

1 **A plant virus causes symptoms through the deployment of a host-mimicking protein
2 domain to attract the insect vector**

3

4 Man Gao^{1,2#}, Emmanuel Aguilar^{2,3#}, Borja Garnelo Gómez², Laura Medina-Puche^{1,2}, Pengfei
5 Fan², Irene Ontiveros³, Shaojun Pan^{1,2}, Huang Tan^{1,2}, Edda von Roepenack-Lahaye⁴, Na
6 Chen⁵, Xiao-Wei Wang⁵, David C Baulcombe⁶, Eduardo R Bejarano³, Juan Antonio Díaz-
7 Pendón³, Masahiko Furutani⁷, Miyo Terao Morita⁸, Rosa Lozano-Durán^{1,2*}.

8

9 ¹Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls
10 University, D-72076 Tübingen, Germany.

11 ²Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences,
12 Chinese Academy of Sciences, Shanghai 201602, China.

13 ³Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo
14 Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y
15 Fisiología, Málaga, Spain.

16 ⁴Central Facilities, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, D-72076
17 Tübingen, Germany.

18 ⁵Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

19 ⁶Department of Plant Sciences, University of Cambridge, Cambridge, UK.

20 ⁷International Research Organization for Advanced Science and Technology, Kumamoto University,
21 Kumamoto 860-8555, Japan.

22 ⁸Division of Plant Environmental Responses, National Institute for Basic Biology, Myodaiji, Okazaki 444-
23 8585, Japan.

24 #These authors contributed equally to this work.

25 *To whom correspondence should be addressed: rosa.lozano-duran@zmbp.uni-tuebingen.de

26

27

28 **SUMMARY**

29 Viruses are obligate intracellular parasites with limited proteomes that heavily rely on the cell
30 molecular machinery for their multiplication and spread. Plant viruses frequently cause
31 symptoms through interference with host developmental programs. Despite the agricultural
32 relevance of symptom development in virus-infected crops, the molecular mechanisms
33 underlying these viral effects remain elusive. Here, we show that the symptoms triggered by
34 tomato yellow leaf curl virus (TYLCV) depend on the physical interaction between the host-
35 mimicking domain of a virus-encoded protein, C4, and a plant-specific family of RCC1-like
36 domain-containing (RLD) proteins. C4 outcompetes endogenous interactors of RLDs,
37 disrupting RLD function in the regulation of endomembrane trafficking and polar auxin
38 transport, ultimately leading to the developmental alterations recognized as symptoms of the
39 viral infection. Importantly, symptoms do not have a detectable effect on the performance of
40 the virus in the plant host, but they serve as attractants for the viral insect vector, the whitefly
41 *Bemisia tabaci*, hence promoting pathogen spread. Our work uncovers the molecular
42 underpinnings of the viral manipulation that leads to symptom development in the TYLCV-
43 tomato pathosystem, and suggests that symptoms have evolved as a strategy to promote viral
44 transmission by the insect vector. Given that most plant viruses are insect-transmitted, the
45 principles described here might have broad applicability to crop-virus interactions.

46

47 **MAIN TEXT**

48 Viruses fully rely on the cells they infect for subsistence and continuity. A successful viral
49 infection and the concomitant manipulation of the host molecular machinery by the invading
50 virus often lead to alterations in host physiology and/or development, which are recognized as
51 symptoms. In plants, viral symptoms can include strong developmental changes that often
52 dramatically reduce the productivity of infected crops, e.g. stunting, organ malformation, and
53 chlorosis (Osterbaan & Fuchs, 2019). However, despite the obvious agricultural impact of
54 virus-caused symptoms, the molecular underpinnings causing their appearance are not
55 understood.

56 Different models have been proposed to explain the development of symptoms during
57 infection by plant viruses. The competitive disease model advocates for the virus-induced
58 diversion of limited resources towards viral processes as the basis for these developmental
59 alterations (Culver & Padmanabhan, 2007). The frequent lack of correlation between symptom
60 severity and viral load, however, favours the alternative interaction disease model, which
61 proposes that specific interactions between virus and host disrupt the latter's normal
62 physiology and development, resulting in symptoms (Culver & Padmanabhan, 2007). Along

63 these lines, viral symptoms have also been proposed to derive from the ability of the pathogen
64 to interfere with RNA silencing (Wang *et al.*, 2012). Nevertheless, whether symptoms confer
65 a competitive advantage to the virus or, on the contrary, are merely side-effects of virulence
66 activities is still an open question.

67 The family *Geminiviridae* (geminiviruses) comprises insect-transmitted plant viruses with
68 circular single-stranded (ss) DNA genomes that cause devastating diseases in crops
69 worldwide. In many geminiviruses, a small virus-encoded protein, C4, has been identified as
70 the main symptom determinant (Medina-Puche *et al.*, 2021). In the case of tomato yellow leaf
71 curl virus (TYLCV), transgenic expression of C4 in *Arabidopsis thaliana* (hereafter referred to
72 as *Arabidopsis*) or tomato is sufficient to trigger severe developmental alterations that
73 resemble the symptoms during infection (Rosas-Diaz *et al.*, 2018; Medina-Puche *et al.*, 2020)
74 (Figure S1). The ability of C4 from TYLCV to cause symptoms requires its presence at the
75 plasma membrane, since a non-myristoylable mutant version of the protein, which
76 accumulates in chloroplasts, does not noticeably affect plant development in *Arabidopsis*
77 (Rosas-Diaz *et al.*, 2018) or tomato (Figure S1).

78 In the geminivirus tomato yellow leaf curl Yunnan virus (TLCYnV), C4 has been proposed to
79 cause symptoms through its nucleocytoplasmic shuttling and sequestering of the plant kinase
80 NbSK η from the nucleus to the plasma membrane through protein-protein interaction (Mei *et*
81 *al.*, 2018a; Mei *et al.*, 2018b). C4 from TYLCV, however, does not interact with NbSK η (Figure
82 S2a), suggesting that this is not a conserved strategy and that a different molecular
83 mechanism must be at play in this case. We reasoned that this effect of C4 from TYLCV would
84 most likely be based on the physical interaction with another plant protein; with the aim to
85 identify such a hypothetical protein, a yeast two-hybrid (Y2H) screen using C4 as bait against
86 a TYLCV-infected tomato library was performed (Rosas-Diaz *et al.*, 2018). This screen
87 unveiled the tomato orthologues of four members of a plant-specific protein family previously
88 described in *Arabidopsis*, RCC1-like domain-containing (RLD) proteins RLD1-4 (Furutani *et*
89 *al.*, 2020), which we have named SIRLD1 and SIRLD2, as interactors of C4 (Table S1). The
90 RLD family in *Arabidopsis* comprises eight members, RLD1-8, harbouring conserved protein
91 domains, including the namesake RCC1-like domain and a BREVIS RADIX (BRX) domain
92 (Briggs *et al.*, 2006) close to the C-terminal end (Figure 1a). Of the eight RLD members, only
93 RLD1-4, the orthologues of the tomato proteins identified as interactors of C4, are expressed
94 in vegetative tissues (Furutani *et al.*, 2020), including the vasculature (Figure 1b; Figure S2e).
95 Independent clones isolated from the Y2H screen pointed at the BRX domain as the minimum
96 C4-interacting domain in the RLDs (Table S1); the specific interaction between the BRX
97 domain of the RLD proteins (BRXD) and C4 was confirmed in yeast (Figure 1c; Figure S2).

98 RLD proteins have been previously shown to localize in endomembrane compartments, and
99 regulate intracellular membrane trafficking (Furutani *et al.*, 2020; Wang *et al.*, 2022a). The
100 gravitropic response regulatory proteins LAZY1 and LAZY1-LIKE (LZY) (Li *et al.*, 2007;
101 Yoshihara & Iino, 2007; Yoshihara *et al.*, 2013) can interact with RLD proteins and recruit them
102 to the plasma membrane, which upon gravistimulation leads to the polarized localization of
103 the auxin transporter PIN-FORMED 3 (PIN3) (Friml *et al.*, 2002), polar auxin transport, and
104 the subsequent developmental responses (Furutani *et al.*, 2020). Strikingly, co-expression of
105 C4-GFP also led to the recruitment of RFP-RLD proteins to the plasma membrane (Figure 1d;
106 Figure S3a). Since LZY proteins interact with the BRX domain of the RLDs (Furutani *et al.*,
107 2020), as observed for C4, we wondered whether this viral protein might compete with the
108 former for RLD binding. Indeed, competitive bimolecular fluorescence complementation (BiFC)
109 as well as fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging
110 microscopy (FLIM) assays demonstrated that C4 outcompetes LZY3 in RLD binding (Figure
111 1e-g; Figure S3c, d).

112 A 14-aa domain named CCL present in LZY proteins mediates their interaction with the BRX
113 domain in the RLDs (Furutani *et al.*, 2020). Interestingly, inspection of the C4 protein sequence
114 led to the identification of a similar domain, which we called CCL-like (Figure 2a). This domain
115 is present in C4 from TYLCV and conserved in multiple viruses belonging to the same
116 geminivirus genus, *Begomovirus* (Figure S4), but absent in the closely related tomato yellow
117 leaf curl virus-Mild (TYLCV-Mild; Morilla *et al.*, 2005) (Figures S4, S5), which produces milder
118 symptoms. Of note, the C4 protein from TYLCV-Mild does not interact with the RLDs in yeast
119 (Figure S5). In order to evaluate the relevance of the CCL-like domain for the interaction with
120 the RLDs, we generated two different mutants, named CCLm1 and CCLm2, in which we
121 replaced seven conserved residues in the CCL-like domain by alanine, or this stretch of amino
122 acids with those present in the C4 protein from TYLCV-Mild, respectively (Figure 2a). For both
123 mutants, the interaction with RLD proteins was abolished or largely reduced, as detected by
124 Y2H and FRET-FLIM, and they were unable to recruit RFP-RLD proteins to the plasma
125 membrane and to outcompete LZY3 (Figure 2b-d; Figures S6, S7). C4_{CCLm1} and C4_{CCLm2},
126 however, localized at the plasma membrane, like the wild-type C4, and retained the ability to
127 associate with previously described interacting partners of C4, namely the plasma membrane
128 receptor kinases BARELY ANY MERISTEM 1 (BAM1) and CLAVATA 1 (CLV1), in Y2H,
129 FRET-FLIM, and co-immunoprecipitation (co-IP) assays, indicating that general protein
130 structure or stability are not affected by these mutations (Figure 2e, f; Figure S7). Importantly,
131 and in agreement with the previously suggested function of the C4-BAM1 interaction (Rosas-
132 Diaz *et al.*, 2018; Fan *et al.*, 2021), the cell-to-cell spread of silencing in the reporter SUC:SUL
133 plants (Himber *et al.*, 2003) was reduced by expression of C4_{CCLm1} and C4_{CCLm2} (Figure 2e-h;

134 Figure S8). The CCL-like motif is required but not sufficient to mediate the interaction with
135 RLDs, since a mutant version of C4 from TYLCV-Mild, in which the amino acids in positions
136 52-62 are replaced with those present in the TYLCV orthologue, hence adding a CCL-like
137 motif, does not acquire the ability to interact with RLDs (Figure S5). These results suggest that
138 the CCL-like domain present in geminiviral C4 proteins has evolved as a mimic of the CCL
139 domain present in the host LZY proteins and enables the specific interaction with and
140 recruitment of RLD proteins.

141 Strikingly, transgenically expressed C4_{CCLm1} and C4_{CCLm2} in *Arabidopsis* did not cause any
142 obvious phenotype, as opposed to expression of the wild-type C4 (Figure 3a, Figure S10),
143 despite reaching similar expression levels (Figures S9, S10), indicating that an intact CCL-like
144 domain is required for C4 to trigger developmental alterations. Supporting the idea that the
145 interaction between the CCL-like domain in C4 and the RLDs mediates the impact of the viral
146 protein on plant development, transgenic plants expressing C4 partially phenocopy *rld* multiple
147 mutants (Figure 3b-d), and C4-triggered alterations are alleviated by overexpression of *RLD3*
148 (Figure 3c Figure S11). Since C4-expressing plants show altered gravitropic set point angles
149 (GSAs) (Figure 3d; Figure S12), as *rld* mutants do (Furutani *et al.*, 2020), we decided to test
150 root gravitropic responses in these plants and those expressing the CCL-like domain deficient
151 versions of C4. The root response to gravity, in terms of directionality of growth as well as
152 asymmetric activity of the auxin-responsive promoter DR5 driving GFP (DR5:GFP; Friml *et al.*,
153 2003), was found defective in plants expressing wild-type C4, but not C4_{CCLm1} or C4_{CCLm2},
154 suggesting that the interaction between C4 and RLDs interferes with polar auxin transport in
155 gravitropic responses (Figure 3e, f). In line with the idea that polar auxin transport is altered
156 by C4 through its disruption of RLD function, functional enrichment analysis of genes
157 specifically down-regulated in plants expressing C4, but not in those expressing C4_{CCLm1} or
158 C4_{CCLm2}, unveiled the “Response to auxin” gene ontology functional category as over-
159 represented (Figure 3g; Figure S13; Tables S2-S6). C4-expressing plants, however,
160 accumulate wild-type-like levels of the auxin IAA, and respond normally to exogenously-
161 applied auxin (Figure S14), suggesting that it is hormone transport, and not biosynthesis,
162 perception, or responses, that is specifically affected.

163 *rld* loss-of-function mutants display defective intracellular membrane trafficking, visible as
164 appearance of Brefeldin A (BFA) body-like structures following staining with the membrane-
165 selective dye FM4-64 (Wang *et al.*, 2022a). In keeping with the apparent C4-mediated
166 disruption of RLD function through physical interaction, epidermal cells of transgenic
167 *Arabidopsis* plants expressing wild-type C4 similarly exhibit BFA body-like aggregates, as
168 opposed to wild-type plants or plants expressing C4_{CCLm1} or C4_{CCLm2} (Figure 3h). Further
169 supporting a causative link between impairment of RLD function and the C4-mediated

170 developmental alterations, wild-type *Arabidopsis* plants subjected to long-term BFA treatment
171 partially phenocopy C4 transgenic plants (Figure S15). This effect is more noticeable in plants
172 expressing C4_{CCLm1} or C4_{CCLm2}, where BFA treatment might be complementing the lack of a
173 CCL-like motif, while the rest of C4 functions would be maintained, and in which downward
174 curling of leaves can be observed (Figure S15).

175 In order to evaluate the contribution of the disruption of RLD function to the viral infection, we
176 generated an infectious TYLCV clone in which the C4 protein produced presents the
177 replacement of two residues in the CCL-like domain described as essential for the interaction
178 with the RLDs (Furutani *et al.*, 2020), W₅₂ and L₆₁ in C4, by serines. Of note, the amino acid
179 sequence of the viral protein Rep, encoded by an overlapping open reading frame, is not
180 changed in this mutant virus (Figure 4a). As expected, this C4 mutant version, which we
181 named C4_{CCLm3}, did not interact with RLDs nor recruit them to the plasma membrane (Figure
182 S16), but, like the other CCL-like domain-deficient mutants, maintained the capacity to interact
183 with BAM1 and CLV1 in Y2H, FRET-FLIM, and co-IP assays (Figure S17). Importantly, local
184 infection assays allowed us to determine that the selective recruitment of RLDs to the plasma
185 membrane also occurs in the context of the viral infection in a C4- and CCL-like domain-
186 dependent manner (Figure 4b). Unexpectedly, given the conservation of the CCL-like domain
187 among begomoviruses (Figure S4), the TYLCV mutant expressing C4_{CCLm3} (TYLCV^{C4_{CCLm3}})
188 accumulated to wild-type-like levels in systemic leaves of both tomato and the model
189 Solanaceae species *Nicotiana benthamiana*, although symptoms were completely abolished
190 (tomato) or reduced (*N. benthamiana*) (Figure 4c,d; Figure S17). Therefore, viral accumulation
191 and symptom development can be uncoupled in the TYLCV-tomato pathosystem.

192 Considering the high pace of evolution displayed by geminiviruses, including TYLCV (Duffy &
193 Holmes, 2009), sequence conservation strongly argues in favour of biological relevance.
194 Since the CCL-like motif in C4 is broadly conserved and determines symptom development,
195 but does not seem to play a significant role in viral performance in the plant, we wondered
196 whether it may contribute to viral transmission by the insect vector, an essential part of the
197 viral cycle in nature. TYLCV is exclusively transmitted by the whitefly *Bemisia tabaci* (Navot *et*
198 *al.*, 1991), which was recently shown to be preferentially attracted to TYLCV-infected
199 compared to uninfected tomato plants based on the perception of visual cues (Ontiveros *et*
200 *al.*, 2022). In agreement with these results, choice assays (Figure S18) demonstrated that *B.*
201 *tabaci* displays a preference for tomato plants infected with TYLCV (symptomatic) versus
202 those infected with TYLCV^{C4_{CCLm3}} (asymptomatic), even when viral load is comparable (Figure
203 4e; Figure S18). It can therefore be concluded that the symptoms of TYLCV infection, which
204 are triggered by C4 through the CCL-like domain-dependent interference with RLD function,
205 are not determinant of viral replication and *in planta* movement, but promote insect vector

206 attraction and hence ultimately viral spread (Figure 4f). Interestingly, the C4 protein from
207 TLCYnV, which triggers symptom appearance through the physical interaction with NbSK η ,
208 does not possess a CCL-like domain, which raises the idea that geminiviral C4 proteins might
209 have evolved independent strategies to manipulate plant development for insect vector
210 attraction.

211 In summary, our results demonstrate that, in the TYLCV-tomato pathosystem, symptom
212 development follows the interaction disease model, and depends on the protein-protein
213 interaction between a host-mimicking domain in the viral C4 and the plant RLDs. This physical
214 association leads to the recruitment of the RLDs to the plasma membrane and the disruption
215 of their function, including the regulation of intracellular membrane trafficking and polar auxin
216 transport, and ultimately determines the appearance of symptoms during viral infection
217 independently of the accumulation of the virus. Importantly, the ability of C4 to interfere with
218 plant development is independent of its other previously described virulence functions (Luna
219 *et al.*, 2012; Rosas-Diaz *et al.*, 2018; Medina-Puche *et al.*, 2020), which strongly argues for
220 specific selection. Symptoms render plants more attractive to the insect vector, hence
221 favouring viral spread. Therefore, in this pathosystem symptoms seem to have biological
222 relevance *per se*, and the ability of the virus to trigger them is most likely under direct selective
223 pressure. Considering that most plant viruses are insect-transmitted, similar principles might
224 underlie symptom development and its biological relevance in other virus-crop combinations.

225

226 **METHODS**

227 **Plant material and viral strains**

228 All *Arabidopsis* plants used in this work are of the Columbia-0 (Col-0) ecotype. The
229 AtRLD1p:GUS, AtRLD2p:GUS, AtRLD3p:GUS, and AtRLD4p:GUS transgenic lines and the
230 *rld1-2 rld2-2 rld3-2* mutant are from Furutani *et al.*, 2020. The 35S:C4 lines have been
231 previously described (Rosas-Diaz *et al.*, 2018). The *superroot 1-1 (sur1-1)* mutant is described
232 in Boerjan *et al.* (1995). To generate the 35S:C4_{CCLm1}, 35S:C4_{CCLm2}, 35S:C4 Mild, and 35S:C4
233 Mild_m lines, wild-type (WT) *Arabidopsis* plants were transformed with pGWB502-C4_{CCLm1},
234 pGWB502-C4_{CCLm2}, pGWB502-C4 Mild, and pGWB502-C4 Mild_m constructs, respectively (see
235 Plasmids and cloning).

236 Tomato plants used in this work are *Solanum lycopersicum* var. Moneymaker. To generate
237 the 35S:C4 and 35S:C4_{G2A} lines, tomato plants were transformed with pGWB2-C4 and
238 pGWB2-C4_{G2A} constructs, respectively (Rosas-Diaz *et al.*, 2018). As control, empty vector (EV)
239 transformed tomato plants were generated in parallel.

240 Plant material used in this study is summarized in Table S8.

241 *N. benthamiana* and tomato plants were grown in a controlled growth chamber under long-
242 day conditions (LD, 16 h of light/8 h of dark) at 25 °C. *Arabidopsis* plants were grown in a
243 controlled growth room under long-day conditions (16 h light/8 h dark) at 22°C. For *in vitro*
244 culture, *Arabidopsis* seeds were surface-sterilized, sown on ½ MS medium containing 1%
245 sucrose and 1% agar (pH5.7, KOH), and stratified for three days at 4°C in the dark, after which
246 they were grown under LD conditions.

247 The tomato yellow leaf curl virus-Almeria (TYLCV-Alm, Accession No. AJ489258) (Morilla *et*
248 *al.*, 2005) was used as template to generate the TYLCV infectious clone (Rosas-Diaz *et al.*,
249 2018); tomato yellow leaf curl virus-Mild (TYLCV-Mild, Accession No. X76319) (Navas-Castillo
250 *et al.*, 1997) was used as template to clone ORF C4 Mild.

251 **Plasmids and cloning**

252 C4-pGADT7 and C4-pGBKT7 are described in Wang *et al.*, 2022b. The binary vectors to
253 express C4, C4-GFP, IAN9-RFP, and BAM1-RFP are described in Rosas-Diaz *et al.*, 2018,
254 and that to express CLV1-RFP is described in Garnelo Gomez *et al.*, 2019. The NbSK η -
255 pGADT7 construct is from Mei *et al.*, 2018b.

256 The C4_{CCLm1}-pGADT7, C4_{CCLm1}-pGBKT7, C4_{CCLm2}-pGADT7, C4_{CCLm2}-pGBKT7, C4 Mild_m-
257 pGADT7, and C4 Mild_m-pGBKT7 were synthesized by Sangon Biotech. C4_{CCLm3}-pENTRTM/D-

258 TOPO® (Thermo Scientific) was generated with the Quick-Change Lightning Site-Directed
259 Mutagenesis Kit (Agilent Technologies).

260 To construct C4 Mild-pGADT7/pGBKT7, C4_{CCLm3}-pGADT7/pGBKT7, AtRLD1-
261 pGADT7/pGBKT7, AtRLD2-pGBKT7, AtRLD3-pGADT7/pGBKT7, AtRLD4-pGADT7/pGBKT7,
262 AtRLD1-BRX domain-pGADT7/pGBKT7, AtRLD2-BRX domain-pGADT7/pGBKT7, AtRLD3-
263 BRX domain-pGADT7/pGBKT7, AtRLD4-BRX domain-pGADT7/pGBKT7, SIRLD1-
264 pGADT7/pGBKT7, SIRLD2-pGADT7/pGBKT7, SIRLD1-BRX domain-pGADT7/pGBKT7,
265 SIRLD2-BRX domain-pGADT7/pGBKT7 and AtBAM1 kinase domain (678-1003aa)-
266 pGADT7/pGBKT7, pGADT7 and pGBKT7 were digested with High-Fidelity (HF®) restriction
267 endonucleases (NEB) *EcoRI* and *BamHI*, and C4 Mild, C4_{CCLm3}, AtRLD1, AtRLD2, AtRLD3,
268 AtRLD4, AtRLD1 BRX domain, AtRLD2 BRX domain, AtRLD3 BRX domain, AtRLD4 BRX
269 domain, SIRLD1, SIRLD2, SIRLD1 BRX domain, SIRLD2 BRX domain and AtBAM1 kinase
270 domain (aa 678-1003) were amplified by PCR, and then in-fused into the pGADT7 and
271 pGBKT7, respectively, with ClonExpress® II One Step Cloning Kit.

272 To generate the constructs to express C4_{CCLm1}-GFP, C4_{CCLm2}-GFP, C4_{CCLm3}-GFP, C4 Mild-
273 GFP, C4 Mild_m-GFP, 35S:C4_{CCLm1}, 35S:C4_{CCLm2}, 35S:C4 Mild, and 35S:C4 Mild_m, the coding
274 sequence (CDS) of C4_{CCLm1}, C4_{CCLm2}, C4_{CCLm3}, C4 Mild, and C4 Mild_m were amplified by PCR
275 and cloned into Gateway binary vectors, with a first step of cloning into pDONR™/Zeo through
276 BP reaction, and finally into the destination vectors pGWB5 and pGWB502 (Nakagawa *et al.*,
277 2007a; Nakagawa *et al.*, 2007b) through LR reaction (Thermo Scientific).

278 To generate the constructs to express GFP/RFP-AtRLD1, GFP/RFP-AtRLD2, GFP/RFP-
279 AtRLD3, 35S:AtRLD3, GFP/RFP-AtRLD4, AtRLD1-YN/YC, AtRLD2-YN/YC, AtRLD3-YN/YC,
280 AtRLD4-YN/YC, 35S:AtLZY3, AtLZY3-YN, and GFP-AtLZY3, the CDS of AtRLD1, AtRLD2,
281 AtRLD3, AtRLD4, and AtLZY3 were amplified by PCR and first cloned into pDONR™/Zeo
282 through BP reaction, the sub-cloned to the destination vectors pGWB506, pGWB555,
283 pGWB502, pGTQL1211YN, or pGTQL1221YC (Nakagawa *et al.*, 2007a; Nakagawa *et al.*,
284 2007b; Lu *et al.*, 2010) through LR reaction (Thermo Scientific).

285 The TYLCV infectious clone and its mutant version carrying a premature stop codon in the C4
286 gene (TYLCV^{C4₁₋₈}) are described in Rosas-Diaz *et al.*, 2018. To generate the TYLCV^{C4_{CCLm3}}
287 mutant virus, mutations G155C (W52S) and T182C (L61S) (Figure 4a), which do not alter the
288 protein sequence of Rep, were introduced in the coding sequence of C4 with the Quick-
289 Change Lightning Site-Directed Mutagenesis Kit (Agilent Technologies).

290 All primers used in this study are listed in Table S9.

291

292 **Transient expression and viral infection assays in *N. benthamiana* and tomato**

293 Transient expression assays were carried out as described previously with minor
294 modifications (Wang *et al.*, 2017). In brief, the *A. tumefaciens* strain GV3101 carrying the
295 corresponding construct was liquid-cultured in LB with appropriate antibiotics at 28°C
296 overnight. Bacterial cultures were then centrifuged at 4,000x g for 10 min and resuspended in
297 infiltration buffer (10 mM MgCl₂, 10 mM MES pH 5.6, 150 µM acetosyringone) to an OD₆₀₀ =
298 0.5-1. Finally, Agrobacterium suspensions were placed at room temperature in darkness for
299 at least 2 hours, and then infiltrated into the abaxial side of fully expanded young leaves of
300 three-to-four-week-old *N. benthamiana* plants with a 1 mL needleless syringe. For
301 experiments that needed co-expression, Agrobacterium suspensions carrying different
302 constructs were mixed before infiltration at a 1:1 ratio. In the competitive BiFC assays, the
303 OD₆₀₀ of Agrobacterium suspensions carrying LZY3-YN, RLD3-YC, and C4 constructs was
304 0.3, 0.2, and 0.2, respectively.

305 Systemic viral infections were carried out as in Wu *et al.*, 2021. In short, for *N. benthamiana*
306 and tomato, the Agrobacterium cells carrying the empty vector (EV) as a negative control, or
307 the TYLCV, TYLCV^{C4₁₋₈}, or TYLCV^{C4_{CCLm3}} infectious clones were initially prepared as
308 described before, and resuspended in infiltration buffer to a final OD₆₀₀ = 0.5. Bacterial
309 solutions were then injected in the stem of two-week-old *N. benthamiana* and three to four-
310 week-old tomato plants (for systemic infection assays) or infiltrated into the abaxial side of fully
311 expanded young leaves of four-week-old *N. benthamiana* plants (for local infection assays).
312 To analyze local viral accumulation, as a proxy for replication, samples from agroinfiltrated
313 leaves of *N. benthamiana* plants were collected at 2 days post-inoculation (dpi). To analyze
314 systemic viral accumulation, the three youngest apical leaves from inoculated *N. benthamiana*
315 or tomato plants were collected at 21-28 dpi.

316 **Generation of transgenic plants**

317 Transformation of Arabidopsis plants, in either the WT or the SUC:SUL (S-S) (Himber *et al.*,
318 2003) backgrounds, was performed through the floral dip method (Clough & Bent, 1998). In
319 brief, the *A. tumefaciens* strain GV3101 carrying the corresponding construct was liquid-
320 cultured in LB liquid medium with appropriate antibiotics at 28°C overnight. Then, the bacterial
321 culture was pelleted by centrifugation at room temperature at 4000x g for 10 min, and
322 resuspended in transformation solution (5% sucrose and 0.02% Silwet L-77). Inflorescences
323 of 3-4-week-old plants were gently immersed in the bacterial suspension for 10-20 seconds,
324 and the treated plants were wrapped in plastic film to maintain high humidity, and maintained
325 in darkness for 16-24 hours. Finally, these plants were returned to normal (LD) growth

326 conditions, their seeds recovered, and rounds of selection and propagation were performed
327 until reaching the specified generation.

328 **Isolation of nucleic acids and quantitative PCR**

329 In all cases, samples were taken per duplicate from apical, young leaves (for *N. benthamiana*
330 and tomato) or rosette leaves (for Arabidopsis), and nucleic acids were extracted by using
331 Plant RNA kit (Omega) for total RNA, or CTAB 2X solution for DNA (Murray & Thompson,
332 1980). Total RNA was reverse-transcribed by using iScript TM cDNA synthesis Kit (Bio-Rad)
333 in a volume of 20 µL, and the resulting cDNA was diluted to a final volume of 200 µL. For DNA,
334 once purified, samples were diluted 1/1000 before analysis. RT-qPCR (cDNA) or qPCR (DNA)
335 were performed in a C1000 Touch Thermal Cycler (Bio-Rad), with PCR mixtures containing 6
336 µL of diluted cDNA/DNA, 1 µL of each primer (10 µM), 2 µL of water, and 10 µL of Hieff qPCR
337 SYBR Green Master Mix (Yeasen), with the following program: 3 min at 95 °C, and 40 cycles
338 consisting of 15 s at 95 °C, 30 s at 60 °C. As normalizer, *ACTIN* (*ACT2*) was used for RT-
339 qPCR in Arabidopsis, while 25S ribosomal DNA interspacer (ITS) was used for qPCR in *N.*
340 *benthamiana* or tomato samples (Mason *et al.*, 2008) (see Table S9). Comparative analyses
341 of transcripts and viral accumulation were performed by applying the $2^{-\Delta\Delta Ct}$ method.

342 **Confocal imaging**

343 Confocal imaging was performed on a Leica TCS SP8 confocal microscope or an SMD FLCS
344 point scanning confocal microscope (Leica Microsystems) using the pre-set sequential
345 scanning settings for GFP with excitation (Ex):488 nm, emission (Em):500–550 nm, for RFP
346 with Ex:561 nm, Em:570-620 nm, and for YFP with Ex: 514 nm, Em: 525-575 nm. For aniline
347 blue staining, settings were Ex: 405 nm, Em: 448–525 nm with sequential scanning when
348 combined with other fluorophores; for FM4-64 staining, Ex:580 nm, Em:600 to 660 nm. Z-
349 maximum projections were generated with LAS X software.

350 For competitive BiFC assays, laser intensity was fixed during image acquisition throughout
351 the experiment. Images were transformed to 8-bit by FIJI, and background noise was removed
352 by applying default threshold settings for each image; final quantification values correspond
353 to YFP intensity.

354 In Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM) assays,
355 donor proteins were cloned into pGWB5 or pGWB506 (Nakagawa *et al.*, 2007a; Nakagawa *et*
356 *al.*, 2007b) (fused to GFP), and acceptor proteins were cloned into pGWB555 (Nakagawa *et*
357 *al.*, 2007b) (fused to RFP). For competitive FRET-FLIM assays, potential competing proteins
358 were cloned into pGWB2 or pGWB502 (Nakagawa *et al.*, 2007a; Nakagawa *et al.*, 2007b) (no
359 tag). FRET-FLIM experiments were performed on a Leica TCS SMD FLCS confocal

360 microscope using excitation with WLL (white light laser) and emission collected by a SMD
361 SPAD (single photon-sensitive avalanche photodiodes) detector, as described in Rosas-Diaz
362 *et al.*, 2018. Leaf discs of *N. benthamiana* plants transiently co-expressing the proteins of
363 interest were visualized two days after agroinfiltration.

364 **Yeast two-hybrid (Y2H) assay**

365 All yeast constructs were transformed into the *Saccharomyces cerevisiae* Y2H Gold strain
366 (Clontech) using Yeastmaker™ Yeast Transformation System 2 (Clontech). Transformants
367 were grown on minimal synthetic defined (SD) media without leucine and tryptophan plates
368 (double dropout medium, DDO) and re-suspended in 20 µL DDO liquid medium. 3-5 µL of
369 each suspension were placed onto SD media without leucine, tryptophan, histidine, and
370 adenine (quadruple dropout medium QDO), QDO with X-α-gal (QDO/X) and QDO/X with
371 Aureobasidin A (QDO/X/AbA). Plates were incubated in the dark at 28°C and photographed
372 five to seven days later. The prey plasmid pGADT7-T, encoding the SV40 large T-antigen
373 fused with the GAL4 activation domain (AD), and the bait plasmid pGBKT7-p53, encoding
374 murine p53 fused with the GAL4 DNA-binding domain (BD), were used as positive control.
375 pGADT7 (AD) and pGBKT7 (BD) empty vectors were used as negative control. All yeast
376 media were purchased from Clontech.

377 **Protein extraction and co-immunoprecipitation (co-IP) assays**

378 Two days after infiltration, 0.75–1 g of infiltrated *N. benthamiana* leaves were harvested.
379 Protein extraction, co-immunoprecipitation (co-IP), and western blot were performed as
380 described in Rosas-Diaz *et al.*, 2018. The following primary and secondary antibodies were
381 used for western blot: mouse anti-green fluorescent protein (GFP) (M0802-3a, Abiocode,
382 Agoura Hills, CA, USA) (1:10,000); rat anti-red fluorescent protein (RFP) (5F8, Chromotek,
383 Planegg-Martinsried, Germany) (1:10,000); goat polyclonal anti-mouse coupled to
384 horseradish peroxidase (Sigma, St. Louis, MO, USA) (1:15,000); and goat polyclonal anti-rat
385 coupled to horseradish peroxidase (Abcam, Cambridge, UK) (1:15,000).

386 **Tissue staining and chemical treatments**

387 For β-glucuronidase (GUS) staining, 3-day-old transgenic seedlings carrying the reporter
388 constructs (RLD promoter:GUS) were immersed in GUS staining solution and vacuum-
389 infiltrated for five minutes, twice. Then, samples were incubated overnight at 37°C. The
390 following day, the staining solution was removed and the samples were washed with 75%
391 ethanol until tissue cleared. Images were taken using Zeiss Imager M2 microscope.

392 For aniline blue staining, a 0.05% solution (w/v in water) of the dye was infiltrated into the
393 abaxial side of *N. benthamiana* leaves and incubated for 30 min before imaging.

394 Counts of BFA-like bodies were performed in 5-day-old seedlings as described previously
395 (Wang *et al.*, 2022a). In brief, WT and transgenic Arabidopsis plants expressing TYLCV C4
396 (C4) or its mutant forms C4_{CCLm1} and C4_{CCLm2} (T3 generation) were pre-incubated for 40 min
397 with 8 μ M FM4-64, and then treated for 60 min with 70 μ M Brefeldin A (BFA) or DMSO (control
398 plants). Z-stack maximum projection images of stained, treated cotyledons were obtained, and
399 counts of vesicle aggregates and their area were determined with FIJI. The average size of
400 the aggregates per cell was determined as of 1.9 μ m², and the number of aggregates with
401 areas bigger than this average was registered.

402 To assess the effect of prolonged BFA treatment on plant development, WT and transgenic
403 Arabidopsis plants expressing TYLCV C4 (C4) or its mutant forms C4_{CCLm1} and C4_{CCLm2} were
404 initially grown in vertical ½ MS plates and, at 5 days post-germination, transferred to new ½
405 MS plates supplemented with BFA (1, 10, or 25 mM dissolved in DMSO) or DMSO (control).
406 Pictures of representative plants were taken after a 7-day treatment.

407 **Visual analysis of RNA silencing spread in Arabidopsis SUC:SUL plants**

408 TYLCV C4 (C4), TYLCV-Mild C4 (C4 Mild), and their respective mutant forms, were expressed
409 in the SUC:SUL background (Himber *et al.*, 2003) in order to assess their effect on the cell-to-
410 cell movement of RNA silencing. SUC:SUL plants were transformed with the appropriate
411 constructs (see Table S8) by using the floral dip method, and 20 lines per construct were
412 selected on hygromycin plates. At 4-5 weeks after germination, the lines showing evident
413 reduction of bleaching were taken to the T2 generation. These plants were selected on
414 hygromycin plates before being transferred to soil at 12 days after germination. Three weeks
415 later, each line was sampled and the expression levels of both the endogenous SUC2 gene
416 and the transgenic SUC:SUL cassette were assessed by RT-qPCR (see Table S9). After
417 confirmation of maintained expression of SUC2/SUC:SUL, three medium-size leaves per
418 rosette, and a minimum of 10 rosettes per line, were photographed; bleached area was
419 quantified with FIJI and expressed as % of total leaf area (Rosas-Diaz *et al.*, 2018).

420 **IAA treatment and quantification of IAA content**

421 TYLCV C4-expressing Arabidopsis plants (lines 5 and 7, T3) were grown in vertical ½ MS
422 plates supplemented with IAA (10, 20, 30, or 40 nM IAA dissolved in 0.1% ethanol) or 0.1%
423 ethanol (as control). At 12 days post-germination (dpg), root length was measured with FIJI,
424 and the number of lateral roots was counted and expressed as the number of initials per cm
425 of primary root. At least 10 plants were analyzed per replicate, and the experiment was
426 repeated twice with similar results.

427 IAA content in seedlings expressing either TYLCV C4 or its mutant forms C4_{CCLm1} or C4_{CCLm2}
428 was determined at 11 dpg. Three biological replicates (50 mg fresh weight per replicate) were
429 retched (5mm ceramic ball; 30 sec) and successively extracted with 200 μ L 80% MeOH
430 (containing the isotopic standard 200 nM D7-IAA), 200 μ L 80% MeOH, and 400 μ L H₂O 0,1%
431 formic acid. 400 μ L of the united fractions were partitioned against 200 μ L chloroform (10 min
432 US RT) and the upper phase was directly measured using targeted LCMS analysis. The whole
433 extraction process was below 10°C including 5 min sonication and centrifugation steps
434 (18,600x g).

435 The LCMS profiling analysis was performed using a Micro-LC M5 (Trap and Elute) and a
436 QTRAP6500+ (Sciex) operated in MRM mode (MRMs IAA (1) quantifier ion (m/z) Q1/Q3
437 176.1/130, declustering potential DP 40 V, collision energy CE 20V; IAA (2) (m/z) Q1/Q3
438 176.1/130, DP 100 V, CE 30V; D7-IAA (1) quantifier ion (m/z) Q1/Q3 183.1/109, DP 40, CE
439 50 V; D7-IAA (2) (m/z) Q1/Q3 183.1/136), DP 40, CE 20 V. The dwell time for all MRMs was
440 10 msec. Chromatographic separation was achieved on a Luna Omega Polar C18 column (3
441 μ m; 100 \AA ; 150 \times 0.5 mm; Phenomenex) and a Luna C18(2) trap column (5 μ m; 100 \AA ; 20 \times 0.5
442 mm; Phenomenex) with a column temperature of 55 °C. The following binary gradient was
443 applied for the main column at a flow rate of 28 μ L min-1: 0 - 0.2 min, isocratic 90% A; 0.2 - 2
444 min, linear from 90% A to 30% A; 2 - 4.5 min, linear from 30% A to 10% A; 4.5 - 5 min, linear
445 from 10% A to 5% A; 5 - 5.3 min, isocratic 5 % A; 5.3 - 5.5 min, linear from 5% A to 90% A;
446 5.5 - 6 min, isocratic 90% A (A: water, 0.1% aq. formic acid; B: acetonitrile, 0.1% aq. formic
447 acid). The samples were concentrated on the trap column using the following conditions: flow
448 rate 50 μ L min-1: 0 - 1.5 min isocratic 95% A; 1.5 min start main gradient; 1.5 - 1.7 min isocratic
449 95% A. The injection volume was 50 μ L. Analytes were ionized using an Optiflow Turbo V ion
450 source equipped with a SteadySpray T micro electrode in positive (ion spray voltage: 4800 V)
451 ion mode. The following additional instrument settings were applied: nebuliser and heater gas,
452 nitrogen, 25 and 45 psi; curtain gas, nitrogen, 30 psi; collision gas, nitrogen, medium; source
453 temperature, 200 °C; entrance potential, +/-10 V; collision cell exit potential, +/-25V.

454 The IAA content in each sample was normalized against the D7 IAA (Cambridge Isotope
455 Laboratories) values. The over-accumulating *sur1-1* mutant was used as a positive control for
456 the naturally occurring low IAA level in non-treated WT seedlings.

457 **Analysis of plant developmental phenotypes and gravitropic responses**

458 The effect of TYLCV C4 (C4), TYLCV-Mild C4 (C4 Mild), or their respective mutant versions
459 in root gravitropism in transgenic *Arabidopsis* plants (T3 generation) was evaluated as
460 previously described (Furutani *et al.*, 2020). Briefly, plants were grown in square, vertical 1/2
461 MS plates which were rotated 90 degrees at 7 days post-germination (dpg). Seedlings were

462 then left to grow for 12 more hours, and then pictures of at least 16 seedlings were taken to
463 quantify root tip angles with FIJI, relative to the original vertical axis, and excluding individuals
464 where the root tip angle was lower than 90 degrees.

465 T2 35S:C4 Arabidopsis plants (line 9) were crossed to the DR5:GFP line (Friml *et al.*, 2003);
466 WT plants were crossed to DR5:GFP in parallel, as control. Live cell tracking was possible by
467 using sterile chambered slides with transparent bottom parts (Lab-Tek II coverglass chamber
468 system, no. 155361, ThermoFisher Scientific), as described in Dubreuil *et al.*, 2018 and
469 Nakamura *et al.*, 2018. The F1 seeds were grown in these chambers with MS medium, placed
470 at the interface between the MS-agar and the coverglass, allowing their direct microscope
471 monitoring upon vertical growth. At 5 dpg, they were reoriented 90 degrees and kept in the
472 new position for 6 hours. Finally, the chambers were placed horizontally during the imaging;
473 GFP confocal images were obtained with a Leica TCS SP8 microscope with a 20x objective.

474 In order to analyze root phenotypes in C4-expressing plants at a later time, transgenic plants
475 (T3 generation) were grown in square, vertical plates for 14 days, until lateral roots were
476 clearly developed, and pictures of at least 16 seedlings were taken. The length of the primary
477 roots and the angles of four lateral roots per seedling, at four different heights relative to the
478 primary root, were measured with FIJI; the total number of lateral roots was expressed as the
479 number of lateral roots per unit of primary root length (/cm).

480 35S:AtRLD3 and 35S:C4 Arabidopsis plants were generated in parallel by the floral dip
481 method, propagated until the T2 generation, and crossed; a stable 35S:GFP plant line was
482 crossed as control. The F1 generation was genotyped, double transformants were selected,
483 and their phenotypes recorded at different developmental stages. Rosette size was quantified
484 with FIJI, measuring rosette radios at three different angles per plant, which were expressed
485 as the average rosette radius (cm).

486 **Phylogenetic analyses**

487 Identification of the BRX domain in AtRLD1-4 and SIRLD1-2 was performed by using the NCBI
488 conserved domain research tool (<https://www.ncbi.nlm.nih.gov/orffinder/>), the ExPASy Prosite
489 database (<https://prosite.expasy.org/>), and the InterPro database and diagnostic tool
490 (<https://www.ebi.ac.uk/interpro/>).

491 RLD protein sequences from Arabidopsis, *N. benthamiana*, and tomato, were subjected to
492 multiple alignments with Clustal W, and phylogenetic trees were obtained through MEGA 11
493 software (maximum likelihood, 500 bootstrap repetitions).

494 To identify C4 homologs in different begomoviruses, the reference genome of each virus was
495 downloaded and analyzed in the NCBI ORFfinder tool

496 (<https://www.ncbi.nlm.nih.gov/orffinder/>); multiple sequence alignments were conducted by
497 using the BioEdit software.

498 **RNA sequencing and enrichment analyses**

499 Arabidopsis seedlings were grown in vertical ½ MS plates and, at 12 days post-germination,
500 aerial parts of at least 30 seedlings were excised, pooled, and frozen in liquid N₂. Three
501 replicates, containing biological material from three different plates, were generated for the
502 WT (reference) and transgenic lines (T3 generation) expressing TYLCV C4 (C4), TYLCV-Mild
503 C4 (C4 Mild), or their respective mutant forms. Total RNA was extracted with TRIzol reagent
504 (Invitrogen), followed by two ethanolic precipitations with sodium acetate 3M pH 5.2 for 24
505 hours, and two additional cleaning steps with 70% cold ethanol. Purified samples were then
506 prepared for RNA sequencing as previously described (Wu *et al.*, 2019). Once the RNA
507 samples were sequenced, paired-end reads were cleaned by Trimmomatic (v. 0.36) (Bolger
508 *et al.*, 2014). After trimming the adapter sequences, removing low quality bases, and filtering
509 short reads, the resulting clean read pairs were retained for further analyses. The Arabidopsis
510 reference genome was downloaded from TAIR10, and clean reads were mapped by using
511 HISAT (Kim *et al.*, 2015), with default parameters. The number of reads mapped to each gene
512 was calculated with htseq-count script in HTSeq (Anders *et al.*, 2015). Differential gene
513 expression analyses were performed in EdgeR (Robinson *et al.*, 2010). Genes with at least
514 two-fold change in expression levels, and with an FDR<0.05 were considered as differentially
515 expressed (DEGs). Lists of DEGs for up and downregulated genes were subjected to Gene
516 Ontology (GO) enrichment by using ShinyGO (Ge *et al.*, 2020), with the total list of genes for
517 which reads were identified as background, and lists with the first 40 GO categories with
518 FDR<0.05 were generated. Enrichment analyses in The Kyoto Encyclopaedia of Genes and
519 Genomes (KEGG) pathways were carried out through the ShinyGO portal, and visualized
520 through Pathview (Luo & Brouwer, 2013; Kanehisa *et al.*, 2021); lists of KEGG pathways with
521 FDR<0.05 were generated. Finally, GO lists were reduced by removing redundant low-level
522 categories by using REVIGO ((Supek *et al.*, 2011); GO database last updated on 22nd March
523 2022), generating simplified lists of the 20 first GO categories with the lowest FDR values. For
524 raw GO lists, see Table S5.

525 **Whitefly dual-choice assays**

526 3-week-old tomato plants were agroinoculated with TYLCV WT or TYLCV^{C4CClM3} infectious
527 clones. After 3 weeks, viral accumulation was checked in systemic leaves by qPCR, and plants
528 with similar viral accumulation levels were selected. Whitefly choice assays were performed
529 as described by Ontiveros *et al.*, 2022. Briefly, four different leaflets coming from TYLCV WT-
530 or mutant-infected tomato plants (2x each) were distributed in a plastic cage (25x25 cm),

531 disposed around a central release platform where one whitefly was placed, and only the first
532 choice within a time frame of 15 min was recorded. For each experiment, a total of 60 adults
533 of *Bemisia tabaci* Mediterranean biotype were used (with each whitefly constituting an
534 individual biological replicate). The experimental design is shown in Figure S18.

535 **Statistical analysis**

536 Statistical comparisons between pairs of means were performed either by applying Student's
537 t test (considering equal variances) or Welch's t test (assuming unequal variances). When
538 statistical multiple comparisons of means were required, one-way ANOVA followed by
539 Dunnett's test (comparisons of multiple groups to one reference group) or Tukey multiple
540 range test (comparisons between multiple groups) were performed. Mann-Whitney U test was
541 used to compare pairs of means when data distributions were not normal, and data
542 transformation was not possible. Multiple comparisons between means of non-normally
543 distributed data were performed by applying Kruskal-Wallis test, followed by pairwise
544 comparisons of means with Mann-Whitney U test with the Bonferroni's correction of
545 significance level. Statistical comparisons of % distributions were carried out by applying
546 Fisher's exact test (in DR5:GFP-crossed plants and gravitropism experiments) or binomial test
547 (in whitefly choice assays, with 0.5 as test proportion). Significance level was kept at 0.05
548 throughout the whole study. Statistical analyses were performed with either IBM SPSS
549 Statistics v.20 or GraphPad Prism v.8 software.

550

551 **ACKNOWLEDGEMENTS**

552 The authors thank Alberto P Macho, Thorsten Nürnberg, Sebastian Wolf, and the
553 GeminiTeam lab for critical reading of the manuscript, and Xinyu Jian, Bettina Stadelhofer,
554 and Aurore Luque for excellent technical assistance. Work in RLD's lab is partially funded by
555 the Excellence Strategy of the German Federal and State Governments, the ERC-COG
556 GemOmics (101044142), the DeutscheForschungsgemeinschaft (DFG, German Research
557 foundation) (project numbers LO 2314/1-1 and SBF 1101/3, C08), and a Royal Society
558 Newton Advance grant (NA140481 – NAF\R2\180857). Metabolite analytics were funded by
559 the DFG (Projektnummer 442641014). EA is the recipient of a Marie Skłodowska-Curie Grant
560 from the European Union's Horizon 2020 Research and Innovation Program (Grant 896910-
561 GeminiDECODER). BGG was the recipient of a President's International Fellowship Initiative
562 (PIFI) from the Chinese Academy of Science (CAS) (grant 2020PB0082).

563

564

565 **REFERENCES**

566 **Anders S, Pyl PT, Huber W. 2015.** HTSeq--a Python framework to work with high-throughput
567 sequencing data. *Bioinformatics* **31**(2): 166-169.

568 **Bolger AM, Lohse M, Usadel B. 2014.** Trimmomatic: a flexible trimmer for Illumina sequence
569 data. *Bioinformatics* **30**(15): 2114-2120.

570 **Briggs GC, Mouchel CF, Hardtke CS. 2006.** Characterization of the plant-specific BREVIS
571 RADIX gene family reveals limited genetic redundancy despite high sequence
572 conservation. *Plant Physiology* **140**(4): 1306-1316.

573 **Clough SJ, Bent AF. 1998.** Floral dip: a simplified method for Agrobacterium-mediated
574 transformation of *Arabidopsis thaliana*. *Plant Journal* **16**(6): 735-743.

575 **Culver JN, Padmanabhan MS. 2007.** Virus-induced disease: altering host physiology one
576 interaction at a time. *Annu Rev Phytopathol* **45**: 221-243.

577 **Dubreuil C, Jin X, Gronlund A, Fischer U. 2018.** A Local Auxin Gradient Regulates Root
578 Cap Self-Renewal and Size Homeostasis. *Curr Biol* **28**(16): 2581-2587 e2583.

579 **Duffy S, Holmes EC. 2009.** Validation of high rates of nucleotide substitution in geminiviruses:
580 phylogenetic evidence from East African cassava mosaic viruses. *J Gen Virol* **90**(Pt 6):
581 1539-1547.

582 **Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G.**
583 2003. Efflux-dependent auxin gradients establish the apical-basal axis of *Arabidopsis*.
584 *Nature* **426**(6963): 147-153.

585 **Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. 2002.** Lateral relocation of auxin
586 efflux regulator PIN3 mediates tropism in *Arabidopsis*. *Nature* **415**(6873): 806-809.

587 **Furutani M, Hirano Y, Nishimura T, Nakamura M, Taniguchi M, Suzuki K, Oshida R,**
588 **Kondo C, Sun S, Kato K, et al. 2020.** Polar recruitment of RLD by LAZY1-like protein
589 during gravity signaling in root branch angle control. *Nat Commun* **11**(1): 76.

590 **Garnelo Gomez B, Zhang D, Rosas-Diaz T, Wei Y, Macho AP, Lozano-Duran R. 2019.**
591 The C4 Protein from Tomato Yellow Leaf Curl Virus Can Broadly Interact with Plant
592 Receptor-Like Kinases. *Viruses* **11**(11).

593 **Ge SX, Jung D, Yao R. 2020.** ShinyGO: a graphical gene-set enrichment tool for animals and
594 plants. *Bioinformatics* **36**(8): 2628-2629.

595 **Himber C, Dunoyer P, Moissiard G, Ritzenthaler C, Voinnet O. 2003.** Transitivity-
596 dependent and -independent cell-to-cell movement of RNA silencing. *EMBO J* **22**(17):
597 4523-4533.

598 **Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. 2021.** KEGG:
599 integrating viruses and cellular organisms. *Nucleic Acids Res* **49**(D1): D545-D551.

600 **Kim D, Langmead B, Salzberg SL. 2015.** HISAT: a fast spliced aligner with low memory
601 requirements. *Nat Methods* **12**(4): 357-360.

602 **Li PJ, Wang YH, Qian Q, Fu ZM, Wang M, Zeng DL, Li BH, Wang XJ, Li JY. 2007.** LAZY1
603 controls rice shoot gravitropism through regulating polar auxin transport. *Cell Research*
604 **17**(5): 402-410.

605 **Lu Q, Tang X, Tian G, Wang F, Liu K, Nguyen V, Kohalmi SE, Keller WA, Tsang EW,**
606 **Harada JJ, et al. 2010.** *Arabidopsis* homolog of the yeast TREX-2 mRNA export
607 complex: components and anchoring nucleoporin. *Plant Journal* **61**(2): 259-270.

608 **Luna AP, Morilla G, Voinnet O, Bejarano ER. 2012.** Functional analysis of gene-silencing
609 suppressors from tomato yellow leaf curl disease viruses. *Mol Plant Microbe Interact*
610 **25**(10): 1294-1306.

611 **Luo W, Brouwer C. 2013.** Pathview: an R/Bioconductor package for pathway-based data
612 integration and visualization. *Bioinformatics* **29**(14): 1830-1831.

613 **Mason G, Caciagli P, Accotto GP, Noris E. 2008.** Real-time PCR for the quantitation of
614 Tomato yellow leaf curl Sardinia virus in tomato plants and in *Bemisia tabaci*. *J Virol*
615 **Methods** **147**(2): 282-289.

616 **Medina-Puche L, Orilio AF, Zerbini FM, Lozano-Duran R. 2021.** Small but mighty:
617 Functional landscape of the versatile geminivirus-encoded C4 protein. *PLoS Pathog*
618 **17**(10): e1009915.

619 **Medina-Puche L, Tan H, Dogra V, Wu M, Rosas-Diaz T, Wang L, Ding X, Zhang D, Fu X, Kim C, et al. 2020.** A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-opted by Pathogens. *Cell* **182**(5): 1109-1124 e1125.

620 **Mei Y, Wang Y, Hu T, Yang X, Lozano-Duran R, Sunter G, Zhou X. 2018a.** Nucleocytoplasmic Shuttling of Geminivirus C4 Protein Mediated by Phosphorylation and Myristylation Is Critical for Viral Pathogenicity. *Mol Plant* **11**(12): 1466-1481.

621 **Mei Y, Yang X, Huang C, Zhang X, Zhou X. 2018b.** Tomato leaf curl Yunnan virus-encoded C4 induces cell division through enhancing stability of Cyclin D 1.1 via impairing NbSKeta -mediated phosphorylation in *Nicotiana benthamiana*. *PLoS Pathog* **14**(1): e1006789.

622 **Morilla G, Janssen D, Garcia-Andres S, Moriones E, Cuadrado IM, Bejarano ER. 2005.** Pepper (*Capsicum annuum*) Is a Dead-End Host for Tomato yellow leaf curl virus. *Phytopathology* **95**(9): 1089-1097.

623 **Murray MG, Thompson WF. 1980.** Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Res* **8**(19): 4321-4325.

624 **Nakagawa T, Kurose T, Hino T, Tanaka K, Kawamukai M, Niwa Y, Toyooka K, Matsuoka K, Jinbo T, Kimura T. 2007a.** Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. *J Biosci Bioeng* **104**(1): 34-41.

625 **Nakagawa T, Suzuki T, Murata S, Nakamura S, Hino T, Maeo K, Tabata R, Kawai T, Tanaka K, Niwa Y, et al. 2007b.** Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. *Biosci Biotechnol Biochem* **71**(8): 2095-2100.

626 **Nakamura M, Claes AR, Grebe T, Hermkes R, Viotti C, Ikeda Y, Grebe M. 2018.** Auxin and ROP GTPase Signaling of Polar Nuclear Migration in Root Epidermal Hair Cells. *Plant Physiology* **176**(1): 378-391.

627 **Navas-Castillo J, Sanchez-Campos S, Diaz JA, Saez-Alonso E, Moriones E. 1997.** First Report of Tomato Yellow Leaf Curl Virus-Is in Spain: Coexistence of Two Different Geminiviruses in the Same Epidemic Outbreak. *Plant Dis* **81**(12): 1461.

628 **Navot N, Pichersky E, Zeidan M, Zamir D, Czosnek H. 1991.** Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. *Virology* **185**(1): 151-161.

629 **Ontiveros I, Lopez-Moya JJ, Diaz-Pendon JA. 2022.** Coinfection of Tomato Plants with Tomato yellow leaf curl virus and Tomato chlorosis virus Affects the Interaction with Host and Whiteflies. *Phytopathology* **112**(4): 944-952.

630 **Osterbaan LJ, Fuchs M. 2019.** Dynamic interactions between plant viruses and their hosts for symptom development. *Journal of Plant Pathology* **101**(4): 885-895.

631 **Robinson MD, McCarthy DJ, Smyth GK. 2010.** edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**(1): 139-140.

632 **Rosas-Diaz T, Zhang D, Fan P, Wang L, Ding X, Jiang Y, Jimenez-Gongora T, Medina-Puche L, Zhao X, Feng Z, et al. 2018.** A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. *Proc Natl Acad Sci U S A* **115**(6): 1388-1393.

633 **Supek F, Bosnjak M, Skunca N, Smuc T. 2011.** REVIGO summarizes and visualizes long lists of gene ontology terms. *PLoS One* **6**(7): e21800.

634 **Wang L, Li D, Yang K, Guo X, Bian C, Nishimura T, Le J, Morita MT, Bergmann DC, Dong J. 2022a.** Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. *Nat Commun* **13**(1): 7.

635 **Wang L, Tan H, Medina-Puche L, Wu M, Garnelo Gomez B, Gao M, Shi C, Jimenez-Gongora T, Fan P, Ding X, et al. 2022b.** Combinatorial interactions between viral proteins expand the potential functional landscape of the tomato yellow leaf curl virus proteome. *PLoS Pathog* **18**(10): e1010909.

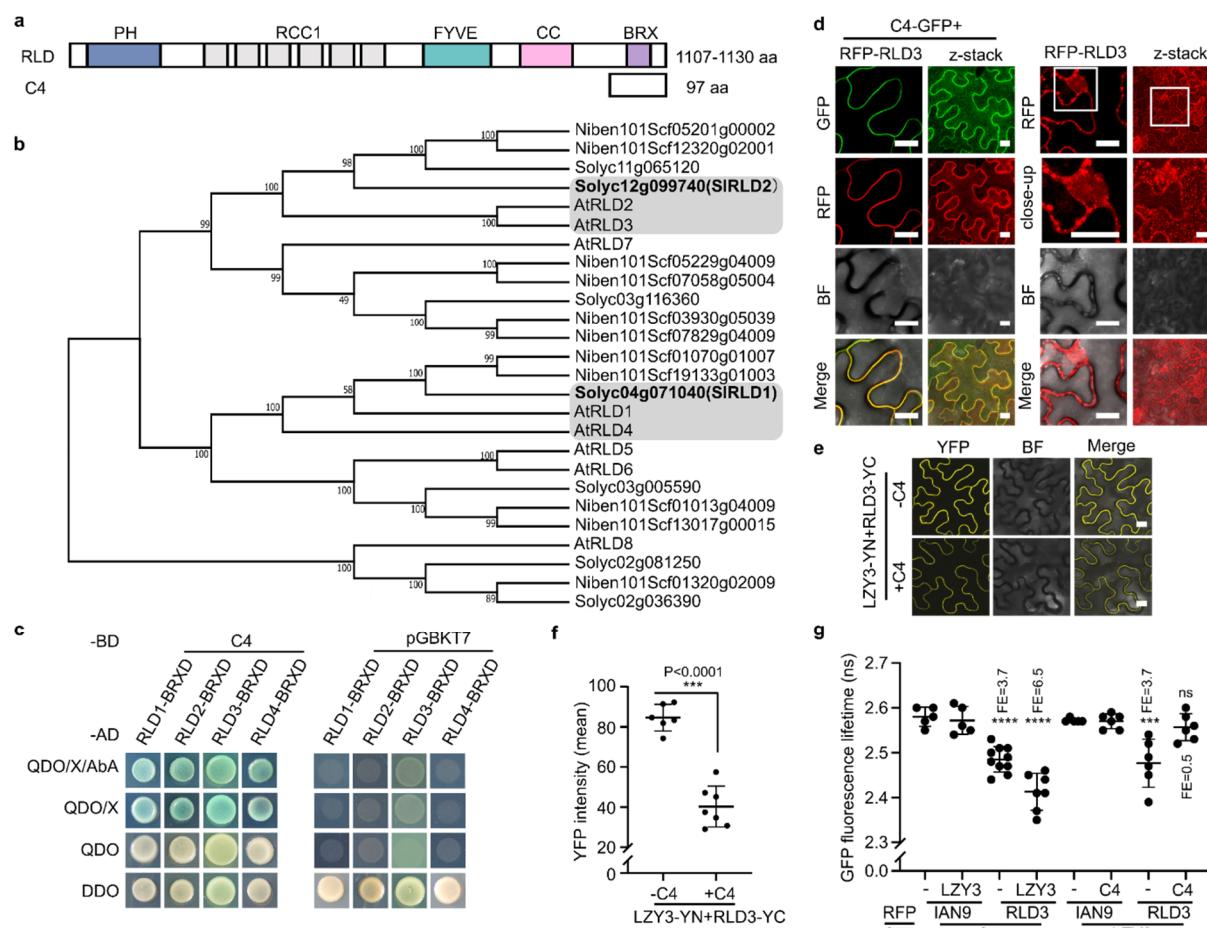
636 **Wang L, Tan H, Wu M, Jimenez-Gongora T, Tan L, Lozano-Duran R. 2017.** Dynamic Virus-Dependent Subnuclear Localization of the Capsid Protein from a Geminivirus. *Front Plant Sci* **8**: 2165.

674 **Wang MB, Masuta C, Smith NA, Shimura H. 2012.** RNA silencing and plant viral diseases.
675 *Mol Plant Microbe Interact* **25**(10): 1275-1285.

676 **Wu M, Ding X, Fu X, Lozano-Duran R. 2019.** Transcriptional reprogramming caused by the
677 geminivirus Tomato yellow leaf curl virus in local or systemic infections in *Nicotiana*
678 *benthamiana*. *BMC Genomics* **20**(1): 542.

679 **Wu M, Wei H, Tan H, Pan S, Liu Q, Bejarano ER, Lozano-Duran R. 2021.** Plant DNA
680 polymerases alpha and delta mediate replication of geminiviruses. *Nat Commun* **12**(1):
681 2780.

682 **Yoshihara T, Iino M. 2007.** Identification of the gravitropism-related rice gene LAZY1 and
683 elucidation of LAZY1-dependent and -independent gravity signaling pathways. *Plant*
684 *and Cell Physiology* **48**(5): 678-688.


685 **Yoshihara T, Spalding EP, Iino M. 2013.** AtLAZY1 is a signaling component required for
686 gravitropism of the *Arabidopsis thaliana* inflorescence. *Plant Journal* **74**(2): 267-279.

687

688

689 **FIGURES**

690 **MAIN FIGURES**

691

692 **Figure 1. C4 interacts with RLD proteins, recruits them to the plasma membrane, and**
693 **outcompetes an endogenous interacting partner.**

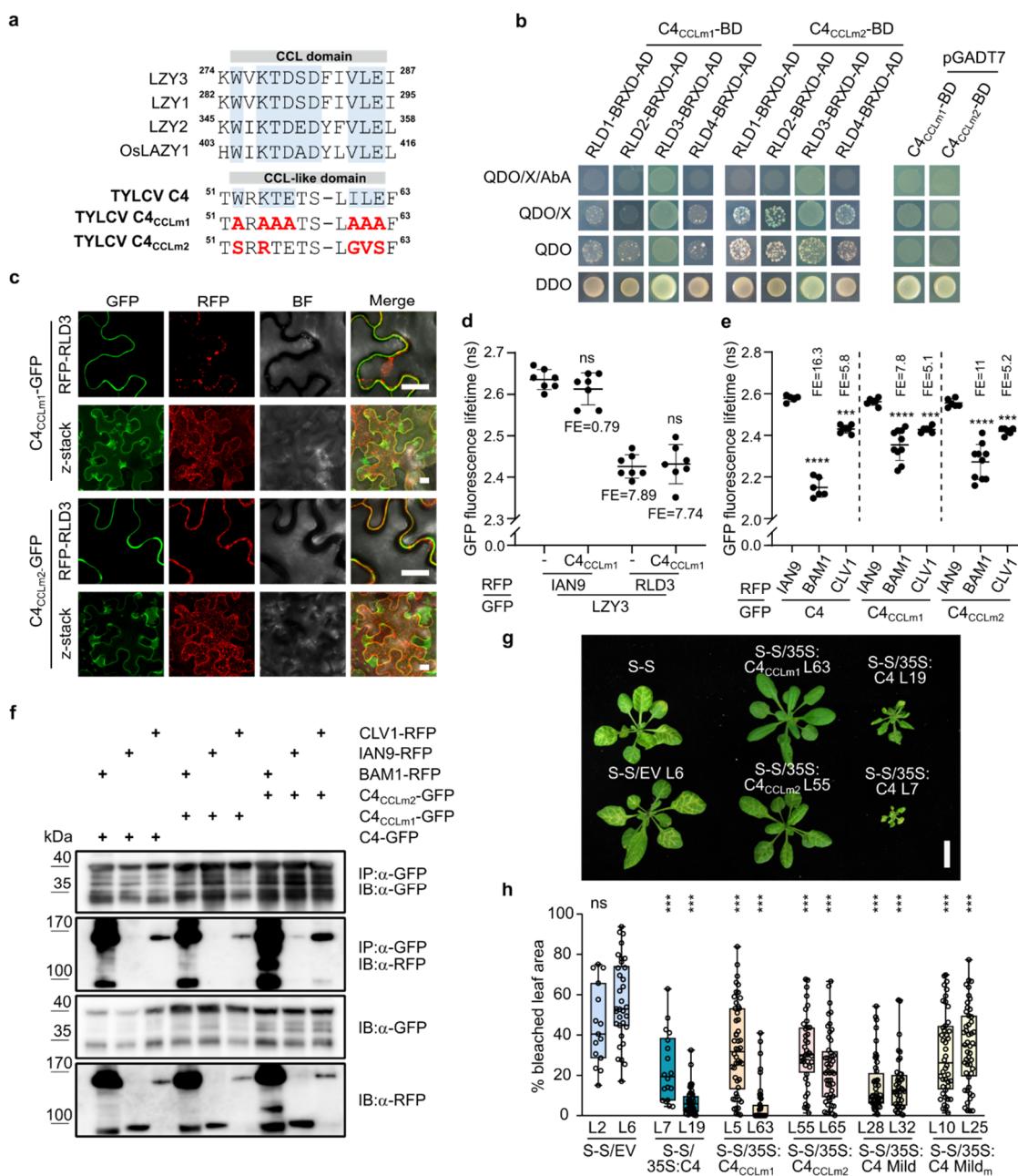
694 a. Domain architecture of RLDs; C4 is shown aligned with its minimal interaction domain in
695 RLDs. PH: pleckstrin homology domain; RCC1: regulator of chromosome condensation 1-like
696 domain; FYVE: Fab1/YGL023/Vps27/EEA1 domain; BRX: Brevis radix domain. The numbers
697 represent the length of the corresponding proteins, in amino acids (aa).

698 b. Phylogenetic tree of RLD proteins from *Arabidopsis* (AtRLDs), tomato (*Solanum*
699 *lycopersicum*) (Solyc), and *N. benthamiana* (Niben101), generated by MEGA 11 and based
700 on the full-length proteins. Bold letters indicate RLDs from tomato (SIRLDs) isolated as C4
701 interactors in a yeast two-hybrid TYLCV-infected tomato, and further characterized in this
702 study. RLD proteins used in this study are contained in the grey boxes.

703 c. Interaction between C4 and the BRX domain (BRXD) of *Arabidopsis* RLD1-4 by yeast two-
704 hybrid.

705 d. Subcellular localization of RFP-RLD3 transiently expressed in *N. benthamiana* leaves in the
706 presence or absence of C4-GFP. White rectangles indicate close-ups. Images were taken at
707 2 days post-agroinfiltration (dpa).

708 e. Interaction between LZY3 (LZY3-YN) and RLD3 (RLD3-YC) as detected by bimolecular
709 fluorescence complementation (BiFC) upon transient expression in *N. benthamiana* leaves


710 with or without C4. Images were taken at 2 dpa. Laser intensity was kept equal during image
711 acquisition for all samples.

712 f. YFP intensity of the samples in e, quantified using ImageJ. Each dot represents the YFP
713 intensity value obtained for one technical replicate consisting of one field; lines represent the
714 average value per sample. A minimum of six fields were analyzed per combination; asterisks
715 indicate a statistically significant difference according to Student's t test (***, $P<0.001$).

716 g. Interaction between LZY3 and RLD3 in the presence or absence of C4, and interaction
717 between C4 and RLD3 in the presence or absence of LZY3, as measured by FRET-FLIM
718 upon transient co-expression in *N. benthamiana* leaves. Samples were taken at 2 dpa. The
719 membrane protein IAN9 is used as negative control. FE, FRET efficiency. Each dot represents
720 the GFP fluorescence lifetime (ns, nanoseconds) obtained for one technical replicate
721 consisting of one field; lines represent the average value per sample. Significant differences
722 between groups were determined by one-way ANOVA ($P<0.0001$, $F=23.76$, $df=7$), followed
723 by multiple comparisons of means by applying Tukey test; asterisks represent statistically
724 significant differences at: ****, $P< 0.0001$; **, $P< 0.005$; ns, not significant.

725 Error bars represent standard deviation. The scale bar is 20 μ m in d and e. BF, bright field. Z-
726 stack shows the maximum projection of a vertical cross-section through the observed cells.
727 The experiments in c, d, e and g were performed three times with similar results; one
728 representative replicate is shown here.

729 C4, C4 from TYLCV.

730

731

732 **Figure 2. C4 specifically interacts with RLD proteins through a host-mimicking CCL-like**
733 **domain.**

734 a. Alignment of amino acid sequences of LZY1, LZY2, LZY3, and OsLAZY1 in the region
735 containing the CCL domain (Furutani *et al.*, 2020). Below, identification of the CCL-like domain
736 in C4 from TYLCV and design of C4_{CCLm1} and C4_{CCLm2} mutants; amino acid substitutions
737 relative to the original C4 sequence are indicated in bold red letters. Numbers indicate the
738 amino acid position in the corresponding proteins.

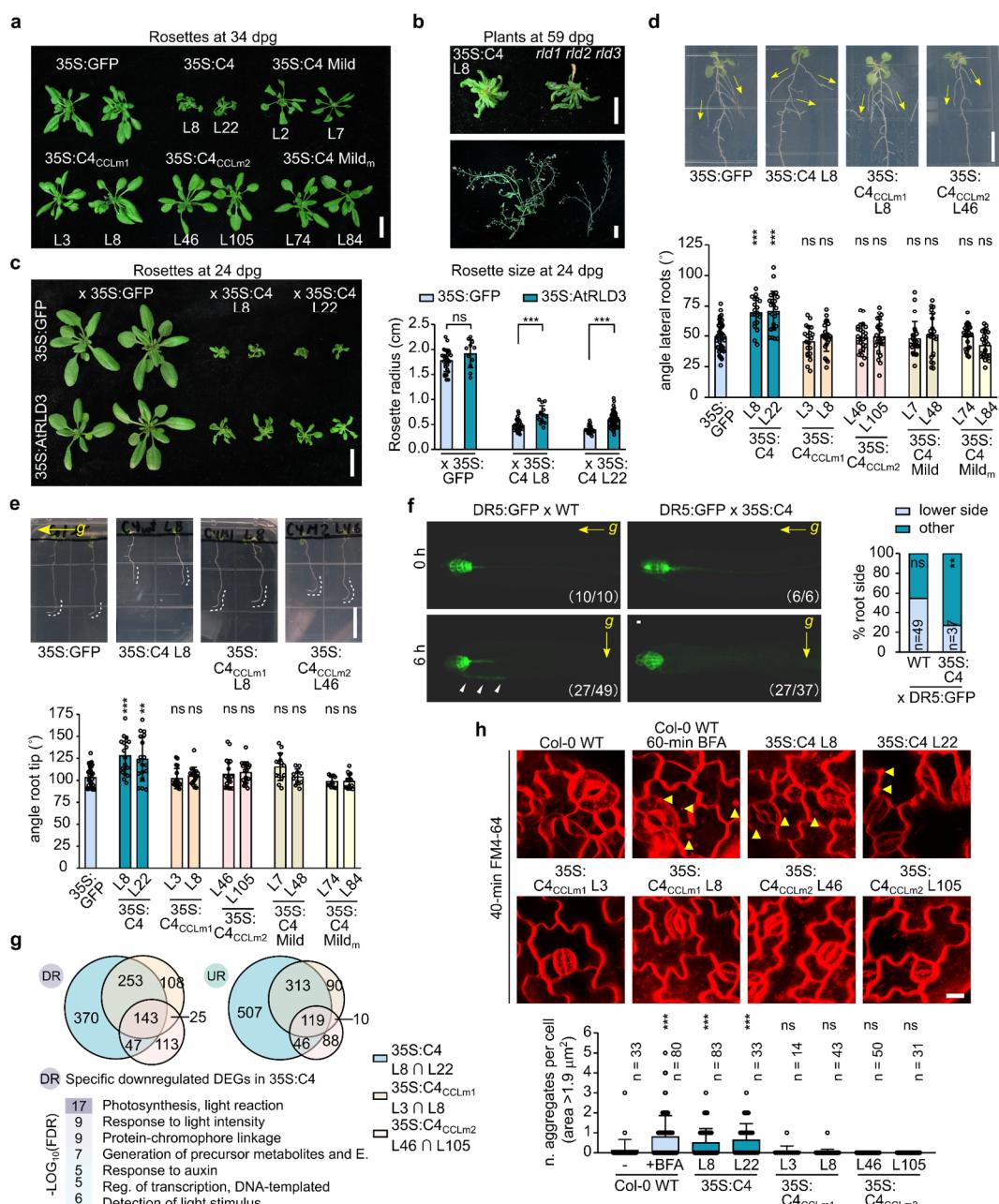
739 b. Analysis of the interaction between C4_{CCLm1}/C4_{CCLm2} and the BRX domain (BRXD) of
740 Arabidopsis RLD1-4 by Y2H.

741 c. Co-expression of RFP-RLD3 and C4_{CCLm1}/C4_{CCLm2}-GFP in *N. benthamiana* leaves. Images
742 were taken at 2 days post-agroinfiltration (dpa). BF, bright field. Z-stack shows the maximum
743 projection of the vertical cross-sections obtained through the observed cells. Scale bar, 20 μ m.

744 d. Interaction between LZY3 and RLD3 with or without C4_{CCLm1}, measured by FRET-FLIM
745 upon transient co-expression in *N. benthamiana* leaves. FE, FRET efficiency.

746 e, f. Interaction between C4, C4_{CCLm1}, or C4_{CCLm2} and the plasma membrane-localized receptor
747 kinases BAM1 or CLV1 by FRET-FLIM (e) and co-IP (f) upon transient co-expression in *N.*
748 *benthamiana* leaves.

749 In d, e, f, samples were taken at 2 dpa; the membrane protein IAN9 is used as negative control,
750 and the interaction between C4 and BAM1 is used as positive control. FE, FRET efficiency.


751 In d, e, each dot represents the GFP fluorescence lifetime (ns, nanoseconds) obtained for one
752 technical replicate consisting of one field; lines represent the average value per sample; and
753 error bars correspond to standard deviations. Significant differences between groups were
754 determined by one-way ANOVA (for d, $P<0.0001$, $F=70.21$, $df= 3$; for e, $P<0.0001$, $F=51.63$,
755 $df=8$), followed by multiple comparisons of means by applying Tukey test; asterisks represent
756 statistically significant differences at: ****, $P<0.0001$; **, $P<0.005$; ns, not significant. IP:
757 immunoprecipitation; IB: immunoblotting. The experiments in b, c and d were performed three
758 times with similar results. The experiments in e and f were performed two times with similar
759 results. One representative replicate is shown here.

760 g. Representative phenotypes of bleaching suppression in 4-week-old SUC:SUL (S-S)
761 Arabidopsis rosettes expressing C4, or the mutant forms C4_{CCLm1} or C4_{CCLm2} (T2 generation).
762 Scale bar, 2 cm. S-S/EV rosettes (from plants transformed with the empty vector) are included
763 as control.

764 h. Bleaching quantification in different lines of 4-week-old SUC:SUL (S-S) Arabidopsis plants
765 expressing C4 from TYLCV (C4), C4 from TYLCV-Mild (C4 Mild) or their respective mutant
766 forms (T2 generation). In the box and whiskers graph, each dot represents bleaching values
767 (%) of an individual leaf, and error bars indicate the highest/lowest values. Three leaves per
768 rosette, and a minimum of ten rosettes per line, were analyzed, when possible. Differences
769 between groups were assessed by applying Kruskal-Wallis test ($P=4.62E-40$, $H=215.43$, df
770 =11), followed by pairwise comparisons between each group and the reference group (S-S/EV
771 line 6) with Mann-Whitney U test (significance 0.0045, after Bonferroni's correction for multiple
772 comparisons); asterisks represent statistically significant differences at: **, $P<0.001$; ns, not
773 significant.

774 C4, C4 from TYLCV; C4 Mild, C4 from TYLCV-Mild; S-S, SUC:SUL plants; EV, empty vector-
775 transformed S-S plants.

776

777

778

779 **Figure 3. Developmental alterations triggered by stable expression of C4 from TYLCV**
780 **in Arabidopsis plants rely on the interaction with the RLDs, and correlate with the**
781 **interference with auxin responses and vesicle trafficking.**

782 a. Representative developmental phenotypes in Arabidopsis rosettes expressing C4 from
783 TYLCV (C4), C4 from TYLCV-Mild (C4 Mild), or their respective mutant forms (see Figure 2a
784 and Figure S5) (T3 generation), at 34 days post-germination (dpg). Scale bar, 2 cm.

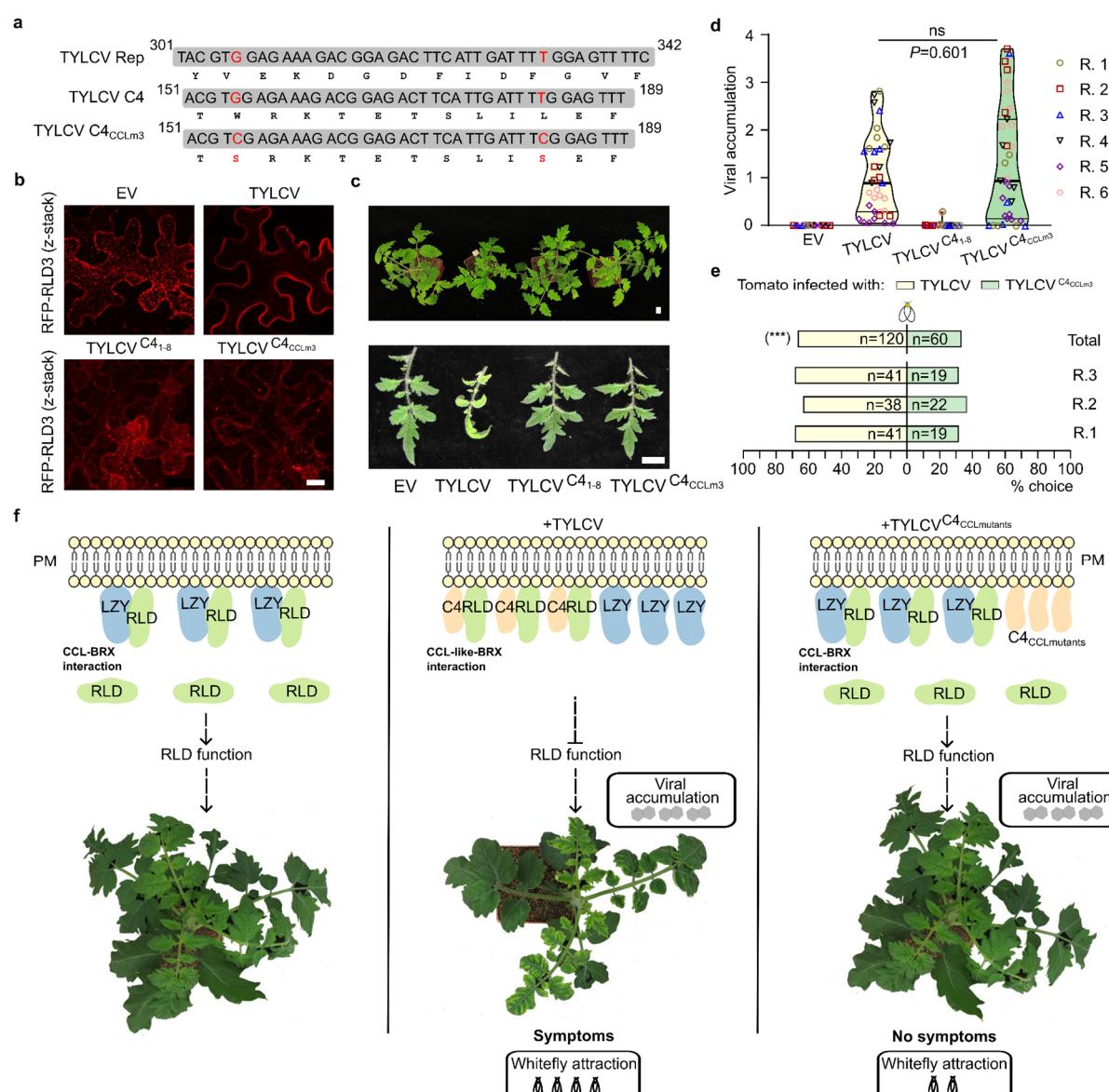
785 b. Comparison of developmental phenotypes between a plant expressing C4 (35S:C4 line 8,
786 T3 generation) and a rld1 rld2 rld3 triple mutant (Furutani *et al.*, 2020). Both rosettes (upper
787 panel) and stems with inflorescences and siliques (bottom panel) at 59 dpg are shown. Scale
788 bar, 1 cm.

789 c. Representative rosette phenotypes (panel on the left) and quantification of the rosette
790 average radius (panel on the right) in the F1 generation plants resulting from crossing 35S:C4

791 lines 8 and 22 (T2) with 35S:AtRLD3 lines 20 and 10 (T2) parents, respectively, at 24 dpg.
792 In these experiments, F1 plants coming from crossing a stable line expressing GFP (35S:GFP)
793 with 35S:AtRLD3 T2 parents or with another 35S:GFP are used as controls. In the bar graph,
794 each dot represents the average of three radius measurements per rosette, and error bars
795 indicate standard deviations. A minimum of 11 rosettes per genotype were analyzed, when
796 possible. Differences between pairs of groups were assessed by applying Mann-Whitney U
797 test; asterisks represent statistically significant differences at: ***, $P<0.001$; ns, not significant.
798 This experiment was repeated twice, with F1 progenies coming from two different crosses
799 carried out independently. Scale bar, 1 cm.

800 d. Upper pictures show representative root phenotypes in plants expressing C4 or the mutant
801 forms C4_{CCLm1} or C4_{CCLm2} (T3 generation), at 14 dpg. Scale bar, 1 cm. Note the wider angle
802 aperture secondary roots exhibit in plants expressing the C4 protein, indicated in the figure by
803 the yellow arrows; a stable line expressing GFP (35S:GFP) is shown as reference. Bottom
804 panel shows quantifications of the lateral root angles relative to the main roots in plants
805 expressing C4, C4 Mild, or their respective mutant forms (T3 generation). In the bar graph,
806 each dot represents the angle measurements of a lateral root, and error bars indicate standard
807 deviations. Angles of four different roots per plant were measured, and a minimum of 6 plants
808 were analyzed per line. Significant differences between groups were determined by one-way
809 ANOVA ($P=2.39E-16$, $F=11.474$, $df=10$), followed by multiple comparisons of means between
810 the C4-expressing lines against the reference group (35S:GFP), by applying Dunnett's test;
811 asterisks represent statistically significant differences at: ***, $P<0.001$; ns, not significant.

812 e. Upper pictures show representative root phenotypes in plants expressing C4 or the mutant
813 forms C4_{CCLm1} or C4_{CCLm2} (T3 generation), at 7 dpg, after growing for 12 h rotated 90 degrees
814 with respect to their initial growing position: the new g force direction is depicted in the pictures
815 by the yellow arrow on the left. Scale bar, 1 cm. Note the wider aperture of the tip angle primary
816 roots exhibit in plants expressing the C4 protein, and indicated in the figure by the white dotted
817 lines in root tips; a stable line expressing GFP (35S:GFP) is shown as reference. Bottom panel
818 shows quantifications of the root tip angles in plants expressing C4, C4 Mild or their respective
819 mutant forms (T3 generation), after receiving the same treatment. In the bar graph, each dot
820 represents the individual measurement of a root tip angle, and error bars indicate standard
821 deviations. Root tip angles of a minimum of 14 plants were analyzed per line. Differences
822 between groups were assessed by applying Kruskal-Wallis test ($P=6.24E-09$, $H=58.75$, $df=10$),
823 followed by pairwise comparisons between each group and the reference group (35S:GFP)
824 with Mann-Whitney U test (significance 0.005, after Bonferroni's correction for multiple
825 comparisons); asterisks represent statistically significant differences at: ***, $P<0.001$; **,
826 $P=0.002$; ns, not significant.


827 f. Activation of auxin responses in root tips upon changes in gravitropic stimuli. Pictures on the
828 left show GFP fluorescence in the root tips of the F1 plants resulting from crossing the stable
829 reporter line DR5:GFP with either C4-expressing plants (35S:C4 lines 8 and 22, T2 generation)
830 or WT (as control), at 5 dpg, before and after 6 h of reorientation. Arrowheads indicate
831 asymmetric distribution of GFP signal in WT (27 out of 49) after 6 h, whereas symmetric
832 expression was detected in C4-expressing plants (27 out of 37) after the same time. The g
833 force direction is depicted in the pictures by yellow arrows. In brackets, numbers of roots
834 showing the specific phenotype over the total checked. Scale bar, 10 μ m. On the right, the
835 stacked bar graph shows the aggregate data obtained in 4 independent experiments
836 quantifying the number of roots (%) with asymmetrical expression of GFP fluorescence (lateral)
837 in the root tip after 6 h over the total checked (n). Statistical differences in the % distributions
838 were assessed by applying Fisher's Exact test; asterisks represent statistically significant
839 differences at: **, $P<0.01$; ns, not significant. n = number of roots.

840 g. Transcriptomic analyses performed on 12-days-old seedlings, including 35S:C4 (lines 8 and
841 22, T3), 35S:C4_{CCLm1} (lines 3 and 8, T3), 35S:C4_{CCLm2} (lines 46 and 105, T3), and WT as
842 reference. Venn diagrams show the number of overlapping genes identified as down- (DR) or
843 upregulated (UR) in each specific genotype, when compared to the reference WT. In the
844 bottom part, the GO enrichment analysis shows GO categories specifically over-represented
845 in the subset of DR genes in the 35S:C4 genotype: note the presence of 'Response to auxin'
846 in this list. FDR, false discovery rate.

847 h. In the upper panels, distribution of membrane-related structures stained with FM4-64 (8 μ M,
848 40 min) in epidermal cells of Col-0 WT, 35S:C4, 35S:C4_{CCLm1}, and 35S:C4_{CCLm2} transgenic
849 lines (T3) is compared to that of Col-0 WT treated with Brefeldin A (BFA; 70 μ M, 60 min).
850 Confocal images represent the z-stack (maximum projection) of representative phenotypes.
851 Yellow arrowheads indicate the presence of BFA bodies in BFA-treated WT cotyledons, or
852 vesicle aggregates reminiscent of BFA bodies in C4-expressing, non-treated plants. Non-
853 treated, FM4-64-stained WT plants are shown as control. Scale bar, 10 μ m. In the bottom
854 panel, each dot of the bar graph represents an individual count of the number of aggregates
855 bigger than 1.9 μ m² found per cell, error bars indicate standard deviations, and n indicates the
856 total number of cells analyzed; a minimum of 14 cells per line were analyzed. Differences
857 between groups were assessed by applying Kruskal-Wallis test ($P=1.24E-16$, $H=89.99$, $df=7$),
858 followed by pairwise comparisons between each group and the reference group (non-treated
859 WT) with Mann-Whitney U test (significance 0.007, after Bonferroni's correction for multiple
860 comparisons); asterisks represent statistically significant differences at: ***, $P<0.001$; ns, not
861 significant.

862 C4, C4 from TYLCV; C4 Mild, C4 from TYLCV-Mild; dpg, days post-germination; Energy, E.
863 (for GO category); \cap , overlapping genes; BFA, Brefeldin A.

864

865

866 **Figure 4. The interaction between C4 from TYLCV and RLD proteins underlies symptom
867 development during viral infection, which is required for insect vector attraction but not
868 for viral accumulation.**

869 a. Design of the C4_{CCLm3} mutant and resulting C4 and Rep nucleotide and amino acid
870 sequences; changes with respect to the original sequence are indicated in red. Note that
871 nucleotide substitutions to generate C4_{CCLm3} do not alter the Rep protein sequence. Numbers
872 indicate nucleotide positions in the corresponding open reading frame.

873 b. Subcellular localization of RFP-RLD3 in uninfected cells (EV, co-transformed with the empty
874 vector), or cells inoculated with TYLCV, TYLCV^{C41-8}, or TYLCV^{C4CCLm3} infectious clones in *N.*
875 *benthamiana* leaves. The images are z-stack maximum projections and were taken at 2 days
876 post-agroinfiltration (dpa). Scale bar, 20 μ m. These experiments were repeated two times with
877 similar results; one replicate is shown here.

878 c. Developmental phenotype of tomato plants agroinoculated with TYLCV, TYLCV^{C41-8},
879 TYLCV^{C4CCLm3}, or empty vector (EV) as control. Images were taken at 28 days post-inoculation
880 (dpi). Scale bar, 2 cm.

881 d. Viral accumulation in systemic tissue of tomato plants inoculated with the viruses in c, at 28
882 dpi; violin plots show the aggregate results obtained in 6 independent experiments, with each
883 dot representing one biological replicate consisting of an individual plant; thick lines represent
884 median values and thin lines the lower/upper quartiles. A minimum of 5 plants were analyzed
885 per virus and experiment, when possible. Differences between TYLCV and TYLCV^{C4CCLm3}
886 were assessed by applying Mann-Whitney U test ($P=0.601$; ns, not significant). TYLCV^{C4₁₋₈},
887 a mutant virus carrying a premature stop codon mutation in the C4 sequence, resulting in the
888 translation of the first 8 aa only (Rosas-Diaz *et al.*, 2018), was included as control; EV, empty
889 vector.

890 In (d) and (e), R indicates each of the independent replicates.

891 e. Preference shown by the TYLCV insect vector *Bemisia tabaci* (whitefly) in dual choice
892 assays. For pairwise comparison, preference between TYLCV- or TYLCV^{C4CCLm3}-infected
893 tomato leaflets was recorded individually for 60 adult whiteflies at 21 dpi, and the final numbers
894 are summarized in the horizontal bar graph. Each bar represents the % of whiteflies with the
895 indicated preference over the total checked (% choice), with n representing the number of
896 whiteflies. Results obtained in three independent experiments as well as the aggregate data
897 are shown. Statistically significant differences were assessed by applying binomial test
898 ($N=180$, test proportion 0.5); asterisks indicate significant differences at: *** $P<0.001$.

899 f. Model for the role of C4 in symptom development during viral infection. In the absence of
900 infection (left panel), RLD function, which partially depends on its interaction with and
901 recruitment by LZY proteins, contributes to normal plant development. When TYLCV infects
902 the cell (middle panel), its C4 protein interacts with RLD proteins and recruits them to the
903 plasma membrane (PM), to which it is associated by myristoylation. C4 outcompetes LZY
904 proteins, and potentially other endogenous interactors of RLD proteins, for RLD binding; this
905 results in the disruption of RLD function, and the concomitant alterations of development that
906 are recognized as viral symptoms, which ultimately act as attractants for the whitefly insect
907 vector. This higher whitefly attraction to virus-infected plants may favor acquisition and vector
908 transmission of TYLCV. If plants are artificially inoculated with a mutant virus producing a
909 CCL-like-domain-deficient version of C4 (TYLCV^{C4CCLm3}) (right panel), the interaction with
910 RLDs is abolished, so RLD function is maintained and plant development is not affected,
911 rendering infected plants symptomless and reducing attractiveness to whiteflies. Of note, viral
912 accumulation is not significantly affected by the lack of a CCL-like domain in C4, indicating
913 that symptom development and viral performance in the plant host can be uncoupled.

914

915