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Author summary

Tuberculosis (TB) is a top global health concern and treatment for TB requires multiple
antibiotics taken for long periods of time, which is challenging for TB patients. Therefore,
identifying regimens that are more effective and more patient-friendly than the standard
treatment is urgently needed. It is also known that non-compliance leads to the
development of drug resistant TB. In this work, we pair computational and experimental
models to predict new regimens for the treatment of TB that optimize how fast bacteria
are cleared using minimal dosage. We apply novel approaches to this goal and validate
our predictions using a non-human primate model. Our findings suggest that systems
pharmacological modeling should be employed as a method to narrow the design space

for drug regimens for tuberculosis and other diseases as well.

Abstract

Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world,
causing ~1.5 million deaths every year. The World Health Organization initiated an End
TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research
goals have focused on discovering more effective and more patient-friendly antibiotic drug
regimens to increase patient compliance and decrease emergence of resistant TB.
Moxifloxacin is one promising antibiotic that may improve the current standard regimen
by shortening treatment time. Clinical trials and in vivo mouse studies suggest that
regimens containing moxifloxacin have better bactericidal activity. However, testing every

possible combination regimen with moxifloxacin either in vivo or clinically is not feasible
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due to experimental and clinical limitations. To identify better regimens more
systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens
(with and without moxifloxacin) to evaluate efficacies, and then compared our predictions
to both clinical trials and nonhuman primate studies performed herein. We used GranSim,
our well-established hybrid agent-based model that simulates granuloma formation and
antibiotic treatment, for this task. In addition, we established a multiple-objective
optimization pipeline using GranSim to discover optimized regimens based on treatment
objectives of interest, i.e., minimizing total drug dosage and lowering time needed to
sterilize granulomas. Our approach can efficiently test many regimens and successfully
identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately

accelerate the TB regimen discovery process.

Introduction

Tuberculosis (TB) is one of the deadliest infectious diseases in the world, with 1.6 million
deaths in 2021 [1], and World Health Organization (WHO) aims to reduce the number of
TB-related deaths by 95% by 2035 [1]. While vaccination efforts can reduce the number
of new TB cases and deaths, a shorter but highly efficacious and safe drug regimen is
needed to treat TB. Although new and efficacious drugs have been discovered for drug-
resistant TB [2, 3], drug-susceptible TB disease has been treated with the same regimen
for close to 50 years, namely 6-9 months of treatment with isoniazid (H), rifampin (R),
ethambutol (E) and pyrazinamide (Z) [4]. Likely, changes to the existing standard regimen

for drug-susceptible TB will help achieve WHO’s goal.


https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.18.520959; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Improving existing TB treatment involves finding regimens that account for the
complexities of TB. The structure of the granuloma influences antibiotic distribution and
can result in lower concentrations within granulomas [5-8]. Moreover, microenvironments
within granulomas can promote the infecting bacteria, Mycobacterium tuberculosis (Mtb),
to shift phenotypic states that are tolerant towards antibiotics [9-11]. Host-to-host
variability in drug absorption and metabolism kinetics leads to pharmacokinetic (PK)
variability that has been clinically linked to worse outcomes in TB treatment [12].
Furthermore, the lengthy treatment makes compliance challenging. While compliance
yields high levels of success, intermittent treatment can lead to the development of drug
resistance [13]. In short, by addressing these complications (heterogeneity in granulomas
and antibiotic distribution, antibiotic-tolerant Mtb, host-to-host PK variability and long
treatment times), a better regimen — one that would successfully treat more individuals
with a shorter treatment duration — can be identified.

Due to these challenges, identifying new regimens for TB is a complex process
that requires a combination of approaches to accurately capture different aspects of TB
treatment [14]. Studies have classified the pharmacokinetic/ pharmacodynamic (PK/PD)
features of individual TB antibiotics with in vitro methods, such as hollow fiber systems
[15-17] and bactericidal assays in different growth conditions [18-20], and in vivo methods
via HPLC coupled to tandem mass spectrometry (LC-MS/MS) and MALDI mass
spectrometry imaging (MALDI-MSI) analyses [21-23]. However, these studies were
mostly performed using single antibiotics and, due to heterogeneity among granulomas,
variability of Mtb metabolic states and the propensity for Mtb to develop drug resistance,

TB treatments with more than one antibiotic (i.e. combination therapy) are essential. To
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91 quantify drug interactions and assess the efficacy of combination therapies, many studies
92 have been performed: in vitro with checkerboard assays [24-26], in vivo with mouse [27,
93 28], using a non-human primate (NHP) animal models [29, 30], as well as in silico
94 approaches applying machine learning algorithms [31, 32]. Moreover, many clinical
95 studies have been performed with antibiotic combinations, which is crucial to assessing
96 toxicity as well as long term outcomes of treatments [33-36]. These valuable studies are
97 time-consuming and expensive, often prohibitively so.
98 Computational modeling can efficiently predict regimen efficacy and optimal
99 doses, which is essential due to the high number of combinations of drug regimens in this
100 large regimen design space (on the order of 10" [37]). We have previously shown that
101  our validated computational simulations of granuloma formation, function and treatment,
102 called GranSim, can simulate efficacies of different TB regimens (c.f. [6, 8, 38]) and we
103  can utilize surrogate-assisted optimization algorithms to accurately and efficiently predict
104  optimal regimens [37].
105 Previous studies in murine models suggested that moxifloxacin (M) is a promising
106  antibiotic to improve the standard regimen and decrease the duration of TB treatment due
107 to its strong bactericidal activity [39-44]. To this end, a recent clinical trial, REMoxTB,
108 attempted to shorten treatment from 6 months to 4 months by altering the standard HRZE
109 regimen to HRZM or RMZE. However, the study failed to show noninferiority of
110 moxifloxacin-containing regimens to the standard regimen due to higher relapse rates of
111 these regimens [33]; after careful reanalysis, some patient populations were shown to be
112  cured successfully with these moxifloxacin-containing regimens in a shorter treatment

113  window [45]. In our study, we elaborate an approach toward identifying drug regimens
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114 that are more effective in treating TB granulomas and that require shorter treatment times
115 compared to the standard regimen. We used our computational model GranSim to create
116 an in silico biorepository of hundreds of granulomas, combined with in vivo data
117 generated from a NHP model and applied a surrogate-assisted optimization algorithm to
118 identify regimen success and failure. We first simulated moxifloxacin-containing regimens
119 using GranSim and identified regimens that are superior to the standard treatment based
120 on sterilization times. Informed by our simulation results, we performed an in vivo study
121  in NHPs to test our predicted regimens that haven’t been studied before, validating our
122  simulation predictions. Thus, our study identifies new regimens that can inform pre-clinical
123 trials to shorten treatment times and minimize dosages. This highlights the importance of
124  using modeling prior to pre-clinical trials as a step towards a more efficient and directed
125 regimen design for TB.

126

127 Results

128 In silico library of granulomas for treatment simulations and dose optimization

129  We first generated an in silico library of 750 granulomas over 300 days that matches NHP
130 dataset of 600 granulomas [46, 47]. To do that, we sampled 250 granuloma parameter
131 sets within biological feasible ranges using the LHS method and simulating three
132 replications with each parameter set to capture both types of uncertainty present [48]. We
133  then classified granulomas that have nonzero bacterial loads (those that did not sterilize)
134 by measuring their colony forming units (CFUs) as either low-CFU or high-CFU
135 granulomas, depending on their CFU trends (Fig 1) In this work, we simulated different

136 treatments on subsets of granulomas from this library of both high- and low-CFU
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137 granulomas as well as combined. This follows as humans and NHPs have multiple
138 granulomas within their lungs, and ensures that we test each regimen on a variety of
139 granuloma types and multiple granulomas, making it relevant to both experimental data
140 and clinical TB outcomes. Here, low-CFU granulomas represent the state where the
141  immune system controls bacterial growth within a granuloma, whereas within high-CFU
142  granulomas, bacteria grow to large numbers and can disseminate [8, 49, 50]. Specifically,
143  if the number of CFUs within a granuloma is less than 104 at the end of the simulation
144  and has not increased more than 50 CFUs in the last 20 days of simulation, we label it as
145 a low-CFU granuloma (Fig 1, blue curves). If the number of CFUs in a granuloma is
146  between 10% and 107 at the end of the simulation or it has increased by more than 50
147 CFUs in the last 20 days of simulation, we label it as a high-CFU granuloma (Fig 1, red
148  curves). We proposed 10* CFUs/granuloma as a threshold for low-CFU granulomas,
149 based on the observed CFU trends of the 750 granulomas we simulated: granulomas
150 with CFUs lower than this threshold tend to stabilize in our simulations (Fig 1, blue
151  curves), representing controlled growth. However, granulomas with CFUs higher than this
152 threshold tend to grow uncontrollably (Fig 1, red curves). We can alter this threshold

153  without loss of generality.
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155 Fig 1. CFU trends within the in silico repository of simulated granuloma generated by GranSim after
156 the start of infection. Each curve represents a single granuloma simulation with a single parameter set
157  using GranSim, and black dots are data from NHP studies [46, 47]. Based on their CFU trajectories, we
158  categorize granulomas into low-CFU (blue curves) and high-CFU (red curves) granulomas. Low-CFU
159  granulomas represent granulomas that have controlled bacterial burden; high-CFU granulomas are those
160  where bacterial growth is uncontrollable by the immune system, respectively [8, 49, 50].

161
162 Simulations capture the rapid rate of sterilization with moxifloxacin-containing

163 regimens that is observed in clinical trials

164  We first compare the standard regimen for TB, i.e., HRZE, with various moxifloxacin-
165 containing regimens. A recent clinical trial (REMoxTB) compared the 6-month standard
166 regimen HRZE treatment (control group) to 4-month treatment with two moxifloxacin-
167  containing regimens, HRZM (termed the “isoniazid group” in the original study) and RMZE
168 (termed the “ethambutol group” in the original study) (see Table 1 for the protocol) [33].
169 Regimens with moxifloxacin were not found to be suitable replacements for the standard

170 regimen, as they had a higher rate of relapse in patients after the end of treatment, even
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though they decreased the bacterial load in patients’ sputum more rapidly at the beginning

of the treatment (Fig 2A).

Table 1. Simulation protocols used in this study. Those indicated as clinical trial correspond to the
regimens used in [33], and those indicated as NHP study correspond to the regimens tested in NHPs herein.
HRZEM combinations refer solely to the computational studies. Optimization refers to the regimens we
further tested with our optimization protocol to determine dosing and sterilization time to predict the best
performers.

STUDY GROUP REGIMEN
o Control (HRZE) 8 wk HRZE 18 wk HR
53‘_:' HRZM 17 wk HRZM 9 wk placebo
-
":_" 9 wk placebo

Control (no drug) 60 days

% HMZE 60 days
g_ HRZE 60 days

4-way combinations 120 days

3-way combinations 220 days

suoIeuIquod
IN3ZYH

2-way combinations 300 days

4-way combinations 180 days

uoneziwndo
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Fig 2. Comparison of moxifloxacin-containing regimens to the standard regimen for the human
study and GranSim. (A) Results from the REMoxTB clinical trial [33]. Probability that a patient has a
sputum culture-positive status decreases over the course of treatment, and this decline is more pronounced
for moxifloxacin-containing regimens. Control (HRZE), HRZM and RMZE groups have 510, 514 and 524
patients, respectively. This figure is adapted from Fig 2B of [33] (Data points (x) extracted by
WebPlotDigitizer). (B,C) GranSim predictions for (B) the fraction of unsterilized granulomas and (C) average
sterilization times upon treatment with HRZE, HRZM and RMZE (*p<0.001, one-tailed paired t-test). For
the REMoxTB study and the simulations, in the control groups, patients/granulomas are treated with HRZE
for 8 weeks, followed by an 18-week long HR treatment. In HRZM and RMZE groups, patients/granulomas
are treated with HRZM and RMZE for 17 weeks, respectively (see Methods and Table 1). In (B) and (C),
each group has 200 simulated granulomas.

We used GranSim to simulate the same protocol as in the REMoxTB study (see
Methods and Table 1). Our results agree with the clinical trial: moxifloxacin-containing
regimens reduced the bacterial load faster, as ~40% of the granulomas were sterilized
within the first week (Fig 2B, dashed red and dotted green curves). By comparison, the
standard regimen required more than 4 weeks to sterilize the same number of
granulomas (Fig 2B, blue curve). To treat the whole set of granulomas successfully (i.e.,
both low-and high-CFU), HRZE, HRZM and RMZE-treated groups need 17, 8 and 12
weeks of treatment, respectively. The metric “average time to sterilize a granuloma”
follows a similar trend: HRZM-treated group has the shortest average sterilization time
with ~14 days, followed by RMZE- (~17 days) and HRZE-treated (~35 days) groups.

Therefore, our simulations suggest that the HRZM is the most effective regimen in terms

10
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204 of bactericidal activity, followed by RMZE, although the difference between these two
205 regimens is minimal yet significant (p<0.001). The control group, HRZE, is the slowest to
206  sterilize granulomas.

207

208 Regimens HMZE, HRZE and RMZE reduce bacterial burden in both NHP studies
209 and simulations

210 NHPs with active TB were treated with the TB standard regimen HRZE as well as two
211  moxifloxacin-containing regimens: RMZE and HMZE (see Table 1 and Methods). Daily
212 administration of drugs was initiated at 13 weeks post-infection and continued for 8 weeks
213  at which time the macaques were necropsied. Total CFU was calculated by summing the
214  CFU counts obtained from plating multiple tissue samples (lung, granulomas, LNs) from
215 each animal. Each regimen was able to reduce bacterial burden in NHPs compared to
216  controls (Fig 3D and E). Simulations with GranSim indicated that moxifloxacin-containing
217 regimens, HMZE and RMZE, sterilize more granulomas in a shorter time frame than the

218 standard regimen, HRZE (Fig 3A-C).

11
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220 Fig 3. Comparing NHP and GranSim regimens. Comparison of the standard regimen (HRZE) to two
221 moxifloxacin-containing regimens, HMZE and RMZE, between in silico studies with GranSim (panels A-C)
222 and in vivo NHP studies (panels D and E). (A) The sterilization times of granulomas averaged over 200
223 granulomas in GranSim. Note that we assign the maximum simulation time of 60 days as a sterilization
224  time for unsterilized granulomas (*p<0.001, one-tailed paired t-test). (B, E) Percentage of granulomas that
225  are unsterilized by treatment end for (B) NHP studies and (E) GranSim. Colored dots in (E) represent the
226  percentage of unsterilized granulomas per NHP. (C) The fraction of granulomas which are unsterilized as
227  afunction of simulated treatment time using GranSim. (D) The average total CFU per NHP after treatment
228 with the corresponding regimens for two months (n=7 animals in the control group, n=3 animals in HRZE
229  group, n=4 animals in HMZE, n=2 animals in RMZE). Statistical analyses were not performed on the NHP
230  data due to small numbers of animals per group.
231
232 Metabolic activity within granulomas is decreased with antibiotic treatment in both
233 NHPs and simulations
234  We used PET-CT imaging on NHPs with FDG uptake to assess how drug regimens
235 influence inflammatory activity of granulomas. We measured standardized uptake value

12
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236 ratio (SUVR), a previously developed measure to quantify the FDG avidity per granuloma
237  [30, 51]. Treatment with HRZE or HMZE reduced FDG avidity of granulomas within 8
238 weeks, whereas there was no change in FDG avidity in response to RMZE treatment,
239  similar to that of the control group (Fig 4A). In GranSim, we can monitor metabolic activity
240 of a granuloma based on the number of various cell types and inflammatory measures of
241  activity within granulomas (see Methods for more details). Similar to the FDG PET-CT
242  results from NHP experiments, GranSim simulations demonstrated that all treatment

243  regimens decrease metabolic activity significantly (Fig 4B).
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244

245 Fig 4. Comparison of metabolic activity (measured by SUVR) change post treatment in NHP and
246 GranSim. Comparison of metabolic activity changes (A) in NHP granulomas and (B) using GranSim. (A)
247  Change in standardized uptake value ratio (SUVR) per NHP granuloma (colored dots) in 8 weeks
248 (SUVRsweeks - SUVRre-treatment) When NHP are treated with HRZE (n=3 animals), HMZE (n=4 animals) and
249  RMZE (n=2 animals) for 8 weeks (n=7 animals in control case, i.e., without treatment). Color shades of the
250  dotsin each column indicate NHPs and the diamonds are the median of SUVR change/granuloma for each
251 NHP. (B) Change in FDG avidity per granuloma simulated using GranSim (FDG aviditygyeeks - FDG
252 aviditYpretreatment) averaged over 200 granulomas (*p<0.0005, one-tailed paired t-test).

253

254
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255 Simulations reveal that moxifloxacin-containing regimens have a better
256  bactericidal activity than HRZE

257 To systematically compare the efficacy of moxifloxacin-containing regimens to the
258 standard regimen, we used GranSim to simulate treatment with all 4-way combinations
259 of HRZEM (HRZE, RMZE, HMZE, HRME and HRZM) for 120 days (Fig 5). We analyze
260 simulation results distinguishing granulomas that are high-CFU (Fig 5A and D) versus
261 low-CFU (Fig 5B and E), as well as combined (Fig 5C and F). Our simulation results
262 indicate that all four regimens containing moxifloxacin clear Mtb within all types of
263  granulomas (high-CFU, low-CFU, and combinations) in a shorter time than the standard
264  regimen HRZE (blue curve in Fig 5A-C, gray box in Fig 5D-F). Moreover, simulations
265 show that the initial decline in bacterial load for combinations of high- and low-CFU
266 granulomas with regimens containing moxifloxacin (Fig 5C) stems from the fast
267  sterilization of all low-CFU granulomas (Fig 5B), as the clearance rate for high-CFU
268 granulomas is slower than that for low-CFU granulomas. In addition, the differences
269  between various moxifloxacin-containing regimens are more pronounced in high-CFU
270 granulomas. For example, HRZM clears all high-CFU granulomas by 51 days, which is
271 the fastest of all 4-way combinations of HRZEM. The next best regimen is HRME,
272  requiring 77 days to sterilize all granulomas with high-CFU. RMZE and HRZE sterilize all
273  high-CFU granulomas by a similar time window, in 94 and 97 days, respectively. Lastly,
274  treating all granulomas until they sterilize with HMZE takes 118 days. However, the
275 average time required to sterilize a high-CFU granuloma (Fig 5D) is lower for
276  moxifloxacin-containing regimens (Fig 5D, red boxes) than that for the standard regimen

277  (Fig 5D, black box), which is consistent with the findings in Figs 2-3.
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279 Fig 5. Comparison of 200 simulations for all HRZEM four-way regimens using GranSim. Comparison
280  of (A-C) sterilizing rates and (D-F) average sterilization times of 4-way combinations of HRZEM for (A and
281 D) 100 high-CFU, (B and E) 100 low-CFU and (C and F) a combination of 100 high- and 100 low-CFU
282  granulomas.
283
284  Simulations show that moxifloxacin-containing regimens are more efficacious than
285 HRZE with fewer than four antibiotics
286  Compliance is one of the challenges of TB treatment due to the long-term use of many
287  antibiotics with numerous side effects. To identify a more patient-friendly treatment, in line
288  with the goals of the END TB strategy of WHO [52], we could reduce the number of
289 antibiotics used in a regimen and/or reduce the total dose of a regimen. To test whether
290 aregimen with fewer than four antibiotics would be as efficient as (or more efficient than)
291 the 4-way combinations of HRZEM, we simulated all 3-way (S3 Fig) and 2-way (S4 Fig)
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292 combinations of HRZEM in treating individual granulomas. As compared with 4-way
293 combinations (Fig 5B and E), we also observed the fast clearance of low-CFU
294 granulomas treated with moxifloxacin-containing regimens in 3- (S3B Fig and S3E Fig)
295 and 2-way (S4B Fig and S4E Fig) combinations. Sterilization of high-CFU granulomas
296 remains faster with 3-way combinations containing moxifloxacin than for regimens without
297 moxifloxacin; however, the rate of sterilization is slower than for low-CFU granulomas
298 (S3B Fig and S3E Fig). The trend does not always hold for treatment of high-CFU
299 granulomas with 2-way combinations containing moxifloxacin (S4B Fig and S4E Fig).
300 Regimens like ZM and EM cannot sterilize most of the high-CFU granulomas despite
301 prolonged treatment (S4B Fig). These granulomas may be related to the classically
302 defined paucibacillary granulomas which even after treatment remain difficult to sterilize
303 [53].

304 Lastly, we compared treatments with all 2-way, 3-way and 4-way combinations of
305 HRZEM to the standard regimen HRZE based on the average sterilization time for each
306 regimen of high-CFU (Fig 6A) and low-CFU (Fig 6B) granulomas and both types of
307 granulomas combined (Fig 6C). Our results demonstrate that regimens that are more
308 effective in sterilizing granulomas than HRZE each contain moxifloxacin (colored curves
309 in Fig 6). For high-CFU granulomas, a moxifloxacin-containing regimen with at least 3
310 antibiotics is needed to achieve a better performance than HRZE (Fig 6A). However,
311  sterilizing low-CFU granulomas faster than HRZE is possible even with regimens
312 containing two antibiotics (HM, RM and ZM in Fig 6B). These comparisons are based

313  only on the standard doses of regimens; optimization of doses is also possible.
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322 Dosing optimization method identifies new doses for regimens
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323  Optimizing the dose of each antibiotic in all 4-way combinations of HRZEM may reduce
324 the total antibiotic dose, contributing to our goal of a more patient-friendly TB treatment.
325 Here, we use Pareto optimization to predict optimal solutions that balance the trade-off
326 between two treatment objectives: minimizing the total antibiotic dose and minimizing the
327 average time for regimens required to sterilize all Mtb within granulomas, i.e., the average
328  sterilization time. Based on these two objectives, our Pareto optimization pipeline predicts
329 the Pareto front for each 4-way combination regimen of HRZEM (HRZM, HRME, HMZE,
330 RMZE and HRZE) and outputs a set of optimized regimens that belong to the Pareto set
331 (i.e., optimal doses) (Fig 7A-E, red dots).
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332 Fig 7. Pareto front optimization study simulating all 4-way combinations of HRZEM to find regimens
333 that minimize both average sterilization time and total dose. Pareto front optimization identifying
334  optimal dose and sterilization times for: (A) HRZM, (B) HRME, (C) HMZE, (D) RMZE and (E) HRZE. In
335  each panel (A-E), red dots represent the (non-dominating) regimens that belong to the Pareto set (see S2-6
336  Tables for the doses of each antibiotic in the regimens that belong to Pareto sets) whereas black dots are
337 the regimens that are not optimal based on the objectives. Green dots show the regimen based on the
338 current standard doses recommended by CDC [4]. (F) Pareto sets for all regimens (same as red dots in
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339  panels A-E) compared to the standard regimen HRZE with CDC-recommended doses (X in Panel F). Dots
340 in the dashed gray rectangle indicate the regimens that have lower total drug dose and lower average
341 sterilization times (see Table 2 for the doses of each antibiotic in these regimens). Triangles indicate
342 optimized regimens with 3-way combinations, as the optimal doses of one antibiotic (E or Z) in these
343  regimens are predicted as O.

344

345 In general, regimens that simulations identify as optimal (i.e., regimens in the
346 Pareto set) span a wide range of total dose and average sterilization times. This suggests
347 that among optimized regimens, some have very low average sterilization times at the
348 cost of a very high antibiotic dose and some regimens have a very low total dose leading
349 to long sterilization times. However, we are particularly interested in optimized regimens
350 that have both lower total dose and lower average sterilization times as compared to
351 standard regimen (HRZE with CDC-recommended doses). Our method predicts that the
352 19 regimens in the dashed gray rectangle (Fig 7F) are all more advantageous than the
353 standard regimen (black dot in Fig 7F) in terms of reducing both total dose and sterilization
354 time. These regimens tend to have higher doses of rifampicin than the standard regimen
355 yet lower total regimen dose (Table 2), resulting in shorter sterilization times, which is in
356 line with clinical trials that showed a reduction in time to culture conversion using higher
357 doses of rifampicin [54, 55]. Based on our earlier results, it is not surprising that these
358 optimized regimens mostly contain moxifloxacin (Table 2). This is also expected based
359 on clinical studies where moxifloxacin-containing regimens sterilize granulomas more
360 efficiently (c.f. Fig 2). Further, although most of these optimal regimens contain four
361 antibiotics, our pipeline also predicted a few optimal combinations with less than four
362 antibiotics (see triangles in the rectangle region of Fig 7F; rows labeled with triangles in

363 Table 2). (Our pipeline predicts the ethambutol optimal dose as 0 for HRME and RMZE

364 regimens and the pyrazinamide optimal dose as 0 for RMZE, thus identifying HRM, RMZ
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and REM as additional optimal regimens). This agrees with our systematic study of all
possible combinations that determined HRM, RZM and REM as more efficient regimens
than the standard regimen HRZE (c.f. Fig 6). Our optimization approach provides a more
efficient way to identify regimens with different combinations of antibiotics than is possible
in clinical or experimental studies.

Table 2. Simulated Doses of Antibiotics that optimize treatment objectives (compare with Fig 7). The
doses for each antibiotic in the regimens that have lower average sterilization time and lower dosage than
the standard regimen (black row) as shown in Fig 7F (i.e., all regimens in dashed gray rectangle). Optimized

doses for HMZE, RMZE, HRME, HRZM and HRZE are color-coded as blue, brown, yellow, purple and
green, respectively. The rows labeled with a triangle indicate optimal 3-way combinations, where the

optimal dose of E or Z is predicted as 0.
Avg Sterilization Time (days)|Total dose (mg/kg)| H| R | Z E | M
33.6 60 5(/10 25|20 | O
6.7 37.0 8.8/19.7/06 | 0 | 7.9
v
8.6 36.4 1.3/16.0/ 9.0 | 0 (10.1
8.7 32.3 87, 77(51| 0 |10.8
8.8 47.2 0 [18.4{16.0| 4.1 | 8.7
9.2 30.1 10/9.7 39| 0 |6.5
9.3 52.2 8.7, 0 (31.2| 0.5 |11.8
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v
¥10.6 45.4 092|269 0 |93
10.9 51.3 9.8 0 [18.7|12.9| 9.9
11.0 28.4 0 {13.3| 26 | 1.0 (11.5
13.8 211 82 0 |26 |1.093
¥17.3 23.0 0 (127| 0 | 25| 7.8
20.5 16.4 9109 (12| 0 |5.2
27.3 38.7 4.7|119.0/14.2/ 0.8 | 0

Discussion

One of the strategies to improve TB treatment regimens is to shorten treatment duration
by introducing or substituting newer antibiotics that have better bactericidal activities than
those in the current standard regimen (HRZE), for example, by considering bedaquiline,
pretomanid, linezolid [56] or moxifloxacin [33]. To this end, clinical trials [33, 41, 43] and
also in vivo studies with mice [39, 40, 44] have been conducted to explore a moxifloxacin-
containing regimen that decreases treatment duration. In this study, we employ three
unique approaches to predict more patient-friendly treatment regimens for TB: replacing

antibiotics in the standard regimen with moxifloxacin in vivo and in silico, reducing the
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386 total number of antibiotics in a regimen by scanning all regimen combinations in silico,
387 and reducing the total dosage using an in silico drug optimization pipeline.

388 Previously, we explored regimens with and without moxifloxacin in our simulation
389 framework, GranSim, to compare with early-phase clinical trials [57]. However, this is the
390 first study that directly compares TB treatment simulations using GranSim to a phase 3
391 clinical trial (REMoxTB [33]) (Fig 2). We also perform NHP studies with promising
392 regimens predicted by GranSim. (Figs 3 and 4). Different from our previous studies, we
393 systematically analyzed all possible combinations with or without moxifloxacin and
394 employed a new optimization pipeline to identify optimal regimens that sterilize
395 granulomas more efficiently than HRZE.

396 Previous clinical trials concluded that both 4 months of HRZM treatment and 4
397 months of RMZE had better bactericidal activity than the control group (HRZE) based on
398 the conversion to culture negativity status of the patients (Fig 2A) [33]. In our simulations,
399 we observe a similar trend as in the clinical trial in terms of bactericidal activity: HRZM
400 and RMZE groups are more effective in reducing bacterial load and sterilizing granulomas
401 than the control group (Fig 2B and C). Although the measures of the clinical trial and our
402 simulations are at different scales (host-scale measures in clinical trials and granuloma-
403 scale measures in simulations), both studies support that moxifloxacin is a promising
404  regimen.

405 NHP experiments with standard and moxifloxacin-containing regimens indicate
406 that all regimens reduce the total CFU of NHPs (Fig 3D) by sterilizing the majority of NHP
407 granulomas (Fig 3E and S5 Fig). Furthermore, granuloma metabolic activity (surrogate

408 for inflammation) drops by treatment with HRZE and HMZE only, while RMZE does not
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409 affect the metabolic activity. These outcomes are in agreement with our simulations;
410 however, simulations predict that RMZE is equally effective as HMZE in sterilizing
411 granulomas and reduces metabolic activity. This difference may stem from the small
412  sample size in NHP studies but likely also is due to in vivo factors that are not included
413  within GranSim. In addition, the surrogate measures used for FDG avidity in granulomas
414  are only an approximation of the factors involved in in vivo FDG avidity. Using GranSim,
415  we simulated 200 distinct granulomas per regimen. However, due to resource limitations,
416 sample sizes were necessarily smaller in the NHP studies, and RMZE has the smallest
417 sample size with only 2 animals. Moreover, unlike in silico studies where we simulate
418 treatment with the same set of granulomas over various regimens, in vivo studies require
419 different sets of animals to test regimens, and the outbred nature of macaques adds
420 another level of variability, although this is also true in humans.

421 To test the efficacy of moxifloxacin-containing regimens more systematically and
422 to potentially reduce the number of antibiotics needed per regimen, we simulated the
423  treatment of low- and high-CFU granulomas with all 4-way (Fig 5), 3-way (S3 Fig) and 2-
424  way (S4 Fig) combinations of HRZEM. In this study, we conclude that any 4-way, 3-way
425 or 2-way (except EM) combinations that include moxifloxacin are more efficacious in
426  eliminating bacteria within low-CFU granulomas than HRZE (Fig 6B). However, only 4-
427 way combinations and some of the 3-way combinations work better than HRZE for
428 treating high-CFU granulomas (Fig 6A). This suggests that decreasing the number of
429 antibiotics within a regimen may be challenging when treating more progressive, caseous
430 granulomas with the 5 drugs in this study, whereas granulomas with lower CFU numbers

431 are easier to treat with fewer antibiotics.
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432 Most of the regimens that are 2-, 3- or 4-way combinations of HRZEM consistently
433 decrease the fraction of granulomas remaining unsterilized over the course of the
434  treatment and, subsequently, clear them all (Fig 5A-C, S3A-C Fig, S4A-C Fig). However,
435 some regimens cannot sterilize further, i.e., fraction of unsterilized granulomas stays the
436 same over a prolonged treatment time, (especially high-CFU granulomas). This may
437 follow as high-CFU granulomas are mainly caseous with bacteria trapped within that
438 region. It is known that moxifloxacin does not homogeneously diffuse into the caseous
439 core of granulomas [5, 58]. Therefore, a regimen containing moxifloxacin needs to be
440 complemented with antibiotics that are effective in killing Mtb trapped within caseum of
441 granulomas, unlike ethambutol (E) [59, 60] or pyrazinamide (Z) [20, 59]. Treatment of
442  high-CFU granulomas with ZM or EM decreases the bacterial load initially, but eventually
443  results in granulomas with primarily Mtb in caseum (S6 Fig) that could not be sterilized by
444  prolonged treatments with ZM (S6A Fig) or EM (S6B Fig). This suggests that ZM or EM
445  treatments may result in granulomas that harbor bacteria that could later lead to relapse
446  disease [61]. Although treatment with EM or ZM could not sterilize all high-CFU
447  granulomas, 20% and 40% of high-CFU granulomas are cleared by EM and ZM
448 treatment, respectively (S4A Fig).

449 Another novel approach introduced in this study is implementing an optimization
450 pipeline into GranSim to optimize doses of the drugs within regimens using a multi-
451 objective optimization algorithm. Previously, we studied optimization in GranSim by
452  comparing genetic algorithm and radial basis function (RBF) network surrogate models
453 and showed that using an RBF network method is more efficient in optimizing drug

454  regimens without losing accuracy [37]. However, the RBF network method is based on
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455  minimizing one objective function that may consist of various weighted terms, depending
456  on the objectives we consider in order to discover a better regimen. A Pareto set is a set
457  of solutions that is used to minimize multiple objectives with varying levels of importance.
458  Therefore, determining the Pareto front with a single objective function would require
459 many iterations of optimization to obtain a wide-ranging Pareto set [62]. Thus, multi-
460 objective Pareto optimization is a more efficient approach to discover the optimal solution
461  set.

462 To successfully optimize the doses of a regimen, it is crucial to have well defined
463  objectives based on the factors that we would like to consider in a regimen. In this study,
464  we assumed that the total dosage of a regimen, independent of the antibiotic, should be
465 minimal. Moreover, the regimen should sterilize granulomas as quickly as possible.
466 However, we can modify these objectives or add additional ones to obtain more
467  biologically relevant optimized regimens. For instance, each antibiotic has different levels
468  of adverse side effects and high doses should be avoided. Moreover, financial burden of
469 each regimen should also be considered in order to identify more accessible treatments
470  worldwide.

471 Computational modeling studies have many advantages that are useful for drug
472  discovery studies and that complement experimental studies. Unlike clinical trials and in
473  vivo experiments, our computational approach has the power to evaluate the efficacy of
474  regimens on the same set of granulomas to eliminate the variability. Moreover, due to
475 limited resources, trying every single regimen combination in vivo experimentally or
476 clinically, or repeating the experiment many times to achieve significance may not be

477 feasible. Hence, promising regimens may be skipped or missed due to nonsignificant

25


https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.18.520959; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

478 results. Here, we predicted new and promising combination regimens that have not yet
479  been studied clinically, such as HMZE that informed our NHP studies and was predicted
480 to be an effective regimen via our simulations. Another drawback of clinical and in vivo
481 studies is the risk of disease relapse. To assess the relapse rate after treatment, study
482  subjects are observed for several months. Unlike experiments, we can track each Mtb
483  bacilli in our simulations that gives us the power to anticipate relapse at the end of the
484  treatment based on the sterilization status. Having unsterilized granulomas at the end of
485 treatment is predictive of TB relapse.

486 One limitation of our approach is that our model is at granuloma-scale. However,
487  predicting the relapse rates requires a host-scale model. Additionally being able to treat
488  a collection of granulomas within a host can serve to elaborate further the studies herein.
489 The source of relapse is not fully understood. One hypothesis suggests that bacteria
490 within granulomas in lymph nodes could migrate to the lungs and induce reinfection or
491 reactivation [63]. Therefore, a host-scale immune model of TB that contains multiple
492 granulomas within lungs and lymph nodes is needed to assess regimens’ long-term
493 efficacy and to determine relapse rates, which are crucial parameters to evaluate
494  regimens efficiently, and we are currently adapting our host-scale TB model, HostSim [46,
495 64], to encompass antibiotics and meet this need. These next-generation improvements
496  will make our approach more powerful and reliable, so that in vivo experiments or clinical
497  trials can be systematically informed by simulation results.

498

499 Methods

26


https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.18.520959; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

500 We combined computational modeling with studies in NHPs, outlining the approaches for
501 each below. We point out where modifications to existing protocols and models have

502 changed in the next-generation versions used herein.

503 GranSim

504 As a basis for studying treatment at the granuloma scale, we used our well-established
505 computational model of granuloma formation and function, GranSim. GranSim is a hybrid
506 agent-based model (ABM) that simulates the immune response during Mtb infection,
507 capturing granuloma formation as an emergent behavior [6, 65-68]. Agents in this ABM
508 include immune cells, such as macrophages and T-cells, and individual bacteria.
509 GranSim simulates a two-dimensional section of lung tissue (6mm x 6mm) represented
510 by dissecting a 300 x 300 grid into 90,000 grid microcompartments, each of size 20um.
511 Simulations begin with a single infected macrophage in the center of the grid that initiates
512  recruitment of additional macrophages and T cells to the infection site. These immune
513 cells interact with each other and with Mtb according to a large set of immunology-based
514 rules that describe killing of Mtb, secretion of chemokines/cytokines, and activation and
515 movement of cells (for a complete description of our rules, see

516  http://malthus.micro.med.umich.edu/GranSim/). Granulomas “emerge” as a result of

517 these interactions when simulating GranSim. Infection is initiated with a single bacterium.
518 NHPs are highly informative animal models for TB, as TB disease and pathology,
519 including granulomas, are similar to humans [69]. The immunological rules and cellular
520 behaviors included in GranSim are based on datasets derived from NHP granulomas [65,
521 66, 68]. Moreover, we validate and calibrate GranSim granulomas to both spatial and

522 temporal datasets from NHP granulomas, including immune cells (macrophages and T
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523 cells) and Mtb counts and the spatial distribution of cell types within a granuloma [30, 50,
524  70]. GranSim simulates a broad range of biologically relevant outcomes that can recreate
525 the heterogeneity of observed granulomas from NHPs and humans [66, 71] .

526 Antibiotics may have bactericidal (bacterial killing) or bacteriostatic (inhibition of
527  bacterial growth) effects. To capture the actions of these drugs on bacteria, tracking the
528 individual bacteria within the granuloma is key [72]. To mimic that of actual infection, we
529 simulate three distinct subpopulations of Mtb based on their location within granulomas:
530 replicating-extracellular Mtb, intracellular Mtb that reside and replicate within
531 macrophages, and Mtb that are trapped within the caseous necrotic core. These caseum-
532 trapped bacteria have varying growth rates depending on the level of tissue caseation.
533 These subpopulations differ in their abilities to replicate and move within a granuloma.
534

535 Latin Hypercube Sampling (LHS)

536 LHS is a parameter-sampling method that samples the parameter space without
537 replacement and covers the parameter space more uniformly than a simple random
538 sampling. It is done by dividing each parameter distribution into N equal probability
539 intervals and sampling from these intervals to generate N distinct parameter sets and
540 identify epistemic uncertainty [48, 73, 74]. We used this method to generate an in silico
541 library of granulomas in GranSim. If the system under study, as is ours, has stochastic
542 components, it is necessary to do replicates (we choose 3) of each of the N runs to
543  capture the aleatory uncertainty within as well (c.f. [48]). These samplings capture both
544  epistemic and aleatory uncertainty that arise in parameter sets.

545
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546 Pharmacokinetic/pharmacodynamic (PK/PD) modeling

547  We have used GranSim previously to simulate the PK/PD of antibiotic drug treatment for
548 TB. Specifically, we can simulate the spatial distribution of antibiotics and their sterilizing
549  ability for different antibiotic regimens [5, 6, 8, 38].

550 Briefly, the PK/PD model within GranSim simulates the plasma concentration over
551 time following oral doses of antibiotics, the subsequent spatial concentration in the
552 simulated granuloma and the bactericidal activity based on the local concentration. We
553 modeled the plasma PK using a compartmental, ordinary differential equation model to
554 simulate absorption through transit compartments into the plasma, exchange with
555  peripheral tissue and first-order elimination from the plasma [6, 22]. To simulate tissue
556 PK, we referenced the concentration in the plasma and calculated flux through vascular
557 sources on the computational grid, diffusion through tissue, binding to caseum and
558 epithelium and partitioning into macrophages [6, 8, 38, 75].

559 We modeled the PD by using a Hill function that determines the concentration (C)
560 dependent antibiotic killing rate constant (k), which is the rate of bacterial death per time

561 step [76]. The general form of the Hill curve we use is:

h

C
562 k(C) = Emasgry ¢ (Eq.1)

563 where E,,.x is the maximum Kkilling rate constant, h is the Hill coefficient and Cs is the
564  concentration needed to achieve the half maximal killing rate constant (E,.,/2). For each
565 antibiotic, we calibrated the parameters of the Hill curve (Eax, Cso and h) for intracellular,
566 replicating-extracellular and caseum Mtb separately, as the pharmacodynamics of
567 antibiotics are different in these subpopulations. The calibration is based on bactericidal

568 assays of infected macrophages [18, 19, 77-79], Mtb in rich growth media [18, 19, 77-79]

29


https://doi.org/10.1101/2022.12.18.520959
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.18.520959; this version posted December 19, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

569 and Mtb in caseum mimic [20], for intracellular, replicating-extracellular and Mtb in
570 caseum, respectively.

571 In this study, we used the effective concentration of each antibiotic (C) as the total
572  concentration in each grid compartment rather than the free concentration, i.e., the
573  extracellular concentration that is not bound to any macromolecules or any tissue, as we
574  calculated in our previous studies [8, 57]. We made this change as the bactericidal assays
575 we reference are based on the total concentration applied to the Mtb in vitro [20].

576

577  Accounting for pharmacodynamic drug interactions in the model

578 When multiple antibiotics are used and thus present and available on our simulation grid
579 within GranSim, we simulate their interaction by adjusting the effective concentration
580 according to their predicted fractional inhibitory concentration (FIC) values, as we have
581 done previously [57]. We use the FIC values predicted by an in silico tool, INDIGO-MTB
582  (inferring drug interactions using chemogenomics and orthology optimized for Mtb) [31,
583 32]. This tool employs a machine learning algorithm that uses known drug interactions
584 along with drug transcriptomics data as inputs and predicts unknown drug interactions,
585 i.e., FICs.

586 Briefly, we first converted the concentrations of all antibiotics on a small section of
587 the grid (microgrid) to the equipotent concentration of the antibiotic of the highest maximal
588 killing rate constant (highest E,,.x). For example, if we have two antibiotics (drug 1 with
589 the concentration C; and drug 2 with the concentration C,) and drug 1 has a higher E/,.4,

590 then we calculate the adjusted concentration for drug 2 (C ,4;), Which is the concentration
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591 of drug 1 that results in the same antibiotic killing rate constant as drug 2 with the

592  concentration of C,, with the following equation:

C sohlczh2 1/h1
_ _ 1,
533 €= CZ,ad] - Emax.l-(Cth +C; sohz) —c," (Fa-2)

Emax,Z

594  where Cy50and C, 5o are the concentration of C; and C, at which half maximal killing is
595 achieved, respectively, En.x 1 and Enay 2 are the maximal killing rate constants of drug 1
596 and drug 2, respectively, and h; and h, are the Hill coefficients of drug 1 and drug 2,
597 respectively. Then, we calculated the effective concentration (C.x) as the sum of the
598 adjusted concentrations of n antibiotics that are increased/decreased based on the FIC
599 values (see S1 Table for a complete list of FIC values) to simulate synergistic/antagonistic
600 effects with the following equation:

601 Cor= (Nimt Ciag™0) "™ (Eq.3)
602  where C;,qis the adjusted concentration of the drug i. Then, we used C to calculate the
603 antibiotic killing rate constant k on that microgrid by using the Hill equation constants of
604 the antibiotic with the highest E,,y:

Corf"
605 k(Ceff) = Emaxceffh -f:Csoh (Eq4)

606 where E,..x, h and Cs, are the Hill equation parameters of the antibiotic with the highest
607  EpnaxWwithin the regimen.

608

609 Simulating antibiotic regimens in GranSim

610 We calibrated plasma and tissue PK parameters for isoniazid, rifampicin, pyrazinamide

611 and moxifloxacin based on human data [21] and the parameters for ethambutol from
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612 rabbit samples [60] as human data are not available for this antibiotic. We also utilized
613 MALDI-MS images from human [21] and rabbit [58, 60] samples that show the spatial
614  distribution of antibiotics within granulomas as a validation for our tissue PK calibration.
615 We simulated regimens on 200 randomly selected granulomas from our in silico
616 granuloma library (100 low CFU and 100 high CFU granulomas). We employed different
617 dosing protocols based on the studies shown in Table 1. First, we simulated the protocols
618 for the REMoxTB clinical trial [33] using GranSim. There were 3 different groups in this
619  study: control group (HRZE), HRZM group and RMZE group. To simulate the control
620 group, we dosed granulomas with HRZE daily for 8 weeks, followed by 18 weeks of daily
621 dosing of HR. We simulated HRZM and RMZE groups by dosing granulomas for 17 weeks
622 daily with HRZM and RMZE, respectively, followed by 9 weeks of a placebo phase, i.e.,
623 9 weeks of no antibiotics (Table 1).

624 To compare our results to NHP studies performed herein, we simulated the
625 regimens HRZE, HMZE and RMZE for 60 days by dosing daily. We also simulated a
626 positive control case with the same granulomas but with no antibiotics (Table 1).
627 Additionally, we simulated all 2-way, 3-way and 4-way combinations of HRZEM until all
628 granulomas sterilize or reach a stable state, i.e., until the fraction of granulomas that are
629 not sterilized doesn’t change significantly over time (120 days for 4-way combinations (5
630 regimens), 220 days for 3-way combinations (10 regimens), 300 days for 2-way
631 combinations (10 regimens)) (Table 1).

632

633 Average sterilization time measurement
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634 A regimen’s efficacy depends on how fast it can clear all Mtb within a granuloma.
635 Therefore, we measured the average time a regimen needs to clear a granuloma, i.e.,
636 average sterilization time, as a way to assess regimens’ potency. The average
637  sterilization time of a regimen i (t,) is

Zn: tster.
638  Lyper, = — (Eq.5)

n

639 where n is the number of granulomas treated by j and tster,, is the time that granuloma k

640 is treated with j until total Mtb within k is zero. If a granuloma k is not sterilized by a

641 regimen j at the end of the treatment, then we assign tster, = tereatment where tireqtment 1S

642 the duration of the treatment.

643

644 NHP granuloma FDG avidity measurement in GranSim

645  Positron Emission Tomography and Computed Tomography (PET-CT) scans are used to
646 measure metabolic activity of granulomas within NHP by quantifying the uptake of a
647 glucose analog FDG (2-deoxy-2-[18F]-fluoro-D-glucose) via a measure called SUVR
648 (standardized uptake value ratio) [51]. As a proxy for capturing the SUVR per granuloma
649 from NHP experiments within our computational model, we developed a surrogate
650 measurement in GranSim that combines the amount of proinflammatory activity derived
651 from both tumor necrosis factor (TNF) with activity of proinflammatory cells (such as
652 activated T cells and macrophages) that we define as FDG avidity. This is a way to
653  represent the metabolic activity in the in silico granulomas. Specifically, we calculate FDG
654  avidity measure for each granuloma, i as:

655  FDG avidity; = Yg—=1 (TNFy + M,, + 4M;, + 9M;, + 6Mqy, + 3T gam, + 3T cyr,) (Eq.6)
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656 where n is the number of grid microcompartments of the agent-based model grid in a
657 simulation, TNF is the TNF concentration within the microgrid k in pg/ml (with an upper

658 bound as 30 pg/ml), M,, M;, My, Mg, Tgumand T, are the number of resting

iy
659 macrophages, infected macrophages, chronically infected macrophages, active
660 macrophages, IFN-y producing T cells and cytotoxic T cells at microgrid k, respectively

661 (see S1 Fig for the visualization of FDG avidity in GranSim and see

662  http://malthus.micro.med.umich.edu/GranSim/ for more information about the roles of

663  each cell type). The weights that each cell type contributes to the FDG avidity on a grid
664 is determined based on the assumed inflammatory responses each cell type creates
665 based on their in vivo activity. Because we do not know all factors or cells that contribute
666 to the SUVR, we use levels of TNF (an inflammatory marker) as a surrogate to represent
667  contributions from other cells to the metabolic activity within a granuloma

668

669 Objective functions for regimen optimization

670  We use two objective functions to be minimized, the average sterilization time (described

671 above) and the total normalized dose (d). We define the total normalized dose d as

672  d(x)=Yh—1—", (Eq.7)

ax

D
Dim
673 where k is the number of antibiotics in the regimen x, D; stands for the dose of the

674 individual antibiotic /, and D; is the maximum allowed dose in our simulations.
675 Minimizing drug dose will decrease potential side effects. In our optimization pipeline, we
676 aim to find the regimens that minimize both objective functions.

677 The sampling ranges for each dose variable were set to range from 0 mg/kg to

678 double the standard CDC dose [4]. Maximum safe doses for each antibiotic were set to
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679 10, 20, 40, 50 and 14 mg/kg for H, R, E, Z and M, respectively, as higher doses would
680 increase the risk of toxicity and would not be clinically relevant [54, 80-83].

681

682  Kriging-based surrogate model

683  The goal of a multi-objective optimization is to find the optimal trade-off between two or
684  more objectives by identifying the optimal variable combinations [84]. For example, in this
685 study the goal is to both minimize time to sterilization and drug doses between multiple
686  drugs. Using a surrogate-assisted framework involves predicting the objective functions
687 based on the outcomes of the already-sampled regimens. These predictions can then be
688 used as a computationally inexpensive alternative to predict the objective functions
689 throughout the whole design space.

690 Here, we use a kriging-based surrogate model to generate the objective function
691 predictions. This kriging-based prediction and optimization algorithm is based on a set of
692 open-source MATLAB functions developed by Forrester and Sobester [62, 85]. This
693  surrogate-assisted framework provides an efficient and accurate way to thoroughly
694 investigate the regimen design space and predict optimal doses but with few iterations as
695 compared to, for example, a genetic algorithm [37]. Based on the sampled regimens and
696 the calculated values of the corresponding objective functions, the algorithm builds a
697  kriging-based, surrogate model to predict the values of the objective functions at any point
698 in the variable design space.

699 The kriging model operates by assuming that the value of a function f of n variables
700 at any n-dimensional vector x can be stated as the sum of some unknown mean (u) and

701  an error term that is a function of position &x) [86]:
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702 f(x)=p+E€ (%) (Eq.8)
703  We also assume that the error term &x) is normally distributed with a mean of 0 and a
704 standard deviation of 62. To provide an estimate for the error at any given x, we assume
705 the errors at two points are correlated based on the distance between those two points.
706  This means points that are closer in the variable space tend to be more related and have
707  smaller variance than those that are farther. Hence, the correlation in error between points
708 i and j, equal to component R; in the correlation matrix R, exponentially decays with

709 respect to the weighted distance between them:

710 Ry = Corr[ € (x®),e (xV)] = exp[ — Yh=16p|xf — xﬁ")|ph] 6r,=0p,€[1,2]) (EQ.9)
711  where 6, and p, are correlation parameters. Here, the correlation varies between 0 and 1
712 for the farthest and closest points, respectively. The aim in this optimization algorithm is
713  to estimate the parameters u, o2, 6, and p, for h=1,..,n that maximizes the likelihood

714  function L:

1 O —1D'R (Y — 1)
715 L= (271_6_2)’672|R|1/2€xp - 257 (Eq10)

716  where y is a vector of length k with the values of the observed data at each of the sample
717  points. By varying 6, and p,, to find their optimal values that maximizes the likelihood
718 function L, we can calculate y and ¢? and, hence, can predict the value of f at any point
719 X

720

721  Pareto optimization

722  For multi-objective optimization goals, there may be a trade-off between different
723  objectives. For example, increasing the dose of each antibiotic in a regimen to the

724  maximal dose would result in a minimal sterilization time at the cost of a very high dose,
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725 which may lead to severe side effects. Similarly, a very low dose would minimize the total
726  dose of a regimen; however, the granuloma would sterilize slowly, if at all. Both solutions
727 are a part of a Pareto set, which contains (non-dominated) optimal solutions using
728  different weights on the objectives. Therefore, we need to derive compromised solutions,
729 deciding weights between the objectives within the algorithm (see S1 Appendix and S2
730 Fig for a detailed description of a Pareto set). By using the predicted objective functions,
731 our algorithm selects a new regimen that maximizes the likelihood of expected
732 improvement of the Pareto set. Specifically, the expected improvement criterion seeks
733  the regimen(s) that maximize(s) the expected distance from the points currently in the
734  Pareto front and lies in the blue shaded area in S2 Fig, where new solutions would
735 dominate the current Pareto set [62, 87].

736

737  Optimization pipeline in GranSim

738  Our optimization pipeline started with exploring an initial set of 40 regimens for each set
739 of 4-way combinations (HRZE, HRZM, RMZE, HMZE, HRME). We generated these 40
740 regimens using the LHS sampling scheme for the parameter space of doses for each
741 individual antibiotic. These were varied between 0 to the double of the standard CDC
742 dose [4],i.e., 10, 20, 50, 40 and 14 for H, R, Z, E and M, respectively. For each regimen,
743  we simulated 30 granulomas (15 high-CFU and 15 low-CFU granulomas) each for 180
744  days (Table 1) and averaged their sterilization times to evaluate the objective function for
745 each regimen. Then, by using the multi-objective surrogate-assisted optimization
746 algorithm, we predicted the objective functions and one regimen that is expected to

747  improve the current Pareto set. We simulated this new regimen using GranSim on the 30
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748  total high- and low-CFU granulomas. This iterative process continued for 20 iterations,
749  and one optimal regimen was simulated at the end of each iteration. At the end of this
750 pipeline, we computed the Pareto front, i.e., the optimal non-dominating regimens.

751

752  Nonhuman primate model for in vivo regimen experimental studies

753  Nine male Chinese cynomolgus macaques (Macaca fascicularis) (4-7 years of age) were
754  dedicated to this study and were infected with virulent M. tuberculosis strain Erdman (8-
755 21 CFU) via bronchoscopic instillation into a lower lobe. Three months post-infection, drug
756 treatment was initiated and continued for 2 months, then the animals were necropsied.
757 Animals were monitored daily for appetite and behavior and monthly for weight and
758 erythrocyte sedimentation rate (a sign of inflammation). Gastric aspirate and BAL
759 samples were cultured for Mtb to assess disease progression. An additional seven
760 cynomolgus macaques (2 males, 3 females, 5-9 years of age, infected with Mtb Erdman)
761 from a concurrent study were included here as historical untreated controls and
762  necropsied 5 months post-infection.

763 Drug treatments were 1. isoniazid (H), rifampicin (R), pyrazinamide (Z) and
764  ethambutol (E) (HRZE, N=3); 2. isoniazid (H), moxifloxacin (M), pyrazinamide (Z) and
765  ethambutol (E) (HMZE, N=4); or 3. rifampicin (R), moxifloxacin (M), pyrazinamide (Z) and
766  ethambutol (E) (RMZE, N=2). Drug dosing as follows: H: 15 mg/kg; R: 20 mg/kg; Z: 150
767 mg/kg; E 55 mg/kg; M: 35 mg/kg. Drugs were provided daily in treats or by gavage.
768 Macaques were treated for 2 months, and drugs were stopped one day before

769 necropsy. See Table 1 for a list of treatment protocols.
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770 18F-fluorodeoxyglucose (FDG) PET-CT imaging was performed prior to treatment
771 initiation and at 4- and 8-weeks post-treatment initiation. FDG is a glucose analogue,
772 which is preferentially taken up by and retained in metabolically active cells and thus is
773 useful as a proxy for inflammation. FDG uptake was quantified using the peak standard
774  uptake value (SUV) associated with each granuloma, as previously described [51].

775 Detailed necropsies were performed using the final PET-CT scan as a map to
776 isolate all lesions (granulomas, consolidations, etc.), uninvolved lung lobe samples, all
777  thoracic lymph nodes, peripheral lymph nodes, spleen and liver. All samples were plated
778 individually for Mtb on 7H11 plates, incubated for 3 weeks in a 5% CO02 incubator.
779 Bacterial burden for each sample was calculated based on colonies counted on plates.
780 Sum of all samples in thoracic cavity (lung, granulomas, lymph nodes) is reported as total
781 thoracic CFU; total lung and total thoracic LN are also calculated.

782
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