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Abstract
Bacterial antibiotic resistance represents a public health concern that will remain relevant for the
foreseeable future. Antibiotic resistant bacterial infections can occur in two ways: (1) a host is
infected by a resistant bacterial strain (due to between-host transmission of resistance), or (2) a
host is infected infection by a susceptible strain, followed by the de novo evolution or acquisition
of resistance (due to within-host evolution of resistance). While both are critical to understanding
how the evolution of resistance happens in natural settings, the relative rate at which they occur
is unclear. Here, we employ phylogenetic comparative methods to examine the evolutionary
dynamics of resistance in Escherichia coli for multiple common antibiotics. We report
evolutionary patterns consistent with common de novo evolution of resistance for some
antibiotics and sustained transmission of resistant strains for others. For example, we observe
79 putative de novo resistance evolution events for resistance to Cefuroxime but only 31 for
resistance to Ciprofloxacin, despite similar numbers of observed infections (239 and 267
respectively). We find that clusters of resistance are generally larger for Ciprofloxacin,
Ceftazidima and AmoxiClav, which suggests that for these drugs, resistance is often transmitted
from patient to patient. In contrast, we find that cluster sizes for resistance are generally smaller
for PipTaz, Cefuroxime and Gentamicin, suggesting that resistance to these drugs is less often
transmitted from patient to patient and instead evolves de novo. In addition to differences
between drugs, we also find that cluster sizes were generally larger in phylogroup B2 compared
to the other phylogroups, suggesting that transmission of resistant strains is more common in
this phylogroup compared to the others. Our study proposes new approaches for determining
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the importance of de novo evolution or acquisition (within-host evolution) from resistance from
infection with an already resistant strain (between-host transmission). Significantly, this work
also bridges an important gap between evolutionary genomics and epidemiology, opening up a
range of opportunities for studying the evolutionary dynamics of bacterial antibiotic resistance.

Introduction
Antibiotic resistance is a major global health concern. Each year, two million people in the US
are infected by antibiotic-resistant bacteria, and an estimated 23,000 of these die as a result
(Centers for Disease Control and Prevention (U.S.) 2019). Further, global estimates put the
number of deaths associated with bacterial antimicrobial resistance at 4.95 million in 2019 alone
(Murray et al. 2022).

The bacteria that cause resistant infections can arise either because they acquired resistance
via new mutation or via horizontal gene transfer, where the genes and mutations responsible for
resistance are shared between individual bacterial clones. In both of these cases, the public
health problem arises because it is more challenging to treat the individual affected, and
because those resistant populations can spread to new hosts, greatly exacerbating the problem.
Thus, understanding the evolutionary reasons for the origin and spread of antibiotic-resistant
bacterial strains is a major objective in epidemiology (Martínez, Baquero, and Andersson 2007;
Davies and Davies 2010; Blanquart 2019; Laxminarayan et al. 2013). Now, let’s consider the
same situation from the viewpoint of a single patient (see Figure 1). For a patient, an
antibiotic-resistant infection can originate from two sources: one possibility is that the patient
originally was infected with a susceptible strain of bacteria, which then evolved to become
resistant (within-host evolution or acquired resistance). Alternatively the patient may have been
infected by an already resistant strain (between-host spread or transmitted resistance). Note
that for a single infection in a single patient, both of these origins may play a role, but for
resistance to different drugs. For example, the patient may be infected initially with a strain
resistant to Ciprofloxacin (between-host spread or transmitted resistance), and subsequently
this same strain evolves to become resistant also to Gentamicin (within-host evolution or
acquired resistance).
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Figure 1. Diagram showing how patients can become infected by antibiotic resistant strains,
either through A. within-host evolution or acquired resistance, or through B. between-host
spread or transmitted resistance. C. and D. Expectation of what phylogenetic trees will look like
depending on whether resistance is typically caused by within-host evolution (C.) or
between-host spread of resistance (D.).

For hospitals and healthcare workers, whether the resistance observed at the bedside is
(thought to be) arise from within-host evolution or between-host spread should influence clinical
decision-making. For example, if resistance is often transmitted (between-host spread), then
resistance tests should be carried out before a drug is chosen for treatment. On the other hand,
if resistance usually evolves within the patient, this could mean that treatments are not optimal,
because they allow the evolution of resistance to happen. It would therefore be useful to know,
for a given combination of drug and pathogen, how commonly it is due to within-host evolution
or acquired resistance and how commonly it is due to between-host spread or transmitted
resistance. Unfortunately, in most situations, we don’t know how common each of these paths
are.
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The relative role of within-host evolution and between-host spread of resistance has been
studied in several systems, such as HIV (Yang et al. 2015) and Mycobacterium tuberculosis
(Kendall, Fofana, and Dowdy 2015; Knight et al. 2019). For these two pathogens it is known that
both within-host evolution and between-host spread are important drivers of resistance,
although the relative roles of each are debated (for M. tuberculosis) and have changed over
time (with within-host evolution losing importance for HIV over the years (Yang et al. 2015)).
When we consider other pathogens, there are examples where one or the other mechanism
clearly dominates. For example, malarone resistance in the malaria parasite Plasmodium
falciparum can evolve within hosts but appears to be unable to transmit to other hosts. We know
this because malarone resistance has been observed in patients treated with malarone, but
never in patients not on the drug (Musset, Le Bras, and Clain 2007). Apparently (and lucky for
us), a Plasmodium falciparum strain with malarone resistance cannot be transmitted from
person to person, which makes that malarone resistance is still very rare even after many years
of use, and malarone remains a recommended drug for all areas where P. falciparum is found
according to CDC. The opposite situation also is found in P. falciparum: there are drug-resistant
strains that have spread world-wide because they are so easily transmitted from person to
person (Mita, Tanabe, and Kita 2009; Roper et al. 2004). Another example of extensive
between-host spread of resistant strains is found in MRSA (methicillin resistant Staphylococcus
aureus), where the USA300 strain has spread across all continents (Strauß et al. 2017;
Laxminarayan et al. 2013). For many other pathogens, we expect that both within-host evolution
(including by HGT) and between-host spread of resistant strains are important factors that
contribute to the burden of resistant infections.

Our overarching goal is to determine the importance of within-host evolution and between-host
spread for drug resistance in pathogens. While different approaches to tackle this big question
have been used (Yang et al. 2015; Pradhananga et al. 2022), here we will use a phylogenetic
approach. There is a long tradition of using phylogenetic trees to study the evolution of
pathogens with so-called phylodynamic methods (Volz, Koelle, and Bedford 2013). For
example, phylodynamic studies have been used to study immune escape in influenza and to
understand transmission patterns in HIV (Volz, Koelle, and Bedford 2013). Phylodynamic
approaches have also been used to study aspects of drug resistance (Kühnert et al. 2018;
Pečerska et al. 2021).

We propose that patterns of phylogenetic clustering can be used to determine the relative
importance of within-host evolution and between-host transmission for resistance to different
drugs. Clustering patterns contain this kind of information because if resistance to a drug
evolves within a host and is typically not transmitted to other hosts, the tree should be
characterized by resistance on separate individual leaves (Figure 1C). On the other hand, if
resistance to a drug can easily be transmitted, we should see evidence of that on the
phylogenetic tree as reflected by clustering of resistant strains (Figure 1D).

It would be of interest to determine whether clustering patterns differ between different
pathogens, but instead, we decided to first investigate a simpler question: for the same
pathogen does clustering differ between resistances to different drugs? In other words, given
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one tree, does resistance to drug A occur in a more clustered fashion than resistance to drug B?
If this were the case, then we’d know it is not because of sampling issues, because we are
looking at exactly the same samples, and instead it would likely be due to differences in the
probability of transmission of the resistant strains.

To be able to compare resistances to different drugs, we searched for a large genomic dataset
for which resistance phenotypes were available for several drugs. We found such a dataset in a
study on E coli bloodstream infections (bacteremia) in the UK (Kallonen et al. 2017). E. coli is a
common cause of bloodstream infections (de Kraker et al. 2013; Peralta et al. 2007; Elixhauser,
Friedman, and Stranges 2006; Gerver et al. 2015) and the incidence of multidrug-resistant
(MDR) E. coli and extended-spectrum β-lactamase (ESBL)-producing E. coli that cause
bloodstream infections are on the rise (Gladstone et al. 2021).

The Kallonen dataset consists of E. coli genome sequences from 1506 bacteremia patients with
phenotypic information on resistance to 6 drugs: Cefuroxime, AmoxiClav, Ciprofloxacin,
Gentamicin, PipTaz and Ceftazidime. In the original dataset there is information about other
drugs too, but there is a lot of missing data for these drugs and we therefore decided to not
include them in our study. E. coli is typically split in several phylogroups. We consider here A,
B1, B2 and the combination of D and F.

For each drug, and for each E. coli phylogroup we determine the cluster sizes of drug resistance
on the phylogenetic tree and we then compare whether resistance to any of the drugs is
associated with a different distribution of cluster sizes. We find that cluster sizes are typically
larger for Ciprofloxacin, Ceftazidime and AmoxiClav, whereas cluster sizes are typically smaller
for PipTaz Cefuroxime and Gentamicin. This provides evidence that between-host transmission
is relatively more important for Ciprofloxacin, Ceftazidime and AmoxiClav when compared to
PipTaz Cefuroxime and Gentamicin.

Our results show that cluster sizes do indeed differ between resistances to different drugs,
which is consistent with different roles of within-host evolution and between-host transmission
between the different resistances. This, in turn, suggests that prevention of resistance may
require different strategies for these different drugs. We have hope that this study and the
approach will lead to a better understanding of the causes of drug resistance and potential ways
to prevent antibiotic resistant infections.

Methods
Accessing relevant data
The data that is used is obtained from a study on E. coli in the UK sampled from patients with
bacteremia (Kallonen et al. 2017). The data contains WGS data for 1509 E. coli isolates
obtained from two different collections. The first collection contains 1094 isolates that are
collected between 2001-2011 by 11 hospitals across England. The second collection contains
415 isolates from a diagnostic laboratory at the Cambridge University Hospitals NHS
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Foundation Trust in Cambridge stored between 2006 and 2011. All the isolates are associated
with bacteremia.

We downloaded sequence reads for all samples considered in this study from the NCBI
Sequence Read Archive (SRA) using fasterq-dump (Leinonen, Sugawara, and Shumway 2011).
See Supplementary Table 1 (S1_Phylogroup.csv) for sample accession numbers.
We also retrieved corresponding metadata for all considered samples directly from (Kallonen et
al. 2017).
All data and code is available on https://github.com/FlorentinevanNouhuijs/Team_phylo.

Core genome alignment, SNP calling and filtering
We used the Snippy pipeline (https://github.com/tseemann/snippy) with default parameters to
generate a core genome alignment. Snippy employs Freebayes (Garrison and Marth 2012) to
call SNPs for each sample against the core genome reference, then constructs multiple
sequence alignments of core genome sequences across all samples. We filtered poor quality
genotypes and sample-specific zero coverage positions from our core alignment using
snippy-clean_full_aln with default parameters. Then, we employed Gubbins (Croucher et al.
2015) with default parameters to remove recombinant sequences from our alignment and
produce a final cleaned alignment file for SNP calling. We employed snp-sites (Page et al. 2016)
with default parameters to call SNPs from our final cleaned core genome alignment.

Phylogenetic reconstruction
We used IQ-TREE (Minh et al. 2020) with a general time reversible model with unequal rates
and unequal base frequencies (GTR) model to reconstruct a phylogeny across all samples with
1000 bootstraps. Considered E. coli samples generally represent five phylogenetically distinct
clades, or phylogroups. Internal nodes demonstrate strong bootstrap support suggesting
confident reconstruction of E. coli phylogroups. Concomitant to this result, we observe clear
clustering of phylogroups on our tree with the exception of phylogroups D and F, which have
been previously shown to be paraphyletic (Kallonen et al. 2017). For the analyses in this study,
we therefore combined phylogroups D and F into one tree.

Extracting subtrees for each phylogroup
After generating a global phylogeny across all samples, we extracted subtrees for each
phylogroup using the phytools package in R (Revell 2012). To ensure that the trees were
bifurcating, we resolved any polytomies by using the ape package’s multi2di function (Paradis
and Schliep 2019).

Determining cluster sizes
To explore evolutionary patterns of E. coli antibiotic resistance we investigated cluster sizes of
resistant samples across different antibiotics for each phylogroup. To do this we first simulated a
single history of the resistance phenotype on the tree using the make.simmap function from
phytools (Revell 2012). Next, for each resistant sample, we traversed up the tree until we found
a node which was not resistant. Once we reached such a node, we determined the resistance
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cluster size based on the number of daughters for the previous node. If a sample did not have a
resistant neighbor, we assigned it a cluster size 1 (see Figure 2 for an example).

Figure 2. Example cluster size calculation. Here, tip number 88 is a cluster of size 1. Tip 84, 83,
81 and 80 make up a cluster of size 4. Red: resistant, black: susceptible.

Statistical analysis
First, for each drug and each phylogroup (A, B1, B2, D&F), we visualized the subtree to inspect
the distribution of resistant strains on the trees. For all analysis, we grouped phylogroups D and
F because they are paraphyletic (Kallonen et al. 2017). Next, after determining a list of cluster
sizes for each of 6 drugs and for each phylogroup, we plotted the distribution of cluster sizes for
each drug. We then used a Mann-Whitney U test for each pair of drugs to determine whether
the cluster size distribution differed between the drugs. Next, we plotted the fraction resistant
against the average cluster size for each phylogroup separately and used a linear model to
determine what best explains the fraction of resistant samples, using drug and average cluster
size as explanatory variables. Next, we fitted a generalized linear model (with quasi-poisson
error family) to see which factors best explain the observed cluster sizes. We find that a model
with both drug and phylogroup as factors (but not their interaction) best explains the observed
cluster sizes.

We also used a permutation-based approach to investigate whether resistance phenotypes
clustered on the tree more than expected by chance. To do this, we used phyloclust from the R
package RRphylo (Castiglione et al. 2018) with the parameter nsim=1000. phyloclust computes
the mean cophenetic distance between all samples under the focal state (resistance in our
case), and compares this distance to a random distribution of distances obtained by sampling
as many random tips as those under the focal state nsim times.
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Results
An overview of the samples we used for our analysis is given in table 1.

Table 1 Overview of samples in our dataset
Drug Drug Group Number of

resistant

samples

Number of

Intermediate

samples

Number of

Susceptible

samples

Missing data Fraction of

resistant isolates

Amoxicillin

Clavulanic Acid

(AmoxiClav)

Penicillins

(Beta lactams) 447 0 1061 1 29.6%

Piperacillin/Tazo

bactam (PipTaz)

Penicillins

(Beta Lactams) 84 60 1360 5 5.6%

Cefuroxime

2nd generation

Cephalosporins

(Beta Lactams)

239 0 1269 1 15.8%

Ceftazidime

3rd generation

Cephalosporins

(Beta lactams)

73 37 1398 1 4.8%

Gentamicin Aminoglycosides 101 19 1388 1 6.7%

Ciprofloxacin Quinolones 267 12 1229 1 17.7%

Visualizing subtrees
Antibiotic resistant samples show diverse evolutionary patterns across drugs and phylogroups.
First, for each drug and each phylogroup, we visualized the subtree to inspect the distribution of
resistant strains on the trees. Phylogroup D and F were merged because they are paraphyletic
(Kallonen et al. 2017). In figure 3A, we show that in Phylogroups D and F, Ciprofloxacin
resistance occurs mostly in clusters. In this subtree, there are 42 Ciprofloxacin resistant
samples that cluster in 9 clusters. There are 4 clusters of size 1 and 5 clusters with more than
one sample (size 2, 3, 7, 8, and 18). In figure 3B we show that in the same phylogroups (D and
F), resistance to another drug (Gentamicin) is much less clustered. In this case, there are 14
resistant samples, in 13 clusters (12 clusters of size 1, and one cluster of size 2). This suggests
that in phylogroups D and F, both Ciprofloxacin and Gentamicin resistance have evolved several
times (at least 9 and 13 times), but Ciprofloxacin resistance can spread from patient to patient
more easily than Gentamicin resistance, leading to more Ciprofloxacin-resistant infections (42)
than Gentamicin-resistant infections (14).
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A.

B.
Figure 3. A. Ciprofloxacin resistance in Phylogroups D and F occurs mostly in clusters. B.
Gentamicin resistance in Phylogroups D and F occurs mostly on single tips of the tree.
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Cluster size distributions
When drug resistance is transmitted often from one patient to another, it leads to clusters of
resistance on the phylogenetic tree. This means that cluster sizes can inform us about the
relative importance of transmission of resistance. We started by making a list containing cluster
sizes for each cluster of each of the 6 drugs (Cefuroxime, AmoxiClav, Ciprofloxacin, Gentamicin,
PipTaz and Ceftazidime). Figure 4A shows the total number of clusters for each of the drugs.
The total number of clusters is of interest because it provides an estimate of the number of
origins of resistance in our dataset (Kreiner et al. 2019). We notice here that there are many
clusters for each of the drugs, ranging from 24 for Ceftazidime to 134 clusters for AmoxiClav
resistance.

Figure 4B shows the distribution of cluster sizes for each of the 6 drugs. We find that most
clusters (309 of 368 clusters) were size one. The other 59 clusters that are larger than size one
contain more than half of resistant samples (438 out of 747 samples cluster in 59 clusters). In
Figure 4B, we can see that there are differences in the cluster size distributions, with, for
example, larger cluster sizes for Ciprofloxacin and smaller cluster sizes for PipTaz. We used a
Mann-Whitney U test for each pair of drugs to determine whether the cluster size distribution
differed between the two drugs (Figure 4C). We find that 6 out of 30 comparisons were
significant at the 0.05 level. Specifically, the distribution of cluster sizes for Ciprofloxacin
resistance was significantly different than the distribution of cluster sizes for Cefuroxime,
Gentamicin, and PipTaz. The distribution of cluster sizes for PipTaz was different from that of
Ciprofloxacin, Ceftazidime, AmoxiClav and Gentamicin.

A.
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B.

C.
Figure 4A. Total number of clusters for resistance to Cefuroxime, AmoxiClav, Ciprofloxacin,
Gentamicin, PipTaz and Ceftazidime. B. Distribution of cluster sizes for resistance to
Cefuroxime, AmoxiClav, Ciprofloxacin, Gentamicin, PipTaz and Ceftazidime. C: Heatmap of
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p-values from Mann-Whitney U tests for each pair of drugs to determine whether the cluster size
distribution differed between the two drugs.

Relationships between cluster size, phylogroup, drug and fraction
resistant samples.
When clusters are large, they affect many samples. We therefore hypothesize that the fraction
of resistant samples in a phylogroup could be explained by the average cluster size. However,
when we fit a linear model to the fraction of resistant samples, using drug and average cluster
size as explanatory variables, we see that several drugs have a significant effect, but the
average cluster size doesn’t (Figure 5). Specifically, when PipTaz is used as the reference, there
is a significant positive effect (more resistance) for Cefuroxime, AmoxiClav and Ciprofloxacin.

Next, we fitted a generalized linear model (with quasi-poisson errors) to see which factors best
explain the observed cluster sizes. We find that a model with both drug and phylogroup as
factors (but not their interaction) best explains the observed cluster sizes, with significantly
larger cluster sizes in phylogroup B2 and for Ciprofloxacin.

Figure 5: The average cluster size versus the fraction of resistant samples for each phylogroup
and each drug.

Phyloclust analysis
While comparison of resistant cluster size distributions represents a simple method for
differentiating between modes of resistance evolution across different antibiotics, this approach
only relies on topological relationships among samples and does not consider their phylogenetic
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relatedness. In light of this, we also used a complementary approach to test for phylogenetic
clustering (or lack thereof) of resistant samples, which considers distances between samples.
For each phylogroup and drug, we compared the observed average cophenetic distance (that
is, the sum of branch lengths between two samples) between resistant samples to expectations
from randomization (see Methods). We find that our results differ in some ways from the cluster
size approach. We find significant p-values for the phyloclust test only in phylogroup B2, and
don’t find significant results in cases where we had observed fairly large cluster sizes (e.g., for
Ciprofloxacin resistance in group D/F, see figure 3A and 4), see Figure 6A. These results mean
that resistant samples in phylogroup B2, for most drugs, are more closely related to each other
than expected if they were randomly distributed on the tree, but this is not the case in the other
phylogroups. This is the case because in phylogroup B2 there is only one main cluster with
most of the resistance (Figure 6B), whereas in the other phylogroups, at least for some of the
drugs, we see multiple significant, but smaller clusters of resistance (Figure 3A).
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A.

B
Fig 6A - Phyloclust test p-values for all drugs and phylogroups. B. Phylogenetic tree for
Ciproflxacin resistance in phylogroup B2, where 90 resistant samples are found in one cluster. 6
resistant samples are found in 4 other clusters.
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Discussion
In this study, we aimed to use evolutionary theory and comparative phylogenetic methods to
understand the dynamics of the evolution of resistance in clinical samples of resistant bacteria.
To do this, we analyzed an existing large genomic E. coli dataset from the United Kingdom
containing over 1500 E.coli samples, taken over the course of a decade, from hospitals across
England (Kallonen et al. 2017). We focused on this particular dataset because of its size (over
1500 genomes) and the fact that it had near complete phenotypic data for resistance to 6
different drugs (Table 1). This combination of genomes and phenotypes allowed us to study
drug resistance clustering in a phylogenetic context. We analyzed each of four subtrees
separately: phylogroups A, B1, B2 and D/F. D and F are paraphyletic and for our analysis it
made more sense to study them together as one phylogroup. For each of the four subtrees, we
simulated the history of the resistance phenotypes on the tree. We then counted, for each origin
of resistance, how many tree tips were affected, which we call the cluster size, and we analyzed
the distribution of cluster sizes.

We are interested in the number of tree tips that are affected by a single origin of resistance
because it can be seen as a measure of how often resistant strains are transmitted from one
patient to another. If a single origin of resistance leads to many resistant tree tips, it means that
between-host transmission of the resistant strain must have occurred many times. On the other
hand, if a single origin of resistance only leads to a single resistant tree tip, then between-host
transmission may not have occurred at all.

It should be noted here that with the methods we used, we cannot quantify how common or
uncommon between-host transmission of resistance is. This is because we don’t know how
many patients were involved in a transmission chain, yet not sampled. For example, if our
dataset consists of 1% of all E. coli infected patients, then a cluster of size 10 may, in reality, be
of size 1000, and a cluster of size one may, in reality, be of size 100. However, if there is no
between-host transmission of resistance, then no matter how many patients are sampled, the
cluster size would still be one – with increased sampling, we would just recover more clusters of
size one. We hope that at some point there will be mathematical models available that allow us
to infer rates of between-host transmission of resistant strains from observed cluster size
distributions. For example, it may be feasible to add a phylogenetic layer to existing SIR type
models of drug resistance evolution (Lipsitch, Bergstrom, and Levin 2000). For now, we focus
on the relative differences in cluster sizes between drugs, given that the sampling intensity is the
same.

For each of the 6 drugs, we found many independent clusters, the smallest number was 24
(Ceftazidime) and the largest 134 (AmoxiClav). This shows that resistance evolution has
occurred many times for each of the drugs, but there are big differences as well, including
substantial differences in the number of origins of resistance for drugs that have similar fractions
of resistant samples. For example, we observe 79 putative de novo resistance evolution events
for resistance to Cefuroxime but only 31 for resistance to Ciprofloxacin, despite similar numbers
of resistant samples in the dataset (239 and 267 respectively). This difference is consistent with
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a model where between-host transmission is much more common for Ciprofloxacin than for
Cefuroxime.

Our main result is that cluster sizes are generally larger for Ciprofloxacin, Ceftazidime and
AmoxiClav and generally smaller for PipTaz, Cefuroxime and Gentamicin. This suggests that
between-patient transmission is relatively more important for resistance to Ciprofloxacin,
Ceftazidima and AmoxiClav when compared to PipTaz, Cefuroxime and Gentamicin. We also
found that clusters were larger in phylogroup B2 compared to the other phylogroups. This may
be driven by ST 131, a sequence type that is known for high levels of resistance that came up in
the 2000s (Kallonen et al. 2017; Murray et al. 2022; Blanquart 2019).

Finally, we used a separate approach to test for clustering of resistance phenotypes on the tree
using the phyloclust function from the RRphylo package (Castiglione et al. 2018). Here we
tested whether the resistance phenotypes clustered on the tree more than expected by chance.
We found that this was the case only for some of the drugs and mostly in phylogroup B2. This is
the case because almost all resistance in B2 is due to a single large cluster, whereas resistance
in the other phylogroups is due to several clusters. The situation in phylogroup B2 could be
described as a single-origin incomplete hard sweep, whereas the situation in the other
phylogroups could be described as multiple-origin soft sweeps (Hermisson and Pennings 2017).
Figure 6B shows the clustering of Ciprofloxacin resistance in phylogroup B2 where almost all
resistance is found in just one clade. This clade is the well-known sequence type ST131 which
arose in the 2000s (Kallonen et al. 2017). In future studies it would be of interest to determine
why there is only one main resistance cluster in the large B2 phylogroup, compared to the other
phylogroups.

Antibiotic-resistant infections can be caused by within-host evolution and between-host spread
of resistant strains. There is currently no standard method to quantify the role of these two
processes. However, with our comparative phylogenetic analyses we were able to show that the
roles are not equally important for all drugs. Between-host spread is more important (relatively
speaking) for Ciprofloxacin, Ceftazidime and AmoxiClav. Within-host evolution is more important
for PipTaz, Cefuroxime and Gentamicin. PipTaz is the most extreme case, as there are 53
origins of resistance in our dataset, and 51 of these origins only affect a single sample (a cluster
size of 1), whereas only two origins affect two samples (only 4% of clusters are larger than size
1). This suggests that strains resistant to PipTaz are unlikely to be transmitted to other patients,
possibly because of fitness costs of the genes or mutations that cause resistance (Pennings,
Ogbunugafor, and Hershberg 2020; Melnyk, Wong, and Kassen 2015; Andersson and Hughes
2011; Helekal et al. 2022). On the other extreme, Ciprofloxacin resistance is often found in
sizable clusters. Out of 31 origins of Ciprofloxacin resistance, 21 affect just one sample, while
10 affect more than 1 sample (32% of clusters are larger than size 1). The result is that just 31
origins of resistance to Ciprofloxacin affect 267 resistant samples. Thus, while PipTaz resistance
has evolved more often in this dataset, Ciprofloxacin resistance affects many more samples
because of between-host transmission.
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One possible way to think about our results is to consider the public health risk of using a
particular drug for a patient. Our results suggest that E. coli strains with resistance to
Ciprofloxacin, Ceftazidime or AmoxiClav can spread to other patients, whereas E. coli strains
with resistance to PipTaz, Cefuroxime or Gentamicin do not often spread to other patients. This
could mean that it is more important to prevent evolution of resistance to Ciprofloxacin,
Ceftazidime or AmoxiClav, as it could potentially affect many other patients in addition to the
one being treated. Ideally, for each combination of drug and pathogen, we could not only know
the risks and benefits of using the drug as treatment, but also the potential risk of starting a
transmission chain spreading drug resistance to other patients.

A major limitation of our approach is that we have studied just one dataset from one country,
focusing on patients with one diagnosis (bacteremia). While this dataset is large (more than
1500 patient samples), it is also a convenience sample from different locations and different
years. Future studies will show whether these results hold when we study other E. coli datasets
and other pathogens.

Our overall goal is to quantify the roles of within-host evolution and between-host spread for
drug-resistant infections. We found clear differences in phylogenetic clustering for resistance to
different drugs in a large E. coli dataset. We hope that this work will inspire studies on other
datasets and mathematical modeling approaches that will make it possible to determine the
rates of within-host evolution and between-host spread for any combination of drug and
pathogen. This will ultimately help us determine whether, for a given drug and pathogen,
prevention strategies should focus on within-host evolution or on between-host spread.
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