

Primary infection with Zika virus provides one-way heterologous protection against Spondweni virus infection in rhesus macaques

Anna S. Jaeger¹, Chelsea M. Crooks², Andrea M. Weiler³, Mason I. Bliss², Sierra Rybarczyk³, Alex Richardson³, Morgan Einwalter³, Eric Peterson³, Saverio Capuano III³, Alison Barkhymer⁴, Jordan T. Becker⁵, Joseph T. Greene⁶, Tanya S. Freedman^{6,7,8}, Ryan A. Langlois⁴, Thomas C. Friedrich^{2,3}, Matthew T. Aliota^{1#}

Affiliations

¹Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities.

²Department of Pathobiological Sciences, University of Wisconsin-Madison.

³Wisconsin National Primate Research Center, University of Wisconsin-Madison.

⁴Department of Microbiology and Immunology, University of Minnesota, Twin Cities.

⁵Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities.

⁶Department of Pharmacology, University of Minnesota, Twin Cities.

⁷Center for Immunology, University of Minnesota, Twin Cities.

⁸Masonic Cancer Center, University of Minnesota, Twin Cities.

#Correspondence: mtaliota@umn.edu

1 **Abstract**

2 Spondweni virus (SPONV) is the closest known relative of Zika virus (ZIKV). SPONV
3 pathogenesis resembles that of ZIKV in pregnant mice, and both viruses are transmitted by
4 *Aedes aegypti* mosquitoes. We aimed to develop a translational model to further understand
5 SPONV transmission and pathogenesis. We found that cynomolgus macaques (*Macaca*
6 *fascicularis*) inoculated with ZIKV or SPONV were susceptible to ZIKV, but resistant to SPONV
7 infection. In contrast, rhesus macaques (*Macaca mulatta*) supported productive infection with
8 both ZIKV and SPONV and developed robust neutralizing antibody responses. Crossover serial
9 challenge in rhesus macaques revealed that SPONV immunity did not protect against ZIKV
10 infection, whereas ZIKV immunity was fully protective against SPONV infection. These findings
11 establish a viable model for future investigation into SPONV pathogenesis, and suggest the risk
12 of SPONV emergence is low in areas with high ZIKV seroprevalence due to one-way cross-
13 protection between ZIKV and SPONV.

14 **Teaser**

15 Identification of asymmetric immune interactions between Zika and Spondweni viruses in
16 macaque monkeys.

17 **MAIN TEXT**

18 **Introduction**

19 Arthropod-borne viruses (arboviruses) are increasingly contributing to the burden of human
20 disease, and the mosquito-borne flaviviruses have caused significant epidemics during the past
21 seven decades. Examples include the unprecedented rise in dengue virus (DENV) infections
22 since World War II, the introduction of West Nile virus into the continental United States in 1999,
23 the Zika virus (ZIKV) outbreak in the South Pacific in 2013-2014 and the explosive outbreak in

24 the Americas in 2015-2016, ongoing yellow fever virus (YFV) outbreaks in Africa and Brazil, and
25 the Japanese encephalitis virus outbreak in Australia in 2022. Although we cannot predict what
26 might be coming next or when, RNA arboviruses can emerge unexpectedly to cause human
27 disease on a global scale. The genus *Flavivirus* currently consists of ~80 single-strand positive-
28 sense RNA viruses (1), and several of the less well-characterized flaviviruses have been
29 detected in humans, animals, and mosquitoes across the globe (2, 3). Therefore, characterizing
30 these lesser-known viruses is critical to determine whether they have features that portend
31 medically significant future outbreaks.

32 One such virus is Spondweni virus (SPONV), which is the flavivirus most closely related to
33 ZIKV. SPONV was thought to have been first isolated from a pool of mosquitoes in South Africa
34 in 1955; however, it was later recognized that SPONV was isolated three years earlier from a
35 febrile patient in Nigeria, but because of serological cross-reactivity it was originally thought to
36 be ZIKV (4–8). The limited, well-documented human cases describe a clinical presentation
37 similar to ZIKV—most cases result in mild febrile illness, although a subset of these cases
38 document more severe illness including neurological involvement (5, 8–10). SPONV is thought
39 to be geographically restricted to Africa. In the era shortly following SPONV's initial
40 identification, mosquito surveillance, as well as human and animal serosurveys, found evidence
41 of SPONV circulation in 10 sub-Saharan African countries (5, 11–14), though serological cross-
42 reactivity with ZIKV and other flaviviruses likely still confounds accurate diagnostics today.
43 However, in 2016, SPONV RNA was identified in a pool of *Culex quinquefasciatus* mosquitoes
44 in Haiti during routine mosquito surveillance activities (15), raising concerns that SPONV was
45 present in the Western Hemisphere and therefore a neglected public health concern. Because
46 human infections with SPONV have historically been sporadic and there have been no known
47 epidemics, neither the disease caused by SPONV nor the mosquito vectors that transmit
48 SPONV have been well-characterized. We recently demonstrated that SPONV can cause

49 significant fetal harm, including demise, comparable to ZIKV in pregnant *Ifnar1^{-/-}* mice. In
50 addition, in pregnant mice treated with an anti-*Ifnar1* mAb to transiently abrogate type I
51 interferon signaling prior to SPONV inoculation, we observed infection of the placenta and fetus
52 (16), confirming results reported previously (17). We also demonstrated that *Aedes aegypti*
53 could efficiently transmit SPONV, whereas *Culex quinquefasciatus* could not (16). While these
54 experiments suggested that SPONV may possess features that make it a public health risk, they
55 were performed in immune-compromised mice and therefore may not fully mimic key attributes
56 of human infection, particularly during pregnancy (18). A study in the 1950s unwittingly
57 established that rhesus macaques support replication of SPONV (19). The inoculum used in
58 those studies was initially thought to be ZIKV but was subsequently shown to be SPONV (6–8).
59 The animals apparently developed neutralizing antibodies but no data are provided that
60 describe the virological parameters of the infection.

61 To assess differences in SPONV replication between macaque species, we infected rhesus
62 (n=4) or cynomolgus (n=5) macaques by subcutaneous inoculation with the South African
63 SPONV isolate SA Ar94. All 4 rhesus macaques were productively infected, with viral load
64 dynamics similar to ZIKV-inoculated controls (n=3). In contrast, all 5 cynomolgus macaques
65 were resistant to SPONV infection. To investigate the breadth of protective immunity induced by
66 a SPONV or ZIKV infection, we also performed a crossover serial challenge experiment in
67 which SPONV-immune animals were rechallenged with the African-lineage ZIKV strain DAK AR
68 41524 and ZIKV-immune animals were rechallenged with SPONV. Immune responses to
69 SPONV did not provide protection against ZIKV infection. In contrast, immune responses to
70 ZIKV provided protection against SPONV in all animals when rechallenged with a dose of
71 SPONV that productively infected 4/4 naive animals.

72 **Results**

73 ***Cynomolgus macaques are resistant to SPONV infection***

74 Because SPONV is an understudied flavivirus and numerous studies have shown that
75 cynomolgus, rhesus, and pigtail macaques (*Macaca mulatta*, *M. fascicularis*, and *M.*
76 *nemestrina*, respectively) are useful platforms to study flavivirus pathogenesis, candidate
77 therapies, and vaccines (reviewed in (20)), we sought to characterize SPONV replication
78 dynamics and assess antigenic interactions between SPONV and ZIKV in macaque monkeys.

79 First, n=5 cynomolgus macaques were subcutaneously inoculated with 10^4 PFU of SPONV
80 strain SA Ar94 (referred to hereafter as SPONV) and n=4 were subcutaneously inoculated with
81 10^4 PFU of the African-lineage ZIKV strain DAK AR 41524 (ZIKV-DAK) (Table S1). This dose
82 and route of inoculation was chosen to facilitate comparisons to historical data from our studies
83 of ZIKV in macaques (21–23). Blood was collected daily for 10 days post inoculation (dpi).

84 Plasma viral loads were measured by ZIKV- and SPONV-specific quantitative reverse
85 transcription-PCR (RT-qPCR). All four ZIKV-inoculated animals were productively infected with
86 ZIKV, with viral RNA detectable in the plasma by 2 to 4 dpi, viral loads peaking at 10^5 to 10^6 viral
87 RNA (vRNA) copies/mL, and duration lasting 4 to 7 days (Fig. 1A). Surprisingly, only 3/5
88 SPONV-challenged animals had detectable plasma viral loads. In two of these animals, vRNA
89 was detectable in the plasma for 5-6 days with peak viral load only reaching 10^3 to 10^4 vRNA
90 copies/mL (Fig. 1A). The third animal had detectable viral loads at only two time points, with a
91 peak vRNA load of 343 copies/mL.

92 Given the limited viral replication in the SPONV-inoculated animals, we next measured serum
93 neutralizing antibody (nAb) responses using plaque reduction neutralization tests (PRNT90).
94 These animals were housed outdoors prior to their arrival at WNPRC, so we cannot define their
95 pathogen exposure history with certainty. However, PRNT90 results confirmed that the SPONV-

96 inoculated animals did not have any pre-existing SPONV antibody response at the time of virus
97 challenge. Similarly, the ZIKV-inoculated animals also were confirmed to be ZIKV naive at the
98 time of challenge (Fig. 1B). We additionally measured nAb titers at 28 dpi, to determine if the
99 SPONV-inoculated animals with detectable viral loads seroconverted. At 28 dpi, all ZIKV-
100 inoculated animals developed robust nAb titers (Fig. 1B), whereas none of the SPONV-
101 challenged animals developed nAb responses to SPONV above the standard 1:20 serum
102 dilution cut-off value that has been traditionally considered diagnostic in the field (24) at this time
103 point (Fig. 1B). The SPONV-challenged macaque with the highest viral load and longest
104 duration of detectable viral loads had the highest nAb titer 28 dpi: ~1:7 (estimated by nonlinear
105 regression). As a result, we cannot robustly conclude that the neutralization response was
106 SPONV-specific and therefore it is unlikely that the transient plasma viral load was the result of
107 productive infection.

108 While these results suggested varying SPONV susceptibility in cynomolgus macaques, we
109 wanted to exclude the possibility that infection was dose-dependent. Because SPONV-specific
110 nAbs were very low or absent, we s.c. inoculated all nine macaques with 6.5×10^5 PFU SPONV
111 56 days after the initial virus challenge. This was the highest dose we could administer given the
112 titer of the stock virus. After re-challenge, no animals had detectable SPONV plasma vRNA
113 (Fig. 1A). Although we cannot determine from this experiment whether there was a protective
114 effect from pre-existing immunity in the four animals previously exposed to ZIKV, the consistent
115 results across the dose-range used suggests that cynomolgus macaques are resistant to
116 infection with SPONV.

117 ***SPONV and ZIKV replication in primary cells from cynomolgus and rhesus macaques***

118 We next asked whether primary cells from cynomolgus and rhesus macaques were differentially
119 susceptible to SPONV. Skin fibroblasts have been shown to be permissive to ZIKV infection,

120 and are one of the initial sites of infection for many arboviruses following mosquito-bite
121 inoculation (25, 26). We therefore started our characterization of SPONV replication in primary
122 skin fibroblasts derived from adult cynomolgus and rhesus macaques. Fibroblasts were
123 inoculated with an MOI of 0.01 PFU/cell of SPONV or ZIKV-DAK, and infectious virus was
124 quantified via plaque assay from supernatant collected at the time of infection and every 24
125 hours post-infection (hpi) for the following 5 days (up to 120 hpi). In cynomolgus macaque
126 fibroblasts, the results show a gradual increase in SPONV and ZIKV-DAK titer over time,
127 indicating active replication of both viruses (Fig. 2A). SPONV replication was significantly lower
128 at all timepoints 24-120 hpi compared to ZIKV-DAK in cynomolgus macaque fibroblasts (24-120
129 hpi: $p < 0.05$, 0 hpi: n.s., unpaired parametric t-test). In rhesus macaque fibroblasts, SPONV
130 and ZIKV-DAK titers also increased over time, indicating that rhesus macaque fibroblasts also
131 support SPONV and ZIKV-DAK replication (Fig. 2B). SPONV replication was also significantly
132 lower than ZIKV-DAK in rhesus macaque fibroblasts at all timepoints 24-120 hpi (24-120 hpi: p
133 < 0.01 , 0 hpi: n.s., unpaired parametric t-test).

134 Since both rhesus and cynomolgus macaque fibroblasts supported replication of SPONV and
135 ZIKV, we hypothesized that an innate immune cell could limit SPONV infection in cynomolgus
136 macaques. Macrophages are a key innate immune cell recruited early in response to infection in
137 the skin, are important for ZIKV replication in the skin and blood, and are known to be important
138 for infection of other tissue compartments including the placenta and testes (27–29). To test
139 whether cynomolgus macaque macrophages were resistant to SPONV infection, we
140 differentiated macrophages from peripheral blood mononuclear cells (PBMCs) from adult
141 flavivirus-naive cynomolgus and rhesus macaques and measured SPONV and ZIKV replication.
142 We inoculated macrophages from each species at an MOI of 0.01 PFU/cell of SPONV and
143 ZIKV-DAK. Infectious virus was quantified via plaque assay from supernatant collected daily for
144 6 days. In cynomolgus macaque macrophages, ZIKV-DAK titers increased consistently over

145 time, indicating robust viral replication (Fig. 2C). In contrast, there was no detectable SPONV
146 replication in cynomolgus macaque macrophages at any time point in any of the three
147 replicates, with the exception of 300 PFU/ml in a single replicate at 120 hpi and 150 PFU/ml in a
148 separate replicate at 144 hpi (Fig. 2C). In rhesus macaque macrophages, SPONV and ZIKV-
149 DAK produced similar growth curves that did not significantly differ at any time point (0-144 hpi:
150 $p > 0.05$, multiple unpaired t-tests) (Fig. 2D). Together these data indicate that cynomolgus
151 macaques, but not rhesus macaques, display a resistance mechanism that negatively impacts
152 the infectivity and replicative capacity of SPONV in vitro and in vivo.

153 ***TRIM5a is not the host restriction factor responsible for resistance to SPONV infection in***
154 ***cynomolgus macaques.***

155 To begin to understand potential host restriction factors that could be responsible for the
156 replicative barrier for SPONV in cynomolgus macaques, we assessed viral infectivity and
157 replication of ZIKV-DAK and SPONV in vitro using HEK293 cells engineered to stably express
158 cynomolgus macaque (cy) tripartite motif protein 5 (TRIM5a), rhesus macaque (rh) TRIM5a, or
159 an empty vector control. TRIM5a is a well-known HIV host restriction factor that functions in a
160 species-specific manner because of the co-evolution of primates and their ancient lentiviruses
161 (30–32). However, recent work has shown that both human and rhesus macaque TRIM5a
162 restrict tick-borne flavivirus replication—with the exception of Powassan virus (POVV)—via
163 proteasomal degradation of the flavivirus protease, NS2B/3 (33, 34). A previous study found
164 that a panel of mosquito-borne flaviviruses were not restricted by rhesus or human TRIM5a, but
165 did not investigate the combination of SPONV and cynomolgus macaque TRIM5a (33). In our
166 experiments, cyTRIM5a, rhTRIM5a, and cells with an empty vector control supported similar
167 growth for both SPONV and ZIKV-DAK (Fig. 2E and F). These results suggest that TRIM5a is
168 not contributing to the cynomolgus macaque-specific resistance to SPONV.

169 ***Rhesus macaques are susceptible to SPONV infection***

170 The previous experiments establish the ability of SPONV to replicate in multiple cell types
171 isolated from adult rhesus macaques, but replication kinetics in cultured cells cannot capture the
172 complexities of host-pathogen interactions and the generation, distribution, and functional
173 kinetics of innate immune responses to infection within complex tissue environments. To
174 determine whether SPONV infects rhesus macaques, we s.c. inoculated four Indian-origin
175 rhesus macaques (n=2 female, n=2 male) with 10^4 PFU SPONV and three Indian-origin rhesus
176 macaques (n=1 female, n=2 male) with 10^4 PFU ZIKV-DAK. This is the same dose and
177 inoculation route used in the cynomolgus macaque experiment described above, as well as in
178 prior ZIKV studies in rhesus macaques conducted by our group (21, 22, 35, 36). Following
179 inoculation, all four SPONV-inoculated animals became productively infected, with detectable
180 plasma viral loads starting between 1 and 4 dpi (Fig 3A). SPONV was detectable in plasma for 3
181 to 6 days, peaking between 2 and 6 dpi at viral loads ranging from 10^4 to 10^5 vRNA copies/mL.
182 All ZIKV-inoculated animals were productively infected with ZIKV-DAK (Fig 3A). Peak viral loads
183 in the ZIKV-DAK-challenged cohort ranged from 10^5 to 10^6 vRNA copies/mL, which was
184 significantly higher than SPONV ($p = 0.007$, one-way ANOVA with Tukey's multiple
185 comparisons) (Fig 3B). However, there were no statistically significant differences in area under
186 the curve, duration of viremia, or time to peak viremia between SPONV and ZIKV-DAK (Fig 3B).
187 Additionally, when comparing SPONV replication dynamics to non-pregnant contemporary
188 controls infected with additional ZIKV strains using the same route and dose from (35) and (37),
189 SPONV replication kinetics did not differ significantly in any parameter tested compared to ZIKV
190 strain PRVABC59, but had significantly lower area under the curve and peak viremia compared
191 to ZIKV strain H/PF/2013 (35, 37) (Fig. 3B). Serum neutralizing antibody responses were
192 measured by PRNT90 at 0 and 28 dpi (Fig. 3C), and all animals exhibited robust homotypic nAb
193 responses against the virus used to inoculate each animal. Neutralizing antibody titers

194 generated by the SPONV-inoculated animals against SPONV were not significantly different
195 from those generated by the ZIKV-inoculated animals against ZIKV (SPONV 28 dpi: 2.043
196 log10; ZIKV 28 dpi: 2.491 log10; $p = 0.148$, unpaired t-test).

197 ***Heterologous re-challenge of rhesus macaques results in one-way cross protection***
198 ***between ZIKV and SPONV***

199 Flaviviruses have complex antigenic relationships, in which pre-existing immunity can enhance,
200 attenuate, or have no effect on subsequent infections (38). ZIKV and SPONV form a
201 serocomplex and share ~69% nucleotide identity and ~75% amino acid identity, so it is
202 conceivable that they may interact antigenically. For reference, the four DENV serotypes—for
203 which it is well-established that pre-existing immunity to one serotype can lead to antibody-
204 dependent enhancement of a secondary infection by a heterologous serotype (39, 40)—share
205 65-70% amino acid identity. It is unknown whether primary infection with SPONV or ZIKV can
206 affect the outcome of subsequent exposure to the heterologous virus. We therefore re-
207 challenged SPONV-immune animals with 1×10^4 PFU of ZIKV-DAK 13 weeks after primary
208 SPONV infection. ZIKV-immune animals were re-challenged with 1×10^4 PFU of SPONV 12
209 weeks after primary ZIKV-DAK infection.

210 Upon heterologous re-challenge with ZIKV-DAK, 4/4 SPONV-immune animals became
211 productively infected with ZIKV-DAK (Fig. 4A), but ZIKV-DAK replication dynamics were altered
212 in SPONV-immune animals as compared to in flavivirus-naive animals. When compared to
213 primary infection parameters ZIKV replicated to significantly lower peak plasma viral loads in
214 SPONV-immune animals ($p = 0.0039$, unpaired t-test). ZIKV-DAK area under the curve was
215 also significantly lower in SPONV-immune animals compared to flavivirus-naive animals ($p =$
216 0.0136, unpaired t-test), but ZIKV-DAK time to peak viral load and viral load duration were not
217 significantly different between SPONV-immune and flavivirus-naive animals (Fig. 4B). Serum

218 neutralizing antibody responses were measured by PRNT50 against SPONV and ZIKV at 0 and
219 28 days post primary challenge and 0 and 28 days post heterologous rechallenge (91 and 112
220 days post primary SPONV challenge). For these analyses, PRNT50 titers were more
221 appropriate to compare fine-scale differences in nAb responses in immune animals, due to the
222 higher accuracy of this value within the linear portion of the neutralization curve as compared to
223 PRNT90 values which are preferred for diagnostic identification of flavivirus exposures (41). At
224 the time of re-challenge, SPONV-immune animals still had robust neutralizing antibody
225 responses to SPONV as measured by PRNT50 that were not significantly lower than those
226 detected 28 days post primary SPONV infection (2.718 log10 serum dilution vs. 2.178 log10
227 serum dilution, $p = 0.312$, two-way ANOVA with Tukey's multiple comparison test). However,
228 these sera did not cross-neutralize ZIKV-DAK (Fig. 4C). At 28 days post secondary ZIKV-
229 challenge, SPONV neutralizing antibody titers were boosted to a significantly higher titer than
230 those detected at 28 days after primary SPONV-challenge (28dp-SPONV: 2.718 log10 serum
231 dilution vs. 28dp-ZIKV: 3.825 log10 serum dilution, $p = 0.0009$, two-way ANOVA with Tukey's
232 multiple comparisons test). 4/4 animals developed robust ZIKV-specific nAb responses 28 days
233 post secondary ZIKV-challenge (Fig. 4C).

234 Upon heterologous re-challenge with SPONV in ZIKV-immune animals, vRNA was undetectable
235 in plasma at all timepoints through 10 days post re-challenge (Fig. 4D). At the time of
236 secondary SPONV re-challenge, serum nAb titers remained elevated against both SPONV and
237 ZIKV (Fig. 4E). We did not observe an increase in SPONV or ZIKV nAb titers after re-challenge,
238 suggesting that pre-existing ZIKV immunity confers robust protection against SPONV infection
239 (Fig. 4E).

240 **Discussion**

241 Here we demonstrate that rhesus macaques are susceptible to SPONV infection whereas

242 cynomolgus macaques are resistant. This work thus establishes a nonhuman primate model for
243 SPONV infection. Using this model, we observed one-way cross protection against SPONV in
244 ZIKV-immune animals. This finding is consistent with observations from another study that
245 identified several human cross-reactive mAbs derived from ZIKV- and DENV-infected patients
246 that potently neutralized SPONV in vitro. Passive transfer of some of these mAbs protected
247 mice from lethal SPONV challenge (17).

248 SPONV's ability to spread and broadly infect new human populations depends in part on
249 susceptible hosts. In ZIKV- and SPONV-endemic regions, people may be infected early in life,
250 developing immunity that protects against subsequent reinfection with the same virus, or limits
251 the pathogenicity of later infection with the heterologous virus. Humans in the Americas had no
252 such protective immunity when ZIKV was introduced, and this may largely explain the scale and
253 scope of the American outbreak. However, if ZIKV immunity provides similarly robust protection
254 against SPONV in humans as we observed in macaques, we speculate that high ZIKV
255 seroprevalence in the Americas [2,8] at the time of SPONV introduction in Haiti in 2016
256 contributed to limiting SPONV establishment and spread. Importantly, we only assessed cross-
257 protection at a single time point, 12-13 weeks after primary infection, therefore the durability of
258 cross-reactive immunity to SPONV remains uncertain. It is possible that waning of cross-
259 reactive nAb responses occurs more rapidly than homotypic ZIKV immunity so it is unclear how
260 long pre-existing ZIKV immunity will provide robust protection against SPONV (42, 43).

261 Future studies will focus on elucidating the immunological mechanisms that underpin this
262 paradoxical non-reciprocal interaction, because SPONV and ZIKV are not unique in this
263 phenomenon. It is well-established that flaviviruses cross-react. Indeed, cross-reactive
264 antibodies can complicate flavivirus diagnostics, and this feature was initially used to segregate
265 them into distinct serocomplexes (44, 45). For example, the sequence of infecting serotypes

266 during serial DENV infection determines whether pre-existing immunity is associated with
267 enhancement or protection (46, 47). Likewise, studies of the interaction between ZIKV and
268 DENV suggest that there are asymmetric immune relationships between these viruses as well—
269 DENV infection followed by ZIKV infection has been shown to be cross-protective whereas ZIKV
270 infection followed by DENV-2 infection has been shown to be enhancing in certain scenarios
271 (48). Asymmetric immune interactions have also been observed within the tick-borne
272 encephalitis (TBE) serocomplex. Immune sera from tick-borne encephalitis virus (TBEV)
273 vaccinees and sera from infected patients were found to cross-neutralize related viruses within
274 the TBE serocomplex, but did not neutralize POWV, the only North American representative of
275 the TBE serocomplex (49). This was posited to be in part due to the lower level of genetic
276 similarity between TBEV and POWV within the envelope (E) glycoprotein E1 and E2 domains,
277 despite an overall 77% amino acid similarity between TBEV and POWV E protein. For
278 reference, SPONV and ZIKV-DAK share 72% amino acid identity between E proteins with no
279 obvious domain specific differences. A subsequent study testing a POWV mRNA vaccine
280 encoding the prM and E genes found that immune sera from vaccinated mice cross-neutralized
281 a panel of TBE serocomplex viruses—including TBEV—and even protected mice *in vivo* against
282 the more distantly related Langat virus (50). These studies therefore suggest one-way cross-
283 protection between POWV and related TBE serocomplex viruses, however, they do not directly
284 compare cross-protection between these viruses *in vivo*. Further, it is unclear whether infection-
285 induced versus vaccine-induced immunity generates equivalent amounts of type-specific and
286 cross-reactive antibodies. Many other examples exist of cross-protective immune responses
287 amongst the flaviviruses (51–53), however, it is not possible to determine if these responses are
288 asymmetric because the reciprocal sequence of challenges was not performed. Asymmetric
289 immune interactions have also been observed between closely related alphaviruses (54–56),
290 and this has been used to formulate hypotheses regarding the lack of alphavirus emergence
291 events, similar to what we postulate may have occurred with SPONV in Haiti.

292 Although rhesus, cynomolgus, and pigtail macaques are all members of the genus *Macaca*,
293 they have important genotypic and phenotypic differences that can impact the development of
294 animal models (57, 58). Because multiple reports (including our own work) previously
295 demonstrated that rhesus, cynomolgus, and pigtail macaques are all susceptible to ZIKV and
296 other flavivirus infections (20, 59), we expected that both rhesus and cynomolgus macaques
297 would be susceptible to SPONV infection. However, we observed complete resistance to
298 SPONV infection in cynomolgus macaques. This is similar to what has been described recently
299 for Kyasanur Forest disease virus (KFDV), a tick-borne flavivirus, in rhesus versus pigtail
300 macaques—KFDV is restricted in rhesus macaques but causes moderate to severe disease
301 that recapitulates multiple features of human disease, including hemorrhage in pigtail macaques
302 (58). The mechanism(s) underlying resistance to SPONV in cynomolgus macaques is likely
303 multifaceted. However, it was recently shown that the restriction factor TRIM5 α robustly
304 inhibited tick-borne flaviviruses but not mosquito-borne flaviviruses (33). We examined the
305 ability of cyTRIM5 α to restrict SPONV infection because TRIM5 α restriction was not universal
306 for the tick-borne flaviviruses (POWV was not restricted by TRIM5 α), and restriction for KFDV
307 was primate species-dependent (58). Our data suggest that both cyTRIM5 α and rhTRIM5 α are
308 nonrestrictive for SPONV. Future studies will be needed to elucidate the restriction
309 mechanism(s) controlling this phenotype. However, macaque genetic diversity could confound
310 such studies (60, 61). Importantly, our cohort of animals included cynomolgus macaques of both
311 Southeast Asian and Mauritian origin and monkeys from both genetic backgrounds were
312 resistant to SPONV infection. Mauritian-origin cynomolgus macaques have extremely low MHC
313 diversity between animals compared to captive-bred Indian-origin rhesus macaques and
314 cynomolgus macaques from mainland Southeast Asia (62). The relatively simple
315 immunogenetics of these animals could be harnessed to identify genes involved in SPONV
316 resistance versus susceptibility. Identifying these factors could provide insight into the
317 evolutionary histories of SPONV and ZIKV and could be vital for understanding the sylvatic

318 reservoirs for SPONV. The natural maintenance cycle of SPONV remains unclear (6, 10), but it
319 likely circulates enzootically among unknown vertebrate hosts (presumably nonhuman primates)
320 and is transmitted by arboreal *Aedes* mosquitoes in Africa (63).

321 Although we cannot predict the next major viral epidemic, there is a critical need to improve
322 understanding of understudied viruses, like SPONV, which may also pose a threat. Our study
323 establishes immunocompetent rhesus macaques as a relevant translational model for infection
324 with SPONV. This will enable investigations of immunity, pathogenesis, and medical
325 countermeasures. Critically, it will also enable investigations to define the pathophysiology of
326 SPONV in pregnancy in a model that provides a closer representation of the morphological,
327 developmental, and immune environment at the maternal-fetal interface. The nonreciprocal
328 cross-protection from detectable SPONV infection in ZIKV-immune animals also highlights the
329 increasingly complex heterogeneous immune landscapes that exist in individuals with multiple
330 flavivirus exposures. This has major implications for the flavivirus vaccines that are licensed and
331 commercially available or moving through the clinical pipeline, because most individuals have
332 had multiple exposures to many flaviviruses during their lifetimes. Future studies aimed at
333 characterizing antibody repertoires in this system will be valuable to identify the correlates of
334 nonreciprocity between closely-related flaviviruses.

335 **Materials and Methods**

336 ***Ethics statement***

337 This study was approved by the University of Wisconsin-Madison Institutional Animal Care and
338 Use Committee (Animal Care and Use Protocol Number G006256).

339 ***Experimental design***

340 This study was designed to establish the infectivity and replication dynamics of SPONV in a

341 macaque model. A secondary objective was to perform a crossover serial challenge study to
342 better understand the potential for cross-protective immunity between SPONV and ZIKV. Nine
343 cynomolgus macaques (*Macaca fascicularis*) were subcutaneously inoculated with 1×10^4 PFU
344 of SPONV (n = 5) or ZIKV-DAK (n = 4). Cynomolgus macaques (n = 9) were re-challenged with
345 6.5×10^5 PFU of SPONV 56 days post initial infection. Seven rhesus macaques (*Macaca*
346 *mulatta*) were subcutaneously inoculated with 1×10^4 PFU of SPONV (n = 4) or ZIKV-DAK (n =
347 3). 12-13 weeks post-initial infection, rhesus macaques were re-challenged with 1×10^4 PFU of
348 the heterologous virus. Demographic data from the animals from each cohort are provided in
349 (Table S1).

350 ***Care and use of macaques***

351 All macaque monkeys used in this study were cared for by the staff at the Wisconsin National
352 Primate Research Center (WNPRC) in accordance with the regulations and guidelines outlined
353 in the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals (National
354 Research Council. 2011.), and the recommendations of the Weatherall report
355 (<https://royalsociety.org/topics-policy/publications/2006/weatherall-report/>). All macaques used
356 in the study were free of Macacine herpesvirus 1, simian retrovirus type D (SRV), simian T-
357 lymphotropic virus type 1 (STLV), and simian immunodeficiency virus. For all procedures
358 (including physical examinations, virus inoculations, and blood collection), animals were
359 anesthetized with an intramuscular dose of ketamine (10 mg/kg). Blood samples were obtained
360 using a Vacutainer system or needle and syringe from the femoral or saphenous vein.
361 Demographic data for animals in each cohort are provided in the table (Table 1) below.

362 ***Cells and viruses***

363 African Green Monkey kidney cells (Vero; ATCC #CCL-81) were maintained in Dulbecco's
364 modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Hyclone,

365 Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml penicillin, 100 µg/ml of
366 streptomycin, and incubated at 37 °C in 5% CO₂. *Aedes albopictus* mosquito cells (C6/36;
367 ATCC #CRL-1660) were maintained in DMEM supplemented with 10% fetal bovine serum
368 (FBS; Hyclone, Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/ml penicillin,
369 100 µg/ml of streptomycin, and incubated at 28 °C in 5% CO₂. Human embryonic kidney cells
370 (HEK-293; ATCC #CRL-1573) were maintained in DMEM supplemented with DMEM
371 supplemented with 10% FBS, 2mM L-glutamine, 1.5% g/L sodium bicarbonate, 100U/ml
372 penicillin, 100 µg/ml of streptomycin, and incubated at 37 °C in 5% CO₂. The cell lines were
373 obtained from the American Type Culture Collection, were not further authenticated, and were
374 tested and confirmed negative for mycoplasma.

375 *Primary cell lines*

376 Fibroblasts were differentiated from skin punch biopsies from adult rhesus and cynomolgus
377 macaques. Fibroblasts were confirmed Herpes B and mycoplasma negative. Fibroblasts were
378 maintained in Dulbecco's modified Eagle medium (DMEM) supplemented with 20% fetal
379 bovine serum (FBS; Hyclone, Logan, UT), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100
380 U/ml penicillin, 100 µg/ml of streptomycin, 1% MEM 100X non-essential amino acids, and
381 incubated at 37 °C in 5% CO₂.

382 Macrophages were derived from peripheral blood mononuclear cells (PBMCs) from flavivirus-
383 naive adult rhesus and cynomolgus macaques. Macrophages were differentiated as previously
384 described (64). At 4-5 days post treatment of adherent cells with supplemented media
385 containing M-CSF (Peprotech) and IL-1 β (Peprotech), cells were detached with a cell scraper
386 and replated in twelve-well plates to conduct virus growth curves. A subset of cynomolgus

387 macaque cells were processed for flow cytometry analysis to confirm macrophage differentiation
388 (fig. S1).

389 ZIKV strain DAK AR 41524 (ZIKV-DAK; GenBank:[KY348860](#)) was originally isolated from
390 *Aedes africanus* mosquitoes in Senegal in 1984, with a round of amplification on *Aedes*
391 *pseudocutellaris* cells, followed by amplification on C6/36 cells, followed by two rounds of
392 amplification on Vero cells, was obtained from BEI Resources (Manassas, VA). SPONV strain
393 SA Ar94 (GenBank:[KX227370](#)) was originally isolated from a *Mansonia uniformis* mosquito in
394 Lake Simbu, Natal, South Africa in 1955, with five rounds of amplification with unknown culture
395 conditions followed by a single round of amplification on Vero cells. Virus stocks were prepared
396 by inoculation onto a confluent monolayer of C6/36 mosquito cells. We deep sequenced our
397 virus stocks to verify the expected origin. The SPONV and ZIKV-DAK stocks matched the
398 GenBank sequences ([KY348860](#), [KX227370](#), respectively) of the parental viruses; but a variant
399 at site 3710 in the ZIKV-DAK stock encodes a nonsynonymous change (A to V) in NS2A.

400 **Plaque assay**

401 All ZIKV and SPONV screens from growth curves and titrations for virus quantification from
402 virus stocks were completed by plaque assay on Vero cell cultures. Duplicate wells were
403 infected with 0.1 ml aliquots from serial 10-fold dilutions in growth media and virus was
404 adsorbed for 1 h. Following incubation, the inoculum was removed, and monolayers were
405 overlaid with 3 ml containing a 1:1 mixture of 1.2% oxoid agar and 2X DMEM (Gibco, Carlsbad,
406 CA) with 10% (vol/vol) FBS and 2% (vol/vol) penicillin/streptomycin. Cells were incubated at
407 37°C in 5% CO2 for four days for plaque development for ZIKV and five days for SPONV. Cell
408 monolayers then were stained with 3 ml of overlay containing a 1:1 mixture of 1.2% oxoid agar
409 and 2X DMEM with 2% (vol/vol) FBS, 2% (vol/vol) penicillin/streptomycin, and 0.33% neutral red
410 (Gibco). Cells were incubated overnight at 37 °C and plaques were counted.

411 ***Inoculations***

412 Inocula were prepared from the viral stocks described above. The stocks were thawed, diluted
413 in PBS to 1×10^4 PFU/ml for all inocula except for the re-challenge of cynomolgus macaques for
414 which stocks were diluted to 6.5×10^5 PFU/ml. Diluted inocula was then loaded into a 3-ml
415 syringe that was kept on ice until challenge. Animals were anesthetized as described above,
416 and 1 ml of the inoculum was delivered subcutaneously over the cranial dorsum. Animals were
417 monitored closely following inoculation for any signs of an adverse reaction.

418 ***Viral RNA isolation***

419 Viral RNA was extracted from plasma using the Viral Total Nucleic Acid Kit (Promega, Madison,
420 WI) on a Maxwell 48 RSC instrument (Promega, Madison, WI). RNA was then quantified using
421 quantitative RT-PCR. Viral load data from plasma are expressed as vRNA copies/mL.

422 ***Quantitative reverse transcription PCR (QRT-PCR)***

423 vRNA isolated from plasma samples was quantified by quantitative reverse transcription-PCR
424 (RT-qPCR) as described previously (65). The SPONV, primer and probe sequences are as
425 follows; forward primer: 5'- GGCATACAGGAGGCCACATCAAAC-3', reverse primer: 5'-
426 TCGTGCGCTCTCTGAA-3' and probe; 5'-6-carboxyfluorescein-
427 CATCACTGGAACAAYAAGGAGGCGCTGG-BHQ1-3'. The RT-PCR was performed using the
428 SuperScript III Platinum One-Step Quantitative RT-PCR system (Invitrogen, Carlsbad, CA) or
429 Taqman Fast Virus 1-step master mix (Applied Biosystems, Foster City, CA) on a LightCycler
430 96 or LightCycler 480 instrument (Roche Diagnostics, Indianapolis, IN). The viral RNA
431 concentration was determined by interpolation onto an internal standard curve composed of
432 seven 10-fold serial dilutions of a synthetic ZIKV or SPONV RNA fragment. The ZIKV RNA
433 fragment is based on a ZIKV strain derived from French Polynesia that shares >99% identity at
434 the nucleotide level with the African lineage strain used in the infections described in this report.

435 The SPONV RNA fragment is based on the same SPONV strain derived from South Africa used
436 in the experiments in this manuscript. Lower limit of detection (LLOD) for the ZIKV RT-qPCR
437 assay is 150 vRNA copies/mL. LLOD for the SPONV RT-qPCR assay is 175 vRNA copies/mL.
438 LLOD of assays is defined as the cut-off for which plasma viral loads are true positive with 95%
439 confidence.

440 ***Plaque reduction neutralization test (PRNT)***

441 Macaque serum was isolated from whole blood on the same day it was collected by using a
442 serum separator tube (SST). The SST was centrifuged for a minimum of 20 min at 1,400 × g,
443 and the serum layer was removed, placed in a 15-ml conical tube, and centrifuged for 8 min at
444 670 × g to remove any additional cells. Serum was screened for ZIKV and SPONV neutralizing
445 antibodies by plaque reduction neutralization test (PRNT) on Vero cells as described in
446 reference (66) against ZIKV and SPONV. The neutralization assay was performed with the
447 same virus stocks that were used for the challenge. Neutralization curves were generated using
448 GraphPad Prism 8 software. The resulting data were analyzed by nonlinear regression to
449 estimate the dilution of serum required to inhibit 90% of 50% of infection.

450 ***In vitro viral replication***

451 Six-well plates containing confluent monolayers of rhesus or cynomolgus macaque fibroblasts,
452 were inoculated with virus (SPONV or ZIKV-DAK), in triplicate at a multiplicity of infection of
453 0.01 PFU/cell. After one hour of adsorption at 37°C, inoculum was removed and the cultures
454 were washed three times. Fresh media were added and the fibroblast cultures were incubated
455 for 5 days at 37°C with aliquots removed every 24 hours and stored at -80C. Viral titers at each
456 time point were determined by plaque titration on Vero cells. The same methodology and
457 multiplicity of infection was followed for quantifying in vitro viral replication of SPONV and ZIKV-
458 DAK in rhesus and cynomolgus macaque macrophages, and TRIM5a expressing HEK-293

459 cells. For macrophage growth curves, 12-well plates were used to achieve a confluent
460 monolayer and samples were collected for an additional 2 days. For TRIM5a expressing HEK-
461 293 cells, supernatant was additionally collected 36 HPI.

462 ***Generation of TRIM5a expressing cells***

463 HEK293 cells stably expressing TRIM5a were generated as previously described in (33).
464 Plasmid DNA encoding rhesus macaque (GenBank: EF113914.1) and cynomolgus macaque
465 (GenBank: AB210052.1) TRIM5a open reading frames were ordered from Twist Biosciences
466 and subcloned into MIG1R-derived simple retroviral transduction vectors (67) encoding a
467 blasticidin resistance gene downstream of an internal ribosome entry site. To generate
468 retrovirus for transducing TRIM5a expressing vectors, pre-adhered HEK293 cells in 6-well
469 plates were transfected with 1 μ g vector plasmid, 1 μ g pMD.Gag/GagPol (68) plasmid, and
470 200ng VSV-G (69). Media was replaced at 24 hours post-transfection. Virus-containing
471 supernatant was harvested at 48 hours post-transfection, 0.45 μ m syringe-filtered, and stored at
472 -20 degrees. To generate stable cells, HEK293 cells were seeded into plates and allowed to
473 adhere overnight and transducing viral supernatant with 10 μ g/mL polybrene was added to each
474 well. Transduced cells were selected at 48 hours post-transduction with 8 μ g/mL Blasticidin S
475 (GoldBio, #B-800-100), expanded, and maintained in culture in the presence of drug. Rhesus
476 and cynomolgus TRIM5a restriction activity against HIV-1 was confirmed by single cycle
477 infectivity assay (fig. S2). Briefly, equivalent numbers HEK293 cells transduced to express
478 rhesus or cynomolgus TRIM5a (as well as vector transduced cells) were infected with single
479 cycle HIV-1 virus (NL4-3 Env- Vpr- Nef- mCherry=reporter) (70) or murine leukemia virus
480 pseudovirus (MLV gag/gagpol virus-like particle packaging an mCherry expressing genomic
481 RNA) (67) pseudo-typed with VSV-G at multiple MOIs. After 48 hours, percent of target cells
482 expressing mCherry (successfully infected) was determined by flow cytometry (BD FACSCanto
483 II).

484 **Statistical analyses**

485 All statistical analyses were performed using GraphPad Prism 9. For statistical analysis of virus
486 growth curves, unpaired nonparametric t-tests with Holm's-Sidak correction for multiple
487 comparisons were used to compare SPONV and ZIKV titers at each timepoint. Ordinary one-
488 way ANOVA with Tukey's multiple comparisons were used to statistically compare differences in
489 area under the curve, peak viremia, time to peak viremia, and viremia duration between
490 macaques infected with SPONV and those infected with ZIKV-DAK, as well as historical viremia
491 data of rhesus macaques infected with ZIKV-PR and ZIKV-FP. The LLOD for SPONV (175
492 vRNA copies/mL) was used as the baseline for AUC comparisons between virus groups.
493 Unpaired nonparametric t-tests were used to compare area under the curve, peak viremia, time
494 to peak viremia, and viremia duration between flavivirus naive macaques infected with ZIKV-
495 DAK and SPONV-immune macaques infected with ZIKV-DAK.

496

497 **References**

- 498 1. T. C. Pierson, M. S. Diamond, The continued threat of emerging flaviviruses. *Nat Microbiol.* **5**, 796–812 (2020).
- 500 2. M. Venter, Assessing the zoonotic potential of arboviruses of African origin. *Curr. Opin. Virol.* **28**, 74–84 (2018).
- 502 3. P. S. Pandit, M. M. Doyle, K. M. Smart, C. C. W. Young, G. W. Drape, C. K. Johnson,
503 Predicting wildlife reservoirs and global vulnerability to zoonotic Flaviviruses. *Nat. Commun.* **9**, 5425 (2018).
- 505 4. M. Theiler, W. G. Downs, Others, The arthropod-borne viruses of vertebrates. An account
506 of the Rockefeller Foundation virus program, 1951-1970. *Biken's Journal.* **16** (1973)
507 (available at <https://www.cabdirect.org/cabdirect/abstract/19742704397>).
- 508 5. M. S. Wolfe, C. H. Calisher, K. McGuire, Spondweni virus infection in a foreign resident of
509 Upper Volta. *Lancet.* **2**, 1306–1308 (1982).
- 510 6. A. J. Haddow, M. C. Williams, J. P. Woodall, D. I. Simpson, L. K. Goma, TWELVE
511 ISOLATIONS OF ZIKA VIRUS FROM AEDES (STEGOMYIA) AFRICANUS (THEOBALD)
512 TAKEN IN AND ABOVE A UGANDA FOREST. *Bull. World Health Organ.* **31**, 57–69

513 (1964).

514 7. D. I. Simpson, ZIKA VIRUS INFECTION IN MAN. *Trans. R. Soc. Trop. Med. Hyg.* **58**, 335–
515 338 (1964).

516 8. C. C. Draper, INFECTION WITH THE CHUKU STRAIN OF SPONDWENI VIRUS. *West*
517 *Afr. Med. J.* **14**, 16–19 (1965).

518 9. F. N. Macnamara, Zika virus: a report on three cases of human infection during an
519 epidemic of jaundice in Nigeria. *Trans. R. Soc. Trop. Med. Hyg.* **48**, 139–145 (1954).

520 10. R. H. Kokernot, K. C. Smithburn, J. Muspratt, B. Hodgson, Studies on arthropod-borne
521 viruses of Tongaland. VIII. Spondweni virus, an agent previously unknown, isolated from
522 *Taeniorhynchus (Mansonioides) uniformis*. *S. Afr. J. Med. Sci.* **22**, 103–112 (1957).

523 11. R. H. Kokernot, V. M. Casaca, M. P. Weinbren, B. M. McIntosh, Survey for antibodies
524 against arthropod-borne viruses in the sera of indigenous residents of Angola. *Trans. R.*
525 *Soc. Trop. Med. Hyg.* **59**, 563–570 (1965).

526 12. R. H. Kokernot, E. L. Szlamp, J. Levitt, B. M. McIntosh, Survey for antibodies against
527 arthropod-borne viruses in the sera of indigenous residents of the Caprivi Strip and
528 Bechuanaland Protectorate. *Trans. R. Soc. Trop. Med. Hyg.* **59**, 553–562 (1965).

529 13. H. Brottes, A. Rickenbach, P. Brès, J. J. Salaün, L. Ferrara, [Arboviruses in the Cameroon.
530 Isolation from mosquitoes]. *Bull. World Health Organ.* **35**, 811–825 (1966).

531 14. P. Ardoin, F. Rodhain, C. Hannoun, Epidemiologic study of arboviruses in the Arba-Minch
532 district of Ethiopia. *Trop. Geogr. Med.* **28**, 309–315 (1976).

533 15. S. K. White, J. A. Lednicky, B. A. Okech, J. G. Morris Jr, J. C. Dunford, Spondweni Virus in
534 Field-Caught *Culex quinquefasciatus* Mosquitoes, Haiti, 2016. *Emerg. Infect. Dis.* **24**,
535 1765–1767 (2018).

536 16. A. S. Jaeger, A. M. Weiler, R. V. Moriarty, S. Rybarczyk, S. L. O'Connor, D. H. O'Connor,
537 D. M. Seelig, M. K. Fritsch, T. C. Friedrich, M. T. Aliota, Spondweni virus causes fetal harm
538 in Ifnar1^{−/−} mice and is transmitted by *Aedes aegypti* mosquitoes. *Virology.* **547**, 35–46
539 (2020).

540 17. V. Salazar, B. W. Jagger, J. Mongkolsapaya, K. E. Burgomaster, W. Dejnirattisai, E. S.
541 Winkler, E. Fernandez, C. A. Nelson, D. H. Fremont, T. C. Pierson, J. E. Crowe Jr, G. R.
542 Screamton, M. S. Diamond, Dengue and Zika Virus Cross-Reactive Human Monoclonal
543 Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. *Cell Rep.*
544 **26**, 1585–1597.e4 (2019).

545 18. P. C. Arck, K. Hecher, Fetomaternal immune cross-talk and its consequences for maternal
546 and offspring's health. *Nat. Med.* **19**, 548–556 (2013).

547 19. W. G. C. Bearcroft, The histopathology of the liver of yellow fever-infected rhesus monkeys.
548 *J. Pathol. Bacteriol.* **74**, 295–303 (1957).

549 20. C. E. Osuna, J. B. Whitney, Nonhuman Primate Models of Zika Virus Infection, Immunity,
550 and Therapeutic Development. *J. Infect. Dis.* **216**, S928–S934 (2017).

551 21. M. T. Aliota, D. M. Dudley, C. M. Newman, E. L. Mohr, D. D. Gellerup, M. E. Breitbach, C.
552 R. Buechler, M. N. Rasheed, M. S. Mohns, A. M. Weiler, G. L. Barry, K. L. Weisgrau, J. A.
553 Eudailey, E. G. Rakasz, L. J. Vosler, J. Post, S. Capuano 3rd, T. G. Golos, S. R. Permar, J.
554 E. Osorio, T. C. Friedrich, S. L. O'Connor, D. H. O'Connor, Heterologous Protection against
555 Asian Zika Virus Challenge in Rhesus Macaques. *PLoS Negl. Trop. Dis.* **10**, e0005168
556 (2016).

557 22. D. M. Dudley, M. T. Aliota, E. L. Mohr, A. M. Weiler, G. Lehrer-Brey, K. L. Weisgrau, M. S.
558 Mohns, M. E. Breitbach, M. N. Rasheed, C. M. Newman, D. D. Gellerup, L. H. Moncla, J.
559 Post, N. Schultz-Darken, M. L. Schotzko, J. M. Hayes, J. A. Eudailey, M. A. Moody, S. R.
560 Permar, S. L. O'Connor, E. G. Rakasz, H. A. Simmons, S. Capuano, T. G. Golos, J. E.
561 Osorio, T. C. Friedrich, D. H. O'Connor, A rhesus macaque model of Asian-lineage Zika
562 virus infection. *Nat. Commun.* **7**, 12204 (2016).

563 23. S. M. Nguyen, K. M. Antony, D. M. Dudley, S. Kohn, H. A. Simmons, B. Wolfe, M. S.
564 Salamat, L. B. C. Teixeira, G. J. Wiepz, T. H. Thoong, M. T. Aliota, A. M. Weiler, G. L.
565 Barry, K. L. Weisgrau, L. J. Vosler, M. S. Mohns, M. E. Breitbach, L. M. Stewart, M. N.
566 Rasheed, C. M. Newman, M. E. Graham, O. E. Wieben, P. A. Turski, K. M. Johnson, J.
567 Post, J. M. Hayes, N. Schultz-Darken, M. L. Schotzko, J. A. Eudailey, S. R. Permar, E. G.
568 Rakasz, E. L. Mohr, S. Capuano 3rd, A. F. Tarantal, J. E. Osorio, S. L. O'Connor, T. C.
569 Friedrich, D. H. O'Connor, T. G. Golos, Highly efficient maternal-fetal Zika virus
570 transmission in pregnant rhesus macaques. *PLoS Pathog.* **13**, e1006378 (2017).

571 24. M. R. Duffy, T.-H. Chen, W. T. Hancock, A. M. Powers, J. L. Kool, R. S. Lanciotti, M.
572 Pretrick, M. Marfel, S. Holzbauer, C. Dubray, L. Guillaumot, A. Griggs, M. Bel, A. J.
573 Lambert, J. Laven, O. Kosoy, A. Panella, B. J. Biggerstaff, M. Fischer, E. B. Hayes, Zika
574 virus outbreak on Yap Island, Federated States of Micronesia. *N. Engl. J. Med.* **360**, 2536–
575 2543 (2009).

576 25. R. Hamel, O. Dejarnac, S. Wichit, P. Ekchariyawat, A. Neyret, N. Luplertlop, M. Perera-
577 Lecoin, P. Surasombatpattana, L. Talignani, F. Thomas, V.-M. Cao-Lormeau, V. Choumet,
578 L. Briant, P. Després, A. Amara, H. Yssel, D. Missé, Biology of Zika Virus Infection in
579 Human Skin Cells. *J. Virol.* **89**, 8880–8896 (2015).

580 26. A. E. Montes-Gómez, J. García-Cordero, E. Marcial-Juárez, G. Shrivastava, G. Visoso-
581 Carvajal, F. J. Juárez-Delgado, L. Flores-Romo, M. C. Sanchez-Torres, L. Santos-
582 Argumedo, J. Bustos-Arriaga, L. Cedillo-Barrón, Crosstalk Between Dermal Fibroblasts and
583 Dendritic Cells During Dengue Virus Infection. *Front. Immunol.* **11**, 538240 (2020).

584 27. J. Lang, Y. Cheng, A. Rolfe, C. Hammack, D. Vera, K. Kyle, J. Wang, T. B. Meissner, Y.
585 Ren, C. Cowan, H. Tang, An hPSC-Derived Tissue-Resident Macrophage Model Reveals
586 Differential Responses of Macrophages to ZIKV and DENV Infection. *Stem Cell Reports.*
587 **11**, 348–362 (2018).

588 28. D. Michlmayr, P. Andrade, K. Gonzalez, A. Balmaseda, E. Harris, CD14+CD16+
589 monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells
590 in a paediatric study in Nicaragua. *Nat Microbiol.* **2**, 1462–1470 (2017).

591 29. K. M. Quicke, J. R. Bowen, E. L. Johnson, C. E. McDonald, H. Ma, J. T. O'Neal, A.
592 Rajakumar, J. Wrammert, B. H. Rimawi, B. Pulendran, R. F. Schinazi, R. Chakraborty, M.
593 S. Suthar, Zika Virus Infects Human Placental Macrophages. *Cell Host Microbe.* **20**, 83–90
594 (2016).

595 30. M. Stremlau, C. M. Owens, M. J. Perron, M. Kiessling, P. Autissier, J. Sodroski, The
596 cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys.
597 *Nature*. **427**, 848–853 (2004).

598 31. M. Stremlau, M. Perron, S. Welikala, J. Sodroski, Species-specific variation in the
599 B30.2(SPRY) domain of TRIM5alpha determines the potency of human immunodeficiency
600 virus restriction. *J. Virol.* **79**, 3139–3145 (2005).

601 32. S. L. Sawyer, L. I. Wu, M. Emerman, Positive selection of primate TRIM5 α identifies a
602 critical species-specific retroviral restriction domain. *Proceedings of the* (2005) (available at
603 <https://www.pnas.org/doi/abs/10.1073/pnas.0409853102>).

604 33. A. I. Chiramel, N. R. Meyerson, K. L. McNally, R. M. Broeckel, V. R. Montoya, O. Méndez-
605 Solís, S. J. Robertson, G. L. Sturdevant, K. J. Lubick, V. Nair, B. H. Youseff, R. M. Ireland,
606 C. M. Bosio, K. Kim, J. Luban, V. M. Hirsch, R. T. Taylor, F. Bouamr, S. L. Sawyer, S. M.
607 Best, TRIM5 α Restricts Flavivirus Replication by Targeting the Viral Protease for
608 Proteasomal Degradation. *Cell Rep.* **27**, 3269–3283.e6 (2019).

609 34. K. M. Rose, S. J. Spada, R. Broeckel, K. L. McNally, V. M. Hirsch, S. M. Best, F. Bouamr,
610 From Capsids to Complexes: Expanding the Role of TRIM5 α in the Restriction of Divergent
611 RNA Viruses and Elements. *Viruses*. **13** (2021), doi:10.3390/v13030446.

612 35. D. M. Dudley, C. M. Newman, J. Lalli, L. M. Stewart, M. R. Koenig, A. M. Weiler, M. R.
613 Semler, G. L. Barry, K. R. Zarbock, M. S. Mohns, M. E. Breitbach, N. Schultz-Darken, E.
614 Peterson, W. Newton, E. L. Mohr, S. Capuano Iii, J. E. Osorio, S. L. O'Connor, D. H.
615 O'Connor, T. C. Friedrich, M. T. Aliota, Infection via mosquito bite alters Zika virus tissue
616 tropism and replication kinetics in rhesus macaques. *Nat. Commun.* **8**, 2096 (2017).

617 36. C. M. Crooks, A. M. Weiler, S. L. Rybarczyk, M. Bliss, A. S. Jaeger, M. E. Murphy, H. A.
618 Simmons, A. Mejia, M. K. Fritsch, J. M. Hayes, J. C. Eickhoff, A. M. Mitzey, E. Razo, K. M.
619 Braun, E. A. Brown, K. Yamamoto, P. M. Shepherd, A. Possell, K. Weaver, K. M. Antony,
620 T. K. Morgan, X. Zeng, D. M. Dudley, E. Peterson, N. Schultz-Darken, D. H. O'Connor, E.
621 L. Mohr, T. G. Golos, M. T. Aliota, T. C. Friedrich, African-Lineage Zika Virus Replication
622 Dynamics and Maternal-Fetal Interface Infection in Pregnant Rhesus Macaques. *J. Virol.*
623 **95**, e0222020 (2021).

624 37. C. M. Newman, D. M. Dudley, M. T. Aliota, A. M. Weiler, G. L. Barry, M. S. Mohns, M. E.
625 Breitbach, L. M. Stewart, C. R. Buechler, M. E. Graham, J. Post, N. Schultz-Darken, E.
626 Peterson, W. Newton, E. L. Mohr, S. Capuano 3rd, D. H. O'Connor, T. C. Friedrich,
627 Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. *Nat. Commun.* **8**,
628 169 (2017).

629 38. M. Hassert, J. D. Brien, A. K. Pinto, Mouse Models of Heterologous Flavivirus Immunity: A
630 Role for Cross-Reactive T Cells. *Front. Immunol.* **10**, 1045 (2019).

631 39. S. B. Halstead, E. J. O'Rourke, Dengue viruses and mononuclear phagocytes. I. Infection
632 enhancement by non-neutralizing antibody. *J. Exp. Med.* **146**, 201–217 (1977).

633 40. L. C. Katzelnick, L. Gresh, M. E. Halloran, J. C. Mercado, G. Kuan, A. Gordon, A.
634 Balmaseda, E. Harris, Antibody-dependent enhancement of severe dengue disease in
635 humans. *Science*. **358**, 929–932 (2017).

636 41. J. T. Roehrig, J. Hombach, A. D. T. Barrett, Guidelines for Plaque-Reduction Neutralization
637 Testing of Human Antibodies to Dengue Viruses. *Viral Immunol.* **21**, 123–132 (2008).

638 42. T. Langerak, L. M. R. Kasbergen, F. Chandler, T. Brinkman, Z. Faerber, K. Phalai, S.
639 Ulbert, A. Rockstroh, E. de Bruin, M. P. G. Koopmans, B. Rockx, E. C. M. van Gorp, S.
640 Vreden, Zika Virus Antibody Titers Three Years after Confirmed Infection. *Viruses.* **13**
641 (2021), doi:10.3390/v13071345.

642 43. A. D. Henderson, M. Aubry, M. Kama, J. Vanhomwegen, A. Teissier, T. Mariteragi-Helle, T.
643 Paoaafaite, Y. Teissier, J.-C. Manuguerra, J. Edmunds, J. Whitworth, C. H. Watson, C. L.
644 Lau, V.-M. Cao-Lormeau, A. J. Kucharski, Zika seroprevalence declines and neutralizing
645 antibodies wane in adults following outbreaks in French Polynesia and Fiji. *eLife.* **9** (2020),
646 doi:10.7554/eLife.48460.

647 44. C. H. Calisher, N. Karabatsos, J. M. Dalrymple, R. E. Shope, J. S. Porterfield, E. G.
648 Westaway, W. E. Brandt, Antigenic relationships between flaviviruses as determined by
649 cross-neutralization tests with polyclonal antisera. *J. Gen. Virol.* **70 (Pt 1)**, 37–43 (1989).

650 45. A. P. S. Rathore, A. L. St John, Cross-Reactive Immunity Among Flaviviruses. *Front.
651 Immunol.* **11**, 334 (2020).

652 46. M. Alvarez, R. Rodriguez-Roche, L. Bernardo, S. Vázquez, L. Morier, D. Gonzalez, O.
653 Castro, G. Kouri, S. B. Halstead, M. G. Guzman, Dengue hemorrhagic Fever caused by
654 sequential dengue 1-3 virus infections over a long time interval: Havana epidemic, 2001-
655 2002. *Am. J. Trop. Med. Hyg.* **75**, 1113–1117 (2006).

656 47. L. C. Katzelnick, J. V. Zambrana, D. Elizondo, D. Collado, N. Garcia, S. Arguello, J. C.
657 Mercado, T. Miranda, O. Ampie, B. L. Mercado, C. Narvaez, L. Gresh, R. A. Binder, S.
658 Ojeda, N. Sanchez, M. Plazaola, K. Latta, A. Schiller, J. Coloma, F. B. Carrillo, F. Narvaez,
659 M. E. Halloran, A. Gordon, G. Kuan, A. Balmaseda, E. Harris, Dengue and Zika virus
660 infections in children elicit cross-reactive protective and enhancing antibodies that persist
661 long term. *Sci. Transl. Med.* **13**, eabg9478 (2021).

662 48. R. K. Borchering, A. T. Huang, L. Mier-Y-Teran-Romero, D. P. Rojas, I. Rodriguez-
663 Barraquer, L. C. Katzelnick, S. D. Martinez, G. D. King, S. C. Cinkovich, J. Lessler, D. A. T.
664 Cummings, Impacts of Zika emergence in Latin America on endemic dengue transmission.
665 *Nat. Commun.* **10**, 5730 (2019).

666 49. A. J. McAuley, B. Sawatsky, T. Ksiazek, M. Torres, M. Korva, S. Lotrič-Furlan, T. Avšič-
667 Županc, V. von Messling, M. R. Holbrook, A. N. Freiberg, D. W. C. Beasley, D. A. Bente,
668 Cross-neutralisation of viruses of the tick-borne encephalitis complex following tick-borne
669 encephalitis vaccination and/or infection. *NPJ Vaccines.* **2**, 5 (2017).

670 50. L. A. VanBlargan, S. Himansu, B. M. Foreman, G. D. Ebel, T. C. Pierson, M. S. Diamond,
671 An mRNA vaccine protects mice against multiple tick-transmitted Flavivirus infections. *Cell
672 Rep.* **25**, 3382–3392.e3 (2018).

673 51. R. B. Tesh, A. P. A. Travassos da Rosa, H. Guzman, T. P. Araujo, S.-Y. Xiao,
674 Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis.
675 *Emerg. Infect. Dis.* **8**, 245–251 (2002).

676 52. D. T. Williams, P. W. Daniels, R. A. Lunt, L. F. Wang, K. M. Newberry, J. S. Mackenzie,

677 Experimental infections of pigs with Japanese encephalitis virus and closely related
678 Australian flaviviruses. *Am. J. Trop. Med. Hyg.* **65**, 379–387 (2001).

679 53. B. E. Henderson, P. P. Cheshire, G. B. Kirya, M. Lule, Immunologic studies with yellow
680 fever and selected African group B arboviruses in rhesus and vervet monkeys. *Am. J. Trop.
681 Med. Hyg.* **19**, 110–118 (1970).

682 54. W. Nguyen, E. Nakayama, K. Yan, B. Tang, T. T. Le, L. Liu, T. H. Cooper, J. D. Hayball, H.
683 M. Faddy, D. Warrilow, R. J. N. Allcock, J. Hobson-Peters, R. A. Hall, D. J. Rawle, V. P.
684 Lutzky, P. Young, N. M. Oliveira, G. Hartel, P. M. Howley, N. A. Prow, A. Suhrbier,
685 Arthritogenic Alphavirus Vaccines: Serogrouping Versus Cross-Protection in Mouse
686 Models. *Vaccines (Basel)*. **8** (2020), doi:10.3390/vaccines8020209.

687 55. N. K. Blackburn, T. G. Besselaar, G. Gibson, Antigenic relationship between chikungunya
688 virus strains and o'nyong nyong virus using monoclonal antibodies. *Res. Virol.* **146**, 69–73
689 (1995).

690 56. A. C. Chanas, Z. Hubalek, B. K. Johnson, D. I. Simpson, A comparative study of O'nyong
691 nyong virus with Chikungunya virus and plaque variants. *Arch. Virol.* **59**, 231–238 (1979).

692 57. P. Maiello, R. M. DiFazio, A. M. Cadena, M. A. Rodgers, P. L. Lin, C. A. Scanga, J. L.
693 Flynn, Rhesus Macaques Are More Susceptible to Progressive Tuberculosis than
694 Cynomolgus Macaques: a Quantitative Comparison. *Infect. Immun.* **86** (2018),
695 doi:10.1128/IAI.00505-17.

696 58. R. M. Broeckel, F. Feldmann, K. L. McNally, A. I. Chiramel, G. L. Sturdevant, J. M. Leung,
697 P. W. Hanley, J. Lovaglio, R. Rosenke, D. P. Scott, G. Saturday, F. Bouamr, A. L.
698 Rasmussen, S. J. Robertson, S. M. Best, A pigtailed macaque model of Kyasanur Forest
699 disease virus and Alkhurma hemorrhagic disease virus pathogenesis. *PLoS Pathog.* **17**,
700 e1009678 (2021).

701 59. B. M. Althouse, A. P. Durbin, K. A. Hanley, S. B. Halstead, S. C. Weaver, D. A. T.
702 Cummings, Viral kinetics of primary dengue virus infection in non-human primates: a
703 systematic review and individual pooled analysis. *Virology*. **452-453**, 237–246 (2014).

704 60. A. M. Trichel, P. A. Rajakumar, M. Murphey-Corb, Species-specific variation in SIV disease
705 progression between Chinese and Indian subspecies of rhesus macaque. *J. Med. Primatol.*
706 **31**, 171–178 (2002).

707 61. G. Yan, G. Zhang, X. Fang, Y. Zhang, C. Li, F. Ling, D. N. Cooper, Q. Li, Y. Li, A. J. van
708 Gool, H. Du, J. Chen, R. Chen, P. Zhang, Z. Huang, J. R. Thompson, Y. Meng, Y. Bai, J.
709 Wang, M. Zhuo, T. Wang, Y. Huang, L. Wei, J. Li, Z. Wang, H. Hu, P. Yang, L. Le, P. D.
710 Stenson, B. Li, X. Liu, E. V. Ball, N. An, Q. Huang, Y. Zhang, W. Fan, X. Zhang, Y. Li, W.
711 Wang, M. G. Katze, B. Su, R. Nielsen, H. Yang, J. Wang, X. Wang, J. Wang, Genome
712 sequencing and comparison of two nonhuman primate animal models, the cynomolgus and
713 Chinese rhesus macaques. *Nat. Biotechnol.* **29**, 1019–1023 (2011).

714 62. B. J. Burwitz, J. M. Greene, D. H. O'Connor, Pirate primates in uncharted waters:
715 lymphocyte transfers in unrelated, MHC-matched macaques. *Curr. HIV Res.* **7**, 51–56
716 (2009).

717 63. B. M. McIntosh, R. H. Kokernot, H. E. Paterson, B. de Meillon, Isolation of Spondweni virus

718 from four species of culicine mosquitoes and a report of two laboratory infections with the
719 virus. *S. Afr. Med. J.* **35**, 647–650 (1961).

720 64. A. E. Rozner, S. V. Dambaeva, J. G. Drenzek, M. Durning, T. G. Golos, Generation of
721 macrophages from peripheral blood monocytes in the rhesus monkey. *J. Immunol. Methods*. **351**, 36–40 (2009).

723 65. A. S. Jaeger, R. A. Murreita, L. R. Goren, C. M. Crooks, R. V. Moriarty, A. M. Weiler, S.
724 Rybarczyk, M. R. Semler, C. Huffman, A. Mejia, H. A. Simmons, M. Fritsch, J. E. Osorio, S.
725 L. O'Connor, G. D. Ebel, T. C. Friedrich, M. T. Aliota, Zika viruses of both African and Asian
726 lineages cause fetal harm in a vertical transmission model, , doi:10.1101/387118.

727 66. H. S. Lindsey, C. H. Calisher, J. H. Mathews, Serum dilution neutralization test for
728 California group virus identification and serology. *J. Clin. Microbiol.* **4**, 503–510 (1976).

729 67. E. L. Evans 3rd, J. T. Becker, S. L. Fricke, K. Patel, N. M. Sherer, HIV-1 Vif's Capacity To
730 Manipulate the Cell Cycle Is Species Specific. *J. Virol.* **92** (2018), doi:10.1128/JVI.02102-
731 17.

732 68. D. S. Ory, B. A. Neugeboren, R. C. Mulligan, A stable human-derived packaging cell line for
733 production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. *Proc. Natl. Acad.
734 Sci. U. S. A.* **93**, 11400–11406 (1996).

735 69. L. Naldini, U. Blömer, P. Gallay, D. Ory, R. Mulligan, F. H. Gage, I. M. Verma, D. Trono, In
736 vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.
737 *Science*. **272**, 263–267 (1996).

738 70. J. T. Becker, N. M. Sherer, Subcellular Localization of HIV-1 gag-pol mRNAs Regulates
739 Sites of Virion Assembly. *J. Virol.* **91** (2017), doi:10.1128/JVI.02315-16.

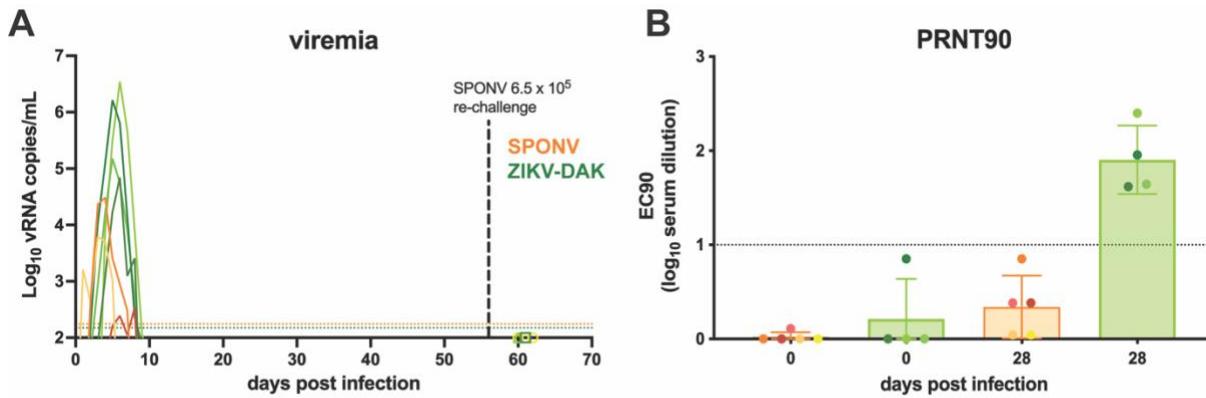
740

741 Acknowledgments

742 We thank the Veterinary Services, Colony Management, Scientific Protocol Implementation, and
743 the Pathology Services staff at the Wisconsin National Primate Research Center (WNPRC) for
744 their contributions to this study.

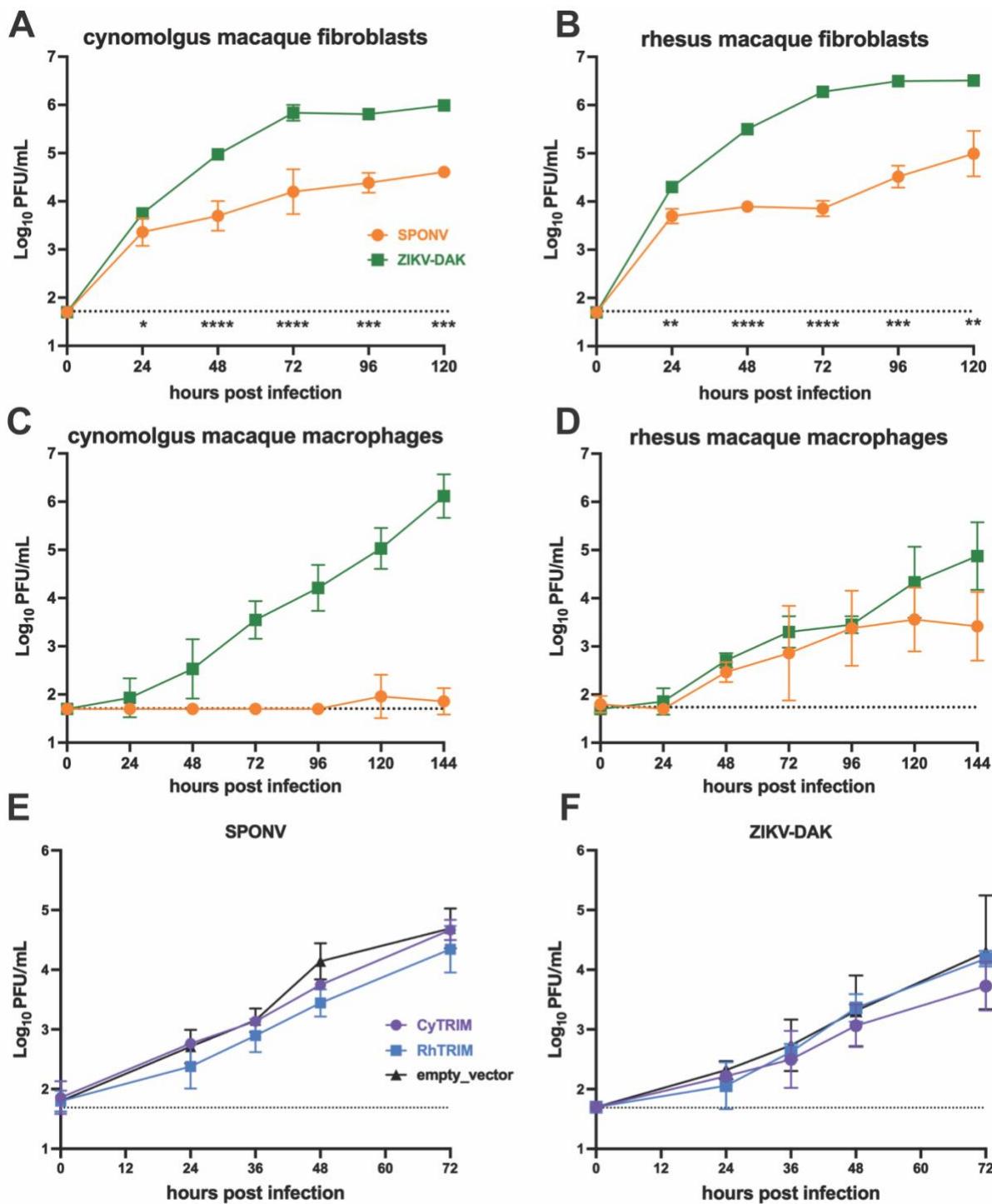
745 **Funding:** This work was supported by R01AI132563 and P01AI132132 from the National
746 Institute of Allergy and Infectious Disease to M.T.A. and T.C.F. and by P51OD011106 from the
747 NIH Office of the Director. A.S.J. was supported by T32 AI083196 from the National Institute of
748 Allergy and Infectious Disease. This work was supported also by NIH grant R01AR073966 to

749 T.S.F., and NIH grant T32CA009138 and American Cancer Society–Kirby Foundation
750 Postdoctoral Fellowship PF-21-068-01-LIB to JTG. The funders had no role in study design,
751 data collection and analysis, decision to publish, or preparation of the manuscript.


752 **Author contributions:** ASJ: Conceptualization, Validation, Formal analysis, Investigation,
753 Writing - original draft, Writing - review & editing, Visualization. CMC: Conceptualization,
754 Investigation, Writing - review & editing. AMW: Investigation. Writing - review & editing. MIB:
755 Investigation. SLR: Investigation, Writing - review & editing. AR: Investigation. ME: Investigation.
756 EP: Investigation. SC: Supervision. AB: Investigation. JTB: Investigation, Writing - review &
757 editing. JTG: Investigation, Writing - review & editing. TSF: Supervision, Writing - review &
758 editing. RAL: Supervision. TCF: Methodology, Resources, Data curation, Writing: review &
759 editing, Supervision, Funding acquisition. MTA: Conceptualization, Methodology, Formal
760 analysis, Investigation, Resources, Writing - original draft, Writing - review & editing,
761 Supervision, Funding acquisition.

762 **Competing interests:** The authors declare that they have no known competing financial
763 interests or personal relationships that could have appeared to influence the work reported in
764 this paper.

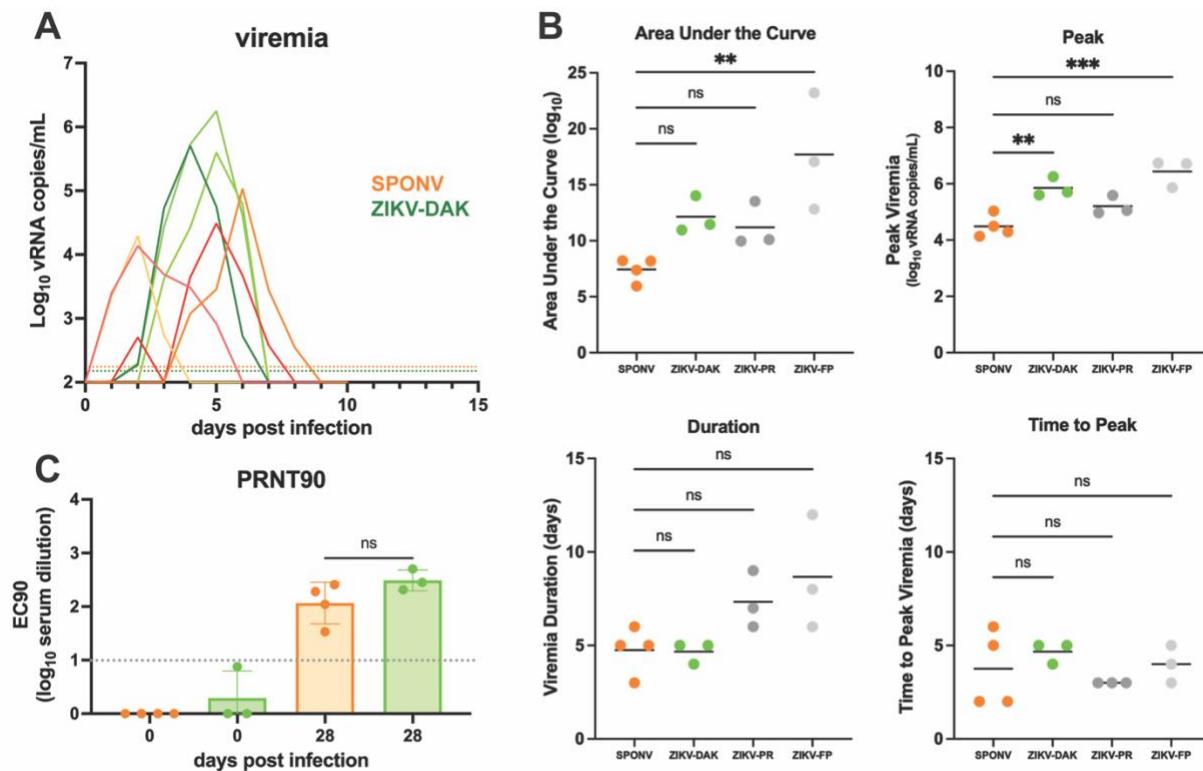
765 **Data and materials availability:** All data needed to evaluate the conclusions in the
766 paper are present in the paper and/or the Supplementary Materials.


767

768 **Figures:**

769 **Figure 1.**

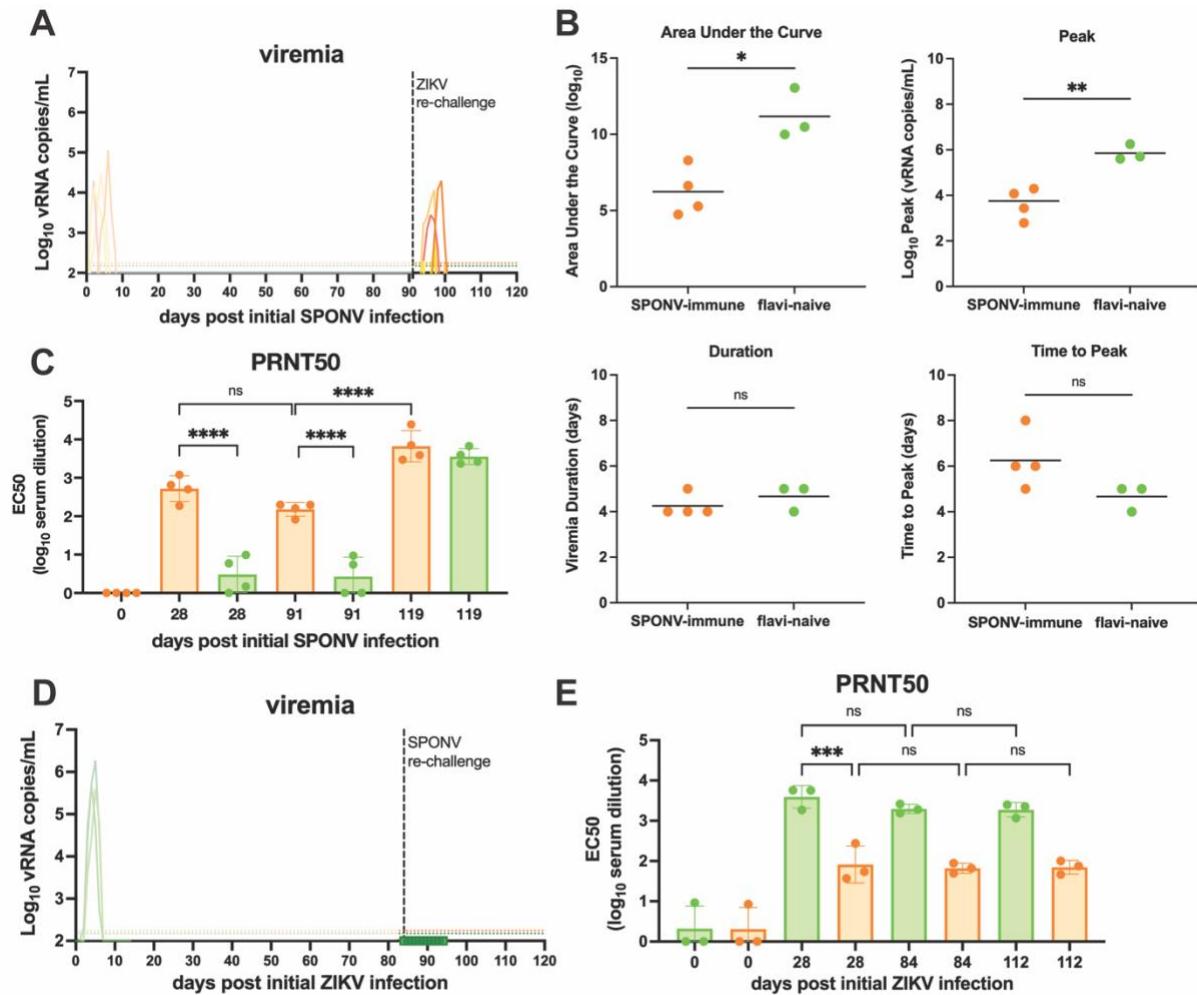
770 **Figure 1. SPONV and ZIKV infection in cynomolgus macaques. (A)** Plasma viral loads for
771 each of the macaques challenged with 10⁴ PFU of SPONV (orange traces, n = 5) or ZIKV-DAK
772 (green traces, n = 4). All animals were re-challenged with 6.5 X 10⁵ PFU of SPONV 56 days
773 post primary virus challenge. Viral loads were determined using SPONV- and ZIKV-specific
774 QRT-PCR. Only values above the assay's limit of detection (150 vRNA copies/mL for ZIKV,
775 green dotted line; 175 vRNA copies/mL for SPONV, orange dotted line) are shown. **(B)** PRNT₉₀
776 titers 0 and 28 days post primary challenge. nAb titers are measured against the same virus
777 stock as used for each animal's primary challenge (SPONV-challenged sera against SPONV,
778 ZIKV-challenged against ZIKV-DAK). The dotted line represents the PRNT₉₀ standard cut-off
779 value of 1:10 dilution determining infection.



780 **Figure 2.**

781 **Figure 2. Comparative SPONV and ZIKV replication in vitro.** Cynomolgus macaque
782 fibroblasts (**A**), rhesus macaque fibroblasts (**B**), cynomolgus macaque macrophages (**C**), and
783 rhesus macaque macrophages (**D**) were infected with an MOI 0.01 PFU/cell of SPONV (orange)

784 or ZIKV-DAK (green). HEK293 cells expressing cynomolgus (cyTRIM, purple) or rhesus
785 (rhTRIM) TRIM5a, or an empty vector control were infected with an MOI of 0.01 PFU/cell of
786 SPONV (E) or ZIKV-DAK (F). Supernatant was collected daily and growth kinetics were
787 assessed by plaque assay. Data presented are from three replicates from one to two
788 independent experiments. Error bars represent standard deviation from the mean. The dotted
789 line indicates the assay limit of detection. Unpaired parametric t-tests with Holm's-Sidak
790 correction for multiple comparisons were used to test for significance between SPONV and
791 ZIKV-DAK growth kinetics at each timepoint (A-D). *, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$; ****,
792 $p < 0.0001$.


793

794 **Figure 3.**
795 **FIG 3: SPONV and ZIKV replication kinetics in rhesus macaques.** (A) Viral loads were
796 measured from plasma samples from rhesus macaques challenged with 10⁴ PFU of SPONV (n

797 = 4, orange traces) or ZIKV-DAK (n = 3, green traces) using SPONV- or ZIKV-specific QRT-
798 PCR. Only values above the assay's limit of detection (150 vRNA copies/mL ZIKV, green dotted
799 line; 175 vRNA copies/mL SPONV, orange dotted line) are shown. **(B)** Graphs of the values for
800 the peak, area under the curve, duration, and time to peak viremia. A one-way ANOVA with
801 Tukey's multiple comparisons test was used for statistical comparison between SPONV and
802 ZIKV-DAK challenged animals, as well as historical data (gray traces) from ZIKV strain
803 PRVABC59 (ZIKV-PR, n = 3) and a French Polynesian strain (ZIKV-FP, n = 3) (**p < 0.0005;
804 **p < 0.005; *p < 0.05; ns, not significant). **(C)** PRNT90 titers from serum collected 0 and 28 dpi.
805 nAb titers are measured against the same virus stock as used for each animal's primary
806 challenge (SPONV-challenged sera against SPONV, ZIKV-challenged against ZIKV-DAK). An
807 unpaired t-test was used for statistical comparison between SPONV and ZIKV-DAK 28 dpi nAb
808 titers. The dotted line represents the PRNT90 standard cut-off value of 1:10 dilution determining
809 infection.

810

811 **Figure 4.**

812 **FIG 4: Heterologous re-challenge of SPONV- and ZIKV-immune rhesus macaques (A)** Viral
813 loads were measured from plasma samples from rhesus macaques challenged with 10^4 PFU of
814 ZIKV 91 days post primary SPONV infection ($n = 4$) using ZIKV-specific QRT-PCR. Only values
815 above the assay's limit of detection (150 vRNA copies/mL ZIKV green dotted line; 175 vRNA
816 copies/mL SPONV, orange dotted line) are shown. **(B)** Graphs of the values for the area under
817 the curve, peak viremia, viremia duration, and time to peak viremia for ZIKV viremia in SPONV-
818 immune animals (orange) and flavivirus-naive animals (green). An unpaired t-test was used for
819 statistical comparison between groups ($**p < 0.005$; $*p < 0.05$; ns, not significant). **(C)** PRNT50
820 titers from serum collected 0, 28, 91, and 119 days post primary SPONV infection. nAb titers

821 were measured against both SPONV (orange) and ZIKV-DAK (green) at all timepoints. A 2-way
822 ANOVA with multiple comparisons was used for statistical comparison between nAb titers (****p
823 < 0.0001; ns, not significant). **(D)** Viral loads were measured from plasma samples from rhesus
824 macaques challenged with 10^4 PFU of SPONV 84 days post primary ZIKV infection (n = 3)
825 using SPONV-specific RT-qPCR. **(E)** PRNT50 titers from serum collected 0, 28, 84, and 112
826 days post primary ZIKV infection. nAb titers were measured against both ZIKV-DAK (green) and
827 SPONV (orange) at all timepoints. A 2-way ANOVA with multiple comparisons was used for
828 statistical comparison between nAb titers (**p < 0.0005; ns, not significant).