EM) combinations that include moxifloxacin are more efficacious in
426 eliminating bacteria within low-CFU granulomas than HRZE (Fig 6B). However, only 4-
427 way combinations and some of the 3-way combinations work better than HRZE for
428 treating high-CFU granulomas (Fig 6A). This suggests that decreasing the number of
429 antibiotics within a regimen may be challenging when treating more progressive, caseous
430 granulomas with the 5 drugs in this study, whereas granulomas with lower CFU numbers
431 are easier to treat with fewer antibiotics.

432 Most of the regimens that are 2-, 3- or 4-way combinations of HRZEM consistently
433 decrease the fraction of granulomas remaining unsterilized over the course of the
434 treatment and, subsequently, clear them all (Fig 5A-C, S3A-C Fig, S4A-C Fig). However,
435 some regimens cannot sterilize further, i.e., fraction of unsterilized granulomas stays the
436 same over a prolonged treatment time, (especially high-CFU granulomas). This may
437 follow as high-CFU granulomas are mainly caseous with bacteria trapped within that
438 region. It is known that moxifloxacin does not homogeneously diffuse into the caseous
439 core of granulomas [5, 58]. Therefore, a regimen containing moxifloxacin needs to be
440 complemented with antibiotics that are effective in killing Mtb trapped within caseum of
441 granulomas, unlike ethambutol (E) [59, 60] or pyrazinamide (Z) [20, 59]. Treatment of
442 high-CFU granulomas with ZM or EM decreases the bacterial load initially, but eventually
443 results in granulomas with primarily Mtb in caseum (S6 Fig) that could not be sterilized by
444 prolonged treatments with ZM (S6A Fig) or EM (S6B Fig). This suggests that ZM or EM
445 treatments may result in granulomas that harbor bacteria that could later lead to relapse
446 disease [61]. Although treatment with EM or ZM could not sterilize all high-CFU
447 granulomas, 20% and 40% of high-CFU granulomas are cleared by EM and ZM
448 treatment, respectively (S4A Fig).

449 Another novel approach introduced in this study is implementing an optimization
450 pipeline into *GranSim* to optimize doses of the drugs within regimens using a multi-
451 objective optimization algorithm. Previously, we studied optimization in *GranSim* by
452 comparing genetic algorithm and radial basis function (RBF) network surrogate models
453 and showed that using an RBF network method is more efficient in optimizing drug
454 regimens without losing accuracy [37]. However, the RBF network method is based on

455 minimizing one objective function that may consist of various weighted terms, depending
456 on the objectives we consider in order to discover a better regimen. A Pareto set is a set
457 of solutions that is used to minimize multiple objectives with varying levels of importance.
458 Therefore, determining the Pareto front with a single objective function would require
459 many iterations of optimization to obtain a wide-ranging Pareto set [62]. Thus, multi-
460 objective Pareto optimization is a more efficient approach to discover the optimal solution
461 set.

462 To successfully optimize the doses of a regimen, it is crucial to have well defined
463 objectives based on the factors that we would like to consider in a regimen. In this study,
464 we assumed that the total dosage of a regimen, independent of the antibiotic, should be
465 minimal. Moreover, the regimen should sterilize granulomas as quickly as possible.
466 However, we can modify these objectives or add additional ones to obtain more
467 biologically relevant optimized regimens. For instance, each antibiotic has different levels
468 of adverse side effects and high doses should be avoided. Moreover, financial burden of
469 each regimen should also be considered in order to identify more accessible treatments
470 worldwide.

471 Computational modeling studies have many advantages that are useful for drug
472 discovery studies and that complement experimental studies. Unlike clinical trials and *in*
473 *vivo* experiments, our computational approach has the power to evaluate the efficacy of
474 regimens *on the same set of granulomas to eliminate the variability*. Moreover, due to
475 limited resources, trying every single regimen combination *in vivo* experimentally or
476 clinically, or repeating the experiment many times to achieve significance may not be
477 feasible. Hence, promising regimens may be skipped or missed due to nonsignificant

478 results. Here, we predicted new and promising combination regimens that have not yet
479 been studied clinically, such as HMZE that informed our NHP studies and was predicted
480 to be an effective regimen via our simulations. Another drawback of clinical and *in vivo*
481 studies is the risk of disease relapse. To assess the relapse rate after treatment, study
482 subjects are observed for several months. Unlike experiments, we can track each Mtb
483 bacilli in our simulations that gives us the power to anticipate relapse at the end of the
484 treatment based on the sterilization status. Having unsterilized granulomas at the end of
485 treatment is predictive of TB relapse.

486 One limitation of our approach is that our model is at granuloma-scale. However,
487 predicting the relapse rates requires a host-scale model. Additionally being able to treat
488 a collection of granulomas within a host can serve to elaborate further the studies herein.
489 The source of relapse is not fully understood. One hypothesis suggests that bacteria
490 within granulomas in lymph nodes could migrate to the lungs and induce reinfection or
491 reactivation [63]. Therefore, a host-scale immune model of TB that contains multiple
492 granulomas within lungs and lymph nodes is needed to assess regimens' long-term
493 efficacy and to determine relapse rates, which are crucial parameters to evaluate
494 regimens efficiently, and we are currently adapting our host-scale TB model, *HostSim* [46,
495 64], to encompass antibiotics and meet this need. These next-generation improvements
496 will make our approach more powerful and reliable, so that *in vivo* experiments or clinical
497 trials can be systematically informed by simulation results.

498

499 **Methods**

500 We combined computational modeling with studies in NHPs, outlining the approaches for
501 each below. We point out where modifications to existing protocols and models have
502 changed in the next-generation versions used herein.

503 ***GranSim***

504 As a basis for studying treatment at the granuloma scale, we used our well-established
505 computational model of granuloma formation and function, *GranSim*. *GranSim* is a hybrid
506 agent-based model (ABM) that simulates the immune response during *Mtb* infection,
507 capturing granuloma formation as an emergent behavior [6, 65-68]. Agents in this ABM
508 include immune cells, such as macrophages and T-cells, and individual bacteria.
509 *GranSim* simulates a two-dimensional section of lung tissue (6mm x 6mm) represented
510 by dissecting a 300 x 300 grid into 90,000 grid microcompartments, each of size 20 μ m.
511 Simulations begin with a single infected macrophage in the center of the grid that initiates
512 recruitment of additional macrophages and T cells to the infection site. These immune
513 cells interact with each other and with *Mtb* according to a large set of immunology-based
514 rules that describe killing of *Mtb*, secretion of chemokines/cytokines, and activation and
515 movement of cells (for a complete description of our rules, see
516 <http://malthus.micro.med.umich.edu/GranSim/>). Granulomas “emerge” as a result of
517 these interactions when simulating *GranSim*. Infection is initiated with a single bacterium.

518 NHPs are highly informative animal models for TB, as TB disease and pathology,
519 including granulomas, are similar to humans [69]. The immunological rules and cellular
520 behaviors included in *GranSim* are based on datasets derived from NHP granulomas [65,
521 66, 68]. Moreover, we validate and calibrate *GranSim* granulomas to both spatial and
522 temporal datasets from NHP granulomas, including immune cells (macrophages and T

523 cells) and Mtb counts and the spatial distribution of cell types within a granuloma [30, 50,
524 70]. *GranSim* simulates a broad range of biologically relevant outcomes that can recreate
525 the heterogeneity of observed granulomas from NHPs and humans [66, 71].

526 Antibiotics may have bactericidal (bacterial killing) or bacteriostatic (inhibition of
527 bacterial growth) effects. To capture the actions of these drugs on bacteria, tracking the
528 individual bacteria within the granuloma is key [72]. To mimic that of actual infection, we
529 simulate three distinct subpopulations of Mtb based on their location within granulomas:
530 replicating-extracellular Mtb, intracellular Mtb that reside and replicate within
531 macrophages, and Mtb that are trapped within the caseous necrotic core. These caseum-
532 trapped bacteria have varying growth rates depending on the level of tissue caseation.
533 These subpopulations differ in their abilities to replicate and move within a granuloma.

534

535 **Latin Hypercube Sampling (LHS)**

536 LHS is a parameter-sampling method that samples the parameter space without
537 replacement and covers the parameter space more uniformly than a simple random
538 sampling. It is done by dividing each parameter distribution into N equal probability
539 intervals and sampling from these intervals to generate N distinct parameter sets and
540 identify epistemic uncertainty [48, 73, 74]. We used this method to generate an *in silico*
541 library of granulomas in *GranSim*. If the system under study, as is ours, has stochastic
542 components, it is necessary to do replicates (we choose 3) of each of the N runs to
543 capture the aleatory uncertainty within as well (c.f. [48]). These samplings capture both
544 epistemic and aleatory uncertainty that arise in parameter sets.

545

546 **Pharmacokinetic/pharmacodynamic (PK/PD) modeling**

547 We have used *GranSim* previously to simulate the PK/PD of antibiotic drug treatment for
548 TB. Specifically, we can simulate the spatial distribution of antibiotics and their sterilizing
549 ability for different antibiotic regimens [5, 6, 8, 38].

550 Briefly, the PK/PD model within *GranSim* simulates the plasma concentration over
551 time following oral doses of antibiotics, the subsequent spatial concentration in the
552 simulated granuloma and the bactericidal activity based on the local concentration. We
553 modeled the plasma PK using a compartmental, ordinary differential equation model to
554 simulate absorption through transit compartments into the plasma, exchange with
555 peripheral tissue and first-order elimination from the plasma [6, 22]. To simulate tissue
556 PK, we referenced the concentration in the plasma and calculated flux through vascular
557 sources on the computational grid, diffusion through tissue, binding to caseum and
558 epithelium and partitioning into macrophages [6, 8, 38, 75].

559 We modeled the PD by using a Hill function that determines the concentration (C)
560 dependent antibiotic killing rate constant (k), which is the rate of bacterial death per time
561 step [76]. The general form of the Hill curve we use is:

$$562 k(C) = E_{max} \frac{C^h}{C^h + C_{50}^h} \quad (\text{Eq.1})$$

563 where E_{max} is the maximum killing rate constant, h is the Hill coefficient and C_{50} is the
564 concentration needed to achieve the half maximal killing rate constant ($E_{max}/2$). For each
565 antibiotic, we calibrated the parameters of the Hill curve (E_{max} , C_{50} and h) for intracellular,
566 replicating-extracellular and caseum Mtb separately, as the pharmacodynamics of
567 antibiotics are different in these subpopulations. The calibration is based on bactericidal
568 assays of infected macrophages [18, 19, 77-79], Mtb in rich growth media [18, 19, 77-79]

569 and Mtb in caseum mimic [20], for intracellular, replicating-extracellular and Mtb in
570 caseum, respectively.

571 In this study, we used the effective concentration of each antibiotic (C) as the total
572 concentration in each grid compartment rather than the free concentration, i.e., the
573 extracellular concentration that is not bound to any macromolecules or any tissue, as we
574 calculated in our previous studies [8, 57]. We made this change as the bactericidal assays
575 we reference are based on the total concentration applied to the Mtb *in vitro* [20].

576

577 **Accounting for pharmacodynamic drug interactions in the model**

578 When multiple antibiotics are used and thus present and available on our simulation grid
579 within *GranSim*, we simulate their interaction by adjusting the effective concentration
580 according to their predicted fractional inhibitory concentration (FIC) values, as we have
581 done previously [57]. We use the FIC values predicted by an *in silico* tool, INDIGO-MTB
582 (inferring drug interactions using chemogenomics and orthology optimized for Mtb) [31,
583 32]. This tool employs a machine learning algorithm that uses known drug interactions
584 along with drug transcriptomics data as inputs and predicts unknown drug interactions,
585 i.e., FICs.

586 Briefly, we first converted the concentrations of all antibiotics on a small section of
587 the grid (microgrid) to the equipotent concentration of the antibiotic of the highest maximal
588 killing rate constant (highest E_{max}). For example, if we have two antibiotics (drug 1 with
589 the concentration C_1 and drug 2 with the concentration C_2) and drug 1 has a higher E_{max} ,
590 then we calculate the adjusted concentration for drug 2 ($C_{2,adj}$), which is the concentration

591 of drug 1 that results in the same antibiotic killing rate constant as drug 2 with the
592 concentration of C_2 , with the following equation:

$$593 C_1 = C_{2,adj} = \left(\frac{C_{1,50}^{h_1} C_2^{h_2}}{\frac{E_{max,1}}{E_{max,2}} (C_2^{h_2} + C_{2,50}^{h_2}) - C_2^{h_2}} \right)^{1/h_1} \quad (\text{Eq.2})$$

594 where $C_{1,50}$ and $C_{2,50}$ are the concentration of C_1 and C_2 at which half maximal killing is
595 achieved, respectively, $E_{max,1}$ and $E_{max,2}$ are the maximal killing rate constants of drug 1
596 and drug 2, respectively, and h_1 and h_2 are the Hill coefficients of drug 1 and drug 2,
597 respectively. Then, we calculated the effective concentration (C_{eff}) as the sum of the
598 adjusted concentrations of n antibiotics that are increased/decreased based on the FIC
599 values (see S1 Table for a complete list of FIC values) to simulate synergistic/antagonistic
600 effects with the following equation:

$$601 C_{eff} = \left(\sum_{i=1}^n C_{i,adj}^{FIC} \right)^{1/FIC} \quad (\text{Eq.3})$$

602 where $C_{i,adj}$ is the adjusted concentration of the drug i . Then, we used C_{eff} to calculate the
603 antibiotic killing rate constant k on that microgrid by using the Hill equation constants of
604 the antibiotic with the highest E_{max} :

$$605 k(C_{eff}) = E_{max} \frac{C_{eff}^h}{C_{eff}^h + C_{50}^h} \quad (\text{Eq.4})$$

606 where E_{max} , h and C_{50} are the Hill equation parameters of the antibiotic with the highest
607 E_{max} within the regimen.

608

609 **Simulating antibiotic regimens in *GranSim***

610 We calibrated plasma and tissue PK parameters for isoniazid, rifampicin, pyrazinamide
611 and moxifloxacin based on human data [21] and the parameters for ethambutol from

612 rabbit samples [60] as human data are not available for this antibiotic. We also utilized
613 MALDI-MS images from human [21] and rabbit [58, 60] samples that show the spatial
614 distribution of antibiotics within granulomas as a validation for our tissue PK calibration.

615 We simulated regimens on 200 randomly selected granulomas from our *in silico*
616 granuloma library (100 low CFU and 100 high CFU granulomas). We employed different
617 dosing protocols based on the studies shown in Table 1. First, we simulated the protocols
618 for the REMoxTB clinical trial [33] using *GranSim*. There were 3 different groups in this
619 study: control group (HRZE), HRZM group and RMZE group. To simulate the control
620 group, we dosed granulomas with HRZE daily for 8 weeks, followed by 18 weeks of daily
621 dosing of HR. We simulated HRZM and RMZE groups by dosing granulomas for 17 weeks
622 daily with HRZM and RMZE, respectively, followed by 9 weeks of a placebo phase, i.e.,
623 9 weeks of no antibiotics (Table 1).

624 To compare our results to NHP studies performed herein, we simulated the
625 regimens HRZE, HMZE and RMZE for 60 days by dosing daily. We also simulated a
626 positive control case with the same granulomas but with no antibiotics (Table 1).
627 Additionally, we simulated all 2-way, 3-way and 4-way combinations of HRZEM until all
628 granulomas sterilize or reach a stable state, i.e., until the fraction of granulomas that are
629 not sterilized doesn't change significantly over time (120 days for 4-way combinations (5
630 regimens), 220 days for 3-way combinations (10 regimens), 300 days for 2-way
631 combinations (10 regimens)) (Table 1).

632

633 **Average sterilization time measurement**

634 A regimen's efficacy depends on how fast it can clear all Mtb within a granuloma.
635 Therefore, we measured the average time a regimen needs to clear a granuloma, i.e.,
636 *average sterilization time*, as a way to assess regimens' potency. The average
637 sterilization time of a regimen i (t_{ster_i}) is

638
$$t_{ster_i} = \frac{\sum_{k=1}^n t_{ster_{i_k}}}{n} \quad (\text{Eq.5})$$

639 where n is the number of granulomas treated by i and $t_{ster_{i_k}}$ is the time that granuloma k
640 is treated with i until total Mtb within k is zero. If a granuloma k is not sterilized by a
641 regimen i at the end of the treatment, then we assign $t_{ster_{i_k}} = t_{treatment}$ where $t_{treatment}$ is
642 the duration of the treatment.

643

644 **NHP granuloma FDG avidity measurement in *GranSim***

645 Positron Emission Tomography and Computed Tomography (PET-CT) scans are used to
646 measure metabolic activity of granulomas within NHP by quantifying the uptake of a
647 glucose analog FDG (2-deoxy-2-[18F]-fluoro-D-glucose) via a measure called SUVR
648 (standardized uptake value ratio) [51]. As a proxy for capturing the SUVR per granuloma
649 from NHP experiments within our computational model, we developed a surrogate
650 measurement in *GranSim* that combines the amount of proinflammatory activity derived
651 from both tumor necrosis factor (TNF) with activity of proinflammatory cells (such as
652 activated T cells and macrophages) that we define as FDG avidity. This is a way to
653 represent the metabolic activity in the *in silico* granulomas. Specifically, we calculate FDG
654 avidity measure for each granuloma, i as:

655
$$FDG\ avidity_i = \sum_{k=1}^n (TNF_k + M_{r_k} + 4M_{i_k} + 9M_{ci_k} + 6M_{a_k} + 3T_{gam_k} + 3T_{cyt_k}) \quad (\text{Eq.6})$$

656 where n is the number of grid microcompartments of the agent-based model grid in a
657 simulation, TNF_k is the TNF concentration within the microgrid k in pg/ml (with an upper
658 bound as 30 pg/ml), M_{r_k} , M_{i_k} , M_{ci_k} , M_{a_k} , T_{gam_k} and T_{cyt_k} are the number of resting
659 macrophages, infected macrophages, chronically infected macrophages, active
660 macrophages, IFN- γ producing T cells and cytotoxic T cells at microgrid k , respectively
661 (see S1 Fig for the visualization of FDG avidity in *GranSim* and see
662 <http://malthus.micro.med.umich.edu/GranSim/> for more information about the roles of
663 each cell type). The weights that each cell type contributes to the FDG avidity on a grid
664 is determined based on the assumed inflammatory responses each cell type creates
665 based on their *in vivo* activity. Because we do not know all factors or cells that contribute
666 to the SUVR, we use levels of TNF (an inflammatory marker) as a surrogate to represent
667 contributions from other cells to the metabolic activity within a granuloma
668

669 **Objective functions for regimen optimization**

670 We use two objective functions to be minimized, the average sterilization time (described
671 above) and the total normalized dose (d). We define the total normalized dose d as

$$672 d(x) = \sum_{k=1}^n \frac{D_i}{D_{i_{max}}}, \quad (\text{Eq.7})$$

673 where k is the number of antibiotics in the regimen x , D_i stands for the dose of the
674 individual antibiotic i , and $D_{i_{max}}$ is the maximum allowed dose in our simulations.
675 Minimizing drug dose will decrease potential side effects. In our optimization pipeline, we
676 aim to find the regimens that minimize both objective functions.

677 The sampling ranges for each dose variable were set to range from 0 mg/kg to
678 double the standard CDC dose [4]. Maximum safe doses for each antibiotic were set to

679 10, 20, 40, 50 and 14 mg/kg for H, R, E, Z and M, respectively, as higher doses would
680 increase the risk of toxicity and would not be clinically relevant [54, 80-83].

681

682 **Kriging-based surrogate model**

683 The goal of a multi-objective optimization is to find the optimal trade-off between two or
684 more objectives by identifying the optimal variable combinations [84]. For example, in this
685 study the goal is to both minimize time to sterilization and drug doses between multiple
686 drugs. Using a surrogate-assisted framework involves predicting the objective functions
687 based on the outcomes of the already-sampled regimens. These predictions can then be
688 used as a computationally inexpensive alternative to predict the objective functions
689 throughout the whole design space.

690 Here, we use a kriging-based surrogate model to generate the objective function
691 predictions. This kriging-based prediction and optimization algorithm is based on a set of
692 open-source MATLAB functions developed by Forrester and Sóbester [62, 85]. This
693 surrogate-assisted framework provides an efficient and accurate way to thoroughly
694 investigate the regimen design space and predict optimal doses but with few iterations as
695 compared to, for example, a genetic algorithm [37]. Based on the sampled regimens and
696 the calculated values of the corresponding objective functions, the algorithm builds a
697 kriging-based, surrogate model to predict the values of the objective functions at any point
698 in the variable design space.

699 The kriging model operates by assuming that the value of a function f of n variables
700 at any n -dimensional vector x can be stated as the sum of some unknown mean (μ) and
701 an error term that is a function of position $\epsilon(x)$ [86]:

702 $f(x) = \mu + \epsilon(x)$ (Eq.8)

703 We also assume that the error term $\epsilon(x)$ is normally distributed with a mean of 0 and a
704 standard deviation of σ^2 . To provide an estimate for the error at any given x , we assume
705 the errors at two points are correlated based on the distance between those two points.
706 This means points that are closer in the variable space tend to be more related and have
707 smaller variance than those that are farther. Hence, the correlation in error between points
708 i and j , equal to component R_{ij} in the correlation matrix R , exponentially decays with
709 respect to the weighted distance between them:

710 $R_{ij} = \text{Corr}[\epsilon(x^{(i)}), \epsilon(x^{(j)})] = \exp\left[-\sum_{h=1}^n \theta_h |x_h^{(i)} - x_h^{(j)}|^{p_h}\right] (\theta_h \geq 0, p_h \in [1,2])$ (Eq.9)

711 where θ_h and p_h are correlation parameters. Here, the correlation varies between 0 and 1
712 for the farthest and closest points, respectively. The aim in this optimization algorithm is
713 to estimate the parameters μ , σ^2 , θ_h and p_h for $h=1,..,n$ that maximizes the likelihood
714 function L :

715 $L = \frac{1}{(2\pi\hat{\sigma}^2)^{k/2} |\mathbf{R}|^{1/2}} \exp\left[-\frac{(\mathbf{y} - \mathbf{1}\hat{\mu})' \mathbf{R}^{-1} (\mathbf{y} - \mathbf{1}\hat{\mu})}{2\hat{\sigma}^2}\right]$ (Eq.10)

716 where \mathbf{y} is a vector of length k with the values of the observed data at each of the sample
717 points. By varying θ_h and p_h to find their optimal values that maximizes the likelihood
718 function L , we can calculate μ and σ^2 and, hence, can predict the value of f at any point
719 x .

720

721 **Pareto optimization**

722 For multi-objective optimization goals, there may be a trade-off between different
723 objectives. For example, increasing the dose of each antibiotic in a regimen to the
724 maximal dose would result in a minimal sterilization time at the cost of a very high dose,

725 which may lead to severe side effects. Similarly, a very low dose would minimize the total
726 dose of a regimen; however, the granuloma would sterilize slowly, if at all. Both solutions
727 are a part of a Pareto set, which contains (non-dominated) optimal solutions using
728 *different* weights on the objectives. Therefore, we need to derive compromised solutions,
729 deciding weights between the objectives within the algorithm (see S1 Appendix and S2
730 Fig for a detailed description of a Pareto set). By using the predicted objective functions,
731 our algorithm selects a new regimen that maximizes the likelihood of expected
732 improvement of the Pareto set. Specifically, the expected improvement criterion seeks
733 the regimen(s) that maximize(s) the expected distance from the points currently in the
734 Pareto front and lies in the blue shaded area in S2 Fig, where new solutions would
735 dominate the current Pareto set [62, 87].

736

737 **Optimization pipeline in *GranSim***

738 Our optimization pipeline started with exploring an initial set of 40 regimens for each set
739 of 4-way combinations (HRZE, HRZM, RMZE, HMZE, HRME). We generated these 40
740 regimens using the LHS sampling scheme for the parameter space of doses for each
741 individual antibiotic. These were varied between 0 to the double of the standard CDC
742 dose [4], i.e., 10, 20, 50, 40 and 14 for H, R, Z, E and M, respectively. For each regimen,
743 we simulated 30 granulomas (15 high-CFU and 15 low-CFU granulomas) each for 180
744 days (Table 1) and averaged their sterilization times to evaluate the objective function for
745 each regimen. Then, by using the multi-objective surrogate-assisted optimization
746 algorithm, we predicted the objective functions and one regimen that is expected to
747 improve the current Pareto set. We simulated this new regimen using *GranSim* on the 30

748 total high- and low-CFU granulomas. This iterative process continued for 20 iterations,
749 and one optimal regimen was simulated at the end of each iteration. At the end of this
750 pipeline, we computed the Pareto front, i.e., the optimal non-dominating regimens.

751

752 **Nonhuman primate model for *in vivo* regimen experimental studies**

753 Nine male Chinese cynomolgus macaques (*Macaca fascicularis*) (4-7 years of age) were
754 dedicated to this study and were infected with virulent *M. tuberculosis* strain Erdman (8-
755 21 CFU) via bronchoscopic instillation into a lower lobe. Three months post-infection, drug
756 treatment was initiated and continued for 2 months, then the animals were necropsied.
757 Animals were monitored daily for appetite and behavior and monthly for weight and
758 erythrocyte sedimentation rate (a sign of inflammation). Gastric aspirate and BAL
759 samples were cultured for Mtb to assess disease progression. An additional seven
760 cynomolgus macaques (2 males, 3 females, 5-9 years of age, infected with Mtb Erdman)
761 from a concurrent study were included here as historical untreated controls and
762 necropsied 5 months post-infection.

763 Drug treatments were 1. isoniazid (H), rifampicin (R), pyrazinamide (Z) and
764 ethambutol (E) (HRZE, N=3); 2. isoniazid (H), moxifloxacin (M), pyrazinamide (Z) and
765 ethambutol (E) (HMZE, N=4); or 3. rifampicin (R), moxifloxacin (M), pyrazinamide (Z) and
766 ethambutol (E) (RMZE, N=2). Drug dosing as follows: H: 15 mg/kg; R: 20 mg/kg; Z: 150
767 mg/kg; E 55 mg/kg; M: 35 mg/kg. Drugs were provided daily in treats or by gavage.
768 Macaques were treated for 2 months, and drugs were stopped one day before
769 necropsy. See Table 1 for a list of treatment protocols.

770 ^{18}F -fluorodeoxyglucose (FDG) PET-CT imaging was performed prior to treatment
771 initiation and at 4- and 8-weeks post-treatment initiation. FDG is a glucose analogue,
772 which is preferentially taken up by and retained in metabolically active cells and thus is
773 useful as a proxy for inflammation. FDG uptake was quantified using the peak standard
774 uptake value (SUV) associated with each granuloma, as previously described [51].

775 Detailed necropsies were performed using the final PET-CT scan as a map to
776 isolate all lesions (granulomas, consolidations, etc.), uninvolved lung lobe samples, all
777 thoracic lymph nodes, peripheral lymph nodes, spleen and liver. All samples were plated
778 individually for Mtb on 7H11 plates, incubated for 3 weeks in a 5% CO₂ incubator.
779 Bacterial burden for each sample was calculated based on colonies counted on plates.
780 Sum of all samples in thoracic cavity (lung, granulomas, lymph nodes) is reported as total
781 thoracic CFU; total lung and total thoracic LN are also calculated.

782

783 **Acknowledgment**

784 We thank Dr. Simeone Marino for his contributions by developing the rules for FDG avidity
785 measurement in *GranSim*. We thank Paul Wolberg for computational assistance and
786 support. We are grateful to the veterinary and research technical staff in the Flynn lab for
787 their work on this study. This research was supported by NIH Grants R01 AI50684 (DEK,
788 U01 HL131072 (DEK, VAD, JJL, JLF), S10 OD023524 (VAD) and supported in part
789 by funding by the Wellcome Leap Δ Tissue Program awarded to (DEK, JJL, JLF). Further
790 funding comes from a contract grant from the MRI Bill & Melinda Gates Foundation
791 awarded to DEK. Simulations also use resources of the National Energy Research
792 Scientific Computing Center, which is supported by the Office of Science of the U.S.

793 Department of Energy under Contract No. ACI-1053575 and the Extreme Science and
794 Engineering Discovery Environment (XSEDE), which is supported by National Science
795 Foundation Grant MCB140228.

796 **References**

- 797 1. Global tuberculosis report 2022. Geneva: World Health Organization; 2022.
- 798 2. Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and
799 their targets. *Med Res Rev.* 2020;40(1):263-92. Epub 20190628. doi: 10.1002/med.21602.
800 PubMed PMID: 31254295.
- 801 3. Peloquin CA, Davies GR. The Treatment of Tuberculosis. *Clin Pharmacol Ther.*
802 2021;110(6):1455-66. Epub 20210605. doi: 10.1002/cpt.2261. PubMed PMID: 33837535.
- 803 4. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Executive
804 Summary: Official American Thoracic Society/Centers for Disease Control and
805 Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of
806 Drug-Susceptible Tuberculosis. *Clin Infect Dis.* 2016;63(7):853-67. doi: 10.1093/cid/ciw566.
807 PubMed PMID: 27621353; PubMed Central PMCID: PMC6366011.
- 808 5. Pienaar E, Sarathy J, Prideaux B, Dietzold J, Dartois V, Kirschner DE, et al. Comparing
809 efficacies of moxifloxacin, levofloxacin and gatifloxacin in tuberculosis granulomas using a multi-
810 scale systems pharmacology approach. *PLoS Comput Biol.* 2017;13(8):e1005650. Epub 20170817.
811 doi: 10.1371/journal.pcbi.1005650. PubMed PMID: 28817561; PubMed Central PMCID:
812 PMC5560534.
- 813 6. Pienaar E, Cilfone NA, Lin PL, Dartois V, Mattila JT, Butler JR, et al. A computational tool
814 integrating host immunity with antibiotic dynamics to study tuberculosis treatment. *J Theor Biol.*
815 2015;367:166-79. Epub 20141209. doi: 10.1016/j.jtbi.2014.11.021. PubMed PMID: 25497475;
816 PubMed Central PMCID: PMC4332617.
- 817 7. Sarathy JP, Zuccotto F, Hsinpin H, Sandberg L, Via LE, Marriner GA, et al. Prediction of Drug
818 Penetration in Tuberculosis Lesions. *ACS Infect Dis.* 2016;2(8):552-63. Epub 20160706. doi:
819 10.1021/acsinfecdis.6b00051. PubMed PMID: 27626295; PubMed Central PMCID:
820 PMC5028112.
- 821 8. Cicchese JM, Dartois V, Kirschner DE, Linderman JJ. Both Pharmacokinetic Variability and
822 Granuloma Heterogeneity Impact the Ability of the First-Line Antibiotics to Sterilize Tuberculosis
823 Granulomas. *Front Pharmacol.* 2020;11:333. Epub 2020/03/24. doi: 10.3389/fphar.2020.00333.
824 PubMed PMID: 32265707; PubMed Central PMCID: PMC7105635.
- 825 9. Sacchettini JC, Rubin EJ, Freundlich JS. Drugs versus bugs: in pursuit of the persistent
826 predator *Mycobacterium tuberculosis*. *Nat Rev Microbiol.* 2008;6(1):41-52. doi:
827 10.1038/nrmicro1816. PubMed PMID: 18079742.
- 828 10. Walter ND, Dolganov GM, Garcia BJ, Worodria W, Andama A, Musisi E, et al.
829 Transcriptional Adaptation of Drug-tolerant *Mycobacterium tuberculosis* During Treatment of

830 Human Tuberculosis. *J Infect Dis.* 2015;212(6):990-8. Epub 20150311. doi: 10.1093/infdis/jiv149.
831 PubMed PMID: 25762787; PubMed Central PMCID: PMCPMC4548467.

832 11. Gold B, Nathan C. Targeting Phenotypically Tolerant *Mycobacterium tuberculosis*.
833 *Microbiol Spectr.* 2017;5(1). doi: 10.1128/microbiolspec.TBTB2-0031-2016. PubMed PMID:
834 28233509; PubMed Central PMCID: PMCPMC5367488.

835 12. Pasipanodya JG, McIlleron H, Burger A, Wash PA, Smith P, Gumbo T. Serum drug
836 concentrations predictive of pulmonary tuberculosis outcomes. *J Infect Dis.* 2013;208(9):1464-
837 73. Epub 20130729. doi: 10.1093/infdis/jit352. PubMed PMID: 23901086; PubMed Central
838 PMCID: PMCPMC3789573.

839 13. Ormerod LP. Multidrug-resistant tuberculosis (MDR-TB): epidemiology, prevention and
840 treatment. *Br Med Bull.* 2005;73-74:17-24. Epub 20050614. doi: 10.1093/bmb/ldh047. PubMed
841 PMID: 15956357.

842 14. Dartois VA, Rubin EJ. Anti-tuberculosis treatment strategies and drug development:
843 challenges and priorities. *Nat Rev Microbiol.* 2022;20(11):685-701. Epub 20220427. doi:
844 10.1038/s41579-022-00731-y. PubMed PMID: 35478222; PubMed Central PMCID:
845 PMCPMC9045034.

846 15. Pasipanodya JG, Nuermberger E, Romero K, Hanna D, Gumbo T. Systematic Analysis of
847 Hollow Fiber Model of Tuberculosis Experiments. *Clin Infect Dis.* 2015;61 Suppl 1:S10-7. doi:
848 10.1093/cid/civ425. PubMed PMID: 26224767.

849 16. Srivastava S, Boorgula GD, Wang JY, Huang HL, Howe D, Gumbo T, et al. Rifampin
850 Pharmacokinetics/Pharmacodynamics in the Hollow-Fiber Model of *Mycobacterium kansasii*
851 Infection. *Antimicrob Agents Chemother.* 2022;66(4):e0232021. Epub 20220322. doi:
852 10.1128/aac.02320-21. PubMed PMID: 35315686; PubMed Central PMCID: PMCPMC9017304.

853 17. Gumbo T, Louie A, Liu W, Ambrose PG, Bhavnani SM, Brown D, et al. Isoniazid's
854 bactericidal activity ceases because of the emergence of resistance, not depletion of
855 *Mycobacterium tuberculosis* in the log phase of growth. *J Infect Dis.* 2007;195(2):194-201. Epub
856 20061207. doi: 10.1086/510247. PubMed PMID: 17191164.

857 18. Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, et al. Isoniazid
858 pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. *Antimicrob
859 Agents Chemother.* 2004;48(8):2951-7. doi: 10.1128/AAC.48.8.2951-2957.2004. PubMed PMID:
860 15273105; PubMed Central PMCID: PMCPMC478500.

861 19. Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis.
862 *Antimicrob Agents Chemother.* 2003;47(7):2118-24. doi: 10.1128/AAC.47.7.2118-2124.2003.
863 PubMed PMID: 12821456; PubMed Central PMCID: PMCPMC161844.

864 20. Sarathy JP, Via LE, Weiner D, Blanc L, Boshoff H, Eugenin EA, et al. Extreme Drug Tolerance
865 of *Mycobacterium tuberculosis* in Caseum. *Antimicrob Agents Chemother.* 2018;62(2). Epub
866 20180125. doi: 10.1128/AAC.02266-17. PubMed PMID: 29203492; PubMed Central PMCID:
868 PMCPMC5786764.

869 21. Prideaux B, Via LE, Zimmerman MD, Eum S, Sarathy J, O'Brien P, et al. The association
870 between sterilizing activity and drug distribution into tuberculosis lesions. *Nat Med.*
871 2015;21(10):1223-7. Epub 20150907. doi: 10.1038/nm.3937. PubMed PMID: 26343800; PubMed
872 Central PMCID: PMCPMC4598290.

873 22. Kjellsson MC, Via LE, Goh A, Weiner D, Low KM, Kern S, et al. Pharmacokinetic evaluation
874 of the penetration of antituberculosis agents in rabbit pulmonary lesions. *Antimicrob Agents
875 Chemother.* 2012;56(1):446-57. Epub 20111010. doi: 10.1128/AAC.05208-11. PubMed PMID:
876 21986820; PubMed Central PMCID: PMCPMC3256032.

877 23. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial
878 cells. *Nat Rev Microbiol.* 2014;12(3):159-67. Epub 2014/02/03. doi: 10.1038/nrmicro3200.
879 PubMed PMID: 24487820; PubMed Central PMCID: PMCPMC4341982.

880 24. Cokol M, Kuru N, Bicak E, Larkins-Ford J, Aldridge BB. Efficient measurement and
881 factorization of high-order drug interactions in. *Sci Adv.* 2017;3(10):e1701881. Epub 2017/10/11.
882 doi: 10.1126/sciadv.1701881. PubMed PMID: 29026882; PubMed Central PMCID:
883 PMCPMC5636204.

884 25. Larkins-Ford J, Greenstein T, Van N, Degefu YN, Olson MC, Sokolov A, et al. Systematic
885 measurement of combination drug landscapes to predict *in vivo* treatment outcomes for
886 tuberculosis. *bioRxiv.* 2021. doi: 10.1101/2021.02.03.429579.

887 26. Drusano GL, Neely M, Van Guilder M, Schumitzky A, Brown D, Fikes S, et al. Analysis of
888 combination drug therapy to develop regimens with shortened duration of treatment for
889 tuberculosis. *PLoS One.* 2014;9(7):e101311. Epub 20140708. doi:
890 10.1371/journal.pone.0101311. PubMed PMID: 25003557; PubMed Central PMCID:
891 PMCPMC4086932.

892 27. Grosset JH, Tyagi S, Almeida DV, Converse PJ, Li SY, Ammerman NC, et al. Assessment of
893 clofazimine activity in a second-line regimen for tuberculosis in mice. *Am J Respir Crit Care Med.*
894 2013;188(5):608-12. doi: 10.1164/rccm.201304-0753OC. PubMed PMID: 23822735; PubMed
895 Central PMCID: PMCPMC3827279.

896 28. Tasneen R, Betoudji F, Tyagi S, Li SY, Williams K, Converse PJ, et al. Contribution of
897 Oxazolidinones to the Efficacy of Novel Regimens Containing Bedaquiline and Pretomanid in a
898 Mouse Model of Tuberculosis. *Antimicrob Agents Chemother.* 2016;60(1):270-7. Epub 20151026.
899 doi: 10.1128/AAC.01691-15. PubMed PMID: 26503656; PubMed Central PMCID:
900 PMCPMC4704221.

901 29. Via LE, England K, Weiner DM, Schimel D, Zimmerman MD, Dayao E, et al. A sterilizing
902 tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions
903 in marmosets. *Antimicrob Agents Chemother.* 2015;59(7):4181-9. Epub 20150504. doi:
904 10.1128/AAC.00115-15. PubMed PMID: 25941223; PubMed Central PMCID: PMCPMC4468655.

905 30. Lin PL, Coleman T, Carney JP, Lopresti BJ, Tomko J, Fillmore D, et al. Radiologic Responses
906 in Cynomolgus Macaques for Assessing Tuberculosis Chemotherapy Regimens. *Antimicrob
907 Agents Chemother.* 2013;57(9):4237-44. Epub 20130624. doi: 10.1128/AAC.00277-13. PubMed
908 PMID: 23796926; PubMed Central PMCID: PMCPMC3754323.

909 31. Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H, Collins JJ, et al.
910 Chemogenomics and orthology-based design of antibiotic combination therapies. *Mol Syst Biol.*
911 2016;12(5):872. Epub 20160524. doi: 10.15252/msb.20156777. PubMed PMID: 27222539;
912 PubMed Central PMCID: PMCPMC5289223.

913 32. Ma S, Jaipalli S, Larkins-Ford J, Lohmiller J, Aldridge BB, Sherman DR, et al. Transcriptomic
914 Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis.
915 *mBio.* 2019;10(6). Epub 20191112. doi: 10.1128/mBio.02627-19. PubMed PMID: 31719182;
916 PubMed Central PMCID: PMCPMC6851285.

917 33. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-
918 month moxifloxacin-based regimens for drug-sensitive tuberculosis. *N Engl J Med.* 2014;371(17):1577-87. Epub 20140907. doi: 10.1056/NEJMoa1407426. PubMed PMID: 25196020; PubMed Central PMCID: PMCPMC4277680.

921 34. Merle CS, Fielding K, Sow OB, Gninafon M, Lo MB, Mthiyane T, et al. A four-month
922 gatifloxacin-containing regimen for treating tuberculosis. *N Engl J Med.* 2014;371(17):1588-98.
923 doi: 10.1056/NEJMoa1315817. PubMed PMID: 25337748.

924 35. Jindani A, Harrison TS, Nunn AJ, Phillips PP, Churchyard GJ, Charalambous S, et al. High-
925 dose rifapentine with moxifloxacin for pulmonary tuberculosis. *N Engl J Med.* 2014;371(17):1599-
926 608. doi: 10.1056/NEJMoa1314210. PubMed PMID: 25337749; PubMed Central PMCID: 927 PMCPMC4233406.

928 36. Controlled clinical trial of four short-course (6-month) regimens of chemotherapy for
929 treatment of pulmonary tuberculosis. *Lancet.* 1974;2(7889):1100-6. PubMed PMID: 4139405.

930 37. Cicchese JM, Pienaar E, Kirschner DE, Linderman JJ. Applying optimization algorithms to
931 tuberculosis antibiotic treatment regimens. *Cell Mol Bioeng.* 2017;10(6):523-35. Epub
932 2017/08/30. doi: 10.1007/s12195-017-0507-6. PubMed PMID: 29276546; PubMed Central
933 PMCID: PMCPMC5737793.

934 38. Pienaar E, Dartois V, Linderman JJ, Kirschner DE. In silico evaluation and exploration of
935 antibiotic tuberculosis treatment regimens. *BMC Syst Biol.* 2015;9:79. Epub 20151114. doi:
936 10.1186/s12918-015-0221-8. PubMed PMID: 26578235; PubMed Central PMCID:
937 PMCPMC4650854.

938 39. Nuermberger EL, Yoshimatsu T, Tyagi S, Williams K, Rosenthal I, O'Brien RJ, et al.
939 Moxifloxacin-containing regimens of reduced duration produce a stable cure in murine
940 tuberculosis. *Am J Respir Crit Care Med.* 2004;170(10):1131-4. Epub 20040811. doi:
941 10.1164/rccm.200407-885OC. PubMed PMID: 15306535.

942 40. Nuermberger EL, Yoshimatsu T, Tyagi S, O'Brien RJ, Vernon AN, Chaisson RE, et al.
943 Moxifloxacin-containing regimen greatly reduces time to culture conversion in murine
944 tuberculosis. *Am J Respir Crit Care Med.* 2004;169(3):421-6. Epub 20031024. doi:
945 10.1164/rccm.200310-1380OC. PubMed PMID: 14578218.

946 41. Dorman SE, Johnson JL, Goldberg S, Muzanye G, Padayatchi N, Bozeman L, et al.
947 Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary
948 tuberculosis. *Am J Respir Crit Care Med.* 2009;180(3):273-80. Epub 20090430. doi:
949 10.1164/rccm.200901-0078OC. PubMed PMID: 19406981.

950 42. Rustomjee R, Lienhardt C, Kanyok T, Davies GR, Levin J, Mthiyane T, et al. A Phase II study
951 of the sterilising activities of ofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis.
952 *Int J Tuberc Lung Dis.* 2008;12(2):128-38. PubMed PMID: 18230244.

953 43. Conde MB, Efron A, Loredo C, De Souza GR, Graça NP, Cezar MC, et al. Moxifloxacin versus
954 ethambutol in the initial treatment of tuberculosis: a double-blind, randomised, controlled phase
955 II trial. *Lancet.* 2009;373(9670):1183-9. doi: 10.1016/S0140-6736(09)60333-0. PubMed PMID:
956 19345831; PubMed Central PMCID: PMCPMC2866651.

957 44. De Groote MA, Gilliland JC, Wells CL, Brooks EJ, Woolhiser LK, Gruppo V, et al.
958 Comparative studies evaluating mouse models used for efficacy testing of experimental drugs
959 against *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother.* 2011;55(3):1237-47. Epub

960 20101206. doi: 10.1128/AAC.00595-10. PubMed PMID: 21135176; PubMed Central PMCID: 961 PMCPMC3067068.

962 45. Imperial MZ, Nahid P, Phillips PPJ, Davies GR, Fielding K, Hanna D, et al. A patient-level 963 pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. 964 *Nat Med.* 2018;24(11):1708-15. Epub 20181105. doi: 10.1038/s41591-018-0224-2. PubMed 965 PMID: 30397355; PubMed Central PMCID: PMCPMC6685538.

966 46. Joslyn LR, Linderman JJ, Kirschner DE. A virtual host model of *Mycobacterium tuberculosis* 967 infection identifies early immune events as predictive of infection outcomes. *J Theor Biol.* 968 2022;539:111042. Epub 20220131. doi: 10.1016/j.jtbi.2022.111042. PubMed PMID: 35114195; 969 PubMed Central PMCID: PMCPMC9169921.

970 47. Hult C, Mattila JT, Gideon HP, Linderman JJ, Kirschner DE. Neutrophil Dynamics Affect. 971 *Front Immunol.* 2021;12:712457. Epub 20211005. doi: 10.3389/fimmu.2021.712457. PubMed 972 PMID: 34675916; PubMed Central PMCID: PMCPMC8525425.

973 48. Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global 974 uncertainty and sensitivity analysis in systems biology. *J Theor Biol.* 2008;254(1):178-96. Epub 975 20080420. doi: 10.1016/j.jtbi.2008.04.011. PubMed PMID: 18572196; PubMed Central PMCID: 976 PMCPMC2570191.

977 49. Lin PL, Flynn JL. The End of the Binary Era: Revisiting the Spectrum of Tuberculosis. *J* 978 *Immunol.* 2018;201(9):2541-8. doi: 10.4049/jimmunol.1800993. PubMed PMID: 30348659; 979 PubMed Central PMCID: PMCPMC6217958.

980 50. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, et al. Variability in 981 tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory 982 cytokines is associated with sterilization. *PLoS Pathog.* 2015;11(1):e1004603. Epub 20150122. 983 doi: 10.1371/journal.ppat.1004603. PubMed PMID: 25611466; PubMed Central PMCID: 984 PMCPMC4303275.

985 51. White AG, Maiello P, Coleman MT, Tomko JA, Frye LJ, Scanga CA, et al. Analysis of 18FDG 986 PET/CT Imaging as a Tool for Studying *Mycobacterium tuberculosis* Infection and Treatment in 987 Non-human Primates. *J Vis Exp.* 2017;(127). Epub 20170905. doi: 10.3791/56375. PubMed PMID: 988 28930979; PubMed Central PMCID: PMCPMC5752181.

989 52. Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO's new end 990 TB strategy. *Lancet.* 2015;385(9979):1799-801. Epub 20150324. doi: 10.1016/S0140- 991 6736(15)60570-0. PubMed PMID: 25814376.

992 53. Park JH, Choe J, Bae M, Choi S, Jung KH, Kim MJ, et al. Clinical Characteristics and 993 Radiologic Features of Immunocompromised Patients With Pauci-Bacillary Pulmonary 994 Tuberculosis Receiving Delayed Diagnosis and Treatment. *Open Forum Infect Dis.* 995 2019;6(2):ofz002. Epub 20190117. doi: 10.1093/ofid/ofz002. PubMed PMID: 30775402; PubMed 996 Central PMCID: PMCPMC6366656.

997 54. Boeree MJ, Heinrich N, Aarnoutse R, Diacon AH, Dawson R, Rehal S, et al. High-dose 998 rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage 999 randomised controlled trial. *Lancet Infect Dis.* 2017;17(1):39-49. Epub 20161026. doi: 10.1016/S1473-3099(16)30274-2. PubMed PMID: 28100438; PubMed Central PMCID: 1000 PMCPMC5159618.

1002 55. Boeree MJ, Diacon AH, Dawson R, Narunsky K, du Bois J, Venter A, et al. A dose-ranging
1003 trial to optimize the dose of rifampin in the treatment of tuberculosis. *Am J Respir Crit Care Med.*
1004 2015;191(9):1058-65. doi: 10.1164/rccm.201407-1264OC. PubMed PMID: 25654354.

1005 56. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, et al. Treatment of
1006 Highly Drug-Resistant Pulmonary Tuberculosis. *N Engl J Med.* 2020;382(10):893-902. doi:
1007 10.1056/NEJMoa1901814. PubMed PMID: 32130813; PubMed Central PMCID:
1008 PMC6955640.

1009 57. Cicchese JM, Sambarey A, Kirschner D, Linderman JJ, Chandrasekaran S. A multi-scale
1010 pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of
1011 tuberculosis drugs. *Sci Rep.* 2021;11(1):5643. Epub 2021/03/11. doi: 10.1038/s41598-021-84827-
1012 0. PubMed PMID: 33707554; PubMed Central PMCID: PMCPMC7971003.

1013 58. Blanc L, Daudelin IB, Podell BK, Chen PY, Zimmerman M, Martinot AJ, et al. High-
1014 resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in
1015 immune cell types. *Elife.* 2018;7. Epub 20181114. doi: 10.7554/elife.41115. PubMed PMID:
1016 30427309; PubMed Central PMCID: PMCPMC6249001.

1017 59. Lakshminarayana SB, Huat TB, Ho PC, Manjunatha UH, Dartois V, Dick T, et al.
1018 Comprehensive physicochemical, pharmacokinetic and activity profiling of anti-TB agents. *J*
1019 *Antimicrob Chemother.* 2015;70(3):857-67. Epub 20141111. doi: 10.1093/jac/dku457. PubMed
1020 PMID: 25587994; PubMed Central PMCID: PMCPMC7714050.

1021 60. Zimmerman M, Lestner J, Prideaux B, O'Brien P, Dias-Freedman I, Chen C, et al.
1022 Ethambutol Partitioning in Tuberculous Pulmonary Lesions Explains Its Clinical Efficacy.
1023 *Antimicrob Agents Chemother.* 2017;61(9). Epub 20170824. doi: 10.1128/AAC.00924-17.
1024 PubMed PMID: 28696241; PubMed Central PMCID: PMCPMC5571334.

1025 61. Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: mechanisms of host and bacillus that
1026 contribute to persistent infection. *Lancet Infect Dis.* 2003;3(9):578-90. doi: 10.1016/s1473-
1027 3099(03)00741-2. PubMed PMID: 12954564.

1028 62. Forrester AI, Sóbester A, Keane AJ. Engineering Design via Surrogate Modelling: A
1029 Practical Guide. John Wiley & Sons; 2008.

1030 63. Ganchua SKC, White AG, Klein EC, Flynn JL. Lymph nodes-The neglected battlefield in
1031 tuberculosis. *PLoS Pathog.* 2020;16(8):e1008632. Epub 20200813. doi:
1032 10.1371/journal.ppat.1008632. PubMed PMID: 32790739; PubMed Central PMCID:
1033 PMCPMC7425845.

1034 64. Wessler T, Joslyn LR, Borish HJ, Gideon HP, Flynn JL, Kirschner DE, et al. A computational
1035 model tracks whole-lung *Mycobacterium tuberculosis* infection and predicts factors that inhibit
1036 dissemination. *PLoS Comput Biol.* 2020;16(5):e1007280. Epub 20200520. doi:
1037 10.1371/journal.pcbi.1007280. PubMed PMID: 32433646; PubMed Central PMCID:
1038 PMCPMC7239387.

1039 65. Segovia-Juarez JL, Ganguli S, Kirschner D. Identifying control mechanisms of granuloma
1040 formation during *M. tuberculosis* infection using an agent-based model. *J Theor Biol.*
1041 2004;231(3):357-76. doi: 10.1016/j.jtbi.2004.06.031. PubMed PMID: 15501468.

1042 66. Ray JC, Flynn JL, Kirschner DE. Synergy between individual TNF-dependent functions
1043 determines granuloma performance for controlling *Mycobacterium tuberculosis* infection. *J*
1044 *Immunol.* 2009;182(6):3706-17. doi: 10.4049/jimmunol.0802297. PubMed PMID: 19265149;
1045 PubMed Central PMCID: PMCPMC3182770.

1046 67. Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale
1047 computational modeling reveals a critical role for TNF- α receptor 1 dynamics in tuberculosis
1048 granuloma formation. *J Immunol.* 2011;186(6):3472-83. Epub 20110214. doi:
1049 10.4049/jimmunol.1003299. PubMed PMID: 21321109; PubMed Central PMCID:
1050 PMCPMC3127549.

1051 68. Cilfone NA, Perry CR, Kirschner DE, Linderman JJ. Multi-scale modeling predicts a balance
1052 of tumor necrosis factor- α and interleukin-10 controls the granuloma environment during
1053 *Mycobacterium* tuberculosis infection. *PLoS One.* 2013;8(7):e68680. Epub 20130715. doi:
1054 10.1371/journal.pone.0068680. PubMed PMID: 23869227; PubMed Central PMCID:
1055 PMCPMC3711807.

1056 69. Coleman MT, Maiello P, Tomko J, Frye LJ, Fillmore D, Janssen C, et al. Early Changes by
1057 (18)Fluorodeoxyglucose positron emission tomography coregistered with computed tomography
1058 predict outcome after *Mycobacterium* tuberculosis infection in cynomolgus macaques. *Infect*
1059 *Immun.* 2014;82(6):2400-4. Epub 20140324. doi: 10.1128/IAI.01599-13. PubMed PMID:
1060 24664509; PubMed Central PMCID: PMCPMC4019174.

1061 70. Joslyn LR, Kirschner DE, Linderman JJ. : A Calibration Protocol That Utilizes Parameter
1062 Density Estimation to Explore Parameter Space and Calibrate Complex Biological Models. *Cell*
1063 *Mol Bioeng.* 2021;14(1):31-47. Epub 20200915. doi: 10.1007/s12195-020-00650-z. PubMed
1064 PMID: 33643465; PubMed Central PMCID: PMCPMC7878626.

1065 71. Fallahi-Sichani M, Marino S, Flynn J, Linderman J, Kirschner D. A systems biology approach
1066 for understanding granuloma formation and function in tuberculosis. New York Heidelberg
1067 Dordrecht London: Springer; 2013. p. 127-55.

1068 72. Pienaar E, Matern WM, Linderman JJ, Bader JS, Kirschner DE. Multiscale Model of
1069 *Mycobacterium* tuberculosis Infection Maps Metabolite and Gene Perturbations to Granuloma
1070 Sterilization Predictions. *Infect Immun.* 2016;84(5):1650-69. Epub 20160422. doi:
1071 10.1128/IAI.01438-15. PubMed PMID: 26975995; PubMed Central PMCID: PMCPMC4862722.

1072 73. McKay M, Beckman R, Conover W. A comparison of three methods for selecting values of
1073 input variables in the analysis of output from a computer code. *Technometrics*; 1979. p. 239-45.

1074 74. Renardy M, Joslyn LR, Millar JA, Kirschner DE. To Sobol or not to Sobol? The effects of
1075 sampling schemes in systems biology applications. *Math Biosci.* 2021;337:108593. Epub
1076 20210416. doi: 10.1016/j.mbs.2021.108593. PubMed PMID: 33865847; PubMed Central PMCID:
1077 PMCPMC8184610.

1078 75. Cilfone NA, Kirschner DE, Linderman JJ. Strategies for efficient numerical implementation
1079 of hybrid multi-scale agent-based models to describe biological systems. *Cell Mol Bioeng.*
1080 2015;8(1):119-36. doi: 10.1007/s12195-014-0363-6. PubMed PMID: 26366228; PubMed Central
1081 PMCID: PMCPMC4564133.

1082 76. Ankomah P, Levin BR. Two-drug antimicrobial chemotherapy: a mathematical model and
1083 experiments with *Mycobacterium marinum*. *PLoS Pathog.* 2012;8(1):e1002487. Epub 20120112.
1084 doi: 10.1371/journal.ppat.1002487. PubMed PMID: 22253599; PubMed Central PMCID:
1085 PMCPMC3257304.

1086 77. Shandil RK, Jayaram R, Kaur P, Gaonkar S, Suresh BL, Mahesh BN, et al. Moxifloxacin,
1087 ofloxacin, sparfloxacin, and ciprofloxacin against *Mycobacterium* tuberculosis: evaluation of in
1088 vitro and pharmacodynamic indices that best predict in vivo efficacy. *Antimicrob Agents*

1089 Chemother. 2007;51(2):576-82. Epub 20061204. doi: 10.1128/AAC.00414-06. PubMed PMID: 17145798; PubMed Central PMCID: PMCPMC1797767.

1090 78. Zhang Y, Mitchison D. The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003;7(1):6-21. PubMed PMID: 12701830.

1091 79. Hartkoorn RC, Chandler B, Owen A, Ward SA, Bertel Squire S, Back DJ, et al. Differential 1092 drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P- 1093 glycoprotein. Tuberculosis (Edinb). 2007;87(3):248-55. Epub 20070126. doi: 10.1016/j.tube.2006.12.001. PubMed PMID: 17258938.

1094 80. Diacon AH, Patientia RF, Venter A, van Helden PD, Smith PJ, McIllemon H, et al. Early 1095 bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by 1096 positive sputum smears. Antimicrob Agents Chemother. 2007;51(8):2994-6. Epub 20070521. doi: 10.1128/AAC.01474-06. PubMed PMID: 17517849; PubMed Central PMCID: PMCPMC1932511.

1097 81. Xu Y, Wu J, Liao S, Sun Z. Treating tuberculosis with high doses of anti-TB drugs: 1098 mechanisms and outcomes. Ann Clin Microbiol Antimicrob. 2017;16(1):67. Epub 20171003. doi: 10.1186/s12941-017-0239-4. PubMed PMID: 28974222; PubMed Central PMCID: PMCPMC5627446.

1099 82. Pasipanodya JG, Gumbo T. Clinical and toxicodynamic evidence that high-dose 1100 pyrazinamide is not more hepatotoxic than the low doses currently used. Antimicrob Agents 1101 Chemother. 2010;54(7):2847-54. Epub 20100503. doi: 10.1128/AAC.01567-09. PubMed PMID: 1102 20439617; PubMed Central PMCID: PMCPMC2897291.

1103 83. Stass H, Dalhoff A, Kubitza D, Schühly U. Pharmacokinetics, safety, and tolerability of 1104 ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy 1105 subjects. Antimicrob Agents Chemother. 1998;42(8):2060-5. doi: 10.1128/AAC.42.8.2060. 1106 PubMed PMID: 9687407; PubMed Central PMCID: PMCPMC105860.

1107 84. Akhtar T, Shoemaker CA. Multi objective optimization of computationally expensive 1108 multi-modal functions with RBF surrogates and multi-rule selection. Journal of Global 1109 Optimization; 2016. p. 17-32.

1110 85. Sóbester A, Forrester AJ, Toal DJJ, Tresidder E, Tucker S. Engineering design applications 1111 of surrogate-assisted optimization techniques. Optimization and Engineering; 2014. p. 243-65.

1112 86. Jones DR, Schonlau M, Welch WJ. Efficient Global Optimization of Expensive Black-Box 1113 Functions. Journal of Global Optimization; 1998. p. 455-92.

1114 87. Keane AJ. Statistical improvement criteria for use in multiobjective design optimization. 1115 AIAA Journal; 2006. p. 879-91.

1116

1117

1118

1119

1120

1121

1122