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Abstract

The rich repertoire of skilled mammalian behavior is the product of neural circuits that generate
robust and flexible patterns of activity distributed across populations of neurons. Decades of associative
studies have linked many behaviors to specific patterns of population activity, but association alone
cannot reveal the dynamical mechanisms that shape those patterns. Are local neural circuits high-
dimensional dynamical reservoirs able to generate arbitrary superpositions of patterns with appropriate
excitation? Or might circuit dynamics be shaped in response to behavioral context so as to generate
only the low-dimensional patterns needed for the task at hand? Here, we address these questions within
primate motor cortex by delivering optogenetic and electrical microstimulation perturbations during
reaching behavior. We develop a novel analytic approach that relates measured activity to theoretically
tractable, dynamical models of excitatory and inhibitory neurons. This computational model captures
the dynamical effects of these perturbations and demonstrates that motor cortical activity during
reaching is shaped by a self-contained, low-dimensional dynamical system. The subspace containing
task-relevant dynamics proves to be oriented so as to be robust to strong non-normal amplification
within cortical circuits. This task dynamics space exhibits a privileged causal relationship with behavior,
in that stimulation in motor cortex perturb reach kinematics only to the extent that it alters neural
states within this subspace. Our results resolve long-standing questions about the dynamical structure
of cortical activity associated with movement, and illuminate the dynamical perturbation experiments
needed to understand how neural circuits throughout the brain generate complex behavior.
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Complex behaviors rely on neural computations that are dynamical in nature, in that the brain must maintain and transform1

the values of internal variables relevant to the task at hand, as well as generate time-varying signals that produce goal-2

directed movements. The transformations by which recurrently connected circuits shape the evolution of neural population3

activity—and the task-related signals therein—may be characterized as a dynamical system.1,2 This framework of computation4

through neural dynamics maps theories of neural computation onto dynamical motifs that guide neural population activity.5

Importantly, specific computational hypotheses may be evaluated as falsifiable predictions regarding the evolution of neural6

states over time.7

This perspective has been particularly influential in studies of the motor cortex,1,3,4 which serves as an important nexus in the8

control of skilled arm and hand movements.5–8 Temporally complex, heterogeneous firing patterns in individual cortical neurons9

exhibit lawful dynamics at the population level,9,10 generating patterned outputs that help guide movement via lower motor10

centers11–13 (Fig. 1a). Across numerous studies in primates and rodents, three distinct classes of hypotheses have emerged11

to describe the operation of motor cortex as a dynamical system. First, motor cortex could implement a reservoir network12

(H1), supporting a highly expressive collection of basis patterns that are flexibly combined to create complex downstream13

readouts.14–22 Under this view, although neural activity following from any single initial condition might engage only a few14

dimensions in course of one movement, the circuit retains the concurrent potential to generate activity patterns in many15

additional dimensions, which would be revealed by increasing task demands23 (Fig. 1b). Second, motor cortex could establish16

a subspace-structured network (H2), in which activity that lies within a small set of dimensions in the full neural space shapes17

the evolution of task-related signals (Fig. 1c). Such low-dimensional subspace structure is present in model networks with18

low-rank connectivity24–27 and has motivated the development of methods to estimate low-dimensional dynamical systems in a19

latent variable space directly from neural population recordings.9,10,28–31 Low-dimensional subspace-structure can also emerge20

in task-optimized artificial systems when appropriately regularized.32–34 Lastly, motor cortex may be governed by path-following21

dynamics (H3), in which the neural state is constrained to move along an externally configured path. In the context of motor22

control, previous work has proposed that the motor cortex might serve to activate specific motor programs implemented by23

recurrent circuitry in the spinal cord.35 Under this hypothesis, motor cortical activity would be pushed along specific trajectories24

dictated by evolving movement instructions,36,37 sensory feedback,38 and predictive internal models within the cerebellum,3925

conveyed from other cortical regions and via the motor thalamus.4,40,4126

Each of these proposals is consistent with the low-dimensional neural activity patterns that have been observed during reaching27

tasks.9,14,32 However, they make different predictions about how experimental perturbations of the neural state would engage28

with local cortical dynamics and alter the future evolution of neural population activity. In reservoir networks, which retain the29

concurrent potential to express basis patterns in many different dimensions, perturbations of neural state should engage new30

dynamical modes and thus evoke complex, long-lasting transients (Fig. 1e). In subspace structured networks, where activity31

is driven by the state within a low-dimensional subspace, only perturbations that affect this subspace should elicit complex,32

long-lasting effects, while perturbations along all other dimensions should fail to engage with the circuit dynamics (Fig. 1f).33

Lastly, in a path-following network, all perturbations away from the externally-configured trajectory will decay back rapidly34

(Fig. 1g).35

To select among these competing hypotheses, we performed targeted circuit perturbations using optogenetic stimulation and36

electrical intracortical microstimulation (ICMS) in dorsal premotor and primary motor cortices of rhesus macaque monkeys37

engaged in an instructed delay center-out reaching task. Optogenetic stimulation created a large displacement in neural38

population state that decayed rapidly and did not alter reach kinematics. These optogenetic stimulation responses were incon-39

sistent with the predictions of high-dimensional reservoir dynamics (H1). In contrast, ICMS produced heterogeneous effects on40

reaching kinematics and exhibited more temporally complex interactions with the local dynamics; these long-lasting responses41

provided evidence against path-following dynamics (H3). Statistical estimates of a local dynamical system with underlying42

low-dimensional structure embedded in a high-dimensional network of excitatory and inhibitory cells were predictive of the43

time-courses of recovery from both perturbation modalities, supporting a view of motor cortex as a dynamical system with44

low-dimensional, subspace-structured dynamics (H2). Additionally, we found that ICMS distorted the underlying geometry45

of task-relevant latent neural states to an extent correlated with the resultant behavioral effects. This non-additive mecha-46

nism revealed how these electrical perturbations—not targeted to specific neural dimensions—influenced the low-dimensional47

subspace that governs task dynamics. Collectively, these findings significantly constrain the space of hypotheses about the48

exact nature of the dynamical system that shapes motor cortical activity, reveal new insights into how distinct stimulation49

modalities engage with cortical dynamics, and suggest a general mechanism by which subspace-structured low-dimensional50

dynamics support robust computation in neural circuits.51

Optogenetic stimulation during reaching52

In two rhesus macaques (Q and O), we used AAV5-CaMKIIα to target the red-shifted, excitatory opsin C1V1TT to excitatory53

neurons42,43 throughout the gyral motor cortex, comprising dorsal premotor (PMd) and primary motor (M1) areas. We inserted54

a primate-optimized coaxial optrode44 at one of several discrete locations in these areas, along with several independently55

positioned microelectrodes (Fig. 2a). This strategy delivered repeatable optogenetic perturbations across experimental sessions56
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Fig. 1. Hypotheses for the dynamical systems underlying the control of movement. a: A dynamical system
creates heterogeneous activity patterns in response to initial conditions and inputs. The activity patterns drive
downstream muscle activations, which ultimately result in the desired movement. b,e: H1. The network dynamics
are a high-dimensional reservoir creating the activity patterns needed to produce complex movements. For simple
tasks and inputs, observed activity patterns may only explore a lower-dimensional subspace (colored plane). For
other inputs, the network has the ability to explore additional dimensions (grey trajectories), reflecting the underlying
high-dimensionality of network dynamics (b). Since the network is sensitive to a high-dimensional space of inputs
and initial conditions, a perturbation is likely to unveil this structure and result in long-lasting effects (e). c,f: H2.
The network dynamics implement specific computations within lower-dimensional subspaces. Inputs are targeted
towards this space and there is only a limited set of inputs and initial conditions that will affect the future state
evolution of the dynamical system (c). Unless perturbations are specifically targeted towards this low-dimensional
space, they are unlikely to engage with the low-dimensional structure of the dynamical system (f). d,g: H3.
Network dynamics are configured to follow a single trajectory. All directions in network space are set up to decay
rapidly towards this path (d). As a consequence, any perturbation to the local neural state is expected to decay
back towards the established trajectory (g). ↑ Go back.
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while simultaneously recording the responses of the local neural population. As the monkeys performed a center-out reaching57

task with an instructed delay period, we delivered 200 ms continuous pulses of optogenetic stimulation on randomly interleaved58

trials at a discrete set of salient timepoints within the task (Fig. 2b). Consistent with previous reports,45–47 optogenetic59

excitation of motor cortex failed to alter reaching kinematics at any time during the trial (Fig. 2c, Extended Data Fig. 1a,b).60

We observed a modest slowing of reaction time when stimulation was delivered to PMd coincident with the visual go cue,61

indicating a disruption of motor preparation (Extended Data Fig. 1c).62

In the local neural population, optogenetic stimulation rapidly evoked strong responses in a large region extending 2 mm of63

the optrode source (Fig. 2d,e), presumably reflecting both directly stimulated and transsynaptically driven neurons. At the64

population level, the perturbed firing rates exhibited large deflections along the leading principal components of non-stimulated65

activity.66

We sought to characterize the impact of optogenetic stimulation using a latent variable model (LVM). Firing rates were67

modeled as linear functions of a set of lower-dimensional time-varying latent variables with condition-dependent trajectories,68

combined with an additive term during and after stimulation that was invariant across reach directions and stimulation times69

(stimulation ∆, Fig. 2g, Extended Data Fig. 2a-d; see Methods §8). The LVM accurately captured neural responses for both70

non-stimulated and stimulated conditions (Fig. 2h, Extended Data Fig. 2e,f). Under stimulation, the inferred latent variable71

trajectories were indistinguishable from the trajectories in the corresponding non-stimulation condition (Fig. 2i). Remarkably,72

stimulation’s effects on firing rates were captured entirely within the additive stimulation delta term (Fig. 2j). We verified73

that the latent trajectories were not distorted under optogenetic stimulation using a shape similarity metric48 (not significant74

against either a permutation test or a null distribution sampled from synthetic firing rates computed with identical stimulation75

and non-stimulation latents, Fig. 2k shuffle and Poisson resample, respectively; see Methods §8.3). Furthermore, the LVM’s76

goodness of fit was not significantly reduced when fit with a constraint enforcing identical stimulation and non-stimulation77

latents (Fig. 2l). Collectively, these results demonstrate that optogenetic stimulation resulted in a purely additive effect,78

translating neural states in parallel without distorting the underlying geometry of task related activity.79

The magnitude of the stimulation-induced displacement vector was large, exceeding the task diameter, which we defined as80

the largest distance between any two neural states on the non-stimulated neural trajectories (Fig. 2m,n, Full space). We then81

identified the low-dimensional task activity space which captured the majority of task-related variance on non-stimulated trials82

using PCA. The projection of the stimulation vector within the task activity space was also larger than expected by chance83

for a randomly oriented perturbation vector (Fig. 2n, Task space). The displacement distance increased immediately at laser84

onset and decayed rapidly after the offset of stimulation (Fig. 2o).85

Rapid decay of optogenetic stimulation constrains hypothesis space86

This rapid decay of the perturbation vector indicates that optogenetic stimulation failed to evoke complex, long-lasting transients87

in motor cortex. This is an unlikely outcome under the reservoir network hypothesis (H1) where dynamics are dominated by slow88

and structured responses along most input dimensions. In a representative network model from the reservoir network class,1489

random additive perturbations to excitatory cells triggered long-lasting effects. These predicted responses were qualitatively90

different from the observed neural responses (Extended Data Fig. 3), arguing against the presence of high-dimensional reservoir91

dynamics in the motor cortex (Fig. 1b,e, H1).92

In a network governed by subspace-structured dynamics (H2), dynamically-potent dimensions are confined to a low-dimensional93

task dynamics subspace. If the optogenetic stimulation were misaligned with this task dynamics subspace, a fast decaying94

transient would result, which could be consistent with the observed neural responses. However, although the optogenetic95

stimulation decayed rapidly, it exhibited a large projection into the task activity space where neural population activity displayed96

variance during reaching. It is typically assumed that the task activity space—where task-related activity exhibits high variance—97

is identical to the the task dynamics space—where activity is shaped by slow, task-related dynamics. Consequently, we would98

expect that optogenetic stimulation would elicit slowly-decaying transients that match the autocorrelation timescales of the99

observed task-related activity (e.g., Fig. 2h, black traces). Consistent with this prediction, a latent linear dynamical system100

(LDS) model fit to the non-stimulated firing rates learned to produce slow task-related dynamics and consequently predicted101

slowly decaying transients following stimulation offset (Fig. 2p, Extended Data Fig. 4a–c)102

This mismatch in timescales requires that if motor cortex is shaped by subspace-structured dynamics (H2), then its task103

dynamics space active for reaching movements must be oriented in neural space differently from the task activity space. Such104

a misalignment is characteristic of non-normal dynamical systems governed by a dynamics matrix whose eigenvectors are not105

orthogonal to each other.49,50 Indeed, when we fit the LDS model to neural activity from both non-stimulated and stimulated106

trials, these models reproduced both the slow evolution of task-related neural activity and the rapid decay of the empirical107

stimulation via a non-normal dynamical mechanism (Extended Data Fig. 4d,f,h).108

The LDS solution demonstrates that the observed data may be consistent with subspace-structured dynamics (H2, Fig. 1c),109

yet, these non-normal dynamics did not arise without explicitly fitting to stimulation data (Fig. 2p). When we shuffled the110
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Fig. 2. Optogenetic perturbations of motor cortex additively displace task activity but decay quickly. a:
Schematic of optogenetic stimulation setup with simultaneous electrode recording of surrounding neurons. Popu-
lation responses were collected at four optrode sites in two monkeys. Anatomical landmarks are approximate. b:
Diagram of stimulation timings within instructed-delay reaching task. c: Peri-move optogenetic stimulation does
alter reach kinematics. d: Stimulation-evoked change in firing rate (∆ FR) vs. neuron distance from stimula-
tion. Neurons at 0 were recorded on the coaxial optrode. Inset: r.m.s. firing rate displacement of neural state by
stimulation within population of neurons recorded in annuli of increasing distance from optrode. e: Left: Pre-trial
stimulation responses of all recorded neurons at O. M1 site, sorted by mean ∆FR during stimulation period. Right:
Principal components of stimulation-evoked ∆FR. Timecourses colored by stimulation timing as in (b); black stem
plots show PC loading vectors over neurons, sorted by ∆PC 1. f: State space visualization of stimulation evoked
displacements of neural trajectories within the task-activity space (PCs of non-stimulated trial-averages) at site O.
M1. g: Schematic illustration of latent variable model to distinguish additive effects of stimulation from changes
in underlying task-related latent variables. h: Empirical and LVM-fitted trial-averaged firing rates projected into
leading two task activity space dimensions. Stimulation timings are separated into columns, with each trace corre-
sponding to a reach direction. i: Fitted latent activations for the leading two latent dimensions. (continued on
next page)
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Fig. 2 (continued from previous page). j: Timecourses of the additive delta term which reflects a condition-
invariant stimulation induced change in firing rates. Inset: loading vectors mapping each component into neural
space together with the percentage of variance each component explains in the empirical stimulation-delta. k: Shape
similarity metric quantifying distortion between non-stimulated and stimulated latents. Shuffle and Poisson resample
lines indicate significance thresholds (α = 0.05) under two null hypotheses, see Methods §8.3. l: LVM goodness
of fit (as Poisson deviance) with stimulation latents fit independently of non-stimulation latents (horizontal), or
constrained equal (vertical). Filled circles indicate statistically significant differences (α = 0.05); error bars indicate
jackknife standard error. m,n: Empirical stimulation vector length for each stimulation timing, in the full neural space
and projected into task activity space, normalized by task-space diameter. Numbers in m: denote dimensionality
of each space. o: Timecourses of normalized stimulation vector length for O. M1 in the full neural space (left) and
projected into the task activity space (right). Each trace represents a stimulation timing colored as in (b). p: LDS
model predictions (grayscale) vs empirical decay of stimulation vector in task-activity space (green, same as (o),
right). Inset: eigenvalues of LDS dynamics matrix; circle outlines stable region. ↑ Go back

elements of the stimulation vector used to perturb the model, simulating stochasticity in opsin expression over neurons, the LDS111

model failed to generalize, predicting incorrect slow decay times following perturbation (Extended Data Fig. 4e,g). Moreover,112

the fragile solution learned by the LDS models provided little mechanistic insight into why such non-normal structure would113

arise in the motor cortical network and how it orchestrates the rapid decay of the experimental perturbation.114

Consistency with a low-dimensional dynamical system is also insufficient to rule out the alternative hypothesis of path-following115

dynamics (H3, Fig. 1d). Under H3, all perturbed neural states would rapidly return to the imposed path, which would provide116

a trivial explanation of the observed fast decaying transient. We next examined how and why non-normality and stimulation117

robustness could arise in motor cortical networks, before evaluating the remaining hypotheses with a second set of perturbation118

experiments using electrical intracortical microstimulation (ICMS).119

Subspace-structured dynamics in a balanced E/I network120

Non-normality arises naturally from interactions between excitatory and inhibitory (E/I) cells in networks whose connectivity121

obeys Dale’s law.51 We wondered whether such E/I-based structure might explain aspects of the measured dynamics, and122

particularly the interplay of those dynamics with cell-type-specific perturbations. To explore this possibility, we developed a123

novel modeling framework to capture the low-dimensional dynamical activity observed in random samples of motor cortical124

neurons within an underlying E/I circuit.125

The model comprised a high-dimensional (N=1500–2500 units), linear network representing the putative motor cortical circuit126

(Fig. 3a). Network connections were constrained to satisfy two principles of neurobiological connectivity: Dale’s law52 and E/I127

balance.53–55 The network was optimized under these constraints to reproduce the low-dimensional, subspace-structured activity128

patterns representative of motor cortical dynamics. In particular, we selected a low-dimensional subspace of size K=N/100 at129

random within the high-dimensional network space, which we designated as the task dynamics subspace, and required network130

dynamics to be self-contained within this subspace. Self-containment ensures that the future evolution of activity within the131

task dynamics space depends only on the projection of the network state into that subspace. As such, it forms a minimal132

constraint ensuring that the resulting network evolves with Markovian dynamics within a low-dimensional subspace. More133

stringent constraints on the network dynamics, such as requiring the connectivity to be of low rank, automatically satisfy this134

constraint (Extended Data Fig. 5d). We then optimized the E/I network connectivity matrix to maximize the likelihood that a135

linear readout from this task dynamics space matched the measured neural responses. This approach ensured that the model136

used only the slow and structured activity within the low-dimensional task dynamics space to produce the activity patterns137

contained in the observed data, while the rest of the network dynamics largely maintained random structure of the initialization138

(Extended Data Fig. 5f). The low-dimensional structure was evident in the activity of random samples of network units,139

which could all be used to reproduce the measured neural responses used to fit the model (Extended Data Fig. 5e). Thus, the140

model recapitulated the observation that motor cortical responses during simple center-out reaching movements are generic,141

in the sense that population activity exhibits highly similar structure across experimental sessions, recording sites, and animals142

and from study to study23,56,57 (Extended Data Fig. 5a).143

The E/I model was fit exclusively to data from trials without stimulation. After fitting, the network’s responses reproduced the144

recorded data closely (Fig. 3b,d). Even though the E/I network model was much higher dimensional than the recorded data,145

it did not overfit, generalized well to held-out test data, and performed similarly to a low-dimensional LDS model in terms of146

the fraction of signal variance explained (Fig. 3e). Full details on the model description and fitting procedure are provided in147

Methods §10.148
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Fig. 3. E/I network model recapitulates stimulation responses in recorded data. a: A high-dimensional bal-
anced E/I network model of motor cortical activity. The network receives constant target-specific inputs throughout
hold/go and is constrained to exhibit self-contained low-dimensional dynamics in a randomly chosen subspace (task-
dynamics space). A readout from activity in this subspace is used to reconstruct PSTHs recorded in the absence
of stimulation. b: After fitting, the network responses to optogenetic stimulation are evaluated. Stimulation is
modeled as a constant input targeting a random subset of excitatory cells in the network with randomly chosen am-
plitudes. A subsample of the network units is used to linearly reconstruct the stimulation responses of recorded units
in a leave-one-stimulation-timing-out cross-validated manner. c: Example model evaluation predicting forward from
learned initial condition on training data for Monkey O. PMdP. d: Example cross-validated model reconstructions
of stimulation responses for Monkey O. PMdP. e: The fraction of signal variance explained for training and held out
test data for the E/I network model and an analogous low-dimensional LDS model. f: The cross-validated fraction
of signal variance explained by the E/I model reconstructions (leave-one-condition-out). g: The mean task-diameter
normalized stimulation distance during stimulation. Error bars indicate ± one standard deviation across 100 random
stimulation patterns for each of 20 networks trained under different random initializations. h: The task-diameter
normalized mean stimulation distance vs. time in the full network space, and projected into the task-activity space
of network units for an example network trained to reproduce Monkey O. M1 PSTHs, averaged across 100 random
stimulation patterns. i: The top four principal components of example network responses to the stimulation input
to excitatory cells. The inset shows the loading weights and fraction of variance explained of the leading principal
component of the stimulation response. ↑ Go back

E/I network model reproduces optogenetic stimulation response features149

We probed the network’s responses to cell-type specific perturbations that resemble the optogenetic stimulation of our experi-150

ment. Once the network model had been fit, optogenetic stimulation was modeled with additive noisy, positive input patterns151

targeting random subsets of excitatory cells in the E/I network (Fig. 3b). Even though they had not been used to fit the152

network parameters, the specific patterns of stimulation response of the network closely matched those seen in the measured153

data. To demonstrate this, we reconstructed the measured PSTHs on stimulation trials linearly from random sparse subsam-154
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ples of the network variables at the same time as the task-related PSTHs (Fig. 3b). The reconstructions were quantitatively155

robust, generalizing to held-out combinations of reach target and optogenetic stimulation timing (Fig. 3d,f). The network156

response to stimulation inputs reproduced the qualitative features of the recorded data without any further adjustment of157

the dynamics (Fig. 3g-i). As in the recorded data, the network stimulation responses had a much greater projection into the158

leading dimensions of task-related variance than would be expected by chance (Fig. 3g,h). The perturbation decayed rapidly159

after the stimulation input ended, and there was little effect on the future evolution of network activity, despite the apparent160

overlap with task-related variance (Fig. 3h,i). Furthermore, the stimulation response pattern qualitatively matched what was161

observed empirically in neural activity (Fig. 2f, Fig. 3h).162

E/I network model establishes mechanism underlying stimulation responses163

The effectively parameter-free agreement between the network behavior and the cortical measurements suggested that the164

observed response to optogenetic activation may be fundamental to balanced E/I networks that implement low-dimensional165

dynamical computations. To understand how and why these observed response features arise, we isolated the behavior of166

different input components in the linear network. We first considered how a single stimulation input pattern interacts with167

the linear network dynamics (Fig. 4a). The dynamics initially amplify the stimulation input into a response where both E168

and I cells are activated. This E/I co-activation is the dominant response pattern. Any deviations around it can be viewed169

as random, since these depend on randomness in the stimulation input (e.g., due to opsin expression or laser activation) as170

well as the network connectivity itself. The E/I co-activation component of the stimulation response then decays rapidly due171

to E/I balance. The remainder of the response depends on how the random component of the stimulation interacts with the172

dynamics. The low-dimensional subspace-structured dynamics of the network mean that only inputs within the K-dimensional173

dynamically potent space (K ≪ N) will produce sustained and structured responses in the network. The expected length of174

the projection of a random unit-norm input into this space is
√

K/N. It thus vanishes for large networks that implement175

low-dimensional dynamical processes through subspace-structured dynamics. Indeed, we find that most of the stimulation176

responses lie outside of the task dynamics space of the network and that the response component within the task dynamics177

space is at chance level (Fig. 4a).178

The network responses to stimulation input were approximately orthogonal to the task dynamics space, yet the model reproduced179

the alignment of the stimulation response with the task activity space that was observed in neural data. This response feature180

underlies general properties of dynamical systems with E/I structure. The dominant pattern of activity in E/I networks represents181

an amplification from a differential pattern (where E cells are activated above, and I cells below their baseline firing rate) to182

a co-activation pattern (where E and I cells are both activated above their baseline firing rate).51 This can be understood183

in terms of the singular value decomposition of matrices with Dale’s law sign constraints: The leading singular value of any184

such connectivity matrix scales as O(
√

N), and the leading left and right singular vectors take the form of a co-activation and185

differential activation pattern, respectively (Fig. 4c). Any input or activity that aligns with the differential pattern will thus be186

strongly amplified along the co-activation pattern, solely due to the Dale’s law constraints of the connectivity matrix. Indeed,187

in our trained networks we found that network activity spanned extra dimensions outside of the task dynamics space (Fig. 4b),188

which aligned with the E/I co-activation pattern (Fig. 4c). As a result, the task activity space of the networks was aligned189

with the E/I co-activation pattern, even when the task dynamics space was not (Fig. 4e).190

Overall, the E/I network model demonstrated that the observed stimulation responses are consistent with the hypothesis that191

motor cortical dynamics are subspace structured (Fig. 1c, H2). Furthermore, the model provided theoretical insight into192

the circuit mechanisms underlying our empirical measurements. Robustness to additive perturbations arose naturally when193

low-dimensional dynamical structure was embedded in a high-dimensional network, while non-normal amplification due to E/I194

cell-type constraints explained the alignment of the stimulation responses with the task activity space.195

Observing intracortical electrical microstimulation during reaching196

Having observed that responses to optogenetic perturbation were inconsistent with the reservoir hypothesis (H1) but could197

be reproduced by E/I network models with self-contained subspace dynamics (H2), we sought to evaluate the third possibility198

of path-following dynamics (H3). In principle, H2 could be distinguished from H3 by examining the effects of perturbation199

within the task dynamics space. Under subspace-structured dynamics, such perturbations would trigger long-lasting neural200

effects that are shaped by the same dynamical system as the one that governs the evolution of task-related neural activity201

(Fig. 1f). In contrast, under path-following dynamics, all local perturbations should decay rapidly back towards the externally202

imposed trajectory (Fig. 1g). However, according to our theoretical analyses, additive optogenetic stimulation directed at local203

excitatory neurons could be expected to evoke only vanishingly small, random perturbations in the task dynamics space of204

networks with subspace-structured dynamics. Therefore, H2 and H3 cannot be distinguished based on the results from these205

optogenetic perturbations alone.206

We reasoned that the ability to influence task-relevant behavioral outcomes might indicate that an experimental intervention207

is able to induce perturbations within the task dynamics space. Thus, we turned to intracortical electrical microstimulation208
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Fig. 4. E/I structure and low-dimensional subspace-structure explain stimulation responses. a: Left: The
mean impulse response norm to 100 randomly chosen stimulation vector patterns in the full network space (black)
and projected into the self-contained task-dynamics space of the network (green) together with ± 2 standard
deviation error tubes. Grey line indicates unit norm, red line indicates chance level for projecting an N dimensional
random vector into a K dimensional subspace. Right: The stimulation impulse response can be understood in
terms of three steps: 1) based on the sign structure of the connectivity matrix, positive inputs to E cells get
amplified along an E/I co-activation pattern. 2) In the next step of the network evolution, equal activation of
E and I cells cancel, leaving only a smaller residual response vector. 3) The residual response vector only has a
small by-chance projection into the task-dynamics space of the network and decays with unstructured dynamics.
b: The total fraction of variance in the network responses captured by the task-dynamics and task-activity space
of the the network, for 20 networks trained starting from different random initializations. The task-activity space
dimensionality is chosen to match that of the task-dynamics space for each dataset. All networks produced variance
in dimensions outside of the task-dynamics space. c: Absolute projection of the E/I co-activation pattern (all-ones
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√
N) along a co-activation

pattern (top left singular vector, uuu1). e: Schematic illustration of the misalignment across the task-dynamics and
task-activity space of the network, where the task-activity space has an alignment with the E/I co-activation pattern
and the task-dynamics space does not. Non-normal amplification leads to extra variance being produced along the
E/I co-activation pattern. ↑ Go back

(ICMS), which has long been used to probe causal relationships between brain regions and behavior58,59 and, when delivered209

to motor cortex, is known to disrupt motor preparation60 and to evoke movements readily.61210

We trained two additional macaques (monkeys P and V) in the same reaching task, and delivered high-frequency ICMS through211

a stimulating electrode while recording nearby spiking activity with a Neuropixels probe (Fig. 5a, Extended Data Fig. 6a-c). Like212

optogenetic stimulation and consistent with prior studies,60,62 ICMS in PMd slowed reaction times (Extended Data Fig. 9a).213

In some sessions, primarily when stimulating in M1, we observed visible deflections of the hand path when ICMS was delivered214

mid-reach (Peri-Move stimulation, Fig. 5b,c), confirming that ICMS can alter reach kinematics.215

Observing the neural population response under ICMS presents two unique experimental challenges. First, the effects of216

ICMS are sensitive to the precise location of the stimulating electrode tip, likely due to the spatially-restricted recruitment217

of axons.63 This precludes a strategy of accumulating responses of the local neural population over multiple sessions with218
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Fig. 5. ICMS alters reach kinematics and distorts task-related activity. a: Biphasic electrical stimulation was
delivered near a Neuropixel electrode. b: Reach kinematics for non-stimulated and peri-move stimulated reaches. c:
Norm of change in hand velocity vector evoked by peri-move stimulation vs. time. d: Example of ERAASR2 artifact
removal on three example channels with visible neural spiking. e: Left: Stimulation responses of all recorded neurons
at P14 site, sorted by mean change in firing rate (∆FR) during stimulation period. Right: Principal components of
stimulation evoked ∆FR. Timecourses colored by stimulation timing as in (a); black stem plots show PC loading
vectors over neurons, sorted by ∆PC 1. f: State space visualization of stimulation evoked displacements of neural
state within the task-activity space (PCs of non-stimulated trial-averages) at site O. M1. g: Top: Empirical and
LVM-fitted trial-averaged firing rates projected into leading two task activity space dimensions. Stimulation timings
are separated into columns, with each trace corresponding to a reach direction. Bottom: Fitted latent activations
for the leading two latent dimensions. h: Same as (g), aligned to stimulation onset. i: Timecourses of the additive
delta term which reflects a condition-invariant stimulation induced change in firing rates. Inset: loading vectors
mapping each component into neural space together with the percentage of variance each component explains in the
empirical stimulation-delta. k: Shape similarity metric quantifying distortion between non-stimulated and stimulated
latents for six example sessions. Shuffle and Poisson resample lines indicate significance thresholds (α = 0.05) under
two null hypotheses, see Methods §8.3. l: LVM goodness of fit (as Poisson deviance) with stimulation latents fit
independently of non-stimulation latnents (horizontal) or constrained to be equal (vertical). Filled circles indicate
statistically significant differences (α = 0.05); error bars indicate jacknife standard error. m: Inferred trajectories of
leading three latent dimensions. Circles indicate states at end of stimulation (or equivalent times in non-stimulated
conditions). Ellipsoids indicate 90% confidence covariance ellipses across conditions. (continued on next page)
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Fig. 5 (continued from previous page). n: LVM goodness of fit (as Poisson deviance) with contraction-only
model vs. independent stimulation latents, presented as in (l). o: Distribution of stimulation-averaged effective
contraction factors in each session (shown with 95% CIs) vs. stimulation modality. p,q: Contraction factor
timecourses for the effective latent variance (colored traces) and for the individual contraction modes in latent space
(gray traces). r: Relationship across M1 stimulation sessions between evoked kinematic effect, i.e. the integral
under curve in (c) vs. stimulation-averaged effective contraction factor. Shading shows 95% CIs for a linear fit.
↑ Go back

a consistent perturbation. We addressed this by recording with Neuropixels probes,64 permitting dense sampling of local219

population responses on individual experimental sessions. Second, ICMS resulted in very large stimulation artifacts on the220

Neuropixels probe, which obscured neural spiking activity. We addressed this challenge by developing an artifact removal221

technique (ERAASR2, see Methods §3.2), which exploits differences in the covariance structure of spontaneous neural activity222

and stimulation artifact to recover spiking activity during ICMS65 (Fig. 5d, Extended Data Fig. 6). On some experimental223

sessions, the electrical artifact transiently saturated the recording amplifier (for <1 ms during each biphasic pulse), resulting224

in undetected spike times during the saturation window. However, spikes in the ∼2 ms windows in between ICMS pulses225

could be accurately detected (Extended Data Fig. 7). Moreover, the pattern of evoked neural firing after each pulse was226

indistinguishable in sessions with and without saturation (Extended Data Fig. 7g,h). For both non-saturated and saturated227

sessions, we validated that ERAASR2 cleaned neural signals could be used to detect spike times by developing a synthetic228

stimulation pipeline (Extended Data Fig. 8, Methods §3.6). The synthetic stimulation results confirmed that our approach229

accurately estimated neural states during and immediately following ICMS and allowed us to compensate conservatively for230

unobserved spikes during the saturation time window accompanying each stimulation pulse (see Methods §3.7).231

ICMS distorts task-related activity232

Like optogenetic excitation, ICMS resulted in large increases in local motor cortical firing rates (Fig. 5e) and displaced neural233

states within the task activity space (Fig. 5f, Extended Data Fig. 9b–d). Unlike neural responses under optogenetic stimulation,234

which were fully characterized by an additive response component common across conditions, a non-additive effect of ICMS235

was visible in the leading principal components comprising the task activity space. Neural firing rates along these dimensions236

converged closer together (Fig. 5g,h, top two rows, shaded peri-stim regions), resulting in reduced variance across conditions237

(reach directions × stimulation timings). We applied the same latent variable model (LVM) to quantify this interaction between238

ICMS and task-related neural activity (Fig. 5g). The LVM successfully captured neural responses during non-stimulated and239

stimulated conditions. Across all sessions, a large component of neural responses under ICMS could be characterized by an240

additive transient that is constant across conditions, and that closely resembled the additive component observed in response241

to optogenetic stimulation (Fig. 5i). However, in some sessions, the LVM revealed that ICMS also altered the underlying242

latent variables (Fig. 5g,h, bottom two rows), resulting in a significant distortion in the geometry of these states (Fig. 5k,243

Extended Data Fig. 9e). Constraining paired non-stimulated and stimulated latent variables to take identical values resulted244

in significantly reduced goodness-of-fit for many sessions (Fig. 5l).245

Visualizing the trajectories of the inferred latent variables revealed that ICMS-driven neural states converged towards a common246

origin across reach directions and stimulation timings during and after stimulation (Fig. 5m). This convergence was also visible247

in inferred single trial latents (Extended Data Fig. 9f) and in the structure of single trial variability around the condition means248

(Extended Data Fig. 9g–j). We therefore asked whether this convergence could be described as a strict contraction of the249

latent states. We fit a modified contraction-only version of the LVM in which the latents under stimulation were linked to250

their non-stimulated counterparts through a pure contraction towards a fitted centroid (Extended Data Fig. 9k–l). Despite251

having many fewer degrees of freedom, the contraction-only version of the LVM fit the data equivalently well for the majority252

of the ICMS datasets (Fig. 5n). This demonstrates that the effects of ICMS on task-related activity were well described by a253

contraction of neural states towards a specific induced state in neural space.254

For each session, we computed a contraction factor, defined as the ratio of variance in the stimulated vs. non-stimulated255

neural states, with one corresponding to no contraction, and zero indicating complete contraction to a point. We validated256

that the contraction factor could be estimated accurately using simulated transformations of each dataset (Extended Data257

Fig. 9m, Methods §8.5). The contraction factors across the ICMS sessions were heterogeneous, but were significantly lower258

on average than the optogenetic stimulation sites (Fig. 5o). The contraction of neural states induced by ICMS was maximal259

during stimulation, and persisted for hundreds of milliseconds thereafter (Fig. 5p). In contrast, the contraction factor remained260

near one during and after optogenetic stimulation, consistent with a purely additive effect on neural states (Fig. 5q).261

Lastly, we sought to understand the link between evoked changes in neural states and the observed effects on reaching behavior.262

Additive optogenetic stimulation would likely fail by chance to significantly affect neural states within the low-dimensional task263
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Fig. 6. E/I network model predicts population recovery from ICMS. a: Schematic illustration of the differ-
ences in effects across optogenetic stimulation and ICMS. Optogenetic stimulation can be described as an additive
displacement orthogonal to the task dynamics space (red arrow), whereas the distortion of the task-geometry under
ICMS additionally results a perturbation inside the task dynamics space (teal arrow). b: Schematic illustration of
modeling approach for ICMS population responses. PSTHs on stimulation trials are modeled as a combination of
normal task-related activity, an additive stimulation response component and a residual stimulation response com-
ponent. The value of the residual responses component at the end of stimulation is used as an initial condition for
modeling the state evolution using the dynamics of the E/I network model (colored dots). c: Example model evalu-
ation predicting forward from learned initial condition on training data for session P14. d: Example cross-validated
model reconstructions of stimulation responses for P14. e: The fraction of signal variance explained for training and
held out test data for the E/I network model and an analogous low-dimensional LDS model. f: An estimate of the
state of the residual ∆ within the task-dynamics space is obtained by projecting the binned spike times in the last
10 ms of stimulation into the task-dynamics space using the mapping that was learning from non-stimulated data.
This projection is used as an initial condition for the dynamics. We show the correlation coefficient between the
evolution of residual ∆ projected into the task-dynamics space, and the model predictions using the model dynamics
for the first 200 ms following stimulation offset, together with the correlation coefficients obtained when predicting
the evolution using a version of the dynamics where eigenvalue, eigenvector pairs are shuffled (grey) as well as the
theoretical upper bound for a correlation coefficient based on the signal-to-noise ratio of the data. g: The cross-
validated fraction of signal variance explained by the E/I model reconstructions. Reconstructions are obtained as a
sum of the non-stimulated initial conditions and inputs, a random additive perturbation to the E/I network (related
to neural recordings via a learned mapping using leave-one-condition-out cross-validation), and using the network
dynamics that were learning on non-stimulated data and an inferred initial condition of the residual stimulation to
predict the evolution of the residual from stimulation-offset forward. ↑ Go back

dynamics space in a high dimensional network. In contrast, ICMS could affect the task dynamics space by distorting the264

underlying geometry of task-related neural states through contraction. If this low-dimensional subspace mediated the effects265

of ICMS on behavior, this would predict a relationship between the degree of contraction evoked in a particular session and the266

size of the evoked behavioral effect. Consistent with this prediction, for M1 stimulation sites, we observed a strong negative267

correlation between the computed contraction factor and the magnitude of the evoked change in hand velocity (Fig. 5r; PMd268

stimulation sites exhibited a non-significant trend with reduced slope, Extended Data Fig. 9n). This correlation was also evident269

when contraction factors were computed from the latent states inferred with the original, unconstrained LVM. (Extended Data270

Fig. 9o,p). In contrast, the length of the perturbation induced displacement vector was not predictive of behavioral impact271

(Extended Data Fig. 9q).272

Recovery from ICMS follows task dynamics273

The neural effects of optogenetic stimulation and ICMS were dominated by a condition-invariant translation of neural states274

(Fig. 6a, red arrow). In addition to this translation, ICMS also resulted in a contraction of neural states towards a common275
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origin across reach directions and stimulation timings (Fig. 6a, right). If condition-specific differences in neural states are276

shaped and maintained by low-dimensional subspace-structured dynamics (H2), then the ICMS-induced contraction would277

result in an effective perturbation inside the task dynamics subspace (Fig. 6a, teal arrow). Furthermore, the evolution of278

neural states within the task dynamics subspace following ICMS should be governed by these same dynamics and therefore be279

predictable based on estimates of the population dynamics obtained using neural data recorded during normal reaches without280

stimulation.281

To test this, we directly modeled the empirical stimulation effects using the balanced E/I network model with self-contained282

low-dimensional subspace structure. The stimulation effects can be described as a combination of a condition-invariant, additive283

component, and a condition-dependent, nonlinear component (Fig. 6b). The additive component represents the condition-284

invariant translation in neural state space, while the nonlinear component reflects the distortion of task-related structure due285

to the ICMS-induced contraction of neural states (Fig. 6a,b).286

The E/I network model was again fit exclusively to neural activity recorded in the absence of stimulation. The fitted model287

was able to capture underlying population activity patterns (Fig. 6c) and explained a large fraction of signal variance on288

non-stimulated trials (Fig. 6e). The additive component of the stimulation effect was modeled as the fitted E/I network’s289

response to a constant, additive input vector. The elements of this vector were drawn at random from a Gaussian distribution,290

since ICMS was not targeted to specific cell-types. By chance, this input vector was always approximately orthogonal to the291

task dynamics space of the network, and thus elicited a rapidly decaying transient response in the network. Next, a random292

subsample of the network responses to this additive input was used to reconstruct the empirical stimulation effect. The network293

responses to the additive perturbation were unable to capture the condition-dependent, nonlinear component of the stimulation294

responses. Thus, the nonlinear stimulation effects could be estimated by subtracting estimates of both task-related activity295

and additive effects from the recorded neural firing rates (Fig. 6b).296

We projected the state of the nonlinear stimulation effect at the last time-point of ICMS into the task dynamics space of our E/I297

model. Taking this projected state as the initial condition, we then predicted forward in time using the learned dynamics within298

the task dynamics space and evaluated Pearson’s correlation coefficient between the model prediction and empirical nonlinear299

stimulation effect throughout the 200ms following the end of stimulation. Strikingly, the model predictions showed a strong300

correlation with the empirical effect in the majority of datasets (Fig. 6f). The model also performed better than predictions301

generated by shuffling the eigenvalues and eigenvectors within the task dynamics space, scrambling the fitted dynamics while302

preserving the characteristic timescales. This demonstrates that the stimulation indeed engaged the task dynamics space303

in a way that is predictable based on normal task-related dynamical structure, without any further adjustment of model304

parameters. Lastly, modeling the ICMS responses as a combination of (1) the underlying task-related population responses305

without stimulation, (2) a response component due to the random additive perturbation input, and (3) the model-predicted306

evolution of neural states within the task dynamics space starting from an inferred initial condition at the end of stimulation307

explained a large fraction of signal variance in the stimulated PSTHs (Fig. 6d,g). More details are provided in the Methods308

§15.309

Overall, our analyses demonstrated that population responses to ICMS also reflect structure that is expected in balanced E/I310

networks with self-contained, low-dimensional subspace structure. Since ICMS induced a contraction of neural states towards311

a common induced state, this resulted in an effective perturbation inside the task dynamics space (Fig. 6a). The E/I network312

model fit exclusively to neural activity from trials without stimulation was able to predict the trajectory of perturbed neural313

states within the task dynamics space. This indicates that these fitted task dynamics act upon neural states at locations far314

from the trajectories followed during non-stimulated trials. The observation of long-lasting, predictable effects following ICMS315

constitutes strong evidence against path-following dynamics (H3). Instead, neural population responses to both optogenetic316

stimulation and ICMS were indicative of subspace structured dynamics embedded within an E/I network (H2).317

Discussion318

The dynamical systems perspective has played a crucial role in understanding the complex neural activity patterns that underlie319

skilled behavior.1,3 However, the precise nature of the dynamical rules which govern the evolution of neural population activity320

have remained elusive. In this work, we delivered optogenetic and electrical stimulation to perturb the motor cortex while321

recording the responses of the local neural population. We demonstrated that within the motor cortex, task-related dynamical322

sensitivity is constrained to a self-contained, low-dimensional subspace of the ambient high-dimensional neural circuit. Self-323

contained structure allows task-related dynamics to generate low-dimensional patterns of activity, while remaining robust to324

irrelevant signals or noise outside of the low-dimensional subspace. Moreover, multiple mutually orthogonal self-contained325

subspaces may be maintained to implement different tasks without interference,66,67 or engaged concomitantly to compose326

multiple dynamical motifs to address task demands.68 Thus, the dynamical structure we identified in the context of the cortical327

control of arm movement may reflect a more general principle of robust cortical computation in the presence of noise or multiple328

tasks.329
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Motor cortex receives rich inputs from thalamus and other cortical regions and projects outputs that shape the activity of lower330

motor centers and coordinate predictive control via the cerebellum.69 Ultimately, it is the collective action of this distributed331

network that is responsible for preparing and executing movement. As a critical node within these circuits, the population332

dynamics that shape motor cortical activity reflect these recurrent influences. These inputs both shape the dynamical landscape333

within motor cortex and convey online feedback about the state of the body and the environment.70–72 Our work here speaks334

to the structure of the functional dynamical system that shapes motor cortical activity supporting reaching movements. In335

particular, the dynamics we observe and perturb likely reflect the functional interplay of motor cortex and strongly bidirectionally336

connected motor thalamus.4,73 Recent studies have begun to probe the role of specific, inter-areal projections in establishing337

goal-directed movement.74–76 This research aims to provide a circuit-level of understanding of the distributed dynamical338

system—how population activity is shaped both by local synaptic interactions and inputs via specific projections within the339

network.340

The low-dimensional dynamical structure we observed has important implications for probing causal links between brain circuits341

and behavior.77,78 For motor cortical stimulation, evoked changes in reach kinematics were observed only when stimulation342

affected neural states within the task dynamics space. This was achieved in varying degrees across ICMS sessions, although343

never with optogenetic excitation. We found that optogenetic stimulation responses were well described as additive, simply344

translating neural states while preserving their relative geometry. Optogenetic perturbations thereby failed to alter ongoing345

neural activity and reach kinematics due to the low probability of aligning with the task dynamics space by chance. In contrast,346

although neural activity during ICMS also contained this additive component, neural states were contracted together during347

electrical stimulation. This contraction necessarily altered neural states within the task dynamics space, despite not being348

specifically targeted along those dimensions. The observed contraction towards an induced neural state also explains prior349

behavioral findings that ICMS supplants rather than adds with task-related muscle commands79 and drives the arm towards a350

consistent final posture.61,80,81 During high-frequency ICMS, this replacement effect might stem from collisions within activated351

axons between evoked, antidromic spikes and task-related signals.82 This effective engagement with motor cortical state may352

also reflect more effective recruitment of thalamocortical projection axons.353

It is important to note that many parameters may influence the effect of optogenetic stimulation; driving purely additive354

effects on firing rates is likely a special case. Our proposed dynamical mechanism is consistent with observed behavioral355

effects across a broad range of stimulation modalities and experimental contexts. Optogenetic and pharmacological inhibition356

contract neural states towards the quiescent state.83–85 Alternatively, strong optogenetic activation86 may entrain neurons near357

the upper limit of their dynamic range, thereby contracting firing rates towards a distinct induced state. Moreover, targeted358

stimulation methods might alter behavior by directly impacting the task dynamics space. Perturbations might preferentially359

engage the task dynamics space when targeting specific projection pathways,87,88 cell types,89,90 or cell ensembles91 with360

important computational roles in the circuit.26 In some behavioral contexts, such as a sensory detection task, untargeted361

stimulation might alter behavior via broadly sensitized downstream circuitry.92,93362

The non-normal dynamical structure of E/I networks results in different input signals driving transiently amplified responses363

along the same E/I co-activation mode of the network (see Methods §14). Variance along this co-activation mode thus364

arises easily in the presence of external inputs or intrinsic noise. Yet, when excitation and inhibition are balanced, this co-365

activation mode is dynamically short-lived. Our network models supported the hypothesis that slow and structured dynamics366

may be embedded in a low-dimensional subspace oriented approximately orthogonal to the E/I co-activation mode and yet367

contributing variance along this mode. This arrangement provides a mechanism for robust computation in the presence of368

transient amplification of inputs, noise, or other perturbations in the network. Consequently, computing with self-contained,369

subspace structured dynamics may be a computationally advantageous strategy employed by other cortical circuits as well.370

The apparent non-normal structure of cortical circuits also has implications for the analysis and interpretation of neural activity371

patterns. For example, a high-variance, condition-invariant signal (CIS) that generally aligns with the co-activation mode372

emerges in motor cortical populations immediately preceding movements, and has been hypothesized to trigger a transition373

from preparatory to movement-related neural activity.32,94 Based on our theoretical analyses, we propose a revised hypothesis:374

when external inputs arrive to motor cortex to initiate movement, the CIS emerges as a mixture of this dynamical transition375

into movement and the highly amplified response that emerges along the co-activation mode in tandem. In this view, the376

CIS itself does not reflect only the trigger signal, but also variance created in response to it. Consistent with this hypothesis,377

optogenetic perturbations (and some ICMS perturbations) drove neural responses similar to the CIS but failed to trigger378

movement. Similar considerations apply for any approach that seeks to optimize explained neural variance, including targeted379

dimensionality reduction.380

Non-normal dynamics induce a misalignment between task activity spaces with high variance and task dynamics spaces with381

long-lived effects. In light of this distinction, experimental perturbations, internal perturbations in the form of trial-to-trial382

variability,95 and dynamical models constrained by neural circuit architecture will be crucial to establish the precise mechanisms383

of neural computation.384
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1 Experimental model and subject details401

All surgical and animal care procedures were performed in accordance with National Institutes of Health guidelines and were402

approved by the Stanford University Institutional Animal Care and Use Committee. The subjects were four adult male macaque403

monkeys (Macaca mulatta): O (13 kg, 7 years old), Q (10 kg, 5 years old) P (16 kg, 11 years old), V (9 kg, 9 years old). After404

initial training, we performed a sterile surgery during which each macaque was implanted with a head restraint and either a 19405

mm circular recording cylinder (O, Q, and V; Crist Instruments) or a 30 mm long oval recording cylinder (P; NAN Instruments).406

The recording chamber was located over left, caudal, dorsal premotor cortex (PMd) and primary motor cortex (M1), placed407

surface normal to the skull, and secured with methyl methacrylate. In monkey Q, a craniotomy was performed which exposed408

dura within the full extent of the recording chamber. In monkeys O, P, and V, a thin layer of methyl was deposited atop the409

intact, exposed skull within the chamber. and a set of small (3 mm diameter) craniotomies was performed near the center of410

the chamber to facilitate injections and/or electrical stimulation and recording.411

We confirmed targeting of M1 / PMd by testing for neural modulation during movements and palpation of the upper arm.412

We also confirmed that suprathreshold electrical stimulation evoked twitches of the shoulder and arm musculature.413

2 Optogenetic experiments414

2.1 Injections415

↪→ c.f. Fig. 2a416

In monkey O, two injections of AAV5-CaMKIIα::C1V1(E122T/E162T)-ts-EYFP (3 × 1012 viral genomes/mL) were made within417

each of seven mini-craniotomies. These injections spanned the arm regions of both M1 and PMd. In Q, a similar grid pattern418

of 13 injections were made approximately 2.5 mm apart spanning M1 and PMd. All viral vectors were pressure injected with419

an injection assembly as reported previously.45 At each injection site, we injected 1 µL of the viral vector at depths located420

1 mm apart spanning cortex. The infusion rate was 0.1 µL/min. In monkey Q, we confirmed histologically that strong opsin421

expression was present throughout all cortical layers in the injected regions.422

2.2 Stimulation and recording423

↪→ c.f. Fig. 2a,b424

In early experiments with Q, we delivered optical stimulation with a 200 µm flat cut fiber optic, secured along its length to a425

tungsten microelectrode (FHC), as described previously.45 In later experiments with Q and all experiments with O, we used a426

custom-manufactured coaxial optrode in which a central light guide was surrounded by a gold recording surface and insulating427

shell.44 Both optrode types enabled simultaneous light delivery and electrical recording, and were lowered into position using428

a motorized microdrive (NAN Instruments). Adjacent to the optrode, we also lowered 1–3 tungsten microelectrodes (typically429

3), at lateral distances ranging from 500 µm to 6 mm. Electrodes were lowered via independent microdrives in parallel with430

the optrode. This arrangement allowed us to sample many neurons in the local neighborhood around the optrode both within431

and across days while keeping the optrode (the site of stimulation) in the same location. This strategy served both to minimize432

damage to the cortex due to the optrode, as well as to provide a constant perturbation that could be sampled by the individual433

electrodes in the surrounding neural population. Defined by the position of the optrode, we stimulated at three unique sites in434

monkey O, in gyral M1 (O. M1), in posterior PMd (O. PMdP), anterior PMd (O. PMdA) and at one site in PMd in monkey435
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Q (Q. PMd). We recorded the locations of the electrode and optrode and validated their relative positions by analyzing436

photographs of the guide tube ends taken from directly below the microdrive assembly after each experimental session. We437

used these coordinates to compute the distance from the optrode for each unit recorded on a surrounding electrode.438

Optrode and electrode voltages were buffered and digitally amplified at a head-stage, and recorded with the Cerebus neural439

signal processor (Blackrock Microsystems). Broadband signals were recorded on each channel and filtered at the amplifier440

(0.3 Hz one pole high-pass filter, 7.5 kHz three pole low-pass filter). The signals were also digitized to 16-bit resolution441

over ±8.196 mV (resolution = 0.25 µV) and sampled at 30 kHz. Each channel was differentially amplified relative to a local442

reference, typically a guide tube flush with the dural surface. To aid with noise rejection, the electrodes and head stage were443

surrounded with a flexible electromagnetic shielding mesh fabric (McMaster Carr), which was also shorted to the guide tube.444

This same shielding also served to block light emitted from the optrode from illuminating the surrounding rig. Voltage signals445

were band-pass filtered (250 Hz–7.5 KHz) and thresholded at -3.5 times the root-mean-square voltage. Spiking waveforms446

were later hand-sorted (Plexon Offline Sorter). We collected 205 neurons at O. M1, 246 at O. PMdA, 221 at O. PMdP, and447

244 at Q. PMd.448

Optical stimulation was computer controlled by the real time experiment controller running TEMPO (Reflective Computing),449

which triggered a Master 8 pulse generator (A.M.P.I.) and in turn controlled a green DPSS laser (561 nm, CrystaLasers) whose450

power output at the optrode was manually adjusted to 3 mW output at the start of each experimental session. Stimulation pulses451

were 200 ms continuous pulses at 95 mW/mm2 (3 mW total power), which we had previously observed to generate the largest452

increases in firing rates at the optrode, relative to high-frequency light pulse trains, in a separate set of experiments.453

Each experimental day consisted of multiple blocks, each consisting of 300-600 trials. Within each block, the electrodes454

remained stationary and only units and multi-units which could be reliably isolated for the duration of the block were analyzed.455

Between blocks, we advanced the electrodes independently to isolate new units before resuming stimulation.456

3 ICMS experiments457

3.1 Stimulation and recording458

↪→ c.f. Fig. 5a, Extended Data Fig. 6a459

In monkeys P and V, several mini-craniotomies were made within the recording chamber. The stimulation electrode was a single460

tungsten microelectrode with approximately 100 kΩ impedance at 1 kHz (Configuration #UEWLGC-SECN1E, Frederick Haer461

Company). Neural population responses were recorded using a Neuropixels phase 3a probe (IMEC) with 374 recording channels462

and an external reference. The stimulation electrode, the Neuropixels recording probe, and a third blunt guide tube (used for463

dural surface stabliization) were secured to independently controllable, motorized micromanipulators (NAN Instruments). To464

insert the Neuropixels probe, we made a short linear incision through the dura. On some sessions, we also inserted a tungsten465

microelectrode a short distance beyond the pial surface to create a pilot hole to facilitate the Neuropixels probe insertion. The466

Neuropixels probe was inserted as close as possible to the stimulation electrode while preventing collision with the headstage,467

typically between 2–6 mm away.468

The stimulation was performed using a StimPulse electrical stimulation system used as a combined function generator and469

isolated current source (Frederick Haer Company). Microstimulation trains consisted of biphasic pulses delivered at 333 Hz470

(150 µs cathodic, 100 µs pause, 150 µs anodic). Stimulation duration was most commonly 200 ms to match the optogenetic471

parameters, although some sessions 60 ms or 800 ms stimulation durations were used. For 800 ms stimulation sessions,472

subsequent analyses focused on the initial 200 ms of stimulation. Stimulation amplitude was varied between 20–160 µA across473

sessions.474

We recorded continuously through stimulation using the Neuropixels. On each session, we balanced the competing demands of475

eliciting a behavioral effect with sufficient stimulation amplitude, avoiding saturation, and using AP-band gain sufficiently large476

to detect neural spiking, and recording near the stimulation site. Variation in the choices of stimulation amplitude, stimulating477

electrode and Neuropixels probe location, and AP gain led to heterogeneity in evoked behavioral effects across sessions. We478

collected Neuropixels data at 11 unique recording sites, and then defined an experimental session as contiguous group of trials479

with a unique set of stimulation electrode locations and stimulation amplitude and duration. We collected data for 6 sessions480

without saturation in the recorded Neuropixels signals and 15 sessions with partial or complete saturation during each individual481

current pulse.482

3.2 Electrical artifact removal with ERAASR2483

↪→ c.f. Fig. 5d, Extended Data Fig. 6d–f, Extended Data Fig. 7a–b484

First, individual AP band data files were digitally concatenated after scaling the files to a common AP gain. Individual recording485

channels were excluded from further analysis if they exhibited atypical RMS (outside of 3–100 µV) or exhibited a rapidly toggling486
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baseline (resulting from a process flaw in the phase 3a probes) which resulted in a bimodal voltage histogram. Every channel487

was subsequently manually reviewed.488

We then scanned each stimulation period to detect saturation for each individual channel. On the phase 3a probes, the489

saturation limits were not matched to the limits of the quantization (e.g., ±29 samples). Consequently, the saturation limits490

were determined automatically for each channel (and if multiple files were concatenated, for each AP gain setting) individually.491

We identified the minimum and maximum value of each channel over the recording (with constant AP gain) as well as the492

baseline offset of each ADC group. The range of sample values, relative to baseline, observed on each ADC group was then493

used to define conservative signal ranges for each channel. Computation of these ranges was aided by one or more short494

duration, test stimulation periods recorded before the start of the experiment conducted with higher amplitudes than those495

used in the actual experiment. Timepoints where the recorded voltage approached the limits of these per-channel signal ranges496

were marked as possibly saturated in subsequent signal processing.497

To remove the artifact, we exploited the difference in covariance structure between neural activity, which is spatially localized on498

the probe, and artifact, which is spatially broad and relatively homogeneous. We refer to the following algorithm as ERAASR2, a499

modified version of the original algorithm published in O’Shea and Shenoy [65]. For each trial independently, we first computed500

the spontaneous covariance matrix across channels Σspont ∈ RC×C , where C is the number of usable recording channels501

(typically 350–374). For this, we used 1 second of data without any stimulation immediately prior to stimulation. During the502

subsequent stimulation artifact period, we computed the artifact covariance matrix as Σart = Xart(Xart)T, where Xart ∈ RC×T503

is the centered data matrix (channels by time) during the artifact, excluding samples marked as possibly saturated.504

We then identified a low-dimensional subspace which explained maximal variance during the artifact period, while capturing505

minimal spontaneous neural variance, by solving the optimization problem:506

Uart = argmax
U∈VK(RC)

UTΣartU
(UTΣspontU)λ

(1)507

where Vk(RC) is the Stiefel manifold of K dimensional subspaces in C dimensions, and λ is a hyperparameter that controls the508

tradeoff between capturing the artifact variance (the numerator) and avoiding spontaneous neural variance (the denominator).509

With λ = 0, this reduces to PCA on the artifact directly. We used λ = 0.05.510

With this subspace, we then proceeded as in the original ERAASR algorithm with a version of principal components regression,511

using Uart instead of the principal component dimensions. We projected the artifact data into this subspace to obtain a set of512

K artifact components as A = (Uart)TXart ∈ RK×T . Then, for each channel individually, we regressed that channel’s data onto513

the artifact components (again excluding possibly saturated samples in determining the coefficients). Lastly, we subtracted514

the predicted artifact on this channel from the recorded signal to obtain the cleaned channel data. For each channel c, we515

have516

Xclean
c = Xart

c − AT(AAT)−1ATXart
c (2)517

When many channels were marked as possibly saturated (more than 60%), we considered all channels to be saturated, and518

cleared the values of every channel to zero during this peri-pulse saturation window. Otherwise, for each sample which was519

marked possibly saturated, we checked whether the absolute value of the predicted artifact exceeds the absolute value of the520

recorded data, i.e. if |AT(AAT)−1ATXart
c | > |Xart

c |, and mark these timepoints as actually saturated, and clear their values to521

zero. Unlike in the original ERAASR algorithm, we found it unnecessary to clean the resulting data across pulses within the522

train or across trials.523

We reviewed the cleaned neural signals manually for each artifact. The entire data file was then common averaged reference524

for each ADC group separately, as described in Siegle et al. [96], excluding samples marked as saturated, which remained set525

to zero.526

3.3 Location estimation from artifact amplitude527

↪→ c.f. Extended Data Fig. 6b528

Having estimated the artifact for each stimulation event, we computed the peak to peak artifact amplitude on each channel.529

We removed outliers using a moving median method, then resampled the artifact amplitude estimates to a vertical column530

at the center of the probe using natural neighbor interpolation. We then fit these amplitude measurements collected across531

all sessions to a model relating amplitude to the distance of each site to the stimulation source. We defined xs as the532

distance measured laterally from the probe to the stimulating electrode on session s, and ys as the vertical distance along the533

penetration path from the most superficial electrode to the tip of the stimulating electrode. Then each location e where the534
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artifact amplitude is resampled is located vertically at ye,s = ys+ eδy, where δy = 50 µm is the spacing between samples. This535

resample location is then located at a distance536

re,s =
√

xe
s + y2e,s (3)537

from the stimulation source, defined to lie at the origin. The electric field falls off with distance, such that the amplitude of538

the artifact at each resampled location, given stimulation amplitude Is follows:539

Ve,s =
v0 ∗ Is
re,s

(4)540

where v0 is a fitted parameter with units V mm/µA. We fit this model for all sessions simultaneosly using a constrained nonlinear541

curve fitting algorithm to minimize the squared error between empirical and predicted artifact amplitudes. At each recording542

site, we use the minimal stimulation amplitude used (which may be lower than that used for the subsequent experiment). The543

model was first fit with non-saturated sessions to fit v0, and then subsequently fit again with the saturated sesssions with fixed544

v0. For sessions where the artifact saturated the majority of the channels, the fitted distance xs constitutes an upper bound545

on the distance—if the Neuropixels probe were further away than the modeled distance, the artifacts would be smaller and546

therefore not saturate the amplifier.547

3.4 Spike sorting548

Cleaned AP band data were automatically spike sorted with a modified version of Kilosort2 spike sorting software.97 The549

modifications do not affect the core operation of the algorithm; instead, these changes facilitate subsequent processing for550

the synthetic stimulation pipeline. First, we made several changes to ensure the outputs of Kilosort2 are fully reproducible.551

This was accomplished by preventing race conditions in the GPU kernels by using atomic functions where appropriate, sorting552

certain arrays to ensure determinstic ordering, and rounding floating point operations at sufficient levels of precision to prevent553

issues with non-associative addition. Second, Kilosort2 processes data in time batches and allows waveform templates to drift554

over time. We track and persist these batchwise parameters, allowing us to resort individual batches of data using the identical555

parameters and templates used as in the original full-dataset sorting process. Lastly, we ignore any time windows during556

stimulation in specific algorithm steps where RMS or covariance is computed and where the waveform templates are updated557

over batches. This reproducible version of Kilosort2 is available at https://github.com/djoshea/Kilosort2. Every sorted558

neuron was manually reviewed using a custom GUI written in Matlab App Designer (Mathworks).559

3.5 Multichannel spike waveform evaluation560

↪→ c.f. Extended Data Fig. 6g–j, Extended Data Fig. 7c–f561

For each sorted neuron, we assembled the set of spiking waveforms during spontaneous, non-stimulated periods, during the562

stimulation window, and in the 300 ms period immediately post-stimulation, and computed the average spiking waveform for563

each group. We identified the channel with the largest spiking waveform for each neuron and the six immediately adjacent564

channels. To quantify the amount of distortion present in the sorted waveforms that remained after artifact removal, we565

computed the correlation coefficient between the waveforms on these seven channels, comparing spontaneous with peri-stim566

and spontaneous with post-stim.567

3.6 Synthetic stimulation pipeline568

↪→ c.f. Extended Data Fig. 8569

For both non-saturated and saturated sessions, we validated that ERAASR2 cleaned neural signals could be used to detect spike570

times by developing a synthetic stimulation pipeline (Extended Data Fig. 8). Here, we corrupted neural signals from paired571

non-stimulated trials with stimulation artifacts estimated from true stimulation trials before applying the entire ERAASR2 and572

spike sorting pipeline. This synthetic stimulation pipeline enabled us to validate our approach against known ground truth573

data.574

For each stimulation condition (reach direction × stimulation time), we identified otherwise equivalent time periods in matched575

non-stimulated trials for use as ground truth. We extracted the raw Neuropixel AP band voltage traces from these non-576

stimulated trials and added to them the stimulation artifact estimated on the corresponding stimulation trials, yielding what577

we define as synthetic stimulation traces. Where a given channel was marked as saturated, we replicated this saturation578

by clipping the synthetic stimulation traces at the known saturation limits of each channel. We reinserted these synthetic579

stimulation traces into the AP band data. As with the true stimulation data, we estimated and removed the artifact using580

ERAASR2. We then compared the ground truth non-stimulated voltage traces against the synthetically-corrupted and cleaned581

traces by computing the correlation coefficient.582
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We then used our modified Kilosort2 to resort these batches of data, restarting the algorithm using the exact state and batchwise583

waveform templates that were used to sort these batches of data during the original sorting pass. We subsequently reapplied584

the same cluster thresholding, splitting, and merging steps performed by both the algorithm and during manual curation. This585

allowed us to compare the synthetic stimulation spike trains against the ground truth extracted from these non-stimulated586

traces during the original spike sorting procedure. For neuron and for each true non-stimulation spike, we marked the spike587

as recovered if a corresponding synthetic stimulation spike was marked within 500 µs (true positive) or marked as missed if no588

corresponding synthetic spike was found (false negative). Similarly, for each detected synthetic stimulation spike, we marked589

the spike as fabricated if no corresponding ground truth spike was found for that neuron within 500 µs (false positive). The590

fraction of recovered ground truth spikes (ideally 1) and of fabricated detected spikes (ideally 0) served as a stringent end-to-end591

evaluation of the artifact removal pipeline in terms of actual detected spiking activity.592

3.7 Firing rate gain correction593

↪→ c.f. Extended Data Fig. 7g–h, Extended Data Fig. 8a, i–k, n–p594

For each neuron d, timepoint t, we next computed the average firing rate within the stimulation period for synthetic stimulation595

Ỹt,d versus the ground truth rate Yt,d, averaged over all trials across synthetic stimulation conditions. For both saturated596

and non-saturated sessions, these firing rates were tightly correlated Extended Data Fig. 8j,o, indicating that neural states597

were estimated accurately during (and immediately following) ICMS. For saturated sessions, the recovered synthetic firing598

rates were proportionally reduced relative to ground truth, due to the loss of spiking signals during the saturation window.599

We computed this recovery gain as the element-wise ratio Gt,d = Ỹt,d/Yt,d. We denoised this gain matrix by computing a600

rank one approximation of the gain matrix around unity, i.e. Ĝ = max(0,min(1, rank-1-approx(G − 1) + 1)). This denoised601

gain matrix represents the estimated fraction of true spikes detected for each neuron, in each time bin, due to saturation or602

distortion resulting from the ERAASR2 cleaning pipeline. We corrected for this distortion by dividing out the respective gain,603

i.e. Ycorr
t,d = Yt,d/Ĝt,d.604

Therefore, the synthetic stimulation pipeline allowed us to compute and compensate for the unobserved spikes during the605

saturated timepoints accompanying each stimulation pulse. We applied this gain correction to both the stimulated firing606

rates observed during ICMS and to the paired non-stimulated firing rates, which were taken from the output of the synthetic607

stimulation pipeline with the identical gain correction applied. Consequently, for all sessions, for all comparisons between608

non-stimulated and stimulated firing rates, an identical sequence of processing steps (ERAASR2 artifact removal, spike sorting,609

firing rate gain correction) was applied. This ensures that any distortion created by the artifact removal process itself would610

affect non-stimulated and stimulated firing rates equally. Critically, the gain correction step applies identically to both non-611

stimulated and stimulated firing rates and therefore does not affect the latent variable model and contraction analyses described612

in §8.613

With respect to the gain correction, we note that this synthetic stimulation pipeline is also conservative with respect to the614

observed contraction of neural states. Our reasoning is as follows:615

Suppose that we consider a single ICMS pulse, and consider two time bins, where the first time bin is fully616

saturated over channels, whereas no channels are saturated in the second time bin. Consider if we apply the617

synthetic stimulation pipeline to non-stimulated data where a given neuron fires 10 spikes/sec in both time bins,618

i.e. {10, 10}. Due to the saturation, suppose we recover 0 spikes/sec in the first bin, and 10 spikes/sec in the619

second time bin, i.e. {0, 10}, for an average rate of 5 spikes/sec. We then compute a gain of 5 / 10 = 0.5,620

which then applied to the recovered rate of 5, yields the correct 10 spikes/sec. In the true stimulation condition,621

consider that ICMS raises firing rates to 20 spikes/sec in the first bin and 30 spikes/sec in the second bin, i.e.622

{20, 30} for a true average rate of 25 spikes/sec. Due to saturation, we observe {0, 30} for an average of 15623

spikes/sec, which is then corrected to 15 / 0.5 = 30 spikes/sec, leading us to overestimate the true firing rate624

(25 spikes/sec) averaged over the full stimulation period.625

The gain correction implicitly assumes that spikes are nearly uniformly distributed throughout the stimulation period, such626

that the firing rate can simply be linearly scaled to compensate for the fraction of samples where spikes are lost to saturation.627

However, in the non-saturated sessions, we observed that ICMS generally evokes more spikes in the period of time between the628

pulses (Extended Data Fig. 7g). In assuming that the firing rate during the saturated window during each ICMS pulse matches629

the observed rates immediately following each pulse, the gain correction multiplier is likely too large for the true stimulation630

rates. This in turn tends to underestimate any contraction of neural states during ICMS when saturation is present.631

We also developed a more complex gain correction mechanism that used regression to incorporate fine temporal dynamics of the632

ICMS evoked firing rates, at the resolution of the raw sampling rate (30 kHz). These estimates (data not shown) corrected for633

the non-uniformity of evoked spiking with respect to each pulse, and yielded nearly identical results in all subsequent analyses,634

including those related to the observed contraction.635
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4 Task design636

During training and experiments, monkeys sat in a customized primate chair (Crist Instruments) with an opening to allow the637

arms to move freely. The head was restrained via an implant and the left arm was held comfortably in place using a tube638

and cloth sling. Stimuli were presented on a screen in the frontoparallel plane located approximately 25 cm from the eyes. A639

photodiode was used to record the timing of stimulus presentation on screen with 1 ms resolution. A clear, acrylic, removable640

visor shielded the neural recording system and prevented the monkey from bringing the reflector bead to his mouth. A flexible641

tube connected to a fluid-flow valve solenoid and attached to the visor dispensed juice rewards.642

Monkeys were trained to perform a center-out delayed reaching task. Each experimental session consisted of several thousands643

of trials, ending with a juice reward if successful and a short (typically 500-1200 ms) time penalty if unsuccessful. Each trial644

begins when the monkey touches a central touch target presented at approximately eye level on the screen. After a short,645

variable hold time (200-600 ms), a reach target is presented (Target Onset) at a distance of 10 cm from the central target in646

one of a set of discrete radial directions. On delay trials, the target initially appeared hollow and its position jittered slightly647

around the actual location. Cessation of the target jittering, filling of the target, and disappearance of the central hold target648

provided the Go Cue signaling that the monkey could initiate his reaching movement. The Go Cue followed Target Onset649

after 0-800 ms delay period. On zero delay trials, the target was presented as a stationary filled shape at the same time that650

the central target disappeared, which signaled the simultaneous Target Onset and Go Cue. Both the timing of Target Onset651

and Go Cue were recorded using the photodiode. Online movement onset was detected using position boundaries and speed652

thresholds, with the trial terminating if the online reaction time was too rapid suggesting pre-empting of the Go Cue (e.g.,653

under 150 ms) or too slow (e.g., longer than 500 ms). Reaches were rewarded if they were brisk and terminated accurately654

within the target.655

Optogenetics experiments: The reaching task was performed by touching and holding targets on a screen. Hand position656

was measured at 60 samples/sec by tracking the position of a reflector bead taped to the middle finger of the right hand using657

an infrared stereo tracking system (Polaris; Northern Digital, Waterloo, Ontario, Canada). Four reach directions were used658

(45, 135, 225, and 315 degrees from the positive x-axis).659

Electrical stimulation experiments: We trained the monkey to use his right hand to grasp and translate a custom 3D660

printed handle (Shapeways, Inc.) attached to a haptic manipulandum (Delta.3, Force Dimension, Inc.). The other arm was661

comfortably restrained at the monkey’s side.Seven reach directions were used (0, 45, 90, 135, 180, 225, and 315 degrees662

counter-clockwise from the positive x-axis).663

The device reports its position in 3D space via optical encoders located on its 3 motor axes and can render 3D forces by applying664

torques to these motors in the appropriate pattern. The haptic device was controlled via a 4 kHz feedback loop implemented in665

custom software (https://github.com/djoshea/haptic-control) written in C++ atop Chai3D (http://chai3d.org).666

The weight of the device was compensated by upward force precisely applied by the device’s motors, such that the motion of667

the device felt nearly effortless because the device’s mechanical components were lightweight and had low inertia. The device668

endpoint with the attached monkey handle was constrained via software control to translate freely in the frontoparallel plane.669

Aside from the stiff, planar spring-like forces that kept the endpoint within this plane, no forces were applied to the device670

during the task.671

The handle was custom 3D printed and contained a beam break detector which indicated whether the monkey was gripping672

the handle. The handle also contained a 6 axis force / torque transducing load cell (ATI Instruments). Hand position was673

recorded at 1 kHz, and the X/Y position of the device was used to update the position of a white circular cursor at the refresh674

rate of 144 Hz with a latency of 2-8 ms (verified via photodiode) displayed on an LCD screen located in front of the monkey675

and above the haptic device (such that the cursor was approximately at eye level when located at the center of the workspace).676

A plastic visor was used to mask the monkey’s visual field such that he could see the screen but not his hand or the haptic677

device handle.678

4.1 Trial structure and stimulation conditions679

: ↪→ c.f. Fig. 2b, Fig. 6c680

To facilitate trial-averaging, a discrete set of conditions was used. Non-stimulated trials consisted of delay periods of 0, 300,681

400, 600, or 800 ms. Stimulation conditions were structured as follows:682

• pre-trial: stimulation at least 250 ms before Target Onset, 300 ms delay,683

• delay early: stimulation at 320 ms after Target Onset, 600 ms delay,684

• peri-go: stimulation at 20 ms after Go Cue, equivalently 320 ms after Target Onset, 300 ms delay,685

• peri-go no delay: stimulation at 20 ms after Go Cue, 0 ms delay,686
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• peri-move: stimulation at 50 ms after online movement onset, 300 ms delay.687

This condition structure was designed to ensure that (a) each stimulation condition could be paired with an equivalent non-688

stimulation trial and (b) stimulation would not be predictive of upcoming task events, particularly the Go Cue. The 800 ms689

delay non-stimulation condition, not included in subsequent analysis, also ensured that monkeys would not make anticipatory690

movements for the 600 ms delay condition. These conditions were replicated and randomly interleaved for each of the four691

reach directions, and non-stimulated and stimulated trials were randomly interleaved within each block such that stimulation692

was present on 40–45% of trials.693

5 Behavioral analysis694

↪→ c.f. Extended Data Fig. 1, Fig. 5b,c, Extended Data Fig. 9a695

Hand positions were zero-phase low-pass filtered with a 4th order Butterworth filter with 25 Hz corner frequency. Velocities were696

computed using a smoothing, differentiating Savitzky-Golay filter (2nd order polynomial, 21 ms smoothing). Hand trajectory697

confidence intervals were calculated using Teetool,98 which models the 2d trajectories as a Gaussian process, producing an area698

that encompasses the 1σ covariance around the mean path. Reach endpoints were labeled where the hand speed fell below 50699

mm/sec, and the 95% covariance ellipses were computed.700

We computed reach reaction times as the elapsed time from the visual display of the go cue to the time at which the hand701

speed exceeded a threshold of 5% of the peak reach speed in each trial. We discarded “false-start” trials where the hand speed702

rose above a higher threshold of 15% of peak, and again fell below 5% before the actual reaching movement. Reaction time703

effects were computed as the difference in mean RT between stimulated trials and otherwise equivalent non-stimulated trials,704

i.e. having the same delay period duration. Statistical significance was assessed using the Mann-Whitney U test on the sets705

of non-stimulated and stimulated RTs.706

For each stimulation condition (defined by reach direction and stimulation timing), we compared reach velocities at each707

time between the stimulation condition and otherwise equivalent non-stimulation condition (i.e., with the same delay period,708

aligned to the same time when stimulation would have occurred). We then computed an unbiased estimate of the norm709

of the difference in the instantaneous velocity vectors at that time (technically, an unbiased estimate of the squared norm,710

passed through a square root operation). This technique is from Willett et al. [99] for the unbalanced case (differing trial711

counts), though we will extend it below in other sections. This approach obtains conservative estimates of distance between712

trial-averaged quantities, reducing the bias that arises due to estimation noise in the averages by using cross-validation. For713

each condition pair c with Mc non-stimulated and Nc stimulated trials, we form Fc = min(Mc, Nc) cross-validation folds, and714

denote the average of the observations (here, 3d instantaneous velocity vectors) in the ith large fold as Ai, Bi ∈ R3 and the715

average of the small fold ai, bi ∈ R3, for non-stimulated and stimulated trials, respectively. The unbiased estimate for squared716

norm difference in velocity is given by:717

d2 =
1

Fc

Fc∑
i

(Ai −Bi)
T(ai − bi) (5)718

for each conditition pair and at each timepoint.719

For each pair of conditions, we compute this distance at each timepoint relative to stimulation onset, and average across720

conditions. We also summarize stimulation evoked effects on kinematics by averaging the unbiased distance estimate over all721

Peri-Move conditions and over the time window from 50 ms to 300 ms after stimulation, as in the y-axis of Fig. 5r.722

6 Task activity space723

↪→ c.f. Fig. 2f,m–p, Fig. 5f, Extended Data Fig. 9b–d724

We define the task activity space as the low dimensional subspace which captures the majority of the variance of trial-averaged725

neural activity during non-stimulated reaches. We identify the dimensions of this space using principal components analysis726

(PCA) on non-stimulated activity, and then determine the dimensionality of this subspace by thresholding at 95% of the727

explainable “signal variance”, defined as in Kobak et al. [100]. As originally noted in Machens [101], the estimated PSTHs X̃728

differ from some true underlying firing rates due to noise, and when we estimate the variance explained along each successive729

PC, some of this variance is due to this residual noise. We proceed by assembling a matrix Xnoise of scaled single trial residuals730

with size RT × N (total tRials, timepoints × neurons). We subtract from each single trial firing rate the corresponding731

condition mean, and scale each by 1√
Rc−1

where Rc is the number of trials sampled for condition c, set to the minimum trial732

count recorded for that condition for all neurons in the dataset. We then scale the full matrix by C
R , where C is the number733

of conditions and R =
∑C

c=1 Rc is the total number of sampled trials. This scaling ensures that the total variance of Xnoise734

matches the estimated total noise variance of our estimated PSTHs X̃. We then compute the singular values s and snoise of735
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each matrix, and take S(k) =
∑K

k=1 s
2
k − (snoisek )2 as an estimate of the signal variance captured in the leading K principal736

components. In practice, we find that selecting the dimensionality to capture 95% of the signal variance captures at least 90%737

of the total variance, a more traditional threshold.738

Trial averaged neural trajectories were smoothed with a 20 ms Gaussian kernel for plotting only, and projected into the task739

activity space.740

7 Neural effect size analysis741

↪→ c.f. Fig. 2d,e, Fig. 5e742

For each recorded unit, we computed the average change in firing rate (∆ FR) during the stimulation window for the pre-trial743

condition, relative to equivalent non-stimulated trials. Responses were assessed for significance using a Wilcoxon rank-sum744

test, with the false discovery rate controlled at 0.05 using the Bejnamini and Hochberg procedure. To compute the stimulation745

deltas vs. time (Stim ∆), we performed causal 10 ms binning of spike counts aligned with stimulation and averaged across trials746

within each condition and computing the difference of stimulated and non-stimulated rates. At each of the four stimulation747

sites, we arranged the Stim ∆ as a T ×N matrix (conditions, timepoints × neurons) and performed PCA over neurons. The748

resulting component scores reveal temporal patterns, which we then averaged across reach directions within each stimulation749

timing.750

To compute the perturbation induced displacement distance, we again used an unbiased estimator of distance between trial-751

averaged firing rates. We use this estimator to compute the distance between the stimulated neural state and the neural state752

at the same timepoint on an otherwise equivalent non-stimulation.753

7.1 Optogenetic perturbation distance754

↪→ c.f. Fig. 2m–p, Extended Data Fig. 9c755

For the optogenetic stimulation datasets, neurons were recorded sequentially, so the trial averaged firing rates for each neuron756

were estimated from distinct sets of trials. For each neuron d and condition pair c (over reach directions and stimulation757

timings), we have Mc,d non-stimulated and Nc,d stimulated trials, and we form Fc,d = min(Mc,d, Nc,d) cross-validation folds758

over trials. Dropping the condition and timepoint subscripts c and t, we denote the trial-averaged firing rate for neuron d759

within the ith large fold as Ad
i , B

d
i (non-stimulated, stimulated) and the average of the small folds as adi , bdi . Let the difference760

between stimulation and non-stimulation for the large and small folds be ∆d
i = Ad

i −Bd
i and δdi = adi − bdi . Because the neural761

recordings are sequential, we sum across the individual unbiased estimates of squared distance along each dimension (neuron)762

separately, to arrive at an unbiased estimate of squared distance in the high-dimensional neural space.763

(dfull)
2 =

∑
d

1

Fc,d

Fc,d∑
i

(Ad
i −Bd

i )(a
d
i − bdi ) =

∑
d

1

Fc,d

Fc,d∑
i

∆d
i δ

d
i (6)764

for each condition pair and at each timepoint.765

We computed this distance at each timepoint for each pair of stimulation and non-stimulation conditions. We then computed766

the length of the perturbation vector projected into the task activity space. This estimator cannot sum across squared distance767

estimates for individual dimensions because of the dimensions are linearly combined through the projection matrix. Instead, to768

compute the projected distance in a K dimensional space defined by the projection matrix W = [www1 www2 · · · wwwK ] ∈ RD×K , we769

use a strategy of summing over all possible combinations of folds on each dimension. We will implicitly compute the squared770

distance along projected dimension k as (dropping the condition subscript as well):771

(dk)
2 =

1

F1F2 · · ·FD

∑
(f1,f2,...,fD)

(
wwwk

⊺∆∆∆(f1,f2,...,fD)

) (
wwwk

⊺δiδiδi(f1,f2,...,fD)

)
(7)772

Where each ∆∆∆(f1,f2,...,fD) ∈ RD and δδδ(f1,f2,...,fD) ∈ RD are the assembled vectors of large fold and small fold differences,773

taking the f1th fold for the first dimension, the f2th fold for the second dimension, etc. Fortunately, this expression simplifies774

so that the full combinatorial sum need not be computed explicitly. Expanding this out, and dropping the k superscript for775

O’Shea*, Duncker* et al. 23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.16.520768doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.16.520768
http://creativecommons.org/licenses/by-nc-nd/4.0/


brevity, we have776

(dk)
2 =

1

F1F2 · · ·FD

∑
(f1,f2,...,fD)

(∑
d

wd∆
d
fd

)(∑
d

wdδ
d
fd

)

=
∑
d

∑
d′

1

F1F2 · · ·FD

∑
(f1,f2,...,fD)

(
wdwd′∆d

fd
δd

′

fd′

)
=
∑
d

w2
d

Fd

∑
fd

(
∆d

fd
δdfd
)
+
∑
d

∑
d′ ̸=d

wdwd′

FdFd′

∑
(fd,fd′ )

(
∆d

fd
δd

′

fd′

)

=
∑
d

w2
d

Fd

∑
fd

(
∆d

fd
δdfd
)
+
∑
d

∑
d′ ̸=d

wd

Fd

∑
fd

∆d
fd

wd′

Fd′

∑
fd′

δd
′

fd′


=
∑
d

w2
d∆

dδd +
∑
d

∑
d′ ̸=d

(
wd∆d

)(
wd′δd′

)

(8)777

Defining matrix A ∈ RD×D as:778

Ad,d′ =

{
1
Fd

∑
fd

∆d
fd
δdfd if d = d′(

1
Fd

∑
fd

∆d
fd

)(
1

Fd′

∑
fd′

δd
′

fd′

)
if d ̸= d′

=

{
∆d

fd
δdfd if d = d′

∆d · δd′ if d ̸= d′

(9)779

Finally, we have:780

(dk)
2 =

∑
i,j

WikWjkAij =
∑
j

Wjk (W⊺A)kj (10)781

Summing over dimensions k in the task activity space, we arrive at an unbiased estimated of the projected (squared) dis-782

tance:783

(dtask)
2 =

∑
k

(dk)
2 =

∑
i,j,k

WikWjkAij =
∑
i,j,k

W⊺
kiAijWjk = Tr(W⊺A W) (11)784

for each condition pair, and at each timepoint.785

7.2 ICMS perturbation distance786

↪→ c.f. Extended Data Fig. 9b–c787

For the ICMS datasets, neurons were recorded simultaneously on the Neuropixels probe, so the unbiased distance estimators788

are simpler. The unbiased estimate of the (squared) perturbation distance in the full neural space is:789

(dfull)
2 =

1

Fc

Fc∑
i

(AAAi −BBBi)
T(aaai − bbbi) =

1

Fc

Fc∑
i

∆∆∆T
i δδδi (12)790

for each condition pair and timepoint. The perturbation distance projected into the task activity space via projection matrix791

W is estimated as792

(dtask)
2 =

1

Fc

Fc∑
i

(W∆∆∆i)
T
(Wδδδi) (13)793

Task space diameter normalization: At each stimulation site, we normalize these distances by a measure of the scale of794

non-stimulated neural activity. We define the task space diameter as the maximum distance between any two points on the795

non-stimulated neural tractories, for any two conditions and timepoints, as measured using the unbiased estimator of distance796

projected into the task activity space.797

8 Latent variable model798

In this section, we discuss the design and implementation of the latent variable model used to fit non-stimulated and stimulated799

neural responses. Our approach here is based off of a simplified version of GPFA,102 in that task-related signals in neural firing800

rates are treated as linear readouts of a low-dimensional collection of latent variables modeled as Gaussian processes. Unlike in801

GPFA, we fix the common autocorrelation timescale and the linear readout (using standard factor analysis). We also include802
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an low-rank additive term during stimulation, and a rectified Poisson likelihood model, which deals gracefully with neurons803

whose firing is suppressed as a result of stimulation.804

Let X̂ ∈ RCT×D
≥0 be trial-averaged firing rates for non-stimulated conditions, where C is the number of conditions, T is the805

number of time bins, and D is the number of recorded neurons. Let Nc,t,d denote be the number of trials averaged in each806

corresponding entry. Similarly, let Ŷ be the trial-averaged rates for the corresponding stimulation conditions, with the same807

size, where each entry is average over Mc,t,d trials. In all versions of the model that follow, these spike counts are treated808

as observations of each neuron’s underlying firing rate, given by X and Y with the same sizes. We take spike counts in809

non-overlapping 20 ms bins, and assume that all rates are normalized as spikes/bin in the derivations that follow.810

8.1 Unconstrained latents version811

↪→ c.f. Fig. 2g–j, Extended Data Fig. 2a,e,f, Fig. 5g–i,m812

First, we fit a version of the model where firing rates during non-stimulated and stimulated conditions are linear readouts of813

independent latent variables, zzz and z̃zz ∈ RK , as illustrated in the graphical model show in Extended Data Fig. 2a. This version814

infers task-related modulation of the non-stimulated and stimulated data independently. For each condition and timepoint,815

these firing rates are determined by816

xxxt = czzzt + d

yyyt = cz̃zzt +∆∆∆t + d
(14)817

Here, C ∈ RD×K is the fixed readout mapping latents to neurons, initialized using standard factor analysis, and ordered818

such that the leading latents explain the most variance in neural space. d ∈ RD is a vector of baseline rates. To ensure819

temporal smoothness, zzz and z̃zz have independent Gaussian process priors with a squared exponential kernel of the form820

K(t, t′) = exp(−|t−t′|2
2τ2 ) with characteristic timescale τ = 100 ms. We also break the autocorrelation before and after the821

onset and offset of stimulation for z̃zz only, to allow for abrupt changes in task related modulation due to stimulation.822

∆ ∈ RT×D is a matrix of purely additive influences of stimulation on neural firing rates. We constrain ∆ to be low rank to823

avoid overfitting (rank 5, although our results were not sensitive to this choice). This corresponds to the assumption that the824

additive influences can be captured by a mixture of several timecourses applied to different dimensions of neural activity.825

8.2 Contraction-only version826

↪→ c.f. Extended Data Fig. 9k–m827

We also fit a second version of the model in which stimulation latents z̃zz were determined directly by the non-stimulated latents828

zzz through a linear contraction operator around a fitted centroid (zzzcent ∈ RK).829

z̃zzt =
(
zzzt − zzzcentt

)
RBtRT + zzzcentt (15)830

Here Bt ∈ RK×K
≥0 is fitted diagonal matrix whose entries contract (or expand, if greater than unity) individual latent axes,831

R ∈ RK×K is a fitted rotation matrix that orients the modes of the contraction as needed with the latent dimensions. The832

individual entries of Bt have a Gaussian process prior as well, along with the fitted centroid zzzcent.833

8.3 Shuffled and Poisson Null versions834

↪→ c.f. Fig. 2k, Fig. 5k, Extended Data Fig. 9e835

We also fit two versions of the model to provide distributions of latents under the null hypothesis that stimulated and non-836

stimulated latents were identical (i.e., zzz = z̃zz). In the first version, Shuffle, we assembled single trial spike counts from837

paired non-stimulated and stimulated conditions and shuffled the labels. This yields trial-averaged firing rates under the null838

hypothesis, such that differences between non-stimulated and stimulated firing rates result from differing amounts the additive839

∆ (which is now mixed into both trial averages) and noise. We tracked the fraction of true-stimulation trials contributing840

to the shuffled condition averages for non-stim and stim (fx
n and fy

n for neuron n) and fit the model where both x and y841

incorporated a scaled contribution from the additive ∆ term to match:842

xxxt = czzzt + (fffx ⊙∆∆∆t) + d

yyyt = cz̃zzt + (fffy ⊙∆∆∆t) + d
(16)843

In the second version, Poisson Null, we took the fitted non-stimulated latents zzz and the additive ∆ from the unconstrained844

model fit, and regenerated synthetic spike count data under the null hypothesis. Specifically, we set z̃zz = zzz, computed the845

predicted firing rates, and then generated spike counts for each trial as Poisson-distributed samples from these rates. We then846

fit the model to these synthetic data as before, fitting zzz and z̃zz (and ∆) independently.847
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Both versions were used to compute a distortion metric (see §8.6) of distortion under the null hypothesis that stimulation does848

not distort the underlying latent task variables.849

8.4 Rectified Poisson likelihood model850

↪→ c.f. Extended Data Fig. 2b–d851

We treat the observed single trial spike counts as individual observations of inhomogenous Poisson process with rates given852

by matrices X and Y , with the same size as X̂, Ŷ . For an individual entry x̂ = X̂c,t,d is computed by averaging Nc,t,d trials,853

where the ith trial, the bin contained x̂i observed spikes. The modeled rate is x = Xc,t,d, which is normalized to spikes per854

time bin. Then the total log-likelihood is:855

`(x̂|x) =
n∑

i=1

(x̂i log(x)− x) =

(
n∑

i=1

x̂i

)
log(x)− nx = n(x̂ log(x)− x) (17)856

Therefore, due to the additivity of the Poisson distribution, we can work only with the trial-averaged rates and trial counts.857

Firing rates in X and Y can be negative, particularly if the additive � term leads to suppression of individual neurons. We account858

for this in the likelihood model by passing the rates through a soft-plus rectifiying nonlinearity with fixed hyperparameters κ859

and ε.860

gκ,ϵ(y) =
1

κ
log(eκy + eκϵ) (18)861

Here, κ controls the sharpness, with κ ≫ 1 approaching ReLU. ε determines the minimum value as y → −∞. We used κ = 10862

and ε = 0.5 spikes/sec, for which g(·) is plotted in Extended Data Fig. 2c. Note that we will use y and ŷ in the description863

that follows, but the same likelihood is used for the non-stimulated fitted rates x and data x̂ as well.864

Unfortunately, we run into a few issues if we implement the likelihood simply as (ignoring a scalar trial count factor m):865

`(ŷ|y) = ŷ log(g(y))− y (19)866

First, since g(y) > y everywhere, there is always pressure for y to be slightly larger than ŷ to compensate, especially when ŷ867

is closer to ε. This we address by wrapping ŷ in g(·) as well:868

`(ŷ|y) = g(ŷ) log(g(y))− y (20)869

Second, the presence of the softplus rectification distorts the likelihood landscape when y or ŷ are close to ε or when y is870

negative. Taking the derivative with respect to y, we have:871

∂`

∂y
= g(ŷ)

g′(y)

g(y)
− 1 (21)872

which will be zero when:873

g(ŷ)
g′(y)

g(y)
= 1 (22)874

For ŷ, y ≫ ε, we have g′(y) ≈ 1 and g(y) ≈ y, so the maximum likelihood is correctly located at y = ŷ. However, as ŷ875

approaches ε from above, this maximum disappears. To address this, we introduced a transformation function hŷ(y), to be876

specified below, on the second log likelihood term as well, which acts to transform y but whose form depends on ŷ.877

`(ŷ|y) = g(ŷ) log(g(y))− hŷ(y) (23)878

Our goal now is to design h so as to shape the log likelihood surface in y, ŷ so as to address these distortions caused by the879

rectification function when y or ŷ are close to ε or when y is negative. When y and ŷ are greater than ε, we want the log880

likelihood to match a standard Poisson observation model. Also, high spike counts (ŷ ≫ 0) should be discouraged when the881

rate is zero or negative (y ≤ 0), but negative firing rates are allowed when near-zero spikes are observed, essentially treating882

the spike counts as a censored observations of the rates. To accomplish this, we design the log likelihood surface piecewise in883

regions of y, ŷ. First, we let f0 be the gradient with respect to y of the original Poisson likelihood with g(·) applied to the884

inputs:885

f0(y, ŷ) =
∂`0
∂y

∣∣∣∣
y,ŷ

=
∂

∂y

(
g(ŷ)

g′(y)

g(y)
− 1

)∣∣∣∣
y,ŷ

(24)886
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We also define U(ŷ) = argmaxy f0(y, ŷ) for ŷ > ε. We then design a revised log likelihood surface, such that its gradient f887

has the following region-specific properties:888

on diagonal f(y, ŷ) = 0 if y = ŷ > ε

in region 1 f(y, ŷ) > 0 if y < ŷ, y > ε, ŷ > ε y ↑

2 f(y, ŷ) < 0 if y > ŷ, y > ε, ŷ > ε, y ↓

3 f(y, ŷ) = f0(U(ŷ), ŷ) > 0 if y < U(ŷ), ŷ > ε y ↑, rowwise constant

4 f(y, ŷ) = f0(y, ε) < 0 if y > ε, ŷ < ε y ↓, columnwise constant
5 f(y, ŷ) = η > 0 if y > ε, ŷ < ε y↑, constant

(25)889

where the circled region numbers refer to the schematic in Extended Data Fig. 2b. We also introduce a third likelihood890

hyperparameter η = 0.01 (in addition to κ and ε that parameterize g(·)), which acts to gently penalize unnecessarily large,891

negative rates even when the observed spike count is very low (region 5 ).892

To satisfy these requirements for f , we define h implicitly by its derivative with respect to y:893

h′
ŷ(y) =


g′(y) if ŷ > ε, y > U(ŷ)

g′(U(ŷ)) + g(ŷ)
(

g′(y)
g(y) − g′(U(ŷ))

g(U(ŷ))

)
if ŷ > ε, y ≤ U(ŷ)

g′(y) + (g(ŷ)− g(ε)) g′(y)
g(y) if ŷ ≤ ε, y > ε

−η + g(ŷ) g
′(y)
g(y) if ŷ ≤ ε, y ≤ ε

(26)894

Although this formulation is complex, the resulting log likelihood surface is straightforward (plotted in Extended Data Fig. 2d).895

Overall, this approach is an intuitive extension of the Poisson observation model allowing for negative firing rates (i.e.,896

suppression via inhibition), while remaining diffentiable and straighforwardly optimized.897

8.5 Model fitting and effective contraction factor898

↪→ c.f. Fig. 5o–r, Extended Data Fig. 9m–p899

All versions of the model were fit using Manopt, a toolbox for optimization on manifolds103 using the Riemannian trust-regions900

solver. This allowed up to optimize the log-likelihood over the fitted parameters while incorporating non-negative and low-rank901

constraints on those parameters. We computed approximate confidence intervals for fitted parameters using the inverse of the902

observed Fisher information matrix (the Hessian of the negative log-likelihood function).903

From the fitted parameters, we could compute an effective contraction factor βt. In all versions of the model, this was defined904

in terms of the sum of cross-condition variance over neurons for the stimulated firing rates relative to the non-stimulated firing905

rates. We define Z̄t and ¯̃Zt as the K ×C (latents × conditions) matrices of centered latents at time t, having subtracted the906

centroid across conditions, and Varc as the variance across conditions, such that the squared contraction factor equals:907

(βt)
2 =

∑D
n=1 Varc(CZ̃t)n∑D
n=1 Varc(CZt)n

=
∥C¯̃Zt∥2F
∥CZ̄t∥2F

(27)908

where ∥·∥2F denotes the squared Frobenius norm of the matrix.909

For the unconstrained model, the contraction factor was computed directly from the fitted latents, and confidence intervals910

were estimated by resampling Z and Z̃ under the posterior to sample a distribution for the contraction factor.911

For the contraction-only model, this contraction factor can be written directly in terms of the other fitted parameters. Here, we912

define Z̄t = Zt − Zcent
t as the K × C (latents × conditions) matrices of contraction centroid-centered non-stimulated latents.913
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Noting that B is diagonal, we have:914

(βt)
2 =

∥CRTBRZ̄t∥2F
∥CZ̄t∥2F

=
1

∥CZ̄t∥2F

∑
n,c

(∑
k

(CRT)n,k(Bt)k,k(RZ̄t)k,c

)2

=
1

∥CZ̄t∥2F

∑
n,c

∑
k1,k2

(CRT)n,k1
(Bt)k1,k1

(RZ̄t)k1,c(CRT)n,k2
(Bt)k2,k2

(RZ̄t)k2,c

=
1

∥CZ̄t∥2F

∑
n,c

∑
k1,k2

(Bt)k1,k1

[
(CRT)n,k1(RZ̄t)k1,c(CRT)n,k2(RZ̄t)k2,c

]
(Bt)k2,k2

=
∑
n,c

diag(Bt)
TQn,c,t diag(Bt)

= diag(Bt)
T

(∑
n,c

Qn,c,t

)
diag(Bt)

(28)915

where we define the inner matrices Qn,c,t ∈ RK×K as:916

(Qn,c,t)i,j =
1

∥CZ̄t∥2F
(CRT)n,i(RZ̄t)i,c(CRT)n,j(RZ̄t)j,c (29)917

Consequently (βt)
2 is a quadratic form of normally distributed variables (diag(Bt) under the posterior, computed from the Fisher918

information matrix). Therefore, (βt)
2 follows a generalized χ2 distribution.104 From this distribution we compute confidence919

intervals for βt.920

We also summarize the contraction factor in Fig. 5o,r and Extended Data Fig. 9n–p as the average βt over the stimulation921

interval (truncated at 200 ms if longer).922

Finally, we verified that the contraction factor could be estimated accurately by using simulated transformations of real data.923

We began with the fitted non-stimulated latents for each dataset and applied a known contraction factor uniformly across all924

latent dimensions. This provided the simulated latent states for a given contraction factor. We computed neural firing rates in925

each condition by projecting out to neural space, sampled spike counts from the corresponding Poisson distribution, and then926

used these simulated datasets to refit the latent variable model. For all datasets and across the full range of contraction factors927

from zero to one, the estimated contraction factor tracked the true contraction factor well (Extended Data Fig. 9m).928

8.6 Stimulation distortion metric929

↪→ c.f. Fig. 2k, Fig. 5k, Extended Data Fig. 9b930

We defined a metric to quantify the amount nonlinear distortion in the underlying latent variables induced by stimulation.931

This metric is based on the linear, Euclidean shape similarity metric defined in Williams et al. [48]. For each comparison, we932

first performed a Procrustes superposition allowing translation, reflection, and rotation but not scaling between the full non-933

stimulated and stimulated latent trajectories (Z and Z̃). We define Z̃a
t = TZ̃ be the K x CT (latent dimensions x conditions,934

timepoints) matrix of stimulated latents, aligned to the non-stimulation latents via the Procrustes transformation T ∈ RK×K935

with TTT = I. Given these aligned latents, we project out to neural firing rate space and compute the Euclidean distance,936

summed over conditions and timepoints within the peri-stimulation period.937

d(Z, Z̃) =
∑
c

∑
t∈{peri-stim}

∥CZ̃a
:,c,t − CZ:,c,t∥2 (30)938

We computed this distortion metric for the fitted latents in the uncontrained model, and we computed confidence intervals939

by resampling from the posterior of the latents and recomputing the distortion. We also computed the distortion metric for940

the Shuffled and Poisson-null latents and took the 95th percentile of the distortion metric under these null hypotheses as the941

significance threshold.942

8.7 Goodness of fit943

↪→ c.f. Fig. 2l, Fig. 5l,n944
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We computed the final goodness of fit of each model using the Poisson deviance. With observed spike counts X̂, fitted firing945

rates (in spikes per bin) X, the total deviance, summed over conditions, timepoints, and neurons is given by:946

D(X̂,X) = 2
∑
c,t,n

X̂c,t,n log(X̂c,t,n/Xc,t,n)− (X̂c,t,n − Xc,t,n) (31)947

We normalize the deviance by number of observations (conditions × timepoints × neurons), and compute the jackknifed948

standard error over neurons.949

8.8 Single trial analysis950

↪→ c.f. Extended Data Fig. 9f–j951

Lastly, we fit a single trial version of the model, where an independent latent variable trajectory was fit for each non-stimulated952

and stimulated trial. This version is equivalent to the unconstrained latents model in §8.1 if each trial is considered as an953

individual condition.954

Given the fitted single trial latent states, we focused on the states at the final timepoint of stimulation (or the equivalent955

time points on otherwise equivalent non-stimulation trials). We centered the single trial states around their respective within-956

condition means and computed the covariance of the single trial residuals of non-stim and all stim trials separately as Σn and957

Σs. Separately, we computed the covariance of the condition means around the grand mean as ΣN and ΣS . Each of these958

covariances are K ×K where K is the dimensionality of the latent space.959

We first compared the covariance of the residuals Σn and Σs directly using the correlation matrix distance (CMD),105 defined960

as:961

dcorr(Σn,Σs) = 1− Tr(ΣnΣs)

∥Σn∥F ∥Σs∥F
(32)962

This quantity is zero when the correlation matrices are equal up to a scaling factor and its maximum is one. We evaluated the963

CMD statistic against the null hypothesis that the residual covariances are identical, using a permutation test by shuffling the964

non-stim and stim residuals before computing the covariances.965

We also considered whether the change in covariance structure from non-stimulation to stimulation that acted on the condition966

means was similar to the change in covariance in the single trial residuals. To measure this change in covariance, we computed967

non-stim whitened versions of the stimulation covariances for both the condition averages and the single trial residuals as:968

Ψcond-avg = Σ
− 1

2

N ΣSΣ
− 1

2

N

Ψresid = Σ
− 1

2
n ΣsΣ

− 1
2

n

(33)969

Ψcond-avg and Ψresid ∈ RK×K describe the change in the covariance of latent states from non-stimulation to stimulation for970

the condition averages and residuals, respectively.971

We then the correlation matrix distance (CMD) between these matrices as:972

dcorr(Ψcond-avg,Ψresid) = 1−
Tr(Ψcond-avgΨresid)

∥Ψcond-avg∥F ∥Ψresid∥F
(34)973

If this distance is small, it implies that the transformation that applies to the covariance structure of the condition averages is974

similarly to the transformation that reshapes the single trial variability around the condition averages.975

To establish statistical significance, we consider the null hypothesis in which the shape of Ψresid is uncorrelated with Ψcond-avg. To976

assess this, we compute the dcorr(Ψcond-avg,Ψresid) statistic under random orientations of the stimulation residuals. Multiplying977

the stimulation residuals by a random rotation matrix Q has the effect of transforming the covariance matrix to Σ̂s =978

QΣsQT.979

9 Latent linear dynamical system model980

↪→ c.f. Extended Data Fig. 4a,b981

We fit latent linear dynamical system (LDS) models as a standard first step in describing the observed neural population982

dynamics. These models describe the evolution of a low dimensional latent variable in terms of linear dynamics and piecewise-983

constant inputs as:984

xxxi
t+1 = A xxxi

t + bbb
c(i)
κ(t+1) + ξξξit+1, ξξξit ∼ N (0,Q) (35)985
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Here, i = 1, . . . ,M indexes the non-stimulated conditions (reach directions, delay periods), c(i) returns the reach direction986

index corresponding to that condition, and κ(t) indicates the time epoch, establishing the time where the piecewise constant987

inputs transition from ‘hold’ to ‘go’.988

Observed PSTHs are modelled as a linear combination of latents with a constant offset.989

yyyit = C xxxi
t + ddd+ εεεit, εεεit ∼ N (0,R) (36)990

The model parameters Θ = {A, bbb1:Mκ(t) ,C, ddd,R,Q} are fit using Expectation Maximisation. Trial averaged firing rates were binned991

at 10 ms in causal, non-overlapping bins. The dimensionality K and time points at which inputs transition from ‘hold’ to ‘go’992

are determined via a gridsearch, selecting the values that achieve lowest mean-squared prediction error on held out validation993

data. For this purpose, we evaluate on data prior to stimulation onset on stimulation trials is used as the validation set. This994

ensures that the test data used in Fig. Fig. 3m-p is truly unseen across all model classes. These optimal hyperparameter values995

are fixed across all versions of the LDS model and also used in specifying the dimensionality and transition from ‘hold’ to ‘go’996

in the high-dimensional model described below in section 10.997

We generated 1000 resampled model fits by resampling non-stimulation trials with replacement from each condition, computing998

trial averages and fitting the LDS model. From these resampled fits, we computed a density estimate of the eigenvalues of the999

dynamics matrix A.1000

9.1 Model predictions following stimulation1001

↪→ c.f. Extended Data Fig. 4b–e,g, Fig. 2p1002

Having fit the model using only non-stimulated data, we then predict the LDS model’s responses following optogenetic1003

perturbation by using the firing rates at the last time bin during stimulation as the initial condition, yjtf for stimulation1004

condition j. We estimate the initial condition for the latents from the empirical firing rates at stimulation end:1005

xxxj
tf

= C†
(
yyyjtf − ddd

)
(37)1006

We then run the latent dynamics forward from this initial condition according to Equation (35) (but without injecting innovations1007

noise). We compute the Euclidean distance in neural space between the stimulated and non-stimulated model predictions as a1008

function of time. We computed confidence intervals for these decay curves by resampling stimulation trials to re-estimate the1009

initial condition for the latents, and then evaluating model predictions forward using the resampled model fits. We computed1010

the evoked energy as a summary statistic of these decay curves, defined as the integral under this perturbation distance over1011

time, again normalized by the task space diameter.1012

We also fit a second version of the LDS model using both non-stimulation and all stimulation conditions for model fitting, and1013

evaluted the predictions of this model to stimulation in the same manner. To simulate stochasticity (e.g., of opsin expression)1014

in the stimulation initial condition, we computed the difference in firing rate (stim minus non-stim) at the final time bin of1015

stimulation, randomly permuted these offsets, and then added the shuffled offsets onto the non-stimulated firing rates. We1016

then evaluated the model’s predictions from this shuffled stimulation initial condition.1017

9.2 LDS model analysis, Schur decomposition1018

↪→ c.f. Extended Data Fig. 4f,h1019

To better understand the differences between the LDS model fit only to non-stim and the model fit to both non-stim and stim,1020

we computed the Schur decomposition of the dynamics matrix.106,107 The real Schur decomposition expresses a square matrix1021

as1022

A = QTQ−1 (38)1023

where Q is an orthogonal matrix and T is lower quasi-triangular (possibly with 2 × 2 blocks along the diagonal). a Here, Q1024

defines an orthonormal basis in K-dimensional latent space. T, called the real Schur form of A comprises the eigenvalues of1025

A along the diagonal (with 2× 2 blocks for complex eigenvalue pairs), as well as possibly nonzero entries below the diagonal.1026

If A were a normal matrix, such that ATA = AAT, T is be strictly quasi-diagonal, and the Schur decomposition reduces to a1027

diagonalization by eigenvalues. If A is non-normal, then a lower triangular entries at Ti,j indicates a functional feedforward1028

interactions from dimension i onto j in the latent basis of U.1029

aEquivalent definitions with an quasi-upper triangular T are common; the lower-triangular version leads facilitates a more
intuitive visualization of the feedforward description of the dynamics. A complex version of the Schur decomposition is also
commonly used.
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The Schur decomposition is not unique; specifically, any ordering of the eigenvalues along the diagonal of T is valid. We1030

sorted the eigenvalues (or complex eigenvalue pairs) in increasing order of how strongly the stimulation vector projected along1031

the corresponding eigenvector (or plane spanned by the corresponding eigenvector pair). This allowed us to reveal functionally1032

feedforward interactions from latent modes largely unaffected by stimulation onto modes strongly affected by stimulation.1033

In visualizing the real Schur form, we also computed the total feedforward input by adding in quadrature the entries in the1034

corresponding row of T.1035

Lastly, we quantified the non-normality of the dynamics matrix A across the different model variants using the normalized1036

Henrici’s departure from normality measure,108 defined as:1037

d̂F (A) =
1

∥A∥F

√√√√∥A∥F −
K∑
i=1

|λi|2 (39)1038

This measure ranges from 0 (normal) to 1 (maximally non-normal).1039

10 An E/I network model with low-dimensional subspace-structure1040

10.1 Model description1041

↪→ c.f. Fig. 2a, Extended Data Fig. 51042

We develop a dynamical model of a putative subnetwork of motor cortex able to produce the slowly-varying, low-dimensional1043

activity patterns observed in motor cortical data, while having a direct interpretation in terms of circuit-level properties. To1044

do this, we describe the temporal evolution of a set of network variables νννit ∈ RN on experimental condition i = 1, . . . ,M1045

via1046

νννit+1 = W νννit + uuui
t + ηηηit+1, ηηηit ∼ N (0, S) (40)1047

Subsets of ννν reflect difference-from-baseline firing rates (and are hence allowed to go negative) of a pool of excitatory and1048

inhibitory neurons. The connection matrix W is constrained by Dale’s Law and by a requirement that E and I input strength1049

to each unit be balanced. This results in constraints on the dynamics of the form1050

W =

[
WEE −WEI

WIE −WII

]
W□□ ≥ 0

∑
j

W□E
ij =

∑
j

W□I
ij , (41)1051

where W□□ are matrices with non-negative entries that specify the connection strengths within (EE, II) or across (EI, IE)1052

the pools of excitatory and inhibitory cells. The reach target and the time of the ”go” signal are supplied by additive external1053

inputs (uuut), which were constant during each of the hold and movement periods, such that the evolution of νννt during each1054

phase was determined by the autonomous dynamics of the network. Recorded neurons are modelled as driven by combinations1055

of network units, so that deviations in PSTHs about their respective background levels (ddd) are given by linear combinations of1056

elements of νννt according to a loading matrix (C). The network variables are hence related to recorded firing rates yyyit ∈ RD1057

via1058

yyyit = C νννit + ddd+ εεεit, εεεit ∼ N (0,R) (42)1059

Under this specification, the model network contains more units than recorded neurons in the dataset. Therefore, many1060

different patterns of dynamics in the high-dimensional system could reproduce the recorded PSTHs. However, these solutions1061

may generally be more complex dynamically than the recorded data, with the agreement in PSTH reconstruction depending on1062

precise cancellation of high-variance signals by the specific linear weights in C. In these cases, small changes in C would generate1063

apparent dynamics that differed appreciably from the measured patterns. This contrasts with the widely observed finding that1064

motor cortical activity associated with controlled reaching movements exhibits systematic low-dimensional dynamics that can1065

be consistently reconstructed from many different samples, or mixtures, of recorded neurons.3,23,56,57,1091066

Specifically, we would like the high-dimensional system to match the complexity of the recorded neural activity in two ways:1067

First, the observed shared structure of population activity during simple center-out reaching movements is generic, in the1068

sense that it varies little across recording sessions, sites, animals, or from study to study.23,56,57 This was the case here,1069

with principal component projections displaying similar trajectories at all recording sites in two monkeys ( Extended Data1070

Fig. 5a). If the underlying patterns of activity in the full cortical circuit were of significantly greater complexity, then different1071

recorded populations, reflecting different linear projections, would instead exhibit different projected structure (Extended Data1072

Fig. 5b). Second, for activity during phases of the trial that are internally paced – including during execution of the movement1073

– a low-dimensional projection of the recorded activity has been reported to be sufficient to accurately predict its future1074

evolution.3,28,29,110,111 This property was also reflected in our recordings by the ability of a low-dimensional linear dynamical1075

system (LDS) model to accurately recapitulate population activity (Fig. 3e).1076
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To ensure that these characteristics were also typical of the model dynamics, we regularise the high-dimensional system as1077

follows. We randomly selected a K × N rectangular projection matrix J, where N is the number of network units and K is1078

a dimension that suffices to capture the majority of variance in the recordings. The row space of J defined a K-dimensional1079

subspace of network activity, which will be referred to as the task-dynamics space. We constrained the evolution of the network1080

state projected into this subspace to be unaffected by the orthogonal component of the state. That is, we required1081

JW(I − J†J)νννt = 000 , (43)1082

where J† = JT(JJT)−1 denotes the pseudo-inverse. Under this constraint, the evolution of the network state projected into1083

the subspace defined via J, can be described as1084

Jνννt+1 = J W(J†Jνννt + (I − J†J)νννt) + Juuut + Jηηηt+1 = J WJ†Jνννt + Juuut + Jηηηt+1 (44)1085

which shows that the state Jνννt+1 only depends on activity within J at the previous time point. Letting xxxt = Jνννt, the dynamical1086

evolution within the this low-dimensional space can be described via low-dimensional, linear dynamics A = J WJ†. Thus, under1087

the constraint in Equation (43), dynamics in the J-defined subspace are self-contained, with properties similar to those observed1088

in motor cortical data.1089

To ensure that the model dynamics matched those observed in the recordings, we also required that the reconstruction of the1090

measured PSTHs be based only on the projection of the network state into this subspace. That is, we set1091

C = C̃J , (45)1092

where C̃ is a D ×K matrix that can be learnt from data. Furthermore, we assume that the inputs are low-dimensional and1093

arrive within the J-defined subspace. We thus assume the additional input structure1094

uuut = J† bbbc(i)κ(t) (46)1095

κ(t) ∈ {1, 2} indicates the indices for the constant inputs supplied during the hold, or movement period and c(i) indicates the1096

target direction of the ith PSTH. In addition to the constraints in Equations (43) and (41), we also impose sparsity in the1097

connectivity matrix W by constraining 75% of its entries to be equal to zero.1098

10.2 Model fitting1099

We fit this model by maximum likelihood learning using the Expectation Maximization algorithm (EM).112 Since the data1100

reconstruction only depends on xxxt = Jνννt when the dynamical evolution is self-contained, we can write the objective function1101

in terms of xxxt, instead of representing the full state according to νννt.1102

The optimisation objective of the algorithm is a lower-bound to the marginal log-likelihood (with hidden-states integrated out).1103

For the model we consider here, it is given by1104

F =
M∑
i=1

T∑
t=1

⟨log p(yyyit|xxxi
t)⟩q +

M∑
i=1

T−1∑
t=1

⟨log p(xxxi
t+1|xxxi

t)⟩q +
M∑
i=1

⟨log p(νννi1)⟩q +H[q] (47)1105

Angled brackets ⟨·⟩q denote expectations with respect to a distribution q(xxx1:M
1:T ) over hidden network states within the task-1106

dynamics space defined by J and H[q] is the entropy of q(xxx1:M
1:T ). The constraint in Equation (43) is enforced via the addition1107

of a penalty term to the EM objective function. The penalty term takes the form1108

L1(W) =
ε

2
∥JW(I − J†J)∥2F (48)1109

Similarly, we encourage the E/I balance constraint in Equation (41) via a quadratic penalty of the form1110

L2(W) =
β

2
∥W 111∥2 (49)1111

The parameters ε and β are determining the trade-off between fitting the data and satisfying the constraints and are increased1112

gradually throughout the optimisation. While it is possible to use constrained optimization approaches to implement the linear1113

equality constraints in Equation (43) and (41) (for example interior-point methods), these quickly become too computationally1114

costly for larger networks. The quadratic penalty approach used here is more computationally efficient for large network sizes,1115

since gradient descent with upper- and lower-bound constraints can be used to learn W.1116

Our final optimization objective can be written as1117

F∗ = F − L1(W)− L2(W) (50)1118
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We maximise this objective with respect to the distribution over hidden states q(xxx1:M
1:T ) and the model parameters Θ =1119

{W, bbb1:Mκ(t) ,C, ddd,R, S}. The task-dynamics space mapping J is sampled at random with Jij ∼ N (0, 1
N ) and is held fixed1120

throughout model fitting. In order to fit the model parameters Θ via EM, we exclusively use recorded PSTHs from experimental1121

conditions without optogenetic stimulation. At no time throughout the model fitting procedure is the model instructed to1122

reproduce PSTHs recorded under optogenetic stimulation.1123

To fit the model, the network connections in W are initialised randomly and independently according to the weight distribution1124

used in Hennequin, Vogels, and Gerstner [106] using a spectral radius of 0.85 to ensure stability. In a second initialisation1125

step we take the random weight matrix and minimize the norm between the dynamics of an analogous fitted LDS model and1126

JWJ†, while penalizing violations of the constrains in equations (43) and (41). The resulting W matrix is then further adjusted1127

according to the EM algorithm (along with the model parameters Θ) to maximize the probability of the measured responses,1128

while maintaining Dale’s Law, E/I balance, sparsity, and the subspace constraints. The latent dimensionality K and change1129

time-point for the piece-wise constant inputs were determined via cross-validation in an LDS model with no connection to a1130

high-dimensional E/I network, but otherwise analogous model structure.1131

10.3 Hidden-state inference1132

The optimal distribution q(xxx1:M
1:T ) is equal to the posterior distribution of hidden-states xxxi

t given the observed PSTHs. Computing1133

this posterior distribution over xxxi
t is analogous to Kalman smoothing with low-dimensional linear dynamics JWJ† in the presence1134

of inputs.113,114 The output of the Kalman smoother will be the set of posterior means ⟨xxxi
t⟩, posterior second moments1135

⟨xxxi
txxx

i
t
T⟩ and time-shifted posterior second moments ⟨xxxi

t+1xxx
i
t
T⟩. The angled brackets indicate expectations with respect to1136

q(xxx1:M
1:T ).1137

10.4 Parameter learning1138

Most of the required parameter updates are available in closed-form, and only involve slight modifications from the solution1139

for the classic linear dynamical system115,116 due to the introduction of the task-space mapping J. The update equations are1140

as follows:1141

bbbℓk =
1∑

t 111{κ(t+1)=k}

∑
{i:c(i)=ℓ}

∑
{t:κ(t+1)=k}

(
⟨xxxi

t+1⟩ − JWJ†⟨xxxi
t⟩
)

(51)1142

ddd =
1

TM

∑
t,i

(yyyit − C
〈
xxxi
t

〉
) (52)1143

C =

∑
t,i

(
yyyit − ddd

) 〈
xxxi
t

〉 T∑
t,i

〈
xxxi
txxx

i
t

T〉−1

(53)1144

R =
1

TM

∑
t,i

〈(
yyyit − Cxxxi

t

) (
yyyit − Cxxxi

t

)T〉 (54)1145

ω =

(
JJT
)−1∑

t,i⟨(xxxi
t+1 − JWJ†xxxi

t − bbb
c(i)
κ(t))(xxx

i
t+1 − JWJ†xxxi

t − bbb
c(i)
κ(t))⟩

T

M(T − 1)N
, S = ωI (55)1146

Learning W is done by gradient descent on F∗. The E/I sign constraints are included as upper and lower bounds on each entry1147

Wij during the optimisation. The relevant gradient for W is given by1148

∇WF∗ = S−1
M∑
i=1

T−1∑
t=1

(
⟨νννit+1ννν

i
t

T⟩ − W⟨νννitνννit
T⟩ − J†bbbc(i)κ(t+1)⟨ννν

i
t⟩T
)

(56)1149

− ε JTJW(I − J†J)− β W111111T (57)1150

A given level of sparsity is enforced by pre-selecting the number of active, non-zero connections in W at random (but always1151

including the elements on the diagonal), and only including these as parameters in the optimisation.1152

10.5 Initial state distribution1153

Initial state distributions are again chosen to maximize F∗. We assume that the initial hidden state is drawn from a distribution1154

with xxxc
1 ∼ N (µµµc

0,Qc
0). The optimal update can be shown to take the form1155

µµµi
0 = ⟨xxxi

1⟩ (58)1156

Qi
0 = ⟨xxxi

1xxx
i
1

T⟩ − ⟨xxxi
1⟩⟨xxxi

1⟩T (59)1157
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11 Evaluating model responses to optogenetic perturbations1158

↪→ c.f. Fig. 2b–d, g–i1159

We seek to test the model’s responses to inputs that resemble the perturbation patterns of the experiment. To do this,1160

we consider a general class of input patterns that target the excitatory sub-population. We consider stimulation patterns1161

that target different fractions of excitatory cells and with added noise in the stimulation-vector value for each affected cell,1162

representing noise in opsin expression levels. Stimulation vectors used to perturb the network model are generated as1163

sssi = γ|1 + 0.5 ξ| × oi (60)1164

where ξ ∼ N (0, 1), oi = 1 with probability pstim = 0.75, and oi = 0 otherwise, and γ is the stimulation amplitude. It was1165

selected based on cross-validation (Figure Fig. 3c,e) or such that the relative size of the stimulation distance vs. task-space1166

diameter of the network responses approximately match the ratio that was observed empirically (Figure Fig. 3f,g).1167

We test the model by letting it evolve forward in time without noise, starting from the learned initial condition ⟨νννi1⟩ = J†⟨xxxi
1⟩ on1168

the matched non-stimulated trial. During the appropriate time window, we introduce the stimulation input sss to the dynamical1169

system according to1170

νννi,stimt+1 = W νννi,stimt + J† bbbc(i)κ(t+1) + sss δ{t∈stim} (61)1171

where sss is constant and applied at each time-step of the 200ms stimulation window (during which δ{t∈stim} = 1 and outside1172

of which δ{t∈stim} = 0).1173

In order to relate the stimulation responses in network space to the recorded data, we pick a random subsample of 5 · K1174

units from νννi,stimt and perform ridge regression to estimate a set of linear weights and offset to predict the recorded data on1175

non-stimulated trials and on stimulated trials from all but one of the conditions. Predictions of neural stimulation responses1176

were made based on network responses to stimulation inputs on the held-out stimulation condition not used for training the1177

regression weights. This step is necessary for establishing a link between network responses and measured neural responses,1178

since there is no a priori relationship between the stimulation-induced translation in neural space and in network space in the1179

model.1180

12 Evaluating training and test performance of models1181

↪→ c.f. Fig. 2e–f1182

We report the performance in terms of the fraction of signal variance explained on training data and held-out test data. The1183

test dataset contained neural PSTHs that were recorded for reach conditions with a 400ms delay period that were not included1184

in subsequent analyses since they have no analogous stimulation condition. To evaluate the model performance on this dataset,1185

we held all model parameters fixed and iterated posterior inference and updating of the initial conditions of each model until1186

convergence. The model performance was then evaluated by predicting forward from the learned initial condition, holding all1187

other model parameters fixed.1188

13 Comparison with SOC architecture1189

↪→ c.f. Extended Data Fig. 31190

We follow the procedure from Hennequin, Vogels, and Gerstner [14] to obtain stability optimized circuits (SOCs). Analogously1191

to our E/I network model, we choose an equal ratio between E and I cells and set the probability of a non-zero synaptic weight1192

in the initial weight matrix to p = 0.25. Following [14], the initial spectral radius is chosen to be R = 10. We optimize the1193

network until a spectral abscissa of αabs = 0.5 is reached and maintain E/I balance throughout this optimization. After the1194

training procedure, the network activity is evaluated by solving1195

τ
dxxx

dt
= −xxx(t) + Wxxx(t) + III(t) (62)1196

Following [14], we set τ = 200 to match the time-scales observed in motor cortical activity patterns.1197

To obtain a qualitative agreement between the SOC and the recorded PSTHs, we follow the approach in [14] and drive the1198

system to a steady state solution corresponding to a random linear combination of the leading two eigenvectors (which we will1199

denote as ggg1, ggg2) of the Gramian matrix GGG satisfying the Lyapunov equation:1200

000 = WTGW − G + WTW (63)1201

The vectors ggg1 and ggg2 reflect the activity patterns resulting in the largest amount of evoked energy in the system.1202
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At the end of the preparatory period, we would like the network state to settle to the state1203

xxxc
prep = s(1)c z(1)c ggg1 + s(2)c z(2)c ggg2 (64)1204

where z
(i)
c ∼ Uniform[0.5, 1] and s

(i)
c is a random sign (±1) for each target direction c = 1, . . . , 4 and i = 1, 2. To reach1205

this steady state, we supply the network with an vector-valued input whose direction is constant and whose magnitude linearly1206

increases to 1 at the time of the go cue:1207

bbbc = (I − W)xxxc
prep (65)1208

At the time of the go cue, we turn this input off which causes the network to autonomously evolve forward in time starting1209

at the initial state xxxc
prep. The leading directions of variance of the resulting activity patterns across each of the four target1210

directions define the task-activity space of the SOC network. To evaluate the SOC against input perturbations to excitatory1211

units in the network, we follow the same approach as we did for the self-contained E/I network model. The task-activity1212

space of the SOC is determined by evaluating the task-responses and computing the subspace capturing 95% of variance using1213

principal components analysis. To compute the impulse response of the SOC to a stimulation input sss at t = 0, we can solve1214

the differential equation in (62) to obtain1215

xxx(t) = exp
(
−1

τ
(I − W)t

)
sss (66)1216

14 Theoretical analysis of network responses1217

↪→ c.f. Fig. 41218

We can understand the robustness in the network in terms of the random stimulation pattern only having a K
N by-chance1219

projection into the K-dimensional subspace J, where the slow, task-relevant dynamics are sensitive to inputs. In the large1220

N limit, any random perturbation will only interact with the unstructured dynamics outside of J, since the self-containment1221

constraint in Equation (43) prevents coupling of responses from outside J into any of the slow modes of the system within J1222

over successive time-steps. Similar to the responses observed under random unstructured E/I connectivity, random inputs decay1223

as a sum of exponentials in the learned E/I network dynamics. Overall, for a low-dimensional, self-contained task-dynamics1224

space embedded in a large network, the probability of a random input perturbing the slow and structured eigenmodes of the1225

network dynamics will vanish.1226

The other components of the response to stimulation-related input can be understood in terms of the properties of a balanced1227

E/I network. Balanced E/I networks are non-normal dynamical systems in which perturbations along a “differential” mode of1228

contrasting deviations in E and I activity are transiently amplified into a “common” mode of E/I co-activation, which then1229

decays rapidly.14,50,51 We found that this pattern of dynamics necessarily dominated the amplification of random perturbations1230

along the differential mode (i.e. targeting only E cells in the population), even for networks optimised to implement systematic1231

long-time-scale dynamics, such as those describing the slow evolution of activity patterns in motor cortex. We can see that1232

this structure is necessitated based on the sign pattern in the dynamics and the stimulation input:1233

Wsss =

[
+ −
+ −

] [
+
0

]
=

[
+
+

]
(67)1234

In addition to amplification along a co-activation pattern dominating the stimulation response, we also found that the network1235

produced response variance along this direction during normal task-related activity in the absence of stimulation related inputs.1236

This behavior explained why the network showed a large projection of the stimulation response into the task-activity space,1237

while at the same time being robust to the stimulation. To better understand why this structure arises in the network, we1238

consider the singular value decomposition of a general dynamics matrix W satisfying Dale’s law sign constraints. Using the1239

singular value decomposition, the dynamics matrix can be written as1240

W = U�VT =
N∑
i=1

σiuuuivvv
T
i (68)1241

where � = diag(σ1, . . . , σN ) contains the singular values of W along its diagonal, and U = [uuu1 . . .uuuN ] and V = [vvv1 . . . vvvN ] are1242

matrices containing the orthonormal set of left and right singular vectors, respectively. The singular vectors in U and V are the1243

eigenvectors of the matrices WWT and WTW, respectively. The sign-constraints in W imposed by Dale’s law, will also lead1244

particular sign-structure in these matrices. We have1245

WWT =

[
+ −
+ −

] [
+ +
− −

]
=

[
+ +
+ +

]
(69)1246

WTW =

[
+ +
− −

] [
+ −
+ −

]
=

[
+ −
− +

]
(70)1247
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The apparent difference in sign structure in WWT and WTW illustrates the non-normality of W: a non-normal matrix does1248

not commute with its transpose such that WWT ̸= WTW. For any W that obeys Dale’s law WWT has strictly non-negative1249

entries, while WTW has non-negative diagonal blocks, and non-positive off-diagonal blocks. Based on this structure, we can1250

derive sign-constraints on the leading left and right singular vectors of W. The leading left singular vector is chosen as1251

uuu1 = argmax
uuu

uuuTWWTuuu (71)1252

To maximise this quantity, uuu will need to have non-negative entries and be of the general form of an E/I co-activation1253

pattern:1254

uuu1 =

[
+
+

]
(72)1255

This result also relates to the Perron-Frobenius theorem for non-negative matrices,117 which allows one to derive conditions1256

for which uuu1 would have strictly positive entries. Similarly, the leading right singular vector is chosen as1257

vvv1 = argmax
vvv

vvvTWTWvvv (73)1258

To maximise this quantity, vvv will need to have non-negative entries for E-cells and non-positive entries for I-cells, taking the1259

form of a difference pattern:1260

vvv1 =

[
+
−

]
(74)1261

Lastly, the leading singular value is the square-root of the leading eigenvalue of WWT or WTW. We can therefore write1262

σ1 =
√
uuuT1 WWTuuu1 (75)1263

If we assume that each entry in the dynamics matrix W scales according to Wij ∝ O( 1√
N
) (a common assumption in studying1264

random connectivity matrices linked to the stability of the resulting dynamical system106,118), then multiplying uuu1 with each1265

column in W represents a sum over N positive terms of O( 1√
N
). Thus, the leading eigenvalue of WWT will scale with O(N),1266

and we arrive at the result1267

σ1 ∝ O(
√
N) (76)1268

We can use these general properties of dynamics matrices obeying Dale’s law in order to understand the alignment of the1269

network’s task-activity space with the simulation vector. Consider the one-time response of the network, to an arbitrary input1270

pattern ξξξ:1271

Wξξξ =
N∑
i=1

σiuuuivvv
T
i ξξξ (77)1272

The alignment of the network response to this random input with the co-activation pattern uuu1 can be computed as1273

uuuT1 Wξξξ ∝
√
N(vvvT1ξξξ) (78)1274

This means that any small projection of an input along the difference pattern vvv1 will get amplified by a factor of O(
√
N) along1275

the co-activation pattern uuu1. For large network sizes, and a randomly chosen ξξξ ∼ N (0, I), the expectation and variance of1276

projections along the difference pattern are1277

E[vvvT1ξξξ] = 0 (79)1278

V[vvvT1ξξξ] = vvvT1E[ξξξξξξT]vvv1 = vvvT1vvv1 = 1 (80)1279

Thus, by chance, we would expect to see variance of O(N) along the E/I co-activation pattern in response to noisy inputs.1280

This shows that activity along uuu1 may also reflect amplified noise. In addition to this, potential coupling of response patterns1281

into the differential mode over multiple time-steps may further contribute towards variance along uuu1.1282
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In summary, the largest singular value (corresponding to the maximum amplification) of any connection matrix satisfying1283

Dale’s law scales with the square-root of the network size, and is always associated with a left (output) row-vector in which1284

all the elements have the same sign, and a right (input) column-vector in which elements corresponding to E-neurons and1285

to I-neurons have opposite signs. The leading singular vectors will depend on the pattern of structured dynamics that the1286

network implements, but the sign constraints we have shown above apply nonetheless. These results can hence explain why1287

we see additional network variance long the E/I co-activation pattern, even when it is not used to reproduce the data, or has1288

any dynamical relevance as it decays rapidly under E/I balance. These theoretical considerations explain why the stimulation1289

has an above-chance alignment with the task-activity space, even when it is misaligned by chance with the low-dimensional1290

task-dynamics space defined through J.1291

15 Evaluating model responses to ICMS1292

↪→ c.f. Fig. 61293

To test whether such a description is consistent with the E/I network model, we fit the same model class as before to PSTHs1294

recorded in the absence of stimulation. The peri-stimulation responses appear to follow stimulation-dependent, nonlinear1295

dynamics that depend on unknown circuit-level effects of ICMS and are hard to interpret using our modeling framework. We1296

thus focus our analysis on the period from the last time-point of stimulation onward and investigate whether the observed1297

population responses can be explained using a network model trained on non-stimulated data alone.1298

Based on previous analyses, we can model the stimulation responses on ICMS trials as a combination of the underlying task-1299

relevant responses on non-stimulated trials, taken to be the posterior mean PSTHs as inferred in our the model ⟨yyyct⟩, an1300

additive change in firing rates, ∆∆∆additive
t , and a residual response component ∆∆∆residual,c

t that captures the stimulation-induced1301

distortion of the underlying task-geometry. We thus have1302

yyystim,c
t = ⟨yyyct⟩+∆∆∆additive

t +∆∆∆residual,c
t (81)1303

Letting the stimulation delta ∆c
t denote the total stimulation effect, taken to be difference between stimulated and expected1304

non-stimulated PSTHs, we have1305

∆∆∆c
t = yyyc,stimt − ⟨yyyct⟩ =∆∆∆residual,c

t +∆∆∆additive
t (82)1306

15.1 Additive response component1307

We hypothesize that the additive response component, analogously to optogenetic stimulation, can be characterized by the1308

response properties of the network to an additive random perturbation. We therefore model it by choosing a random Gaussian1309

vector, νννrand ∼ N (0, I), in network space, and take it as the state at the end of stimulation. This randomly chosen state, by1310

chance, predominantly aligns with dimensions outside of the task-dynamics space. To capture the influence of the resulting1311

activity patterns on data, we need to learn a set of linear weights. To do this, we choose a random size 5×K sample from the1312

network responses evolving forward from the random initial state νννrand. We then use this sample from the network to learn a set1313

of linear regression weights that allow to reconstruct the stimulation delta, ∆∆∆c
t , on all but one of the target/timing combination.1314

The set of weights and network responses are then used to obtain a prediction for the additive response component of the1315

held-out condition. We repeat this over 100 random initial vectors νννrand and average the resulting predictions to obtain our final1316

cross-validated estimate of the stimulation response component that can be fully explained as additive and random. Intuitively,1317

our approach aims to “explain away” the condition-invariant response component that can be captured by a random additive1318

perturbation in the network. Based on the results we derived in the context of optogenetic stimulation, we expect any random1319

additive perturbation to miss the task-dynamics space by chance and decay, while also resulting in non-normal amplification1320

along the E/I co-activation pattern. Having an estimate of the additive response component, we can subtract it from the1321

overall stimulation delta to focus our further analyses on structure in the residual response component.1322

15.2 Residual nonlinear response component1323

We subtract the cross-validated prediction of the additive component from the stimulation delta to obtain an estimate of the1324

residual response component.1325

∆∆∆residual,c
t =∆∆∆c

t −∆∆∆additive
t (83)1326

We are interested in investigating whether this response component is consistent with the network dynamics inside the task-1327

dynamics space, and whether these responses can be modelled by finding an initial condition inside the task-dynamics space1328

using the model parameters that were identified from non-stimulated activity alone.1329
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15.3 Correlation of model predictions with residual response component1330

↪→ c.f. Fig. 6f1331

We next wanted to test whether the dynamics that were estimated from neural activity during normal reaches (in the absence1332

of stimulation) are predictive of the post-stimulation responses. We hypothesize that the residual response component reflects1333

a perturbation inside the task-dynamics space, in which case the post-stimulation responses should reflect signatures of the1334

underlying local population dynamics.1335

To evaluate the model predicted time-course of recovery from stimulation, we take the residual response component at the1336

last time-point of stimulation and project it into the learned task-dynamics space of the model to obtain a lower-dimensional1337

initial condition inside the task dynamics space1338

r̂rrc0 = (CTR−1C)−1CR−1∆∆∆residual,c
tstim end (84)1339

where tstim end denotes the time index corresponding to the last time-bin during stimulation. We then use the estimated model1340

dynamics inside the task dynamics space to predict forward in time, starting from r̂rrc0:1341

r̂rrct = JWJ† r̂rrct−1 (85)1342

We next project this back out to neural space to obtain our prediction ∆̂∆∆
residual,c

t = CCCr̂rrct and compute Pearson’s correlation1343

coefficient between the model prediction, and the component of the residual stimulation component that aligns with the task-1344

dynamics space, computed as rrrct = C(CTR−1C)−1CR−1∆∆∆residual,c
t . We include data points from the first 200ms after the end1345

of stimulation.1346

As a control, we repeat the same analysis but evaluate predictions r̂rrct using a dynamics matrix with the same eigenvectors1347

and eigenvalues as those that were learned in the model, but shuffled eigenvalue/vector pairings. This demonstrates that the1348

obtained correlation coefficients are larger than would be expected purely based on a stable system that decays with slow1349

time-constants.1350

15.4 Upper bound on correlation coefficients with stimulation delta residuals1351

↪→ c.f. Fig. 6f1352

The correlation coefficient between the empirical residuals rrri and the model predictions r̂rri would be maximal if rrri = βr̂rri +ηηηi.1353

Here, β is a scalar and ηηηi is the noise covariance in the residual (the same as the noise covariance on stimulation trials since1354

we subtract noiseless quantities from the PSTH to compute the residuals).1355

ρmax =
⟨(rrri − r̄rr)T(r̂rri − ¯̂rrr)⟩√

Tr [Σr]Tr [Σr̂]
=

βTr [Σr̂]√
Tr [Σr]Tr [Σr̂]

=

√
1− Tr [Ση]

Tr [Σr]
(86)1356

This shows that the maximum correlation we could possibly obtain is small when the residual variance is mostly due to noise,1357

which is relevant for several datasets from Monkey V (Fig. 6f).1358

15.5 Inferring initial conditions for ICMS responses1359

↪→ c.f. Fig. 6g1360

The correlation coefficient analysis demonstrates that our model predicts the time-course of the residual response component1361

better than would be expected by chance. Instead of using the raw projection of the residual response component into the1362

task-dynamics space, we next use the model to infer an initial condition at the end of stimulation. This flexibility in finding1363

an initial condition improves the agreement between model predictions and empirical responses even further. We evaluate the1364

fraction of signal variance of the entire post-stimulation responses that can be explained by modeling the stimulation responses1365

as a sum of the model-inferred posterior means on non-stimulated trials, the cross-validated response component to a random1366

additive perturbation and the model prediction of the residual component based on inferring an initial condition inside the1367

task-dynamics space and predicting forward in time using the learned dynamics within this space.1368
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Extended Data Fig. 1. Optogenetic stimulation in motor cortex does not alter reach kinematics.a: Mean
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endpoints. Each row corresponds to a different stimulation timing. Pre-trial and Delay Early stimulation kinematics
(not shown) were also identical. Each column corresponds to a simulation site. Trial counts sum across the four
reach directions. b: Time-courses of the norm of the evoked difference in velocity vector, computed using an
unbiased estimate of difference in velocity vectors (which can be negative). For each stimulation condition, we
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Extended Data Fig. 2. Latent variable model decomposes perturbation effects. a: Graphical model of latent
variable model (LVM). Circles (nodes) indicate random variables. Arrows indicate a statistical dependence of the
recipient node on the source node, with uppercase letter labels indicating matrix multiplication. In non-stimulated
trials, the model is similar to Gaussian Process Factor Analysis, as firing rates are constructed from a affine readout
of K = 6 latent variables with a Gaussian process (GP) prior to ensure temporal smoothness. The linear readout
C a matrix with size neurons (D) by latents (K), and d is the offset vector away from the origin. Unlike GPFA,
C is fixed and identified using factor analysis, and the autocorrelation timescale of the GP prior is also fixed and
constant across latents. (continued on next page)
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Extended Data Fig. 2 (continued from previous page). For stimulated trials, firing rates are constructed from
a distinct set of inferred latents, through the same linear readout and with the same prior, plus a condition-invariant,
additive ∆ term. The autocorrelation of the GP prior for the stimulation latents is disconnected at the onset and
offset of stimulation. The additive ∆, a matrix of size neurons (D) × time (T ), is constrained to be zero before
stimulation onset and to be low-rank (rank 5). This constraint ensures that ∆ captures the shared timecourses
of the additive responses across neurons. Importantly, the neural dimensions addressed by the latent dimensions
through C and through ∆ (their column spaces) may overlap, depending on the fitted value of ∆. This allows the
additive term to capture additive influences on firing rates outside the subspace which explains non-stimulated task
variability. In this model, the fitted parameters are the zzzt, z̃zzt, and ∆. b,c: Predicted firing rates are computed
from the projected latents plus the additive ∆ and transformed through a specific rectifying nonlinearity g(·). The
likelihood of observed spike counts given these rates is evaluated under a Poisson observation model. The rectifying
nonlinearity g(·) applied to predicted rates is a critical feature of the model to correctly handle neurons whose firing
is silenced by stimulation. We chose a soft-plus rectification, plotted in (c), that resembles ReLU but with a softer
corner (inset). To gracefully fit the model in light of this rectification, we designed a log-likelihood function f(y, ŷ)
for the observed spike counts ŷ (or equivalently x̂) given the predicted rate y (or x), as illustrated in (b). The design
ensures that the model effectively treats neurons silenced by stimulation as censored observations. We construct
this function implicitly in terms of its gradient with respect to y, and define the gradient piecewise (see Methods
§8.4). In (b), each piecewise region is labeled in green; red and blue labels indicate whether the gradient descent
acts to increase and decrease the predcited rate. In regions 1 and 2 , we have a standard Poisson log-likelhood
surface where the predicted rate y has been transformed by g(·). Region 3 extends leftwards from the local
maximum in each row and simply corrects a non-monotonicity induced by the soft-plus rectification, ensuring that
the gradient acts to increase low predicted firing rates when spikes are observed. Region 4 acts to reduce high
predicted rates when the observed neuron fires very few spikes, indicating strong suppression. Lastly, region 5
aids the optimization by gently penalizing very low or negative predicted firing rates when the neuron is suppressed.
d: The resulting gradient of the log-likelihood function with respect to predicted rates. Note the logarithmic color
scale to aid visibility. e: The LVM accurately fits individual neuron responses with both excitatory and suppressive
responses to stimulation. Traces show empirical and LVM-fitted trial-averaged firing rates. LVM-fitted rates are not
rectified in this visualization to highlight the model’s accurate treatment of suppressed neurons. Dotted horizontal
line marks zero spikes/sec. Stimulation timings are separated into columns, with each trace corresponding to a
reach direction. f: Same as Fig. 2h but with empirical and LVM-fitted trial-averaged firing rates projected into
leading six task activity space dimensions. ↑ Go back
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Extended Data Fig. 3. Perturbations trigger long-lasting responses in Stability Optimized Circuits (SOCs).
a: A highly unstable initial connectivity matrix is optimized by minimizing Smooth Spectral Abscissa, following the
approach in [14]. After optimization, the resulting dynamics are stable and can produce complex and slowly varying
activity patterns, reflected in the large number of eigenmodes close to the stability line. b: The distribution of
the number of dimensions needed to capture 95% of the variance produced in response to four initial conditions
(see Methods §6), across 20 different realizations of a trained SOC with 400 excitatory and 400 inhibitory units
and 100 random samples of initial conditions. c: Example projections of SOC activity in response to four initial
conditions along its leading three Principal Components (PCs). d: The SOC activity in the presence of stimulation-
related inputs, projected along the same PCs as in (c). e: Task-diameter normalized stimulation distance in the
full network space and the networks task-activity space (defined by the PC capturing 95% of the variance produced
in response to the four initial conditions) for an example SOC. f: Projections of the difference between stimulated
and non-stimulated SOC activity projected along its leading four PC directions. Inset indicates the loading vector
and variance explained by the leading PC. g: The average impulse response norm of an example SOC across 100
randomly sampled stimulation vectors (green) and random Gaussian vectors (black). Shaded regions indicate ±2
standard deviations. ↑ Go back
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Extended Data Fig. 4. Linear, latent dynamical systems (LDS) models fit to task-related activity predict
slow decay of stimulation, but find a fragile, non-normal solution if fit to stimulation responses as well.
a: LDS graphical model. Circles (nodes) indicate random variables. Arrows indicate a statistical dependence of the
recipient node on the source node, with uppercase letter labels indicating matrix multiplication. In the model, low
dimensional latent variables zzz evolve according to the linear dynamics matrix A and piece-wise constant inputs uuu
which cause the transition from preparatory to peri-movement neural dynamics. b: The timescales of the dynamics
can be summarized by the eigenvalues of A. Colored dots indicate eigenvalue locations in the complex plane for the
fitted model for the model fit only to non-stimulated activity (left, blue) and the model fit to both non-stimulated
and stimulated activity (right, yellow). (continued on next page)
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Extended Data Fig. 4 (continued from previous page). Gray shading indicates density of eigenvalues for fits to
trial-resampled data. Dashed brown circular arc outlines the stable region; light brown circular radii and polar tick
marks indicate charateristic timescales and oscillation frequencies, respectively. The model fit to non-stimulated
activity learns uniformly slow dynamics, whereas the model fit to both learns a pair of eigenvalues corresponding to
a mode which decays more rapidly. c,d,e: Time-courses of the length of the perturbation vector (stimulated firing
rates minus non-stimulated firing rates at each point in time, for each condition), normalized by the task-diameter.
Gray traces indicate the empirical distance measure within the task activity space, as in Fig. 2o, right. Colored
traces indicate LDS model predictions, where the initial state was set to best the firing rates at the last time bin of
stimulation and the model was run forwards in time. c: The model fit to non-stimulated data predicts a slow decay
of the perturbation (this is identical to Fig. 2p). d: Model fit to both non-stimulated and stimulated data correctly
predicts a rapid decay of the perturbation. e: However, this solution is fragile, in that it decays quickly only the
particular pattern of stimulation used to fit the model. We would expect that the particular pattern of evoked firing
rates would depend on the levels of opsin expression in each neuron, which depends stochastically on viral infection.
We therefore generated shuffled stimulation vectors by randomly reordering the values of the empirical stimulation
vector over neurons. The model fit to both non-stimulated and stimulated data again predicted a slow decay of these
shuffled stimulation vectors. f: Non-normal dynamics facilitate rapid decay of the stimulation vector in the model
fit to both. Heatmaps show the real Schur decomposition of the dynamics matrix (excluding the diagonal). Along
each row and column are mutually orthogonal bases within the latent space, either individual bases corresponding
to individual eigenvalues, or more commonly, basis pairs corresponding to complex conjugate eigenvalue pairs, as
indicated in the margins. The Schur decomposition visualizes the strength of functionally feed-forward influences
from the basis in each row onto the basis in each column. We plot this feed-forward coupling weights in the blue-red
heatmap and in the the graph edges (grayscale arrows) in the right margin. The total, effective feedforward input
for each mode is indicated in the graph nodes (grayscale circles arranged vertically). The Schur decomposition is not
unique and depends on the ordering of the eigenvectors used in its contruction. We performed the decomposition
so that latent bases/basis pairs on which the stimulation vector had the largest projection (indicated in the vertical
green bar) appeared closest to the bottom. The main result is that feedforward coupling weights are uniformly
weak in the model fit to non-stimulated activity (left), suggesting approximately normal dynamics. In contrast,
the model fit to both exhibits strong feedforward coupling onto the bases with the strongest stimulation responses.
This feedforward coupling allows these bases (and the corresponding neural dimensions in the task activity space)
to exhibit large variance during non-stimulated conditions, but to rapidly decay with little dynamical impact due
to a fast decaying eigenvalue. This is conceptually analagous to internal readout dimensions, driven by the other
modes but with minimal influence back onto the network dynamics. g: Quantification of the normalized stimulation
evoked energy following stimulation offset, which equals the integral under the timecourse curves in (c-e). Black dot
indicates empirical evoked energy with 95% confidence intervals (invisible behind dot). h: The normalized Henrici
index of each model’s dynamics matrix, a measure of non-normality ranging from 0 (normal) to 1 (maximally
non-normal). Statistical significance is computed using models fitted to condition-averaged firing rates with trials
sampled from replacement. * indicates p < 0.05, ** p < 0.01, *** p < 0.001. ↑ Go back
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Extended Data Fig. 5. Self-contained low dimensional dynamics. a: The leading 30 principal components
(PC) of four datasets (different recording sites and monkeys) are rotated using an orthogonal matrix that solves
the orthogonal Procrustes problem relative to the PC projections of the PSTHs from Monkey O. PMdP. The first 3
dimensions are shown for each dataset. Projections look similar across recording sites and animals, highlighting the
fundamentally low-dimensional and generic structure of the population activity. b: Schematic illustration showing
that if, rather, population activity was high-dimensional, different random lower dimensional projections of the
population would result in different trajectories. This stands in contrast to the similarity of different samples of
population activity as shown in (a). c: Schematic illustration of the self-containment constraint. The temporal
evolution of neural activity within the task-dynamics space (shaded green plane) only depends on activity within the
task-dynamics space, rather than the full state across all network dimensions. The evolution of neural activity in
the full network can be described via the dynamics matrix W (network connectivity), whereas the evolution in the
task-dynamics space only depends on low-dimensional dynamics W1 (see (d,f)). d: Decomposition of the network
dynamics matrix W into four components, which represent transformations of activity across subspaces. The self-
containment constraint sets one of these components to zero, ensuring that there is no transition from outside of the
task-dynamics space into the task-dynamics space. This means that the network state strictly outside of the task-
dynamics space cannot influence the activity within the task-dynamics space. A low-rank assumption on W would
constrain the system to set all components except W1 to zero. e: Same as (a) but using four random projections of
the activity of an example network (trained on data from Moneky O. PMdP). Random projections are computed by
selecting a random subset of 10 ·K units from the network. Projections contain similar low-dimensional structure
despite sampling different random units from the network, highlighting that the dynamics of the E/I network match
the low-dimensional characteristics of recorded neural data. (continued on next page)
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Extended Data Fig. 5 (continued from previous page). f: Eigenspectra within the unit circle in the complex
plane. The network connectivity W is initialised randomly and adjusted throughout maximum likelihood learning
(see Supplementary Methods). After learning, dynamics within the task-dynamics space are slow and structured
(W1), but the model largely maintains the random structure of the initialisation outside of the task-dynamics space
(W4). ↑ Go back
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Extended Data Fig. 6. ERAASR2 enables recording of neural local activity using Neuropixels probes during
and immediately after ICMS. a: Schematic of stimulation and recording setup with Neuropixels inserted near
tungsten stimulating electrode in M1 or PMd. Anatomical landmarks are approximate based on stereotactic chamber
location. A total of 11 Neuropixels penetration sites were recorded, with 21 experimental sessions demarcated by
a constant stimulating electrode depth, ICMS amplitude, and ICMS duration. b: Approximate Neuropixels probe
locations relative to the stimulation electrode. Vertical distances were calculated using micromanipulator depths.
For radial distances, measured indicates the relative radial distance could be accurately measured on the dural
surface based on visible penetration marks. Inferred indicates the probe was inferred by fitting a point source
voltage model to the electrical stimulation artifact amplitude over channels to recover the relative position (see
Methods §3.3). Inferred outer bound indicates that the artifact saturated a sufficient number of channels at the
amplifier gain settings used for the recording, such that we could only infer an maximal radial distance for the probe,
given that the true artifact amplitude was at least as large as the dynamic range. c: Diagram of stimulation timings
within instructed-delay reaching task; identical to optogenetic stimulation timings, but with seven reach directions
instead of four. d: Neuropixels recordings through an example 200 ms ICMS stimulation. Each row corresponds
to a recording channel, sorted vertically down the Neuropixel, with a subset of channels expanded below. Strong
artifact dominates the signal on every channel. (continued on next page)
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Extended Data Fig. 6 (continued from previous page). e: ERAASR2 exploits the difference in covariance across
channels between spontaneous neural activity (top) and the electrical stimulation artifact (bottom). For each trial,
it identifies a subspace capturing maximal artifact with minimal spontaneous variance via a manifold optimization
problem, and then tries to reconstruct each channel from a low-dimensional set of artifact basis signals, and then
keeps the residual. f: Same signals as in (d) after cleaning with ERAASR2. g,h: Multichannel waveforms of two
example neurons as detected and sorted by Kilosort2 during the pre-stimulation (spontaneous), peri-stimulation,
and post-stimulation time windows. Traces show mean ± s.e.m. i: Histogram of Pearson correlation between
peri-stimulation and spontaneous waveforms for the 6 non-saturated sessions. Correlation was computed using each
neuron’s 7 largest amplitude channels, as marked with blue dots to the top left in (g,h). j: Histogram of Pearson
correlation between post-stimulation and spontaneous waveforms for the non-saturated sessions. Correlations close
to 1 indicate that neural spiking signals could be accurately recovered during and after ICMS. ↑ Go back
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Extended Data Fig. 7. Recovery of spikes in between periods of channel saturation. a: Example Neuropixels
traces superimposed over all trials for a representatitive saturated channel. b: Same traces in (a) after cleaning
with ERAASR2 and blanking the time windows with detected saturation (indicated in red, along with short very
intervals between saturation). Detected spikes in this signal for the neuron with the largest spiking waveforms on
this channel are plotted below. c,d: Multichannel waveforms of two example neurons (from saturated datasets) as
detected and sorted by Kilosort2 during the pre-stimulation (spontaneous), peri-stimulation, and post-stimulation
time windows. Traces show mean ± s.e.m. e: Histogram of Pearson correlation between peri-stimulation and
spontaneous waveforms from the saturated sessions. Correlation was computed using each neuron’s 7 largest
amplitude channels, as marked with blue dots to the top left in (c,d). f: Histogram of Pearson correlation between
post-stimulation and spontaneous waveforms from the saturated sessions. Correlations close to 1 indicate that
neural spiking signals could be accurately recovered during and after ICMS. g: (Top) Stimulated vs. non-stimulated
firing rates relative to individual ICMS pulses (or the equivalent time in non-stimulated trials), averaged over trials,
pulses, and neurons for non-saturated sessions, computed at the time resolution of the original Neuropixels sampling
(30 kHz). (Bottom) Fraction of channels with any saturated timepoints. Shaded regions before (after) show the
continuation into the previous (subsequent) ICMS pulse. h: Same as (g) for the saturated-sessions. Note that the
timecourse of ICMS-evoked spikes is very similar in the windows between pulses, suggesting that neural states can
be accurately estimated despite the saturation during each pulse. ↑ Go back
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Extended Data Fig. 8. Synthetic stimulation pipeline confirms accurate recovery of spikes throughout
stimulation. a: Flow-chart schematic of the synthetic stimulation pipeline. Panel letters to the top right of each
node indicate the corresponding figure panels related to that step. (continued on next page)
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Extended Data Fig. 8 (continued from previous page). We use artifact estimated from true stimulation trials,
add these artifacts to non-stimulated traces, blank channels where saturation would occur (as is done for the true
stimulation traces where saturated occurs), and then perform the identical processing pipeline through ERAASR2 and
a modified version of Kilosort2 to extract spikes for each neuron (see Methods §3.6). For each neuron, we compare
the original non-stimulated spike times to the synthetic pipeline sorted spike times, and annotate each true spike as
recovered or missed in the synthetic data. Synthetic pipeline spikes are marked as fabricated if they occur at times
with no corresponding spike in the non-stimulated data. We also compute a gain matrix by computing the ratio of
the synthetic, condition-averaged firing rates relative to the true, non-stimulated firing rates. We compute a low-
rank approximation of this neurons × time matrix, and then use this to compensate for the effects of missing spike
times. For both synthetic non-stimulated rates and the true stimulation rates, we divide by this gain matrix element
wise to compensate for the effects of missing spike times due to both saturation (if any) and the ERAASR2/Kilosort2
pipeline. This process is repeated for each stimulation timing and reach direction, using paired stimulation trials and
otherwise equivalent non-stimulation trials. This pipeline achieves two goals. First, we can estimate the effect of
the full end-to-end processing pipeline on the Neuropixels recordings due to electrical artifact. Second, we generate
synthetic non-stimulated firing rates that simulate the effect of saturation and the end-to-end processing pipeline.
We then use the (highly similar) synthetic non-stimulated firing rates in lieu of the non-stimulated firing rates in
all subsequent analyses, so that any differences between non-stimulated and stimulated rates are not attributable
to saturation or to the cleaning pipeline. Moreover, because spikes evoked by ICMS are preferentially evoked after
each individual pulses during the non-saturated timepoints, this gain correction is conservative with respect to the
contraction analyses to follow (see note in Methods §3.7). b: Example non-stimulation traces for a single ICMS
trial. c: Synthetic non-stim traces generated by adding electrical artifact from a paired stimulation trial to the
traces in (b). d: Comparison of the ground truth traces in (b) (black) against the ERAASR2 cleaned traces (blue).
e,f: Histogram of Pearson correlation coefficients of ground truth vs. ERAASR2 cleaned traces, computed on all
channels for each trial (blue), versus the correlation coefficients for ground truth vs. the original, artifact corrupted
traces vs. ground truth (gray). (e) summarizes non-saturated sessions; (f) summarizes saturated sessions, excluding
the saturated samples. g: Synthetic stimulation aligned spike raster, in which each ground truth spike is colored
according to whether it was successfully textcolorcRecoveredrecovered (true positive) or missed (false negative) in
the synthetic stimulation pipeline. Spikes detected in the synthetic non-stimulation traces with no counterpart in
the corresponding non-stimulated trial are marked as fabricated (false positive). h: For non-saturated sessions,
histogram over neurons of fraction of recovered, true spikes (ideally 1) and fraction of fabricated synthetic pipeline
spikes (ideally 0). i: (Top) True vs. synthetic firing rates relative to individual ICMS pulses, averaged over trials,
pulses, and neurons for non-saturated sessions, computed at the time resolution of the original Neuropixels sampling
(30 kHz). (Bottom) Fraction of channels with any saturated timepoints. Shaded regions before (after) show the
continuation into the previous (subsequent) ICMS pulse. j: Comparison of true vs. synthetic condition-averaged
firing rates, for each neuron × condition in non-saturated sessions, before the gain correction is performed. k: Same
comparison after gain correction. l-p: Identical to (g-k) for saturated sessions. ↑ Go back
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Extended Data Fig. 9. Supplemental ICMS figure. a: ICMS in PMd at the Go Cue slows reaction time (RT).
Cumulative distributions of reaction times for non-stimulated (black) vs. stimulated (purple) conditions with (solid)
and without (dashed) a delay period preceding the go cue. Statistical significance assessed via Mann-Whitney U
test. The difference between with delay and no delay trials provides a sense of scale of RT benefit incurred through
advance preparation. (continued on next page)
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Extended Data Fig. 9 (continued from previous page). This effect size is smaller than reported in previous
studies for subthreshold PMd stimulation60,62 as we did not optimize stimlation amplitudes relative to the threshold
for evoking movement. b: Timecourse of normalized stimulation vector length for O. M1 in the full neural space
(left) and projected into the task activity space (right). Each trace represents a stimulation timing colored as in
Fig. 5a. c: Maximum normalized stimulation vector length in the full neural space (black) and projected into the
task activity space (red) for all optogenetic and ICMS sessions. Chance projection of the full stimulation vector into
the task-activity space is marked by gray lines. d: State space visualization of stimulation evoked displacements
of neural trajectories within the task-activity space (PCs of non-stimulated trial-averages) at site P14. Same as
Fig. 5f but with all stimulation timings for a single reach direction. e: Shape similarity metric quantifying distortion
between non-stimulated and stimulated latents for all optogenetic and ICMS sessions. Shuffle and Poisson resample
lines indicate significance thresholds (α = 0.05) under two null hypotheses where the latents are identical (see
Methods §8.3); filled circles indicate statistically significant responses. f: Single trial latents inferred by a single
trial variant of the latent variable model. g: Vertical line indicates normalized dissimilarity metric between the single
trial latents’ covariance structure (around their condition means) for stimulated trials compared to non-stimulated
trials, computed during stimulation. Gray density indicates the dissimilarity with the trial labels permuted. h: Same
as (d) except for post-stimulation. i: Change in single trial latent covariance in the first two latent dimensions as
a function of time before, during, and after stimulation. This is computed as stimulation covariance pre-whitened
by the non-stimulated covariance, such that no change in variability would appear as the unit circle. Changes in
single trial covariance immediately post-stiulation appear similar to the changes in the covariance of the condition
means around their centroid (red). j: Normalized dissimilarity metric between the change in covariance exhibited by
single trials immediately post-stimulation vs. the change in covariance exhibited by the condition means. Density
shows the distribution in which the changes in the covariances are randomly rotated within the latent space. This
significantly low value indicates that the structure of single trial variability (around their condition-averaged means)
in the latents post-stim is reshaped in a similar manner as the distortion that contracts the condition-averaged
latents. k: Graphical model of the contraction-only LVM. Circles (nodes) indicate random variables. Arrows
indicate a statistical dependence of the recipient node on the source node, with uppercase letter labels indicating
matrix multiplication. In contrast to the unconstrained model, stimulation latents are calculated from the fitted
non-stimulation latents, through a linear operation. This operator takes the form of a pure time-varying contraction
along each dimension independently (based on the diagonal matrix Bt) towards a fitted centroid across conditions.
The elements of the diagonal matrix Bt which control the contraction have a Gaussian process prior, with the
autocorrelation disconnected at the onset and offset of stimulation. A fitted rotation matrix R allows the axes
of the contraction to be oriented appropriately within the latent space. Stimulated rates are computed from the
stimulation latents as in the unconstrained model. The fitted parameters of this model are zzzt, zzzcent, Bt, R, and
∆. l: Fitted latent activations and latent contraction centroid (cyan) for the leading three latent dimensions with
the contraction-only LVM. m: Accurate recovery of the true effective contraction coefficients. For each dataset, we
took the non-stimulated latents inferred by the unconstrained LVM. We generated synthesized stimulation latents
by applying with varying amounts of contraction (true contraction coefficient) to the non-stimulation latents. We
then regenerated spike counts from both using the projection matrix C and the fitted ∆ from the unconstrained
LVM. We then fit the contraction only LVM to these synthesized datasets to estimate the contraction coefficient.
n: Relationship across PMd stimulation sessions between evoked kinematic effect (integral under curve in (c)) vs.
stimulation-averaged effective contraction coefficient calculated from the contraction-only LVM. Shading shows 95%
CIs for a linear fit. o,p: Same as Fig. 5r and (n) but with the effective contraction coefficients estimated post hoc
from unconstrained LVM latents for the (k) M1 stimulation sessions and (l) PMd stimulation sessions. q: Same as
Fig. 5r, but with kinematic effect size regressed on the length of the stimulation-induced displacement vector, i.e.
value of the black dots in (c). ↑ Go back
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