
1 

A versatile and interoperable computational framework for the 

analysis and modeling of COVID-19 disease mechanisms 
Running title: Computational framework for the analysis of the COVID-19 Disease 

Map 
 

Anna Niarakis1,2, Marek Ostaszewski3, Alexander Mazein3, Inna Kuperstein4,5,6, Martina 

Kutmon7, Marc E. Gillespie8,9, Akira Funahashi10, Marcio Luis Acencio3, Ahmed Hemedan3, 

Michael Aichem11, Karsten Klein11, Tobias Czauderna12, Felicia Burtscher3, Takahiro G. 

Yamada10, Yusuke Hiki13, Noriko F. Hiroi14,15, Finterly Hu7,16, Nhung Pham7,16, Friederike 

Ehrhart16, Egon L. Willighagen16, Alberto Valdeolivas17, Aurelien Dugourd17, Francesco 

Messina18, Marina Esteban-Medina19,20, Maria Peña-Chilet19,20,21, Kinza Rian19, Sylvain Soliman2, 

Sara Sadat Aghamiri22, Bhanwar Lal Puniya22, Aurélien Naldi2, Tomáš Helikar22, Vidisha Singh1, 

Marco Fariñas Fernández23, Viviam Bermudez23, Eirini Tsirvouli23, Arnau Montagud24, Vincent 

Noël4,5,6, Miguel Ponce de Leon24, Dieter Maier25, Angela Bauch25, Benjamin M. Gyori26, John A. 

Bachman26, Augustin Luna27,28, Janet Pinero29,30, Laura I. Furlong29,30, Irina Balaur3, Adrien 

Rougny31,32, Yohan Jarosz3, Rupert W. Overall33, Robert Phair34, Livia Perfetto35, Lisa 

Matthews36, Devasahayam Arokia Balaya Rex37, Marija Orlic-Milacic8, Monraz Gomez Luis 

Cristobal4,5,6, Bertrand De Meulder38, Jean Marie Ravel4,5,6, Bijay Jassal8, Venkata Satagopam3,39, 

Guanming Wu40, Martin Golebiewski41, Piotr Gawron3, Laurence Calzone4,5,6, Jacques S. 

Beckmann42, Chris T. Evelo16, Peter D'Eustachio43, Falk Schreiber11,44, Julio Saez-Rodriguez17, 

Joaquin Dopazo19,20,21,45, Martin Kuiper23, Alfonso Valencia25,46, Olaf Wolkenhauer47,48, Hiroaki 

Kitano49, Emmanuel Barillot4,5,6, Charles Auffray38, Rudi Balling3, Reinhard Schneider3, and the 

COVID-19 Disease Map Community50 

 

1. Université Paris-Saclay, Laboratoire Européen de Recherche pour la Polyarthrite rhumatoïde - 
Genhotel, Univ Evry, Evry, France. 

2. Lifeware Group, Inria, Saclay-île de France, 91120 Palaiseau, France 
3. Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, 

Luxembourg 
4. Institut Curie, PSL Research University, F-75005 Paris, France 
5. INSERM, U900, F-75005 Paris, France 
6. MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 

Paris, France 
7. Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, PO Box 616, 6200 MD, 

Maastricht, the Netherlands  
8. Ontario Institute for Cancer Research, Toronto, ON, Canada, M5G 0A3 
9. St. John’s University, Queens, NY. 11439. USA 
10. Department of Biosciences and Informatics, Keio University, Kanagawa 223-8522, Japan 
11. Department of Computer and Information Science, University of Konstanz, Universitätsstr. 10, 

78464 Konstanz, Germany 
12. Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, 

Technikumplatz 17, 09648 Mittweida, Germany 
13. Center for Biosciences and Informatics, Graduate School of Fundamental Science and 

Technology, Keio University, Kanagawa 223-8522, Japan 
14. Faculty of Creative Engineering, Kanagawa Institute of Technology, Kanagawa 243-0292, Japan 
15. Keio University School of Medicine, Tokyo, 160-0016, Japan 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.17.520865doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520865
http://creativecommons.org/licenses/by/4.0/


2 

16. Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, PO Box 616, 6200 MD, 
Maastricht, the Netherlands  

17. Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg 
University Hospital, Bioquant, Heidelberg, Germany 

18. Department of Epidemiology, Preclinical Research and Advanced Diagnostic, National Institute 
for Infectious Diseases 'Lazzaro Spallanzani' - I.R.C.C.S., Via Portuense, 292, 00149 Rome, Italy 

19. Computational Medicine Platform, Andalusian Public Foundation Progress and Health-FPS, 
41013, Sevilla, Spain. 

20. Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del 
Rocío, 41013, Sevilla, Spain. 

21. Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de 
Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocio, Seville, Spain. 

22. Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA 
23. Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway 
24. Barcelona Supercomputing Center (BSC) 
25. Biomax Informatics AG, Planegg, Germany 
26. Harvard Medical School, Laboratory of Systems Pharmacology, 200 Longwood Avenue, Boston, 

MA, US 
27. cBio Center, Divisions of Biostatistics and Computational Biology, Department of Data Sciences, 

Dana-Farber Cancer Institute, Boston, MA, 02215, US  
28. Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, US 
29. Medbioinformatics Solutions SL, Carrer dels Almogàvers 165, 08018 Barcelona, Spain 
30. Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research 

Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Dr 
Aiguader 88, 08003 Barcelona, Spain 

31. Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial 
Science and Technology (AIST), Aomi, Tokyo, Japan 

32. Com. Bio Big Data Open Innovation Lab. (CBBD-OIL), AIST, Aomi, Tokyo, Japan 
33. Institute for Biology, Humboldt University of Berlin, 10115 Berlin, Germany 
34. Integrative Bioinformatics, Inc., 346 Paul Ave, Mountain View, CA, USA 
35. Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, 

Italy (0000-0003-4392-8725) 
36. Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New 

York, NY 10016 USA 
37. Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Derlakatte, 

Mangalore 
38. Association EISBM 
39. Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, 

Frankfurt am Main, Germany 
40. Oregon Health Sciences University, Portland, OR 97239, USA 
41. Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, D-69118 

Heidelberg, Germany 
42. University of Lausanne, Lausanne, Switzerland 
43. Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, New 

York, NY 10016 USA 
44. Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia 
45. FPS/ELIXIR-es, Hospital Virgen del Rocío, Sevilla, 42013, Spain 
46. ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain 
47. Dept of Systems Biology & Bioinformatics, University of Rostock  
48. Leibniz Institute for Food Systems Biology, at the Technical University Munich.  
49. Systems Biology Institute, Tokyo Japan 
50. FAIRDOMHub: https://fairdomhub.org/projects/190 

 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.17.520865doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.17.520865
http://creativecommons.org/licenses/by/4.0/


3 

Abstract  
The COVID-19 Disease Map project is a large-scale community effort uniting 277 

scientists from 130 Institutions around the globe. We use high-quality, mechanistic content 

describing SARS-CoV-2-host interactions and develop interoperable bioinformatic pipelines 

for novel target identification and drug repurposing. Community-driven and highly 

interdisciplinary, the project is collaborative and supports community standards, open access, 

and the FAIR data principles. The coordination of community work allowed for an impressive 

step forward in building interfaces between Systems Biology tools and platforms. Our 

framework links key molecules highlighted from broad omics data analysis and computational 

modeling to dysregulated pathways in a cell-, tissue- or patient-specific manner. We also 

employ text mining and AI-assisted analysis to identify potential drugs and drug targets and 

use topological analysis to reveal interesting structural features of the map. The proposed 

framework is versatile and expandable, offering a significant upgrade in the arsenal used to 

understand virus-host interactions and other complex pathologies.  

 

Keywords: SARS-CoV-2, systems biology, disease maps, mechanistic models, dynamic models, 

systems medicine, large-scale community effort 

 

1. Introduction 
The COVID-19 pandemic was and continues to be one of the most significant social and 

health challenges faced by humankind recently. The scientific community responded to these 

challenges with incredible resilience, adaptability, and eagerness to contribute. Large-scale 

community efforts emerged, and scientists from all over the world found new ways to connect 

and offer their skills to tackle the pandemic from various angles. The COVID-19 Disease Map 

project is a large-scale community effort to build an open-access, computable repository of 

COVID-19 molecular mechanisms—the COVID-19 Disease Map (C19DMap). The Map 

represents molecular and signaling pathways described in a broad range of the COVID-19 

scientific literature in over forty diagrams compliant with systems biology standards. The 

content is based on human biocuration and supported by text mining solutions, such as INDRA 

(1) and AILANI (https://ailani.ai), and a plethora of tools and platforms for data integration, 

analysis, and computational modeling (2) (3).  

In parallel with the content building, the community has also been developing an 

ecosystem of analytical and modeling pipelines that we aim to showcase here, extending the 

application use cases presented in our previous report (2). The pipelines mentioned above are 

developed either de novo or adapted to suit the high-quality mechanistic content of the 

C19DMap. The workflows aim to identify actionable targets to mitigate or remediate viral 

infection's effects. At the same time, the actionable targets can inform on the disease's possible 

adverse effects and serve as a basis for drug repurposing. This paper presents our efforts to 

map key molecules highlighted from broad omics data analysis and computational modeling to 

dysregulated pathways in a cell-or tissue- or patient-specific manner. We then employ text 

mining and AI-assisted analysis to identify drugs for the retrieved targets. In parallel, we also 

use topological analysis to reveal interesting structural features of the map.  
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Figure 1. The main workflow of the pipelines developed to analyze the mechanistic content of the 

C19Dmap. We used it to suggest intervention points, drug repurposing and novel hypotheses for in vitro 

testing.  

 

2. Results 
2.1 Multi-omic data analysis and mechanistic diagram mapping 

2.1.1 Footprint-based analysis and causal network contextualization in a SARS-CoV-2 

infected A549 cell line 

We used a published transcriptome dataset (4) focusing on A549 cells and combined it 

with phosphoproteomic data of mock-treated and SARS-CoV-2-infected cells (5). We thus 

contextualized the perturbed signaling events of the viral infection and inferred a causal 

network using the Carnival tool (6) with the COSMOS approach (7) based on a prior knowledge 

network assembled from OmniPath resources (8). The Carnival-inferred network connected 

the top ten deregulated kinases with the top 30 deregulated transcription factors (TFs; Fig. 

S1A). Among the deregulated proteins in the Carnival-inferred network, we found four kinases 

(TBK1, IKBKE, TICAM1, MAPK3), four TFs (IRF3, ATF4, ATF6, SMAD1), and one serine protease 

(MBTPS1) among seven diagrams of the C19DMap (Fig. S1B; Table 1). The results highlighted 

the activation of the MAP kinase family in response to SARS-CoV-2 infection, a result supported 

by several publications (18,19). Our approach also highlighted proteins from the curated TGFb 

signaling pathway, such as MAPK3 and SMAD1, and the signaling proteins PIK3CA, BRCA1, and 

RUNX1. In addition, TICAM1, TBK1, IKBKE, and IRF3 are found in the results and the curated 

pathogen-associated molecular patterns (PAMPs) and Interferon-1 pathways. Lastly, we 

identified relevant players in the Endoplasmic Reticulum (ER) stress pathway, particularly 

ATF4, ATF6, and MBTPS1. Potential crosstalk between ER stress and immune pathways was 

discussed in our previous work (1).  
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Table 1. Highlighted C19DMap diagrams, including deregulated kinases and TFs, identified in A549 

cells using the footprint analysis.  

A549 cells  

C19DMap diagram hgnc_carnival 

Interferon 1 pathway IRF3, TBK1, IKBKE 

TGFbeta signaling MAPK3, SMAD1 

PAMP signaling TICAM1, IKBKE, IRF3, TBK1 

Pyrimidine deprivation IRF3, TBK1  

Orf3a protein interactions TICAM1 

Endoplasmic Reticulum stress ATF6, ATF4, MBTPS1 

Interferon lambda pathway IRF3, TBK1 

 

2.1.2 Transcription factor activity and gene expression analysis in SARS-CoV-2 infected 

NHBE and A549 cell lines 

Next, we expanded our TF study to include RNA-seq data from Normal Human Bronchial 

Epithelial (NHBE) cells. We used the same datasets (GSE147507) (4, 9) to detect differentially 

expressed genes (DEGs) between these two cell lines (Fig. S2A). TFs that statistically 

significantly regulate these DEGs were detected by limitless arity multiple testing procedures 

(LAMP; Fig. S2B) (10). Results showed that the number of TFs detected for A549 cells was 

higher than that for NHBE cells, similar to the results of the DEG analysis.  Many TFs detected 

in both cell types were involved in immune responses. We also performed Gene Ontology (GO) 

enrichment analysis to determine the functions of the genes regulated by these TFs (Fig. S2C). 

The number of enriched GO terms was greater in A549 cells than in NHBE cells, and almost all 

NHBE-enriched terms were also enriched in A549 cells. Common terms included those related 

to the immune system (GO:0002376, immune system process; GO:0002250, adaptive immune 

response). Several TFs detected in both cell types were also in the Disease Map, while others, 

such as ESR1 and KLF6, were novel (Table 2). These TFs are not yet characterized in the 

context of COVID-19. Their inclusion in the Disease Map may provide an opportunity to reveal 

more detailed mechanisms of gene regulation hijacked by the coronavirus infection.  

 

Table 2: Transcription factors that regulate DEGs before and after coronavirus infection in NHBE and 

A549 cells; “Common” indicates transcription factors detected in both cell types; transcription factors 

in red indicate those already present in the C19DMap.  

A549 only Common NHBE only 
TFs present in 

C19DMap 
C19DMap pathways 

E2F4 MYC E2F1 TP53 STAT2 IRF3 

Interferon 1 pathway 

PAMP signaling 

Interferon lambda 

pathway 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 19, 2022. ; https://doi.org/10.1101/2022.12.17.520865doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=8909214&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10857037&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6134840&pre=&suf=&sa=0
https://doi.org/10.1101/2022.12.17.520865
http://creativecommons.org/licenses/by/4.0/


6 

THAP11 ZNF263 MAZ STAT1 REL BACH1 HMOX1 pathway  

ZBTB7A TEAD1 KLF5 FOS FOSL1 TBP 
E protein interaction 

TGFbeta signaling 

NFYB MEF2A FOXP1 ESR1 IRF9 TCF12 
Nsp9 protein 

interactions 

AR MXI1 TBP RELA PPARA TP53 JNK pathway 

IRF3 KLF9 E2F6 NFKB1 CEBPB STAT1 
Interferon 1 pathway 

Interferon lambda 

SREBF1 MAX ATF3 KLF6 RBPJ FOS 
Interferon 1 pathway 

PAMP signaling 

SP1 YY1 GABPA JUN GATA3 RELA 

Interferon 1 pathway 

PAMP signaling 

Pyrimidine deprivation 

Orf3a protein 

interactions 

HMOX1 pathway  

Kynurenine synthesis 

pathway 

SNAPC4 NRF1 NR2C2 

 

NFKB1 

Interferon 1 pathway 

PAMP signaling 

Pyrimidine deprivation 

Orf3a protein 

interactions 

HMOX1 pathway  

Kynurenine synthesis 

pathway 

RUNX2 PRDM14 SIX5 JUN 

Interferon 1 pathway 

JNK pathway 

PAMP signaling 

MYCN ZBED1 TEAD4 STAT2 

Interferon 1 pathway 

Interferon lambda 

pathway 

BACH1 FOXP2 TFDP1 IRF9 

Interferon 1 pathway 

Interferon lambda 

pathway 

THAP1 CUX1 TCF12 

FOSL1 
Endoplasmic reticulum 
stress 

EBF1 ZNF143 MYBL2 

FOXO3 HBP1 SP2 

KLF13 BCL6 HIF1A 

ZEB2 MBD1 ZFX 

CREB3L1 ARID2  

 

2.1.3 Extended pathway analysis in SARS-CoV-2 infected NHBE and A549 cell lines 

Next, we identified altered COVID-19-specific and general molecular pathways in NHBE 

and A549 infected cells using the same RNA-seq dataset (GSE147507) (4, 9). Then, over-

representation analysis was performed on a combined pathway collection from C19DMap (2), 

WikiPathways (11), and Reactome (12) with 1,840 human pathways containing 12,037 unique 

genes (Fig. 2A). Over-representation analysis revealed 74 altered pathways in NHBE and 101 

altered pathways in A549 cells of which 11 pathways were changed in both, including several 

immune- and metabolism-related pathways (Fig. 2B). Interestingly, NHBE cells showed several 

C19DMap pathways altered after SARS-CoV-2 exposure including interferon and coagulation 

pathways (Fig. S3). However, A549 cells mainly show changes in general processes, of which 
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many have been associated with SARS-CoV-2 infection, including cell cycle, DNA mismatch 

repair, and cholesterol biosynthesis pathways (Fig. S4). A pathway-gene network using the 

shared DEGs and the C19DMap pathways (23 pathways with 657 unique genes) was created in 

the following step. In the pathways, 25 genes linked to 19 different pathways were found to be 

differentially expressed in both cell lines (Fig. 3A). Besides the SARS-CoV-2 innate immunity 

evasion and cell-specific immune response (WP5039; 7 genes) and the interferon lambda 

pathway (6 genes), also the Type I interferon induction and signaling during SARS-CoV-2 

infection (WP4868; 5 genes), the Host-pathogen interaction of human coronaviruses - 

interferon induction pathway (WP4880; 5 genes) and the Coagulation pathway (4 genes) have 

several genes that are altered in both cell lines. Central genes in the network are IFIH1 (7 

pathways), IL1B (6 pathways), and IRF9 (5 pathways). 

 

 
Figure 2. (A) Venn diagram of the combined pathway collection from COVID-19 Disease Map, 

WikiPathways, and Reactome with 1,840 human pathways containing 12,037 unique genes. (B) 

Over-representation analysis (criteria: absolute fold change > 1.5 and p-value < 0.05) revealed 

11 altered pathways common in both cell lines.  

 

Interestingly, four genes, namely OAS1, OAS3, IFIT1 from the Interferon pathway, and 

MAF from the HMOX1 pathway, were found to have opposite expression profiles in the two cell 

lines. This analysis highlighted that many of the shared differentially expressed genes (134 out 

of 159) are not yet present in any of the C19DMap pathways, providing an essential resource 

for future curation efforts to map out and understand the processes affected by SARS-CoV-2 

infection.  
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Figure 3. 25 genes linked to 19 different pathways, which are differentially expressed in both cell lines. 

 

2.1.4 Single-cell transcriptome analysis in epithelial cell types of COVID-19 patient groups 

with different severity profiles.  

Next, we wanted to expand our analyses using patient data. The single-cell RNA 

sequencing (single-cell RNAseq) dataset was composed of bronchoalveolar lavages from nine 

COVID-19 patients (GSE145926) (13) and epithelial cells isolated from the lungs of nine healthy 

subjects (GSE160664) (14). Clustering analysis was carried out on the entire matrix and 

showed 44 distinct clusters as the best representation of cell types (Fig. S6). Five epithelial cell 

types were selected by cell sample size between groups and gene markers, following the 

classification of Okuda and collaborators (27). For each cell type, data of moderate, severe, and 

critical COVID-19 cases were grouped as the category COVID-19, and differential expression 

analysis was performed between COVID-19 and healthy controls. Among all the DEGs 

overexpressed in COVID-19 patients in each cell type (Table S1), 26 were shared among all 

lung epithelial cell types (Table S2). The overexpressed genes in five cell types of COVID-19 

patient groups were reported on the C19DMap to evaluate the activation of specific pathways. 

In all the epithelia cell types of the COVID-19 group, the genes IFIH1, OAS1, STAT1, OAS2, OAS3, 

and IRF7, which belong to the type I interferon pathway (WP4868), are found to be 

overexpressed, meaning that they get activated during SARS-CoV-2 infection. In addition, 

evidence of direct infections of SARS-CoV-2 in these cell types was confirmed using the 

databases Reactome (12) and KEGG (15), with activation of pathways linked to Interferon and 

Influenza A infection, respectively. Interestingly, OAS1, OAS3, and IFIH1 were also found to be 

differentially expressed in NHBE and A549 infected cells, with OAS1 and OAS3 having an 

opposite expression profile. STAT1 was also found to be overexpressed in both cell lines. 

However, IRF7 was not previously identified though members of the same protein family were 

present in both NHBE and A549 infected cells (IRF3, IRF9). The positive DEGs were reported 

in the C19DMap as an overlay, viewing only DEGs with a false discovery rate (FDR) ≤ 5 % and 

|log fold change (logFC)| > 1. Affected pathways were: NLRP3 inflammasome activation, 

Interferon 1 and Interferon lambda pathways, Virus replication cycle, PAMP signaling, Electron 
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transport chain disruption, E protein interactions, Nsp9 protein interactions, Nsp4/6 protein 

interactions, Nsp14 protein and metabolism, Orf3a protein interactions, TGFbeta signaling, 

Orf10 Cul pathway, Endoplasmic reticulum stress, Apoptosis pathway, Kynurenine synthesis 

pathway, HMOX1 pathway and Renin-Angiotensin pathway (Fig. 4). No DEG was mapped onto 

SARS-CoV-2 RTC and transcription, Pyrimidine deprivation, Autophagy, JNK or coagulation 

pathways.  

 

 
Figure 4. Positive DEGs in the COVID-19 Disease Map repository were reported as an overlay. Only 

DEGs with FDR ≤ 5 % and |logFC| > 1 are shown.  

 

2.1.5 Combining omics data with mechanistic pathway modeling  

  To expand on patient data and use the available diagrams in a more active way than 

mapping, we decided to employ the HiPathia approach (16) that effectively combines RNAseq 

data with mechanistic diagrams and pathway modeling.  

In this step, a public RNAseq dataset of nasopharyngeal swabs from 430 individuals with 

SARS-CoV-2 and 54 negative controls (17) (GSE152075) was used. Following the pipeline 

developed for this study, 16 of the 23 pathways were suitable for the HiPathia algorithm. We 

found that 47 of the 145 circuits analyzed using the HiPathia algorithm were differentially 

activated (adjusted p-value < 0.05), showing global deregulation of the pathways involved in 

SARS-CoV-2 infection (Table S3). The most representative pathways are shown in Table 3. We 

then evaluated each pathway containing the deregulated circuits. Almost all of the pathways 

showed differential activity between infected and normal cells, confirming the relevance of the 
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C19DMap. The apoptosis of the infected cells is a process generally activated in the COVID-19 

host response—in fact, the involvement of caspase-3 in SARS-CoV-2-related apoptosis has 

already been described (18). Moreover, caspase inhibitors have been thoroughly studied 

because of their therapeutic potential due to the exuberant caspase response in COVID-19 that 

may facilitate immune-related pathological processes leading to severe outcomes (19). 

As thoroughly described in the scientific literature, impaired coagulation is one of the 

main complications of severe COVID-19, leading to thrombosis and microthrombosis episodes 

(20). When examining the C19DMap submap “Renin-angiotensin pathway” (Fig. 5A), we found 

that only one circuit out of the 12 included in the pathway is differentially activated in infected 

cells. Curiously, this circuit relates to ACE2 and MAS1 as its effector gene is up regulated. The 

role of  ACE2  has been widely associated with SARS-CoV-2 infection (21). Interestingly, it is 

accompanied by upregulation of the MAS1 circuit related to the normal functioning of the 

vascular system. The receptor Mas1 induces vasodilation and attenuates vasoconstriction. 

Moreover, in endothelial cells, activation of the ACE2/Ang-(1-7)/Mas1 axis increases the 

production of nitric oxide and prostacyclin, both with vasodilator properties and in vascular 

smooth muscle cells, it inhibits pro-contractile and pro-inflammatory signaling (22). Therefore, 

the activation of this axis may be a result of a vasoprotective response of the host to the 

systemic inflammation and vascular injury occurring in COVID-19. On the other hand, the 

presence of glycoproteins, such as GPVI and vWF, is involved in thromboembolism and 

thromboinflammation, and other coagulopathies (23). However, recent studies have shown 

that platelets are indeed hyperactivated in COVID-19 but show reduced glycoprotein VI (GPVI) 

reactivity in COVID-19 patients (24), which is consistent with our results. 

The Interferon-1 pathway was highly activated, showing an expected response to virus 

infection (Fig. 5B). However, not all of the genes were overexpressed. The identification of 

genes which are the most relevant to activate each circuit highlights promising drug target 

candidates against the downstream processes related to the circuits. Moreover, interferon 

lambda-1 is a type III interferon involved in innate antiviral responses with activity against 

respiratory pathogens. In fact, the upregulated circuits show an overall activation of the GO 

biological process, “defence response to the virus.” Therefore the observed overactivation of 

the IFN-lambda signaling pathway (Table 3) was expected and consistent with studies showing 

promising results when targeting this pathway as a treatment approach (25). 

Table 3. Significant pathway activity values after Wilcoxon test comparison between 430 SARS-CoV-2-

infected vs 54 non-infected individuals. The results are obtained after running the CoV-Hipathia web 

tool with the GSE152075 dataset. 

Pathway:  

Effector Circuit name 
UP/DOWN statistic FDR Fold Change logFC 

Interferon lambda pathway: STAT1, 

STAT2, STAT3 
UP 7.16E+00 5.77E-11 2.01E+00 1.01E+00 
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Interferon 1 pathway: OAS1, OAS2, 

OAS3 
UP 6.89E+00 2.77E-10 2.88E+00 1.53E+00 

Interferon 1 pathway: ISG15 UP 4.26E+00 1.81E-04 2.55E+00 1.35E+00 

JNK pathway: JUN, JUND DOWN -5.47E+00 8.14E-07 5.83E-01 -7.78E-01 

Renin-angiotensin pathway: LNPEP UP 4.87E+00 1.45E-05 1.25E+00 3.23E-01 

Kynurenine synthesis pathway: AHR UP 4.28E+00 1.81E-04 1.18E+00 2.35E-01 

Coagulation pathway: MAS1 UP 3.85E+00 5.88E-04 1.28E+01 3.68E+00 

HMOX1 pathway: RBX1, KEAP1, 

CUL3 
DOWN -3.87E+00 6.33E-04 2.73E-01 -1.87E+00 

Orf3a protein interactions: HMOX1, 

ALG5, ARL6IP6 
DOWN -3.46E+00 7.28E-04 2.45E-01 -2.03E+00 

Apoptosis pathway: CASP7 UP 3.37E+00 3.66E-03 1.34E+00 4.22E-01 
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Figure 5. Representation of the activation levels of significant C19DMap pathways in SARS-CoV-

2 infected nasopharyngeal tissue. The activation levels have been calculated using transcriptional 

data from GSE152075 and HiPathia mechanistic pathway analysis algorithm. Each node represents a 

gene (ellipse), a metabolite/non-gene element (circle), or a function (rectangle). The pathway is 

composed of circuits from a receptor gene/metabolite to an effector gene/function, which take into 

account interactions simplified to inhibitions or activations. Circuits activated in infected cells are 

highlighted by red arrows. The color of each node corresponds to the level of differential expression in 

SARS-CoV-2 infected cells vs. normal lung cells. Blue: down-regulated elements, red: up-regulated 

elements, white: elements not differentially expressed. HiPathia calculates the overall circuit activation 

and can indicate deregulated interactions even if interacting elements are not individually differentially 

expressed. 

 

2.2 Dynamical modeling of host-pathogen interactions on a molecular, cellular, and 

multicellular level  

We next studied the impact of upstream regulators on the functional outcome of pathways 

using dynamical computational modeling. We focused on the Interferon 1 pathway in two 

different contexts: on a pathway level and on a cellular level integrated into a macrophage 

model. We then modeled the effects of SARS-CoV-2 on the apoptosis of the epithelium and on 
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the influence of the virus on the recruitment of immune cells by macrophages. In all cases, CaSQ 

(22) was used to convert the mechanistic diagrams into Boolean models. 

 

 2.2.1 A dynamic Boolean model of type I IFN responses in SARS-CoV-2 infection  

Type I Interferon (IFN) signaling is an essential pathway of host defence against viral 

attacks, as highlighted in previous analyses of omics data in both cell lines and patients’ 

samples. To go one step further in the analysis, we used the type I IFN graphical model available 

in the C19DMap repository (Fig. 6) and the map-to-model translation framework developed in 

(26) to obtain an executable, dynamic model of type I IFN signaling for in silico experimentation. 

The model obtained included 121 nodes, including three drugs, namely 3,4-methylenedioxy-β-

nitrostyrene (MNS) (27), Azithromycin (28), and GRL0617 (29)  (Fig. S7).  

 
Figure 6. Type I Interferon pathway on the C19DMap repository that was used as a template to produce 

the Boolean model.  

 

First, to evaluate the model’s ability to reproduce established biological behavior, we 

performed simulations for seven scenarios derived from the scientific literature (Table S4). 

The model was able to reproduce the behavior for five observations, partially reproduce the 

behavior for one, and failed to reproduce one biological scenario (Fig. S8). Global 

environmental sensitivity analysis based on partial correlation coefficients using Cell Collective 

(30) suggested that, in the presence and absence of the drugs, viral E protein had the highest 

impact on the inflammation phenotype. On the other hand, Nsp3 showed a negative association 

with the body's antiviral response. Results of sensitivity analysis with drugs present in the 

diagram showed that treatment with MNS could reduce inflammation, while Azithromycin was 

shown to increase the antiviral response (Fig. S9).  

 

2.2.2 Sensitivity analysis against knockout and overexpression perturbations 

We also performed sensitivity analysis against virtual knockouts (KOs) and knock-ins (KIs), 

aiming to i) identify the molecules capable of reducing the inflammatory responses and ii) 

identify the most sensitive viral proteins against knockouts to reduce the viral activity. Results 
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suggested that the overexpression of the IFNB1 RNA had a significant role in the inflammatory 

process by activating the AP-1 and p50_p65 complexes. IFNB1-induced overexpression is in 

line with the gene signatures in the Library of Integrated Network-Based Cellular Signatures 

(https://systemsbiology.columbia.edu/lincs) (31). The IFNB1 RNA increases pro-

inflammatory cytokines by activating the NLRP3 inflammasome, while 3,4-methylenedioxy-β-

nitrostyrene (MNS) selectively inhibits it (27, 32). However, overexpression of p50_p65 

stimulates the inflammatory cytokines via nuclear reactions regardless of the NLRP3 

inflammasome inhibition. Therefore, MNS may require a drug combination to reduce the 

inflammation from nuclear reactions. The viral dsRNA and proteins (Nsp13, Nsp14, and Nsp15) 

can be significant drug targets since they show potent antagonistic effects on interferon. 

Literature evidence indicates that such viral molecules have an inhibitory effect on interferons 

(33). Further, TLR7/9 and TREML4 are the most significant viral binding proteins, suggesting 

TLR antagonists may be used to control exaggerated inflammations via the MYD88_TRAM 

complex. Recent proposals consider TLR7/9 as a potential drug target for COVID-19 (34, 35, 

36). 

 

2.2.3 Calculating stable states of the IFN model 

We used input propagation (37,38) and control nodes to regroup the inputs of the model 

and simplify the analysis. We regrouped inputs into six categories: 3 meta-inputs that 

correspond to Inflammatory stimulus, IFN response, and viral stimulus, and three components 

representing the drugs present in the model (GRL0617, Azithromycin, and MNS). Using this 

modified model, we could identify 128 stable states and no oscillations. All signatures lack IFN 

secretion and exhibit either viral replication or antiviral response (or both). To investigate 

further the behavior of the model, we selected eight configurations for the inputs that cover 

different biological scenarios of the type I IFN pathway with or without infection and in the 

presence or absence of drugs (Table 4). We then clustered the stable states according to the 

four outputs of interest, namely viral replication, antiviral response, inflammation, and 

secretion of IFNA1. For each selected input condition, we have a single attractor (after 

projection on the outputs; Table 5).  

 

Table 4. Input configurations that cover different biological scenarios of the type I IFN pathway 

with or without infection and in the presence or absence of drugs.  
 C1 C2 C3 C4 C5 C6 C7 C8 

 viral_components    1 1 0 1 1 1 1 1 

immune_response    0 0 1 1 1 1 1 1 

IFN_secretion   1 1 1 1 0 1 1 1 

Azithromycin_drug 1 0 0 1 0 0 0 0 

GRL0617_drug   1 0 0 0 0 0 1 0 

MNS_drug  1 0 0 0 0 0 0 1 
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Table 5. Projection of the stable states to the four outputs, namely viral replication, antiviral 

response, inflammation, and secretion of IFNA1. For each selected input condition, we have a 

single attractor.  
 C1 C2 C3 C4 C5 C6 C7 C8 

 ISG_expression_antiviral_response_phenotype     1 0 1 1 0 0 0 0 

Viral_replication_phenotype   1 1 0 1 1 1 1 1 

Proinflammatory_cytokine_expression_ 

Inflammation  
0 1 0 1 1 1 1 0 

type_I_IFN_response_phenotype 0 0 0 0 0 0 0 0 

 

In these conditions, the propagation of the input values is sufficient to control most 

components of the model, and in particular, all selected output components. The results of the 

stable state analyses corroborate the results of experimental studies in patients with COVID-

19 with various degrees of severity that showed hampered IFN-I responses in patients with 

severe or critical COVID-19 (39). These patients had low levels of IFN-I and ISGs, and increased 

production of tumor necrosis factor (TNF-), IL-6-, and NFkB-mediated inflammation. The result 

of input propagation can be visualized in a heatmap where lines represent all 121 components 

of the system and columns represent the eight selected input conditions (Fig. S10).  

 

2.2.4 Integration of the Type 1 IFN, the RA system, and the NLRP3 inflammasome curated 

pathways into a macrophage-specific Boolean model 

The population of macrophages expands during SARS-CoV-2 infection, and 

hyperactivation of these cells can lead to severe immunopathologies (40). To be able to 

computationally simulate the effects of SARS-CoV-2 on several COVID-related pathways in 

macrophages, we extended a previously built macrophage polarization model to incorporate 

biological processes related to SARS-CoV-2 infection, including the Type 1 (T1) IFN response, 

the Renin-Angiotensin (RA) system, and the NLRP3 inflammasome modules from the 

C19DMap. The resulting COVID19 Macrophage Model, named MacCOV 

(https://gitlab.lcsb.uni.lu/computational-modelling-and-simulation/macrophage-model),   

comprises 131 nodes and 271 interactions manually verified against the macrophage-specific 

literature. When an inflammatory microenvironment stimulus is simulated, the model reaches 

a stable state with the respective signaling cascades and inflammatory biomarkers rendered 

active (inflammatory response; Fig. 7). Infection with SARS-CoV-2 stimulates the RA system 

module, which potentiates inflammation through specific mediators and effectors, like 

AGTR1/2. Consistent with the literature  (41, 42), the virus, through an Orf3a_TRAF3 complex, 

also triggers the activation of the NLRP3 inflammasome, thus leading to cleavage of proIL-1b 

and proIL-18 into their functional forms.  In addition, although the inflammatory stimuli 

remain, the stable state analysis indicates that the virus is able to directly activate the 

expression of proinflammatory markers without the activation of the main signaling cascades. 

This is because when both inflammatory and viral stimuli are applied together, the model 

reaches a state similar to virus infection, indicating that the virus ‘overrules’ some of the 

inflammatory responses that would typically be activated by the inflammatory stimulus alone, 

namely blocking the activation of TBK1, Pell1, STAT1, and IRF3 (although their expression is 

increased; see section 2.1), and key effectors in the type 1 IFN cascade (e.g., OAS1-4, expressed 

upon IRF9 activation).  Therefore, the virus itself can trigger the expression of inflammatory 
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biomarkers, whereas, at the same time, it appears to inhibit signal transduction through 

proinflammatory pathways that crosstalk with the type 1 IFN response. In all cases, the model 

reaches an inflammatory state, and with viral stimulation, the activation of viral replication and 

phagocytosis response are also displayed in the macrophage stable state.  

The above results demonstrate that SARS-CoV-2 itself is sufficient to trigger an 

inflammatory response in macrophages. The virus is also able to block the type I IFN signaling 

at different levels of the cascade, as demonstrated in the molecular-level model. Lastly, nodes 

from inflammatory pathways that crosstalk with the type I IFN pathway are also blocked by the 

virus. By binding to their cognate receptors, proinflammatory mediators activate their 

downstream signaling effectors, which typically converge in a core pathway (i.e., one that 

captures signaling from other cascades) or a key proinflammatory transcription factor such as 

NFkB.  

 

 
Figure 7. Construction and simulation of a macrophage Boolean model specific for SARS-CoV-2 

infection. (A) Modules for the T1 IFN response, the RA system, and the NLRP3 inflammasome were 

processed with CaSQ to generate Boolean modules, refined, and adapted to be macrophage-specific, and 

then integrated with a general macrophage polarization model to generate the COVID-19 Macrophage 

Model (MacCOV). The total number of nodes and interactions in each stage of the processing is indicated 

in the different panels (N: nodes, E: edges). (B) Model stable states upon different inputs (virus infection, 

inflammatory conditions + virus infection, and inflammatory condition) are presented in a heatmap. 

Each input evolves into a unique stable state (rows, delimited by white horizontal lines), where node 

activity is shown in orange when active and blue when inactive. Nodes, listed at the bottom of the 

heatmap, are clustered (delimited with white vertical lines) by their relation with specific modules, with 

the activation of macrophage phenotypes, or with biological processes. 

 

2.2.5 Multiscale and multicellular simulation of SARS-CoV-2 infection uncover points of 

intervention to evade apoptosis and increase immune cell recruitment.  

We further expanded our modeling analysis by incorporating two Boolean models into 

a multiscale simulator of the infection of lung epithelium by SARS-CoV-2 (43) [https://git-

r3lab.uni.lu/computational-modelling-and-simulation/pb4covid19]. The two Boolean models 

focus on the effects of SARS-CoV-2 on the apoptosis of the epithelium and on the influence of 
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the virus on the recruitment of immune cells by macrophages (Fig. 8). As previously, CaSQ (26)  

was used to convert the apoptosis map into a Boolean model.  

 
Figure 8. Multiscale simulation workflow. (A) Overview of the top-level interaction model that 

integrates virus infection, epithelial host cell demise, and the response of different immune cells. (B) 

The apoptosis model from C19DMap (https://fairdomhub.org/models/712) was used. (C) The 

modified version of the model was included in each epithelial cell. 
 

 

We first analyzed the models individually. We studied all the KO of each of the Boolean 

models (44) to explore and suggest potential drug targets. We identified two perturbations, one 

that evades apoptosis in infected human host cells and one that increases the immune cell 

response in macrophages (Fig. S11). The first perturbation involved the inhibition of FADD, a 

downstream actuator of FASLG reception upon T-cell activation promoting apoptosis. In the 

FADD knockout simulation, CD8-T-cell-mediated apoptosis was abrogated, but the cells were 

still able to undergo virus-mediated apoptosis through activation of the apoptosome by the 

virus (Fig. S12A). The second perturbation inhibited the macrophages’ p38, a MAP kinase that 

phosphorylates various proteins in response to stress. We found that the knockout of p38 in 

this macrophage model increased the recruitment of immune cells by 10% (Fig. S12B). In this 

model, p38 is an activator of pro-inflammatory downstream targets such as AP1, IL1RN, IL1b, 

IL12, and TNF and is an ERK inhibitor. Thus, p38 knockout having a pro-immune effect is 
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apparently counter-intuitive (45), even though p38 has been described as forming immunity-

inhibiting complexes with sestrin during ageing (46). In addition, the pro-immune effect of p38 

knockout should also be studied in combination with the SARS-CoV-2 proteins’ triggering of 

the p38 MAPK signaling pathway to induce apoptosis, as stated above.  

We studied the population of epithelial cells and their status (Fig. 9A) and the 

recruitment of immune cells (Fig. 9B). Additionally, we incorporated the effect of the mutations 

in the multiscale simulation: FADD KO behavior in the multiscale model corresponded to the 

expected behaviors observed in the Boolean model as it reduced the commitment of epithelial 

cells to apoptosis (Fig. 9C). On the other hand, p38 KO in the multiscale model did not 

substantially change immune cell recruitment by macrophages (Fig. 9D). The 10% increase in 

the recruitment of immune cells seen in the signaling model was not sufficient to see consistent 

differences when doing replicates of the multiscale simulation. 

 
Figure 9. Simulation of wild type and mutants using PhysiBoSS. Our framework can simulate wild-type 

epithelial cell state (A) and wild-type immune cell recruitment (B) and study the effect of knockouts 

such as FADD in epithelial cell apoptosis (C) or p38 in immune cell recruitment (D). 

 

2.3 Text-mining and AI-assisted drug target enrichment  

We used two AI assistants, INDRA and AILANI, to keep the C19DMap up to date and to 

expand and enrich it with new knowledge. All analyses were performed using a harmonized 

bipartite graph that included the diagrams from MINERVA, REACTOME, and WikiPathways 

(See Materials and Methods). In the C19DMap, we now have a collection of 21 MINERVA (5) 
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hosted diagrams, two REACTOME (6) pathways, and 19 WikiPathways (7) diagrams. We 

created a list of drugs and drug targets using the repository's content and information from 

various sources. For example, we provide a list of content-related information from Clinical 

trials DB, Transcription Factors, drug and protein targets, and miRNA. The corresponding file 

can be accessed on our public repository. From an initial list of 3,573 proteins extracted from 

the C19DMap and the drug-target information compiled for the C19DMap, we obtained 1,476 

drugs associated with 1,120 drug targets to populate our C19DMap drug target database. We 

identified 54 targets from the omics data and C19DMap diagrams integrative analysis and the 

computational modeling analysis (Table 6). Using our C19DMap drug target database, we 

could infer drugs, chemicals, and miRNAs that target these identified nodes (Table S5).  

 

Table 6. A list of 54 identified targets from the omics data and C19DMap diagrams integrative 

analysis and the computational modeling analysis. 

MAPK11 STAT1 TREML4 

SMAD1 FOS TBK1 

TICAM1 JUN ARL6IP6 

TBK1 RELA CASP7 

IKBKE NFKB1 LNPEP 

IRF3 STAT2 HMOX1 

ATF4 IRF9 FADD 

ATF6 BACH1 AKT1 

MBTPS1 TBP ALG5 

TP53 TCF12 AGTR1/2 

STAT3 IFIH1 EGFR 

ISG5 OAS1 KEAP1 

JUND OAS2 CUL3 

AHR OAS3 E 

FOSL1 IRF7 nsp15 

MAS1 BAX nsp14  

RBX1 IFNB1 RNA Nsp3 

TLR9 TLR7 nsp13 

 

2.4 Pharmacogenomics of drugs targeting the COVID-19 disease map 

We collected pharmacogenomic information available in the public domain for the drug 

targets already present in the C19DMap and assessed the frequency of these genomic variants. 

We used the "Cumulative Allele Probability" (CAP) and the "Drug Risk Probability" (DRP) 

scores to summarize the data. The CAP score estimates the likelihood of a particular gene 

carrying pharmacogenomic variants. In contrast, the DRP score estimates the likelihood of the 

response to a drug being affected by pharmacogenomic variants (47). The CAP score depends 

on the number of pharmacogenomic variants and their population frequency. We focused on 

79 genes with pharmacogenomic information and allelic frequency information from gnomAD 

and PharmGKB and calculated CAP scores using gnomAD global exomic information (Fig. S13). 
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The individual CAP scores for the drug target genes were aggregated by drug (Fig. S14). Drugs 

like dabrafenib, migalastat, and erlotinib show low DRP scores across all populations and sexes, 

whereas others such as methotrexate, capecitabine, and gemcitabine display higher values of 

DRP scores. Some drugs, such as losartan, show population-related differences in the values of 

their DRP scores, being higher in Latino/Admixed American and Ashkenazi Jewish than in 

African/African American populations. Losartan is used to treat hypertension due to its 

antagonistic effect on the angiotensin II receptor, type 1 (AGTR1) (48). Notably, this protein is 

involved in one of the circuits from the Renin-angiotensin pathway that are differentially 

activated in the infected cells compared to controls (see the Mechanistic modeling of COVID-19 

disease maps using HiPathia and the macrophage model sections). Currently, 16 clinical trials 

evaluate losartan's effect on different outcomes in COVID-19 patients. There are two genomic 

variants in the AGTR1 gene annotated to losartan response in PharmGKB (rs5186 and 

rs12721226). The variant rs5186 is located in the 3' UTR of the AGTR1 gene. It shows a higher 

frequency in Ashkenazi Jewish, Latino/Admixed American, and European (non-Finnish) 

populations (approx. 0.3) than in South and East Asians and Africans/African Americans (<0.1). 

This variant is associated with increased response to losartan in a study performed on a cohort 

of European ancestry (49). The other variant, rs12721226, is a missense variant with very low 

frequency across populations (< 0.01), and the alternative allele (A) is associated with a 

decreased affinity to losartan and its metabolite EXP3174, which could impair the clinical 

efficacy of the drug (50). AGTR1 is present in the C19DMap repository and is highlighted as 

structurally important (ranked 37th in the aggregated graph). Moreover, INDRA analysis 

retrieved, besides losartan, the drugs telmisartan, irbesartan, valsartan, candesartan, 17alpha-

ethynylestradiol, estrogen, nitric oxide, glucose and 1,4-dithiothreitol as able to target AGTR1, 

while AILANI analysis retrieved besides losartan the drugs candesartan, tasosartan, 

saprisartan, forasartan, eprosartan, irbesartan, azilsartan medoxomil, olmesartan, telmisartan, 

valsartan and miRNAs hsa-miR-155-5p, hsa-miR-124-3p, and hsa-miR-26b-5p as molecules 

targeting AGTR1.   

Besides AGTR1, the proteins IKBKE, CASP7, and EGFR are among the identified targets 

from our analyses for which pharmacogenomics data are available. For IKBKE, the CAP score is 

very low across all populations, with the lower score achieved for African/African American 

populations. INDRA analysis retrieved many chemical molecules, and two drugs, amlexanox 

and sunitinib malate, that have as target IKBKE, while AILANI analysis retrieved the miRNAs 

hsa-miR-124-3p, hsa-miR-155-5p and hsa-miR-296-5p. Sunitinib shows a high DRP score for 

East Asian and Latino/Admixed American populations, while it has a very low score for 

African/African American populations (Fig. S14). Amlexanox has no pharmacogenomic data 

available; however, the drug was used in four clinical trials targeting type 2 diabetes and 

obesity. Regarding CASP7, the CAP score is very high for East Asians, both male and female, and 

very low for African/African American populations. INDRA analysis retrieved spermine, 1,4-

benzoquinone, melatonin, apigenin, zinc, cisplatin, ac-asp-glu-val-asp-h, nac, fica and 

emricasan, while AILANI analyses retrieved eight miRNAs that can target CASP7. Among the 

drugs, pharmacogenomic data were available for cisplatin. Cisplatin has a higher DRP score for 

Latino/Admixed Americans, both sexes and a lower DRP score across Ashkenazi Jewish and 

East Asian populations (Fig. S14). Emricasan was tested in 18 clinical trials, targeting liver 
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diseases, and recently the drug was tested for its efficacy in COVID-19 disease in 13 patients 

with mild symptoms; however, no results have been published 

(https://clinicaltrials.gov/ct2/show/NCT04803227?term=emricasan&draw=4&rank=4).  

Lastly, for EGFR, the CAP score is very low across all populations, with a slightly higher CAP 

score for African/African American populations. Using our internal drug-drug target database, 

we retrieved two drugs, namely zanubrutinib and abivertinib. Zanubrutinib is being tested in 

clinical trials for the treatment of lymphoma patients (88 clinical trials retrieved from 

https://clinicaltrials.gov/), while abivertinib has been tested in 11 clinical trials for lymphoma, 

prostate, and lung cancers and recently was also evaluated in two completed clinical trials for 

COVID-19 according to https://clinicaltrials.gov/.   

 

2.5 Graphical exploration and topological analysis 

To cope with the size and complexity of the ever-growing content of the mechanistic 

pathways, we developed and implemented a concept for the hierarchical exploration of the 

C19DMap and performed a comprehensive analysis of node centralities on two levels: on the 

level of the individual pathways for all three platforms and on the level of an aggregated 

network combining all individual pathways. The implementation is based on the biological 

network analysis tools Vanted (51), SBGN-ED (52) and a customized version of LMME (Large 

Metabolic Model Explorer) (53), LMME-DM (Fig. 10).  

On all networks combined in the bipartite graph (individual pathways and aggregated 

network), we performed centrality analysis and computed an aggregated centrality value (see 

Materials and Methods) to identify the top-ranked species of the C19DMap bipartite graph 

(Table S6). Not surprisingly, the proteins that show up in the top ten are viral proteins and the 

ACE2 protein that acts as a receptor for the SARS-CoV-2 spike protein. Topological analyses can 

highlight targets and hubs, providing a basis for linking pathway structure with key findings 

from text mining, omic data analysis, and modeling pipelines. For the five representative 

C19DMap pathways, namely Interferon type I, Interferon lambda, coagulation, apoptosis, and 

renin-angiotensin, we used the aggregated ranks to create a high-level view of the pathways 

visualizing their connections and also creating nested nodes for coping with complexity (Fig. 

10). Moreover, from the 54 highlighted targets (Table 6), nine of them are characterized as 

structurally important in the respective pathways, namely TBK1, IKBKE, IRF3, MAS1, IRFNB, 

CASP7, FADD, AKT1 and AGTR1/2, as they appear in the top ten occurrences of each of the five 

pathways shown in Tables S7-S11. While the topological features for the aggregated pathway 

(where all content is unified across the three platforms, MINERVA, WikiPathways, and 

Reactome) were not so easy to calculate due to incompatibilities that we will need to address 

in the future versions of the repository (for example, different naming for the same complex, 

such as AP-1 or AP1, different spellings of nodes using or not capitalized initials, such as nsp13 

or Nsp13), we were able to have clean topological features for 26 of the 54 targets. Among 

these, 18 targets appeared in the top 1000 occurrences of the aggregated pathway (Table S12), 

with 11 targets characterized as structurally important as they showed up in the top 30% 

(Table S13).  
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Figure 10. Hierarchical exploration of centrality values in the disease map using LMME-DM. The 

following pathways are shown in detail: Coagulation: yellow; Apoptosis: red; Interferon 1: blue; 

Interferon lambda: green; Renin-Angiotensin: orange. The aggregated centrality values are mapped to 

the node sizes in the detail view. 

 

2.6 FAIRness and availability for proper data management 

We made considerable efforts to align our work with the four FAIR principles: 

Findability, Accessibility, Interoperability, and Reusability (54). As this is an ongoing effort, we 

try to balance our results between timely availability and FAIRness in progress. The tools 

implemented in our ecosystem are published and indexed on PubMed and searchable online. 

We try to advance, communicate and exchange with other Systems Biology communities, 

especially when it comes to the annotation and curation of models (55, 56).  All tools are open 

access, and WikiPathways (11), REACTOME (12), MINERVA (57), AILANI 

(https://www.biomax.com/products/ailani-for-semantic-integration-and-search/) and 

CellCollective (30) provide APIs. The developed maps and models are available on GitLab 

(https://git-r3lab.uni.lu/covid/models/) and FAIRDOMHub (58). We have worked on tool 

interoperability and promoting community standards; therefore, most input formats are GML, 

SIF or SBML, and SBML Qual files in an effort to enhance model reusability (59). All maps and 

models are available under a CC-BY license. Appropriate metadata associated with each of the 

analyses and modeling results presented in the article is registered and indexed on 

FairdomHub to facilitate accessibility. Furthermore, we plan to submit the models obtained to 

model repositories such as the Cell Collective (30), GINsim (60), and BioModels (61).  We have 

also built the C19DMap-Neo4j graph database by integrating the content of the C19DMap 

diagrams available in MINERVA into the Neo4j framework. This database is available for online 

exploration at https://c19dm-neo4j.lcsb.uni.lu and is used as a backend solution for efficient 

access to the resource data. Biological concepts from the C19DMap diagrams available in 
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MINERVA (such as macromolecules and processes) are stored in the database under Neo4j 

nodes. In contrast, relationships between these concepts (such as consumption and catalysis) 

are stored as Neo4j relationships. In addition, annotations, such as UniProt identifiers and 

PubMed publication IDs, are stored in the form of individual nodes that we can easily query (for 

an example, see Fig. S15).  

 

3. Discussion 

We have explored the high-quality, manually curated mechanistic content of host-

pathogen interactions using a number of computational frameworks and bioinformatics 

analyses that are now combined in interoperable pipelines. To further prioritize targets and 

contextualize the mechanistic content with different layers of biological data, a set of different 

omics data was used, ranging from infected cell lines to bulk RNAseq and single-cell omic data 

from patients affected with SARS-CoV-2. In summary, we used omics data following SARS-CoV-

2 infection to infer a causal network describing signaling events perturbed after viral infection. 

We identified the MAPK protein family as a key mediator of the referred signaling events. Our 

omics-based approach was able to capture several genes present in the pathways manually 

curated by the C19DMap community. Furthermore, we found additional causal interactions 

suggesting the potential mechanism behind the crosstalk between some of the most relevant 

pathways upon SARS-CoV-2 infection, such as EGFR, PI3K, and the PAMPs/interferon-1 

pathway. Focusing further on transcription factors, the analysis revealed new transcription 

factors not yet included in the C19DMap. Their inclusion may provide an opportunity to reveal 

more detailed mechanisms of gene regulation hijacked by coronavirus infection. The results 

showed that, among the drugs targeting transcription factors detected in both cells, 47 were 

already in external clinical trials, including drugs evaluated for their effectiveness against 

COVID-19. In addition, we also retrieved 160 drugs that have not yet been tested in clinical 

trials or tested for efficacy against COVID-19 and could represent potential candidates for 

further evaluation (Table S14). Lastly, over-representation analysis revealed 58 affected 

pathways in NHBE cells and 39 enriched pathways in A549 cells, including pathways relevant 

to immune response, the NFkB pathway, glucocorticoid receptor and MAPK signaling pathway, 

and pathways related to interferon.  

The single-cell RNAseq data analysis of a small group of patients confirmed some of the 

previously identified TFs, DEGs and altered pathways pointed out by the cell line analysis. 

However, the number of patients in this analysis was relatively small. To expand our analysis, 

we used an extensive dataset of 450 patients and the HiPathia modeling algorithm to identify 

affected circuits in the mechanisms described in the repository. We found pathways, such as 

apoptosis, to be systematically up or downregulated, which means that the whole pathway is 

relevant to the progression of the disease. Moreover, more extensive pathways showed 

differential activation in a few or even one of the circuits, which may indicate that, despite the 

involvement of the whole pathway in the disease progression, only a few processes reflected in 

the deregulated circuits are critical to the mechanism of infection. These specific key processes 

may support finding new therapeutic targets. The extensive integrative omic data analysis 

using RNAseq bulk and single-cell data and the pathway resources revealed interesting TFs, 
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DEGs, and altered pathways after the SARS-CoV-2 infection in the two studied cell lines and in 

patients’ data. The methodologies used for this step were complementary, covering a wide 

range of state-of-the-art pipelines and bringing forward two significant points: the coverage 

and relevance of the C19DMap repository regarding the COVID-19 disease and the 

identification of additional regulators that would need to be included in the resource.  

The COVID-19 disease maps can also be analyzed using computational modeling 

approaches. Indeed, these disease models can help elucidate mechanisms deregulated at 

molecular, cellular, and multicellular levels to gain insight into COVID-19 underlying processes. 

Type I Interferon (IFN) signaling is an essential pathway of host defence against viral attacks, 

as highlighted in previous analyses of omics data in both cell lines and patients’ samples. We 

used the executable, dynamic model of type I IFN signaling of our repository for in silico 

experimentation. The results of the computational modeling showed a complete lack of IFN 

signatures under relevant conditions matching the experimental results that showed 

hampered IFN-I responses in patients with severe or critical COVID-19 (36). These patients had 

low levels of IFN-I and ISGs, and increased production of TNF-, IL-6-, and NF-κB-mediated 

inflammation. Adding the IFN response, Renin-Angiotensin mechanism, and NLRP3 pathways 

from the C19DMap to an existing macrophage polarization model helped elucidate the innate 

immune response that macrophages trigger upon acute COVID-19, in addition to highlighting 

their contribution to the disease’s pathology. Lastly, the integration of both pathway and cell 

models in a multicellular-multiscale model helped to reveal the impact of mutations of FADD 

and p38 on the cellular death of epithelial cells upon infection, as well as on the recruitment of 

immune cells.  

In an effort to further enrich the content, AI-assisted text mining systems, such as INDRA 

and AILANI, were employed to infer from the vast literature the drugs, miRNAs and chemical 

molecules that have as targets the biomolecules included in the diagrams of the C19DMap. Text 

mining and AI solutions can help enrich the content and provide further directions to fill in 

knowledge gaps. Furthermore, integrating publicly available data from the C19DMap, 

PharmGKB, and gnomAD allowed us to determine the presence of variants with 

pharmacogenomic impact and their frequency in human populations. We thus estimated the 

genomic variability of genes from the C19DMap that was involved in drug response across 

different populations and sexes. We were able to retrieve pharmacogenomic information for 

about 79 genes present in the repository, four of which were also identified as potential targets. 

Topological analyses revealed interesting information about hubs and shared molecules among 

pathways that could help us better understand the potential upstream and downstream effects 

of targeting them.  

 

Perspectives  

As mentioned in our previous report (2), most of the diagrams of the CD19DMap 

repository were initially built using the scientific literature on SARS-CoV-1 and other 

coronaviruses that were available during the onset of the pandemic. This corpus provided the 

foundation for rapid curation and a literature triage approach. Annotations for the SARS-CoV-

1 viral infection process, including the viral life cycle, host interactions, and therapeutic 

pathways, were built on this foundation. After more than two and a half years since the 
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appearance of the SARS-CoV-2 virus, the body of scientific literature specific to this type of 

coronavirus has reached a point where it can now be used to curate complete mechanisms. 

With the continuous update of pathway information and new datasets related to SARS-CoV-2, 

reproducible and automated data analysis workflows can be rerun to provide more accuracy 

and specificity. Generation of Reactome's SARS-CoV-2 pathway leveraged the database's 

foundational manual curation, orthoinference projection, and the collaborative resources of the 

CD19DMap project. The SARS-CoV-2 infection pathway emerged from a computationally 

generated rough draft via the orthoinference process from the manually curated, peer-

reviewed Reactome SARS-CoV-1 infection pathway (see Materials and Methods). The 

community can adopt this approach that identifies SARS-CoV-2-specific interactions to 

increase viral specificity in the mechanisms included in the C19DMap repository. 

We made considerable efforts to increase interoperability and communication across 

three different platforms, MINERVA, WikiPathways and Reactome, support Systems Biology 

standards such as SBGN (62) and SBML (63), and promote scientific openness with the use of 

public repositories and the adoption of FAIR (Findability, Accessibility, Interoperability, and 

Reusability) Data principles (54).  

We have successfully built seamless workflows that allow us to use high-quality, curated 

mechanistic content for integrative analysis and computational modeling. The interoperable 

pipelines developed and demonstrated here are highly adaptable to new challenges due to 

standardized formats, can support the testing of combinatorial therapies, as multiple drugs and 

targets are suggested, and offer a canvas for evaluating the repurposing of existing drugs to 

fight new waves of COVID-19 or other pandemics, and contribute to elucidating the etiologies 

of post-acute Covid Symptoms (PASC). By comparing the mechanisms and drug targets, we can 

further look into the comorbidities of the disease. The C19DMap computational framework is 

flexible, expandable, accessible, and available freely to the scientific community.  

 

4. Materials and Methods  
4.1 Using the mechanistic diagrams for omics data analysis 

Footprint analysis 

We obtained the transcriptomics dataset from the GEO database with accession number 

GSE147507 (4). We extracted series number 5 from the dataset, consisting of 2 conditions, 

A549 cells either mock-treated or infected with SARS-CoV-2, measured in triplicate 24 hours 

after infection. Differential analysis of the transcript abundances was performed using DESeq2 

(64). The resulting t-values of the differential analysis were used as input to estimate pathway 

activity deregulation using Progeny (65). The differential analysis t-values were also used to 

estimate the deregulation of TF activities using Dorothea (66) as a source of TF-target regulon 

and the Viper algorithm (67) to estimate the TF activity score. Phosphoproteomic data of mock-

treated and SARS-CoV-2 infected cells were extracted from (5). Phosphosite differential 

analysis log2FC was used to estimate the deregulation of kinase activities using  

https://github.com/indralab/protmapper  as a source of kinase-substrate interactions and a z-

test to estimate kinase activity score (68, 69). Finally, we used Carnival (6) with the COSMOS 

approach (7) to connect the top 10 deregulated kinases with the top 30 deregulated TFs with a 
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Prior Knowledge Network assembled from OmniPath resources (8). Progeny pathway activity 

scores were used to weigh the PKN and facilitate the optimal network search to connect kinases 

and TFs. To place our results in the context of the whole study, we matched the genes obtained 

in carnival results with those included in the curated pathways by the Covid-19 Disease map 

community (https://covid.pages.uni.lu/map_contents). In addition, we matched our results 

with a harmonized list containing drug-targets. 

TF activity and drug target identification 

In this analysis, we inferred the gene regulatory systems that are hijacked by COVID-19, 

especially the target transcription factors. In order to infer the target transcription factors, we 

detected transcription factors that statistically significantly regulate the genes whose 

expression changes were induced by COVID-19. First, the gene groups whose expression 

changes were induced by COVID-19 in NHBE cells and A549 cells were detected as the DEGs 

using DESeq2 (64) for the GSE147507 dataset (4, 9) described above. Next, we extracted all the 

regulatory relationships with Confidence “A”, “B”, and “C” from DoRothEA (66) as information 

on the regulatory relationships of transcription factors to each of these DEGs for NHBE cells 

and A549 cells. The transcription factors that regulated each of these DEGs for NHBE cells and 

A549 cells were detected by LAMP (10) (significance level < 0.05). Next, to gain insight into the 

biological phenomena affected by the detected transcription factors, i.e. the transcription 

factors hijacked by COVID-19, gene ontology enrichment analysis of DEGs under the control of 

these transcription factors was performed using the GOstats package (70)  in R (significance 

level α = 0.05). In order to verify whether these transcription factors are included in the publicly 

available C19DMap (2), we performed a search based on the HGNC ID of each transcription 

factor against the SBML file of each Disease Map. Finally, we searched for and picked up the 

drugs that target each of the transcription factors for NHBE cells and A549 cells that have been 

in the clinical trials in anticipation of later usefulness for the treatment of COVID-19 as follows. 

To find the drugs which target the above transcription factors, we conducted a search against 

GeneCards (https://www.genecards.org/) (71)  based on the HGNC IDs of the transcription 

factors. After that, we performed another search based on those drugs against the list of the 

drugs in External Clinical Trials for COVID-19 and Related Conditions in the COVID-19 

Dashboard of DRUGBANK (https://go.drugbank.com/covid-19) (72). Only approved drugs 

were listed as candidate drugs in the final results. Finally, to identify gene regulatory systems 

affected by COVID-19 independent of cell type, DEGs, transcription factors, enriched GO terms, 

and drug targets detected against NHBE, A549 cells were classified for one or both cell types. 

 

Pathway and network analysis in SARS-CoV-2 infected NHBE and A549 cells 

We demonstrate an automated and reproducible workflow for transcriptomics data 

analysis using pathway- and network-based approaches (see our GitLab repository for 

details;https://gitlab.lcsb.uni.lu/computational-modelling-and-simulation/pathway-analysis-

and-extension). The analyses are fully automated in R with clusterProfiler (73) and RCy3 (74) 

to connect to the widely adopted network analysis software Cytoscape (75) for network 

visualization. We obtained the transcriptomics dataset from the GEO database with accession 

number GSE147507 (4). We extracted series numbers 1 (NHBE) and 5 (A549) from the dataset, 
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consisting of 4 conditions in triplicate, NHBE and A549 cells treated with mock (two controls) 

and NHBE and A549 infected with SARS-CoV-2, measured 24 hours after infection. Pre-

processing and differential gene expression analysis was performed in R using the DESeq2 

package (64). Next, a combined pathway collection of the COVID-19 Disease Map (21 pathways 

(76)), WikiPathways (597 pathways (11)) and Reactome (1,222 pathways (12)) was created. 

Pathway enrichment analysis was performed using the clusterProfiler R package  (73). 

Differentially expressed genes (DEGs; p-value < 0.05 and absolute fold change > 1.5) were used 

as input for the over-representation analysis. The analysis was performed separately for NHBE, 

and A549 cells and the overlap in enriched pathways was analyzed. Selected pathways are 

visualized in Cytoscape using the WikiPathways app (77). A pathway-gene network for the 

shared pathways was created to study pathway crosstalk and overlap. Next, the harmonized 

bipartite graph was used to create a pathway-gene network for all C19DMap pathways. By 

overlaying information about differential expression and filtering for shared differentially 

expressed genes, we used the network to identify relevant biological processes as well as 

molecular mechanisms that may be missing in our current pathway collections. This enabled 

the prioritization of curation efforts. 

Single-cell transcriptomic data analysis in epithelial cell types of COVID-19 patients.  

In this section, we provided gene expression analysis to explore differential expressed 

genes (DEG) on scRNAseq in specific epithelial cell populations in the COVID-19 patient group 

(moderate, severe, and critical cases), comparing with isolated epithelial cells from the lungs of 

healthy subjects. An exploratory gene expression data was carried out on single-cell RNAseq 

analysis of bronchoalveolar lavages from nine COVID-19 patients, three moderate cases, one 

severe case, and five critical cases (GSE145826) from (13). To obtain high confidence of 

differential expressions in three different groups, single-cell RNAseq data of isolated epithelial 

cells (DAPI-, CD45-, CD31-, CD326+) from control lung explant tissue of nine health subjects 

was chosen as a healthy control specific for epithelial cell types (14). All filtered samples were 

merged in only one filtered gene-barcode matrix and analyzed with R package Seurat v.3 (78). 

In parameter settings, the first 50 dimensions of canonical correlation analysis (CCA) and 

principal component analysis (PCA) were used. Moreover, the filtered gene-barcode matrix 

was first normalized using ‘LogNormalize’ methods with default parameters. UMAP was 

performed on the top 50 PCs for visualizing the cells, while clustering was performed on the 

PCA-reduced data for clustering analysis with Seurat v.3. The resolution was set to 0.5. A UMAP 

embedding represents the distribution of major cell types in the single-cell RNAseq database 

(Fig. S6). The epithelial cell group (TPPP3, KRT18), directly infected by SARS-CoV-2, was 

analyzed for every patient group. At first, the classification was provided, following these gene 

markers, as reported in (13): macrophages (CD68), neutrophils (FCGR3B), myeloid dendritic 

cells (mDCs; CD1C, CLEC9A), plasmacytoid dendritic cells (pDCs; LILRA4), natural killer (NK) 

cells (KLRD1), T cells (CD3D), B cells (MS4A1), plasma cells (IGHG4) and epithelial cells (TPPP3, 

KRT18). For the finest cell annotation of epithelial cell types, specific gene markers were used 

as reported in the Human Protein Atlas database (https://www.proteinatlas.org/), and 

markers of health epithelial cells reported by Deprez and colleagues (79) 

(10.1164/rccm.201911-2199OC) and extracted. In particular,  ciliated cells (CFAP157, 
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FAM92B; SARS-CoV-2-infected" cells 15.5%), Secretory cells (BPIFB1, SCGB1A1, SCGB3A1; SARS-

CoV-2-infected" cells 6.4%), Suprabasal cells (KRT5, SERPINB4, KRT19, COVID19 cells 37.7%), 

Alveolar Type 1 cells (AGER, CAV1, EMP2, SARS-CoV-2-infected" cells 6%), Basal cells (KRT5, 

KTR15, COVID19 cells 11.2%). Alveolar Type 2 cells were not included because of an 

unbalanced ratio of cell sample size between COVID-19 cases and healthy control (SARS-CoV-2-

infected" cells <2%; see table S1 for a detailed summary of all cell types). The balanced sample 

size of cells allowed us to compare these two groups. For epithelial cell groups, differential gene 

expression analysis between patients and specific cell control was carried out. A differential 

gene expression analysis for all clusters was performed using the FindMarkers function in 

Seurat v.3, imposing a statistical threshold of 0.05 % FDR, average |logFC| > 1 and the difference 

between PCs >0.25, in order to maximally increase confidence in the results. 

Integrative pathway modeling using C19DMap diagrams and RNAseq data from COVID-19 

patients  

The HiPathia algorithm allows modeling the behavior of signaling pathways, described 

as directed graphs that connect receptor proteins to effector proteins through a chain of 

activations and inhibitions exerted by intermediate proteins. HiPathia treats the pathways as 

if they were composed of elementary circuits, each circuit defined as the sub-pathway, or chain 

of proteins, connecting receptors to effectors. HiPathia uses expression values of genes as 

proxies of the levels of activation of the corresponding proteins in the circuit (80). To estimate 

the activity of a given circuit, an arbitrary signal value is transmitted through the ⁠nodes and is 

modulated by the activity values of the intervening proteins until it reaches the final effector 

protein, which is annotated with the functions that it triggers in the cell (16). These circuit 

activation values can be between conditions to obtain profiles of differential signaling and 

differential functional activity. The first version of the C19DMap has been implemented in the 

CoV-HiPathia version (81). In addition, extracted SIF files from SBML qual files using CaSQ (26) 

can be imported to HiPathia containing the Activity Flow (AF) structure of the Process 

Description (PD) diagrams, enabling new disease maps to be modeled as they are built thus 

permitting their exploration and analysis. In order to test the methodology, a public RNAseq 

dataset of nasopharyngeal swabs from 430 individuals with SARS-CoV-2 and 54 negative 

controls (17) (GSE152075) was used. First, the RNA-seq gene expression data were normalized 

with the Trimmed mean of M values (TMM) normalization method using the edgeR R package 

(82) ⁠. Then, within the CoV-Hipathia web tool (81) ⁠, the HiPathia algorithm requires the 

expression data to be rescaled between 0 and 1 for the calculation of the signal. Finally, quantile 

normalization using the preprocessCore R package (80) was carried out. The normalized gene 

expression values were used to calculate the level of activation of the sub-pathways, and then 

a case/control contrast with a Wilcoxon test was used to assess differences in signaling activity 

between the two conditions: SARS-CoV-2-infected and normal control nasopharyngeal tissue.  

 

4.2 Dynamical modeling at the molecular, cellular, and multicellular levels 

Dynamical modeling of type I IFN responses in SARS-CoV-2 infection 

Type I IFN model development and computational validation: We used the type I IFN 

molecular map as a scaffold and auto-generated the dynamic model using the CaSQ tool. We 
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utilized seven biological scenarios from the scientific literature to evaluate the model's 

behavior.  

Global sensitivity analysis: We simulated the model in Cell Collective (30) using varying 

activity levels of each input. We determined the input-output association using activity levels 

of 1000 randomly-generated simulations as previously used by our group (83). We performed 

probabilistic global sensitivity analysis based on the partial correlation coefficient (PCC) using 

the “sensitivity” package (https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf 

) in R (R Core Team, 2016) on data obtained from Cell Collective. It shows the impact of change 

in the input variable (independent variable) on the output variable (dependent variable) while 

considering and removing the linear effect of other input variables on the output variable (84). 

The script used in this analysis is available in our shared GitLab repository (https://git-

r3lab.uni.lu/computational-modelling-and-simulation/analysis/-

/blob/master/IFN1_modelling/Global_Sensitivity_analysis_of_IFN_model.R). 

Sensitivity analysis against overexpression and knockouts: The sensitivity of biomolecules 

was calculated against knockout and overexpression perturbations. The sensitivity values were 

quantified in macro values for each biomolecule. The bitwise distances were calculated for each 

biomolecule in the same macro class. The highest sensitivity values were then simulated in Cell 

Collective. The methodology of the algorithm used to calculate the sensitivities against 

knockout and over-expression perturbations is described in FairdomHub 

(https://fairdomhub.org/data_files/4090), and the used script that generates the result is 

available in our shared GitLab repository (https://git-r3lab.uni.lu/computational-modelling-

and-simulation/analysis/-

/blob/master/IFN1_modelling/IFN1_sensitivity_against_mutations.R).  

Input propagation for calculating stable states: The IFN model has 55 input components. 

These input components always maintain their activity level as they have no upstream 

regulators, and their initial configuration plays a vital role in the potential outcome. To 

eliminate unrealistic input configurations, we consider here that all inputs representing viral 

components share a common state. To encode this constraint, we introduce an additional input 

node controlling this group of components. We applied the same approach to inputs associated 

with the immune response and IFN secretion. In the resulting model, only six inputs remain, 

these three meta-inputs and three components representing drugs (GRL0617, Azithromycin, 

and MNS). Using this modified model, we identified 128 stable states. The absence of other 

stable patterns suggests that this model does not generate stable oscillations. We selected four 

output components to assess the obtained phenotypes (viral replication, antiviral response, 

inflammation, and secretion of IFNA1). The projection of the 128 stable states on these four 

outputs gave six distinct signatures among the 16 possibilities. All signatures lacked IFN 

secretion and exhibited either viral replication or antiviral response (or both). We then studied 

in more detail a set of 8 input conditions that cover different biological scenarios of the type I 

IFN pathway with or without the infection and in the presence or absence of drugs (Table S2). 

In these conditions, the propagation of the input values was sufficient to control most 

components of the model, and in particular, all selected output components. Studies in patients 

with COVID-19 with various degrees of severity showed hampered IFN-I responses in patients 
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with severe or critical COVID-19. These patients had low levels of IFN-I and ISGs, and increased 

production of TNF-, IL-6-, and NF-κB-mediated inflammation. 

 

Integration of the Type 1 IFN, the ACE-ACE2 axis, and the NLRP3 inflammasome curated 

pathways into a macrophage-specific Boolean model 

Three diagrams in the C19DMap repository were selected: the Type 1 IFN, the ACE-ACE2 

axis, and the NLRP3 inflammasome. These diagrams were converted into SMBL qual formats 

using the CaSQ tool (26) and then processed in GINsim (60). Once processed, the pathway 

modules were integrated into a COVID-19-specific macrophage model. Phenotypic nodes were 

added to easily link the biomarkers with a biological process by way of an associated GO term 

name. Next, the functionality and behavior of the COVID-19 macrophage model were evaluated 

in a stable state analysis (attractors) performed with the following stimulatory conditions: 

inflammatory microenvironment, virus infection, and both.  

 

Multiscale and multicellular simulation 

We incorporated two Boolean models into a multiscale simulator that consists of the 

infection of a patch of lung epithelium by SARS-CoV-2 and the immune cells that are recruited 

(43): macrophages, neutrophils, dendritic cells, CD4- and CD8-T-cells. We expanded this 

simulator with our tool, PhysiBoSS (85), which incorporates MaBoSS (86), a tool that 

stochastically simulates Boolean models, into PhysiCell (87), a tool that uses agent-based 

modeling to simulate cells and their surrounding environment, and their interplay. Two 

Boolean models were used: first, the epithelial apoptosis model was converted from the map 

to the model using CaSQ (26) and the C19DMap project (https://fairdomhub.org/models/712) 

(76). We modified the apoptosis model to capture mechanisms such as BAX activating the 

apoptosome complex and included output nodes as readouts. We also connected inputs and 

outputs to different variables in the population model, such as the Virus_inside node, which 

depends on the number of virions inside a cell, or the Tcell_attached node, which depends on 

the attachment of a T-cell to the epithelial cell (Fig. 10C). Second, we included the macrophage-

specific Boolean model developed for this work. As with the apoptosis model, we connected the 

models’ inputs and outputs to relevant variables from the agents. For instance, activating the 

Apoptotic_cell node upon encountering an apoptotic epithelial cell, activating the SARS_CoV_2 

node upon encountering a virion, or activating the interferon Boolean nodes when the 

interferon roaming in the environment is above the detection threshold. Likewise, when 

Neutrophil_recruitment, CD4_Tcell_activation or CD8_Tcell_activation nodes are ON, 

proinflammatory cytokines are released. We found perturbations in the Boolean model that 

enhanced the recruitment of immune cells and the commitment to apoptosis using our pipeline 

of tools (44) that uses MaBoSS to simulate stochastic trajectories. Knocking out FADD in the 

epithelium cells blocked the commitment to apoptosis, which was expected from the regulation 

of that node. Interestingly, we found that knocking out p38 in the macrophages increased the 

recruitment of immune cells by 10%. 
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4.3 Pharmacogenomic analysis 

We obtained the list of proteins in the C19DMap as well as lists of proteins targeted by 

drugs and chemicals from annotations from the AILANI COVID-19 research assistant 

(https://ailani.ai) based on an NLP pipeline (88),  INDRA (Integrated Network and Dynamical 

Reasoning Assembler) (1), and from the Clinical Trials DB. We used information from the cross-

references from DrugBank (72) to map ChEBI and PubChem identifiers to DrugBank identifiers. 

We further enriched the list of drug/chemical targets using the information from DrugBank 

(accessed June 2022). A list of 16 drugs used for the treatment of COVID-19 was obtained from 

(89), and their targets were obtained from DrugBank. After merging the lists, a final dataset of 

1,476 drugs and chemicals (identified by DrugBank IDs) and 1,120 drug targets (identified by 

NCBI Gene Id) was obtained. Information on pharmacogenomic variants for the drug targets 

was retrieved from PharmGKB (90) (accessed on Feb 14, 2021). For each gene that encodes a 

drug target, the list of variants with pharmacogenomic annotations that are significant and are 

annotated to a dbSNP identifier was retrieved. We used the cross-references from PharmGKB 

to map the PharmGKB drug accessions to DrugBank identifiers. Data on the allelic frequency of 

the pharmacogenomic variants were retrieved from The Genome Aggregation Database 

(gnomAD) (91) (version 2.1.1). gnomAD is a resource developed by an international coalition 

of investigators with the goal of aggregating and harmonizing both exome and genome 

sequencing data from a wide variety of large-scale sequencing projects and making summary 

data available for the broader scientific community. To aggregate the data on the 

pharmacogenomic impact and allelic frequency of the variants, we computed a modified 

version of the Cumulative Allele Probability (CAP) and the “Drug Risk Probability” (DRP) score 

(47). The CAP score considers the number of pharmacogenomic variants and their frequency 

in the population for a specific gene. The DRP score combines the CAP scores for all drug target 

genes for a specific drug. The code to compute the CAP and DRP scores is available at 

https://github.com/jpinero/pharmacogenomics_covid19_minerva_map/.  

4.4 Topological analysis  

For each of the available pathways, we calculated values for a set of 17 network 

centrality measures as implemented in Vanted's Centilib extension (92). Taking into account 

the results of correlation analysis and the requirements of centrality calculation on the network 

structure, such as connectivity, we restricted the 17 measures to a base set of ten measures 

(Eccentricity, Degree, Eigenvector, HITSAuths, Current Flow Betweenness, Radiality, Stress, 

Shortest Path Betweenness, Centroid Rank, Closeness)(93). For these measures, we calculated 

the values for each network node (excluding reactions) and provided rankings of nodes for 

each measure per network. Additionally, we computed aggregated rankings using the residual 

sum of squares for each node per network as well as on the aggregated network. The results 

from our centrality calculations can also be explored and put in context using the software 

LMME-DM (https://github.com/LSI-UniKonstanz/lmme-dm) that was developed as part of the 

C19DMap project. It follows an overview and detail approach showing an overview graph 

containing one node per pathway, and a detailed pathway view, including the detailed 

crosstalks. The centrality values can now be mapped on both the size and the color of the nodes 

(see Fig. 10). 
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4.5 Orthoinference process for converting from SARS-CoV-1 to SARS-CoV-2 diagrams 

The standard orthoinference process is used to infer reactions electronically in fifteen 

evolutionarily divergent eukaryotic species for which high-quality whole-genome sequence 

data are available. Eligible reactions are checked to determine whether each involved protein 

has at least one homologous protein in the reaction's input, output, and (if present) catalyst in 

the organism undergoing inference. If a human reaction involves a complex, at least 75% of the 

accessioned protein components of the human complex must have homologous proteins in the 

model organism. The first (V74) draft of this SARS-CoV-2 pathway consists of 101 reactions 

involving 489 molecular entities (279 proteins, 12 RNAs, and 198 others) and is supported by 

citations from 227 publications. Reactome developed a computational triaging strategy to 

review and identify publications appropriate for manual curation (66,100 SARS-CoV-2 articles 

on PUBMED, tallied on 30/October/2020).  
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